CONTENTS

1 What’s New

1.1 v0.14.1 (July 11, 2014) ... 3
1.2 v0.14.0 (May 31, 2014) ... 8
1.3 v0.13.1 (February 3, 2014) 35
1.4 v0.13.0 (January 3, 2014) 43
1.5 v0.12.0 (July 24, 2013) ... 65
1.6 v0.11.0 (April 22, 2013) .. 76
1.7 v0.10.1 (January 22, 2013) 85
1.8 v0.10.0 (December 17, 2012) 91
1.9 v0.9.1 (November 14, 2012) 102
1.10 v0.9.0 (October 7, 2012) 106
1.11 v0.8.1 (July 22, 2012) ... 108
1.12 v0.8.0 (June 29, 2012) ... 108
1.13 v0.7.3 (April 12, 2012) .. 114
1.14 v0.7.2 (March 16, 2012) 118
1.15 v0.7.1 (February 29, 2012) 118
1.16 v0.7.0 (February 9, 2012) 119
1.17 v0.6.1 (December 13, 2011) 124
1.18 v0.6.0 (November 25, 2011) 125
1.19 v0.5.0 (October 24, 2011) 126
1.20 v0.4.3 through v0.4.1 (September 25 - October 9, 2011) ... 127

2 Installation

2.1 Python version support .. 129
2.2 Binary installers .. 129
2.3 Dependencies ... 130
2.4 Recommended Dependencies .. 130
2.5 Optional Dependencies .. 130
2.6 Installing from source .. 132
2.7 Running the test suite .. 132

3 Frequently Asked Questions (FAQ)

3.1 Adding Features to your pandas Installation 135
3.2 Migrating from scikits.timeseries to pandas >= 0.8.0 135
3.3 Byte-Ordering Issues .. 139
3.4 Visualizing Data in Qt applications 140

4 Package overview

4.1 Data structures at a glance .. 143
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2</td>
<td>Datetimes</td>
<td>349</td>
</tr>
<tr>
<td>13.3</td>
<td>Calculations with missing data</td>
<td>349</td>
</tr>
<tr>
<td>13.4</td>
<td>Cleaning / filling missing data</td>
<td>351</td>
</tr>
<tr>
<td>13.5</td>
<td>Missing data casting rules and indexing</td>
<td>363</td>
</tr>
<tr>
<td>14</td>
<td>Group By: split-apply-combine</td>
<td>367</td>
</tr>
<tr>
<td>14.1</td>
<td>Splitting an object into groups</td>
<td>368</td>
</tr>
<tr>
<td>14.2</td>
<td>Iterating through groups</td>
<td>372</td>
</tr>
<tr>
<td>14.3</td>
<td>Aggregation</td>
<td>373</td>
</tr>
<tr>
<td>14.4</td>
<td>Transformation</td>
<td>376</td>
</tr>
<tr>
<td>14.5</td>
<td>Filtration</td>
<td>380</td>
</tr>
<tr>
<td>14.6</td>
<td>Dispatching to instance methods</td>
<td>382</td>
</tr>
<tr>
<td>14.7</td>
<td>Flexible apply</td>
<td>383</td>
</tr>
<tr>
<td>14.8</td>
<td>Other useful features</td>
<td>385</td>
</tr>
<tr>
<td>14.9</td>
<td>Examples</td>
<td>391</td>
</tr>
<tr>
<td>15</td>
<td>Merge, join, and concatenate</td>
<td>393</td>
</tr>
<tr>
<td>15.1</td>
<td>Concatenating objects</td>
<td>393</td>
</tr>
<tr>
<td>15.2</td>
<td>Database-style DataFrame joining/merging</td>
<td>402</td>
</tr>
<tr>
<td>15.3</td>
<td>Merging with Multi-indexes</td>
<td>411</td>
</tr>
<tr>
<td>16</td>
<td>Reshaping and Pivot Tables</td>
<td>415</td>
</tr>
<tr>
<td>16.1</td>
<td>Reshaping by pivoting DataFrame objects</td>
<td>415</td>
</tr>
<tr>
<td>16.2</td>
<td>Reshaping by stacking and unstacking</td>
<td>416</td>
</tr>
<tr>
<td>16.3</td>
<td>Reshaping by Melt</td>
<td>420</td>
</tr>
<tr>
<td>16.4</td>
<td>Combining with stats and GroupBy</td>
<td>421</td>
</tr>
<tr>
<td>16.5</td>
<td>Pivot tables and cross-tabulations</td>
<td>422</td>
</tr>
<tr>
<td>16.6</td>
<td>Tiling</td>
<td>426</td>
</tr>
<tr>
<td>16.7</td>
<td>Computing indicator / dummy variables</td>
<td>426</td>
</tr>
<tr>
<td>16.8</td>
<td>Factorizing values</td>
<td>428</td>
</tr>
<tr>
<td>17</td>
<td>Time Series / Date functionality</td>
<td>429</td>
</tr>
<tr>
<td>17.1</td>
<td>Time Stamps vs. Time Spans</td>
<td>430</td>
</tr>
<tr>
<td>17.2</td>
<td>Converting to Timestamps</td>
<td>431</td>
</tr>
<tr>
<td>17.3</td>
<td>Generating Ranges of Timestamps</td>
<td>432</td>
</tr>
<tr>
<td>17.4</td>
<td>DatetimeIndex</td>
<td>434</td>
</tr>
<tr>
<td>17.5</td>
<td>DateOffset objects</td>
<td>440</td>
</tr>
<tr>
<td>17.6</td>
<td>Time series-related instance methods</td>
<td>449</td>
</tr>
<tr>
<td>17.7</td>
<td>Up- and downsampling</td>
<td>451</td>
</tr>
<tr>
<td>17.8</td>
<td>Time Span Representation</td>
<td>453</td>
</tr>
<tr>
<td>17.9</td>
<td>Converting between Representations</td>
<td>457</td>
</tr>
<tr>
<td>17.10</td>
<td>Time Zone Handling</td>
<td>459</td>
</tr>
<tr>
<td>17.11</td>
<td>Time Deltas</td>
<td>463</td>
</tr>
<tr>
<td>17.12</td>
<td>Time Deltas & Reductions</td>
<td>466</td>
</tr>
<tr>
<td>17.13</td>
<td>Time Deltas & Conversions</td>
<td>467</td>
</tr>
<tr>
<td>18</td>
<td>Plotting</td>
<td>471</td>
</tr>
<tr>
<td>18.1</td>
<td>Basic Plotting: <code>plot</code></td>
<td>471</td>
</tr>
<tr>
<td>18.2</td>
<td>Other Plots</td>
<td>474</td>
</tr>
<tr>
<td>18.3</td>
<td>Plotting Tools</td>
<td>491</td>
</tr>
<tr>
<td>18.4</td>
<td>Plot Formatting</td>
<td>499</td>
</tr>
<tr>
<td>18.5</td>
<td>Plotting directly with matplotlib</td>
<td>516</td>
</tr>
<tr>
<td>19</td>
<td>Trellis plotting interface</td>
<td>519</td>
</tr>
<tr>
<td>19.1</td>
<td>Examples</td>
<td>519</td>
</tr>
</tbody>
</table>
IO Tools (Text, CSV, HDF5, ...)
20.1 CSV & Text files
20.2 JSON
20.3 HTML
20.4 Excel files
20.5 Clipboard
20.6 Pickling
20.7 msgpack (Experimental)
20.8 HDF5 (PyTables)
20.9 SQL Queries
20.10 Google BigQuery (Experimental)
20.11 STATA Format
20.12 Performance Considerations

Remote Data Access
21.1 Yahoo! Finance
21.2 Yahoo! Finance Options
21.3 Google Finance
21.4 FRED
21.5 Fama/French
21.6 World Bank

Enhancing Performance
22.1 Cython (Writing C extensions for pandas)
22.2 Expression Evaluation via `eval()` (Experimental)

Sparse data structures
23.1 SparseArray
23.2 SparseList
23.3 SparseIndex objects

Caveats and Gotchas
24.1 Using If/Truth Statements with pandas
24.2 NaN, Integer NA values and NA type promotions
24.3 Integer indexing
24.4 Label-based slicing conventions
24.5 Miscellaneous indexing gotchas
24.6 Timestamp limitations
24.7 Parsing Dates from Text Files
24.8 Differences with NumPy
24.9 Thread-safety
24.10 HTML Table Parsing
24.11 Byte-Ordering Issues

rpy2 / R interface
25.1 Transferring R data sets into Python
25.2 Converting DataFrames into R objects
25.3 Calling R functions with pandas objects
25.4 High-level interface to R estimators

pandas Ecosystem
26.1 Statistics and Machine Learning
26.2 Visualization
31.22 pandas 0.4.1 ... 1365
31.23 pandas 0.4.0 ... 1367
31.24 pandas 0.3.0 ... 1371

Python Module Index 1375
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

- Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
- Ordered and unordered (not necessarily fixed-frequency) time series data.
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels
- Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, **Series** (1-dimensional) and **DataFrame** (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, **DataFrame** provides everything that R’s **data.frame** provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

- Easy handling of **missing data** (represented as NaN) in floating point as well as non-floating point data
- Size mutability: columns can be **inserted and deleted** from DataFrame and higher dimensional objects
- Automatic and explicit **data alignment**: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let **Series**, **DataFrame**, etc. automatically align the data for you in computations
- Powerful, flexible **group by** functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
- Make it **easy to convert** ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
- Intelligent label-based **slicing**, **fancy indexing**, and **subsetting** of large data sets
- Intuitive **merging** and **joining** data sets
- Flexible **reshaping** and pivoting of data sets
- **Hierarchical** labeling of axes (possible to have multiple labels per tick)
- Robust IO tools for loading data from **flat files** (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast **HDF5 format**
- **Time series**-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.
Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Some other notes

- pandas is **fast**. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However, as with anything else generalization usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool.

- pandas is a dependency of statsmodels, making it an important part of the statistical computing ecosystem in Python.

- pandas has been used extensively in production in financial applications.

Note: This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do invest some time in learning about NumPy first.

See the package overview for more detail about what’s in the library.
WHAT’S NEW

These are new features and improvements of note in each release.

1.1 v0.14.1 (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Highlights include:
 – New methods `select_dtypes()` to select columns based on the dtype and `sem()` to calculate the standard error of the mean.
 – Support for dateutil timezones (see docs).
 – Support for ignoring full line comments in the `read_csv()` text parser.
 – New documentation section on *Options and Settings*.
 – Lots of bug fixes.

• Enhancements
• API Changes
• Performance Improvements
• Experimental Changes
• Bug Fixes

1.1.1 API changes

• Openpyxl now raises a ValueError on construction of the openpyxl writer instead of warning on pandas import (GH7284).

• For `StringMethods.extract`, when no match is found, the result - only containing NaN values - now also has dtype=object instead of float (GH7242)

• Period objects no longer raise a TypeError when compared using == with another object that isn’t a Period. Instead when comparing a Period with another object using == if the other object isn’t a Period False is returned. (GH7376)
• Previously, the behaviour on resetting the time or not in offsets.apply, rollforward and rollback operations differed between offsets. With the support of the normalize keyword for all offsets(see below) with a default value of False (preserve time), the behaviour changed for certain offsets (BusinessMonthBegin, MonthEnd, BusinessMonthEnd, CustomBusinessMonthEnd, BusinessYearBegin, LastWeekOfMonth, FY5253Quarter, LastWeekOfMonth, Easter):

In [6]: from pandas.tseries import offsets
In [7]: d = pd.Timestamp('2014-01-01 09:00')

old behaviour < 0.14.1
In [8]: d + offsets.MonthEnd()
Out[8]: Timestamp('2014-01-31 00:00:00')

Starting from 0.14.1 all offsets preserve time by default. The old behaviour can be obtained with normalize=True

new behaviour
In [1]: d + offsets.MonthEnd()
Out[1]: Timestamp('2014-01-31 09:00:00')

In [2]: d + offsets.MonthEnd(normalize=True)
Out[2]: Timestamp('2014-01-31 00:00:00')

Note that for the other offsets the default behaviour did not change.

• Add back #N/A N/A as a default NA value in text parsing, (regresion from 0.12) (GH5521)

• Raise a TypeError on inplace-setting with a .where and a non np.nan value as this is inconsistent with a set-item expression like df[mask] = None (GH7656)

1.1.2 Enhancements

• Add dropna argument to value_counts and nunique (GH5569).

• Add select_dtypes() method to allow selection of columns based on dtype (GH7316). See the docs.

• All offsets supports the normalize keyword to specify whether offsets.apply, rollforward and rollback resets the time (hour, minute, etc) or not (default False, preserves time) (GH7156):

In [3]: import pandas.tseries.offsets as offsets
In [4]: day = offsets.Day()

In [5]: day.apply(Timestamp('2014-01-01 09:00'))
Out[5]: Timestamp('2014-01-02 09:00:00')

In [6]: day = offsets.Day(normalize=True)

In [7]: day.apply(Timestamp('2014-01-01 09:00'))
Out[7]: Timestamp('2014-01-02 00:00:00')

• PeriodIndex is represented as the same format as DatetimeIndex (GH7601)

• StringMethods now work on empty Series (GH7242)

• The file parsers read_csv and read_table now ignore line comments provided by the parameter comment, which accepts only a single character for the C reader. In particular, they allow for comments before file data begins (GH2685)
• Add `NotImplementedError` for simultaneous use of `chunksize` and `nrows` for `read_csv()` (GH6774).
• Tests for basic reading of public S3 buckets now exist (GH7281).
• `read_html` now sports an `encoding` argument that is passed to the underlying parser library. You can use this to read non-ascii encoded web pages (GH7323).
• `read_excel` now supports reading from URLs in the same way that `read_csv` does. (GH6809)
• Support for `dateutil` timezones, which can now be used in the same way as `pytz` timezones across pandas. (GH4688)

```python
In [8]: rng = date_range('3/6/2012 00:00', periods=10, freq='D', ...
\...:     tz='dateutil/Europe/London')
...

In [9]: rng.tz
Out[9]: tzfile('/usr/share/zoneinfo/Europe/London')
```

See the docs.
• Implemented `sem` (standard error of the mean) operation for `Series`, `DataFrame`, `Panel`, and `Groupby` (GH6897)
• Add `nlargest` and `nsmallest` to the `Series` groupby whitelist, which means you can now use these methods on a `SeriesGroupBy` object (GH7053).
• All offsets `apply`, `rollforward` and `rollback` can now handle `np.datetime64`, previously results in `ApplyTypeError` (GH7452)
• `Period` and `PeriodIndex` can contain `NaT` in its values (GH7485)
• Support pickling `Series`, `DataFrame` and `Panel` objects with non-unique labels along `item` axis (index, columns and items respectively) (GH7370).
• Improved inference of datetime/timedelta with mixed null objects. Regression from 0.13.1 in interpretation of an `Index` with all null elements (GH7431)

1.1.3 Performance

• Improvements in `dtype` inference for numeric operations involving yielding performance gains for dtypes: `int64`, `timedelta64`, `datetime64` (GH7223)
• Improvements in `Series.transform` for significant performance gains (GH6496)
• Improvements in `DataFrame.transform` with ufuncs and built-in grouper functions for significant performance gains (GH7383)
• Regression in `groupby` aggregation of `datetime64` dtypes (GH7555)
• Improvements in `MultiIndex.from_product` for large iterables (GH7627)

1.1.4 Experimental

• `pandas.io.data.Options` has a new method, `get_all_data` method, and now consistently returns a multi-indexed `DataFrame`, see the docs. (GH5602)
• `io.gbq.read_gbq` and `io.gbq.to_gbq` were refactored to remove the dependency on the Google `bq.py` command line client. This submodule now uses `httplib2` and the Google `apiclient` and `oauth2client` API client libraries which should be more stable and, therefore, reliable than `bq.py`. See the docs. (GH6937).
1.1.5 Bug Fixes

- Bug in `DataFrame.where` with a symmetric shaped frame and a passed other of a DataFrame (GH7506)
- Bug in Panel indexing with a multi-index axis (GH7516)
- Regression in datetimelike slice indexing with a duplicated index and non-exact end-points (GH7523)
- Bug in `setitem` with list-of-lists and single vs mixed types (GH7551)
- Bug in timeops with non-aligned Series (GH7500)
- Bug in timedelta inference when assigning an incomplete Series (GH7592)
- Bug in groupby `.nth` with a Series and integer-like column name (GH7559)
- Bug in `Series.get` with a boolean accessor (GH7407)
- Bug in `value_counts` where `NaT` did not qualify as missing (GH7423)
- Bug in `to_timedelta` that accepted invalid units and misinterpreted `m/h` (GH7611, GH6423)
- Bug in line plot doesn’t set correct `xlim` if `secondary_y=True` (GH7459)
- Bug in grouped `hist` and `scatter` plots use old `figsize` default (GH7394)
- Bug in plotting subplots with `DataFrame.plot, hist clears passed ax even if the number of subplots is one (GH7391).
- Bug in plotting subplots with `DataFrame.boxplot` with `by kw` raises `ValueError` if the number of subplots exceeds 1 (GH7391).
- Bug in subplots displays `ticklabels` and `labels` in different rule (GH5897)
- Bug in `Panel.apply` with a multi-index as an axis (GH7469)
- Bug in `DatetimeIndex.insert` doesn’t preserve name and `tz` (GH7299)
- Bug in `DatetimeIndex.asobject` doesn’t preserve name (GH7299)
- Bug in multi-index slicing with datetimelike ranges (strings and Timestamps), (GH7429)
- Bug in `Index.min` and `max` doesn’t handle `nan` and `NaT` properly (GH7261)
- Bug in `PeriodIndex.min/max` results in `int` (GH7609)
- Bug in `resample` where `fill_method` was ignored if you passed `how` (GH2073)
- Bug in `TimeGrouper` doesn’t exclude column specified by key (GH7227)
- Bug in `DataFrame` and `Series` `bar` and `barh` plot raises `TypeError` when `bottom` and `left` keyword is specified (GH7226)
- Bug in `DataFrame.hist` raises `TypeError` when it contains non numeric column (GH7277)
- Bug in `Index.delete` does not preserve name and freq attributes (GH7302)
- Bug in `DataFrame.query()//eval` where local string variables with the `@` sign were being treated as temporaries attempting to be deleted (GH7300).
- Bug in `Float64Index` which didn’t allow duplicates (GH7149).
- Bug in `DataFrame.replace()` where truthy values were being replaced (GH7140).
- Bug in `StringMethods.extract()` where a single match group Series would use the matcher’s name instead of the group name (GH7313).
- Bug in `isnull()` when `mode.use_inf_as_null == True` where `isnull` wouldn’t test `True` when it encountered an `inf/-inf` (GH7315).
• Bug in inferred_freq results in None for eastern hemisphere timezones (GH7310)
• Bug in Easter returns incorrect date when offset is negative (GH7195)
• Bug in broadcasting with .div, integer dtypes and divide-by-zero (GH7325)
• Bug in CustomBusinessDay.apply raises NameError when np.datetime64 object is passed (GH7196)
• Bug in MultiIndex.append, concat and pivot_table don’t preserve timezone (GH6606)
• Bug in .loc with a list of indexers on a single-multi index level (that is not nested) (GH7349)
• Bug in Series.map when mapping a dict with tuple keys of different lengths (GH7333)
• Bug all StringMethods now work on empty Series (GH7242)
• Fix delegation of read_sql to read_sql_query when query does not contain ‘select’ (GH7324).
• Bug where a string column name assignment to a DataFrame with a Float64Index raised a TypeError during a call to np.isnan (GH7366).
• Bug where NDFrame.replace() didn’t correctly replace objects with Period values (GH7379).
• Bug in .ix getitem should always return a Series (GH7150)
• Bug in multi-index slicing with incomplete indexers (GH7399)
• Bug in multi-index slicing with a step in a sliced level (GH7400)
• Bug where negative indexers in DatetimeIndex were not correctly sliced (GH7408)
• Bug where NaT wasn’t repr’d correctly in a MultiIndex (GH7406, GH7409).
• Bug where bool objects were converted to nan in convert_objects (GH7416).
• Bug in quantile ignoring the axis keyword argument (:issue'7306’)
• Bug where nanops._maybe_null_out doesn’t work with complex numbers (GH7353)
• Bug in several nanops functions when axis==0 for 1-dimensional nan arrays (GH7354)
• Bug where nanops.nanmedian doesn’t work when axis==None (GH7352)
• Bug where nanops._has_infs doesn’t work with many dtypes (GH7357)
• Bug in StataReader.data where reading a 0-observation dta failed (GH7369)
• Bug in when reading Stata 13 (117) files containing fixed width strings (GH7360)
• Bug in when writing Stata files where the encoding was ignored (GH7286)
• Bug in DatetimeIndex comparison doesn’t handle NaT properly (GH7529)
• Bug in passing input with tzinfo to some offsets apply, rollforward or rollback resets tzinfo or raises ValueError (GH7465)
• Bug in DatetimeIndex.to_period, PeriodIndex.asobject, PeriodIndex.to_timestamp doesn’t preserve name (GH7485)
• Bug in DatetimeIndex.to_period and PeriodIndex.to_timestamp handle NaT incorrectly (GH7228)
• Bug in offsets.apply, rollforward and rollback may return normal datetime (GH7502)
• Bug in resample raises ValueError when target contains NaT (GH7227)
• Bug in Timestamp.tz_localize resets nanosecond info (GH7534)
• Bug in DatetimeIndex.asobject raises ValueError when it contains NaT (GH7539)
• Bug in `Timestamp.__new__` doesn’t preserve nanosecond properly (GH7610)
• Bug in `Index.astype(float)` where it would return an object dtype Index (GH7464).
• Bug in `DataFrame.reset_index` loses tz (GH3950)
• Bug in `DatetimeIndex.freqstr` raises AttributeError when freq is None (GH7606)
• Bug in `GroupBy.size` created by TimeGrouper raises AttributeError (GH7453)
• Bug in single column bar plot is misaligned (GH7498).
• Bug in area plot with tz-aware time series raises ValueError (GH7471)
• Bug in non-monotonic `Index.union` may preserve name incorrectly (GH7458)
• Bug in `DatetimeIndex.intersection` doesn’t preserve timezone (GH4690)
• Bug in `rolling_var` where a window larger than the array would raise an error (GH7297)
• Bug with last plotted timeseries dictating xlim (GH2960)
• Bug with secondary_y axis not being considered for timeseries xlim (GH3490)
• Bug in `Float64Index` assignment with a non scalar indexer (GH7586)
• Bug in `pandas.core.strings.str_contains` does not properly match in a case insensitive fashion when regex=False and case=False (GH7505)
• Bug in `expanding_cov`, `expanding_corr`, `rolling_cov`, and `rolling_corr` for two arguments with mismatched index (GH7512)
• Bug in `to_sql` taking the boolean column as text column (GH7678)
• Bug in grouped `hist` doesn’t handle rot kw and sharex kw properly (GH7234)
• Bug in `.loc` performing fallback integer indexing with object dtype indices (GH7496)
• Bug (regression) in `PeriodIndex` constructor when passed Series objects (GH7701).

1.2 `v0.14.0` (May 31, 2014)

This is a major release from 0.13.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Highlights include:
 – Officially support Python 3.4
 – SQL interfaces updated to use sqlalchemy, See *Here*.
 – Display interface changes, See *Here*
 – MultiIndexing Using Slicers, See *Here*.
 – Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see *Here*
 – More consistency in groupby results and more flexible groupby specifications, See *Here*
 – Holiday calendars are now supported in `CustomBusinessDay`, see *Here*
 – Several improvements in plotting functions, including: hexbin, area and pie plots, see *Here*.
 – Performance doc section on I/O operations, See *Here*.

• Other Enhancements
Warning: In 0.14.0 all NDFrame based containers have undergone significant internal refactoring. Before that each block of homogeneous data had its own labels and extra care was necessary to keep those in sync with the parent container’s labels. This should not have any visible user/API behavior changes (GH6745)

1.2.1 API changes

- **read_excel** uses 0 as the default sheet (GH6573)
- **iloc** will now accept out-of-bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed. These will be excluded. This will make pandas conform more with python/numpy indexing of out-of-bounds values. A single indexer that is out-of-bounds and drops the dimensions of the object will still raise IndexError (GH6296, GH6299). This could result in an empty axis (e.g. an empty DataFrame being returned)

```python
In [1]: dfl = DataFrame(np.random.randn(5,2),columns=list('AB'))
In [2]: dfl
Out[2]:
     A     B
0  1.474071 -0.064034
1 -1.282782  0.781836
2 -1.071357  0.441153
3  2.353925  0.583787
4  0.221471 -0.744471

In [3]: dfl.iloc[:,2:3]
Out[3]:
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [4]: dfl.iloc[:,1:3]
Out[4]:
     B
0 -0.064034
1  0.781836
2  0.441153
3  0.583787
4 -0.744471

In [5]: dfl.iloc[4:6]
Out[5]:
```

1.2. v0.14.0 (May 31, 2014)
These are out-of-bounds selections

dfl.iloc[[4,5,6]]
IndexError: positional indexers are out-of-bounds

dfl.iloc[:,4]
IndexError: single positional indexer is out-of-bounds

- Slicing with negative start, stop & step values handles corner cases better (GH6531):
 - df.iloc[-len(df)] is now empty
 - df.iloc[len(df)::-1] now enumerates all elements in reverse

- The DataFrame.interpolate() keyword downcast default has been changed from infer to None.
 This is to preserve the original dtype unless explicitly requested otherwise (GH6290).

- When converting a dataframe to HTML it used to return Empty DataFrame.
 This special case has been removed, instead a header with the column names is returned (GH6062).

- Series and Index now internall share more common operations, e.g.
 factorize(),nunique(),value_counts() are now supported on Index types as well.
 The Series.weekday property is now removed from Series for API consistency. Using a
 DatetimeIndex/PeriodIndex method on a Series will now raise a TypeError. (GH4551, GH4056,
 GH5519, GH6380, GH7206).

- Add is_month_start, is_month_end, is_quarter_start, is_quarter_end,
 is_year_start, is_year_end accessors for DateTimeIndex / Timestamp which return a
 boolean array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the
 frequency of the DateTimeIndex / Timestamp (GH4565, GH6998)

- Local variable usage has changed in pandas.eval() / DataFrame.eval() / DataFrame.query()
 (GH5987). For the DataFrame methods, two things have changed
 - Column names are now given precedence over locals
 - Local variables must be referred to explicitly. This means that even if you have a local variable that is not a column you must still refer to it with the '@' prefix.
 - You can have an expression like df.query('@a < a') with no complaints from pandas about ambiguity of the name a.
 - The top-level pandas.eval() function does not allow you use the '@' prefix and provides you with an error message telling you so.
 - NameResolutionError was removed because it isn't necessary anymore.

- Define and document the order of column vs index names in query/eval (GH6676)

- concat will now concatenate mixed Series and DataFrames using the Series name or numbering columns as needed (GH2385). See the docs

- Slicing and advanced/boolean indexing operations on Index classes as well as Index.delete() and
 Index.drop() methods will no longer change the type of the resulting index (GH6440, GH7040)

```
In [6]: i = pd.Index([1, 2, 3, 'a', 'b', 'c'])

In [7]: i[[0,1,2]]
Out[7]: Index([1, 2, 3], dtype='object')
```
In [8]: i.drop(['a', 'b', 'c'])
Out[8]: Index([1, 2, 3], dtype='object')

Previously, the above operation would return Int64Index. If you’d like to do this manually, use Index.astype()

In [9]: i[[0,1,2]].astype(np.int_)
Out[9]: Int64Index([1, 2, 3], dtype='int32')

• set_index no longer converts MultiIndexes to an Index of tuples. For example, the old behavior returned an Index in this case (GH6459):

Old behavior, casted MultiIndex to an Index
In [10]: tuple_ind
Out[10]: Index([(u'a', u'c'), (u'a', u'd'), (u'b', u'c'), (u'b', u'd')], dtype='object')

In [11]: df_multi.set_index(tuple_ind)
Out[11]:
 0 1
(a, c) 0.471435 -1.190976
(a, d) 1.432707 -0.312652
(b, c) -0.720589 0.887163
(b, d) 0.859588 -0.636524

New behavior
In [12]: mi
Out[12]: MultiIndex(levels=[['a', 'b'], ['c', 'd']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

In [13]: df_multi.set_index(mi)
Out[13]:
 0 1
 a c 0.471435 -1.190976
 d 1.432707 -0.312652
 b c-0.720589 0.887163
 d 0.859588 -0.636524

This also applies when passing multiple indices to set_index:

Old output, 2-level MultiIndex of tuples
In [14]: df_multi.set_index([df_multi.index, df_multi.index])
Out[14]:
 0 1
(a, c) (a, c) 0.471435 -1.190976
(a, d) (a, d) 1.432707 -0.312652
(b, c) (b, c) -0.720589 0.887163
(b, d) (b, d) 0.859588 -0.636524

New output, 4-level MultiIndex
In [15]: df_multi.set_index([df_multi.index, df_multi.index])
Out[15]:
 0 1
 a c a c 0.471435 -1.190976
 a d a d 1.432707 -0.312652
 b c b c -0.720589 0.887163
 b d b d 0.859588 -0.636524

• pairwise keyword was added to the statistical moment functions rolling_c cov, rolling_corr,
ewmcov, ewmcorr, expanding_cov, expanding_corr to allow the calculation of moving window covariance and correlation matrices (GH4950). See Computing rolling pairwise covariances and correlations in the docs.

In [16]: df = DataFrame(np.random.randn(10,4), columns=list('ABCD'))

In [17]: covs = rolling_cov(df[['A','B','C']], df[['B','C','D']], 5, pairwise=True)

In [18]: covs[df.index[-1]]
Out[18]:
B C D
A 0.128104 0.183628 -0.047358
B 0.856265 0.058945 0.145447
C 0.058945 0.335350 0.390637

• Series.iteritems() is now lazy (returns an iterator rather than a list). This was the documented behavior prior to 0.14. (GH6760)

• Added nunique and value_counts functions to Index for counting unique elements. (GH6734)

• stack and unstack now raise a ValueError when the level keyword refers to a non-unique item in the Index (previously raised a KeyError). (GH6738)

• drop unused order argument from Series.sort; args now are in the same order as Series.order; add na_position arg to conform to Series.order (GH6847)

• default sorting algorithm for Series.order is now quicksort, to conform with Series.sort (and numpy defaults)

• add inplace keyword to Series.order/sort to make them inverses (GH6859)

• DataFrame.sort now places NaNs at the beginning or end of the sort according to the na_position parameter. (GH3917)

• accept TextFileReader in concat, which was affecting a common user idiom (GH6583), this was a regression from 0.13.1

• Added factorize functions to Index and Series to get indexer and unique values (GH7090)

• describe on a DataFrame with a mix of Timestamp and string like objects returns a different Index (GH7088). Previously the index was unintentionally sorted.

• Arithmetic operations with only bool dtypes now give a warning indicating that they are evaluated in Python space for +, -, and * operations and raise for all others (GH7011, GH6762, GH7015, GH7210)

x = pd.Series(np.random.rand(10) > 0.5)
y = True
x + y # warning generated: should do x | y instead
x / y # this raises because it doesn’t make sense

NotImplementedError: operator ‘/’ not implemented for bool dtypes

• In HDFStore, select_as_multiple will always raise a KeyError, when a key or the selector is not found (GH6177)

• df[‘col’] = value and df.loc[:, ‘col’] = value are now completely equivalent; previously the .loc would not necessarily coerce the dtype of the resultant series (GH6149)

• dtypes and ftypes now return a series with dtype=object on empty containers (GH5740)

• df.to_csv will now return a string of the CSV data if neither a target path nor a buffer is provided (GH6061)
• pd.infer_freq() will now raise a TypeError if given an invalid Series/Index type (GH6407, GH6463)

• A tuple passed to DataFrame.sort_index will be interpreted as the levels of the index, rather than requiring a list of tuple (GH4370)

• all offset operations now return Timestamp types (rather than datetime), Business/Week frequencies were incorrect (GH4069)

• to_excel now converts np.inf into a string representation, customizable by the inf_rep keyword argument (Excel has no native inf representation) (GH6782)

• Replace pandas.compat.scipy.scoreatpercentile with numpy.percentile (GH6810)

• .quantile on a datetime[ns] series now returns Timestamp instead of np.datetime64 objects (GH6810)

• change AssertionError to TypeError for invalid types passed to concat (GH6583)

• Raise a TypeError when DataFrame is passed an iterator as the data argument (GH5357)

1.2.2 Display Changes

• The default way of printing large DataFrames has changed. DataFrames exceeding max_rows and/or max_columns are now displayed in a centrally truncated view, consistent with the printing of a pandas.Series (GH5603).

In previous versions, a DataFrame was truncated once the dimension constraints were reached and an ellipse (...) signaled that part of the data was cut off.

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: pd.options.display.max_rows = 6

In [4]: pd.options.display.max_columns = 6

In [5]: index = pd.DatetimeIndex(start='20010101', freq='D',periods=10)

In [6]: pd.DataFrame(np.arange(10*10).reshape((10,10)),index=index)
Out[6]:
2001-01-01 0 1 2 3 4 5 ...
2001-01-02 10 11 12 13 14 15 ...
2001-01-03 20 21 22 23 24 25 ...
2001-01-04 30 31 32 33 34 35 ...
2001-01-05 40 41 42 43 44 45 ...
2001-01-06 50 51 52 53 54 55 ...
...
[10 rows x 10 columns]

In the current version, large DataFrames are centrally truncated, showing a preview of head and tail in both dimensions.
allow option 'truncate' for display.show_dimensions to only show the dimensions if the frame is truncated (GH6547).

The default for display.show_dimensions will now be truncate. This is consistent with how Series display length.

```python
In [19]: dfd = pd.DataFrame(np.arange(25).reshape(-1, 5), index=[0, 1, 2, 3, 4], columns=[0, 1, 2, 3, 4])
    # show dimensions since this is truncated
In [20]: with pd.option_context('display.max_rows', 2, 'display.max_columns', 2, 'display.show_dimensions', 'truncate'):
    ...:     print(dfd)
    ...:
0   0   1   2   3   4
1   5   6   7   8   9
2  10  11  12  13  14
3  15  16  17  18  19
4  20  21  22  23  24
[5 rows x 5 columns]

# will not show dimensions since it is not truncated
In [21]: with pd.option_context('display.max_rows', 10, 'display.max_columns', 40, 'display.show_dimensions', 'truncate'):
    ...:     print(dfd)
    ...:
     0   1   2   3   4
     0   1   2   3   4
     1   5   6   7   8
     2  10  11  12  13
     3  15  16  17  18
     4  20  21  22  23
```

Regression in the display of a MultiIndexed Series with display.max_rows is less than the length of the series (GH7101)

Fixed a bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set to 'info' (GH7105)

The verbose keyword in DataFrame.info(), which controls whether to shorten the info representation, is now None by default. This will follow the global setting in display.max_info_columns. The global setting can be overriden with verbose=True or verbose=False.

Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)

Offset/freq info now in Timestamp repr (GH4553)
1.2.3 Text Parsing API Changes

read_csv()/read_table() will now be noiser w.r.t invalid options rather than falling back to the PythonParser.

- Raise ValueError when sep specified with delim_whitespace=True in read_csv()/read_table() (GH6607)
- Raise ValueError when engine='c' specified with unsupported options in read_csv()/read_table() (GH6607)
- Raise ValueError when fallback to python parser causes options to be ignored (GH6607)
- Produce ParserWarning on fallback to python parser when no options are ignored (GH6607)
- Translate sep='\s+' to delim_whitespace=True in read_csv()/read_table() if no other C-unsupported options specified (GH6607)

1.2.4 Groupby API Changes

More consistent behaviour for some groupby methods:

- groupby head and tail now act more like filter rather than an aggregation:

 In [22]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
 In [23]: g = df.groupby('A')
 In [24]: g.head(1) # filters DataFrame
 Out[24]:
 A B
 0 1 2
 2 5 6
 In [25]: g.apply(lambda x: x.head(1)) # used to simply fall-through
 Out[25]:
 A B
 1 0 1 2
 5 2 5 6

- groupby head and tail respect column selection:

 In [26]: g[['B']].head(1)
 Out[26]:
 B
 0 2
 2 6

- groupby nth now reduces by default; filtering can be achieved by passing as_index=False. With an optional dropna argument to ignore NaN. See the docs.

 Reducing

 In [27]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
 In [28]: g = df.groupby('A')
 In [29]: g.nth(0)
 Out[29]:

B
A
1 NaN
5 6

this is equivalent to g.first()
In [30]: g.nth(0, dropna='any')
Out[30]:

B
A
1 4
5 6

this is equivalent to g.last()
In [31]: g.nth(-1, dropna='any')
Out[31]:

Filtering
In [32]: gf = df.groupby('A', as_index=False)

In [33]: gf.nth(0)
Out[33]:

A B
0 1 NaN
2 5 6

In [34]: gf.nth(0, dropna='any')
Out[34]:

B
A
1 4
5 6

- groupby will now not return the grouped column for non-cython functions (GH5610, GH5614, GH6732), as its already the index

In [35]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [36]: g = df.groupby('A')

In [37]: g.count()
Out[37]:

B
A
1 1
5 2

In [38]: g.describe()
Out[38]:

A count 1.000000
 mean 4.000000
 std NaN
• passing as_index will leave the grouped column in-place (this is not change in 0.14.0)

In [39]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [40]: g = df.groupby('A', as_index=False)

In [41]: g.count()
Out[41]:
 A B
0 1 1
1 5 2

In [42]: g.describe()
Out[42]:
 A B
0 2 1.000000
 1 4.000000
 0 NaN
 1 1.000000
 25% 1.000000
 50% 1.000000
 75% 1.000000
...
1 5 8.000000
 0 1.414214
 5 6.000000
 25% 6.500000
 50% 7.000000
 75% 7.500000
 5 8.000000

[16 rows x 2 columns]

• Allow specification of a more complex groupby via pd.Grouper, such as grouping by a Time and a string
field simultaneously. See the docs. (GH3794)

• Better propagation/preservation of Series names when performing groupby operations:
 – SeriesGroupBy.agg will ensure that the name attribute of the original series is propagated to the
 result (GH6265).
 – If the function provided to GroupBy.apply returns a named series, the name of the series will be kept as
 the name of the column index of the DataFrame returned by GroupBy.apply (GH6124). This facilitates
 DataFrame.stack operations where the name of the column index is used as the name of the inserted

1.2. v0.14.0 (May 31, 2014)
column containing the pivoted data.

1.2.5 SQL

The SQL reading and writing functions now support more database flavors through SQLAlchemy (GH2717, GH4163, GH5950, GH6292). All databases supported by SQLAlchemy can be used, such as PostgreSQL, MySQL, Oracle, Microsoft SQL server (see documentation of SQLAlchemy on included dialects).

The functionality of providing DBAPI connection objects will only be supported for sqlite3 in the future. The 'mysql' flavor is deprecated.

The new functions `read_sql_query()` and `read_sql_table()` are introduced. The function `read_sql()` is kept as a convenience wrapper around the other two and will delegate to specific function depending on the provided input (database table name or sql query).

In practice, you have to provide a SQLAlchemy engine to the sql functions. To connect with SQLAlchemy you use the `create_engine()` function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For an in-memory sqlite database:

```python
In [43]: from sqlalchemy import create_engine

# Create your connection.
In [44]: engine = create_engine('sqlite:///:/memory:')
```

This engine can then be used to write or read data to/from this database:

```python
In [45]: df = pd.DataFrame({'A': [1,2,3], 'B': ['a', 'b', 'c']})

In [46]: df.to_sql('db_table', engine, index=False)
```

You can read data from a database by specifying the table name:

```python
In [47]: pd.read_sql_table('db_table', engine)
Out[47]:
   A  B
0  1  a
1  2  b
2  3  c
```

or by specifying a sql query:

```python
In [48]: pd.read_sql_query('SELECT * FROM db_table', engine)
Out[48]:
   A  B
0  1  a
1  2  b
2  3  c
```

Some other enhancements to the sql functions include:

- support for writing the index. This can be controlled with the `index` keyword (default is True).
- specify the column label to use when writing the index with `index_label`.
- specify string columns to parse as datetimes with `parse_dates` keyword in `read_sql_query()` and `read_sql_table()`.

Warning: Some of the existing functions or function aliases have been deprecated and will be removed in future versions. This includes: `tquery`, `uquery`, `read_frame`, `frame_query`, `write_frame`.
Warning: The support for the 'mysql' flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).

1.2.6 MultiIndexing Using Slicers

In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.

You can use slice(None) to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as slice(None).

As usual, both sides of the slicers are included as this is label indexing.

See the docs See also issues (GH6134, GH4036, GH3057, GH2598, GH5641, GH7106)

Warning: You should specify all axes in the .loc specifier, meaning the indexer for the index and for the columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex for the rows.

You should do this:

df.loc[(slice('A1','A3'),.....),:]

rather than this:

df.loc[(slice('A1','A3'),.....)]

Warning: You will need to make sure that the selection axes are fully lexsorted!

In [49]: def mklbl(prefix,n):
 : return ["%s%s" % (prefix,i) for i in range(n)]
 :

In [50]: index = MultiIndex.from_product([mklbl('A',4),
 : mklbl('B',2),
 : mklbl('C',4),
 : mklbl('D',2)])
 :

In [51]: columns = MultiIndex.from_tuples([('a','foo'),('a','bar'),
 : ('b','foo'),('b','bah')],
 : names=['lvl0', 'lvl1'])
 :

In [52]: df = DataFrame(np.arange(len(index)*len(columns)).reshape((len(index),len(columns))),
 : index=index,
 : columns=columns).sortlevel().sortlevel(axis=1)
 :

In [53]: df
Out[53]:
 lvl0 a b
 lvl1 bar foo bah foo
Basic multi-index slicing using slices, lists, and labels.

In [54]: df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :]
Out[54]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C1 D0 73 72 75 74
D1 77 76 79 78
C3 D0 89 88 91 90
D1 93 92 95 94
B1 C1 D0 105 104 107 106
D1 109 108 111 110
C3 D0 121 120 123 122
D1 125 124 127 126
...
A3 B0 C1 D1 205 204 207 206
C3 D0 249 248 251 250
D1 253 252 255 254
[64 rows x 4 columns]

You can use a `pd.IndexSlice` to shortcut the creation of these slices

In [55]: idx = pd.IndexSlice

In [56]: df.loc[idx[:,:,[C1,'C3']],idx[:,:,foo]]
Out[56]:
lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10
D1 12 14
C3 D0 24 26
D1 28 30
B1 C1 D0 40 42
D1 44 46
C3 D0 56 58
...
A3 B0 C1 D1 204 206
[24 rows x 4 columns]

[64 rows x 4 columns]

[24 rows x 4 columns]
It is possible to perform quite complicated selections using this method on multiple axes at the same time.

```python
In [57]: df.loc['A1',(slice(None),'foo')]
Out[57]:
     lvl0  a  b
  lvl1  foo  foo
  B0  C0  D0 64  66
  D1  68  70
  C1  D0  72  74
  D1  76  78
  C2  D0  80  82
  D1  84  86
  C3  D0  88  90
  ...
  B1  C0  D1 100 102
  C1  D0 104 106
  D1 108 110
  C2  D0 112 114
  D1 116 118
  C3  D0 120 122
  D1 124 126
[16 rows x 2 columns]
```

```python
In [58]: df.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[58]:
     lvl0  a  b
  lvl1  foo  foo
  A0  B0  C1  D0  8  10
  D1  12  14
  C3  D0  24  26
  D1  28  30
  B1  C1  D0  40  42
  D1  44  46
  C3  D0  56  58
  ...
  A3  B0  C1  D1 204 206
  C3  D0 216 218
  D1 220 222
  B1  C1  D0 232 234
  D1 236 238
  C3  D0 248 250
  D1 252 254
[32 rows x 2 columns]
```

Using a boolean indexer you can provide selection related to the values.

```python
In [59]: mask = df[('a','foo')]>200
```
In [60]: df.loc[idx[mask, :, ['C1', 'C3']], idx[:, 'foo']]
Out[60]:
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>lvl0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lvl1</td>
<td>foo</td>
<td>foo</td>
</tr>
<tr>
<td>A3</td>
<td>B0</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>206</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>222</td>
</tr>
<tr>
<td>B1</td>
<td>C1</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>232</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>238</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>254</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

You can also specify the `axis` argument to `.loc` to interpret the passed slicers on a single axis.

