The easiest way for the majority of users to install pandas is to install it as part of the Anaconda distribution, a cross platform distribution for data analysis and scientific computing. This is the recommended installation method for most users.

Instructions for installing from source, PyPI, various Linux distributions, or a development version are also provided.

Python version support

Officially Python 2.7, 3.4, and 3.5

Installing pandas

Trying out pandas, no installation required!

The easiest way to start experimenting with pandas doesn’t involve installing pandas at all.

Wakari is a free service that provides a hosted IPython Notebook service in the cloud.

Simply create an account, and have access to pandas from within your brower via an IPython Notebook in a few minutes.

Installing pandas with Anaconda

Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users.

The simplest way to install not only pandas, but Python and the most popular packages that make up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python distribution for data analytics and scientific computing.

After running a simple installer, the user will have access to pandas and the rest of the SciPy stack without needing to install anything else, and without needing to wait for any software to be compiled.

Installation instructions for Anaconda can be found here.

A full list of the packages available as part of the Anaconda distribution can be found here.

An additional advantage of installing with Anaconda is that you don’t require admin rights to install it, it will install in the user’s home directory, and this also makes it trivial to delete Anaconda at a later date (just delete that folder).

Installing pandas with Miniconda

The previous section outlined how to get pandas installed as part of the Anaconda distribution. However this approach means you will install well over one hundred packages and involves downloading the installer which is a few hundred megabytes in size.

If you want to have more control on which packages, or have a limited internet bandwidth, then installing pandas with Miniconda may be a better solution.

Conda is the package manager that the Anaconda distribution is built upon. It is a package manager that is both cross-platform and language agnostic (it can play a similar role to a pip and virtualenv combination).

Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to install additional packages.

First you will need Conda to be installed and downloading and running the Miniconda will do this for you. The installer can be found here

The next step is to create a new conda environment (these are analogous to a virtualenv but they also allow you to specify precisely which Python version to install also). Run the following commands from a terminal window:

conda create -n name_of_my_env python

This will create a minimal environment with only Python installed in it. To put your self inside this environment run:

source activate name_of_my_env

On Windows the command is:

activate name_of_my_env

The final step required is to install pandas. This can be done with the following command:

conda install pandas

To install a specific pandas version:

conda install pandas=0.13.1

To install other packages, IPython for example:

conda install ipython

To install the full Anaconda distribution:

conda install anaconda

If you require any packages that are available to pip but not conda, simply install pip, and use pip to install these packages:

conda install pip
pip install django

Installing from PyPI

pandas can be installed via pip from PyPI.

pip install pandas

This will likely require the installation of a number of dependencies, including NumPy, will require a compiler to compile required bits of code, and can take a few minutes to complete.

Installing using your Linux distribution’s package manager.

The commands in this table will install pandas for Python 2 from your distribution. To install pandas for Python 3 you may need to use the package python3-pandas.

Distribution Status Download / Repository Link Install method
Debian stable official Debian repository sudo apt-get install python-pandas
Debian & Ubuntu unstable (latest packages) NeuroDebian sudo apt-get install python-pandas
Ubuntu stable official Ubuntu repository sudo apt-get install python-pandas
Ubuntu unstable (daily builds) PythonXY PPA; activate by: sudo add-apt-repository ppa:pythonxy/pythonxy-devel && sudo apt-get update sudo apt-get install python-pandas
OpenSuse stable OpenSuse Repository zypper in  python-pandas
Fedora stable official Fedora repository dnf install python-pandas
Centos/RHEL stable EPEL repository yum install python-pandas

Installing from source

See the contributing documentation for complete instructions on building from the git source tree. Further, see creating a development environment if you wish to create a pandas development environment.

Running the test suite

pandas is equipped with an exhaustive set of unit tests covering about 97% of the codebase as of this writing. To run it on your machine to verify that everything is working (and you have all of the dependencies, soft and hard, installed), make sure you have nose and run:

>>> import pandas as pd
>>> pd.test()
Running unit tests for pandas
pandas version 0.18.0
numpy version 1.10.2
pandas is installed in pandas
Python version 2.7.11 |Continuum Analytics, Inc.|
   (default, Dec  6 2015, 18:57:58) [GCC 4.2.1 (Apple Inc. build 5577)]
nose version 1.3.7

Ran 9252 tests in 368.339s

OK (SKIP=117)


Optional Dependencies

  • Cython: Only necessary to build development version. Version 0.19.1 or higher.

  • SciPy: miscellaneous statistical functions

  • xarray: pandas like handling for > 2 dims, needed for converting Panels to xarray objects. Version 0.7.0 or higher is recommended.

  • PyTables: necessary for HDF5-based storage. Version 3.0.0 or higher required, Version 3.2.1 or higher highly recommended.

  • SQLAlchemy: for SQL database support. Version 0.8.1 or higher recommended. Besides SQLAlchemy, you also need a database specific driver. You can find an overview of supported drivers for each SQL dialect in the SQLAlchemy docs. Some common drivers are:

    • psycopg2: for PostgreSQL
    • pymysql: for MySQL.
    • SQLite: for SQLite, this is included in Python’s standard library by default.
  • matplotlib: for plotting

  • For Excel I/O:

    • xlrd/xlwt: Excel reading (xlrd) and writing (xlwt)
    • openpyxl: openpyxl version 1.6.1 or higher (but lower than 2.0.0), or version 2.2 or higher, for writing .xlsx files (xlrd >= 0.9.0)
    • XlsxWriter: Alternative Excel writer
  • Jinja2: Template engine for conditional HTML formatting.

  • boto: necessary for Amazon S3 access.

  • blosc: for msgpack compression using blosc

  • One of PyQt4, PySide, pygtk, xsel, or xclip: necessary to use read_clipboard(). Most package managers on Linux distributions will have xclip and/or xsel immediately available for installation.

  • Google’s `python-gflags <<>`__ , oauth2client , httplib2 and google-api-python-client : Needed for gbq

  • Backports.lzma: Only for Python 2, for writing to and/or reading from an xz compressed DataFrame in CSV; Python 3 support is built into the standard library.

  • One of the following combinations of libraries is needed to use the top-level read_html() function:



    • if you’re on a system with apt-get you can do

      sudo apt-get build-dep python-lxml

      to get the necessary dependencies for installation of lxml. This will prevent further headaches down the line.


Without the optional dependencies, many useful features will not work. Hence, it is highly recommended that you install these. A packaged distribution like Anaconda, or Enthought Canopy may be worth considering.

Scroll To Top