In [61]: df.loc(axis=0)[:, :, ['C1', 'C3']]
Out[61]:
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>lvl0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lvl1</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td>A0</td>
<td>B0</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>B1</td>
<td>C1</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>44</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>B0</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td>204</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>220</td>
</tr>
<tr>
<td>B1</td>
<td>C1</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>233</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>237</td>
<td>236</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>253</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[32 rows x 4 columns]

Furthermore you can `set` the values using these methods

In [62]: df2 = df.copy()

In [63]: df2.loc(axis=0)[:, :, ['C1', 'C3']] = -10

In [64]: df2
Out[64]:
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>lvl0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lvl1</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td>A0</td>
<td>B0</td>
<td>C0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>C1</td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>C2</td>
<td>D0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>B1</td>
<td>C0</td>
</tr>
<tr>
<td></td>
<td>229</td>
<td>228</td>
</tr>
<tr>
<td>C1</td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>C2</td>
<td>D0</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>244</td>
</tr>
</tbody>
</table>
You can use a right-hand-side of an alignable object as well.

In [65]: df2 = df.copy()

In [66]: df2.loc[idx[:, :, ['C1', 'C3']], :] = df2*1000

In [67]: df2

Out[67]:

<table>
<thead>
<tr>
<th>lvl0</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td>A0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>C1</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>D0</td>
<td>5000</td>
<td>4000</td>
</tr>
<tr>
<td>C2</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>D0</td>
<td>21</td>
<td>20</td>
</tr>
<tr>
<td>C3</td>
<td>9000</td>
<td>8000</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>A3</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>B1</td>
<td>229</td>
<td>228</td>
</tr>
<tr>
<td>C0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>D1</td>
<td>113000</td>
<td>112000</td>
</tr>
<tr>
<td>C1</td>
<td>117000</td>
<td>116000</td>
</tr>
<tr>
<td>D1</td>
<td>241</td>
<td>240</td>
</tr>
<tr>
<td>C2</td>
<td>245</td>
<td>244</td>
</tr>
<tr>
<td>D1</td>
<td>121000</td>
<td>120000</td>
</tr>
<tr>
<td>C3</td>
<td>125000</td>
<td>124000</td>
</tr>
</tbody>
</table>

[64 rows x 4 columns]

1.2.7 Plotting

- Hexagonal bin plots from DataFrame.plot with kind='hexbin' (GH5478), See the docs.
- DataFrame.plot and Series.plot now supports area plot with specifying kind='area' (GH6656), See the docs.
- Pie plots from Series.plot and DataFrame.plot with kind='pie' (GH6976), See the docs.
- Plotting with Error Bars is now supported in the .plot method of DataFrame and Series objects (GH3796, GH6834), See the docs.
- DataFrame.plot and Series.plot now support a table keyword for plotting matplotlib.Table, See the docs. The table keyword can receive the following values.
 - False: Do nothing (default).
 - True: Draw a table using the DataFrame or Series called plot method. Data will be transposed to meet matplotlib's default layout.
 - DataFrame or Series: Draw matplotlib.table using the passed data. The data will be drawn as displayed in print method (not transposed automatically). Also, helper function pandas.tools.plotting.table is added to create a table from DataFrame and Series, and add it to an matplotlib.Axes.
- plot(legend='reverse') will now reverse the order of legend labels for most plot kinds. (GH6014)
- Line plot and area plot can be stacked by `stacked=True` (GH6656)
- Following keywords are now acceptable for `DataFrame.plot()` with `kind='bar'` and `kind='barh'`:
 - `width`: Specify the bar width. In previous versions, static value 0.5 was passed to matplotlib and it cannot be overwritten. (GH6604)
 - `align`: Specify the bar alignment. Default is `center` (different from matplotlib). In previous versions, pandas passes `align='edge'` to matplotlib and adjust the location to `center` by itself, and it results `align` keyword is not applied as expected. (GH4525)
 - `position`: Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center). (GH6604)

Because of the default `align` value changes, coordinates of bar plots are now located on integer values (0.0, 1.0, 2.0 ...). This is intended to make bar plot be located on the same coordinates as line plot. However, bar plot may differs unexpectedly when you manually adjust the bar location or drawing area, such as using `set_xlim`, `set_ylim`, etc. In this case, please modify your script to meet with new coordinates.

- The `parallel_coordinates()` function now takes argument `color` instead of `colors`. A `FutureWarning` is raised to alert that the old `colors` argument will not be supported in a future release. (GH6956)
- The `parallel_coordinates()` and `andrews_curves()` functions now take positional argument `frame` instead of `data`. A `FutureWarning` is raised if the old `data` argument is used by name. (GH6956)
- `DataFrame.boxplot()` now supports `layout` keyword (GH6769)
- `DataFrame.boxplot()` has a new keyword argument, `return_type`. It accepts ‘dict’, ‘axes’, or ‘both’, in which case a namedtuple with the matplotlib axes and a dict of matplotlib Lines is returned.

1.2.8 Prior Version Deprecations/Changes

There are prior version deprecations that are taking effect as of 0.14.0.

- Remove `DateRange` in favor of `DatetimeIndex` (GH6816)
- Remove `column` keyword from `DataFrame.sort` (GH4370)
- Remove `precision` keyword from `set_eng_float_format()` (GH395)
- Remove `force_unicode` keyword from `DataFrame.to_string()`, `DataFrame.to_latex()`, and `DataFrame.to_html()`; these function encode in unicode by default (GH2224, GH2225)
- Remove `nanRep` keyword from `DataFrame.to_csv()` and `DataFrame.to_string()` (GH275)
- Remove `unique` keyword from `HDFStore.select_column()` (GH3256)
- Remove `inferTimeRule` keyword from `Timestamp.offset()` (GH391)
- Remove `name` keyword from `get_data_yahoo()` and `get_data_google()` (commit b921d1a)
- Remove `offset` keyword from `DatetimeIndex` constructor (commit 3136390)
- Remove `time_rule` from several rolling-moment statistical functions, such as `rolling_sum()` (GH1042)
- Removed `neg` – boolean operations on numpy arrays in favor of `inv ~`, as this is going to be deprecated in numpy 1.9 (GH6960)
1.2.9 Deprecations

- The `pivot_table()`/`DataFrame.pivot_table()` and `crosstab()` functions now take arguments `index` and `columns` instead of `rows` and `cols`. A `FutureWarning` is raised to alert that the old `rows` and `cols` arguments will not be supported in a future release (GH5505).

- The `DataFrame.drop_duplicates()` and `DataFrame.duplicated()` methods now take argument `subset` instead of `cols` to better align with `DataFrame.dropna()`. A `FutureWarning` is raised to alert that the old `cols` arguments will not be supported in a future release (GH6680).

- The `DataFrame.to_csv()` and `DataFrame.to_excel()` functions now take argument `columns` instead of `cols`. A `FutureWarning` is raised to alert that the old `cols` arguments will not be supported in a future release (GH6645).

- Indexers will warn `FutureWarning` when used with a scalar indexer and a non-floating point Index (GH4892, GH6960).

```
# non-floating point indexes can only be indexed by integers / labels
In [1]: Series(1,np.arange(5))[3.0]
pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[1]: 1
In [2]: Series(1,np.arange(5)).iloc[3.0]
pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[2]: 1
In [3]: Series(1,np.arange(5)).iloc[3.0:4]
pandas/core/index.py:527: FutureWarning: slice indexers when using iloc should be integers
Out[3]:
3 1
   dtype: int64

# these are Float64Indexes, so integer or floating point is acceptable
In [4]: Series(1,np.arange(5.))[3]
Out[4]: 1
In [5]: Series(1,np.arange(5.))[3.0]
Out[6]: 1
```

- Numpy 1.9 compat w.r.t. deprecation warnings (GH960).

- `Panel.shift()` now has a function signature that matches `DataFrame.shift()`. The old positional argument `lags` has been changed to a keyword argument `periods` with a default value of 1. A `FutureWarning` is raised if the old argument `lags` is used by name. (GH6910).

- The `order` keyword argument of `factorize()` will be removed. (GH6926).

- Remove the `copy` keyword from `DataFrame.xs()`, `Panel.major_xs()`, `Panel.minor_xs()`. A view will be returned if possible, otherwise a copy will be made. Previously the user could think that `copy=False` would ALWAYS return a view. (GH6894).

- The `parallel_coordinates()` function now takes argument `color` instead of `colors`. A `FutureWarning` is raised to alert that the old `colors` argument will not be supported in a future release. (GH6965)

- The `parallel_coordinates()` and `andrews_curves()` functions now take positional argument `frame` instead of `data`. A `FutureWarning` is raised if the old `data` argument is used by name. (GH6956).

- The support for the ‘mysql’ flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).

1.2. v0.14.0 (May 31, 2014) 25
The following `io.sql` functions have been deprecated: `tquery`, `uquery`, `read_frame`, `frame_query`, `write_frame`.

The `percentile_width` keyword argument in `describe()` has been deprecated. Use the `percentiles` keyword instead, which takes a list of percentiles to display. The default output is unchanged.

The default return type of `boxplot()` will change from a dict to a `matpltolib` Axes in a future release. You can use the future behavior now by passing `return_type='axes'` to `boxplot`.

1.2.10 Known Issues

- OpenPyXL 2.0.0 breaks backwards compatibility (GH7169)

1.2.11 Enhancements

- DataFrame and Series will create a MultiIndex object if passed a tuples dict, See the docs (GH3323)

  ```python
  In [68]: Series(((a', 'b'): 1, (a’, 'a'): 0,
      ....: (a’, 'c'): 2, (b', 'a'): 3, (b', 'b'): 4))
      ....:
  Out[68]:
    a   0
    b   1
    c   2
    b   3
    b   4
dtype: int64
  ```

  ```python
  In [69]: DataFrame((('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
      ....: {'a', 'a': {('A', 'C'): 3, ('A', 'B'): 4},
      ....: (a', 'c': {('A', 'B'): 5, ('A', 'C'): 6},
      ....: (b', 'a': {('A', 'C'): 7, ('A', 'B'): 8},
      ....: (b', 'b': {('A', 'D'): 9, ('A', 'B'): 10}))
      ....:
  Out[69]:
    a   b
    a  b  c  a  b
    A  4  1  5  8  10
    C  3  2  6  7  NaN
    D  NaN NaN NaN NaN  9
  ```

- Added the `sym_diff` method to `Index` (GH5543)

- `DataFrame.to_latex` now takes a `longtable` keyword, which if True will return a table in a `longtable` environment. (GH6617)

- Add option to turn off escaping in `DataFrame.to_latex` (GH6472)

- `pd.read_clipboard` will, if the keyword `sep` is unspecified, try to detect data copied from a spreadsheet and parse accordingly. (GH6223)

- Joining a singly-indexed DataFrame with a multi-indexed DataFrame (GH3662)

 See the docs. Joining multi-index DataFrame on both the left and right is not yet supported ATM.

  ```python
  In [70]: household = DataFrame(dict(household_id = [1,2,3],
      ....: male = [0,1,0],
      ....: wealth = [196087.3,316478.7,294750]),
      ....: columns = ['household_id', 'male', 'wealth'])
  ```
....:
....:

In [71]: household

Out[71]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>male</th>
<th>wealth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>196087.3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>316478.7</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>294750.0</td>
</tr>
</tbody>
</table>

In [72]: portfolio = DataFrame(dict(household_id = [1,2,2,3,3,3,4],

asset_id = ["nl0000301109","nl0000289783","gb00b03mlx29",
"gb00b03mlx29","lu0197800237","n10000289965",np.nan],

name = ["ABN Amro","Robeco","Royal Dutch Shell","Royal Dutch Shell",
"AAB Eastern Europe Equity Fund","Postbank BioTech Fonds"],

share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),

columns = ['household_id','asset_id','name','share']

.set_index(['household_id','asset_id'])

In [73]: portfolio

Out[73]:

<table>
<thead>
<tr>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>household_id asset_id</td>
<td></td>
</tr>
<tr>
<td>1 n10000301109</td>
<td>ABN Amro 1.00</td>
</tr>
<tr>
<td>2 n10000289783</td>
<td>Robeco 0.40</td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>Royal Dutch Shell 0.60</td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>Royal Dutch Shell 0.15</td>
</tr>
<tr>
<td>lu0197800237</td>
<td>AAB Eastern Europe Equity Fund 0.60</td>
</tr>
<tr>
<td>n10000289965</td>
<td>Postbank BioTech Fonds 0.25</td>
</tr>
<tr>
<td>4 NaN</td>
<td>NaN 1.00</td>
</tr>
</tbody>
</table>

In [74]: household.join(portfolio, how='inner')

Out[74]:

<table>
<thead>
<tr>
<th>male</th>
<th>wealth</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>household_id asset_id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 n10000301109</td>
<td>0 196087.3</td>
<td>ABN Amro</td>
</tr>
<tr>
<td>2 n10000289783</td>
<td>1 316478.7</td>
<td>Robeco</td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>1 316478.7</td>
<td>Royal Dutch Shell</td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>0 294750.0</td>
<td>Royal Dutch Shell</td>
</tr>
<tr>
<td>lu0197800237</td>
<td>0 294750.0</td>
<td>AAB Eastern Europe Equity Fund</td>
</tr>
<tr>
<td>n10000289965</td>
<td>0 294750.0</td>
<td>Postbank BioTech Fonds</td>
</tr>
</tbody>
</table>

• quotechar, doublequote, and escapechar can now be specified when using DataFrame.to_csv (GH5414, GH4528)

• Partially sort by only the specified levels of a MultiIndex with the sort_remaining boolean kwarg. (GH3984)
• Added `to_julian_date` to `TimeStamp` and `DatetimeIndex`. The Julian Date is used primarily in astronomy and represents the number of days from noon, January 1, 4713 BC. Because nanoseconds are used to define the time in pandas the actual range of dates that you can use is 1678 AD to 2262 AD. (GH4041)

• `DataFrame.to_stata` will now check data for compatibility with Stata data types and will upcast when needed. When it is not possible to losslessly upcast, a warning is issued (GH6327)

• `DataFrame.to_stata` and `StataWriter` will accept keyword arguments `time_stamp` and `data_label` which allow the time stamp and dataset label to be set when creating a file. (GH6545)

• `pandas.io.gbq` now handles reading unicode strings properly. (GH5940)

• `Holidays Calendar` are now available and can be used with the `CustomBusinessDay` offset (GH6719)

• `Float64Index` is now backed by a `float64` dtype ndarray instead of an `object` dtype array (GH6471).

• Implemented `Panel.pct_change` (GH6904)

• Added `how` option to rolling-moment functions to dictate how to handle resampling: `rolling_max()` defaults to max, `rolling_min()` defaults to min, and all others default to mean (GH6297)

• `CustomBusinessMonthBegin` and `CustomBusinessMonthEnd` are now available (GH6866)

• `Series.quantile()` and `DataFrame.quantile()` now accept an array of quantiles.

• `describe()` now accepts an array of percentiles to include in the summary statistics (GH4196)

• `pivot_table` can now accept `Grouper` by index and columns keywords (GH6913)

In [76]: `import datetime`

In [77]: `df = DataFrame({
 : 'Branch': 'A A A A A B'.split(),
 : 'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(),
 : 'Quantity': [1, 3, 5, 1, 8, 1],
 : 'Date': [datetime.datetime(2013,11,1,13,0),
 datetime.datetime(2013,9,1,13,5),
 datetime.datetime(2013,10,1,20,0),
 datetime.datetime(2013,10,2,10,0),
 datetime.datetime(2013,11,1,20,0),
 datetime.datetime(2013,10,7,20,0)],
 : 'PayDay': [datetime.datetime(2013,10,4,0,0),
 datetime.datetime(2013,10,15,13,5),
 datetime.datetime(2013,9,5,20,0),
 datetime.datetime(2013,11,2,10,0),
 datetime.datetime(2013,10,7,20,0),
 datetime.datetime(2013,9,5,10,0)]})`
Arrays of strings can be wrapped to a specified width (`str.wrap`) (GH6999)

Add `nsmallest()` and `Series.nlargest()` methods to `Series`, See the docs (GH3960)

PeriodIndex fully supports partial string indexing like DatetimeIndex (GH7043)

```
In [79]: prng = period_range('2013-01-01 09:00', periods=100, freq='H')
```

```
In [80]: ps = Series(np.random.randn(len(prng)), index=prng)
```

```
In [81]: ps
   Out[81]:
   2013-01-01 09:00  0.755414
   2013-01-01 10:00  0.215269
   2013-01-01 11:00  0.841009
   2013-01-01 12:00 -1.445810
   2013-01-01 13:00 -1.401973
   ...
   2013-01-05 07:00  0.702562
   2013-01-05 08:00 -0.850346
   2013-01-05 09:00  1.176812
   2013-01-05 10:00 -0.524336
   2013-01-05 11:00  0.700908
   ...
   2013-01-05 12:00  0.984188
Freq: H, Length: 100
```

```
In [82]: ps['2013-01-02']
   Out[82]:
   2013-01-02 00:00  -0.208499
   2013-01-02 01:00   1.033801
   2013-01-02 02:00  -2.400454
   2013-01-02 03:00   2.030604
   2013-01-02 04:00  -1.142631
   ...
   2013-01-02 18:00  -3.563517
   2013-01-02 19:00   1.321106
   2013-01-02 20:00   0.152631
   2013-01-02 21:00   0.164530
   2013-01-02 22:00  -0.430096
   2013-01-02 23:00   0.767369
Freq: H, Length: 24
```

read_excel can now read milliseconds in Excel dates and times with xlrd >= 0.9.3. (GH5945)

pd.stats.moments.rolling_var now uses Welford’s method for increased numerical stability (GH6817)

pd.expanding_apply and pd.rolling_apply now take args and kwargs that are passed on to the func (GH6289)

Dataframe.rank() now has a percentage rank option (GH5971)

Series.rank() now has a percentage rank option (GH5971)

Series.rank() and Dataframe.rank() now accept method='dense' for ranks without gaps (GH6514)

Support passing encoding with xlwt (GH3710)
• Refactor Block classes removing Block.items attributes to avoid duplication in item handling (GH6745, GH6988).
• Testing statements updated to use specialized asserts (GH6175)

1.2.12 Performance

• Performance improvement when converting DatetimeIndex to floating ordinals using DatetimeConverter (GH6636)
• Performance improvement for DataFrame.shift (GH5609)
• Performance improvement in indexing into a multi-indexed Series (GH5567)
• Performance improvements in single-dtyped indexing (GH6484)
• Improve performance of DataFrame construction with certain offsets, by removing faulty caching (e.g. MonthEnd,BusinessMonthEnd), (GH6479)
• Improve performance of CustomBusinessDay (GH6584)
• improve performance of slice indexing on Series with string keys (GH6341, GH6372)
• Performance improvement for DataFrame.from_records when reading a specified number of rows from an iterable (GH6700)
• Performance improvements in timedelta conversions for integer dtypes (GH6754)
• Improved performance of compatible pickles (GH6899)
• Improve performance in certain reindexing operations by optimizing take_2d (GH6749)
• GroupBy.count() is now implemented in Cython and is much faster for large numbers of groups (GH7016).

1.2.13 Experimental

There are no experimental changes in 0.14.0

1.2.14 Bug Fixes

• Bug in Series ValueError when index doesn’t match data (GH6532)
• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
• Bug in pd.DataFrame.sort_index where mergesort wasn’t stable when ascending=False (GH6399)
• Bug in pd.tseries.frequencies.to_offset when argument has leading zeroes (GH6391)
• Bug in version string gen. for dev versions with shallow clones / install from tarball (GH6127)
• Inconsistent tz parsing Timestamp / to_datetime for current year (GH5958)
• Indexing bugs with reordered indexes (GH6252, GH6254)
• Bug in .xs with a Series multiindex (GH6258, GH5684)
• Bug in conversion of a string types to a DatetimeIndex with a specified frequency (GH6273, GH6274)
• Bug in eval where type-promotion failed for large expressions (GH6205)
• Bug in interpolate with inplace=True (GH6281)
• HDFStore.remove now handles start and stop (GH6177)
• HDFStore.select_as_multiple handles start and stop the same way as select (GH6177)
• HDFStore.select_as_coordinates and select_column work with a where clause that results in filters (GH6177)
• Regression in join of non_unique_indexes (GH6329)
• Issue with groupby agg with a single function and a a mixed-type frame (GH6337)
• Bug in DataFrame.replace() when passing a non-bool to_replace argument (GH6332)
• Raise when trying to align on different levels of a multi-index assignment (GH3738)
• Bug in setting complex dtypes via boolean indexing (GH6345)
• Bug in TimeGrouper/resample when presented with a non-monotonic DatetimeIndex that would return invalid results. (GH4161)
• Bug in index name propagation in TimeGrouper/resample (GH4161)
• TimeGrouper has a more compatible API to the rest of the groupers (e.g. groups was missing) (GH381)
• Bug in multiple grouping with a TimeGrouper depending on target column order (GH6764)
• Bug in pd.eval when parsing strings with possible tokens like ‘&’ (GH6351)
• Bug correctly handle placements of -inf in Panels when dividing by integer 0 (GH6178)
• DataFrame.shift with axis=1 was raising (GH6371)
• Disabled clipboard tests until release time (run locally with nosetests --disable) (GH6048).
• Bug in DataFrame.replace() when passing a nested dict that contained keys not in the values to be replaced (GH6342)
• str.match ignored the na flag (GH6609).
• Bug in take with duplicate columns that were not consolidated (GH6240)
• Bug in interpolate changing dtypes (GH6290)
• Bug in Series.get was using a buggy access method (GH6383)
• Bug in hdfstore queries of the form where=[('date', '>=', datetime(2013,1,1)), ('date', '<=', datetime(2014,1,1))] (GH6313)
• Bug in DataFrame.dropna with duplicate indices (GH6355)
• Regression in chained getitem indexing with embedded list-like from 0.12 (GH6394)
• Float64Index with nans not comparing correctly (GH6401)
• eval/query expressions with strings containing the @ character will now work (GH6366).
• Bug in Series.reindex when specifying a method with some nan values was inconsistent (noted on a resample) (GH6418)
• Bug in DataFrame.replace() where nested dicts were erroneously depending on the order of dictionary keys and values (GH5388).
• Perf issue in concatting with empty objects (GH3259)
• Clarify sorting of sym_diff on Index objects with NaN values (GH444)
• Regression in MultiIndex.from_product with a DatetimeIndex as input (GH6439)
• Bug in str.extract when passed a non-default index (GH6348)
• Bug in `str.split` when passed `pat=None` and `n=1` (GH6466)
• Bug in `io.data.DataReader` when passed `"F-F_Momentum_Factor"` and `data_source="famafrench"` (GH6460)
• Bug in sum of a timedelta64 [ns] series (GH6462)
• Bug in resample with a timezone and certain offsets (GH6397)
• Bug in `iat/iloc` with duplicate indices on a Series (GH6493)
• Bug in `read_html` where nan’s were incorrectly being used to indicate missing values in text. Should use the empty string for consistency with the rest of pandas (GH5129).
• Bug in `read_html` tests where redirected invalid URLs would make one test fail (GH6445).
• Bug in multi-axis indexing using `.loc` on non-unique indices (GH6504)
• Bug that caused _ref_locs corruption when slice indexing across columns axis of a DataFrame (GH6525)
• Regression from 0.13 in the treatment of numpy datetime64 non-ns dtypes in Series creation (GH6529)
• `.names` attribute of MultiIndexes passed to `set_index` are now preserved (GH6459).
• Bug in `setitem` with a duplicate index and an alignable rhs (GH6541)
• Bug in `setitem` with `.loc` on mixed integer Indexes (GH6546)
• Bug in `pd.read_stata` which would use the wrong data types and missing values (GH6327)
• Bug in `DataFrame.to_stata` that lead to data loss in certain cases, and could be exported using the wrong data types and missing values (GH6335)
• StataWriter replaces missing values in string columns by empty string (GH6802)
• Inconsistent types in `Timestamp` addition/subtraction (GH6543)
• Bug in preserving frequency across `Timestamp` addition/subtraction (GH4547)
• Bug in empty list lookup caused `IndexError` exceptions (GH6536, GH6551)
• Series.quantile raising on an object dtype (GH6555)
• Bug in `.xs` with a nan in level when dropped (GH6574)
• Bug in fillna with method=’bfill/ffill’ and datetime64 [ns] dtype (GH6587)
• Bug in `sql` writing with mixed dtypes possibly leading to data loss (GH6509)
• Bug in `Series.pop` (GH6600)
• Bug in `iloc` indexing when positional indexer matched Int64Index of the corresponding axis and no re-ordering happened (GH6612)
• Bug in fillna with limit and value specified
• Bug in `DataFrame.to_stata` when columns have non-string names (GH4558)
• Bug in compat with np.compress, surfaced in (GH6658)
• Bug in binary operations with a rhs of a Series not aligning (GH6681)
• Bug in `DataFrame.to_stata` which incorrectly handles nan values and ignores with_index keyword argument (GH6685)
• Bug in `resample` with extra bins when using an evenly divisible frequency (GH4076)
• Bug in consistency of groupby aggregation when passing a custom function (GH6715)
• Bug in resample when how=None resample freq is the same as the axis frequency (GH5955)
• Bug in downcasting inference with empty arrays (GH6733)
• Bug in `obj.blocks` on sparse containers dropping all but the last items of same for dtype (GH6748)
• Bug in unpickling NaT (NaTType) (GH4606)
• Bug in `DataFrame.replace()` where regex metacharacters were being treated as regexes even when regex=False (GH6777).
• Bug in timedelta ops on 32-bit platforms (GH6808)
• Bug in setting a tz-aware index directly via `.index` (GH6785)
• Bug in expressions.py where numexpr would try to evaluate arithmetic ops (GH6762).
• Bug in Makefile where it didn’t remove Cython generated C files with `make clean` (GH6768)
• Bug with numpy < 1.7.2 when reading long strings from HDFStore (GH6166)
• Bug in `DataFrame._reduce` where non bool-like (0/1) integers were being converted into bools. (GH6806)
• Regression from 0.13 with `fillna` on a Series on datetime-like (GH6344)
• Bug in adding `np.timedelta64` to DatetimeIndex with timezone outputs incorrect results (GH6818)
• Bug in `DataFrame.replace()` where changing a dtype through replacement would only replace the first occurrence of a value (GH6689)
• Better error message when passing a frequency of ‘MS’ in Period construction (GH5332)
• Bug in `Series.__unicode__` when max_rows=None and the Series has more than 1000 rows. (GH6863)
• Bug in groupby.get_group where a datetlike wasn’t always accepted (GH5267)
• Bug in groupBy.get_group created by TimeGrouper raises AttributeError (GH6914)
• Bug in DatetimeIndex.tz_localize and DatetimeIndex.tz_convert converting NaT incorrectly (GH5546)
• Bug in arithmetic operations affecting NaT (GH6873)
• Bug in `Series.str.extract` where the resulting Series from a single group match wasn’t renamed to the group name
• Bug in `DataFrame.to_csv` where setting index=False ignored the header kwarg (GH6186)
• Bug in `DataFrame.plot` and `Series.plot`, where the legend behave inconsistently when plotting to the same axes repeatedly (GH6678)
• Internal tests for patching __finalize__ / bug in merge not finalizing (GH6923, GH6927)
• accept `TextFileReader` in `concat`, which was affecting a common user idiom (GH6583)
• Bug in C parser with leading whitespace (GH3374)
• Bug in C parser with `delim_whitespace= True` and \r-delimited lines
• Bug in python parser with explicit multi-index in row following column header (GH6893)
• Bug in `Series.rank` and `DataFrame.rank` that caused small floats (<1e-13) to all receive the same rank (GH6886)
• Bug in `DataFrame.apply` with functions that used *args* or **kwargs and returned an empty result (GH6952)
• Bug in `sum/mean` on 32-bit platforms on overflows (GH6915)
• Moved `Panel.shift` to `NDFrame.slice_shift` and fixed to respect multiple dtypes. (GH6959)

1.2. v0.14.0 (May 31, 2014)
• Bug in enabling `subplots=True` in `DataFrame.plot` only has single column raises `TypeError`, and `Series.plot` raises ` AttributeError` (GH6951)

• Bug in `DataFrame.plot` draws unnecessary axes when enabling `subplots` and `kind=scatter` (GH6951)

• Bug in `read_csv` from a filesystem with non-utf-8 encoding (GH6807)

• Bug in `iloc` when setting / aligning (GH6766)

• Bug causing `UnicodeEncodeError` when `get_dummies` called with `unicode values` and a prefix (GH6885)

• Bug in `timeseries-with-frequency` plot cursor display (GH5453)

• Bug surfaced in `groupby.plot` when using a `Float64Index` (GH7025)

• Stopped tests from failing if options data isn’t able to be downloaded from Yahoo (GH7034)

• Bug in `parallel_coordinates` and `radviz` where reordering of class column caused possible color/class mismatch (GH6956)

• Bug in `radviz` and `andrews_curves` where multiple values of ‘color’ were being passed to plotting method (GH6956)

• Bug in `Float64Index.isin()` where containing `nans` would make indices claim that they contained all the things (GH7066).

• Bug in `DataFrame.boxplot` where it failed to use the axis passed as the `ax` argument (GH3578)

• Bug in the `XlsxWriter` and `XlwtWriter` implementations that resulted in datetime columns being formatted without the time (GH7075) were being passed to plotting method

• `read_fwf()` treats `None` in `colspec` like regular python slices. It now reads from the beginning or until the end of the line when `colspec contains a None` (previously raised a `TypeError`)

• Bug in cache coherence with chained indexing and slicing; add `_is_view` property to `NDFrame` to correctly predict views; mark `is_copy` on `xs` only if its an actual copy (and not a view) (GH7084)

• Bug in `DatetimexIndex` creation from string `ndarray` with `dayfirst=True` (GH5917)

• Bug in `MultiIndex.from_arrays` created from `DatetimexIndex` doesn’t preserve `freq` and `tz` (GH7090)

• Bug in unstack raises `ValueError` when `MultiIndex contains PeriodIndex` (GH4342)

• Bug in `boxplot` and `hist` draws unnecessary axes (GH6769)

• Regression in `groupby.nth()` for out-of-bounds indexers (GH6621)

• Bug in `quantile` with datetime values (GH6965)

• Bug in `DataFrame.set_index`, `reindex` and `pivot` don’t preserve `DatetimexIndex` and `PeriodIndex` attributes (GH3950, GH5878, GH6631)

• Bug in `MultiIndex.get_level_values` doesn’t preserve `DatetimexIndex` and `PeriodIndex` attributes (GH7092)

• Bug in `Groupby` doesn’t preserve `tz` (GH3950)

• Bug in `PeriodIndex` partial string slicing (GH6716)

• Bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the `large_repr` set to ‘info’ (GH7105)

• Bug in `DatetimexIndex` specifying `freq` raises `ValueError` when passed value is too short (GH7098)

• Fixed a bug with the `info` repr not honoring the `display.max_info_columns` setting (GH6939)
• Bug **PeriodIndex** string slicing with out of bounds values (GH5407)
• Fixed a memory error in the hashtable implementation/factorizer on resizing of large tables (GH7157)
• Bug in `isnull` when applied to 0-dimensional object arrays (GH7176)
• Bug in `query/eval` where global constants were not looked up correctly (GH7178)
• Bug in recognizing out-of-bounds positional list indexers with `iloc` and a multi-axis tuple indexer (GH7189)
• Bug in setitem with a single value, multi-index and integer indices (GH7190, GH7218)
• Bug in expressions evaluation with reversed ops, showing in series-dataframe ops (GH7198, GH7192)
• Bug in multi-axis indexing with > 2 ndim and a multi-index (GH7199)
• Fix a bug where invalid eval/query operations would blow the stack (GH5198)

1.3 v0.13.1 (February 3, 2014)

This is a minor release from 0.13.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- Added `infer_datetime_format` keyword to `read_csv/to_datetime` to allow speedups for homogeneously formatted datetimes.
- Will intelligently limit display precision for datetime/timedelta formats.
- Enhanced Panel `apply()` method.
- Suggested tutorials in new *Tutorials* section.
- Our pandas ecosystem is growing. We now feature related projects in a new *Pandas Ecosystem* section.
- Much work has been taking place on improving the docs, and a new *Contributing* section has been added.
- Even though it may only be of interest to devs, we <3 our new CI status page: ScatterCI.
Warning: 0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing chained assignment on a string-like array. Please review the docs, chained indexing can have unexpected results and should generally be avoided.

This would previously segfault:

```python
In [1]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
In [2]: df['A'].iloc[0] = np.nan
In [3]: df
Out[3]:
   A
0  NaN
1  bar
2  bah
3  foo
4  bar
```

The recommended way to do this type of assignment is:

```python
In [4]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
In [5]: df.ix[0,'A'] = np.nan
In [6]: df
Out[6]:
   A
0  NaN
1  bar
2  bah
3  foo
4  bar
```

1.3.1 Output Formatting Enhancements

- `df.info()` view now display dtype info per column (GH5682)
- `df.info()` now honors the option `max_info_rows`, to disable null counts for large frames (GH5974)

```python
In [7]: max_info_rows = pd.get_option('max_info_rows')
In [8]: df = DataFrame(dict(A = np.random.randn(10),
                       B = np.random.randn(10),
                       C = date_range('20130101',periods=10)))
In [9]: df.iloc[3:6,[0,2]] = np.nan

# set to not display the null counts
In [10]: pd.set_option('max_info_rows',0)
In [11]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 3 columns):
A float64
```
B float64
C datetime64[ns]
dtypes: datetime64[ns](1), float64(2)

this is the default (same as in 0.13.0)
In [12]: pd.set_option('max_info_rows', max_info_rows)

In [13]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 3 columns):
A 7 non-null float64
B 10 non-null float64
C 7 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(2)

• Add show_dimensions display option for the new DataFrame repr to control whether the dimensions print.

In [14]: df = DataFrame([[1, 2], [3, 4]])

In [15]: pd.set_option('show_dimensions', False)

In [16]: df
Out[16]:
0 1
0 1 2
1 3 4

In [17]: pd.set_option('show_dimensions', True)

In [18]: df
Out[18]:
0 1
0 1 2
1 3 4
[2 rows x 2 columns]

• The ArrayFormatter for datetime and timedelta64 now intelligently limit precision based on the values in the array (GH3401)

Previously output might look like:

<table>
<thead>
<tr>
<th>age</th>
<th>today</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-01-01</td>
<td>2013-04-19</td>
<td>4491 days, 00:00:00</td>
</tr>
<tr>
<td>2004-06-01</td>
<td>2013-04-19</td>
<td>3244 days, 00:00:00</td>
</tr>
</tbody>
</table>

Now the output looks like:

In [19]: df = DataFrame([Timestamp('20010101'),
 Timestamp('20040601')], columns=['age'])

In [20]: df['today'] = Timestamp('20130419')

In [21]: df['diff'] = df['today']-df['age']

In [22]: df
Out[22]:

1.3. v0.13.1 (February 3, 2014)
1.3.2 API changes

- Add -NaN and -nan to the default set of NA values (GH5952). See NA Values.

- Added Series.str.get_dummies vectorized string method (GH6021), to extract dummy/indicator variables for separated string columns:

```python
In [23]: s = Series(['a', 'a|b', np.nan, 'a|c'])
In [24]: s.str.get_dummies(sep='|')
Out[24]:
   a  b  c
0  1  0  0
1  1  1  0
2  0  0  0
3  1  0  1
```

- Added the NDFrame.equals() method to compare if two NDFrames are equal have equal axes, dtypes, and values. Added the array_equivalent function to compare if two ndarrays are equal. NaNs in identical locations are treated as equal. (GH5283) See also the docs for a motivating example.

```python
In [25]: df = DataFrame({'col': ['foo', 0, np.nan]}).sort()
In [26]: df2 = DataFrame({'col': [np.nan, 0, 'foo']}, index=[2, 1, 0])
In [27]: df.equals(df)
Out[27]: True
In [28]: import pandas.core.common as com
In [29]: com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan]))
Out[29]: True
In [30]: np.array_equal(np.array([0, np.nan]), np.array([0, np.nan]))
Out[30]: False
```

- DataFrame.apply will use the reduce argument to determine whether a Series or a DataFrame should be returned when the DataFrame is empty (GH6007).

Previously, calling DataFrame.apply an empty DataFrame would return either a DataFrame if there were no columns, or the function being applied would be called with an empty Series to guess whether a Series or DataFrame should be returned:

```python
In [31]: def applied_func(col):
    ....:     print("Apply function being called with: ", col)
    ....:     return col.sum()
    ....:
In [32]: empty = DataFrame(columns=['a', 'b'])
```
Now, when apply is called on an empty DataFrame: if the reduce argument is True a Series will returned, if it is False a DataFrame will be returned, and if it is None (the default) the function being applied will be called with an empty series to try and guess the return type.

```
In [34]: empty.apply(applied_func, reduce=True)
Out[34]:
   a    NaN
   b    NaN
dtype: float64
```

```
In [35]: empty.apply(applied_func, reduce=False)
Out[35]:
Empty DataFrame
Columns: [a, b]
Index: []
[0 rows x 2 columns]
```

1.3.3 Prior Version Deprecations/Changes

There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1

1.3.4 Deprecations

There are no deprecations of prior behavior in 0.13.1

1.3.5 Enhancements

- `pd.read_csv` and `pd.to_datetime` learned a new `infer_datetime_format` keyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490, GH6021)

 If `parse_dates` is enabled and this flag is set, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

  ```python
  # Try to infer the format for the index column
  df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
                   infer_datetime_format=True)
  ```

- `date_format` and `datetime_format` keywords can now be specified when writing to excel files (GH4133)

- `MultiIndex.from_product` convenience function for creating a MultiIndex from the cartesian product of a set of iterables (GH6055):
In [36]: shades = ['light', 'dark']

In [37]: colors = ['red', 'green', 'blue']

In [38]: MultiIndex.from_product([shades, colors], names=['shade', 'color'])
Out[38]:
MultiIndex(levels=[['light', 'dark'], ['green', 'blue', 'red']],
labels=[[1, 1, 1, 0, 0, 0], [2, 1, 0, 2, 1, 0]],
names=['shade', 'color'])

• Panel apply() will work on non-ufuncs. See the docs.

In [39]: import pandas.util.testing as tm

In [40]: panel = tm.makePanel(5)

In [41]: panel
Out[41]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [42]: panel['ItemA']
Out[42]:
 A B C D
2000-01-03 0.952478 -1.239072 -1.409432 -0.014752
2000-01-04 0.988138 0.139683 1.422986 1.272395
2000-01-05 0.072608 -0.223019 -2.147855 -1.449567
2000-01-06 -0.550603 2.123692 -1.347533 -1.195524
2000-01-07 -0.938153 0.122273 0.363565 -0.591863
[5 rows x 4 columns]

Specifying an apply that operates on a Series (to return a single element)

In [43]: panel.apply(lambda x: x.dtype, axis='items')
Out[43]:
 A B C D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
2000-01-06 float64 float64 float64 float64
2000-01-07 float64 float64 float64 float64
[5 rows x 4 columns]

A similar reduction type operation

In [44]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[44]:
ItemA ItemB ItemC
A 0.379252 -3.696907 3.709335
B 0.923558 0.504242 4.656781
C -3.118269 -1.545718 3.188329
D -1.979310 -0.758060 -1.436483
[4 rows x 3 columns]
This is equivalent to

```python
In [45]: panel.sum('major_axis')
```

```text
Out[45]:

<table>
<thead>
<tr>
<th></th>
<th>ItemA</th>
<th>ItemB</th>
<th>ItemC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.379252</td>
<td>-3.696907</td>
<td>3.709335</td>
</tr>
<tr>
<td>B</td>
<td>0.923558</td>
<td>0.504242</td>
<td>4.656781</td>
</tr>
<tr>
<td>C</td>
<td>-3.118269</td>
<td>-1.545718</td>
<td>3.188329</td>
</tr>
<tr>
<td>D</td>
<td>-1.979310</td>
<td>-0.758060</td>
<td>-1.436483</td>
</tr>
</tbody>
</table>

[4 rows x 3 columns]
```

A transformation operation that returns a Panel, but is computing the z-score across the major_axis

```python
In [46]: result = panel.apply(
    ....:     lambda x: (x-x.mean())/x.std(),
    ....:     axis='major_axis')
```

```python
In [47]: result
```

```text
Out[47]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
```

```python
In [48]: result['ItemA']
```

```text
A   B   C   D
2000-01-03 1.004994 -1.166509 -0.535027 0.350970
2000-01-04 1.045875 -0.036892 1.393532 1.536326
2000-01-05 -0.170198 -0.334055 -1.037810 -0.970374
2000-01-06 -0.718186 1.588611 -0.492880 -0.736422
2000-01-07 -1.162486 -0.051156 0.672185 -0.180500

[5 rows x 4 columns]
```

• Panel `apply()` operating on cross-sectional slabs. (GH1148)

```python
In [49]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T
```

```python
In [50]: result = panel.apply(f, axis = ['items','major_axis'])
```

```python
In [51]: result
```

```text
Out[51]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
```

```python
In [52]: result.loc[:,:,'ItemA']
```

```text
A   B   C   D
2000-01-03 0.116579 -0.667845 -1.151538 -0.157547
2000-01-04 0.650448 -1.114910 0.841527 0.760706
2000-01-05 -0.987433 -0.438897 -1.154468 -0.015033
2000-01-06 0.494000 1.060450 -0.775993 -1.140165
2000-01-07 -0.363770 0.013169 0.392036 -1.123913
```

1.3. v0.13.1 (February 3, 2014)
This is equivalent to the following

```python
In [53]: result = Panel(dict((ax, f(panel.loc[:, :, ax]))

....:     for ax in panel.minor_axis ))
....:

In [54]: result
Out[54]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [55]: result.loc[:, :, 'ItemA']
Out[55]:
          A   B    C    D
2000-01-03  0.116579 -0.667845 -1.151538 -0.157547
2000-01-04   0.650448 -1.114910   0.841527   0.760706
2000-01-05  -0.987433  -0.438897  -1.154468  -0.015033
2000-01-06   0.494000   1.060450  -0.775993  -1.140165
2000-01-07  -0.363770   0.013169   0.392036  -1.123913

[5 rows x 4 columns]
```

1.3.6 Performance

Performance improvements for 0.13.1

- Series datetime/timedelta binary operations (GH5801)
- DataFrame count/dropna for axis=1
- Series.str.contains now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (GH5879)
- Series.str.extract (GH5944)
- dtypes/ftypes methods (GH5968)
- indexing with object dtypes (GH5968)
- DataFrame.apply (GH6013)
- Regression in JSON IO (GH5765)
- Index construction from Series (GH6150)

1.3.7 Experimental

There are no experimental changes in 0.13.1

1.3.8 Bug Fixes

See *V0.13.1 Bug Fixes* for an extensive list of bugs that have been fixed in 0.13.1.
See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.

1.4 v0.13.0 (January 3, 2014)

This is a major release from 0.12.0 and includes a number of API changes, several new features and enhancements along with a large number of bug fixes.

Highlights include:

- support for a new index type Float64Index, and other Indexing enhancements
- HDFStore has a new string based syntax for query specification
- support for new methods of interpolation
- updated timedelta operations
- a new string manipulation method extract
- Nanosecond support for Offsets
- isin for DataFrames

Several experimental features are added, including:

- new eval/query methods for expression evaluation
- support for msgpack serialization
- an i/o interface to Google’s BigQuery

There are several new or updated docs sections including:

- Comparison with SQL, which should be useful for those familiar with SQL but still learning pandas.
- Comparison with R, idiom translations from R to pandas.
- Enhancing Performance, ways to enhance pandas performance with eval/query.

Warning: In 0.13.0 Series has internally been refactored to no longer sub-class ndarray but instead subclass NDFrame, similar to the rest of the pandas containers. This should be a transparent change with only very limited API implications. See [Internal Refactoring](#).

1.4.1 API changes

- `read_excel` now supports an integer in its sheetname argument giving the index of the sheet to read in (GH301).
- Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNF”, etc.) as infinity. (GH4220, GH4219), affecting `read_table, read_csv`, etc.
- `pandas` now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into compat. (GH4384, GH4375, GH4372)
- `pandas.util.compat` and `pandas.util.py3compat` have been merged into `pandas.compat`. `pandas.compat` now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. `lmap`,
lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting and pandas constructors. (GH4384, GH4375, GH4372)

• Series.get with negative indexers now returns the same as [] (GH4390)

• Changes to how Index and MultiIndex handle metadata (levels, labels, and names) (GH4039):

 # previously, you would have set levels or labels directly
 index.levels = [[1, 2, 3, 4], [1, 2, 4, 4]]

 # now, you use the set_levels or set_labels methods
 index = index.set_levels([[[1, 2, 3, 4], [1, 2, 4, 4]]])

 # similarly, for names, you can rename the object
 # but setting names is not deprecated
 index = index.set_names(["bob", "cranberry"])

 # and all methods take an inplace kwarg - but return None
 index.set_names(["bob", "cranberry"], inplace=True)

• All division with NDFrame objects is now truedivision, regardless of the future import. This means that operating on pandas objects will by default use floating point division, and return a floating point dtype. You can use // and floordiv to do integer division.

 Integer division

 In [3]: arr = np.array([1, 2, 3, 4])
 In [4]: arr2 = np.array([5, 3, 2, 1])
 In [5]: arr / arr2
 Out[5]: array([0, 0, 1, 4])
 In [6]: Series(arr) // Series(arr2)
 Out[6]:
 0 0
 1 0
 2 1
 3 4
 dtype: int64

 True Division

 In [7]: pd.Series(arr) / pd.Series(arr2) # no future import required
 Out[7]:
 0 0.200000
 1 0.666667
 2 1.500000
 3 4.000000
 dtype: float64

• Infer and downcast dtype if downcast='infer' is passed to fillna/ffill/bfill (GH4604)

• __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073, GH4633) behavior. See gotchas for a more detailed discussion.

 This prevents doing boolean comparison on entire pandas objects, which is inherently ambiguous. These all will raise a ValueError.

 if df:

df1 and df2
s1 and s2

Added the `.bool()` method to NDFrame objects to facilitate evaluating of single-element boolean Series:

```
In [1]: Series([True]).bool()
Out[1]: True

In [2]: Series([False]).bool()
Out[2]: False

In [3]: DataFrame([[True]]).bool()
Out[3]: True

In [4]: DataFrame([[False]]).bool()
Out[4]: False
```

• All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not support `pow` or `mod` with non-scalars. (GH3765)

• Series and DataFrame now have a `mode()` method to calculate the statistical mode(s) by axis/Series. (GH5367)

• Chained assignment will now by default warn if the user is assigning to a copy. This can be changed with the option `mode.chained_assignment`, allowed options are `raise/warn/None`. See the docs.

```
In [5]: dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})

In [6]: pd.set_option('chained_assignment','warn')

The following warning / exception will show if this is attempted.

In [7]: dfc.loc[0]['A'] = 1111

Traceback (most recent call last)
...
SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_index,col_indexer] = value instead

Here is the correct method of assignment.

In [8]: dfc.loc[0,'A'] = 11

In [9]: dfc
Out[9]:
   A  B
0  11 1
1  bbb 2
2  ccc 3

[3 rows x 2 columns]
```

• `Panel.reindex` has the following call signature `Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)` to conform with other NDFrame objects. See Internal Refactoring for more information.

• `Series.argmin` and `Series.argmax` are now aliased to `Series.idxmin` and `Series.idxmax`. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element. (GH6214)
1.4.2 Prior Version Deprecations/Changes

These were announced changes in 0.12 or prior that are taking effect as of 0.13.0

- Remove deprecated Factor (GH3650)
- Remove deprecated set_printoptions/reset_printoptions (GH3046)
- Remove deprecated _verbose_info (GH3215)
- Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter from pandas.io.parsers (GH3717) These are available as functions in the main pandas namespace (e.g. pd.read_clipboard)
- default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12 (GH3604)
- default for display.max_seq_len is now 100 rather then None. This activates truncated display ("...") of long sequences in various places. (GH3391)

1.4.3 Deprecations

Deprecated in 0.13.0

- deprecated iterkv, which will be removed in a future release (this was an alias of iteritems used to bypass 2to3's changes). (GH4384, GH4375, GH4372)
- deprecated the string method match, whose role is now performed more idiomatically by extract. In a future release, the default behavior of match will change to become analogous to contains, which returns a boolean indexer. (Their distinction is strictness: match relies on re.match while contains relies on re.search.) In this release, the deprecated behavior is the default, but the new behavior is available through the keyword argument as_indexer=True.

1.4.4 Indexing API Changes

Prior to 0.13, it was impossible to use a label indexer (.loc/.ix) to set a value that was not contained in the index of a particular axis. (GH2578). See the docs

In the Series case this is effectively an appending operation

In [10]: s = Series([1,2,3])

In [11]: s
Out[11]:
0 1
1 2
2 3
dtype: int64

In [13]: s
Out[13]:
0 1
1 2
2 3
5 5
dtype: float64
In [14]: dfi = DataFrame(np.arange(6).reshape(3,2),
.....: columns=['A','B'])
.....:
In [15]: dfi
Out[15]:
 A B
0 0 1
1 2 3
2 4 5

[3 rows x 2 columns]

This would previously KeyError

In [16]: dfi.loc[:,'C'] = dfi.loc[:,'A']

In [17]: dfi
Out[17]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4

[3 rows x 3 columns]

This is like an append operation.

In [18]: dfi.loc[3] = 5

In [19]: dfi
Out[19]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5

[4 rows x 3 columns]

A Panel setting operation on an arbitrary axis aligns the input to the Panel

In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2),
.....: items=['Item1','Item2'],
.....: major_axis=pd.date_range('2001/1/12',periods=4),
.....: minor_axis=['A','B'],dtype='float64')
.....:
In [21]: p
Out[21]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to B

In [22]: p.loc[:,:,'C'] = Series([30,32],index=p.items)

In [23]: p
Out[23]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to C

In [24]: p.loc[:, :, 'C']
Out[24]:
 Item1 Item2
2001-01-12 30 32
2001-01-13 30 32
2001-01-14 30 32
2001-01-15 30 32
[4 rows x 2 columns]

1.4.5 Float64Index API Change

- Added a new index type, Float64Index. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes [], .ix, .loc for scalar indexing and slicing work exactly the same. See the docs, (GH263)

 Construction is by default for floating type values.

In [25]: index = Index([1.5, 2, 3, 4.5, 5])

In [26]: index
Out[26]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')

In [27]: s = Series(range(5), index=index)

In [28]: s
Out[28]:
1.5 0
2.0 1
3.0 2
4.5 3
5.0 4
dtype: int32

Scalar selection for [], .ix, .loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

In [29]: s[3]
Out[29]: 2

In [30]: s.ix[3]
Out[30]: 2

In [31]: s.loc[3]
Out[31]: 2

The only positional indexing is via iloc

In [32]: s.iloc[3]
Out[32]: 3
A scalar index that is not found will raise `KeyError`

Slicing is ALWAYS on the values of the index, for [], ix, loc and ALWAYS positional with iloc

```
In [33]: s[2:4]
Out[33]:
2  1
3  2
dtype: int32

In [34]: s.ix[2:4]
Out[34]:
2  1
3  2
dtype: int32

In [35]: s.loc[2:4]
Out[35]:
2  1
3  2
dtype: int32

In [36]: s.iloc[2:4]
Out[36]:
3.0  2
4.5  3
dtype: int32
```

In float indexes, slicing using floats are allowed

```
In [37]: s[2.1:4.6]
Out[37]:
3.0  2
4.5  3
dtype: int32

In [38]: s.loc[2.1:4.6]
Out[38]:
3.0  2
4.5  3
dtype: int32
```

• Indexing on other index types are preserved (and positional fallback for [], ix), with the exception, that floating point slicing on indexes on non Float64Index will now raise a `TypeError`.

```
In [1]: Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)

In [1]: Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)
```

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.

```
In [3]: Series(range(5))[3.0]
Out[3]: 3
```

1.4.6 HDFStore API Changes

• Query Format Changes. A much more string-like query format is now supported. See the docs.
In [39]: path = 'test.h5'

In [40]: dfq = DataFrame(randn(10,4),
 : columns=list('ABCD'),
 : index=date_range('20130101',periods=10))
 :

In [41]: dfq.to_hdf(path,'dfq',format='table',data_columns=True)

Use boolean expressions, with in-line function evaluation.

In [42]: read_hdf(path,'dfq',
 : where="index>Timestamp('20130104') & columns=['A', 'B']")
 :
Out[42]:
 A B
2013-01-05 -1.392054 1.153922
2013-01-06 -0.881047 0.295080
2013-01-07 -1.407085 0.126781
2013-01-08 -0.838843 0.553921
2013-01-09 1.529401 0.205455
2013-01-10 0.299071 1.076541

[6 rows x 2 columns]

Use an inline column reference

In [43]: read_hdf(path,'dfq',
 : where="A>0 or C>0")
 :
Out[43]:
 A B C D
2013-01-01 1.126386 0.247112 0.121172 0.298984
2013-01-03 0.581073 2.763844 0.399325 0.668488
2013-01-04 -0.275774 0.500483 0.863065 -1.051628
2013-01-05 -1.392054 1.153922 1.181944 0.391371
2013-01-06 -0.881047 0.295080 1.863801 -1.712274
2013-01-07 -1.407085 0.126781 0.003760 -1.268994
2013-01-09 1.529401 0.205455 0.313013 0.866521
2013-01-10 0.299071 1.076541 0.363177 1.893680

[8 rows x 4 columns]

• the format keyword now replaces the table keyword; allowed values are fixed(f) or table(t) the same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format. This default format can be set as an option by setting io.hdf.default_format.

In [44]: path = 'test.h5'

In [45]: df = DataFrame(randn(10,2))

In [46]: df.to_hdf(path,'df_table',format='table')

In [47]: df.to_hdf(path,'df_table2',append=True)

In [48]: df.to_hdf(path,'df_fixed')

In [49]: with get_store(path) as store:
 : print(store)
• Significant table writing performance improvements
• handle a passed Series in table format (GH4330)
• can now serialize a timedelta64[ns] dtype in a table (GH3577), See the docs.
• added an is_open property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)
• a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise ClosedFileError

In [50]: path = ‘test.h5’

In [51]: df = DataFrame(randn(10,2))

In [52]: store1 = HDFStore(path)

In [53]: store2 = HDFStore(path)

In [54]: store1.append(‘df’,df)

In [55]: store2.append(‘df2’,df)

In [56]: store1
Out[56]:
<class ‘pandas.io.pytables.HDFStore’>
File path: test.h5
 /df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [57]: store2
Out[57]:
<class ‘pandas.io.pytables.HDFStore’>
File path: test.h5
 /df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
 /df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [58]: store1.close()

In [59]: store2
Out[59]:
<class ‘pandas.io.pytables.HDFStore’>
File path: test.h5
 /df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
 /df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [60]: store2.close()

In [61]: store2
Out[61]:

1.4. v0.13.0 (January 3, 2014)
• removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table (GH4367)

• removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if you try to use mode='w' with an OPEN file handle (GH4367)

• allow a passed locations array or mask as a where condition (GH4467). See the docs for an example.

• add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625)

• pass thru store creation arguments; can be used to support in-memory stores

1.4.7 DataFrame repr Changes

The HTML and plain text representations of DataFrame now show a truncated view of the table once it exceeds a certain size, rather than switching to the short info view (GH4886, GH5550). This makes the representation more consistent as small DataFrames get larger.

```
2010-03-30  13.55  13.64  13.18  13.28  142055200  12.70
...
...
...
...
...
```

771 rows x 6 columns

To get the info view, call DataFrame.info(). If you prefer the info view as the repr for large DataFrames, you can set this by running set_option('display.large_repr', 'info').

1.4.8 Enhancements

• df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled by default). (GH5070).

• read_html now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305)

• Added a test for read_clipboard() and to_clipboard() (GH4282)

• Clipboard functionality now works with PySide (GH4282)

• Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402)

• to_dict now takes records as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)

• NaN handing in get_dummies (GH4446) with dummy_na
previously, nan was erroneously counted as 2 here
now it is not counted at all
In [62]: get_dummies([1, 2, np.nan])
Out[62]:
 1 2
0 1 0
1 0 1
2 0 0
[3 rows x 2 columns]

unless requested
In [63]: get_dummies([1, 2, np.nan], dummy_na=True)
Out[63]:
 1 2 NaN
0 1 0 0
1 0 1 0
2 0 0 1
[3 rows x 3 columns]

• timedelta64[ns] operations. See the docs.

Warning: Most of these operations require numpy >= 1.7

Using the new top-level to_timedelta, you can convert a scalar or array from the standard timedelta format (produced by to_csv) into a timedelta type (np.timedelta64 in nanoseconds).

In [64]: to_timedelta('1 days 06:05:01.00003')
Out[64]: numpy.timedelta64(108301000030000,'ns')

In [65]: to_timedelta('15.5us')
Out[65]: numpy.timedelta64(15500,'ns')

In [66]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
Out[66]:
 0 1 days, 06:05:01.000030
 1 0 days, 00:00:00.000016
 2 NaT
dtype: timedelta64[ns]

In [67]: to_timedelta(np.arange(5),unit='s')
Out[67]:
 0 00:00:00
 1 00:00:01
 2 00:00:02
 3 00:00:03
 4 00:00:04
dtype: timedelta64[ns]

In [68]: to_timedelta(np.arange(5),unit='d')
Out[68]:
 0 0 days
 1 1 days
 2 2 days
 3 3 days
 4 4 days
dtype: timedelta64[ns]
A Series of dtype `timedelta64[ns]` can now be divided by another `timedelta64[ns]` object, or astyped to yield a `float64` dtyped Series. This is frequency conversion. See the docs for the docs.

In [69]: from datetime import timedelta

In [70]: td = Series(date_range('20130101',periods=4))-Series(date_range('20121201',periods=4))

In [71]: td[2] += np.timedelta64(timedelta(minutes=5,seconds=3))

In [72]: td[3] = np.nan

In [73]: td
Out[73]:

 0 31 days, 00:00:00
 1 31 days, 00:00:00
 2 31 days, 00:05:03
 3 NaT

dtype: timedelta64[ns]

to days
In [74]: td / np.timedelta64(1,'D')
Out[74]:

 0 31.000000
 1 31.000000
 2 31.003507
 3 NaN

dtype: float64

In [75]: td.astype('timedelta64[D]')
Out[75]:

 0 31
 1 31
 2 31
 3 NaN

dtype: float64

to seconds
In [76]: td / np.timedelta64(1,'s')
Out[76]:

 0 2678400
 1 2678400
 2 2678703
 3 NaN

dtype: float64

In [77]: td.astype('timedelta64[s]')
Out[77]:

 0 2678400
 1 2678400
 2 2678703
 3 NaN

dtype: float64

Dividing or multiplying a `timedelta64[ns]` Series by an integer or integer Series

In [78]: td * -1
Out[78]:

Absolute DateOffset objects can act equivalently to timedeltas

Fillna is now supported for timedeltas

You can do numeric reduction operations on timedeltas.

- `plot(kind='kde')` now accepts the optional parameters `bw_method` and `ind`, passed to `scipy.stats.gaussian_kde()` (for scipy >= 0.11.0) to set the bandwidth, and to `gkde.evaluate()` to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)
- DataFrame constructor now accepts a numpy masked record array (GH3478)
• The new vectorized string method `extract` return regular expression matches more conveniently.

```python
In [86]: Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)')
Out[86]:
0  1
1  2
2  NaN
dtype: object
```

Elements that do not match return NaN. Extracting a regular expression with more than one group returns a DataFrame with one column per group.

```python
In [87]: Series(['a1', 'b2', 'c3']).str.extract('[{ab}]\(\d\)')
Out[87]:
0  a  1
1  b  2
2  NaN NaN
[3 rows x 2 columns]
```

Elements that do not match return a row of NaN. Thus, a Series of messy strings can be converted into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating `get()` to access tuples or `re.match` objects.

Named groups like

```python
In [88]: Series(['a1', 'b2', 'c3']).str.extract( '(...:\'(\P<letter>[ab])\(?P<digit>\d)')
....:
Out[88]:
letter digit
0   a   1
1   b   2
2  NaN  NaN
[3 rows x 2 columns]
```

and optional groups can also be used.

```python
In [89]: Series(['a1', 'b2', '3']).str.extract( '(...:\'(\P<letter>[ab])?\(?P<digit>\d)')
....:
Out[89]:
letter digit
0   a   1
1   b   2
2  NaN   3
[3 rows x 2 columns]
```

• `read_stata` now accepts Stata 13 format (GH4291)

• `read_fwf` now infers the column specifications from the first 100 rows of the file if the data has correctly separated and properly aligned columns using the delimiter provided to the function (GH4488).

• support for nanosecond times as an offset

Warning: These operations require `numpy >= 1.7`
Period conversions in the range of seconds and below were reworked and extended up to nanoseconds. Periods in the nanosecond range are now available.

```python
In [90]: date_range('2013-01-01', periods=5, freq='5N')
Out[90]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00, ..., 2013-01-01 00:00:00.000000020]
Length: 5, Freq: 5N, Timezone: None
```

or with frequency as offset

```python
In [91]: date_range('2013-01-01', periods=5, freq=pd.offsets.Nano(5))
Out[91]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00, ..., 2013-01-01 00:00:00.000000020]
Length: 5, Freq: 5N, Timezone: None
```

Timestamps can be modified in the nanosecond range

```python
In [92]: t = Timestamp('20130101 09:01:02')
```

```python
In [93]: t + pd.datetools.Nano(123)
Out[93]: Timestamp('2013-01-01 09:01:02.000000123')
```

• A new method, `isin` for DataFrames, which plays nicely with boolean indexing. The argument to `isin`, what we're comparing the DataFrame to, can be a DataFrame, Series, dict, or array of values. See the docs for more.

To get the rows where any of the conditions are met:

```python
In [94]: dfi = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'f', 'n']})
```

```python
In [95]: dfi
Out[95]:
   A  B
0  1  a
1  2  b
2  3  f
3  4  n
```

```python
In [96]: other = DataFrame({'A': [1, 3, 3, 7], 'B': ['e', 'f', 'f', 'e']})
```

```python
In [97]: mask = dfi.isin(other)
```

```python
In [98]: mask
Out[98]:
   A  B
0  True  False
1  False  False
2  True   True
3  False  False
```

```python
In [99]: dfi[mask.any(1)]
Out[99]:
   A  B
0  1  a
2  3  f
```
Series now supports a `to_frame` method to convert it to a single-column DataFrame (GH5164)

- All R datasets listed here http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html can now be loaded into Pandas objects

```python
import pandas.rpy.common as com
com.load_data('Titanic')
```

- `tz_localize` can infer a fall daylight savings transition based on the structure of the unlocalized data (GH4230), see the docs

- `datetimeIndex` is now in the API documentation, see the docs

- `json_normalize` is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067)

- Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.

- Python csv parser now supports usecols (GH4335)

- Frequencies gained several new offsets:
 - `LastWeekOfMonth` (GH4637)
 - `FY5253`, and `FY5253Quarter` (GH4511)

- `DataFrame` has a new `interpolate` method, similar to Series (GH4434, GH1892)

```python
In [100]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
                  'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})
In [101]: df.interpolate()
```

Additionally, the method argument to `interpolate` has been expanded to include `'nearest'`, `'zero'`, `'slinear'`, `'quadratic'`, `'cubic'`, `'barycentric'`, `'krogh'`, `'piecewise_polynomial'`, `'pchip'`, `'polynomial'`, `'spline'` The new methods require scipy. Consult the Scipy reference guide and documentation for more information about when the various methods are appropriate. See the docs.

Interpolate now also accepts a `limit` keyword argument. This works similar to `fillna`'s limit:

```python
In [102]: ser = Series([1, 3, np.nan, np.nan, np.nan, 11])
In [103]: ser.interpolate(limit=2)
```

[6 rows x 2 columns]
• Added `wide_to_long` panel data convenience function. See the docs.

```
In [104]: np.random.seed(123)
In [105]: df = pd.DataFrame({'A1970': {0: 'a', 1: 'b', 2: 'c'},
                        'A1980': {0: 'd', 1: 'e', 2: 'f'},
                        'B1970': {0: 2.5, 1: 1.2, 2: .7},
                        'B1980': {0: 3.2, 1: 1.3, 2: .1},
                        'X': dict(zip(range(3), np.random.randn(3)))})

In [106]: df['id'] = df.index
In [107]: df
Out[107]:
0     a     d     2.5     3.2 -1.085631  0
1     b     e     1.2     1.3  0.997345  1
2     c     f     0.7     0.1  0.282978  2

[3 rows x 6 columns]
```

```
In [108]: wide_to_long(df, ['A', 'B'], i='id', j='year')
Out[108]:
    X   A  B
id year
0  1970 -1.085631 a  2.5
1  1970  0.997345 b  1.2
2  1970  0.282978 c  0.7
0  1980 -1.085631 d  3.2
1  1980  0.997345 e  1.3
2  1980  0.282978 f  0.1

[6 rows x 3 columns]
```

• `to_csv` now takes a `date_format` keyword argument that specifies how output datetime objects should be formatted. Datetimes encountered in the index, columns, and values will all have this formatting applied. (GH4313)

• `DataFrame.plot` will scatter plot x versus y by passing `kind='scatter'` (GH2215)

• Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

1.4.9 Experimental

• The new `eval()` function implements expression evaluation using `numexpr` behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series. For example,

```
In [109]: nrows, ncols = 20000, 100
In [110]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols))
                        for _ in range(4)]
```

1.4. v0.13.0 (January 3, 2014)
eval with NumExpr backend
In [111]: %timeit pd.eval('df1 + df2 + df3 + df4')
100 loops, best of 3: 15.9 ms per loop

pure Python evaluation
In [112]: %timeit df1 + df2 + df3 + df4
10 loops, best of 3: 22.5 ms per loop

For more details, see the the docs

• Similar to pandas.eval, DataFrame has a new DataFrame.eval method that evaluates an expression in the context of the DataFrame. For example,

In [113]: df = DataFrame(randn(10, 2), columns=['a', 'b'])
In [114]: df.eval('a + b')
Out[114]:
0 -0.685204
1 1.589745
2 0.325441
3 -1.784153
4 -0.432893
5 0.171850
6 1.895919
7 3.065587
8 -0.092759
9 1.391365
dtype: float64

• query() method has been added that allows you to select elements of a DataFrame using a natural query syntax nearly identical to Python syntax. For example,

In [115]: n = 20
In [116]: df = DataFrame(np.random.randint(n, size=(n, 3)), columns=['a', 'b', 'c'])
In [117]: df.query('a < b < c')
Out[117]:
a b c
11 1 5 8
15 8 16 19
[2 rows x 3 columns]

selects all the rows of df where a < b < c evaluates to True. For more details see the the docs.

• pd.read_msgpack() and pd.to_msgpack() are now a supported method of serialization of arbitrary pandas (and python objects) in a lightweight portable binary format. See the docs

Warning: Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.

In [118]: df = DataFrame(np.random.rand(5,2),columns=list('AB'))
In [119]: df.to_msgpack('foo.msg')
In [120]: pd.read_msgpack('foo.msg')
Out[120]:
A B

In [121]: s = Series(np.random.rand(5),index=date_range('20130101',periods=5))

In [122]: pd.to_msgpack('foo.msg', df, s)

In [123]: pd.read_msgpack('foo.msg')
Out[123]:

 A B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575

[5 rows x 2 columns], 2013-01-01 0.022321
2013-01-02 0.227025
2013-01-03 0.383282
2013-01-04 0.193225
2013-01-05 0.110977
Freq: D, dtype: float64

You can pass `iterator=True` to iterator over the unpacked results

In [124]: for o in pd.read_msgpack('foo.msg', iterator=True):
 : print o
 :

 A B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575

[5 rows x 2 columns]
2013-01-01 0.022321
2013-01-02 0.227025
2013-01-03 0.383282
2013-01-04 0.193225
2013-01-05 0.110977
Freq: D, dtype: float64

• pandas.io.gbg provides a simple way to extract from, and load data into, Google’s BigQuery Data Sets by way of pandas DataFrames. BigQuery is a high performance SQL-like database service, useful for performing ad-hoc queries against extremely large datasets. See the docs

from pandas.io import gbq

A query to select the average monthly temperatures in the
in the year 2000 across the USA. The dataset,
publicata:samples.gsod, is available on all BigQuery accounts,
and is based on NOAA gsod data.
query = """SELECT station_number as STATION,
month as MONTH, AVG(mean_temp) as MEAN_TEMP
FROM publicdata:samples.gsod
WHERE YEAR = 2000
GROUP BY STATION, MONTH
ORDER BY STATION, MONTH ASC"""

Fetch the result set for this query

Your Google BigQuery Project ID
To find this, see your dashboard:
https://code.google.com/apis/console/b/0/?noredirect
projectid = xxxxxxxxx;

df = gbq.read_gbq(query, project_id = projectid)

Use pandas to process and reshape the dataset

df2 = df.pivot(index='STATION', columns='MONTH', values='MEAN_TEMP')
df3 = pandas.concat([df2.min(), df2.mean(), df2.max()],
axis=1, keys=['Min Temp', 'Mean Temp', 'Max Temp'])

The resulting DataFrame is:

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Min Temp</th>
<th>Mean Temp</th>
<th>Max Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-53.336667</td>
<td>39.827892</td>
<td>89.770968</td>
</tr>
<tr>
<td>2</td>
<td>-49.837500</td>
<td>43.685219</td>
<td>93.437932</td>
</tr>
<tr>
<td>3</td>
<td>-77.926087</td>
<td>48.708355</td>
<td>96.099998</td>
</tr>
<tr>
<td>4</td>
<td>-82.892858</td>
<td>55.070087</td>
<td>97.317240</td>
</tr>
<tr>
<td>5</td>
<td>-92.378261</td>
<td>61.428117</td>
<td>102.042856</td>
</tr>
<tr>
<td>6</td>
<td>-77.703334</td>
<td>65.858888</td>
<td>102.900000</td>
</tr>
<tr>
<td>7</td>
<td>-87.821428</td>
<td>68.169663</td>
<td>106.510714</td>
</tr>
<tr>
<td>8</td>
<td>-89.431999</td>
<td>68.614215</td>
<td>105.500000</td>
</tr>
<tr>
<td>9</td>
<td>-86.611112</td>
<td>63.436935</td>
<td>107.142856</td>
</tr>
<tr>
<td>10</td>
<td>-78.209677</td>
<td>56.880838</td>
<td>92.103333</td>
</tr>
<tr>
<td>11</td>
<td>-50.125000</td>
<td>48.861228</td>
<td>94.996428</td>
</tr>
<tr>
<td>12</td>
<td>-50.332258</td>
<td>42.286879</td>
<td>94.396774</td>
</tr>
</tbody>
</table>

Warning: To use this module, you will need a BigQuery account. See <https://cloud.google.com/products/big-query> for details.
As of 10/10/13, there is a bug in Google’s API preventing result sets from being larger than 100,000 rows.
A patch is scheduled for the week of 10/14/13.

1.4.10 Internal Refactoring

In 0.13.0 there is a major refactoring primarily to subclass Series from NDFrame, which is the base class currently for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray. (GH4080, GH3862, GH816)
Warning: There are two potential incompatibilities from < 0.13.0

- Using certain numpy functions would previously return a `Series` if passed a `Series` as an argument. This seems only to affect `np.ones_like`, `np.empty_like`, `np.diff` and `np.where`. These now return ndarrays.

  ```python
  In [125]: s = Series([1,2,3,4])
  Numpy Usage

  In [126]: np.ones_like(s)
  Out[126]: array([1, 1, 1, 1], dtype=int64)

  In [127]: np.diff(s)
  Out[127]: array([1, 1, 1], dtype=int64)

  In [128]: np.where(s>1,s,np.nan)
  Out[128]: array([ nan, 2., 3., 4.])
  Pandas Usage

  In [129]: Series(1,index=s.index)
  Out[129]:
  0   1
  1   1
  2   1
  3   1
  dtype: int64

  In [130]: s.diff()
  Out[130]:
  0   NaN
  1   1
  2   1
  3   1
  dtype: float64

  In [131]: s.where(s>1)
  Out[131]:
  0   NaN
  1   2
  2   3
  3   4
  dtype: float64

- Passing a `Series` directly to a cython function expecting an ndarray type will no long work directly, you must pass `Series.values`, see *Enhancing Performance*

- `Series(0.5)` would previously return the scalar `0.5`, instead this will return a 1-element `Series`

- This change breaks `rpy2<=2.3.8`. An issue has been opened against rpy2 and a workaround is detailed in GH5698. Thanks @JanSchulz.

- Pickle compatibility is preserved for pickles created prior to 0.13. These must be unpickled with `pd.read_pickle`, see *Pickling*

- Refactor of series.py/frame.py/panel.py to move common code to generic.py
  - added `_setup_axes` to created generic NDFrame structures
  - moved methods
    * from_axes, `wrap_array`, `axes`, `ix`, `loc`, `iloc`, `shape`, `empty`, `swapaxes`, `transpose`, `pop`
• The following methods have been removed:
  - __iter__, __keys__, __contains__, __len__, __neg__, __invert__
  - convert_objects, as_blocks, as_matrix, values
  - __getstate__, __setstate__ (compat remains in frame/panel)
  - __getattr__, __setattr__
  - _indexed_same, reindex_like, align, where, mask
  - fillna, replace (Series replace is now consistent with DataFrame)
  - filter (also added axis argument to selectively filter on a different axis)
  - reindex, reindex_axis, take
  - truncate (moved to become part of NDFrame)

• These are API changes which make Panel more consistent with DataFrame
  - swapaxes on a Panel with the same axes specified now return a copy
  - support attribute access for setting
  - filter supports the same API as the original DataFrame filter

• Reindex called with no arguments will now return a copy of the input object

• TimeSeries is now an alias for Series. The property is_time_series can be used to distinguish (if desired)

• Refactor of Sparse objects to use BlockManager
  - Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is non-consolidatable. SparseSeries and SparseDataFrame now inherit more methods from their hierarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of the SparseBlock)
  - Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)
  - Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient
  - enable setitem on SparseSeries for boolean/integer/slices
  - SparsePanels implementation is unchanged (e.g. not using BlockManager, needs work)

• added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense (as well as the dtype)

• All NDFrame objects can now use __finalize__() to specify various values to propagate to new objects from an existing one (e.g. name in Series will follow more automatically now)

• Internal type checking is now done via a suite of generated classes, allowing isinstance(value, klass) without having to directly import the klass, courtesy of @jtratner

• Bug in Series update where the parent frame is not updating its cache based on changes (GH4080) or types (GH3217), fillna (GH3386)

• Indexing with dtype conversions fixed (GH4463, GH4204)

• Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work

• Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy
• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with the same signature for Panel
• Refactor clip methods to core/generic.py (GH4798)
• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality
• Series (for index)/Panel (for items) now allow attribute access to its elements (GH1903)

```python
In [132]: s = Series([1,2,3],index=list('abc'))
In [133]: s.b
Out[133]: 2

In [134]: s.a = 5
In [135]: s
Out[135]:
 a 5
 b 2
 c 3
dtype: int64
```

### 1.4.11 Bug Fixes

See [V0.13.0 Bug Fixes](#) for an extensive list of bugs that have been fixed in 0.13.0.

See the [full release notes](#) or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.

### 1.5 v0.12.0 (July 24, 2013)

This is a major release from 0.11.0 and includes several new features and enhancements along with a large number of bug fixes.

Highlights include a consistent I/O API naming scheme, routines to read html, write multi-indexes to csv files, read & write STATA data files, read & write JSON format files, Python 3 support for HDFStore, filtering of groupby expressions via filter, and a revamped replace routine that accepts regular expressions.

#### 1.5.1 API changes

- The I/O API is now much more consistent with a set of top level reader functions accessed like `pd.read_csv()` that generally return a pandas object.
  - read_csv
  - read_excel
  - read_hdf
  - read_sql
  - read_json
  - read_html
  - read_stata
- read_clipboard

The corresponding writer functions are object methods that are accessed like df.to_csv()
- to_csv
- to_excel
- to_hdf
- to_sql
- to_json
- to_html
- to_stata
- to_clipboard

• Fix modulo and integer division on Series,DataFrame to act similarly to float dtypes to return np.nan or np.inf as appropriate (GH3590). This correct a numpy bug that treats integer and float dtypes differently.

In [1]: p = DataFrame({ 'first' : [4,5,8], 'second' : [0,0,3] })

In [2]: p % 0
Out[2]:
   first  second
0   NaN    NaN
1   NaN    NaN
2   NaN    NaN

[3 rows x 2 columns]

In [3]: p % p
Out[3]:
   first  second
0   0    NaN
1   0    NaN
2   0     0

[3 rows x 2 columns]

In [4]: p / p
Out[4]:
   first   second
0   1     inf
1   1     inf
2   1   1.000000

[3 rows x 2 columns]

In [5]: p / 0
Out[5]:
   first   second
0   inf    inf
1   inf    inf
2   inf    inf

[3 rows x 2 columns]
• Add **squeeze** keyword to **groupby** to allow reduction from DataFrame -> Series if groups are unique. This is a Regression from 0.10.1. We are reverting back to the prior behavior. This means groupby will return the same shaped objects whether the groups are unique or not. Revert this issue (GH2893) with (GH3596).

```python
In [6]: df2 = DataFrame([[“val1”: 1, “val2” : 20}, {“val1”:1, “val2”: 19},
...: {“val1”:1, “val2”: 27}, {“val1”:1, “val2”: 12}])

In [7]: def func(dataf):
...: return dataf[“val2”] - dataf[“val2”].mean()
...:

squeezing the result frame to a series (because we have unique groups)
In [8]: df2.groupby(“val1”, squeeze=True).apply(func)
Out[8]:
 0 0.5
 1 -0.5
 2 7.5
 3 -7.5
Name: 1, dtype: float64

no squeezing (the default, and behavior in 0.10.1)
In [9]: df2.groupby(“val1”).apply(func)
Out[9]:
 val2
 val1
 0 1 2 3
 1 0.5 -0.5 7.5 -7.5
[1 rows x 4 columns]
```

• Raise on **iloc** when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Since **iloc** is purely positional based, the labels on the Series are not alignable (GH3631)

This case is rarely used, and there are plenty of alternatives. This preserves the **iloc** API to be *purely* positional based.

```python
In [10]: df = DataFrame(lrange(5), list(‘ABCDE’), columns=[‘a’])
In [11]: mask = (df.a%2 == 0)
In [12]: mask
Out[12]:
 A True
 B False
 C True
 D False
 E True
Name: a, dtype: bool

this is what you should use
In [13]: df.loc[mask]
Out[13]:
 a
A 0
C 2
E 4
[3 rows x 1 columns]
```
# this will work as well
In [14]: df.iloc[mask.values]
Out[14]:
   
a
 A  0
 C  2
 E  4

[3 rows x 1 columns]

df.iloc[mask] will raise a ValueError

- The `raise_on_error` argument to plotting functions is removed. Instead, plotting functions raise a TypeError when the dtype of the object is object to remind you to avoid object arrays whenever possible and thus you should cast to an appropriate numeric dtype if you need to plot something.

- Add `colormap` keyword to DataFrame plotting methods. Accepts either a matplotlib colormap object (ie, `matplotlib.cm.jet`) or a string name of such an object (ie, `jet`). The colormap is sampled to select the color for each column. Please see Colormaps for more information. (GH3860)

- `DataFrame.interpolate()` is now deprecated. Please use `DataFrame.fillna()` and `DataFrame.replace()` instead. (GH3582, GH3675, GH3676)

- The `method` and `axis` arguments of `DataFrame.replace()` are deprecated

- `DataFrame.replace`'s `infer_types` parameter is removed and now performs conversion by default. (GH3907)

- Add the keyword `allow_duplicates` to `DataFrame.insert` to allow a duplicate column to be inserted if `True`, default is `False` (same as prior to 0.12) (GH3679)

- Implement `__nonzero__` for `NDFrame` objects (GH3691, GH3696)

- **IO api**
  
  - added top-level function `read_excel` to replace the following. The original API is deprecated and will be removed in a future version

    ```python
 from pandas.io.parsers import ExcelFile
 xls = ExcelFile('path_to_file.xls')
 xls.parse('Sheet1', index_col=None, na_values=['NA'])
    ```

    With

    ```python
 import pandas as pd
 pd.read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
    ```

  - added top-level function `read_sql` that is equivalent to the following

    ```python
 from pandas.io.sql import read_frame
 read_frame(...)```

- `DataFrame.to_html` and `DataFrame.to_latex` now accept a path for their first argument (GH3702)

- Do not allow astypes on `datetime64[ns]` except to object, and `timedelta64[ns]` to object/int (GH3425)

- The behavior of `datetime64` dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a TypeError when performed on a Series and return an empty Series when performed on a DataFrame similar to performing these operations on, for example, a DataFrame of slice objects:

 - sum, prod, mean, std, var, skew, kurt, corr, and cov
• **read_html** now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to parse. a list of parsers to try until success is also valid

• The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently, PandasObject provides string methods (from StringMixin). (GH4090, GH4092)

• New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)

1.5.2 I/O Enhancements

• **pd.read_html()** can now parse HTML strings, files or urls and return DataFrames, courtesy of @cpcloud. (GH3477, GH3605, GH3606, GH3616). It works with a single parser backend: BeautifulSoup4 + html5lib See the docs

You can use pd.read_html() to read the output from DataFrame.to_html() like so

```python
In [15]: df = DataFrame({'a': range(3), 'b': list('abc')})
In [16]: print(df)
   a  b
0  0  a
1  1  b
2  2  c
[3 rows x 2 columns]
In [17]: html = df.to_html()
In [18]: alist = pd.read_html(html, infer_types=True, index_col=0)
In [19]: print(df == alist[0])
   a  b
0  True  True
1  True  True
2  True  True
[3 rows x 2 columns]
```

Note that alist here is a Python list so pd.read_html() and DataFrame.to_html() are not inverses.

– pd.read_html() no longer performs hard conversion of date strings (GH3656).

Warning: You may have to install an older version of BeautifulSoup4. See the installation docs

• Added module for reading and writing Stata files: pandas.io.stata (GH1512) accessible via read_stata top-level function for reading, and to_stata DataFrame method for writing, See the docs

• Added module for reading and writing json format files: pandas.io.json accessible via read_json top-level function for reading, and to_json DataFrame method for writing, See the docs various issues (GH1226, GH3804, GH3876, GH3867, GH1305)

• MultiIndex column support for reading and writing csv format files
- The header option in read_csv now accepts a list of the rows from which to read the index.
- The option, tupleize_cols can now be specified in both to_csv and read_csv, to provide compatibility for the pre 0.12 behavior of writing and reading MultiIndex columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as a MultiIndex column.

Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13, the default to write and read MultiIndex columns will be in the new format. (GH3571, GH1651, GH3141)
- If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(..., index=False)), then any names on the columns index will be lost.

```python
In [20]: from pandas.util.testing import makeCustomDataframe as mkdf
In [21]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
In [22]: df.to_csv('mi.csv',tupleize_cols=False)

In [23]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2

In [24]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1],tupleize_cols=False)
Out[24]:
C0 C_l0_g0 C_l0_g1 C_l0_g2
C1 C_l1_g0 C_l1_g1 C_l1_g2
C2 C_l2_g0 C_l2_g1 C_l2_g2
C3 C_l3_g0 C_l3_g1 C_l3_g2
R0 R1
R_l0_g0 R_l1_g0 R0C0 R0C1 R0C2
R_l0_g1 R_l1_g1 R1C0 R1C1 R1C2
R_l0_g2 R_l1_g2 R2C0 R2C1 R2C2
R_l0_g3 R_l1_g3 R3C0 R3C1 R3C2
R_l0_g4 R_l1_g4 R4C0 R4C1 R4C2
[5 rows x 3 columns]
```

- Support for HDFStore (via PyTables 3.0.0) on Python3
- Iterator support via read_hdf that automatically opens and closes the store when iteration is finished. This is only for tables:

```python
In [25]: path = ‘store_iterator.h5’
In [26]: DataFrame(randn(10,2)).to_hdf(path,’df’,table=True)
In [27]: for df in read_hdf(path,’df’, chunksize=3):
    ....:     print(df)
    ....:     0  1
0  1.392665 -0.123497
```
1.5.3 Other Enhancements

- DataFrame.replace() now allows regular expressions on contained Series with object dtype. See the examples section in the regular docs *Replacing via String Expression*

For example you can do

In [28]: df = DataFrame({‘a’: list(‘ab..’), ‘b’: [1, 2, 3, 4]})

In [29]: df.replace(regex=r’\s*\.’, value=np.nan)

Out[29]:
 a b
 0 a 1
 1 b 2
 2 NaN 3
 3 NaN 4

[4 rows x 2 columns]

to replace all occurrences of the string ‘.’ with zero or more instances of surrounding whitespace with NaN.

Regular string replacement still works as expected. For example, you can do

In [30]: df.replace(‘.’, np.nan)

Out[30]:
 a b
 0 a 1
 1 b 2
 2 NaN 3
 3 NaN 4

[4 rows x 2 columns]

to replace all occurrences of the string ‘.’ with NaN.

- `read_csv` will now throw a more informative error message when a file contains no columns, e.g., all newline characters
• `pd.melt()` now accepts the optional parameters `var_name` and `value_name` to specify custom column names of the returned DataFrame.

• `pd.set_option()` now allows N option, value pairs (GH3667).

 Let’s say that we had an option ‘a.b’ and another option ‘b.c’. We can set them at the same time:

  ```
  In [31]: pd.get_option('a.b')
  Out[31]: 2

  In [32]: pd.get_option('b.c')
  Out[32]: 3

  In [33]: pd.set_option('a.b', 1, 'b.c', 4)

  In [34]: pd.get_option('a.b')
  Out[34]: 1

  In [35]: pd.get_option('b.c')
  Out[35]: 4
  ```

• The `filter` method for group objects returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.

  ```
  In [36]: sf = Series([1, 1, 2, 3, 3, 3])

  In [37]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
  Out[37]:
  3 3
  4 3
  5 3
  dtype: int64
  ```

 The argument of `filter` must a function that, applied to the group as a whole, returns True or False. Another useful operation is filtering out elements that belong to groups with only a couple members.

  ```
  In [38]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')})

  In [39]: dff.groupby('B').filter(lambda x: len(x) > 2)
  Out[39]:
   A B
  2 2 b
  3 3 b
  4 4 b
  5 5 b
  [4 rows x 2 columns]
  ```

 Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

  ```
  In [40]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
  Out[40]:
   A B
  0 NaN NaN
  1 NaN NaN
  2 2 b
  3 3 b
  4 4 b
  ```
5 5 b
6 NaN NaN
7 NaN NaN

[8 rows x 2 columns]

- Series and DataFrame hist methods now take a figsize argument (GH3834)
- DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)
- Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default date-time.min and datetime.max (respectively), thanks @SleepingPills
- read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

1.5.4 Experimental Features

- Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars and custom weekmasks. (GH2301)

Note: This uses the numpy.busdaycalendar API introduced in Numpy 1.7 and therefore requires Numpy 1.7.0 or newer.

In [41]: from pandas.tseries.offsets import CustomBusinessDay

In [42]: from datetime import datetime

As an interesting example, let’s look at Egypt where
a Friday-Saturday weekend is observed.
In [43]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

They also observe International Workers’ Day so let’s
add that for a couple of years
In [44]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]

In [45]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)

In [46]: dt = datetime(2013, 4, 30)

In [47]: print(dt + 2 * bday_egypt)
2013-05-05 00:00:00

In [48]: dts = date_range(dt, periods=5, freq=bday_egypt)

In [49]: print(Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'.split())))
2013-04-30 Tue
2013-05-02 Thu
2013-05-05 Sun
2013-05-06 Mon
2013-05-07 Tue
Freq: C, dtype: object
1.5.5 Bug Fixes

- Plotting functions now raise a TypeError before trying to plot anything if the associated objects have have a dtype of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.

- fillna methods now raise a TypeError if the value parameter is a list or tuple.

- Series.str now supports iteration (GH3638). You can iterate over the individual elements of each string in the Series. Each iteration yields yields a Series with either a single character at each index of the original Series or NaN. For example,

 In [50]: strs = 'go', 'bow', 'joe', 'slow'

 In [51]: ds = Series(strs)

 In [52]: for s in ds.str:
 : print(s)
 :
 0 g
 1 b
 2 j
 3 s
dtype: object
 0 o
 1 o
 2 o
 3 l
dtype: object
 0 NaN
 1 w
 2 e
 3 o
dtype: object
 0 NaN
 1 NaN
 2 NaN
 3 w
dtype: object

 In [53]: s
 Out[53]:
 0 NaN
 1 NaN
 2 NaN
 3 w
dtype: object

 In [54]: s.dropna().values.item() == 'w'
 Out[54]: True

 The last element yielded by the iterator will be a Series containing the last element of the longest string in the Series with all other elements being NaN. Here since 'slow' is the longest string and there are no other strings with the same length 'w' is the only non-null string in the yielded Series.

- HDFStore
 - will retain index attributes (freq,tz,name) on recreation (GH3499)
will warn with a `AttributeConflictWarning` if you are attempting to append an index with a
different frequency than the existing, or attempting to append an index with a different name than the
existing

- support datelike columns with a timezone as `data_columns` (GH2852)

- `DataFrame.from_records` did not accept empty recarrays (GH3682)

- `read_html` now correctly skips tests (GH3741)

- `Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument
wasn’t working` (GH3907)

- `Improved network test decorator to catch IOError (and therefore URLError as well). Added
with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there
is network connectivity. Plus, new optional_args decorator factory for decorators.` (GH3910, GH3914)

- `Fixed testing issue where too many sockets where open thus leading to a connection reset issue` (GH3982,
GH3985, GH4028, GH4054)

- `Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed`
(GH3982, GH3985, GH4028, GH4054)

- `Series.hist` will now take the figure from the current environment if one is not passed

- `Fixed bug where a 1xN DataFrame would barf on a 1xN mask` (GH4071)

- `Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way`
(GH4062, GH4063)
• Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
• Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False (GH4115)
• Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)
• Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly MilliSecondLocator (GH3990)
• Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
• Fixed the legend displaying in DataFrame.plot(kind='kde') (GH4216)
• Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
• Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)
• Fixed bug where html5lib wasn’t being properly skipped (GH4265)
• Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)

See the full release notes or issue tracker on GitHub for a complete list.

1.6 v0.11.0 (April 22, 2013)

This is a major release from 0.10.1 and includes many new features and enhancements along with a large number of bug fixes. The methods of Selecting Data have had quite a number of additions, and Dtype support is now full-fledged. There are also a number of important API changes that long-time pandas users should pay close attention to.

There is a new section in the documentation, 10 Minutes to Pandas, primarily geared to new users.

There is a new section in the documentation, Cookbook, a collection of useful recipes in pandas (and that we want contributions!).

There are several libraries that are now Recommended Dependencies

1.6.1 Selection Choices

Starting in 0.11.0, object selection has had a number of user-requested additions in order to support more explicit location based indexing. Pandas now supports three types of multi-axis indexing.

• .loc is strictly label based, will raise KeyError when the items are not found, allowed inputs are:
 – A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
 – A list or array of labels [‘a’, ‘b’, ‘c’]
 – A slice object with labels ‘a’ : ‘f’, (note that contrary to usual python slices, both the start and the stop are included!)
 – A boolean array

See more at Selection by Label

• .iloc is strictly integer position based (from 0 to length-1 of the axis), will raise IndexError when the requested indices are out of bounds. Allowed inputs are:
 – An integer e.g. 5
 – A list or array of integers [4, 3, 0]
A slice object with ints 1:7
A boolean array

See more at Selection by Position

- `.ix` supports mixed integer and label based access. It is primarily label based, but will fallback to integer positional access. `.ix` is the most general and will support any of the inputs to `.loc` and `.iloc`, as well as support for floating point label schemes. `.ix` is especially useful when dealing with mixed positional and label based hierarchial indexes.

As using integer slices with `.ix` have different behavior depending on whether the slice is interpreted as position based or label based, it’s usually better to be explicit and use `.iloc` or `.loc`.

See more at Advanced Indexing, Advanced Hierarchical and Fallback Indexing

1.6.2 Selection Deprecations

Starting in version 0.11.0, these methods *may* be deprecated in future versions.

- `irow`
- `icol`
- `iget_value`

See the section Selection by Position for substitutes.

1.6.3 Dtypes

Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the `dtype` keyword, a passed `ndarray`, or a passed `Series`, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will **NOT** be combined. The following example will give you a taste.

```
In [1]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
```

```
In [2]: df1
Out[2]:
   A
0  0.245972
1  0.319442
2  1.378512
3  0.292502
4  0.329791
5  1.392047
6  0.769914
7 -2.472300
[8 rows x 1 columns]
```

```
In [3]: df1.dtypes
Out[3]:
A    float32
dtype: object
```

```
In [4]: df2 = DataFrame(dict( A = Series(randn(8),dtype='float16'),
...:                      B = Series(randn(8)),
...:                      C = Series(randn(8),dtype='uint8') ))
```
In [5]: df2
Out[5]:
 A B C
0 -0.611328 -0.270630 255
1 1.044922 -1.685677 0
2 1.503906 -0.440747 0
3 -1.328125 -0.115070 1
4 1.024414 -0.632102 0
5 0.660156 -0.585977 0
6 1.236328 -1.444787 0
7 -2.169922 -0.201135 0

[8 rows x 3 columns]

In [6]: df2.dtypes
Out[6]:
A: float16
B: float64
C: uint8

dtype: object

here you get some upcasting

In [7]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [8]: df3
Out[8]:
 A B C
0 -0.365356 -0.270630 255
1 1.364364 -1.685677 0
2 2.882418 -0.440747 0
3 -1.035623 -0.115070 1
4 1.354205 -0.632102 0
5 2.052203 -0.585977 0
6 2.005243 -1.444787 0
7 -4.642221 -0.201135 0

[8 rows x 3 columns]

In [9]: df3.dtypes
Out[9]:
A: float32
B: float64
C: float64

dtype: object

1.6.4 Dtype Conversion

This is lower-common-denominator upcasting, meaning you get the dtype which can accomodate all of the types

In [10]: df3.values.dtype
Out[10]: dtype('float64')

Conversion

In [11]: df3.astype('float32').dtypes
Out[11]:
A: float32
B: float64
C: float64

dtype: object
Mixed Conversion

```python
In [12]: df3['D'] = '1.'
In [13]: df3['E'] = '1'
In [14]: df3.convert_objects(convert_numeric=True).dtypes
Out[14]:
A float32
B float64
C float64
D float64
E int64
dtype: object
```

same, but specific dtype conversion

```python
In [15]: df3['D'] = df3['D'].astype('float16')
In [16]: df3['E'] = df3['E'].astype('int32')
In [17]: df3.dtypes
Out[17]:
A float32
B float64
C float64
D float16
E int32
dtype: object
```

Forcing Date coercion (and setting NaT when not datelike)

```python
In [18]: from datetime import datetime
In [19]: s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1,
........:          Timestamp('20010104'), '20010105'],dtype='O')
........:
In [20]: s.convert_objects(convert_dates='coerce')
Out[20]:
0  2001-01-01
1       NaT
2       NaT
3       NaT
4  2001-01-04
5  2001-01-05
dtype: datetime64[ns]
```

1.6.5 Dtype Gotchas

Platform Gotchas

Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of int64 and float64, regardless of platform. This is not an apparent change from earlier versions of pandas. If you specify dtypes, they WILL be respected, however (GH2837)
The following will all result in `int64` dtypes

```python
In [21]: DataFrame([1,2],columns=[‘a’]).dtypes
Out[21]:
a  int64
dtype: object

In [22]: DataFrame({‘a’ : [1,2] }).dtypes
Out[22]:
a  int64
dtype: object

In [23]: DataFrame({‘a’ : 1 }, index=range(2)).dtypes
Out[23]:
a  int64
dtype: object
```

Keep in mind that `DataFrame(np.array([1,2]))` WILL result in `int32` on 32-bit platforms!

Upcasting Gotchas

Performing indexing operations on integer type data can easily upcast the data. The dtype of the input data will be preserved in cases where nans are not introduced.

```python
In [24]: dfi = df3.astype(‘int32’)
In [25]: dfi[‘D’] = dfi[‘D’].astype(‘int64’)
In [26]: dfi
Out[26]:
   A  B  C  D  E
0  0  0  255  1  1
1  1 -1  0  1  1
2  2  0  0  1  1
3 -1  0  1  1  1
4  1  0  0  1  1
5  2  0  0  1  1
6  2 -1  0  1  1
7 -4  0  0  1  1
[8 rows x 5 columns]
```

```python
In [27]: dfi.dtypes
Out[27]:
A   int32
B   int32
C   int32
D   int64
E   int32
dtype: object
```

```python
In [28]: casted = dfi[dfi>0]
In [29]: casted
Out[29]:
   A  B  C  D  E
0  NaN NaN  255  1  1
1  1  NaN  NaN  1  1
2  2  NaN  NaN  1  1
3  NaN  NaN  1  1  1
```
In [30]: casted.dtypes
Out[30]:
 A float64
 B float64
 C float64
 D int64
 E int32
 dtype: object

While float dtypes are unchanged.

In [31]: df4 = df3.copy()

In [32]: df4['A'] = df4['A'].astype('float32')

In [33]: df4.dtypes
Out[33]:
 A float32
 B float64
 C float64
 D float16
 E int32
 dtype: object

In [34]: casted = df4[df4>0]

In [35]: casted
Out[35]:
 A B C D E
 0 NaN NaN 255 1 1
 1 1.364364 NaN NaN 1 1
 2 2.882418 NaN NaN 1 1
 3 NaN NaN 1 1 1
 4 1.354205 NaN NaN 1 1
 5 2.052203 NaN NaN 1 1
 6 2.006243 NaN NaN 1 1
 7 NaN NaN NaN 1 1

[8 rows x 5 columns]

In [36]: casted.dtypes
Out[36]:
 A float32
 B float64
 C float64
 D float16
 E int32
 dtype: object
1.6.6 Datetimes Conversion

Datet ime64[ns] columns in a DataFrame (or a Series) allow the use of np.nan to indicate a nan value, in addition to the traditional NaT, or not-a-time. This allows convenient nan setting in a generic way. Furthermore datetime64[ns] columns are created by default, when passed datetimelike objects (this change was introduced in 0.10.1) (GH2809, GH2810)

In [37]: df = DataFrame(randn(6,2),date_range('20010102',periods=6),columns=['A','B'])

In [38]: df['timestamp'] = Timestamp('20010103')

In [39]: df
Out[39]:
 A B timestamp
0 2.68 -2.32 2001-01-03
1 1.23 2.08 2001-01-03
2 2.85 -2.44 2001-01-03
3 -0.57 -1.68 2001-01-03
4 -0.49 0.02 2001-01-03
5 -0.16 -0.51 2001-01-03

[6 rows x 3 columns]

datetime64[ns] out of the box
In [40]: df.get_dtype_counts()
Out[40]:
datetime64[ns] 1
float64 2
dtype: int64

use the traditional nan, which is mapped to NaT internally
In [41]: df.ix[2:4,['A','timestamp']] = np.nan

In [42]: df
Out[42]:
 A B timestamp
0 2.68 -2.32 2001-01-03
1 1.23 2.08 2001-01-03
2 NaN NaN NaT
3 NaT NaN NaN
4 -0.49 0.02 2001-01-03
5 -0.16 -0.51 2001-01-03

[6 rows x 3 columns]

Astype conversion on datetime64[ns] to object, implicity converts NaT to np.nan

In [43]: import datetime

In [44]: s = Series([datetime.datetime(2001, 1, 2, 0, 0) for i in range(3)])

In [45]: s.dtype
Out[45]: dtype('<M8[ns]')

In [46]: s[1] = np.nan

In [47]: s
Out[47]:
0 2001-01-02
1 NaT
2 2001-01-02
1.6.7 API changes

- Added to_series() method to indices, to facilitate the creation of indexers (GH3275)
- **HDFStore**
 - added the method `select_column` to select a single column from a table as a Series.
 - deprecated the `unique` method, can be replicated by `select_column(key, column).unique()`
 - `min_itemsize` parameter to `append` will now automatically create `data_columns` for passed keys

1.6.8 Enhancements

- Improved performance of `df.to_csv()` by up to 10x in some cases. (GH3059)
- Numexpr is now a *Recommended Dependencies*, to accelerate certain types of numerical and boolean operations
- Bottleneck is now a *Recommended Dependencies*, to accelerate certain types of `nan` operations
- **HDFStore**
 - support `read_hdf/to_hdf` API similar to `read_csv/to_csv`
 - `df = DataFrame(dict(A=lrange(5), B=lrange(5)))`
 - `df.to_hdf('store.h5','table',append=True)`
 - `read_hdf('store.h5', 'table', where = ['index>2'])`
 - `Out[54]:
A	B
3	3
4	4
 [2 rows x 2 columns]`
 - provide dotted attribute access to get from stores, e.g. `store.df == store['df']`
 - new keywords `iterator=boolean`, and `chunksize=number_in_a_chunk` are provided to support iteration on `select` and `select_as_multiple` (GH3076)
• You can now select timestamps from an *unordered* timeseries similarly to an *ordered* timeseries (GH2437)

• You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (GH3070)

```python
In [55]: idx = date_range("2001-10-1", periods=5, freq='M')
In [56]: ts = Series(np.random.rand(len(idx)), index=idx)
In [57]: ts['2001']
Out[57]:
2001-10-31  0.483450
2001-11-30  0.407530
2001-12-31  0.965096
Freq: M, dtype: float64
In [58]: df = DataFrame(dict(A = ts))
In [59]: df['2001']
Out[59]:
   A
2001-10-31  0.483450
2001-11-30  0.407530
2001-12-31  0.965096
[3 rows x 1 columns]
```

• `Squeeze` to possibly remove length 1 dimensions from an object.

```python
In [60]: p = Panel(randn(3,4,4), items=['ItemA','ItemB','ItemC'],
   ....:     major_axis=date_range('20010102',periods=4),
   ....:     minor_axis=['A','B','C','D'])
In [61]: p.reindex(items=['ItemA']).squeeze()
Out[61]:
   A  B  C  D
2001-01-02  0.396537  0.534880 -0.488797 -1.539385
2001-01-03  -0.829037  0.306681 -0.331032  1.544977
2001-01-04  -0.621754  1.026208 -0.413106 -1.490869
2001-01-05  -1.253235 -0.538879 -1.487449 -1.426475
[4 rows x 4 columns]
In [62]: p.reindex(items=['ItemA'], minor=['B']).squeeze()
Out[62]:
2001-01-02  0.534880
2001-01-03  0.306681
2001-01-04  1.026208
2001-01-05  -0.538879
Freq: D, Name: B, dtype: float64
```

• In `pd.io.data.Options`,
– Fix bug when trying to fetch data for the current month when already past expiry.
– Now using lxml to scrape html instead of Beautiful Soup (lxml was faster).
– New instance variables for calls and puts are automatically created when a method that creates them is called. This works for current month where the instance variables are simply calls and puts. Also works for future expiry months and save the instance variable as callsMMYY or putsMMYY, where MMYY are, respectively, the month and year of the option’s expiry.
– `Options.get_near_stock_price` now allows the user to specify the month for which to get relevant options data.
– `Options.get_forward_data` now has optional kwargs `near` and `above_below`. This allows the user to specify if they would like to only return forward looking data for options near the current stock price. This just obtains the data from `Options.get_near_stock_price` instead of `Options.get_xxx_data()` (GH2758).

• Cursor coordinate information is now displayed in time-series plots.
• added option `display.max_seq_items` to control the number of elements printed per sequence pprinting it. (GH2979)
• added option `display.chop_threshold` to control display of small numerical values. (GH2739)
• added option `display.max_info_rows` to prevent verbose_info from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)
• `value_counts()` now accepts a “normalize” argument, for normalized histograms. (GH2710).
• DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.
• added option `display.mpl_style` providing a sleeker visual style for plots. Based on https://gist.github.com/huyng/816622 (GH3075).
• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)
• `to_html()` now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes &, in addition to < and >. (GH2919)

See the full release notes or issue tracker on GitHub for a complete list.

1.7 v0.10.1 (January 22, 2013)

This is a minor release from 0.10.0 and includes new features, enhancements, and bug fixes. In particular, there is substantial new HDFStore functionality contributed by Jeff Reback.

An undesired API breakage with functions taking the `inplace` option has been reverted and deprecation warnings added.

1.7.1 API changes

• Functions taking an `inplace` option return the calling object as before. A deprecation message has been added
• Groupby aggregations Max/Min no longer exclude non-numeric data (GH2700)
• Resampling an empty DataFrame now returns an empty DataFrame instead of raising an exception (GH2640)
• The file reader will now raise an exception when NA values are found in an explicitly specified integer column instead of converting the column to float (GH2631)
• DatetimeIndex.unique now returns a DatetimeIndex with the same name and
pandas: powerful Python data analysis toolkit, Release 0.14.1

- timezone instead of an array (GH2563)

1.7.2 New features

- MySQL support for database (contribution from Dan Allan)

1.7.3 HDFStore

You may need to upgrade your existing data files. Please visit the compatibility section in the main docs.

You can designate (and index) certain columns that you want to be able to perform queries on a table, by passing a list to `data_columns`

```python
In [1]: store = HDFStore('store.h5')

In [2]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8), columns=['A', 'B', 'C'])

In [3]: df['string'] = 'foo'

In [4]: df.ix[4:6,'string'] = np.nan

In [5]: df.ix[7:9,'string'] = 'bar'

In [6]: df['string2'] = 'cool'

In [7]: df
```

```
Out[7]:
   A         B         C     string  string2
0 2000-01-01 -1.601262 -0.256718       foo       cool
1 2000-01-02  0.174122 -1.131794       foo       cool
2 2000-01-03  0.980347 -0.674429       foo       cool
3 2000-01-04 -0.761218  1.768215       foo       cool
4 2000-01-05 -0.862613 -0.210968       NaN       cool
5 2000-01-06  1.498195  0.462413       NaN       cool
6 2000-01-07  1.511487 -0.727189       foo       cool
7 2000-01-08 -0.007364  1.427674       bar       cool
```

```python
# on-disk operations
In [8]: store.append('df', df, data_columns = ['B','C','string','string2'])

In [9]: store.select('df', [ 'B > 0', 'string == foo' ])
```

```
Out[9]:
   A         B         C     string  string2
0 2000-01-04 -0.761218  1.768215       foo       cool
```

```python
# this is in-memory version of this type of selection
In [10]: df[(df.B > 0) & (df.string == 'foo')]
```

```
Out[10]:
   A         B         C     string  string2
0 2000-01-04 -0.761218  1.768215       foo       cool
```
Retrieving unique values in an indexable or data column.

```python
# note that this is deprecated as of 0.14.0
# can be replicated by: store.select_column('df', 'index').unique()
store.unique('df', 'index')
store.unique('df', 'string')
```

You can now store `datetime64` in data columns

```python
In [11]: df_mixed = df.copy()
In [12]: df_mixed['datetime64'] = Timestamp('20010102')
In [13]: df_mixed.ix[3:4, ['A', 'B']] = np.nan
In [14]: store.append('df_mixed', df_mixed)
In [15]: df_mixed1 = store.select('df_mixed')
```

```python
In [16]: df_mixed1
```

```
Out[16]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>string</th>
<th>string2</th>
<th>datetime64</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>-1.601262</td>
<td>-0.256718</td>
<td>0.239369</td>
<td>foo</td>
<td>cool</td>
<td>2001-01-02</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.174122</td>
<td>-1.131794</td>
<td>-1.948006</td>
<td>foo</td>
<td>cool</td>
<td>2001-01-02</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.980347</td>
<td>-0.674429</td>
<td>-0.361633</td>
<td>foo</td>
<td>cool</td>
<td>2001-01-02</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>NaN</td>
<td>NaN</td>
<td>0.152288</td>
<td>foo</td>
<td>cool</td>
<td>2001-01-02</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-0.862613</td>
<td>-0.210968</td>
<td>-0.859278</td>
<td>NaN</td>
<td>cool</td>
<td>2001-01-02</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>1.498195</td>
<td>0.462413</td>
<td>-0.647604</td>
<td>NaN</td>
<td>cool</td>
<td>2001-01-02</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>1.511487</td>
<td>-0.727189</td>
<td>-0.342928</td>
<td>foo</td>
<td>cool</td>
<td>2001-01-02</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>-0.007364</td>
<td>1.427674</td>
<td>0.104020</td>
<td>bar</td>
<td>cool</td>
<td>2001-01-02</td>
</tr>
</tbody>
</table>
```

```
[8 rows x 6 columns]
```

```python
In [17]: df_mixed1.get_dtype_counts()
```

```
Out[17]:

datetime64[ns] 1
float64 3
object 2
dtype: int64
```

You can pass columns keyword to select to filter a list of the return columns, this is equivalent to passing a Term(‘columns’, list_of_columns_to_filter)

```python
In [18]: store.select('df', columns = ['A', 'B'])
```

```
Out[18]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>-1.601262</td>
<td>-0.256718</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.174122</td>
<td>-1.131794</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.980347</td>
<td>-0.674429</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.761218</td>
<td>1.768215</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-0.862613</td>
<td>-0.210968</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>1.498195</td>
<td>0.462413</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>1.511487</td>
<td>-0.727189</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>-0.007364</td>
<td>1.427674</td>
</tr>
</tbody>
</table>
```

[8 rows x 2 columns]
HDFStore now serializes multi-index dataframes when appending tables.

```python
In [19]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
                                   ['one', 'two', 'three'],
                                   [0, 1, 2, 0, 1, 1, 2, 0, 1, 2],
                                   names=['foo', 'bar'])

In [20]: df = DataFrame(np.random.randn(10, 3), index=index,
                       columns=['A', 'B', 'C'])

In [21]: df
Out[21]:
     A        B        C
foo bar
  foo one  2.052171 -1.230963 -0.019240
  two -1.713238  0.838912 -0.637855
  three  0.215109 -1.515362  1.586924
bar one -0.447974 -1.573998  0.630925
  two -0.071659 -1.277640 -0.102206
baz two  0.870302  1.275280 -1.199212
  three  1.060780  1.673018  1.249874
qux one  1.458210 -0.710542  0.825392
  two  1.557329  1.993441 -0.616293
  three  0.150468  0.132104  0.580923
[10 rows x 3 columns]
In [22]: store.append('mi', df)
In [23]: store.select('mi')
Out[23]:
     A        B        C
foo bar
  foo one  2.052171 -1.230963 -0.019240
  two -1.713238  0.838912 -0.637855
  three  0.215109 -1.515362  1.586924
bar one -0.447974 -1.573998  0.630925
  two -0.071659 -1.277640 -0.102206
baz two  0.870302  1.275280 -1.199212
  three  1.060780  1.673018  1.249874
qux one  1.458210 -0.710542  0.825392
  two  1.557329  1.993441 -0.616293
  three  0.150468  0.132104  0.580923
[10 rows x 3 columns]
```

the levels are automatically included as data columns

```python
In [24]: store.select('mi', Term('foo=bar'))
Out[24]:
     A        B        C
foo bar
  foo one -0.447974 -1.573998  0.630925
  two -0.071659 -1.277640 -0.102206
[2 rows x 3 columns]
```
Multi-table creation via `append_to_multiple` and selection via `select_as_multiple` can create/select from multiple tables and return a combined result, by using `where` on a selector table.

```
In [25]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
                      columns=['A', 'B', 'C', 'D', 'E', 'F'])
   ....:
   ....:

In [26]: df_mt['foo'] = 'bar'

# you can also create the tables individually
In [27]: store.append_to_multiple({ 'df1_mt' : ['A','B'], 'df2_mt' : None }, df_mt, selector = 'df1_mt')

In [28]: store
Out[28]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->6,indexers->[index])
/mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo])

# individual tables were created
In [29]: store.select('df1_mt')
Out[29]:
   A   B
2000-01-01 -0.128750  1.445964
2000-01-02 -0.688741  0.228006
2000-01-03  0.932498 -2.200069
2000-01-04  1.298390  1.662964
2000-01-05 -0.462446 -0.112019
2000-01-06 -1.626124  0.982041
2000-01-07  0.942864  2.502156
2000-01-08  0.268766 -1.225092

[8 rows x 2 columns]

In [30]: store.select('df2_mt')
Out[30]:
   C   D   E   F   foo
2000-01-01 -0.431163  0.016640  0.904578 -1.645852 bar
2000-01-02  0.800353 -0.451572  0.831767  0.228760 bar
2000-01-03  1.239198  0.185437 -0.540770 -0.370038 bar
2000-01-04 -0.040863  0.290110 -0.096145  1.717830 bar
2000-01-05 -0.134024 -0.205969  1.348944 -1.198246 bar
2000-01-06  0.059493 -0.460111 -1.565401 -0.025706 bar
2000-01-07  0.302741  0.261551 -0.066342  0.897097 bar
2000-01-08  0.582752 -1.490764 -0.639757 -0.952750 bar

[8 rows x 5 columns]

# as a multiple
In [31]: store.select_as_multiple([‘df1_mt’,‘df2_mt’], where = [ ‘A>0’,‘B>0’ ], selector = ‘df1_mt’)
Out[31]:
   A   B   C   D   E   F   foo
2000-01-04  1.298390  1.662964 -0.040863  0.290110 -0.096145  1.717830 bar
2000-01-07  0.942864  2.502156 -0.302741  0.261551 -0.066342  0.897097 bar

[2 rows x 7 columns]
```
Enhancements

- **HDFStore** now can read native PyTables table format tables
- You can pass `nan_rep = 'my_nan_rep'` to append, to change the default nan representation on disk (which converts to/from `np.nan`), this defaults to `nan`.
- You can pass `index` to append. This defaults to `True`. This will automagically create indicies on the `indexables` and `data columns` of the table
- You can pass `chunksize=an integer` to `append`, to change the writing chunksize (default is 50000). This will significantly lower your memory usage on writing.
- You can pass `expectedrows=an integer` to the first `append`, to set the TOTAL number of expectedrows that PyTables will expected. This will optimize read/write performance.
- Select now supports passing `start` and `stop` to provide selection space limiting in selection.
- Greatly improved ISO8601 (e.g., yyyy-mm-dd) date parsing for file parsers (GH2698)
- Allow `DataFrame.merge` to handle combinatorial sizes too large for 64-bit integer (GH2690)
- Series now has unary negation (-series) and inversion (~series) operators (GH2686)
- DataFrame.plot now includes a `logx` parameter to change the x-axis to log scale (GH2327)
- Series arithmetic operators can now handle constant and ndarray input (GH2574)
- ExcelFile now takes a `kind` argument to specify the file type (GH2613)
- A faster implementation for Series.str methods (GH2602)

Bug Fixes

- **HDFStore** tables can now store `float32` types correctly (cannot be mixed with `float64` however)
- Fixed Google Analytics prefix when specifying request segment (GH2713).
- Function to reset Google Analytics token store so users can recover from improperly setup client secrets (GH2687).
- Fixed groupby bug resulting in segfault when passing in MultiIndex (GH2706)
- Fixed bug where passing a Series with datetime64 values into `to_datetime` results in bogus output values (GH2699)
- Fixed bug in pattern in HDFStore expressions when pattern is not a valid regex (GH2694)
- Fixed performance issues while aggregating boolean data (GH2692)
- When given a boolean mask key and a Series of new values, Series `__setitem__` will now align the incoming values with the original Series (GH2686)
- Fixed MemoryError caused by performing counting sort on sorting MultiIndex levels with a very large number of combinatorial values (GH2684)
- Fixed bug that causes plotting to fail when the index is a DatetimeIndex with a fixed-offset timezone (GH2683)
- Corrected businessday subtraction logic when the offset is more than 5 bdays and the starting date is on a weekend (GH2680)
- Fixed C file parser behavior when the file has more columns than data (GH2668)
- Fixed file reader bug that misaligned columns with data in the presence of an implicit column and a specified `usecols` value
- DataFrames with numerical or datetime indices are now sorted prior to plotting (GH2609)
• Fixed DataFrame.from_records error when passed columns, index, but empty records (GH2633)
• Several bug fixed for Series operations when dtype is datetime64 (GH2689, GH2629, GH2626)

See the full release notes or issue tracker on GitHub for a complete list.

1.8 v0.10.0 (December 17, 2012)

This is a major release from 0.9.1 and includes many new features and enhancements along with a large number of bug fixes. There are also a number of important API changes that long-time pandas users should pay close attention to.

1.8.1 File parsing new features

The delimited file parsing engine (the guts of read_csv and read_table) has been rewritten from the ground up and now uses a fraction the amount of memory while parsing, while being 40% or more faster in most use cases (in some cases much faster).

There are also many new features:
 • Much-improved Unicode handling via the encoding option.
 • Column filtering (usecols)
 • Dtype specification (dtype argument)
 • Ability to specify strings to be recognized as True/False
 • Ability to yield NumPy record arrays (as_recarray)
 • High performance delim_whitespace option
 • Decimal format (e.g. European format) specification
 • Easier CSV dialect options: escapechar, lineterminator, quotechar, etc.
 • More robust handling of many exceptional kinds of files observed in the wild

1.8.2 API changes

Deprecated DataFrame BINOP TimeSeries special case behavior

The default behavior of binary operations between a DataFrame and a Series has always been to align on the DataFrame’s columns and broadcast down the rows, except in the special case that the DataFrame contains time series. Since there are now method for each binary operator enabling you to specify how you want to broadcast, we are phasing out this special case (Zen of Python: Special cases aren’t special enough to break the rules). Here’s what I’m talking about:

In [1]: import pandas as pd

In [2]: df = pd.DataFrame(np.random.randn(6, 4),
 index=pd.date_range('1/1/2000', periods=6))
 ...:
In [3]: df

Out[3]:
 0 1 2 3
2000-01-01 -0.892402 0.505987 -0.681624 0.850162

1.8. v0.10.0 (December 17, 2012)
2000-01-02 0.586586 1.175843 -0.160391 0.481679
2000-01-03 0.408279 1.641246 0.383888 -1.495227
2000-01-04 1.166096 -0.802272 -0.275253 0.517938
2000-01-05 -0.750872 1.216537 -0.910343 -0.606534
2000-01-06 -0.410659 0.264024 -0.069315 -1.814768

[6 rows x 4 columns]

deprecated now
In [4]: df - df[0]
Out[4]:
0 1 2 3
2000-01-01 0 1.398389 0.210778 1.742564
2000-01-02 0 0.589256 -0.746978 -0.104908
2000-01-03 0 1.232968 -0.024391 -1.903505
2000-01-04 0 -1.968368 -1.441350 -0.648158
2000-01-05 0 1.967410 -0.159471 0.144338
2000-01-06 0 0.674682 0.341344 -1.404109

[6 rows x 4 columns]

Change your code to
In [5]: df.sub(df[0], axis=0) # align on axis 0 (rows)
Out[5]:
0 1 2 3
2000-01-01 0 1.398389 0.210778 1.742564
2000-01-02 0 0.589256 -0.746978 -0.104908
2000-01-03 0 1.232968 -0.024391 -1.903505
2000-01-04 0 -1.968368 -1.441350 -0.648158
2000-01-05 0 1.967410 -0.159471 0.144338
2000-01-06 0 0.674682 0.341344 -1.404109

[6 rows x 4 columns]
You will get a deprecation warning in the 0.10.x series, and the deprecated functionality will be removed in 0.11 or later.

Altered resample default behavior

The default time series resample binning behavior of daily D and higher frequencies has been changed to closed='left', label='left'. Lower frequencies are unaffected. The prior defaults were causing a great deal of confusion for users, especially resampling data to daily frequency (which labeled the aggregated group with the end of the interval: the next day).

Note:
In [6]: dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')

In [7]: series = Series(np.arange(len(dates)), index=dates)

In [8]: series
Out[8]:
2000-01-01 00:00:00 0
2000-01-01 04:00:00 1
2000-01-01 08:00:00 2
2000-01-01 12:00:00 3
2000-01-01 16:00:00 4
...
2000-01-04 04:00:00 19
In [9]: series.resample('D', how='sum')
Out[9]:
2000-01-01 15
2000-01-02 51
2000-01-03 87
2000-01-04 123
2000-01-05 24
Freq: D, dtype: int32

old behavior
In [10]: series.resample('D', how='sum', closed='right', label='right')
Out[10]:
2000-01-01 0
2000-01-02 21
2000-01-03 57
2000-01-04 93
2000-01-05 129
Freq: D, dtype: int32

• Infinity and negative infinity are no longer treated as NA by isnull and notnull. That they every were was a relic of early pandas. This behavior can be re-enabled globally by the mode.use_inf_as_null option:

In [11]: s = pd.Series([1.5, np.inf, 3.4, -np.inf])
In [12]: pd.isnull(s)
Out[12]:
0 False
1 False
2 False
3 False
dtype: bool
In [13]: s.fillna(0)
Out[13]:
0 1.500000
1 inf
2 3.400000
3 -inf
dtype: float64
In [14]: pd.set_option('use_inf_as_null', True)
In [15]: pd.isnull(s)
Out[15]:
0 False
1 True
2 False
3 True
dtype: bool
In [16]: s.fillna(0)
Out[16]:
0 1.5
1 0.0
2 3.4
3 0.0
dtype: float64

In[17]: pd.reset_option('use_inf_as_null')

- Methods with the **inplace** option now all return **None** instead of the calling object. E.g. code written like
df = df.fillna(0, inplace=True) may stop working. To fix, simply delete the unnecessary variable assignment.

- **pandas.merge** no longer sorts the group keys (**sort=False**) by default. This was done for performance reasons: the group-key sorting is often one of the more expensive parts of the computation and is often unnec-
essary.

- The default column names for a file with no header have been changed to the integers 0 through \(N - 1 \). This is to create consistency with the DataFrame constructor with no columns specified. The v0.9.0 behavior (names X0, X1, ...) can be reproduced by specifying **prefix='X'**:

In[18]: data= 'a,b,c

1,Yes,2

3,No,4'

In[19]: print(data)
a,b,c
1,Yes,2
3,No,4

In[20]: pd.read_csv(StringIO(data), header=None)

Out[20]:
 0 1 2
0 a b c
1 1 Yes 2
2 3 No 4

[3 rows x 3 columns]

In[21]: pd.read_csv(StringIO(data), header=None, prefix='X')

Out[21]:
 X0 X1 X2
0 a b c
1 1 Yes 2
2 3 No 4

[3 rows x 3 columns]

- Values like ‘Yes’ and ‘No’ are not interpreted as boolean by default, though this can be controlled by new
 true_values and **false_values** arguments:

In[22]: print(data)
a,b,c
1,Yes,2
3,No,4

In[23]: pd.read_csv(StringIO(data))

Out[23]:
 a b c
0 1 Yes 2
1 3 No 4
[2 rows x 3 columns]

In [24]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[24]:
```
a b c
0 1 True 2
1 3 False 4
```
[2 rows x 3 columns]

- The file parsers will not recognize non-string values arising from a converter function as NA if passed in the `na_values` argument. It's better to do post-processing using the `replace` function instead.
- Calling `fillna` on Series or DataFrame with no arguments is no longer valid code. You must either specify a fill value or an interpolation method:

In [25]: s = Series([np.nan, 1., 2., np.nan, 4])

In [26]: s
Out[26]:
```
0   NaN
1    1
2    2
3   NaN
4    4
```
dtype: float64

In [27]: s.fillna(0)
Out[27]:
```
0    0
1    1
2    2
3    0
4    4
```
dtype: float64

In [28]: s.fillna(method='pad')
Out[28]:
```
0   NaN
1    1
2    2
3    2
4    4
```
dtype: float64

Convenience methods `ffill` and `bfill` have been added:

In [29]: s.ffill()
Out[29]:
```
0   NaN
1    1
2    2
3    2
4    4
```
dtype: float64

- `Series.apply` will now operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame.
In [30]: def f(x):
 : return Series([x, x**2], index = ['x', 'x^2'])
 :

In [31]: s = Series(np.random.rand(5))

In [32]: s
Out[32]:
0 0.013135
1 0.909855
2 0.098093
3 0.023540
4 0.141354
dtype: float64

In [33]: s.apply(f)
Out[33]:
 x x^2
0 0.013135 0.000173
1 0.909855 0.827836
2 0.098093 0.009622
3 0.023540 0.000554
4 0.141354 0.019981
[5 rows x 2 columns]

• New API functions for working with pandas options (GH2097):
 - get_option / set_option - get/set the value of an option. Partial names are accepted. -
 reset_option - reset one or more options to their default value. Partial names are accepted. -
 describe_option - print a description of one or more options. When called with no arguments.
 print all registered options.

Note: set_printoptions/ reset_printoptions are now deprecated (but functioning), the print op-
 tions now live under “display.XYZ”. For example:

In [34]: get_option("display.max_rows")
Out[34]: 15

• to_string() methods now always return unicode strings (GH2224).

1.8.3 New features

1.8.4 Wide DataFrame Printing

Instead of printing the summary information, pandas now splits the string representation across multiple rows by
default:

In [35]: wide_frame = DataFrame(randn(5, 16))

In [36]: wide_frame
Out[36]:
 0 1 2 3 4 5 6
 0 2.520045 1.570114 -0.360875 -0.880096 0.235532 0.207232 -1.983857
 1 0.422194 0.288403 -0.487393 -0.777639 0.055865 1.383381 0.085638
 2 0.585174 -0.568825 -0.719412 1.191340 -0.456362 0.089931 0.776079
 3 1.218080 -0.564705 -0.581790 0.286071 0.048725 1.002440 1.276582
The old behavior of printing out summary information can be achieved via the ‘expand_frame_repr’ print option:

```python
In [37]: pd.set_option('expand_frame_repr', False)
```

```python
In [38]: wide_frame
```

```
Out[38]:
```

The width of each line can be changed via ‘line_width’ (80 by default):

```python
In [39]: pd.set_option('line_width', 40)
```

```
line_width has been deprecated, use display.width instead (currently both are identical)
```

```python
In [40]: wide_frame
```

```
Out[40]:
```

1.8. v0.10.0 (December 17, 2012)
pandas: powerful Python data analysis toolkit, Release 0.14.1

2 0.776079 0.752889 -1.195795
3 1.276582 0.054399 0.241963
4 -0.552429 1.695803 -1.025917

9 10 11 \\
0 -0.906840 1.014601 -0.475108
1 0.246354 -0.727728 -0.094414
2 -1.425911 -0.548829 0.774225
3 -0.471786 0.314510 -0.059986
4 -0.910942 0.426805 -0.131749

12 13 14 \\
0 -0.358944 1.262942 -0.412451
1 0.276854 0.158399 -0.277255
2 0.740501 1.510263 -1.642511
3 -2.069319 -1.115104 -0.369325
4 0.432600 0.044671 -0.341265

15
0 -0.462580
1 1.331263
2 0.432560
3 -1.502617
4 1.844536

[5 rows x 16 columns]

1.8.5 Updated PyTables Support

Docs for PyTables Table format & several enhancements to the api. Here is a taste of what to expect.

In [41]: store = HDFStore(’store.h5’)

In [42]: df = DataFrame(randn(8, 3), index=date_range(’1/1/2000’, periods=8),
 columns=[’A’, ’B’, ’C’])

In [43]: df
Out[43]:
 A B C
2000-01-01 -2.036047 0.000830 -0.955697
2000-01-02 -0.898872 -0.725411 0.059904
2000-01-03 -0.449644 1.082900 -1.221265
2000-01-04 0.361078 1.330704 0.855932
2000-01-05 -1.216718 1.488887 0.018993
2000-01-06 -0.877046 0.045976 0.437274
2000-01-07 -0.567182 -0.888657 -0.556383
2000-01-08 0.655457 1.117949 -2.782376

[8 rows x 3 columns]

appending data frames
In [44]: df1 = df[0:4]

In [45]: df2 = df[4:]

In [46]: store.append(’df’, df1)
In [47]: store.append('df', df2)

In [48]: store
Out[48]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df
 frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

selecting the entire store
In [49]: store.select('df')
Out[49]:
 A B C
2000-01-01 -2.036047 0.000830 -0.955697
2000-01-02 -0.898872 -0.725411 0.059904
2000-01-03 -0.449644 1.082900 -1.221265
2000-01-04 0.361078 1.330704 0.855932
2000-01-05 -1.216718 1.488887 0.018993
2000-01-06 -0.877046 0.045976 0.437274
2000-01-07 -0.567182 -0.888657 -0.556383
2000-01-08 0.655457 1.117949 -2.782376

[8 rows x 3 columns]

In [50]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
 major_axis=date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])

In [51]: wp
Out[51]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

storing a panel
In [52]: store.append('wp', wp)

selecting via A QUERY
In [53]: store.select('wp',
 [Term('major_axis>20000102'), Term('minor_axis', '=', ['A','B'])])
Out[53]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B

removing data from tables
In [54]: store.remove('wp', Term('major_axis>20000103'))
Out[54]: 8

In [55]: store.select('wp')
Out[55]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D

deleting a store
In [56]: del store['df']

In [57]: store
Out[57]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])

Enhancements
• added ability to hierarchical keys
 In [58]: store.put('foo/bar/bah', df)
 In [59]: store.append('food/orange', df)
 In [60]: store.append('food/apple', df)

 In [61]: store
Out[61]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/foo/bar/bah frame (shape->[8,3])

remove all nodes under this level
In [62]: store.remove('food')

In [63]: store
Out[63]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/foo/bar/bah frame (shape->[8,3])

• added mixed-dtype support!
 In [64]: df['string'] = 'string'
 In [65]: df['int'] = 1
 In [66]: store.append('df',df)
 In [67]: df1 = store.select('df')

In [68]: df1
Out[68]:
A B C string int
2000-01-01 -2.036047 0.000830 -0.955697 string 1
2000-01-02 -0.898872 -0.725411 0.059904 string 1
2000-01-03 -0.449644 1.082900 -1.221265 string 1
2000-01-04 0.361078 1.330704 0.855932 string 1
In [69]: df1.get_dtype_counts()
Out[69]:
float64 3
int64 1
object 1
dtype: int64

• performance improvements on table writing
• support for arbitrarily indexed dimensions
• SparseSeries now has a density property (GH2384)
• enable Series.str.strip/lstrip/rstrip methods to take an input argument to strip arbitrary characters (GH2411)
• implement value_vars in melt to limit values to certain columns and add melt to pandas namespace (GH2412)

Bug Fixes
• added Term method of specifying where conditions (GH1996).
• del store[‘df’] now call store.remove(‘df’) for store deletion
• deleting of consecutive rows is much faster than before
• min_itemsize parameter can be specified in table creation to force a minimum size for indexing columns (the previous implementation would set the column size based on the first append)
• indexing support via create_table_index (requires PyTables >= 2.3) (GH698).
• appending on a store would fail if the table was not first created via put
• fixed issue with missing attributes after loading a pickled dataframe (GH2431)
• minor change to select and remove: require a table ONLY if where is also provided (and not None)

Compatibility
0.10 of HDFStore is backwards compatible for reading tables created in a prior version of pandas, however, query terms using the prior (undocumented) methodology are unsupported. You must read in the entire file and write it out using the new format to take advantage of the updates.

1.8.6 N Dimensional Panels (Experimental)

Adding experimental support for Panel4D and factory functions to create n-dimensional named panels. Docs for NDim. Here is a taste of what to expect.

In [70]: p4d = Panel4D(randn(2, 2, 5, 4),
 : labels=[‘Label1’, ‘Label2’],
 : items=[‘Item1’, ‘Item2’],
 : major_axis=date_range(‘1/1/2000’, periods=5),
In [71]: p4d
Out[71]:
<class 'pandas.core.panel.Panel4D'>
Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

See the full release notes or issue tracker on GitHub for a complete list.

1.9 v0.9.1 (November 14, 2012)

This is a bugfix release from 0.9.0 and includes several new features and enhancements along with a large number of bug fixes. The new features include by-column sort order for DataFrame and Series, improved NA handling for the rank method, masking functions for DataFrame, and intraday time-series filtering for DataFrame.

1.9.1 New features

- Series.sort, DataFrame.sort, and DataFrame.sort_index can now be specified in a per-column manner to support multiple sort orders (GH928)

 In [1]: df = DataFrame(np.random.randint(0, 2, (6, 3)), columns=['A', 'B', 'C'])

 In [2]: df.sort(['A', 'B'], ascending=[1, 0])
 Out[2]:
 A B C
 0 2 0 1
 1 0 1 1
 2 4 0 1
 3 0 1 0
 4 1 1 0
 5 1 0 1

 [6 rows x 3 columns]

- DataFrame.rank now supports additional argument values for the na_option parameter so missing values can be assigned either the largest or the smallest rank (GH1508, GH2159)

 In [3]: df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C'])

 In [4]: df.ix[2:4] = np.nan

 In [5]: df.rank()
 Out[5]:
 A B C
 0 3 2 1
 1 2 1 3
 2 NaN NaN NaN
 3 NaN NaN NaN
 4 NaN NaN NaN
 5 1 3 2

 [6 rows x 3 columns]
In [6]: df.rank(na_option='top')
Out[6]:
 A B C
0 6 5 4
1 5 4 6
2 2 2 2
3 2 2 2
4 2 2 2
5 4 6 5

[6 rows x 3 columns]

In [7]: df.rank(na_option='bottom')
Out[7]:
 A B C
0 3 2 1
1 2 1 3
2 5 5 5
3 5 5 5
4 5 5 5
5 1 3 2

[6 rows x 3 columns]

- DataFrame has new where and mask methods to select values according to a given boolean mask (GH2109, GH2151)

 DataFrame currently supports slicing via a boolean vector the same length as the DataFrame (inside the []). The returned DataFrame has the same number of columns as the original, but is sliced on its index.

 In [8]: df = DataFrame(np.random.randn(5, 3), columns = ['A','B','C'])

 In [9]: df

 Out[9]:
 A B C
0 0.706220 -1.130744 -0.690308
1 -0.885387 0.246004 1.986687
2 0.212595 -1.189832 -0.344258
3 0.816335 -1.514102 1.298184
4 0.089527 0.576687 -0.737750

 [5 rows x 3 columns]

 In [10]: df[df['A'] > 0]

 Out[10]:
 A B C
0 0.706220 -1.130744 -0.690308
2 0.212595 -1.189832 -0.344258
3 0.816335 -1.514102 1.298184
4 0.089527 0.576687 -0.737750

 [4 rows x 3 columns]

If a DataFrame is sliced with a DataFrame based boolean condition (with the same size as the original DataFrame), then a DataFrame the same size (index and columns) as the original is returned, with elements that do not meet the boolean condition as NaN. This is accomplished via the new method DataFrame.where. In addition, where takes an optional other argument for replacement.
In [11]: df[df>0]
Out[11]:
 A B C
 0 0.70622 NaN NaN
 1 NaN 0.24600 1.98668
 2 0.21259 NaN NaN
 3 0.81633 NaN 1.29818
 4 0.08953 0.57668 NaN
[5 rows x 3 columns]

In [12]: df.where(df>0)
Out[12]:
 A B C
 0 0.70622 NaN NaN
 1 NaN 0.24600 1.98668
 2 0.21259 NaN NaN
 3 0.81633 NaN 1.29818
 4 0.08953 0.57668 NaN
[5 rows x 3 columns]

In [13]: df.where(df>0,-df)
Out[13]:
 A B C
 0 0.70622 1.13074 0.69031
 1 0.88539 3.00000 3.00000
 2 0.21259 1.18983 0.34426
 3 0.81633 1.51410 1.29818
 4 0.08953 0.57668 0.73775
[5 rows x 3 columns]

Furthermore, where now aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analagous to partial setting via .ix (but on the contents rather than the axis labels)

In [14]: df2 = df.copy()

In [15]: df2[df2[1:4] > 0] = 3

In [16]: df2
Out[16]:
 A B C
 0 0.70622 -1.13074 -0.69031
 1 -0.88539 3.00000 3.00000
 2 0.21259 -1.18983 -0.34426
 3 0.81633 -1.51410 1.29818
 4 0.08953 0.57668 -0.73775
[5 rows x 3 columns]

Dataframe.mask is the inverse boolean operation of where.

In [17]: df.mask(df<=0)
Out[17]:
 A B C
 0 0.70622 NaN NaN
 1 NaN 0.24600 1.98668
• Enable referencing of Excel columns by their column names (GH1936)

```
In [18]: xl = ExcelFile('data/test.xls')
```

```
In [19]: xl.parse('Sheet1', index_col=0, parse_dates=True,
   ....:         parse_cols='A:D')
```

```
Out[19]:
   A         B         C
2000-01-03 0.980269  3.685731  -0.364217
2000-01-04 1.047916 -0.041232  -0.161812
2000-01-05 0.498581  0.731168  -0.537677
2000-01-06 1.120202  1.567621   0.003641
2000-01-07 -0.487094  0.571455  -1.611639
2000-01-10 0.836649  0.246462   0.588543
2000-01-11 -0.157161  1.340307   1.195778
```

[7 rows x 3 columns]

• Added option to disable pandas-style tick locators and formatters using `series.plot(x_compat=True)` or `pandas.plot_params['x_compat'] = True` (GH2205)

• Existing TimeSeries methods `at_time` and `between_time` were added to DataFrame (GH2149)

• DataFrame.dot can now accept ndarrays (GH2042)

• DataFrame.drop now supports non-unique indexes (GH2101)

• Panel.shift now supports negative periods (GH2164)

• DataFrame now support unary ~ operator (GH2110)

1.9.2 API changes

• Upsampling data with a PeriodIndex will result in a higher frequency TimeSeries that spans the original time window

```
In [20]: prng = period_range('2012Q1', periods=2, freq='Q')
```

```
In [21]: s = Series(np.random.randn(len(prng)), prng)
```

```
In [22]: s.resample('M')
```

```
Out[22]:
2012-01  0.194513
2012-02  NaN
2012-03  NaN
2012-04 -0.854246
2012-05  NaN
2012-06  NaN
Freq: M, dtype: float64
```

• Period.end_time now returns the last nanosecond in the time interval (GH2124, GH2125, GH1764)
In [23]: p = Period('2012')
In [24]: p.end_time
Out[24]: Timestamp('2012-12-31 23:59:59.999999999')

- File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

In [25]: data = 'A,B,C

00001,001,5
00002,002,6'
In [26]: read_csv(StringIO(data), converters={'A': lambda x: x.strip()})
Out[26]:
 A B C
0 00001 1 5
1 00002 2 6
[2 rows x 3 columns]

See the full release notes or issue tracker on GitHub for a complete list.

1.10 v0.9.0 (October 7, 2012)

This is a major release from 0.8.1 and includes several new features and enhancements along with a large number of bug fixes. New features include vectorized unicode encoding/decoding for Series.str, to_latex method to DataFrame, more flexible parsing of boolean values, and enabling the download of options data from Yahoo! Finance.

1.10.1 New features

- Add encode and decode for unicode handling to vectorized string processing methods in Series.str (GH1706)
- Add DataFrame.to_latex method (GH1735)
- Add convenient expanding window equivalents of all rolling_* ops (GH1785)
- Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
- More flexible parsing of boolean values (Yes, No, TRUE, FALSE, etc) (GH1691, GH1295)
- Add level parameter to Series.reset_index
- TimeSeries.between_time can now select times across midnight (GH1871)
- Series constructor can now handle generator as input (GH1679)
- DataFrame.dropna can now take multiple axes (tuple/list) as input (GH924)
- Enable skip_footer parameter in ExcelFile.parse (GH1843)

1.10.2 API changes

- The default column names when header=None and no columns names passed to functions like read_csv has changed to be more Pythonic and amenable to attribute access:

In [1]: data = '0,0,1

1,1,0

0,0,1,0'
In [2]: df = read_csv(StringIO(data), header=None)
In [3]: df
Creating a Series from another Series, passing an index, will cause reindexing to happen inside rather than treating the Series like an ndarray. Technically improper usages like `Series(df[col1], index=df[col2])` that worked before "by accident" (this was never intended) will lead to all NA Series in some cases. To be perfectly clear:

```
In [4]: s1 = Series([1, 2, 3])
```

```
In [5]: s1
Out[5]:
    0  1
   ---
   0  1
   1  2
   2  3
   dtype: int64
```

```
In [6]: s2 = Series(s1, index=['foo', 'bar', 'baz'])
```

```
In [7]: s2
Out[7]:
          foo    bar    baz
     NaN     NaN     NaN
   dtype: float64
```

- Deprecated `day_of_year` API removed from PeriodIndex, use `dayofyear` (GH1723)
- Don’t modify NumPy suppress printoption to True at import time
- The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
- Legacy cruft removed: pandas.stats.misc.quantileTS
- Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
- Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
- Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
- `first` and `last` methods in GroupBy no longer drop non-numeric columns (GH1809)
- Resolved inconsistencies in specifying custom NA values in text parser. `na_values` of type dict no longer override default NAs unless `keep_default_na` is set to false explicitly (GH1657)
- `DataFrame.dot` will not do data alignment, and also work with Series (GH1915)

See the full release notes or issue tracker on GitHub for a complete list.
1.11 v0.8.1 (July 22, 2012)

This release includes a few new features, performance enhancements, and over 30 bug fixes from 0.8.0. New features include notably NA friendly string processing functionality and a series of new plot types and options.

1.11.1 New features

- Add vectorized string processing methods accessible via Series.str (GH620)
- Add option to disable adjustment in EWMA (GH1584)
- Radviz plot (GH1566)
- Parallel coordinates plot
- Bootstrap plot
- Per column styles and secondary y-axis plotting (GH1559)
- New datetime converters millisecond plotting (GH1599)
- Add option to disable “sparse” display of hierarchical indexes (GH1538)
- Series/DataFrame’s set_index method can append levels to an existing Index/MultiIndex (GH1569, GH1577)

1.11.2 Performance improvements

- Improved implementation of rolling min and max (thanks to Bottleneck !)
- Add accelerated ‘median’ GroupBy option (GH1358)
- Significantly improve the performance of parsing ISO8601-format date strings with DatetimeIndex or to_datetime (GH1571)
- Improve the performance of GroupBy on single-key aggregations and use with Categorical types
- Significant datetime parsing performance improvements

1.12 v0.8.0 (June 29, 2012)

This is a major release from 0.7.3 and includes extensive work on the time series handling and processing infrastructure as well as a great deal of new functionality throughout the library. It includes over 700 commits from more than 20 distinct authors. Most pandas 0.7.3 and earlier users should not experience any issues upgrading, but due to the migration to the NumPy datetime64 dtype, there may be a number of bugs and incompatibilities lurking. Lingering incompatibilities will be fixed ASAP in a 0.8.1 release if necessary. See the full release notes or issue tracker on GitHub for a complete list.

1.12.1 Support for non-unique indexes

All objects can now work with non-unique indexes. Data alignment / join operations work according to SQL join semantics (including, if application, index duplication in many-to-many joins)
1.12.2 NumPy datetime64 dtype and 1.6 dependency

Time series data are now represented using NumPy’s datetime64 dtype; thus, pandas 0.8.0 now requires at least NumPy 1.6. It has been tested and verified to work with the development version (1.7+) of NumPy as well which includes some significant user-facing API changes. NumPy 1.6 also has a number of bugs having to do with nanosecond resolution data, so I recommend that you steer clear of NumPy 1.6’s datetime64 API functions (though limited as they are) and only interact with this data using the interface that pandas provides.

See the end of the 0.8.0 section for a “porting” guide listing potential issues for users migrating legacy codebases from pandas 0.7 or earlier to 0.8.0.

Bug fixes to the 0.7.x series for legacy NumPy < 1.6 users will be provided as they arise. There will be no more further development in 0.7.x beyond bug fixes.

1.12.3 Time series changes and improvements

Note: With this release, legacy scikits.timeseries users should be able to port their code to use pandas.

Note: See documentation for overview of pandas timeseries API.

- New datetime64 representation speeds up join operations and data alignment, reduces memory usage, and improve serialization / deserialization performance significantly over datetime.datetime

- High performance and flexible resample method for converting from high-to-low and low-to-high frequency. Supports interpolation, user-defined aggregation functions, and control over how the intervals and result labeling are defined. A suite of high performance Cython/C-based resampling functions (including Open-High-Low-Close) have also been implemented.

- Revamp of frequency aliases and support for frequency shortcuts like ‘15min’, or ‘1h30min’

- New DatetimeIndex class supports both fixed frequency and irregular time series. Replaces now deprecated DateRange class

- New PeriodIndex and Period classes for representing time spans and performing calendar logic, including the 12 fiscal quarterly frequencies <timeseries.quarterly>. This is a partial port of, and a substantial enhancement to, elements of the scikits.timeseries codebase. Support for conversion between PeriodIndex and DatetimeIndex

- New Timestamp data type subclasses datetime.datetime, providing the same interface while enabling working with nanosecond-resolution data. Also provides easy time zone conversions.

- Enhanced support for time zones. Add tz_convert and tz_localize methods to TimeSeries and DataFrame. All timestamps are stored as UTC; Timestamps from DatetimeIndex objects with time zone set will be localized to localtime. Time zone conversions are therefore essentially free. User needs to know very little about pytz library now; only time zone names as as strings are required. Time zone-aware timestamps are equal if and only if their UTC timestamps match. Operations between time zone-aware time series with different time zones will result in a UTC-indexed time series.

- Time series string indexing conveniences / shortcuts: slice years, year and month, and index values with strings

- Enhanced time series plotting: adaptation of scikits.timeseries matplotlib-based plotting code

- New date_range, bdate_range, and period_range factory functions

- Robust frequency inference function infer_freq and inferred_freq property of DatetimeIndex, with option to infer frequency on construction of DatetimeIndex
• to_datetime function efficiently parses array of strings to DatetimeIndex. DatetimeIndex will parse array or list of strings to datet ime64
• Optimized support for datetime64-dtype data in Series and DataFrame columns
• New NaT (Not-a-Time) type to represent NA in timestamp arrays
• Optimize Series.asof for looking up “as of” values for arrays of timestamps
• Milli, Micro, Nano date offset objects
• Can index time series with datetime.time objects to select all data at particular time of day (TimeSeries.at_time) or between two times (TimeSeries.between_time)
• Add tshift method for leading/lagging using the frequency (if any) of the index, as opposed to a naive lead/lag using shift

1.12.4 Other new features

• New cut and qcut functions (like R’s cut function) for computing a categorical variable from a continuous variable by binning values either into value-based (cut) or quantile-based (qcut) bins
• Rename Factor to Categorical and add a number of usability features
• Add limit argument to fillna/reindex
• More flexible multiple function application in GroupBy, and can pass list (name, function) tuples to get result in particular order with given names
• Add flexible replace method for efficiently substituting values
• Enhanced read_csv/read_table for reading time series data and converting multiple columns to dates
• Add comments option to parser functions: read_csv, etc.
• Add :ref:`dayfirst <io.dayfirst>` option to parser functions for parsing international DD/MM/YYYY dates
• Allow the user to specify the CSV reader dialect to control quoting etc.
• Handling thousands separators in read_csv to improve integer parsing.
• Enable unstacking of multiple levels in one shot. Alleviate pivot_table bugs (empty columns being introduced)
• Move to klib-based hash tables for indexing; better performance and less memory usage than Python’s dict
• Add first, last, min, max, and prod optimized GroupBy functions
• New ordered_merge function
• Add flexible comparison instance methods eq, ne, lt, gt, etc. to DataFrame, Series
• Improve scatter_matrix plotting function and add histogram or kernel density estimates to diagonal
• Add ‘kde’ plot option for density plots
• Support for converting DataFrame to R data.frame through rpy2
• Improved support for complex numbers in Series and DataFrame
• Add pct_change method to all data structures
• Add max_colwidth configuration option for DataFrame console output
• Interpolate Series values using index values
• Can select multiple columns from GroupBy
• Add *update* methods to Series/DataFrame for updating values in place
• Add *any* and *all* method to DataFrame

1.12.5 New plotting methods

`Series.plot` now supports a *secondary_y* option:

```
In [1]: plt.figure()
Out[1]: <matplotlib.figure.Figure at 0xa087814c>

In [2]: fx[‘FR’].plot(style=’g’)
Out[2]: <matplotlib.axes.AxesSubplot at 0xa05ef64c>

In [3]: fx[‘IT’].plot(style=’k--’, secondary_y=True)
Out[3]: <matplotlib.axes.AxesSubplot at 0xa0b737cc>
```

Vytautas Jancauskas, the 2012 GSOC participant, has added many new plot types. For example, *’kde’* is a new option:

```
In [4]: s = Series(np.concatenate((np.random.randn(1000),
...: np.random.randn(1000) * 0.5 + 3)))
...:

In [5]: plt.figure()
Out[5]: <matplotlib.figure.Figure at 0xa05e638c>

In [6]: s.hist(normed=True, alpha=0.2)
Out[6]: <matplotlib.axes.AxesSubplot at 0xa0b9b1ec>

In [7]: s.plot(kind=’kde’)
Out[7]: <matplotlib.axes.AxesSubplot at 0xa0b9b1ec>
```
1.12.6 Other API changes

- Deprecation of `offset`, `time_rule`, and `timeRule` arguments names in time series functions. Warnings will be printed until pandas 0.9 or 1.0.

1.12.7 Potential porting issues for pandas <= 0.7.3 users

The major change that may affect you in pandas 0.8.0 is that time series indexes use NumPy’s `datetime64` data type instead of `dtype=object` arrays of Python’s built-in `datetime.datetime` objects. `DateRange` has been replaced by `DatetimeIndex` but otherwise behaved identically. But, if you have code that converts `DateRange` or `Index` objects that used to contain `datetime.datetime` values to plain NumPy arrays, you may have bugs lurking with code using scalar values because you are handing control over to NumPy:

```
In [8]: import datetime

In [9]: rng = date_range('1/1/2000', periods=10)

In [10]: rng[5]
Out[10]: Timestamp('2000-01-06 00:00:00', offset='D')

In [11]: isinstance(rng[5], datetime.datetime)
Out[11]: True

In [12]: rng_asarray = np.asarray(rng)

In [13]: scalar_val = rng_asarray[5]

In [14]: type(scalar_val)
Out[14]: numpy.datetime64
```

See the plotting page for much more.
pandas's Timestamp object is a subclass of datetime.datetime that has nanosecond support (the nanosecond field store the nanosecond value between 0 and 999). It should substitute directly into any code that used datetime.datetime values before. Thus, I recommend not casting DatetimeIndex to regular NumPy arrays.

If you have code that requires an array of datetime.datetime objects, you have a couple of options. First, the asobject property of DatetimeIndex produces an array of Timestamp objects:

```python
In [15]: stamp_array = rng.asobject
```

```python
In [16]: stamp_array
Out[16]: Index([2000-01-01 00:00:00, 2000-01-02 00:00:00, 2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00, 2000-01-06 00:00:00, 2000-01-07 00:00:00, 2000-01-08 00:00:00, 2000-01-09 00:00:00, 2000-01-10 00:00:00], dtype='object')
```

```python
In [17]: stamp_array[5]
Out[17]: Timestamp('2000-01-06 00:00:00', offset='D')
```

To get an array of proper datetime.datetime objects, use the to_pydatetime method:

```python
In [18]: dt_array = rng.to_pydatetime()
```

```python
In [19]: dt_array
Out[19]:
array([datetime.datetime(2000, 1, 1, 0, 0),
       datetime.datetime(2000, 1, 2, 0, 0),
       datetime.datetime(2000, 1, 3, 0, 0),
       datetime.datetime(2000, 1, 4, 0, 0),
       datetime.datetime(2000, 1, 5, 0, 0),
       datetime.datetime(2000, 1, 6, 0, 0),
       datetime.datetime(2000, 1, 7, 0, 0),
       datetime.datetime(2000, 1, 8, 0, 0),
       datetime.datetime(2000, 1, 9, 0, 0),
       datetime.datetime(2000, 1, 10, 0, 0)], dtype=object)
```

```python
In [20]: dt_array[5]
Out[20]: datetime.datetime(2000, 1, 6, 0, 0)
```

matplotlib knows how to handle datetime.datetime but not Timestamp objects. While I recommend that you plot time series using TimeSeries.plot, you can either use to_pydatetime or register a converter for the Timestamp type. See matplotlib documentation for more on this.
Warning: There are bugs in the user-facing API with the nanosecond datetime64 unit in NumPy 1.6. In particular, the string version of the array shows garbage values, and conversion to dtype=object is similarly broken.

In [21]: rng = date_range('1/1/2000', periods=10)

In [22]: rng
Out[22]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01, ..., 2000-01-10]
Length: 10, Freq: D, Timezone: None

In [23]: np.asarray(rng)
Out[23]:
array([‘2000-01-01T01:00:00.000000000+0100’,
 ’2000-01-02T01:00:00.000000000+0100’,
 ’2000-01-03T01:00:00.000000000+0100’,
 ’2000-01-04T01:00:00.000000000+0100’,
 ’2000-01-05T01:00:00.000000000+0100’,
 ’2000-01-06T01:00:00.000000000+0100’,
 ’2000-01-07T01:00:00.000000000+0100’,
 ’2000-01-08T01:00:00.000000000+0100’,
 ’2000-01-09T01:00:00.000000000+0100’,
 ’2000-01-10T01:00:00.000000000+0100’],
 dtype=’datetime64[ns]’)

In [24]: converted = np.asarray(rng, dtype=object)

In [25]: converted[5]
Out[25]: 947116800000000000L

Trust me: don’t panic. If you are using NumPy 1.6 and restrict your interaction with datetime64 values to pandas’s API you will be just fine. There is nothing wrong with the data-type (a 64-bit integer internally); all of the important data processing happens in pandas and is heavily tested. I strongly recommend that you do not work directly with datetime64 arrays in NumPy 1.6 and only use the pandas API.

Support for non-unique indexes: In the latter case, you may have code inside a try:... catch: block that failed due to the index not being unique. In many cases it will no longer fail (some method like append still check for uniqueness unless disabled). However, all is not lost: you can inspect index.is_unique and raise an exception explicitly if it is False or go to a different code branch.

1.13 v.0.7.3 (April 12, 2012)

This is a minor release from 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug fixes” even though they do constitute a change in behavior. See the full release notes or issue tracker on GitHub for a complete list.

1.13.1 New features

- New fixed width file reader, read_fwf
- New scatter_matrix function for making a scatter plot matrix

from pandas.tools.plotting import scatter_matrix
scatter_matrix(df, alpha=0.2)
• Add `stacked` argument to Series and DataFrame's `plot` method for stacked bar plots.

df.plot(kind='bar', stacked=True)
df.plot(kind='barh', stacked=True)

- Add log x and y scaling options to DataFrame.plot and Series.plot
- Add kurt methods to Series and DataFrame for computing kurtosis

1.13.2 NA Boolean Comparison API Change

Reverted some changes to how NA values (represented typically as NaN or None) are handled in non-numeric Series:

```python
In [1]: series = Series(['Steve', np.nan, 'Joe'])
```

```python
In [2]: series == 'Steve'
Out[2]:
0   True
1  False
2  False
dtype: bool
```

```python
In [3]: series != 'Steve'
Out[3]:
0  False
1   True
2   True
dtype: bool
```

In comparisons, NA / NaN will always come through as False except with != which is True. Be very careful with boolean arithmetic, especially negation, in the presence of NA data. You may wish to add an explicit NA filter into boolean array operations if you are worried about this:

```python
In [4]: mask = series == 'Steve'
```

```python
In [5]: series[mask & series.notnull()]
Out[5]:
0   Steve
dtype: object
```

While propagating NA in comparisons may seem like the right behavior to some users (and you could argue on purely technical grounds that this is the right thing to do), the evaluation was made that propagating NA everywhere, including
in numerical arrays, would cause a large amount of problems for users. Thus, a “practicality beats purity” approach was taken. This issue may be revisited at some point in the future.

1.13.3 Other API Changes

When calling `apply` on a grouped Series, the return value will also be a Series, to be more consistent with the `groupby` behavior with DataFrame:

```python
In [1]: df = DataFrame({'A': ["foo", 'bar', 'foo', 'bar',
                         'foo', 'bar', 'foo', 'foo'],
                   'B': ["one", 'one', 'two', 'three',
                         'two', 'two', 'one', 'three'],
                   'C': np.random.randn(8), 'D': np.random.randn(8))

In [2]: df
Out[2]:
   A     B         C         D
0 foo   one  0.144909  1.387310
1 bar   one -1.033812  0.063490
2 foo   two  0.197333  1.437656
3 bar   three -0.059730  0.814844
4 foo   two  0.087205 -0.482060
5 bar   two  1.607906  1.521442
6 foo   one  1.275249  0.882182
7 foo   three -0.054460 -0.108020

[8 rows x 4 columns]
```

```python
In [3]: grouped = df.groupby('A')['C']

In [4]: grouped.describe()
Out[4]:
   A
bar   count   3.000000
          mean  -0.900483
          std   0.782652
          min  -1.607906
          25%  -1.320859
          50%   0.087205
          75%   0.144909
          max   0.197333
Length: 16, dtype: float64
```

```python
In [5]: grouped.apply(lambda x: x.order()[-2:])  # top 2 values
Out[5]:
A
bar  1   -1.033812
   3   -0.059730
foo  0    0.144909
   2    0.197333
dtype: float64
```
1.14 v.0.7.2 (March 16, 2012)

This release targets bugs in 0.7.1, and adds a few minor features.

1.14.1 New features

- Add additional tie-breaking methods in DataFrame.rank (GH874)
- Add ascending parameter to rank in Series, DataFrame (GH875)
- Add coerce_float option to DataFrame.from_records (GH893)
- Add sort_columns parameter to allow unsorted plots (GH918)
- Enable column access via attributes on GroupBy (GH882)
- Can pass dict of values to DataFrame.fillna (GH661)
- Can select multiple hierarchical groups by passing list of values in .ix (GH134)
- Add axis option to DataFrame.fillna (GH174)
- Add level keyword to drop for dropping values from a level (GH159)

1.14.2 Performance improvements

- Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
- Intercept __builtin__.sum in groupby (GH885)

1.15 v.0.7.1 (February 29, 2012)

This release includes a few new features and addresses over a dozen bugs in 0.7.0.

1.15.1 New features

- Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)
- Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
- Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
- Add fill_value option to reindex, align methods (GH784)
- Enable concat to produce DataFrame from Series (GH787)
- Add between method to Series (GH802)
- Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
- Support for reading Excel 2007 XML documents using openpyxl

1.15.2 Performance improvements

- Improve performance and memory usage of fillna on DataFrame
- Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)
1.16 v.0.7.0 (February 9, 2012)

1.16.1 New features

- New unified *merge function* for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)

- New *unified concatenation function* for concatenating Series, DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of Series.append and DataFrame.append (GH468, GH479, GH273)

- *Can* pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.append too

- *Can* pass list of dicts (e.g., a list of JSON objects) to DataFrame constructor (GH526)

- You can now set multiple columns in a DataFrame via __getitem__, useful for transformation (GH342)

- Handle differently-indexed output values in DataFrame.apply (GH498)

```
In [1]: df = DataFrame(randn(10, 4))

In [2]: df.apply(lambda x: x.describe())
Out[2]:
          0         1         2         3
count  10.000000  10.000000  10.000000  10.000000
mean   0.119046  0.455043 -0.093701 -0.330828
std    0.814006  0.972606  0.948124  0.814913
min   -0.964456 -0.790943 -1.921164 -1.578003
25%   -0.512550 -0.462622 -0.683389 -0.934434
50%    0.013691  0.415879 -0.061961 -0.343709
75%    0.616168  1.351857  0.671847  0.150746
max    1.507974  1.755240  1.183075  1.051356
```

- *Add* reorder_levels method to Series and DataFrame (GH534)

- *Add* dict-like get function to DataFrame and Panel (GH521)

- *Add* DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame

- *Add* DataFrame.to_panel with code adapted from LongPanel.to_long

- *Add* reindex_axis method added to DataFrame

- *Add* level option to binary arithmetic functions on DataFrame and Series

- *Add* level option to the reindex and align methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others)

- *Add* attribute-based item access to Panel and add IPython completion (GH563)

- *Add* logy option to Series.plot for log-scaling on the Y axis

- *Add* index and header options to DataFrame.to_string

- *Can* pass multiple DataFrames to DataFrame.join to join on index (GH115)

- *Can* pass multiple Panels to Panel.join (GH115)

- *Added* justify argument to DataFrame.to_string to allow different alignment of column headers
• *Add* `sort` option to `GroupBy` to allow disabling sorting of the group keys for potential speedups (GH595)

• *Can* pass `MaskedArray` to `Series` constructor (GH563)

• *Add* `Panel item access via attributes and IPython completion` (GH554)

• Implement `DataFrame.lookup`, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338)

• Can pass a *list of functions* to aggregate with groupby on a `DataFrame`, yielding an aggregated result with hierarchical columns (GH166)

• Can call `cummin` and `cummax` on `Series` and `DataFrame` to get cumulative minimum and maximum, respectively (GH647)

• `value_range` added as utility function to get min and max of a dataframe (GH288)

• Added `encoding` argument to `read_csv`, `read_table`, `to_csv` and `from_csv` for non-ascii text (GH717)

• *Added* `abs` method to pandas objects

• *Added* `crosstab` function for easily computing frequency tables

• *Added* `isin` method to index objects

• *Added* `level` argument to `xs` method of `DataFrame`.

1.16.2 API Changes to integer indexing

One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete review of how integer indexes are handled with regard to label-based indexing. Here is an example:

```python
In [3]: s = Series(randn(10), index=range(0, 20, 2))
```

```plaintext
Out[3]:
0  -0.392051
2  -0.189537
4   0.886170
6  -1.125894
8   0.319635
10  0.998222
12  0.091743
14  -2.032047
16  -0.448560
18   0.091743
dtype: float64
```

```python
In [4]: s[0]
Out[4]: -0.39205110783730307
```

```python
In [5]: s[2]
Out[5]: -0.18953739573269113
```

```python
In [6]: s[4]
Out[6]: 0.88617008348573789
```

This is all exactly identical to the behavior before. However, if you ask for a key *not* contained in the Series, in versions 0.6.1 and prior, Series would *fall back* on a location-based lookup. This now raises a `KeyError:`
In [2]: s[1]
KeyError: 1

This change also has the same impact on DataFrame:

In [3]: df = DataFrame(randn(8, 4), index=range(0, 16, 2))

In [4]: df

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.88427</td>
<td>0.3363</td>
<td>-0.1787</td>
<td>0.03162</td>
</tr>
<tr>
<td>2</td>
<td>0.14451</td>
<td>-0.1415</td>
<td>0.2504</td>
<td>0.58374</td>
</tr>
<tr>
<td>4</td>
<td>-1.44779</td>
<td>-0.9186</td>
<td>-1.4996</td>
<td>0.27163</td>
</tr>
<tr>
<td>6</td>
<td>-0.26598</td>
<td>-2.4184</td>
<td>-0.2658</td>
<td>0.11503</td>
</tr>
<tr>
<td>8</td>
<td>-0.58776</td>
<td>0.3144</td>
<td>-0.8566</td>
<td>0.61941</td>
</tr>
<tr>
<td>10</td>
<td>0.10940</td>
<td>-0.7175</td>
<td>-1.0108</td>
<td>0.47990</td>
</tr>
<tr>
<td>12</td>
<td>-1.16919</td>
<td>-0.3087</td>
<td>-0.6049</td>
<td>-0.43544</td>
</tr>
<tr>
<td>14</td>
<td>-0.07337</td>
<td>0.3410</td>
<td>0.0424</td>
<td>-0.16037</td>
</tr>
</tbody>
</table>

In [5]: df.ix[3]
KeyError: 3

In order to support purely integer-based indexing, the following methods have been added:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.iget_value(i)</td>
<td>Retrieve value stored at location i</td>
</tr>
<tr>
<td>Series.iget(i)</td>
<td>Alias for iget_value</td>
</tr>
<tr>
<td>DataFrame.irow(i)</td>
<td>Retrieve the i-th row</td>
</tr>
<tr>
<td>DataFrame.icol(j)</td>
<td>Retrieve the j-th column</td>
</tr>
<tr>
<td>DataFrame.iget_value(i, j)</td>
<td>Retrieve the value at row i and column j</td>
</tr>
</tbody>
</table>

1.16.3 API tweaks regarding label-based slicing

Label-based slicing using ix now requires that the index be sorted (monotonic) unless both the start and endpoint are contained in the index:

In [8]: s = Series(randn(6), index=list('gmkaec'))

In [9]: s

Out[9]:

<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>1.269713</td>
</tr>
<tr>
<td>m</td>
<td>1.209524</td>
</tr>
<tr>
<td>k</td>
<td>2.160843</td>
</tr>
<tr>
<td>a</td>
<td>0.533532</td>
</tr>
<tr>
<td>e</td>
<td>-2.371548</td>
</tr>
<tr>
<td>c</td>
<td>0.562726</td>
</tr>
<tr>
<td>dtype</td>
<td>float64</td>
</tr>
</tbody>
</table>

Then this is OK:

In [10]: s.ix['k':'e']

Out[10]:

<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>2.160843</td>
</tr>
<tr>
<td>a</td>
<td>0.533532</td>
</tr>
<tr>
<td>e</td>
<td>-2.371548</td>
</tr>
<tr>
<td>dtype</td>
<td>float64</td>
</tr>
</tbody>
</table>

But this is not:
In [12]: s.ix['b':'h']
KeyError 'b'

If the index had been sorted, the “range selection” would have been possible:

In [11]: s2 = s.sort_index()

In [12]: s2
Out[12]:
a 0.533532
b -6.694315
c 0.562726
d 2.371548
e 1.269713
f 0.571380
g 2.160843
k 2.160843
m 1.209524
dtype: float64

In [13]: s2.ix['b':'h']
Out[13]:
c 0.562726
e 1.269713
g 2.160843
dtype: float64

1.16.4 Changes to Series [] operator

As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__ and __setitem__ methods). The behavior will be the same as passing similar input to ix except in the case of integer indexing:

In [14]: s = Series(randn(6), index=list('acegkm'))

In [15]: s
Out[15]:
a 2.031757
c 0.851077
e 0.660056
g -1.662471
k 0.571380
m 0.945588
dtype: float64

In [16]: s[['m', 'a', 'c', 'e']]
Out[16]:
m 0.945588
a 2.031757
c 0.851077
e 0.660056
dtype: float64

In [17]: s['b': 'l']
Out[17]:
c 0.851077
e -1.662471
g 2.160843
k 2.160843
dtype: float64
In [18]: s['c':'k']
Out[18]:
c 0.851077
 e 0.660056
 g -1.662471
 k 0.571380
 dtype: float64

In the case of integer indexes, the behavior will be exactly as before (shadowing `ndarray`):

In [19]: s = Series(randn(6), index=range(0, 12, 2))

In [20]: s[[4, 0, 2]]
Out[20]:
 4 -1.263534
 0 -0.414691
 2 2.108285
dtype: float64

In [21]: s[1:5]
Out[21]:
 2 2.108285
 4 -1.263534
 6 2.617801
 8 1.967592
dtype: float64

If you wish to do indexing with sequences and slicing on an integer index with label semantics, use `ix`.

1.16.5 Other API Changes

- The deprecated `LongPanel` class has been completely removed
- If `Series.sort` is called on a column of a DataFrame, an exception will now be raised. Before it was possible to accidentally mutate a DataFrame’s column by doing `df[col].sort()` instead of the side-effect free method `df[col].order()` (GH316)
- Miscellaneous renames and deprecations which will (harmlessly) raise `FutureWarning`
- `drop` added as an optional parameter to `DataFrame.reset_index` (GH699)

1.16.6 Performance improvements

- `Cythonized GroupBy aggregations` no longer presort the data, thus achieving a significant speedup (GH93). GroupBy aggregations with Python functions significantly sped up by clever manipulation of the ndarray data type in Cython (GH496).
- Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
- Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
- Can store objects indexed by tuples and floats in HDFStore (GH492)
- Don’t print length by default in `Series.to_string`, add `length` option (GH489)
- Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
- Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
- Improve column reindexing performance by using specialized Cython take function
- Further performance tweaking of Series.getitem for standard use cases
- Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
- Friendlier error message in setup.py if NumPy not installed
- Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)
- Default name assignment when calling reset_index on DataFrame with a regular (non-hierarchical) index (GH476)
- Use Cythonized groupers when possible in Series/DataFrame stat ops with level parameter passed (GH545)
- Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374)

1.17 v.0.6.1 (December 13, 2011)

1.17.1 New features

- Can append single rows (as Series) to a DataFrame
- Add Spearman and Kendall rank correlation options to Series.corr and DataFrame.corr (GH428)
- Added get_value and set_value methods to Series, DataFrame, and Panel for very low-overhead access (>2x faster in many cases) to scalar elements (GH437, GH438). set_value is capable of producing an enlarged object.
- Add PyQt table widget to sandbox (GH435)
- DataFrame.align can accept Series arguments and an axis option (GH461)
- Implement new SparseArray and SparseList data structures. SparseSeries now derives from SparseArray (GH463)
- Better console printing options (GH453)
- Implement fast data ranking for Series and DataFrame, fast versions of scipy.stats.rankdata (GH428)
- Implement DataFrame.from_items alternate constructor (GH444)
- DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)
- Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)
- Add margins option to pivot_table for computing subgroup aggregates (GH114)
- Add Series.from_csv function (GH482)
- Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH #462)
- MultiIndex.get_level_values can accept the level name
1.17.2 Performance improvements

- Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (PR #425)
- Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
- Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
- Column deletion in DataFrame copies no data (computes views on blocks) (GH #158)

1.18 v.0.6.0 (November 25, 2011)

1.18.1 New Features

- Added melt function to pandas.core.reshape
- Added level parameter to group by level in Series and DataFrame descriptive statistics (GH313)
- Added head and tail methods to Series, analogous to to DataFrame (GH296)
- Added Series.isin function which checks if each value is contained in a passed sequence (GH289)
- Added float_format option to Series.to_string
- Added skip_footer (GH291) and converters (GH343) options to read_csv and read_table
- Added drop_duplicates and duplicated functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)
- Implemented operators `&`, `|`, `^`, `-` on DataFrame (GH347)
- Added Series.mad, mean absolute deviation
- Added QuarterEnd DateTimeOffset (GH321)
- Added dot to DataFrame (GH65)
- Added orient option to Panel.from_dict (GH359, GH301)
- Added orient option to DataFrame.from_dict
- Added passing list of tuples or list of lists to DataFrame.from_records (GH357)
- Added multiple levels to groupby (GH103)
- Allow multiple columns in by argument of DataFrame.sort_index (GH92, GH362)
- Added fast get_value and put_value methods to DataFrame (GH360)
- Added cov instance methods to Series and DataFrame (GH194, GH362)
- Added kind='bar' option to DataFrame.plot (GH348)
- Added idxmin and idxmax to Series and DataFrame (GH286)
- Added read_clipboard function to parse DataFrame from clipboard (GH300)
- Added nunique function to Series for counting unique elements (GH297)
- Made DataFrame constructor use Series name if no columns passed (GH373)
- Support regular expressions in read_table/read_csv (GH364)
- Added DataFrame.to_html for writing DataFrame to HTML (GH387)
- Added support for MaskedArray data in DataFrame, masked values converted to NaN (GH396)
• **Added** DataFrame.boxplot function (GH368)
• **Can** pass extra args, kwds to DataFrame.apply (GH376)
• **Implement** DataFrame.join with vector on argument (GH312)
• **Added** legend boolean flag to DataFrame.plot (GH324)
• **Can** pass multiple levels to stack and unstack (GH370)
• **Can** pass multiple values columns to pivot_table (GH381)
• **Use** Series name in GroupBy for result index (GH363)
• **Added** raw option to DataFrame.apply for performance if only need ndarray (GH309)
• Added proper, tested weighted least squares to standard and panel OLS (GH303)

1.18.2 Performance Enhancements

- VBENCH Cythonized cache_readonly, resulting in substantial micro-performance enhancements throughout the codebase (GH361)
- VBENCH Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than np.apply_along_axis (GH309)
- VBENCH Improved performance of MultiIndex.from_tuples
- VBENCH Special Cython matrix iterator for applying arbitrary reduction operations
- VBENCH + DOCUMENT Add raw option to DataFrame.apply for getting better performance when
- VBENCH Faster cythonized count by level in Series and DataFrame (GH341)
- VBENCH? Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
- VBENCH New Cython vectorized function map_infer speeds up Series.apply and Series.map significantly when passed elementwise Python function, motivated by (GH355)
- VBENCH Significantly improved performance of Series.order, which also makes np.unique called on a Series faster (GH327)
- VBENCH Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)

1.19 v.0.5.0 (October 24, 2011)

1.19.1 New Features

- **Added** DataFrame.align method with standard join options
- **Added** parse_dates option to read_csv and read_table methods to optionally try to parse dates in the index columns
- **Added** nrows, chunksize, and iterator arguments to read_csv and read_table. The last two return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242)
- **Added** ability to join on multiple columns in DataFrame.join (GH214)
- **Added** private _get_duplicates function to Index for identifying duplicate values more easily (ENH5c)
- **Added** column attribute access to DataFrame.
• **Added** Python tab completion hook for DataFrame columns. (GH233, GH230)

• **Implemented** Series.describe for Series containing objects (GH241)

• **Added** inner join option to DataFrame.join when joining on key(s) (GH248)

• **Implemented** selecting DataFrame columns by passing a list to __getitem__ (GH253)

• **Implemented** & and | to intersect / union Index objects, respectively (GH261)

• **Added** pivot_table convenience function to pandas namespace (GH234)

• **Implemented** Panel.rename_axis function (GH243)

• DataFrame will show index level names in console output (GH334)

• **Implemented** Panel.take

• **Added** set_eng_float_format for alternate DataFrame floating point string formatting (ENH61)

• **Added** convenience set_index function for creating a DataFrame index from its existing columns

• **Implemented** groupby hierarchical index level name (GH223)

• **Added** support for different delimiters in DataFrame.to_csv (GH244)

• TODO: DOCS ABOUT TAKE METHODS

1.19.2 Performance Enhancements

• **VBENCH** Major performance improvements in file parsing functions `read_csv` and `read_table`

• **VBENCH** Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations

• **VBENCH** Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)

• **VBENCH** Improved speed of DataFrame.xs on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)

• **VBENCH** With new DataFrame.align method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%.

• **VBENCH** Significantly sped up conversion of nested dict into DataFrame (GH212)

• **VBENCH** Significantly speed up DataFrame __repr__ and count on large mixed-type DataFrame objects

1.20 v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)

1.20.1 New Features

• Added Python 3 support using 2to3 (GH200)

• **Added** name attribute to Series, now prints as part of Series.__repr__

• **Added** instance methods isnull and notnull to Series (GH209, GH203)

• **Added** Series.align method for aligning two series with choice of join method (ENH56)

• **Added** method get_level_values to MultiIndex (GH188)

• Set values in mixed-type DataFrame objects via .ix indexing attribute (GH135)
pandas: powerful Python data analysis toolkit, Release 0.14.1

- Added new DataFrame methods `get_dtype_counts` and property `dtypes` (ENHdc)
- Added `ignore_index` option to DataFrame.append to stack DataFrames (ENH1b)
- `read_csv` tries to sniff delimiters using `csv.Sniffer` (GH146)
- `read_csv` can read multiple columns into a MultiIndex; DataFrame’s `to_csv` method writes out a corresponding MultiIndex (GH151)
- `DataFrame.rename` has a new `copy` parameter to rename a DataFrame in place (ENHed)
- Enable unstacking by name (GH142)
- Enable `sortlevel` to work by level (GH141)

1.20.2 Performance Enhancements

- Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
- Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
- Improved performance of `isnull` and `notnull`, a regression from v0.3.0 (GH187)
- Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each DataFrame argument do not need to be created. Substantial performance increases result (GH176)
- Substantially improved performance of generic Index.intersection and Index.union
- Implemented `BlockManager.take` resulting in significantly faster `take` performance on mixed-type DataFrame objects (GH104)
- Improved performance of Series.sort_index
- Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals that were slowing down slicing operations to retrieve groups
- Optimized `_ensure_index` function resulting in performance savings in type-checking Index objects
- Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and related functions
You have the option to install an official release or to build the development version. If you choose to install from source and are running Windows, you will have to ensure that you have a compatible C compiler (MinGW or Visual Studio) installed. How to install MinGW on Windows

2.1 Python version support

Officially Python 2.6, 2.7, 3.2, 3.3, and 3.4.

2.2 Binary installers

2.2.1 All platforms

Stable installers available on PyPI
Preliminary builds and installers on the pandas download page.
2.2.2 Overview

<table>
<thead>
<tr>
<th>Platform</th>
<th>Distribution</th>
<th>Status</th>
<th>Download / Repository Link</th>
<th>Install method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>all</td>
<td>stable</td>
<td>All platforms</td>
<td>pip install pandas</td>
</tr>
<tr>
<td>Mac</td>
<td>all</td>
<td>stable</td>
<td>All platforms</td>
<td>pip install pandas</td>
</tr>
<tr>
<td>Linux</td>
<td>Debian</td>
<td>stable</td>
<td>official Debian repository</td>
<td>sudo apt-get install python-pandas</td>
</tr>
<tr>
<td>Linux</td>
<td>Debian & Ubuntu</td>
<td>unstable (latest packages)</td>
<td>NeuroDebian</td>
<td>sudo apt-get install python-pandas</td>
</tr>
<tr>
<td>Linux</td>
<td>Ubuntu</td>
<td>stable</td>
<td>official Ubuntu repository</td>
<td>sudo apt-get install python-pandas</td>
</tr>
<tr>
<td>Linux</td>
<td>Ubuntu</td>
<td>unstable (daily builds)</td>
<td>PythonXY PPA; activate by: sudo add-apt-repository ppa:pythonxy/pythonxy-devel & sudo apt-get update</td>
<td>sudo apt-get install python-pandas</td>
</tr>
<tr>
<td>Linux</td>
<td>OpenSuse & Fedora</td>
<td>stable</td>
<td>OpenSuse Repository</td>
<td>zypper in python-pandas</td>
</tr>
</tbody>
</table>

2.3 Dependencies

- NumPy: 1.6.1 or higher
- python-dateutil 1.5
- pytz
 - Needed for time zone support

2.4 Recommended Dependencies

- numexpr: for accelerating certain numerical operations. numexpr uses multiple cores as well as smart chunking and caching to achieve large speedups.
- bottleneck: for accelerating certain types of nan evaluations. bottleneck uses specialized cython routines to achieve large speedups.

Note: You are highly encouraged to install these libraries, as they provide large speedups, especially if working with large data sets.

2.5 Optional Dependencies

- Cython: Only necessary to build development version. Version 0.17.1 or higher.
• **SciPy**: miscellaneous statistical functions

• **PyTables**: necessary for HDF5-based storage

• **SQLAlchemy**: for SQL database support. Version 0.8.1 or higher recommended.

• **matplotlib**: for plotting

• **statsmodels**
 – Needed for parts of `pandas.stats`

• **openpyxl, xlrd/xlwt**
 – openpyxl version 1.6.1 or higher, but lower than 2.0.0
 – Needed for Excel I/O

• **XlsxWriter**
 – Alternative Excel writer.

• **boto**: necessary for Amazon S3 access.

• **One of PyQt4, PySide, pygtk, xsel, or xclip**: necessary to use `read_clipboard()`. Most package managers on Linux distributions will have xclip and/or xsel immediately available for installation.

• **Google’s python-gflags and google-api-python-client** * Needed for `gbq`

• **httplib2** * Needed for `gbq`

• One of the following combinations of libraries is needed to use the top-level `read_html()` function:
 – BeautifulSoup4 and html5lib (Any recent version of html5lib is okay.)
 – BeautifulSoup4 and lxml
 – BeautifulSoup4 and html5lib and lxml
 – Only lxml, although see *HTML reading gotchas* for reasons as to why you should probably **not** take this approach.

Warning:
 – if you install BeautifulSoup4 you must install either lxml or html5lib or both. `read_html()` will **not** work with only BeautifulSoup4 installed.

 – You are highly encouraged to read *HTML reading gotchas*. It explains issues surrounding the installation and usage of the above three libraries

 – **You may need to install an older version of BeautifulSoup4:**
 † Versions 4.2.1, 4.1.3 and 4.0.2 have been confirmed for 64 and 32-bit Ubuntu/Debian

 – Additionally, if you’re using Anaconda you should definitely read *the gotchas about HTML parsing libraries*

Note:
 – if you’re on a system with `apt-get` you can do

    ```
    sudo apt-get build-dep python-lxml
    ```

 to get the necessary dependencies for installation of lxml. This will prevent further headaches down the line.
Note: Without the optional dependencies, many useful features will not work. Hence, it is highly recommended that you install these. A packaged distribution like Enthought Canopy may be worth considering.

2.6 Installing from source

Note: Installing from the git repository requires a recent installation of Cython as the cythonized C sources are no longer checked into source control. Released source distributions will contain the built C files. I recommend installing the latest Cython via easy_install -U Cython

The source code is hosted at http://github.com/pydata/pandas, it can be checked out using git and compiled / installed like so:

```
git clone git://github.com/pydata/pandas.git
cd pandas
python setup.py install
```

Make sure you have Cython installed when installing from the repository, rather than a tarball or pypi.

On Windows, I suggest installing the MinGW compiler suite following the directions linked to above. Once configured property, run the following on the command line:

```
python setup.py build --compiler=mingw32
python setup.py install
```

Note that you will not be able to import pandas if you open an interpreter in the source directory unless you build the C extensions in place:

```
python setup.py build_ext --inplace
```

The most recent version of MinGW (any installer dated after 2011-08-03) has removed the ‘-mno-cygwin’ option but Distutils has not yet been updated to reflect that. Thus, you may run into an error like “unrecognized command line option ‘-mno-cygwin’”. Until the bug is fixed in Distutils, you may need to install a slightly older version of MinGW (2011-08-02 installer).

2.7 Running the test suite

pandas is equipped with an exhaustive set of unit tests covering about 97% of the codebase as of this writing. To run it on your machine to verify that everything is working (and you have all of the dependencies, soft and hard, installed), make sure you have nose and run:

```
$ nosetests pandas
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
```

132 Chapter 2. Installation
Ran 818 tests in 21.631s

OK (SKIP=2)
FREQUENTLY ASKED QUESTIONS (FAQ)

3.1 Adding Features to your pandas Installation

pandas is a powerful tool and already has a plethora of data manipulation operations implemented, most of them are very fast as well. It’s very possible however that certain functionality that would make your life easier is missing. In that case you have several options:

1. Open an issue on Github, explain your need and the sort of functionality you would like to see implemented.
2. Fork the repo, Implement the functionality yourself and open a PR on Github.
3. Write a method that performs the operation you are interested in and Monkey-patch the pandas class as part of your IPython profile startup or PYTHONSTARTUP file.

For example, here is an example of adding an `just_foo_cols()` method to the dataframe class:

```python
import pandas as pd
def just_foo_cols(self):
    """Get a list of column names containing the string ‘foo’"
    return [x for x in self.columns if ‘foo’ in x]
pd.DataFrame.just_foo_cols = just_foo_cols # monkey-patch the DataFrame class
df = pd.DataFrame([list(range(4))], columns=[“A”, “foo”, “foozball”, “bar”])
df.just_foo_cols()
```

Monkey-patching is usually frowned upon because it makes your code less portable and can cause subtle bugs in some circumstances. Monkey-patching existing methods is usually a bad idea in that respect. When used with proper care, however, it’s a very useful tool to have.

3.2 Migrating from scikits.timeseries to pandas >= 0.8.0

Starting with pandas 0.8.0, users of scikits.timeseries should have all of the features that they need to migrate their code to use pandas. Portions of the scikits.timeseries codebase for implementing calendar logic and timespan frequency conversions (but not resampling, that has all been implemented from scratch from the ground up) have been ported to the pandas codebase.

The scikits.timeseries notions of `Date` and `DateArray` are responsible for implementing calendar logic:
In [16]: dt = ts.Date('Q', '1984Q3')

sic
In [17]: dt
Out[17]: <Q-DEC : 1984Q1>

In [18]: dt.asfreq('D', 'start')
Out[18]: <D : 01-Jan-1984>

In [19]: dt.asfreq('D', 'end')
Out[19]: <D : 31-Mar-1984>

In [20]: dt + 3
Out[20]: <Q-DEC : 1984Q4>

Date and DateArray from scikits.timeseries have been reincarnated in pandas Period and PeriodIndex:

In [1]: pnow('D') # scikits.timeseries.now()
Out[1]: Period('2014-07-11', 'D')

In [2]: Period(year=2007, month=3, day=15, freq='D')
Out[2]: Period('2007-03-15', 'D')

In [3]: p = Period('1984Q3')

In [4]: p
Out[4]: Period('1984Q3', 'Q-DEC')

In [5]: p.asfreq('D', 'start')
Out[5]: Period('1984-07-01', 'D')

In [6]: p.asfreq('D', 'end')
Out[6]: Period('1984-09-30', 'D')

In [7]: (p + 3).asfreq('T') + 6 * 60 + 30
Out[7]: Period('1985-07-01 06:29', 'T')

In [8]: rng = period_range('1990', '2010', freq='A')

In [9]: rng
Out[9]: <class 'pandas.tseries.period.PeriodIndex'>
[1990, ..., 2010]
Length: 21, Freq: A-DEC

In [10]: rng.asfreq('B', 'end') - 3
Out[10]: <class 'pandas.tseries.period.PeriodIndex'>
[1990-12-26, ..., 2010-12-28]
Length: 21, Freq: B

<table>
<thead>
<tr>
<th>scikits.timeseries</th>
<th>pandas</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Period</td>
<td>A span of time, from yearly through to secondly</td>
</tr>
<tr>
<td>DateArray</td>
<td>PeriodIndex</td>
<td>An array of timespans</td>
</tr>
<tr>
<td>convert</td>
<td>resample</td>
<td>Frequency conversion in scikits.timeseries</td>
</tr>
<tr>
<td>convert_to_annual</td>
<td>pivot_annual</td>
<td>currently supports up to daily frequency, see GH736</td>
</tr>
</tbody>
</table>
3.2.1 PeriodIndex / DateArray properties and functions

The scikits.timeseries `DateArray` had a number of information properties. Here are the pandas equivalents:

<table>
<thead>
<tr>
<th>scikits.timeseries</th>
<th>pandas</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_steps</code></td>
<td><code>np.diff(idx.values)</code></td>
<td></td>
</tr>
<tr>
<td><code>has_missing_dates</code></td>
<td><code>not idx.is_full</code></td>
<td></td>
</tr>
<tr>
<td><code>is_full</code></td>
<td><code>idx.is_full</code></td>
<td></td>
</tr>
<tr>
<td><code>is_valid</code></td>
<td><code>idx.is_monotonic and idx.is_unique</code></td>
<td></td>
</tr>
<tr>
<td><code>is_chronological</code></td>
<td><code>is_monotonic</code></td>
<td></td>
</tr>
<tr>
<td><code>arr.sort_chronologically()</code></td>
<td><code>idx.order()</code></td>
<td></td>
</tr>
</tbody>
</table>

3.2.2 Frequency conversion

Frequency conversion is implemented using the `resample` method on TimeSeries and DataFrame objects (multiple time series). `resample` also works on panels (3D). Here is some code that resamples daily data to monthly:

```python
In [11]: rng = period_range('Jan-2000', periods=50, freq='M')
```

```python
In [12]: data = Series(np.random.randn(50), index=rng)
```

```python
In [13]: data
Out[13]:
2000-01  0.469112
2000-02 -0.282863
2000-03 -1.509059
2000-04 -1.135632
2000-05  1.212112
...
2003-09 -0.013960
2003-10 -0.362543
2003-11 -0.006154
2003-12 -0.923061
2004-01  0.895717
2004-02  0.805244
Freq: M, Length: 50
```

```python
In [14]: data.resample('A', how=np.mean)
Out[14]:
2000 -0.394510
2001 -0.244628
2002 -0.221633
2003 -0.453773
2004  0.850481
Freq: A-DEC, dtype: float64
```

3.2.3 Plotting

Much of the plotting functionality of scikits.timeseries has been ported and adopted to pandas’s data structures. For example:

```python
In [15]: rng = period_range('1987Q2', periods=10, freq='Q-DEC')
```

```python
In [16]: data = Series(np.random.randn(10), index=rng)
```
3.2.4 Converting to and from period format

Use the `to_timestamp` and `to_period` instance methods.

3.2.5 Treatment of missing data

Unlike scikits.timeseries, pandas data structures are not based on NumPy’s `MaskedArray` object. Missing data is represented as `NaN` in numerical arrays and either as `None` or `NaN` in non-numerical arrays. Implementing a version of pandas’s data structures that use `MaskedArray` is possible but would require the involvement of a dedicated maintainer. Active pandas developers are not interested in this.

3.2.6 Resampling with timestamps and periods

`resample` has a `kind` argument which allows you to resample time series with a `DatetimeIndex` to `PeriodIndex`:

```
In [18]: rng = date_range('1/1/2000', periods=200, freq='D')
In [19]: data = Series(np.random.randn(200), index=rng)
In [20]: data[:10]
```

```
Out[20]:
2000-01-01  -0.076467
2000-01-02  -1.187678
2000-01-03   1.130127
2000-01-04  -1.436737
```
3.3 Byte-Ordering Issues

Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following:

```python
In [27]: x = np.array(list(range(10)), '>i4')  # big endian
In [28]: newx = x.byteswap().newbyteorder()  # force native byteorder
In [29]: s = Series(newx)
```

See the NumPy documentation on byte order for more details.
3.4 Visualizing Data in Qt applications

There is experimental support for visualizing DataFrames in PyQt4 and PySide applications. At the moment you can display and edit the values of the cells in the DataFrame. Qt will take care of displaying just the portion of the DataFrame that is currently visible and the edits will be immediately saved to the underlying DataFrame.

To demonstrate this we will create a simple PySide application that will switch between two editable DataFrames. For this we use the DataFrameModel class that handles the access to the DataFrame, and the DataFrameWidget, which is just a thin layer around the QTableView.

```python
import numpy as np
import pandas as pd
from pandas.sandbox.qtpandas import DataFrameModel, DataFrameWidget
from PySide import QtGui, QtCore

# Or if you use PyQt4:
# from PyQt4 import QtGui, QtCore

class MainWidget(QtGui.QWidget):
    def __init__(self, parent=None):
        super(MainWidget, self).__init__(parent)

        # Create two DataFrames
        self.df1 = pd.DataFrame(np.arange(9).reshape(3, 3),
                                columns=['foo', 'bar', 'baz'])
        self.df2 = pd.DataFrame(
            {'int': [1, 2, 3],
             'float': [1.5, 2.5, 3.5],
             'string': ['a', 'b', 'c'],
             'nan': [np.nan, np.nan, np.nan]},
            index=['AAA', 'BBB', 'CCC'],
            columns=['int', 'float', 'string', 'nan'])

        # Create the widget and set the first DataFrame
        self.widget = DataFrameWidget(self.df1)

        # Create the buttons for changing DataFrames
        self.button_first = QtGui.QPushButton('First')
        self.button_first.clicked.connect(self.on_first_click)
        self.button_second = QtGui.QPushButton('Second')
        self.button_second.clicked.connect(self.on_second_click)

        # Set the layout
        vbox = QtGui.QVBoxLayout()
        vbox.addWidget(self.widget)
        hbox = QtGui.QHBoxLayout()
        hbox.addWidget(self.button_first)
        hbox.addWidget(self.button_second)
        vbox.addLayout(hbox)
        self.setLayout(vbox)

    def on_first_click(self):
        '''Sets the first DataFrame'''
        self.widget.setDataFrame(self.df1)

    def on_second_click(self):
        '''Sets the second DataFrame'''
        self.widget.setDataFrame(self.df2)
```

140 Chapter 3. Frequently Asked Questions (FAQ)
```python
if __name__ == '__main__':
    import sys

    # Initialize the application
    app = QtGui.QApplication(sys.argv)
    mw = MainWidget()
    mw.show()
    app.exec_()
```
pandas consists of the following things

• A set of labeled array data structures, the primary of which are Series/TimeSeries and DataFrame
• Index objects enabling both simple axis indexing and multi-level / hierarchical axis indexing
• An integrated group by engine for aggregating and transforming data sets
• Date range generation (date_range) and custom date offsets enabling the implementation of customized frequencies
• Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and saving and loading pandas objects from the fast and efficient PyTables/HDF5 format.
• Memory-efficient “sparse” versions of the standard data structures for storing data that is mostly missing or mostly constant (some fixed value)
• Moving window statistics (rolling mean, rolling standard deviation, etc.)
• Static and moving window linear and panel regression

4.1 Data structures at a glance

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Series</td>
<td>1D labeled homogeneously-typed array</td>
</tr>
<tr>
<td>1</td>
<td>TimeSeries</td>
<td>Series with index containing datetimes</td>
</tr>
<tr>
<td>2</td>
<td>DataFrame</td>
<td>General 2D labeled, size-mutable tabular structure with potentially heterogeneously-typed columns</td>
</tr>
<tr>
<td>3</td>
<td>Panel</td>
<td>General 3D labeled, also size-mutable array</td>
</tr>
</tbody>
</table>

4.1.1 Why more than 1 data structure?

The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For example, DataFrame is a container for Series, and Panel is a container for DataFrame objects. We would like to be able to insert and remove objects from these containers in a dictionary-like fashion.

Also, we would like sensible default behaviors for the common API functions which take into account the typical orientation of time series and cross-sectional data sets. When using ndarrays to store 2- and 3-dimensional data, a burden is placed on the user to consider the orientation of the data set when writing functions; axes are considered more or less equivalent (except when C- or Fortran-contiguousness matters for performance). In pandas, the axes are
intended to lend more semantic meaning to the data; i.e., for a particular data set there is likely to be a “right” way to orient the data. The goal, then, is to reduce the amount of mental effort required to code up data transformations in downstream functions.

For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and the columns rather than axis 0 and axis 1. And iterating through the columns of the DataFrame thus results in more readable code:

```python
for col in df.columns:
    series = df[col]
    # do something with series
```

4.2 Mutability and copying of data

All pandas data structures are value-mutable (the values they contain can be altered) but not always size-mutable. The length of a Series cannot be changed, but, for example, columns can be inserted into a DataFrame. However, the vast majority of methods produce new objects and leave the input data untouched. In general, though, we like to favor immutability where sensible.

4.3 Getting Support

The first stop for pandas issues and ideas is the Github Issue Tracker. If you have a general question, pandas community experts can answer through Stack Overflow.

Longer discussions occur on the developer mailing list, and commercial support inquiries for Lambda Foundry should be sent to: support@lambdafoundry.com

4.4 Credits

pandas development began at AQR Capital Management in April 2008. It was open-sourced at the end of 2009. AQR continued to provide resources for development through the end of 2011, and continues to contribute bug reports today. Since January 2012, Lambda Foundry, has been providing development resources, as well as commercial support, training, and consulting for pandas.

pandas is only made possible by a group of people around the world like you who have contributed new code, bug reports, fixes, comments and ideas. A complete list can be found on Github.

4.5 Development Team

pandas is a part of the PyData project. The PyData Development Team is a collection of developers focused on the improvement of Python’s data libraries. The core team that coordinates development can be found on Github. If you’re interested in contributing, please visit the project website.

4.6 License
pandas is distributed under a 3-clause ("Simplified" or "New") BSD license. Parts of NumPy, SciPy, numpydoc, bottleneck, which all have BSD-compatible licenses, are included. Their licenses follow the pandas license.

pandas license
===============

Copyright (c) 2011-2012, Lambda Foundry, Inc. and PyData Development Team
All rights reserved.

Copyright (c) 2008-2011 AQR Capital Management, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

About the Copyright Holders
===========================

AQR Capital Management began pandas development in 2008. Development was led by Wes McKinney. AQR released the source under this license in 2009. Wes is now an employee of Lambda Foundry, and remains the pandas project lead.

The PyData Development Team is the collection of developers of the PyData project. This includes all of the PyData sub-projects, including pandas. The core team that coordinates development on GitHub can be found here: http://github.com/pydata.
Full credits for pandas contributors can be found in the documentation.

Our Copyright Policy
====================

PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important to note that these contributions are typically only changes to the repositories. Thus, the PyData source code, in its entirety, is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire PyData Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change when they commit the change to one of the PyData repositories.

With this in mind, the following banner should be used in any source code file to indicate the copyright and license terms:

#---
Copyright (c) 2012, PyData Development Team
All rights reserved.
Distributed under the terms of the BSD Simplified License.
The full license is in the LICENSE file, distributed with this software.
#---

Other licenses can be found in the LICENSES directory.
This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the *Cookbook*

Customarily, we import as follows

```python
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt
```

5.1 Object Creation

See the *Data Structure Intro section*

Creating a *Series* by passing a list of values, letting pandas create a default integer index

```python
In [4]: s = pd.Series([1,3,5,np.nan,6,8])
```

```
In [5]: s
Out[5]:
      0   1
      1   3
      2   5
      3  NaN
      4   6
      5   8
dtype: float64
```

Creating a *DataFrame* by passing a numpy array, with a datetime index and labeled columns.

```python
In [6]: dates = pd.date_range('20130101', periods=6)
```

```
In [7]: dates
Out[7]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01, ..., 2013-01-06]
Length: 6, Freq: D, Timezone: None
```

```python
In [8]: df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD'))
```

```
In [9]: df
Out[9]:
```
Creating a DataFrame by passing a dict of objects that can be converted to series-like.

```
In [10]: df2 = pd.DataFrame({ 'A' : 1.,
                        ....:       'B' : pd.Timestamp('20130102'),
                        ....:       'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
                        ....:       'D' : np.array([3] * 4,dtype='int32'),
                        ....:       'E' : 'foo' })

In [11]: df2
Out [11]:
     A     B               C               D              E
0  1.0  2013-01-02       1.000000       3.000000    foo
1  1.0  2013-01-02       1.000000       3.000000    foo
2  1.0  2013-01-02       1.000000       3.000000    foo
3  1.0  2013-01-02       1.000000       3.000000    foo
```

Having specific dtypes

```
In [12]: df2.dtypes
Out [12]:
A     float64
B    datetime64[ns]
C     float32
D      int32
E       object
dtype: object
```

If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled. Here’s a subset of the attributes that will be completed:

```
In [13]: df2.<TAB>
df2.A        df2.boxplot
df2.abs       df2.C
df2.add       df2.clip
df2.add_prefix df2.clip_lower
df2.add_suffix df2.clip_upper
df2.align     df2.columns
df2.all       df2.combine
df2.any       df2.combineAdd
df2.append    df2.combine_first
df2.apply     df2.combineMult
df2.applymap  df2.compound
df2.as_blocks df2.consolidate
df2.asfreq    df2.convert_objects
df2.as_matrix df2.copy
df2.astype    df2.corr
df2.at        df2.corrwith
df2.at_time   df2.count
df2.axes      df2.cov
df2.B         df2.cummax
```
As you can see, the columns A, B, C, and D are automatically tab completed. E is there as well; the rest of the attributes have been truncated for brevity.

5.2 Viewing Data

See the Basics section

See the top & bottom rows of the frame

In [14]: df.head()
Out[14]:
 A B C D
0 2013-01-01 0.4691 -0.2829 -1.5091 -1.1356
1 2013-01-02 1.2121 -0.1732 0.1192 -1.0442
2 2013-01-03 0.8618 -2.1046 -0.4949 1.0718
3 2013-01-04 0.7216 -2.1046 -0.4949 1.0718
4 2013-01-05 0.4249 0.5670 0.2762 -1.0874

In [15]: df.tail(3)
Out[15]:
 A B C D
3 2013-01-04 0.7216 -0.7068 -1.0396 0.2719
4 2013-01-05 0.4249 0.5670 0.2762 -1.0874
5 2013-01-06 0.6737 0.1136 -1.4784 0.5249

Display the index, columns, and the underlying numpy data

In [16]: df.index
Out[16]:<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01, ..., 2013-01-06]
Length: 6, Freq: D, Timezone: None

In [17]: df.columns
Out[17]: Index([u'A', u'B', u'C', u'D'], dtype='object')

In [18]: df.values
Out[18]:
array([[0.4691, -0.2829, -1.5091, -1.1356],
 [1.2121, -0.1732, 0.1192, -1.0442],
 [0.8618, -2.1046, -0.4949, 1.0718],
 [1.2121, -0.1732, 0.1192, -1.0442],
 [0.8618, -2.1046, -0.4949, 1.0718],
 [-0.4249, 0.5670, 0.2762, -1.0874],
 [-0.6737, 0.1136, -1.4784, 0.5249]])

Describe shows a quick statistic summary of your data

In [19]: df.describe()
Out[19]:
 A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
Transposing your data

In [20]: df.T
Out[20]:
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

Sorting by an axis

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
 D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.706771
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690

Sorting by values

In [22]: df.sort(columns='B')
Out[22]:
 A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

5.3 Selection

Note: While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc, .iloc and .ix.

See the Indexing section and below.

5.3.1 Getting

Selecting a single column, which yields a Series, equivalent to df.A
In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3]
Out[24]:
 A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

In [25]: df['20130102':'20130104']
Out[25]:
 A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

5.3.2 Selection by Label

See more in Selection by Label

For getting a cross section using a label

In [26]: df.loc[dates[0]]
Out[26]:
 A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label

In [27]: df.loc[:,['A','B']]
Out[27]:
 A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

Showing label slicing, both endpoints are included

In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:
 A B
2013-01-02 1.212112 -0.173215
Reduction in the dimensions of the returned object

\[
\text{In [29]: df.loc[\text{\textquotesingle}20130102\textquotesingle, [\text{\textquotesingle}A\textquotesc, \text{\textquotesingle}B\textquotesingle]]}
\]
\[
\text{Out[29]:}
\]
\[
A \quad 1.212112 \\
B \quad -0.173215 \\
\text{Name: 2013-01-02 00:00:00, dtype: float64}
\]

For getting a scalar value

\[
\text{In [30]: df.loc[dates[0], \text{\textquotesingle}A\textquotesingle]}
\]
\[
\text{Out[30]: 0.46911229990718628}
\]

For getting fast access to a scalar (equiv to the prior method)

\[
\text{In [31]: df.at[dates[0], \text{\textquotesingle}A\textquotesingle]}
\]
\[
\text{Out[31]: 0.46911229990718628}
\]

5.3.3 Selection by Position

See more in *Selection by Position*

Select via the position of the passed integers

\[
\text{In [32]: df.iloc[3]}
\]
\[
\text{Out[32]:}
\]
\[
A \quad 0.721555 \\
B \quad -0.706771 \\
C \quad -1.039575 \\
D \quad 0.271860 \\
\text{Name: 2013-01-04 00:00:00, dtype: float64}
\]

By integer slices, acting similar to numpy/python

\[
\text{In [33]: df.iloc[3:5, 0:2]}
\]
\[
\text{Out[33]:}
\]
\[
\begin{array}{cc}
A & B \\
2013-01-04 & 0.721555 -0.706771 \\
2013-01-05 & -0.424972 0.567020 \\
\end{array}
\]

By lists of integer position locations, similar to the numpy/python style

\[
\text{In [34]: df.iloc[[1, 2, 4], [0, 2]]}
\]
\[
\text{Out[34]:}
\]
\[
\begin{array}{cc}
A & C \\
2013-01-02 & 1.212112 0.119209 \\
2013-01-03 & -0.861849 -0.494929 \\
2013-01-05 & -0.424972 0.276232 \\
\end{array}
\]

For slicing rows explicitly

\[
\text{In [35]: df.loc[1:3,:]}
\]
\[
\text{Out[35]:}
\]
\[
\begin{array}{cccc}
A & B & C & D \\
2013-01-02 & 1.212112 & -0.173215 & 0.119209 -1.044236 \\
2013-01-03 & -0.861849 & -2.104569 & -0.494929 & 1.071804 \\
\end{array}
\]
For slicing columns explicitly

```
In [36]: df.iloc[:,1:3]
Out[36]:
    B    C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427
```

For getting a value explicitly

```
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330861
```

For getting fast access to a scalar (equiv to the prior method)

```
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330861
```

5.3.4 Boolean Indexing

Using a single column’s values to select data.

```
In [39]: df[df.A > 0]
Out[39]:
      A          B          C          D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
```

A `where` operation for getting.

```
In [40]: df[df > 0]
Out[40]:
      A          B          C          D
2013-01-01  0.469112      NaN      NaN      NaN
2013-01-02  1.212112      NaN  0.119209      NaN
2013-01-03      NaN      NaN      NaN  1.071804
2013-01-04  0.721555      NaN      NaN  0.271860
2013-01-05      NaN  0.567020  0.276232      NaN
2013-01-06      NaN  0.113648      NaN  0.524988
```

Using the `isin()` method for filtering:

```
In [41]: df2 = df.copy()

In [42]: df2['E']=['one', 'one', 'two', 'three', 'four', 'three']

In [43]: df2
Out[43]:
      A          B          C          D          E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632  one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236  one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804  two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four
```

5.3. Selection
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three

In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:
 A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

5.3.5 Setting

Setting a new column automatically aligns the data by the indexes

In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range('20130102',periods=6))
In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64

In [47]: df['F'] = s1

Setting values by label

In [48]: df.at[dates[0],'A'] = 0

Setting values by position

In [49]: df.iat[0,1] = 0

Setting by assigning with a numpy array

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

The result of the prior setting operations

In [51]: df
Out[51]:
 A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2
2013-01-04 0.721555 -0.706771 -1.039575 5 3
2013-01-05 -0.424972 0.567020 0.276232 5 4
2013-01-06 -0.673690 0.113648 -1.478427 5 5

A where operation with setting.

In [52]: df2 = df.copy()
In [53]: df2[df2 > 0] = -df2

In [54]: df2
Out[54]:
 A B C D F
5.4 Missing Data

pandas primarily uses the value \texttt{np.nan} to represent missing data. It is by default not included in computations. See the Missing Data section.

Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.

\texttt{In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + [‘E’])}

\texttt{In [56]: df1.loc[dates[0]:dates[1],’E’] = 1}

\texttt{In [57]: df1}

\texttt{Out[57]:}

A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3 NaN

To drop any rows that have missing data.

\texttt{In [58]: df1.dropna(how=’any’)}

\texttt{Out[58]:}

A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1 1

Filling missing data

\texttt{In [59]: df1.fillna(value=5)}

\texttt{Out[59]:}

A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5 1
2013-01-02 1.212112 -0.173215 0.119209 5 1 1
2013-01-03 -0.861849 -2.104569 -0.494929 5 2 5
2013-01-04 0.721555 -0.706771 -1.039575 5 3 5

To get the boolean mask where values are \texttt{nan}

\texttt{In [60]: pd.isnull(df1)}

\texttt{Out[60]:}

A B C D F E
2013-01-01 False False False False True False
2013-01-02 False False False False False False
2013-01-03 False False False False False True
2013-01-04 False False False False False True

5.5 Operations

See the Basic section on Binary Ops
5.5.1 Stats

Operations in general exclude missing data.

Performing a descriptive statistic

```
In [61]: df.mean()
Out[61]:
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64
```

Same operation on the other axis

```
In [62]: df.mean(1)
Out[62]:
2013-01-01  0.872735
2013-01-02  1.431621
2013-01-03  0.707731
2013-01-04  1.395042
2013-01-05  1.883656
2013-01-06  1.592306
Freq: D, dtype: float64
```

Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.

```
In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)

In [64]: s
Out[64]:
2013-01-01  NaN
2013-01-02  NaN
2013-01-03   1
2013-01-04   3
2013-01-05   5
2013-01-06  NaN
Freq: D, dtype: float64
```

```
In [65]: df.sub(s, axis='index')
Out[65]:
          A   B   C   D   F
2013-01-01 NaN NaN NaN NaN NaN
2013-01-02 NaN NaN NaN NaN NaN
2013-01-03 -1.861849 -3.104569 -1.494929  4  1
2013-01-04 -2.278445 -3.706771 -4.039575  2  0
2013-01-05 -5.424972 -4.432980 -4.723768  0 -1
2013-01-06 NaN NaN NaN NaN NaN
```

5.5.2 Apply

Applying functions to the data

```
In [66]: df.apply(np.cumsum)
Out[66]:
```

156 Chapter 5. 10 Minutes to pandas
In [67]: df.apply(lambda x: x.max() - x.min())

Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64

5.5.3 Histogramming

See more at Histogramming and Discretization

In [68]: s = pd.Series(np.random.randint(0,7,size=10))

In [69]: s

Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int32

In [70]: s.value_counts()

Out[70]:
4 5
6 2
2 2
1 1
dtype: int64

5.5.4 String Methods

See more at Vectorized String Methods

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()

Out[72]:
0 a
1 b

5.5. Operations
5.6 Merge

5.6.1 Concat

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

See the Merging section

Concatenating pandas objects together

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:
 0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]:
 0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
5.6.2 Join

SQL style merges. See the Database style joining

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]:
 key lval
0 foo 1
1 foo 2

In [80]: right
Out[80]:
 key rval
0 foo 4
1 foo 5

In [81]: pd.merge(left, right, on='key')
Out[81]:
 key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

5.6.3 Append

Append rows to a dataframe. See the Appending

In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [83]: df
Out[83]:
 A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 -0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758

In [84]: s = df.iloc[3]

In [85]: df.append(s, ignore_index=True)
Out[85]:
 A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 -0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 0.339355 0.593616 0.884345 1.591431

5.6. Merge
5.7 Grouping

By “group by” we are referring to a process involving one or more of the following steps

- **Splitting** the data into groups based on some criteria
- **Applying** a function to each group independently
- **Combining** the results into a data structure

See the *Grouping section*

```python
In [86]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
                                'foo', 'bar', 'foo', 'bar',
                                'foo', 'bar', 'foo', 'foo'],
                      'B': ['one', 'one', 'two', 'three',
                            'two', 'two', 'one', 'three'],
                      'C': np.random.randn(8),
                      'D': np.random.randn(8))

In [87]: df
Out[87]:
   A  B        C         D
 0  foo  one  -1.202872 -0.055224
 1   bar  one   -1.814470  2.395985
 2   foo  two   1.018601  1.552825
 3   bar  three  -0.595447  0.166599
 4   foo  two   1.395433  0.047609
 5   bar  two   -0.392670 -0.136473
 6   foo  one   0.007207 -0.561757
 7   foo  three  1.928123 -1.623033

Grouping and then applying a function `sum` to the resulting groups.

```python
In [88]: df.groupby('A').sum()
Out[88]:
 C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958

Grouping by multiple columns forms a hierarchical index, which we then apply the function.

```python
In [89]: df.groupby(['A', 'B']).sum()
Out[89]:
   C         D
A B
bar one  -1.814470  2.395985
    three  -0.595447  0.166599
    two  -0.392670 -0.136473
foo one  -1.195665  0.047609
    three  1.928123 -1.623033
    two  2.414034  1.600434
```
5.8 Reshaping

See the section on Hierarchical Indexing and see the section on Reshaping).

5.8.1 Stack

In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
 'foo', 'foo', 'qux', 'qux'],
 ['one', 'two', 'one', 'two',
 'one', 'two', 'one', 'two']]))

In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [93]: df2 = df[:4]

In [94]: df2
Out[94]:
 A B
first second
bar one 0.029399 -0.542108
 two 0.282696 -0.087302
baz one -1.575170 1.771208
 two 0.816482 1.100230

The stack function “compresses” a level in the DataFrame’s columns.

In [95]: stacked = df2.stack()

In [96]: stacked
Out[96]:
 first second A B
 bar one 0.029399 -0.542108
 two 0.282696 -0.087302
 baz one -1.575170 1.771208
 two 0.816482 1.100230
dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:

In [97]: stacked.unstack()
Out[97]:
 first second
 bar one 0.029399 0.282696 0.816482
 two -0.542108 -0.087302 1.100230
 baz one -1.575170 1.771208
 two 1.100230

In [98]: stacked.unstack(1)
Out [98]:
second one two
first
bar A 0.029399 0.282696
B -0.542108 -0.087302
baz A -1.575170 0.816482
B 1.771208 1.100230

In [99]: stacked.unstack(0)
Out[99]:
first bar baz
second
one A 0.029399 -1.575170
B -0.542108 1.771208
two A 0.282696 0.816482
B -0.087302 1.100230

5.8.2 Pivot Tables

See the section on Pivot Tables.

In [100]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
....: 'B': ['A', 'B', 'C'] * 4,
....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
....: 'D': np.random.randn(12),
....: 'E': np.random.randn(12)})
In [101]: df
Out[101]:
 A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo 1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 0.314665
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115

We can produce pivot tables from this data very easily:

In [102]: pd.pivot_table(df, values='D', index=['A', 'B'],
...: columns=['C'])
Out[102]:
 C
 bar foo
A
one A -0.773723 1.418757
 B -0.029716 -1.879024
 C -1.146178 0.314665
three A 1.006160 NaN
 B NaN -1.035018
 C 0.648740 NaN
two A NaN 0.100900
5.9 Time Series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications. See the Time Series section

In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [105]: ts.resample('5Min', how='sum')
Out[105]:
2012-01-01 25083
Freq: 5T, dtype: int32

Time zone representation

In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [108]: ts
Out[108]:
2012-03-06 0.464000
2012-03-07 -0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 2.290613
Freq: D, dtype: float64

In [109]: ts_utc = ts.tz_localize('UTC')

In [110]: ts_utc
Out[110]:
2012-03-06 00:00:00+00:00 0.464000
2012-03-07 00:00:00+00:00 -0.227371
2012-03-08 00:00:00+00:00 -0.496922
2012-03-09 00:00:00+00:00 0.306389
2012-03-10 00:00:00+00:00 -2.290613
Freq: D, dtype: float64

Convert to another time zone

In [111]: ts_utc.tz_convert('US/Eastern')
Out[111]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64

Converting between time span representations
In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [114]: ts
Out[114]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64
In [115]: ps = ts.to_period()
In [116]: ps
Out[116]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64
In [117]: ps.to_timestamp()
Out[117]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64
Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:
In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [121]: ts.head()
Out[121]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64

5.10 Plotting

Plotting docs.
In [122]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [123]: ts = ts.cumsum()
In [124]: ts.plot()
Out[124]: <matplotlib.axes.AxesSubplot at 0xafbee7ac>

On DataFrame, plot is a convenience to plot all of the columns with labels:

In [125]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
.....: columns=['A', 'B', 'C', 'D'])
.....:
In [126]: df = df.cumsum()
In [127]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[127]: <matplotlib.legend.Legend at 0xb0a4752c>
5.11 Getting Data In/Out

5.11.1 CSV

Writing to a csv file

In [128]: df.to_csv('foo.csv')

Reading from a csv file

In [129]: pd.read_csv('foo.csv')

Out [129]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2000-01-01</td>
<td>0.266457</td>
<td>-0.399641</td>
<td>-0.219582</td>
</tr>
<tr>
<td>1</td>
<td>2000-01-02</td>
<td>-1.170732</td>
<td>-0.345873</td>
<td>1.653061</td>
</tr>
<tr>
<td>2</td>
<td>2000-01-03</td>
<td>-1.734933</td>
<td>0.530468</td>
<td>2.060811</td>
</tr>
<tr>
<td>3</td>
<td>2000-01-04</td>
<td>-1.555121</td>
<td>1.452620</td>
<td>0.239859</td>
</tr>
<tr>
<td>4</td>
<td>2000-01-05</td>
<td>0.578117</td>
<td>0.511371</td>
<td>0.103552</td>
</tr>
<tr>
<td>5</td>
<td>2000-01-06</td>
<td>0.478344</td>
<td>0.449933</td>
<td>-0.741620</td>
</tr>
<tr>
<td>6</td>
<td>2000-01-07</td>
<td>1.235339</td>
<td>-0.091757</td>
<td>-1.543861</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>994</td>
<td>2002-09-21</td>
<td>-10.390377</td>
<td>-8.727491</td>
<td>-6.399645</td>
</tr>
<tr>
<td>998</td>
<td>2002-09-25</td>
<td>-10.216020</td>
<td>-9.480682</td>
<td>-3.933802</td>
</tr>
<tr>
<td>999</td>
<td>2002-09-26</td>
<td>-11.856774</td>
<td>-10.671012</td>
<td>-3.216025</td>
</tr>
</tbody>
</table>

[1000 rows x 5 columns]
5.11.2 HDF5

Reading and writing to HDFStores

Writing to a HDF5 Store

In [130]: df.to_hdf('foo.h5','df')

Reading from a HDF5 Store

In [131]: pd.read_hdf('foo.h5','df')

Out[131]:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>2000-01-01</td>
<td>0.266457</td>
<td>-0.399641</td>
<td>-0.219582</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-1.170732</td>
<td>-0.345873</td>
<td>1.653061</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>-1.734933</td>
<td>0.530468</td>
<td>2.060811</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-1.555121</td>
<td>1.452620</td>
<td>0.239859</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.578117</td>
<td>0.511371</td>
<td>0.103552</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>0.478344</td>
<td>0.449933</td>
<td>-0.741620</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>1.235339</td>
<td>-0.091757</td>
<td>-1.543861</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>-10.390377</td>
<td>-8.727491</td>
<td>-6.399645</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>-11.856774</td>
<td>-10.671012</td>
<td>-3.216025</td>
</tr>
</tbody>
</table>

[1000 rows x 4 columns]

5.11.3 Excel

Reading and writing to MS Excel

Writing to an excel file

In [132]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

Reading from an excel file

In [133]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

Out[133]:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>2000-01-01</td>
<td>0.266457</td>
<td>-0.399641</td>
<td>-0.219582</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-1.170732</td>
<td>-0.345873</td>
<td>1.653061</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>-1.734933</td>
<td>0.530468</td>
<td>2.060811</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-1.555121</td>
<td>1.452620</td>
<td>0.239859</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.578117</td>
<td>0.511371</td>
<td>0.103552</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>0.478344</td>
<td>0.449933</td>
<td>-0.741620</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>1.235339</td>
<td>-0.091757</td>
<td>-1.543861</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>-10.390377</td>
<td>-8.727491</td>
<td>-6.399645</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>-11.856774</td>
<td>-10.671012</td>
<td>-3.216025</td>
</tr>
</tbody>
</table>

5.11. Getting Data In/Out
5.12 Gotchas

If you are trying an operation and you see an exception like:

```python
>>> if pd.Series([False, True, False]):
    print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

See *Comparisons* for an explanation and what to do.

See *Gotchas* as well.
This is a guide to many pandas tutorials, geared mainly for new users.

6.1 Internal Guides

pandas own *10 Minutes to pandas*

More complex recipes are in the *Cookbook*

6.2 pandas Cookbook

The goal of this cookbook (by Julia Evans) is to give you some concrete examples for getting started with pandas. These are examples with real-world data, and all the bugs and weirdness that that entails.

Here are links to the v0.1 release. For an up-to-date table of contents, see the pandas-cookbook GitHub repository. To run the examples in this tutorial, you’ll need to clone the GitHub repository and get IPython Notebook running. See How to use this cookbook.

- **A quick tour of the IPython Notebook:** Shows off IPython’s awesome tab completion and magic functions.
- **Chapter 1:** Reading your data into pandas is pretty much the easiest thing. Even when the encoding is wrong!
- **Chapter 2:** It’s not totally obvious how to select data from a pandas dataframe. Here we explain the basics (how to take slices and get columns)
- **Chapter 3:** Here we get into serious slicing and dicing and learn how to filter dataframes in complicated ways, really fast.
- **Chapter 4:** Groupby/aggregate is seriously my favorite thing about pandas and I use it all the time. You should probably read this.
- **Chapter 5:** Here you get to find out if it’s cold in Montreal in the winter (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
- **Chapter 6:** Strings with pandas are great. It has all these vectorized string operations and they’re the best. We will turn a bunch of strings containing “Snow” into vectors of numbers in a trice.
- **Chapter 7:** Cleaning up messy data is never a joy, but with pandas it’s easier.
- **Chapter 8:** Parsing Unix timestamps is confusing at first but it turns out to be really easy.
6.3 Lessons for New pandas Users

For more resources, please visit the main repository.

- **01 - Lesson:** Importing libraries - Creating data sets - Creating data frames - Reading from CSV - Exporting to CSV - Finding maximums - Plotting data
- **02 - Lesson:** Reading from TXT - Exporting to TXT - Selecting top/bottom records - Descriptive statistics - Grouping/sorting data
- **03 - Lesson:** Creating functions - Reading from EXCEL - Exporting to EXCEL - Outliers - Lambda functions - Slice and dice data
- **04 - Lesson:** Adding/deleting columns - Index operations
- **05 - Lesson:** Stack/Unstack/Transpose functions
- **06 - Lesson:** GroupBy function
- **07 - Lesson:** Ways to calculate outliers
- **08 - Lesson:** Read from Microsoft SQL databases
- **09 - Lesson:** Export to CSV/EXCEL/TXT
- **10 - Lesson:** Converting between different kinds of formats
- **11 - Lesson:** Combining data from various sources

6.4 Excel charts with pandas, vincent and xlsxwriter

- Using Pandas and XlsxWriter to create Excel charts

6.5 Various Tutorials

- Wes McKinney's (pandas BDFL) blog
- Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson
- Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013
- Financial analysis in python, by Thomas Wiecki
- Intro to pandas data structures, by Greg Reda
- Pandas and Python: Top 10, by Manish Amde
- Pandas Tutorial, by Mikhail Semeniuk
This is a repository for *short and sweet* examples and links for useful pandas recipes. We encourage users to add to this documentation.

This is a great *First Pull Request* (to add interesting links and/or put short code inline for existing links)

7.1 Idioms

These are some neat pandas *idioms*:

- How to do if-then-else?
- How to do if-then-else #2
- How to split a frame with a boolean criterion?
- How to select from a frame with complex criteria?
- Select rows closest to a user-defined number
- How to reduce a sequence (e.g. of Series) using a binary operator

7.2 Selection

The *indexing* docs.

- Indexing using both row labels and conditionals
- Use loc for label-oriented slicing and iloc positional slicing
- Extend a panel frame by transposing, adding a new dimension, and transposing back to the original dimensions
- Mask a panel by using np.where and then reconstructing the panel with the new masked values
- Using ~ to take the complement of a boolean array, see
- Efficiently creating columns using applymap
- Keep other columns when using min() with groupby
7.3 MultIndexing

The multindexing docs.
Creating a multi-index from a labeled frame

7.3.1 Arithmetic

Performing arithmetic with a multi-index that needs broadcasting

7.3.2 Slicing

Slicing a multi-index with xs
Slicing a multi-index with xs #2
Setting portions of a multi-index with xs

7.3.3 Sorting

Multi-index sorting
Partial Selection, the need for sortedness

7.3.4 Levels

Prepending a level to a multiindex
Flatten Hierarchical columns

7.3.5 panelInd

The panelInd docs.
Construct a 5D panelInd

7.4 Missing Data

The missing data docs.
Fill forward a reversed timeseries

In [1]: df = pd.DataFrame(np.random.randn(6,1), index=pd.date_range('2013-08-01', periods=6, freq='B'), columns=list('A'))

In [2]: df.ix[3,'A'] = np.nan

In [3]: df
Out[3]:
 A
2013-08-01 0.469112
2013-08-02 -0.282863
2013-08-05 -1.509059
In [4]: df.reindex(df.index[::-1]).ffill()

Out[4]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-08-08</td>
<td>-0.173215</td>
</tr>
<tr>
<td>2013-08-07</td>
<td>1.212112</td>
</tr>
<tr>
<td>2013-08-06</td>
<td>1.212112</td>
</tr>
<tr>
<td>2013-08-05</td>
<td>-1.509059</td>
</tr>
<tr>
<td>2013-08-02</td>
<td>-0.282863</td>
</tr>
<tr>
<td>2013-08-01</td>
<td>0.469112</td>
</tr>
</tbody>
</table>

cumsum reset at NaN values

7.4.1 Replace

Using replace with backrefs

7.5 Grouping

The grouping docs.

Basic grouping with apply

Using get_group

Apply to different items in a group

Expanding Apply

Replacing values with groupby means

Sort by group with aggregation

Create multiple aggregated columns

Create a value counts column and reassign back to the DataFrame

Shift groups of the values in a column based on the index

In [5]: df = pd.DataFrame(
...: {u'line_race': [10L, 10L, 8L, 10L, 10L, 8L],
...: u'beyer': [99L, 102L, 103L, 103L, 88L, 100L]},
...: index=[u'Last Gunfighter', u'Last Gunfighter', u'Last Gunfighter',
...: u'Paynter', u'Paynter', u'Paynter']); df

Out[5]:

<table>
<thead>
<tr>
<th></th>
<th>beyer</th>
<th>line_race</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Gunfighter</td>
<td>99</td>
<td>10</td>
</tr>
<tr>
<td>Last Gunfighter</td>
<td>102</td>
<td>10</td>
</tr>
<tr>
<td>Last Gunfighter</td>
<td>103</td>
<td>8</td>
</tr>
<tr>
<td>Paynter</td>
<td>103</td>
<td>10</td>
</tr>
<tr>
<td>Paynter</td>
<td>88</td>
<td>10</td>
</tr>
<tr>
<td>Paynter</td>
<td>100</td>
<td>8</td>
</tr>
</tbody>
</table>

In [6]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)
In [7]: df
Out[7]:

<table>
<thead>
<tr>
<th></th>
<th>beyer</th>
<th>line_race</th>
<th>beyer_shifted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Gunfighter</td>
<td>99</td>
<td>10</td>
<td>NaN</td>
</tr>
<tr>
<td>Last Gunfighter</td>
<td>102</td>
<td>10</td>
<td>99</td>
</tr>
<tr>
<td>Last Gunfighter</td>
<td>103</td>
<td>8</td>
<td>102</td>
</tr>
<tr>
<td>Paynter</td>
<td>103</td>
<td>10</td>
<td>NaN</td>
</tr>
<tr>
<td>Paynter</td>
<td>88</td>
<td>10</td>
<td>103</td>
</tr>
<tr>
<td>Paynter</td>
<td>100</td>
<td>8</td>
<td>88</td>
</tr>
</tbody>
</table>

7.5.1 Expanding Data

Alignment and to-date

Rolling Computation window based on values instead of counts

Rolling Mean by Time Interval

7.5.2 Splitting

Splitting a frame

7.5.3 Pivot

The *Pivot* docs.

Partial sums and subtotals

Frequency table like plyr in R

7.5.4 Apply

Turning embedded lists into a multi-index frame

Rolling apply with a DataFrame returning a Series

Rolling apply with a DataFrame returning a Scalar

7.6 Timeseries

Between times

Using indexer between time

Constructing a datetime range that excludes weekends and includes only certain times

Vectorized Lookup

Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series.

How to rearrange a python pandas DataFrame?

Dealing with duplicates when reindexing a timeseries to a specified frequency

Calculate the first day of the month for each entry in a DatetimeIndex
In [8]: dates = pd.date_range('2000-01-01', periods=5)

In [9]: dates.to_period(freq='M').to_timestamp()
Out[9]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01, ..., 2000-01-01]
Length: 5, Freq: None, Timezone: None

7.6.1 Resampling

The Resample docs.

TimeGrouping of values grouped across time

TimeGrouping #2

Using TimeGrouper and another grouping to create subgroups, then apply a custom function

Resampling with custom periods

Resample intraday frame without adding new days

Resample minute data

Resample with groupby

7.7 Merge

The Concat docs. The Join docs.

emulate R rbind

Self Join

How to set the index and join

KDB like asof join

Join with a criteria based on the values

7.8 Plotting

The Plotting docs.

Make Matplotlib look like R

Setting x-axis major and minor labels

Plotting multiple charts in an ipython notebook

Creating a multi-line plot

Plotting a heatmap

Annotate a time-series plot

Annotate a time-series plot #2

Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter

7.7. Merge
Boxplot for each quartile of a stratifying variable

```python
In [10]: df = pd.DataFrame(
    ....:     {u'stratifying_var': np.random.uniform(0, 100, 20),
    ....:      u'price': np.random.normal(100, 5, 20)}
    ....: )
    ....:

In [11]: df[u'quartiles'] = pd.qcut(
    ....:     df[u'stratifying_var'],
    ....:     4,
    ....:     labels=[u'0-25%', u'25-50%', u'50-75%', u'75-100%'])
    ....:

In [12]: df.boxplot(column=u'price', by=u'quartiles')
Out[12]: <matplotlib.axes.AxesSubplot at 0xaa40108c>
```

7.9 Data In/Out

Performance comparison of SQL vs HDF5

7.9.1 CSV

The CSV docs
read_csv in action
appending to a csv
Reading a csv chunk-by-chunk
Reading only certain rows of a csv chunk-by-chunk
Reading the first few lines of a frame
Reading a file that is compressed but not by gzip/bz2 (the native compressed formats which read_csv understands). This example shows a WinZipped file, but is a general application of opening the file within a context manager and using that handle to read. See here

Inferring dtypes from a file
Dealing with bad lines
Dealing with bad lines II

Reading CSV with Unix timestamps and converting to local timezone

Write a multi-row index CSV without writing duplicates

Parsing date components in multi-columns is faster with a format

```
In [30]: i = pd.date_range('20000101', periods=10000)

In [31]: df = pd.DataFrame(dict(year = i.year, month = i.month, day = i.day))

In [32]: df.head()
Out[32]:
   day  month  year
0    1       1  2000
1    2       1  2000
2    3       1  2000
3    4       1  2000
4    5       1  2000
```

```
%timeit pd.to_datetime(df.year*10000+df.month*100+df.day, format='%Y%m%d')
```  
100 loops, best of 3: 7.08 ms per loop

```
# simulate combinging into a string, then parsing
In [34]: ds = df.apply(lambda x: "%04d%02d%02d" % (x["year"], x["month"], x["day"]), axis=1)

In [35]: ds.head()
Out[35]:
0  20000101
1  20000102
2  20000103
3  20000104
4  20000105
```

```
%timeit pd.to_datetime(ds)
```  
1 loops, best of 3: 488 ms per loop

7.9.2 SQL

The SQL docs

Reading from databases with SQL
7.9.3 Excel

The Excel docs
Reading from a filelike handle Reading HTML tables from a server that cannot handle the default request header

7.9.4 HDFStore

The HDFStores docs
Simple Queries with a Timestamp Index
Managing heterogeneous data using a linked multiple table hierarchy
Merging on-disk tables with millions of rows
Deduplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data from csv file and creating a store by chunks, with date parsing as well. See here
Creating a store chunk-by-chunk from a csv file
Appending to a store, while creating a unique index
Large Data work flows
Reading in a sequence of files, then providing a global unique index to a store while appending
Groupby on a HDFStore
Hierarchical queries on a HDFStore
Counting with a HDFStore
Troubleshoot HDFStore exceptions
Setting min_itemsize with strings
Using ptrepack to create a completely-sorted-index on a store
Storing Attributes to a group node
In [13]: df = DataFrame(np.random.randn(8,3))
In [14]: store = HDFStore('test.h5')
In [15]: store.put('df',df)

you can store an arbitrary python object via pickle
In [16]: store.get_storer('df').attrs.my_attribute = dict(A = 10)

In [17]: store.get_storer('df').attrs.my_attribute
Out[17]: {'A': 10}

7.9.5 Binary Files

pandas readily accepts numpy record arrays, if you need to read in a binary file consisting of an array of C structs. For example, given this C program in a file called main.c compiled with gcc main.c -std=gnu99 on a 64-bit machine,
#include <stdio.h>
#include <stdint.h>

typedef struct _Data
{
 int32_t count;
 double avg;
 float scale;
} Data;

int main(int argc, const char *argv[])
{
 size_t n = 10;
 Data d[n];

 for (int i = 0; i < n; ++i)
 {
 d[i].count = i;
 d[i].avg = i + 1.0;
 d[i].scale = (float) i + 2.0f;
 }

 FILE *file = fopen("binary.dat", "wb");
 fwrite(d, sizeof(Data), n, file);
 fclose(file);

 return 0;
}

the following Python code will read the binary file `binary.dat` into a pandas DataFrame, where each element of the struct corresponds to a column in the frame:

```python
import numpy as np
from pandas import DataFrame

names = 'count', 'avg', 'scale'

# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = 'i4', 'f8', 'f4'
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},
              align=True)
df = DataFrame(np.fromfile('binary.dat', dt))
```

Note: The offsets of the structure elements may be different depending on the architecture of the machine on which the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not cross platform. We recommend either HDF5 or msgpack, both of which are supported by pandas’ IO facilities.

7.10 Computation

Numerical integration (sample-based) of a time series
7.11 Miscellaneous

The Timedeltas docs.
Operating with timedeltas
Create timedeltas with date differences
Adding days to dates in a dataframe

7.12 Aliasing Axis Names

To globally provide aliases for axis names, one can define these 2 functions:

```python
In [18]: def set_axis_alias(cls, axis, alias):
    ....:     if axis not in cls._AXIS_NUMBERS:
    ....:         raise Exception("invalid axis \[%s\] for alias \[%s\]" % (axis, alias))
    ....:     cls._AXIS_ALIASES[alias] = axis
    ....:
In [19]: def clear_axis_alias(cls, axis, alias):
    ....:     if axis not in cls._AXIS_NUMBERS:
    ....:         raise Exception("invalid axis \[%s\] for alias \[%s\]" % (axis, alias))
    ....:     cls._AXIS_ALIASES.pop(alias, None)
    ....:
In [20]: set_axis_alias(DataFrame,'columns', 'myaxis2')
In [21]: df2 = DataFrame(randn(3,2),columns=['c1','c2'],index=['i1','i2','i3'])
In [22]: df2.sum(axis='myaxis2')
Out[22]:
   i1    -1.335466
   i2    -1.032281
   i3    -0.488638
dtype: float64
In [23]: clear_axis_alias(DataFrame,'columns', 'myaxis2')
```

7.13 Creating Example Data

To create a dataframe from every combination of some given values, like R's expand.grid() function, we can create a dict where the keys are column names and the values are lists of the data values:

```python
In [24]: import itertools
In [25]: def expand_grid(data_dict):
    ....:     rows = itertools.product(*data_dict.values())
    ....:     return pd.DataFrame.from_records(rows, columns=data_dict.keys())
    ....:
In [26]: df = expand_grid(      ('height': [60, 70],      ('weight': [100, 140, 180],      ('sex': ['Male', 'Female']
```
In [27]: df
Out[27]:

 sex weight height
0 Male 100 60
1 Male 100 70
2 Male 140 60
3 Male 140 70
4 Male 180 60
5 Male 180 70
6 Female 100 60
7 Female 100 70
8 Female 140 60
9 Female 140 70
10 Female 180 60
11 Female 180 70
INTRO TO DATA STRUCTURES

We’ll start with a quick, non-comprehensive overview of the fundamental data structures in pandas to get you started. The fundamental behavior about data types, indexing, and axis labeling / alignment apply across all of the objects. To get started, import numpy and load pandas into your namespace:

```
In [1]: import numpy as np
# will use a lot in examples
In [2]: randn = np.random.randn
In [3]: from pandas import *
```

Here is a basic tenet to keep in mind: data alignment is intrinsic. The link between labels and data will not be broken unless done so explicitly by you.

We’ll give a brief intro to the data structures, then consider all of the broad categories of functionality and methods in separate sections.

When using pandas, we recommend the following import convention:

```
import pandas as pd
```

8.1 Series

Warning: In 0.13.0 Series has internally been refactored to no longer sub-class ndarray but instead subclass NDFrame, similarly to the rest of the pandas containers. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the **index**. The basic method to create a Series is to call:

```
>>> s = Series(data, index=index)
```

Here, data can be many different things:

- a Python dict
- an ndarray
- a scalar value (like 5)
The passed index is a list of axis labels. Thus, this separates into a few cases depending on what data is:

From ndarray

If data is an ndarray, index must be the same length as data. If no index is passed, one will be created having values [0, ..., len(data) - 1].

```
In [4]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
```
```
In [5]: s
Out[5]:
a  0.546
b -1.219
c -1.227
d  0.770
e -1.281
dtype: float64
```
```
In [6]: s.index
Out[6]: Index([u'a', u'b', u'c', u'd', u'e'], dtype='object')
```
```
In [7]: Series(randn(5))
Out[7]:
0  -0.728
1  -0.121
2  -0.098
3   0.696
4   0.342
dtype: float64
```

Note: Starting in v0.8.0, pandas supports non-unique index values. If an operation that does not support duplicate index values is attempted, an exception will be raised at that time. The reason for being lazy is nearly all performance-based (there are many instances in computations, like parts of GroupBy, where the index is not used).

From dict

If data is a dict, if index is passed the values in data corresponding to the labels in the index will be pulled out. Otherwise, an index will be constructed from the sorted keys of the dict, if possible.

```
In [8]: d = {'a' : 0., 'b' : 1., 'c' : 2.}
```
```
In [9]: Series(d)
Out[9]:
a    0
b    1
c    2
dtype: float64
```
```
In [10]: Series(d, index=['b', 'c', 'd', 'a'])
Out[10]:
b    1
c    2
d  NaN
a    0
dtype: float64
```

Note: NaN (not a number) is the standard missing data marker used in pandas.

Chapter 8. Intro to Data Structures
From scalar value If data is a scalar value, an index must be provided. The value will be repeated to match the length of index

In [11]: Series(5., index=\[\text{'a'}, \text{'b'}, \text{'c'}, \text{'d'}, \text{'e'}\])
Out[11]:
\begin{align*}
a & \quad 5 \\
b & \quad 5 \\
c & \quad 5 \\
d & \quad 5 \\
e & \quad 5
\end{align*}
dtype: float64

8.1.1 Series is ndarray-like

Series acts very similary to a ndarray, and is a valid argument to most NumPy functions. However, things like slicing also slice the index.

In [12]: s[0]
Out[12]: 0.54595191973985191

In [13]: s[:3]
Out[13]:
\begin{align*}
a & \quad 0.546 \\
b & \quad -1.219 \\
c & \quad -1.227
\end{align*}
dtype: float64

In [14]: s[s > s.median()]
Out[14]:
\begin{align*}
a & \quad 0.546 \\
d & \quad 0.770
\end{align*}
dtype: float64

In [15]: s[[4, 3, 1]]
Out[15]:
\begin{align*}
e & \quad -1.281 \\
d & \quad 0.770 \\
b & \quad -1.219
\end{align*}
dtype: float64

In [16]: np.exp(s)
Out[16]:
\begin{align*}
a & \quad 1.726 \\
b & \quad 0.295 \\
c & \quad 0.293 \\
d & \quad 2.159 \\
e & \quad 0.278
\end{align*}
dtype: float64

We will address array-based indexing in a separate section.

8.1.2 Series is dict-like

A Series is like a fixed-size dict in that you can get and set values by index label:
In [17]: s['a']
Out[17]: 0.54595191973985191

In [18]: s['e'] = 12.

In [19]: s
Out[19]:
a 0.546
b -1.219
c -1.227
d 0.770
e 12.000
 dtype: float64

In [20]: 'e' in s
Out[20]: True

In [21]: 'f' in s
Out[21]: False

If a label is not contained, an exception is raised:

>>> s['f']
KeyError: 'f'

Using the get method, a missing label will return None or specified default:

In [22]: s.get('f')

In [23]: s.get('f', np.nan)
Out[23]: nan

See also the section on attribute access.

8.1.3 Vectorized operations and label alignment with Series

When doing data analysis, as with raw NumPy arrays looping through Series value-by-value is usually not necessary. Series can be also be passed into most NumPy methods expecting an ndarray.

In [24]: s + s
Out[24]:
a 1.092
b -2.438
c -2.454
d 1.540
e 24.000
 dtype: float64

In [25]: s * 2
Out[25]:
a 1.092
b -2.438
c -2.454
d 1.540
e 24.000
 dtype: float64

In [26]: np.exp(s)
A key difference between Series and ndarray is that operations between Series automatically align the data based on label. Thus, you can write computations without giving consideration to whether the Series involved have the same labels.

```python
In [27]: s[1:] + s[:-1]
```

```plaintext
Out[27]:
a NaN
b -2.438
c -2.454
d 1.540
e NaN
dtype: float64
```

The result of an operation between unaligned Series will have the union of the indexes involved. If a label is not found in one Series or the other, the result will be marked as missing NaN. Being able to write code without doing any explicit data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated data alignment features of the pandas data structures set pandas apart from the majority of related tools for working with labeled data.

Note: In general, we chose to make the default result of operations between differently indexed objects yield the union of the indexes in order to avoid loss of information. Having an index label, though the data is missing, is typically important information as part of a computation. You of course have the option of dropping labels with missing data via the `dropna` function.

8.1.4 Name attribute

Series can also have a name attribute:

```python
In [28]: s = Series(np.random.rand(5), name='something')
```

```python
In [29]: s
```

```plaintext
Out[29]:
0 0.960
1 -1.110
2 -0.620
3 0.150
4 -0.732
Name: something, dtype: float64
```

```python
In [30]: s.name
```

```plaintext
Out[30]: 'something'
```

The Series name will be assigned automatically in many cases, in particular when taking 1D slices of DataFrame as you will see below.
8.2 DataFrame

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object. Like Series, DataFrame accepts many different kinds of input:

- Dict of 1D ndarrays, lists, dicts, or Series
- 2-D numpy.ndarray
- Structured or record ndarray
- A Series
- Another DataFrame

Along with the data, you can optionally pass **index** (row labels) and **columns** (column labels) arguments. If you pass an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict of Series plus a specific index will discard all data not matching up to the passed index.

If axis labels are not passed, they will be constructed from the input data based on common sense rules.

8.2.1 From dict of Series or dicts

The result **index** will be the **union** of the indexes of the various Series. If there are any nested dicts, these will be first converted to Series. If no columns are passed, the columns will be the sorted list of dict keys.

```python
In [31]: d = {'one' : Series([1., 2., 3.], index=['a', 'b', 'c']), 'two' : Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}

In [32]: df = DataFrame(d)

In [33]: df
Out[33]:
   one  two
  a   1   1
  b   2   2
  c   3   3
  d  NaN   4

In [34]: DataFrame(d, index=['d', 'b', 'a'])
Out[34]:
   one  two
  d  NaN   4
  b   2   2
  a   1  NaN

In [35]: DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
Out[35]:
   two  three
  d   NaN   NaN
  b   2   NaN
  a   1   NaN
```

The row and column labels can be accessed respectively by accessing the **index** and **columns** attributes:

Note: When a particular set of columns is passed along with a dict of data, the passed columns override the keys in the dict.
8.2.2 From dict of ndarrays / lists

The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays. If no index is passed, the result will be range(n), where n is the array length.

In [38]: d = {'one' : [1., 2., 3., 4.],
 : 'two' : [4., 3., 2., 1.]}
 :
In [39]: DataFrame(d)
Out[39]:
 one two
0 1 4
1 2 3
2 3 2
3 4 1

In [40]: DataFrame(d, index=['a', 'b', 'c', 'd'])
Out[40]:
 one two
a 1 4
b 2 3
c 3 2
d 4 1

8.2.3 From structured or record array

This case is handled identically to a dict of arrays.

In [41]: data = np.zeros((2,),dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10')])
In [42]: data[:]=[(1,2.,'Hello'),(2,3.,"World")]
In [43]: DataFrame(data)
Out[43]:
 A B C
0 1 2 Hello
1 2 3 World

In [44]: DataFrame(data, index=['first', 'second'])
Out[44]:
 A B C
first 1 2 Hello
second 2 3 World

In [45]: DataFrame(data, columns=['C', 'A', 'B'])
Out[45]:
 C A B
8.2.4 From a list of dicts

In [46]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]

In [47]: DataFrame(data2)
Out[47]:
 a b c
0 1 2 NaN
1 5 10 20

In [48]: DataFrame(data2, index=['first', 'second'])
Out[48]:
 a b c
first 1 2 NaN
second 5 10 20

In [49]: DataFrame(data2, columns=['a', 'b'])
Out[49]:
 a b
0 1 2
1 5 10

8.2.5 From a dict of tuples

You can automatically create a multi-indexed frame by passing a tuples dictionary

In [50]: DataFrame({(('a', 'b')): {('A', 'B'): 1, ('A', 'C'): 2}, ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4}, ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6}, ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8}, ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
Out[50]:
 a b
A B 4 5 8
C 3 2 6 7
D NaN NaN NaN NaN

8.2.6 From a Series

The result will be a DataFrame with the same index as the input Series, and with one column whose name is the original name of the Series (only if no other column name provided).

Missing Data
Much more will be said on this topic in the Missing data section. To construct a DataFrame with missing data, use np.nan for those values which are missing. Alternatively, you may pass a numpy.MaskedArray as the data argument to the DataFrame constructor, and its masked entries will be considered missing.

8.2.7 Alternate Constructors

DataFrame.from_dict

DataFrame.from_dict takes a dict of dicts or a dict of array-like sequences and returns a DataFrame. It operates like the DataFrame constructor except for the orient parameter which is ‘columns’ by default, but which can be set to ‘index’ in order to use the dict keys as row labels. DataFrame.from_records

DataFrame.from_records takes a list of tuples or an ndarray with structured dtype. Works analogously to the normal DataFrame constructor, except that index maybe be a specific field of the structured dtype to use as the index. For example:

In [51]: data
Out[51]:
array([(1, 2.0, 'Hello'), (2, 3.0, 'World')],
dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])

In [52]: DataFrame.from_records(data, index='C')
Out[52]:
 A B
C Hello 1 2
 World 2 3

DataFrame.from_items

DataFrame.from_items works analogously to the form of the dict constructor that takes a sequence of (key, value) pairs, where the keys are column (or row, in the case of orient='index') names, and the value are the column values (or row values). This can be useful for constructing a DataFrame with the columns in a particular order without having to pass an explicit list of columns:

In [53]: DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])])
Out[53]:
 A B
0 1 4
1 2 5
2 3 6

If you pass orient='index', the keys will be the row labels. But in this case you must also pass the desired column names:

In [54]: DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
 :
 :
orient='index', columns=['one', 'two', 'three'])
Out[54]:
 one two three
A 1 2 3
B 4 5 6

8.2.8 Column selection, addition, deletion

You can treat a DataFrame semantically like a dict of like-indexed Series objects. Getting, setting, and deleting columns works with the same syntax as the analogous dict operations.
In [55]: df['one']
Out[55]:
 a 1
 b 2
 c 3
d NaN
Name: one, dtype: float64

In [56]: df['three'] = df['one'] * df['two']
In [57]: df['flag'] = df['one'] > 2
In [58]: df
Out[58]:
 one two three flag
 a 1 1 1 False
 b 2 4 4 False
 c 3 9 9 True
 d NaN 4 NaN False

Columns can be deleted or popped like with a dict:

In [59]: del df['two']
In [60]: three = df.pop('three')

In [61]: df
Out[61]:
 one flag
 a 1 False
 b 2 False
 c 3 True
 d NaN False

When inserting a scalar value, it will naturally be propagated to fill the column:

In [62]: df['foo'] = 'bar'
In [63]: df
Out[63]:
 one flag foo
 a 1 False bar
 b 2 False bar
 c 3 True bar
 d NaN False bar

When inserting a Series that does not have the same index as the DataFrame, it will be conformed to the DataFrame’s index:

In [64]: df['one_trunc'] = df['one'][:2]
In [65]: df
Out[65]:
 one flag foo one_trunc
 a 1 False bar 1
 b 2 False bar 2
 c 3 True bar NaN
 d NaN False bar NaN

You can insert raw ndarrays but their length must match the length of the DataFrame’s index.
By default, columns get inserted at the end. The `insert` function is available to insert at a particular location in the columns:

```
In [66]: df.insert(1, 'bar', df['one'])
```

```
In [67]: df
Out[67]:
  one    bar    flag  foo  one_trunc
  a  1   1  False  bar  1
  b  2   2  False  bar  2
  c  3   3   True  bar  NaN
  d  NaN NaN  False  bar  NaN
```

8.2.9 Indexing / Selection

The basics of indexing are as follows:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Syntax</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select column</td>
<td>df[col]</td>
<td>Series</td>
</tr>
<tr>
<td>Select row by label</td>
<td>df.loc[label]</td>
<td>Series</td>
</tr>
<tr>
<td>Select row by integer location</td>
<td>df.iloc[loc]</td>
<td>Series</td>
</tr>
<tr>
<td>Slice rows</td>
<td>df[5:10]</td>
<td>DataFrame</td>
</tr>
<tr>
<td>Select rows by boolean vector</td>
<td>df[bool_vec]</td>
<td>DataFrame</td>
</tr>
</tbody>
</table>

Row selection, for example, returns a Series whose index is the columns of the DataFrame:

```
In [68]: df.loc['b']
Out[68]:
  one    bar    flag  foo  one_trunc
  a  1   1  False  bar  1
  b  2   2  False  bar  2
  Name: b, dtype: object
```

```
In [69]: df.iloc[2]
Out[69]:
  one    bar    flag  foo  one_trunc
  a  1   1  False  bar  1
  b  2   2  False  bar  2
  c  3   3   True  bar  NaN
  Name: c, dtype: object
```

For a more exhaustive treatment of more sophisticated label-based indexing and slicing, see the section on indexing. We will address the fundamentals of reindexing / conforming to new sets of labels in the section on reindexing.

8.2.10 Data alignment and arithmetic

Data alignment between DataFrame objects automatically align on both the columns and the index (row labels). Again, the resulting object will have the union of the column and row labels.

```
In [70]: df = DataFrame(randn(10, 4), columns=['A', 'B', 'C', 'D'])
```

```
In [71]: df2 = DataFrame(randn(7, 3), columns=['A', 'B', 'C'])
```
In [72]: df + df2
Out[72]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.987</td>
<td>-0.687</td>
<td>0.812</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>-0.746</td>
<td>-2.206</td>
<td>-2.358</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>1.557</td>
<td>-0.480</td>
<td>0.463</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>1.397</td>
<td>0.635</td>
<td>1.532</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>-0.475</td>
<td>3.727</td>
<td>-0.352</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>-1.588</td>
<td>-0.769</td>
<td>-0.052</td>
<td>NaN</td>
</tr>
<tr>
<td>6</td>
<td>0.490</td>
<td>1.211</td>
<td>-0.545</td>
<td>NaN</td>
</tr>
<tr>
<td>7</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>8</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>9</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

When doing an operation between DataFrame and Series, the default behavior is to align the Series **index** on the DataFrame **columns**, thus **broadcasting** row-wise. For example:

In [73]: df - df.iloc[0]
Out[73]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>-0.386</td>
<td>-2.356</td>
<td>-1.773</td>
<td>-0.799</td>
</tr>
<tr>
<td>2</td>
<td>0.775</td>
<td>-1.920</td>
<td>-1.230</td>
<td>-0.190</td>
</tr>
<tr>
<td>3</td>
<td>0.626</td>
<td>0.514</td>
<td>0.592</td>
<td>2.552</td>
</tr>
<tr>
<td>4</td>
<td>-0.673</td>
<td>3.181</td>
<td>-0.721</td>
<td>-1.081</td>
</tr>
<tr>
<td>5</td>
<td>0.208</td>
<td>-0.664</td>
<td>-0.486</td>
<td>-2.028</td>
</tr>
<tr>
<td>6</td>
<td>-0.307</td>
<td>-0.092</td>
<td>0.029</td>
<td>1.675</td>
</tr>
<tr>
<td>7</td>
<td>-1.181</td>
<td>0.424</td>
<td>-0.129</td>
<td>0.288</td>
</tr>
<tr>
<td>8</td>
<td>-0.711</td>
<td>2.234</td>
<td>1.047</td>
<td>0.361</td>
</tr>
<tr>
<td>9</td>
<td>-0.940</td>
<td>-2.390</td>
<td>0.660</td>
<td>1.421</td>
</tr>
</tbody>
</table>

In the special case of working with time series data, if the Series is a TimeSeries (which it will be automatically if the index contains datetime objects), and the DataFrame index also contains dates, the broadcasting will be column-wise:

In [74]: index = date_range('1/1/2000', periods=8)

In [75]: df = DataFrame(randn(8, 3), index=index, columns=list('ABC'))

In [76]: df
Out[76]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>1.474</td>
<td>-0.064</td>
<td>-1.283</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.782</td>
<td>-1.071</td>
<td>0.441</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>2.354</td>
<td>0.584</td>
<td>0.221</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.744</td>
<td>0.759</td>
<td>1.730</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-0.965</td>
<td>-0.846</td>
<td>-1.341</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>1.847</td>
<td>-1.329</td>
<td>1.683</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>-1.718</td>
<td>0.889</td>
<td>0.228</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>0.902</td>
<td>1.171</td>
<td>0.520</td>
</tr>
</tbody>
</table>

In [77]: type(df['A'])
Out[77]: pandas.core.series.Series

In [78]: df - df['A']
Out[78]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0</td>
<td>-1.538</td>
<td>-2.757</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0</td>
<td>-1.853</td>
<td>-0.341</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0</td>
<td>-1.770</td>
<td>-2.132</td>
</tr>
</tbody>
</table>
Warning:

```
df - df['A']
```

is now deprecated and will be removed in a future release. The preferred way to replicate this behavior is
```
df.sub(df['A'], axis=0)
```

For explicit control over the matching and broadcasting behavior, see the section on *flexible binary operations*. Operations with scalars are just as you would expect:

In [79]: `df * 5 + 2`

Out [79]:
```
   A    B    C
2000-01-02 5.909 -3.357 4.206
2000-01-03 13.770 4.919 3.107
2000-01-04 -1.722 5.793 10.648
2000-01-05 -2.825 -2.228 -4.704
2000-01-06 11.234 -4.644 10.414
2000-01-07 -6.588 6.444 3.142
2000-01-08 6.509 7.856 4.601
```

In [80]: `1 / df`

Out [80]:
```
   A    B    C
2000-01-01 0.678 -15.617 -0.780
2000-01-02 1.279 -0.933 2.267
2000-01-03 0.425 1.713 4.515
2000-01-04 -1.343 1.318 0.578
2000-01-05 -1.036 -1.182 -0.746
2000-01-06 0.541 -0.753 0.594
2000-01-07 -0.582 1.125 4.378
2000-01-08 1.109 0.854 1.922
```

In [81]: `df ** 4`

Out [81]:
```
   A    B    C
2000-01-01 4.721 1.68e-05 2.708
2000-01-02 0.374 1.317e+00 0.038
2000-01-03 30.702 1.161e-01 0.002
2000-01-04 0.307 3.310e-01 8.951
2000-01-05 0.867 5.115e-01 3.233
2000-01-06 11.635 3.118e+00 8.017
2000-01-07 8.705 6.240e-01 0.003
2000-01-08 0.661 1.882e+00 0.073
```

Boolean operators work as well:

In [82]: `df1 = DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=bool)`

8.2. DataFrame

195
In [83]: df2 = DataFrame({"a" : [0, 1, 1], "b" : [1, 1, 0]}, dtype=bool)

In [84]: df1 & df2
Out[84]:
a b
0 False False
1 False True
2 True False

In [85]: df1 | df2
Out[85]:
a b
0 True True
1 True True
2 True True

In [86]: df1 ^ df2
Out[86]:
a b
0 True True
1 True False
2 False True

In [87]: ~df1
Out[87]:
a b
0 False True
1 True False
2 False False

8.2.11 Transposing

To transpose, access the \(T \) attribute (also the \(\text{transpose} \) function), similar to an ndarray:

only show the first 5 rows
In [88]: df[:5].T
Out[88]:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.474</td>
<td>0.782</td>
<td>2.354</td>
<td>-0.744</td>
<td>-0.965</td>
</tr>
<tr>
<td>B</td>
<td>-0.064</td>
<td>-1.071</td>
<td>0.584</td>
<td>0.759</td>
<td>-0.846</td>
</tr>
<tr>
<td>C</td>
<td>-1.283</td>
<td>0.441</td>
<td>0.221</td>
<td>1.730</td>
<td>-1.341</td>
</tr>
</tbody>
</table>

8.2.12 DataFrame interoperability with NumPy functions

Elementwise NumPy ufuncs (log, exp, sqrt, ...) and various other NumPy functions can be used with no issues on DataFrame, assuming the data within are numeric:

In [89]: np.exp(df)
Out[89]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>4.367</td>
<td>0.938</td>
<td>0.277</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>2.185</td>
<td>0.343</td>
<td>1.554</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>10.527</td>
<td>1.793</td>
<td>1.248</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>0.475</td>
<td>2.135</td>
<td>5.639</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.381</td>
<td>0.429</td>
<td>0.262</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>6.340</td>
<td>0.265</td>
<td>5.380</td>
</tr>
</tbody>
</table>
2000-01-07 0.179 2.432 1.257
2000-01-08 2.464 3.226 1.682

In [90]: np.asarray(df)
Out[90]:
array([[1.4741, -0.064 , -1.2828],
 [0.7818, -1.0714, 0.4412],
 [2.3539, 0.5838, 0.2215],
 [-0.7445, 0.7585, 1.7297],
 [-0.965 , -0.8457, -1.3409],
 [1.8469, -1.3289, 1.6827],
 [-1.7177, 0.8888, 0.2284],
 [0.9018, 1.1712, 0.5203]])

The dot method on DataFrame implements matrix multiplication:

In [91]: df.T.dot(df)
Out[91]:
 A B C
A 16.985 -2.231 2.166
B -2.231 6.711 0.761
C 2.166 0.761 9.833

Similarly, the dot method on Series implements dot product:

In [92]: s1 = Series(np.arange(5,10))
In [93]: s1.dot(s1)
Out[93]: 255

DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics are quite different in places from a matrix.

8.2.13 Console display

Very large DataFrames will be truncated to display them in the console. You can also get a summary using info(). (Here I am reading a CSV version of the baseball dataset from the plyr R package):

In [94]: baseball = read_csv('data/baseball.csv')

In [95]: print(baseball)
 id player year stint ... hbp sh sf gidp
0 88641 womacto01 2006 2 ... 0. 3 0 0
1 88643 schilcu01 2006 1 ... 0 0 0 0
...
98 89533 alumo01 2007 1 ... 2 0 3 13
99 89534 alomasa02 2007 1 ... 0 0 0 0

[100 rows x 23 columns]

In [96]: baseball.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 100 entries, 0 to 99
Data columns (total 23 columns):
id 100 non-null int64
player 100 non-null object
year 100 non-null int64
stint 100 non-null int64
However, using `to_string` will return a string representation of the DataFrame in tabular form, though it won’t always fit the console width:

```
In [97]: print(baseball.iloc[-20:, :12].to_string())
```

```
id     player     year     stint     team  lg  g  ab  r  h  X2b  X3b
80    89474  finlest01  2007     1     COL  NL  43  94  9  17  3  0
81    89480  embreal01  2007     1     OAK  AL  4  0  0  0  0  0
82    89481  edmonji01  2007     1     SLN  NL  117 365 39  92 15  2
83    89482  easleda01  2007     1     NYN  NL  76 193 24  54  6  0
84    89489  delgaca01  2007     1     NYN  NL  139 538 71 139 30  0
85    89493  cormirh01  2007     1     CIN  NL  6  0  0  0  0  0
86    89494  coninje01  2007     2     NYN  NL  21 41 2  8  2  0
87    89495  coninje01  2007     1     CIN  NL  80 215 57 11  1  1
88    89497  clemero02  2007     1     NYA  AL  2  2  0  1  0  0
89    89498  claytro01  2007     2     BOS  AL  8  6  1  0  0  0
90    89499  claytro01  2007     1     TOR  AL  69 189 48 14  0  0
91    89501  cirilje01  2007     2     ARI  NL  28 40 6  8  4  0
92    89502  cirilje01  2007     1     MIN  AL  50 153 40  9  2  0
93    89521  bondsba01  2007     1     SFN  NL  126 340 75 94 14  0
94    89523  biggicr01  2007     1     HOU  NL  141 517 68 130 31  3
95    89525  benitar01  2007     2     FLO  NL  34  0  0  0  0  0
96    89526  benitar01  2007     1     SFN  NL  19  0  0  0  0  0
97    89530  ausmubr01  2007     1     HOU  NL  117 349 38  82 16  3
98    89533  aloumo01  2007     1     NYN  NL  87 328 51 112 19  1
99    89534  alomasa02  2007     1     NYN  NL  8  22 1  3  1  0
```

New since 0.10.0, wide DataFrames will now be printed across multiple rows by default:

```
In [98]: DataFrame(randn(3, 12))
```

```
   0         1         2         3         4         5         6
0 -1.197071 -1.066969 -0.303421 -0.858447  0.306996 -0.028665  0.384316
1 -0.014805 -0.284319  0.650776 -1.461665 -1.137707 -0.891060 -0.693929
2 -2.290613 -1.134623 -1.561819 -0.260838  0.281957  1.523962 -0.902937
   7         8         9        10        11
0  1.574159  1.588931  0.476720  0.473424 -0.242861
1  1.613616  0.464000  0.273771 -0.496922  0.306389
```
You can change how much to print on a single row by setting the `display.width` option:

```python
In [99]: set_option('display.width', 40)  # default is 80
```

```python
In [100]: DataFrame(randn(3, 12))
Out[100]:
     0    1    2
0  0.800193  0.782098 -1.069094
1 -1.226970  0.040403 -0.507516
2  0.604603  2.121453  0.597701
     3    4    5
0  0.563700  0.255269  0.009750
1 -0.230096  0.394500 -1.934370
2  0.563700  0.967661 -1.057909
     6    7    8
0  0.661084  0.379319 -0.008434
1 -1.652499  1.488753 -0.896484
2  1.375020  -0.928797 -0.308853
     9   10   11
0  1.952541 -1.056652  0.533946
1  0.576897  1.146000  1.487349
2  0.681087  0.377953  0.493672
```

You can also disable this feature via the `expand_frame_repr` option. This will print the table in one block.

8.2.14 DataFrame column attribute access and IPython completion

If a DataFrame column label is a valid Python variable name, the column can be accessed like attributes:

```python
In [101]: df = DataFrame({'foo1' : np.random.randn(5),
                  'foo2' : np.random.randn(5)})

In [102]: df
Out[102]:
     foo1  foo2
0 -2.461467 -0.670027
1 -1.553902  0.049307
2  2.015523 -0.521493
3 -1.833722 -3.201750
4  1.771740  0.792716

In [103]: df.foo1
Out[103]:
     0  1  2
-2.461467 -0.670027
-1.553902  0.049307
  2.015523 -0.521493
-1.833722 -3.201750
  1.771740  0.792716

Name: foo1, dtype: float64
```

The columns are also connected to the IPython completion mechanism so they can be tab-completed:
In [5]: df.fo<TAB>
df.fool df.foo2

8.3 Panel

Panel is a somewhat less-used, but still important container for 3-dimensional data. The term panel data is derived from econometrics and is partially responsible for the name pandas: pan(el)-da(ta)-s. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data. However, for the strict purposes of slicing and dicing a collection of DataFrame objects, you may find the axis names slightly arbitrary:

- **items**: axis 0, each item corresponds to a DataFrame contained inside
- **major_axis**: axis 1, it is the index (rows) of each of the DataFrames
- **minor_axis**: axis 2, it is the columns of each of the DataFrames

Construction of Panels works about like you would expect:

8.3.1 From 3D ndarray with optional axis labels

In [104]: wp = Panel(randn(2, 5, 4), items=\['Item1', 'Item2'\],
.....: major_axis=date_range('1/1/2000', periods=5),
.....: minor_axis=\['A', 'B', 'C', 'D'\])
.....:
In [105]: wp
Out[105]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

8.3.2 From dict of DataFrame objects

In [106]: data = \{'Item1' : DataFrame(randn(4, 3)),
.....: 'Item2' : DataFrame(randn(4, 2))\}
.....:
In [107]: Panel(data)
Out[107]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2

Note that the values in the dict need only be convertible to DataFrame. Thus, they can be any of the other valid inputs to DataFrame as per above.

One helpful factory method is Panel.from_dict, which takes a dictionary of DataFrames as above, and the following named parameters:
### Parameter	Default	Description
intersect | False | drops elements whose indices do not align
orient | items | use minor to use DataFrames’ columns as panel items

For example, compare to the construction above:

```python
In [108]: Panel.from_dict(data, orient='minor')
Out[108]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: 0 to 2
Major_axis axis: 0 to 3
Minor_axis axis: Item1 to Item2
```

Orient is especially useful for mixed-type DataFrames. If you pass a dict of DataFrame objects with mixed-type columns, all of the data will get upcasted to `dtype=object` unless you pass `orient='minor'`:

```python
In [109]: df = DataFrame({‘a’: [‘foo’, ‘bar’, ‘baz’],
.....:    ‘b’: np.random.randn(3)})
.....:

In [110]: df
Out[110]:
a    b
0   foo -2.006481
1   bar  0.301016
2   baz  0.059117

In [111]: data = {'item1': df, 'item2': df}

In [112]: panel = Panel.from_dict(data, orient='minor')

In [113]: panel[‘a’]
Out[113]:
item1 item2
0   foo   foo
1   bar   bar
2   baz   baz

In [114]: panel[‘b’]
Out[114]:
item1 item2
0  -2.006481 -2.006481
1   0.301016  0.301016
2   0.059117  0.059117

In [115]: panel[‘b’].dtypes
Out[115]:
item1    float64
item2    float64
dtype: object
```

Note: Unfortunately Panel, being less commonly used than Series and DataFrame, has been slightly neglected feature-wise. A number of methods and options available in DataFrame are not available in Panel. This will get worked on, of course, in future releases. And faster if you join me in working on the codebase.
8.3.3 From DataFrame using to_panel method

This method was introduced in v0.7 to replace LongPanel.to_long, and converts a DataFrame with a two-level index to a Panel.

```python
In [116]: midx = MultiIndex(levels=[['one', 'two'], ['x','y']], labels=[[1,1,0,0],[1,0,1,0]])
In [117]: df = DataFrame({'A' : [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=midx)
In [118]: df.to_panel()
```

```text
Out[118]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: A to B
Major_axis axis: one to two
Minor_axis axis: x to y
```

8.3.4 Item selection / addition / deletion

Similar to DataFrame functioning as a dict of Series, Panel is like a dict of DataFrames:

```python
In [119]: wp['Item1']
```

```text
Out[119]:
 A  B  C  D
2000-01-01 0.146111 1.903247 -0.747169 -0.309038
2000-01-02 0.393876 1.861468 0.936527 1.255746
2000-01-03 -2.655452 1.219492 0.062297 -0.110388
2000-01-04 -1.184357 -0.558081 0.077849 0.629498
2000-01-05 -1.035260 -0.438229 0.503703 0.413086
```

```python
In [120]: wp['Item3'] = wp['Item1'] / wp['Item2']
```

The API for insertion and deletion is the same as for DataFrame. And as with DataFrame, if the item is a valid python identifier, you can access it as an attribute and tab-complete it in IPython.

8.3.5 Transposing

A Panel can be rearranged using its `transpose` method (which does not make a copy by default unless the data are heterogeneous):

```python
In [121]: wp.transpose(2, 0, 1)
```

```text
Out[121]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 5 (minor_axis)
Items axis: A to D
Major_axis axis: Item1 to Item3
Minor_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
```

8.3.6 Indexing / Selection

<table>
<thead>
<tr>
<th>Operation</th>
<th>Syntax</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select item</td>
<td>wp[item]</td>
<td>DataFrame</td>
</tr>
<tr>
<td>Get slice at major_axis label</td>
<td>wp.major_xs(val)</td>
<td>DataFrame</td>
</tr>
<tr>
<td>Get slice at minor_axis label</td>
<td>wp.minor_xs(val)</td>
<td>DataFrame</td>
</tr>
</tbody>
</table>
For example, using the earlier example data, we could do:

In [122]: wp['Item1']
Out[122]:
 A B C D
2000-01-01 0.146111 1.903247 -0.747169 -0.309038
2000-01-02 0.393876 1.861468 0.936527 1.255746
2000-01-03 -2.655452 1.219492 0.062297 -0.110388
2000-01-04 -1.184357 -0.558081 0.077849 0.629498
2000-01-05 -1.035260 -0.438229 0.503703 0.413086

In [123]: wp.major_xs(wp.major_axis[2])
Out[123]:
 Item1 Item2 Item3
A -2.655452 1.032814 -2.571085
B 1.219492 -1.290493 -0.944981
C 0.062297 0.787872 0.079070
D -0.110388 1.515707 -0.072829

In [124]: wp.minor_axis
Out[124]: Index(['A', 'B', 'C', 'D'], dtype='object')

In [125]: wp.minor_xs('C')
Out[125]:
 Item1 Item2 Item3
2000-01-01 -0.747169 0.464794 -1.607526
2000-01-02 0.936527 -0.643834 -1.454609
2000-01-03 0.062297 0.787872 0.079070
2000-01-04 0.077849 1.397431 0.055709
2000-01-05 0.503703 -0.730327 -0.689696

8.3.7 Squeezing

Another way to change the dimensionality of an object is to squeeze a 1-len object, similar to wp['Item1']

In [126]: wp.reindex(items=['Item1']).squeeze()
Out[126]:
 A B C D
2000-01-01 0.146111 1.903247 -0.747169 -0.309038
2000-01-02 0.393876 1.861468 0.936527 1.255746
2000-01-03 -2.655452 1.219492 0.062297 -0.110388
2000-01-04 -1.184357 -0.558081 0.077849 0.629498
2000-01-05 -1.035260 -0.438229 0.503703 0.413086

In [127]: wp.reindex(items=['Item1'],minor=['B']).squeeze()
Out[127]:
 2000-01-01 1.903247
 2000-01-02 1.861468
 2000-01-03 1.219492
 2000-01-04 -0.558081
 2000-01-05 -0.438229
Freq: D, Name: B, dtype: float64

8.3. Panel
8.3.8 Conversion to DataFrame

A Panel can be represented in 2D form as a hierarchically indexed DataFrame. See the section *hierarchical indexing* for more on this. To convert a Panel to a DataFrame, use the `to_frame` method:

```python
In [128]: panel = Panel(np.random.randn(3, 5, 4), items=['one', 'two', 'three'],
                major_axis=date_range('1/1/2000', periods=5),
                minor_axis=['a', 'b', 'c', 'd'])

In [129]: panel.to_frame()
```

```
Out[129]:
   one   two   three
major minor
2000-01-01 a 1.138469 1.106010 0.381353
     b -2.400634 -0.199234 1.337122
     c 0.280853 0.458265 -1.531095
     d 0.025653 0.491048 1.331458
2000-01-02 a -1.386071 0.128594 -0.571329
     b 0.863937 1.147862 -0.026671
     c 0.252462 -1.256860 -1.085663
     d 1.500571 0.563637 -1.114738
2000-01-03 a 1.053202 -2.417312 -0.058216
     b -2.338595 0.972827 -0.486768
     c 0.374279 0.041293 1.685148
     d -2.359958 1.129659 0.112572
2000-01-04 a -1.157886 0.086926 -1.495309
     b -0.551865 -0.445645 0.898435
     c 1.592673 -0.217503 -0.148217
     d 1.559318 -1.420361 -1.596070
2000-01-05 a 1.562443 -0.015601 0.199653
     b 0.763264 -1.150641 0.262136
     c 0.162027 -0.798334 0.036220
     d -0.902704 -0.557697 0.184735
```

8.4 Panel4D (Experimental)

Panel4D is a 4-Dimensional named container very much like a Panel, but having 4 named dimensions. It is intended as a test bed for more N-Dimensional named containers.

- **labels**: axis 0, each item corresponds to a Panel contained inside
- **items**: axis 1, each item corresponds to a DataFrame contained inside
- **major_axis**: axis 2, it is the index (rows) of each of the DataFrames
- **minor_axis**: axis 3, it is the columns of each of the DataFrames

Panel4D is a sub-class of Panel, so most methods that work on Panels are applicable to Panel4D. The following methods are disabled:

- *join*, *to_frame*, *to_excel*, *to_sparse*, *groupby*

Construction of Panel4D works in a very similar manner to a Panel.
8.4.1 From 4D ndarray with optional axis labels

In [130]: p4d = Panel4D(randn(2, 2, 5, 4),
 labels=['Label1', 'Label2'],
 items=['Item1', 'Item2'],
 major_axis=date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])

In [131]: p4d
Out[131]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

8.4.2 From dict of Panel objects

In [132]: data = { 'Label1' : Panel({ 'Item1' : DataFrame(randn(4, 3)) }),
 'Label2' : Panel({ 'Item2' : DataFrame(randn(4, 2)) }) }

In [133]: Panel4D(data)
Out[133]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 2 (labels) x 2 (items) x 4 (major_axis) x 3 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2

Note that the values in the dict need only be convertible to Panels. Thus, they can be any of the other valid inputs to Panel as per above.

8.4.3 Slicing

Slicing works in a similar manner to a Panel. [] slices the first dimension. .ix allows you to slice arbitrarily and get back lower dimensional objects

In [134]: p4d['Label1']
Out[134]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

4D -> Panel

In [135]: p4d.ix[::,::,'A']
Out[135]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 5 (minor_axis)
Items axis: Label1 to Label2
8.4.4 Transposing

A Panel4D can be rearranged using its `transpose` method (which does not make a copy by default unless the data are heterogeneous):

```
In [138]: p4d.transpose(3, 2, 1, 0)
```

```
Out[138]:
<class 'pandas.core.panel.Panel4D'>
Dimensions: 4 (labels) x 5 (items) x 2 (major_axis) x 2 (minor_axis)
Labels axis: A to D
Items axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Major_axis axis: Item1 to Item2
Minor_axis axis: Label1 to Label2
```

8.5 PanelND (Experimental)

PanelND is a module with a set of factory functions to enable a user to construct N-dimensional named containers like Panel4D, with a custom set of axis labels. Thus a domain-specific container can easily be created.

The following creates a Panel5D. A new panel type object must be sliceable into a lower dimensional object. Here we slice to a Panel4D.

```
In [139]: from pandas.core import panelnd

In [140]: Panel5D = panelnd.create_nd_panel_factory(
        ...
        klass_name = 'Panel5D',
        ...
        orders = [ 'cool', 'labels', 'items', 'major_axis', 'minor_axis' ],
        ...
        slices = { 'labels' : 'labels', 'items' : 'items',
        ...
                'major_axis' : 'major_axis', 'minor_axis' : 'minor_axis' },
        ...
        slicer = Panel4D,
        ...
        aliases = { 'major' : 'major_axis', 'minor' : 'minor_axis' },
        ...
        stat_axis = 2)
        ...

In [141]: p5d = Panel5D(dict(C1 = p4d))
```
In [142]: p5d
Out[142]:
<class 'pandas.core.panel.Panel5D'>
Dimensions: 1 (cool) x 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Cool axis: C1 to C1
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

print a slice of our 5D
In [143]: p5d.ix['C1', :, :, 0:3, :]
Out[143]:
<class 'pandas.core.panel.Panel4D'>
Dimensions: 2 (labels) x 2 (items) x 3 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D

transpose it
In [144]: p5d.transpose(1,2,3,4,0)
Out[144]:
<class 'pandas.core.panel.Panel5D'>
Dimensions: 2 (cool) x 2 (labels) x 5 (items) x 4 (major_axis) x 1 (minor_axis)
Cool axis: Label1 to Label2
Labels axis: Item1 to Item2
Items axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Major_axis axis: A to D
Minor_axis axis: C1 to C1

look at the shape & dim
In [145]: p5d.shape
Out[145]: (1, 2, 2, 5, 4)

In [146]: p5d.ndim
Out[146]: 5
Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some of the objects used in the examples from the previous section:

```
In [1]: index = date_range('1/1/2000', periods=8)
In [2]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [3]: df = DataFrame(randn(8, 3), index=index, columns=['A', 'B', 'C'])
In [4]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
               major_axis=date_range('1/1/2000', periods=5),
               minor_axis=['A', 'B', 'C', 'D'])
```

9.1 Head and Tail

To view a small sample of a Series or DataFrame object, use the `head` and `tail` methods. The default number of elements to display is five, but you may pass a custom number.

```
In [5]: long_series = Series(randn(1000))
In [6]: long_series.head()
Out[6]:
   0   -0.199038
   1    1.095864
   2   -0.200875
   3    0.162291
   4   -0.430489
dtype: float64

In [7]: long_series.tail(3)
Out[7]:
  997   -1.198693
  998    1.238029
  999   -1.344716
dtype: float64
```
9.2 Attributes and the raw ndarray(s)

pandas objects have a number of attributes enabling you to access the metadata

- **shape**: gives the axis dimensions of the object, consistent with ndarray

- Axis labels
 - **Series**: *index* (only axis)
 - **DataFrame**: *index* (rows) and *columns*
 - **Panel**: *items*, *major_axis*, and *minor_axis*

Note, these attributes can be safely assigned to!

```
In [8]: df[:2]
Out[8]:
   A  B      C
2000-01-01 0.232465 -0.789552 -0.364308
2000-01-02 -0.534541  0.822239 -0.443109

In [9]: df.columns = [x.lower() for x in df.columns]

In [10]: df
Out[10]:
   a  b  c
2000-01-01 0.232465 -0.789552 -0.364308
2000-01-02 -0.534541  0.822239 -0.443109
2000-01-03 -2.119990  1.813962
2000-01-04 -1.053571 -0.165966
2000-01-05 -0.848662 -0.495553
2000-01-06 -0.423595 -1.035374
2000-01-07 -2.369079  0.524408
2000-01-08  1.585433  0.039501

In [11]: s.values
Out[11]: array([ 1.1292, 0.2313, -0.1847, -0.1386, -0.9243])

In [12]: df.values
Out[12]:
array([[ 0.2325, -0.7896, -0.3643],
       [-0.5345, 0.8222, -0.4431],
       [-2.1199, 1.8139,   0.  ],
       [-1.0536, 0.0094, -0.166 ],
       [-0.8487, -0.4956, -0.1764],
       [-0.4236, -1.0354, -1.0354],
       [-2.3691, 0.5244, -0.8711],
       [ 1.5854, 0.0395,  2.2741]])

In [13]: wp.values
Out[13]:
array([[-1.1181, 0.4313, 0.5547, -1.3336],
       [-0.3322, 0.4859, 1.7259, 1.7993],
       [-0.9689, 0.7795, 2.0007, 1.8666],
       [-1.1013, 1.9575, 0.0589, 0.7581],
       [0.0766, 0.5485, -0.1605, -0.3778]],
       [[ 0.2499, -0.3413, -0.2726, -0.2774]],
       )
```

To get the actual data inside a data structure, one need only access the `values` property:
If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame’s columns are not all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to.

Note: When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and integers, the resulting array will be of float dtype.

9.3 Accelerated operations

pandas has support for accelerating certain types of binary numerical and boolean operations using the numexpr library (starting in 0.11.0) and the bottleneck libraries.

These libraries are especially useful when dealing with large data sets, and provide large speedups. numexpr uses smart chunking, caching, and multiple cores. bottleneck is a set of specialized cython routines that are especially fast when dealing with arrays that have nans.

Here is a sample (using 100 column x 100,000 row DataFrames):

<table>
<thead>
<tr>
<th>Operation</th>
<th>0.11.0 (ms)</th>
<th>Prior Version (ms)</th>
<th>Ratio to Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>df1 > df2</td>
<td>13.32</td>
<td>125.35</td>
<td>0.1063</td>
</tr>
<tr>
<td>df1 * df2</td>
<td>21.71</td>
<td>36.63</td>
<td>0.5928</td>
</tr>
<tr>
<td>df1 + df2</td>
<td>22.04</td>
<td>36.50</td>
<td>0.6039</td>
</tr>
</tbody>
</table>

You are highly encouraged to install both libraries. See the section Recommended Dependencies for more installation info.

9.4 Flexible binary operations

With binary operations between pandas data structures, there are two key points of interest:

- Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects.
- Missing data in computations

We will demonstrate how to manage these issues independently, though they can be handled simultaneously.

9.4.1 Matching / broadcasting behavior

DataFrame has the methods add, sub, mul, div and related functions radd, rsub, ... for carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions, you can use to either match on the index or columns via the axis keyword:

```
In [14]: df = DataFrame({'one' : Series(randn(3), index=['a', 'b', 'c']),
                       'two' : Series(randn(4), index=['a', 'b', 'c', 'd']),
                       'three' : Series(randn(3), index=['b', 'c', 'd']))
```

9.3. Accelerated operations
In [15]: df
Out[15]:
 one three two
a -0.701368 NaN -0.087103
b 0.109333 -0.354359 0.637674
c -0.231617 -0.148387 -0.002666
d NaN -0.167407 0.104044

In [16]: row = df.ix[1]

In [17]: column = df['two']

In [18]: df.sub(row, axis='columns')
Out[18]:
 one three two
a -0.810701 NaN -0.724777
b 0.000000 0.000000 0.000000
c -0.340950 0.205973 -0.640340
d NaN 0.186952 -0.533630

In [19]: df.sub(row, axis=1)
Out[19]:
 one three two
a -0.810701 NaN -0.724777
b 0.000000 0.000000 0.000000
c -0.340950 0.205973 -0.640340
d NaN 0.186952 -0.533630

In [20]: df.sub(column, axis='index')
Out[20]:
 one three two
a -0.614265 NaN 0.000000
b -0.528341 -0.992033 0.000000
c -0.228950 -0.145720 0.000000
d NaN -0.271451 0.000000

In [21]: df.sub(column, axis=0)
Out[21]:
 one three two
a -0.614265 NaN 0.000000
b -0.528341 -0.992033 0.000000
c -0.228950 -0.145720 0.000000
d NaN -0.271451 0.000000

Furthermore you can align a level of a multi-indexed DataFrame with a Series.

In [22]: dfmi = df.copy()

In [23]: dfmi.index = MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')], names=['first','second'])

In [24]: dfmi.sub(column, axis=0, level='second')
Out[24]:
 one three two
first second
 1 a -0.614265 NaN 0.000000
 b -0.528341 -0.992033 0.000000
 c -0.228950 -0.145720 0.000000
 2 a -0.614265 NaN 0.000000
 b -0.528341 -0.992033 0.000000
 c -0.228950 -0.145720 0.000000
With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps confusingly?) give you the option to specify the broadcast axis. For example, suppose we wished to demean the data over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis:

In [25]: major_mean = wp.mean(axis='major')

In [26]: major_mean
Out[26]:

<table>
<thead>
<tr>
<th></th>
<th>Item1</th>
<th>Item2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-0.688773</td>
<td>-0.021497</td>
</tr>
<tr>
<td>B</td>
<td>0.114982</td>
<td>-0.094183</td>
</tr>
<tr>
<td>C</td>
<td>0.035674</td>
<td>-0.156470</td>
</tr>
<tr>
<td>D</td>
<td>-0.204142</td>
<td>-0.606887</td>
</tr>
</tbody>
</table>

In [27]: wp.sub(major_mean, axis='major')
Out[27]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

And similarly for axis="items" and axis="minor".

Note: I could be convinced to make the axis argument in the DataFrame methods match the broadcasting behavior of Panel. Though it would require a transition period so users can change their code...

9.4.2 Missing data / operations with fill values

In Series and DataFrame (though not yet in Panel), the arithmetic functions have the option of inputting a fill_value, namely a value to substitute when at most one of the values at a location are missing. For example, when adding two DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the result will be NaN (you can later replace NaN with some other value using fillna if you wish).

In [28]: df
Out[28]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0.701368</td>
<td>NaN</td>
<td>-0.087103</td>
</tr>
<tr>
<td>b</td>
<td>0.109333</td>
<td>-0.354359</td>
<td>0.637674</td>
</tr>
<tr>
<td>c</td>
<td>-0.231617</td>
<td>-0.148387</td>
<td>-0.002666</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>-0.167407</td>
<td>0.104044</td>
</tr>
</tbody>
</table>

In [29]: df2
Out[29]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0.701368</td>
<td>1.000000</td>
<td>-0.087103</td>
</tr>
<tr>
<td>b</td>
<td>0.109333</td>
<td>-0.354359</td>
<td>0.637674</td>
</tr>
<tr>
<td>c</td>
<td>-0.231617</td>
<td>-0.148387</td>
<td>-0.002666</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>-0.167407</td>
<td>0.104044</td>
</tr>
</tbody>
</table>

In [30]: df + df2
Out[30]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-1.402736</td>
<td>NaN</td>
<td>-0.174206</td>
</tr>
</tbody>
</table>

9.4. Flexible binary operations
In [31]: df.add(df2, fill_value=0)
Out[31]:
 one three two
a -1.402736 1.000000 -0.174206
b 0.218666 -0.708719 1.275347
c -0.463233 -0.296773 -0.005333
d NaN -0.334814 0.208088

9.4.3 Flexible Comparisons

Starting in v0.8, pandas introduced binary comparison methods eq, ne, lt, gt, le, and ge to Series and DataFrame whose behavior is analogous to the binary arithmetic operations described above:

In [32]: df.gt(df2)
Out[32]:
 one three two
a False False False
b False False False
c False False False
d False False False

In [33]: df2.ne(df)
Out[33]:
 one three two
a False True False
b False False False
c False False False
d True False False

These operations produce a pandas object the same type as the left-hand-side input that if of dtype bool. These boolean objects can be used in indexing operations, see here

9.4.4 Boolean Reductions

You can apply the reductions: empty, any(), all(), and bool() to provide a way to summarize a boolean result.

In [34]: (df>0).all()
Out[34]:
 one False
 three False
 two False
 dtype: bool

In [35]: (df>0).any()
Out[35]:
 one True
 three False
 two True
 dtype: bool

You can reduce to a final boolean value.
In [36]: (df>0).any().any()
Out[36]: True

You can test if a pandas object is empty, via the **empty** property.

In [37]: df.empty
Out[37]: False

In [38]: DataFrame(columns=list('ABC')).empty
Out[38]: True

To evaluate single-element pandas objects in a boolean context, use the method **.bool()**:

In [39]: Series([True]).bool()
Out[39]: True

In [40]: Series([False]).bool()
Out[40]: False

In [41]: DataFrame([[True]]).bool()
Out[41]: True

In [42]: DataFrame([[False]]).bool()
Out[42]: False

Warning: You might be tempted to do the following:

```python
>>> if df:
    ...
```

Or

```python
>>> df and df2
```

These both will raise as you are trying to compare multiple values.

```
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

See **gotchas** for a more detailed discussion.

9.4.5 Comparing if objects are equivalent

Often you may find there is more than one way to compute the same result. As a simple example, consider $df+df$ and $df*2$. To test that these two computations produce the same result, given the tools shown above, you might imagine using $(df+df == df*2).all()$. But in fact, this expression is False:

In [43]: df+df == df*2
Out[43]:
 one three two
 a True False True
 b True True True
 c True True True
 d False True True

In [44]: (df+df == df*2).all()
Out[44]:
 one
 False
Notice that the boolean DataFrame \(df + df == df * 2 \) contains some False values! That is because NaNs do not compare as equals:

```
In [45]: np.nan == np.nan
Out[45]: False
```

So, as of v0.13.1, NDFrames (such as Series, DataFrames, and Panels) have an `equals` method for testing equality, with NaNs in corresponding locations treated as equal.

```
In [46]: (df + df).equals(df * 2)
Out[46]: True
```

9.4.6 Combining overlapping data sets

A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the other. An example would be two data series representing a particular economic indicator where one is considered to be of “higher quality”. However, the lower quality series might extend further back in history or have more complete data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation is `combine_first`, which we illustrate:

```
In [47]: df1 = DataFrame({'A': [1., np.nan, 3., 5., np.nan],
              ....:       'B': [np.nan, 2., 3., np.nan, 6.]})
    ....:

In [48]: df2 = DataFrame({'A': [5., 2., 4., np.nan, 3., 7.],
              ....:       'B': [np.nan, np.nan, 3., 4., 6., 8.]})
    ....:

In [49]: df1
Out[49]:
    A  B
  0  1  NaN
  1 NaN  2
  2  3  3
  3  5  NaN
  4 NaN  6

In [50]: df2
Out[50]:
    A  B
  0  5  NaN
  1 NaN  2
  2  4  3
  3 NaN  4
  4  3  6
  5  7  8

In [51]: df1.combine_first(df2)
Out[51]:
    A  B
  0  1  NaN
  1  2  2
```
9.4.7 General DataFrame Combine

The `combine_first` method above calls the more general DataFrame method `combine`. This method takes another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs of Series (ie, columns whose names are the same).

So, for instance, to reproduce `combine_first` as above:

```python
In [52]: combiner = lambda x, y: np.where(isnull(x), y, x)
In [53]: df1.combine(df2, combiner)
```

```
   A  B
0  1  NaN
1  2  2
2  3  3
3  5  4
4  3  6
5  7  8
```

9.5 Descriptive statistics

A large number of methods for computing descriptive statistics and other related operations on `Series`, `DataFrame`, and `Panel`. Most of these are aggregations (hence producing a lower-dimensional result) like `sum`, `mean`, and `quantile`, but some of them, like `cumsum` and `cumprod`, produce an object of the same size. Generally speaking, these methods take an `axis` argument, just like `ndarray.{sum, std, ...}`, but the axis can be specified by name or integer:

- **Series**: no axis argument needed
- **DataFrame**: “index” (axis=0, default), “columns” (axis=1)
- **Panel**: “items” (axis=0), “major” (axis=1, default), “minor” (axis=2)

For example:

```python
In [54]: df
Out[54]:
   one   three   two
  a -0.701368 NaN  0.087103
  b  0.109333 -0.354359  0.637674
  c -0.231617 -0.148387 -0.002666
  d  NaN       -0.167407  0.104044

In [55]: df.mean(0)
Out[55]:
    one    three    two
dtype: float64
    0.162987
```

9.5. Descriptive statistics
All such methods have a `skipna` option signaling whether to exclude missing data (True by default):

```python
In [57]: df.sum(0, skipna=False)
Out[57]:
one    NaN
three  NaN
two    0.651948
dtype: float64
```

```python
In [58]: df.sum(axis=1, skipna=True)
Out[58]:
a   -0.788471
b   -0.382670
c   -0.382670
d   -0.063363
dtype: float64
```

Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standardization (rendering data zero mean and standard deviation 1), very concisely:

```python
In [59]: ts_stand = (df - df.mean()) / df.std()
In [60]: ts_stand.std()
Out[60]:
one   1.000000
three 1.000000
two   1.000000
dtype: float64
```

```python
In [61]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)
In [62]: xs_stand.std(1)
Out[62]:
a   1.000000
b   1.000000
c   1.000000
d   1.000000
dtype: float64
```

Note that methods like `cumsum` and `cumprod` preserve the location of NA values:

```python
In [63]: df.cumsum()
Out[63]:
one   0.701368    NaN   -0.087103
  three -0.592035 -0.354359  0.550570
  two   -0.823652 -0.502746  0.547904
  NaN   -0.670153  0.651948
dtype: float64
```

Here is a quick reference summary table of common functions. Each also takes an optional `level` parameter which applies only if the object has a hierarchical index.
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>sum</td>
<td>Sum of values</td>
</tr>
<tr>
<td>mean</td>
<td>Mean of values</td>
</tr>
<tr>
<td>mad</td>
<td>Mean absolute deviation</td>
</tr>
<tr>
<td>median</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>max</td>
<td>Maximum</td>
</tr>
<tr>
<td>mode</td>
<td>Mode</td>
</tr>
<tr>
<td>abs</td>
<td>Absolute Value</td>
</tr>
<tr>
<td>prod</td>
<td>Product of values</td>
</tr>
<tr>
<td>std</td>
<td>Unbiased standard deviation</td>
</tr>
<tr>
<td>var</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>sem</td>
<td>Unbiased standard error of the mean</td>
</tr>
<tr>
<td>skew</td>
<td>Unbiased skewness (3rd moment)</td>
</tr>
<tr>
<td>kurt</td>
<td>Unbiased kurtosis (4th moment)</td>
</tr>
<tr>
<td>quantile</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>cumsum</td>
<td>Cumulative sum</td>
</tr>
<tr>
<td>cumprod</td>
<td>Cumulative product</td>
</tr>
<tr>
<td>cummax</td>
<td>Cumulative maximum</td>
</tr>
<tr>
<td>cummin</td>
<td>Cumulative minimum</td>
</tr>
</tbody>
</table>

Note that by chance some NumPy methods, like mean, std, and sum, will exclude NAs on Series input by default:

```python
In [64]: np.mean(df['one'])
Out[64]: -0.27455055654271204
```

```python
In [65]: np.mean(df['one'].values)
Out[65]: nan
```

Series also has a method `nunique` which will return the number of unique non-null values:

```python
In [66]: series = Series(randn(500))
In [67]: series[20:500] = np.nan
In [68]: series[10:20] = 5
In [69]: series.nunique()
Out[69]: 11
```

9.5.1 Summarizing data: `describe`

There is a convenient `describe` function which computes a variety of summary statistics about a Series or the columns of a DataFrame (excluding NAs of course):

```python
In [70]: series = Series(randn(1000))
In [71]: series[:2] = np.nan
In [72]: series.describe()
Out[72]:
    count   500.000000
    mean   -0.019898
    std    1.019180
    min   -2.628792
```

9.5. Descriptive statistics
25% -0.649795
50% -0.059405
75% 0.651932
max 3.240991
dtype: float64

In [73]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])

In [74]: frame.ix[::2] = np.nan

In [75]: frame.describe()

Out[75]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>500.000000</td>
<td>500.000000</td>
<td>500.000000</td>
<td>500.000000</td>
<td>500.000000</td>
</tr>
<tr>
<td>mean</td>
<td>0.051388</td>
<td>0.053476</td>
<td>-0.035612</td>
<td>0.015388</td>
<td>0.057804</td>
</tr>
<tr>
<td>std</td>
<td>0.989217</td>
<td>0.995961</td>
<td>0.977047</td>
<td>0.968385</td>
<td>1.022528</td>
</tr>
<tr>
<td>min</td>
<td>-3.224136</td>
<td>-2.606460</td>
<td>-2.762875</td>
<td>-2.961757</td>
<td>-2.829100</td>
</tr>
<tr>
<td>25%</td>
<td>-0.657420</td>
<td>-0.597123</td>
<td>-0.688961</td>
<td>-0.695019</td>
<td>-0.738097</td>
</tr>
<tr>
<td>50%</td>
<td>0.042928</td>
<td>0.018837</td>
<td>-0.071830</td>
<td>-0.011326</td>
<td>0.073287</td>
</tr>
<tr>
<td>75%</td>
<td>0.702445</td>
<td>0.693542</td>
<td>0.600454</td>
<td>0.680924</td>
<td>0.807670</td>
</tr>
<tr>
<td>max</td>
<td>3.034008</td>
<td>3.104512</td>
<td>2.812028</td>
<td>2.623914</td>
<td>3.542846</td>
</tr>
</tbody>
</table>

You can select specific percentiles to include in the output:

In [76]: series.describe(percentiles=[.05, .25, .75, .95])

Out[76]:

<table>
<thead>
<tr>
<th>count</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>95%</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.000000</td>
<td>-0.019898</td>
<td>1.019180</td>
<td>-2.628792</td>
<td>-1.670021</td>
<td>-0.649795</td>
<td>-0.059405</td>
<td>0.651932</td>
<td>1.584100</td>
<td>3.240991</td>
</tr>
<tr>
<td>dtype: float64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

By default, the median is always included.

For a non-numerical Series object, describe will give a simple summary of the number of unique values and most frequently occurring values:

In [77]: s = Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a'])

In [78]: s.describe()

Out[78]:

<table>
<thead>
<tr>
<th>count</th>
<th>unique</th>
<th>top</th>
<th>freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4</td>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>dtype: object</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There also is a utility function, value_range which takes a DataFrame and returns a series with the minimum/maximum values in the DataFrame.
9.5.2 Index of Min/Max Values

The \texttt{idxmin} and \texttt{idxmax} functions on Series and DataFrame compute the index labels with the minimum and maximum corresponding values:

\texttt{In [79]:} \texttt{s1 = Series(randn(5))}

\texttt{In [80]:} \texttt{s1}
\texttt{Out[80]:}
0 -0.574018
1 0.668292
2 0.303418
3 -1.190271
4 0.138399
\texttt{dtype: float64}

\texttt{In [81]:} \texttt{s1.idxmin(), s1.idxmax()}
\texttt{Out[81]: (3, 1)}

\texttt{In [82]:} \texttt{df1 = DataFrame(randn(5,3), columns=['A','B','C'])}

\texttt{In [83]:} \texttt{df1}
\texttt{Out[83]:}
\texttt{ A B C}
\texttt{0 -0.184355 -1.054354 -1.613138}
\texttt{1 -0.050807 -2.130168 -1.852271}
\texttt{2 0.455674 2.571061 -1.152538}
\texttt{3 -1.638940 -0.364831 -0.348520}
\texttt{4 0.202856 0.777088 -0.358316}

\texttt{In [84]:} \texttt{df1.idxmin(axis=0)}
\texttt{Out[84]:}
\texttt{ A B C}
\texttt{ 3 1 1}
\texttt{\texttt{dtype: int64}}

\texttt{In [85]:} \texttt{df1.idxmax(axis=1)}
\texttt{Out[85]:}
\texttt{ 0 1 2 3 4}
\texttt{A 3 1 2 3 2}
\texttt{B 1 2 3 1 3}
\texttt{C 3 1 2 3 2}
\texttt{\texttt{dtype: object}}

When there are multiple rows (or columns) matching the minimum or maximum value, \texttt{idxmin} and \texttt{idxmax} return the first matching index:

\texttt{In [86]:} \texttt{df3 = DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba'))}

\texttt{In [87]:} \texttt{df3}
\texttt{Out[87]:}
\texttt{ A}
\texttt{ e 2}
\texttt{ d 1}
\texttt{ c 1}
\texttt{ b 3}
\texttt{ a NaN}

9.5. Descriptive statistics
In [88]: df3['A'].idxmin()
Out[88]: 'd'

Note: idxmin and idxmax are called argmin and argmax in NumPy.

9.5.3 Value counts (histogramming) / Mode

The value_counts Series method and top-level function computes a histogram of a 1D array of values. It can also be used as a function on regular arrays:

In [89]: data = np.random.randint(0, 7, size=50)

In [90]: data
Out[90]:
array([4, 6, 6, 1, 2, 1, 0, 5, 3, 2, 4, 3, 1, 3, 5, 3, 0, 0, 4, 4, 6, 1, 0,
 4, 3, 2, 1, 3, 1, 5, 6, 3, 1, 2, 4, 4, 3, 3, 2, 2, 2, 3, 3, 0, 1,
 2, 4, 5, 5])

In [91]: s = Series(data)

In [92]: s.value_counts()
Out[92]:
3 11
2 9
4 8
1 8
5 5
0 5
6 4
dtype: int64

In [93]: value_counts(data)
Out[93]:
3 11
2 9
4 8
1 8
5 5
0 5
6 4
dtype: int64

Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame:

In [94]: s5 = Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])

In [95]: s5.mode()
Out[95]:
0 3
1 7
dtype: int64

In [96]: df5 = DataFrame({'A': np.random.randint(0, 7, size=50),
 : 'B': np.random.randint(-10, 15, size=50))
 :}
In [97]: df5.mode()
Out[97]:
 A B
0 5 -4
1 6 NaN

9.5.4 Discretization and quantiling

Continuous values can be discretized using the `cut` (bins based on values) and `qcut` (bins based on sample quantiles) functions:

In [98]: arr = np.random.randn(20)

In [99]: factor = cut(arr, 4)

In [100]: factor
Out[100]:
(-0.886, -0.0912]
(-0.886, -0.0912]
(-0.886, -0.0912]
(1.493, 2.285]
(0.701, 1.493]
...
(-0.0912, 0.701]
(-0.886, -0.0912]
(0.701, 1.493]
(0.701, 1.493]
(-0.0912, 0.701]
(1.493, 2.285]
Levels (4): Index(['(-0.886, -0.0912]', '(-0.0912, 0.701]', '(0.701, 1.493]', '(1.493, 2.285]'
, dtype=object)
Length: 20

In [101]: factor = cut(arr, [-5, -1, 0, 1, 5])

In [102]: factor
Out[102]:
(-1, 0]
(-1, 0]
(-1, 0]
(1, 5]
(1, 5]
...
(0, 1]
(-1, 0]
(0, 1]
(0, 1]
(0, 1]
Levels (4): Index(['(-5, -1]', '(-1, 0]', '(0, 1]', '(1, 5]'
, dtype=object)
Length: 20

`qcut` computes sample quantiles. For example, we could slice up some normally distributed data into equal-size quartiles like so:

9.5. Descriptive statistics
In [103]: arr = np.random.randn(30)

In [104]: factor = qcut(arr, [0, .25, .5, .75, 1])

In [105]: factor
Out[105]:
[-1.861, -0.487]
(0.0554, 0.658]
(0.658, 2.259]
[-1.861, -0.487]
(0.658, 2.259]
...
(0.0554, 0.658]
(0.0554, 0.658]
(0.658, 2.259]
[-1.861, -0.487]
(0.0554, 0.658]
(-0.487, 0.0554]
Levels (4): Index(['[-1.861, -0.487]', '(-0.487, 0.0554]', '
'(0.0554, 0.658]', '(0.658, 2.259]'], dtype=object)
Length: 30

In [106]: value_counts(factor)
Out[106]:
(0.658, 2.259] 8
[-1.861, -0.487] 8
(0.0554, 0.658] 7
(-0.487, 0.0554] 7
dtype: int64

We can also pass infinite values to define the bins:

In [107]: arr = np.random.randn(20)

In [108]: factor = cut(arr, [-np.inf, 0, np.inf])

In [109]: factor
Out[109]:
(-inf, 0]
(0, inf]
(-inf, 0]
(0, inf]
(-inf, 0]
...
(-inf, 0]
(0, inf]
(-inf, 0]
(0, inf]
(-inf, 0]
Levels (2): Index(['(-inf, 0]', '(0, inf]'], dtype=object)
Length: 20
9.6 Function application

Arbitrary functions can be applied along the axes of a DataFrame or Panel using the `apply` method, which, like the descriptive statistics methods, take an optional `axis` argument:

In [110]: df.apply(np.mean)
Out[110]:
one -0.274551
three -0.223384
two 0.162987
dtype: float64

In [111]: df.apply(np.mean, axis=1)
Out[111]:
a -0.394235
b 0.130882
c -0.127557
d -0.031682
dtype: float64

In [112]: df.apply(lambda x: x.max() - x.min())
Out[112]:
one 0.810701
three 0.205973
two 0.724777
dtype: float64

In [113]: df.apply(np.cumsum)
Out[113]:
<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-0.701368</td>
<td>NaN</td>
<td>-0.087103</td>
</tr>
<tr>
<td>b</td>
<td>-0.592035</td>
<td>-0.354359</td>
<td>0.550570</td>
</tr>
<tr>
<td>c</td>
<td>-0.823652</td>
<td>-0.502746</td>
<td>0.547904</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>-0.670153</td>
<td>0.651948</td>
</tr>
</tbody>
</table>

In [114]: df.apply(np.exp)
Out[114]:
<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.495907</td>
<td>NaN</td>
<td>0.916583</td>
</tr>
<tr>
<td>b</td>
<td>1.115534</td>
<td>0.701623</td>
<td>1.892074</td>
</tr>
<tr>
<td>c</td>
<td>0.793250</td>
<td>0.862098</td>
<td>0.997337</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>0.845855</td>
<td>1.109649</td>
</tr>
</tbody>
</table>

Depending on the return type of the function passed to `apply`, the result will either be of lower dimension or the same dimension.

`apply` combined with some cleverness can be used to answer many questions about a data set. For example, suppose we wanted to extract the date where the maximum value for each column occurred:

In [115]: tsdf = DataFrame(randn(1000, 3), columns=['A', 'B', 'C'],
index=date_range('1/1/2000', periods=1000))

In [116]: tsdf.apply(lambda x: x.idxmax())
Out[116]:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2002-08-19</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2000-11-30</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2002-01-10</td>
<td></td>
</tr>
</tbody>
</table>
dtype: datetime64[ns]
You may also pass additional arguments and keyword arguments to the \texttt{apply} method. For instance, consider the following function you would like to apply:

\begin{verbatim}
def subtract_and_divide(x, sub, divide=1):
 return (x - sub) / divide
\end{verbatim}

You may then apply this function as follows:

\begin{verbatim}
df.apply(subtract_and_divide, args=(5,), divide=3)
\end{verbatim}

Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:

\begin{verbatim}
In [117]: tsdf
Out[117]:
 A B C
2000-01-01 -1.2262 0.1738 -0.7981
2000-01-02 0.1271 0.1411 -2.1867
2000-01-03 -1.8042 0.8798 0.4652
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 1.5423 0.5248 1.4457
2000-01-09 -1.1050 -0.4702 0.3362
2000-01-10 -0.9477 -0.2621 -0.4238

In [118]: tsdf.apply(Series.interpolate)
Out[118]:
 A B C
2000-01-01 -1.2262 0.1738 -0.7981
2000-01-02 0.1271 0.1411 -2.1867
2000-01-03 -1.8042 0.8798 0.4652
2000-01-04 -1.1349 0.8088 0.6613
2000-01-05 -0.4656 0.7378 0.8574
2000-01-06 0.2037 0.6668 1.0535
2000-01-07 0.8729 0.5958 1.2496
2000-01-08 1.5423 0.5248 1.4457
2000-01-09 -1.1049 -0.4702 0.3362
2000-01-10 -0.9477 -0.2621 -0.4238
\end{verbatim}

Finally, \texttt{apply} takes an argument \texttt{raw} which is False by default, which converts each row or column into a Series before applying the function. When set to True, the passed function will instead receive an ndarray object, which has positive performance implications if you do not need the indexing functionality.

\section*{9.6.1 Applying elementwise Python functions}

Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods \texttt{applymap} on DataFrame and analogously \texttt{map} on Series accept any Python function taking a single value and returning a single value. For example:

\begin{verbatim}
In [119]: df4
Out[119]:
\end{verbatim}
In [120]: f = lambda x: len(str(x))

In [121]: df4[‘one’].map(f)
Out[121]:
a 15
b 14
c 15
d 3
Name: one, dtype: int64

In [122]: df4.applymap(f)
Out[122]:
one three two
 a 15 3 16
 b 14 15 14
 c 15 15 17
 d 3 15 14

Series.map has an additional feature which is that it can be used to easily “link” or “map” values defined by a secondary series. This is closely related to merging/joining functionality:

In [123]: s = Series([‘six’, ‘seven’, ‘six’, ‘seven’, ‘six’],
 index=[‘a’, ‘b’, ‘c’, ‘d’, ‘e’])
 :
 :

In [124]: t = Series({‘six’ : 6., ‘seven’ : 7.})

In [125]: s
Out[125]:
a six
b seven
c six
d seven
e six
dtype: object

In [126]: s.map(t)
Out[126]:
a 6
b 7
c 6
d 7
e 6
dtype: float64

9.6.2 Applying with a Panel

Applying with a Panel will pass a Series to the applied function. If the applied function returns a Series, the result of the application will be a Panel. If the applied function reduces to a scalar, the result of the application will be a DataFrame.
pandas: powerful Python data analysis toolkit, Release 0.14.1

Note: Prior to 0.13.1 apply on a Panel would only work on ufuncs (e.g. np.sum/np.max).

In [127]: import pandas.util.testing as tm

In [128]: panel = tm.makePanel(5)

In [129]: panel
Out[129]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [130]: panel['ItemA']
Out[130]:
A B C D
2000-01-03 0.166882 -0.597361 -1.200639 0.174260
2000-01-04 -1.759496 -1.514940 -1.872993 -0.581163
2000-01-05 0.901336 -1.640398 0.825210 0.087916
2000-01-06 -0.317478 -1.130643 -0.392715 0.416971
2000-01-07 -0.681335 -0.245890 -1.994150 0.666084

A transformational apply.

In [131]: result = panel.apply(lambda x: x*2, axis='items')

In [132]: result
Out[132]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [133]: result['ItemA']
Out[133]:
A B C D
2000-01-03 0.333764 -1.194722 -2.401278 0.348520
2000-01-05 1.802673 -3.280796 1.650421 0.175832
2000-01-06 -0.634955 -2.261286 -0.785430 0.833943
2000-01-07 -1.362670 -0.491779 -3.988300 1.332168

A reduction operation.

In [134]: panel.apply(lambda x: x.dtype, axis='items')
Out[134]:
2000-01-03 float64
2000-01-04 float64
2000-01-05 float64
2000-01-06 float64
2000-01-07 float64

A similar reduction type operation

In [135]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[135]:
2000-01-03 float64
2000-01-04 float64
2000-01-05 float64
2000-01-06 float64
2000-01-07 float64
A transformation operation that returns a Panel, but is computing the z-score across the major_axis.

In [137]: result = panel.apply(
 : lambda x: (x-x.mean())/x.std(),
 : axis='major_axis')
 :

In [138]: result
Out[138]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [139]: result.loc[:, :, 'ItemA']
Out[139]:
A B C D
2000-01-03 0.509389 -0.648605 -0.903128 0.450190
2000-01-04 -1.434116 -0.820934 -0.809328 -1.567858
2000-01-05 1.250373 -1.031513 1.499214 -0.138629
2000-01-06 0.020723 -0.175899 0.457175 0.564271
2000-01-07 -0.346370 1.309142 -0.912988 1.096405

Apply can also accept multiple axes in the axis argument. This will pass a DataFrame of the cross-section to the applied function.

In [140]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T

In [141]: result = panel.apply(f, axis = ['items','major_axis'])

In [142]: result
Out[142]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [143]: result.loc[:, :, 'ItemA']
Out[143]:
A B C D
2000-01-03 0.783778 -0.648605 -0.903128 0.450190

pandas: powerful Python data analysis toolkit, Release 0.14.1

2000-01-04 -0.884670 -1.046087 -1.096521 -0.900467
2000-01-05 1.140729 -1.124651 0.716895 0.754324
2000-01-06 -1.043494 0.029043 -0.991042 0.845339
2000-01-07 -1.125870 -0.536928 -1.152240 -0.182526

This is equivalent to the following

In [144]: result = Panel(dict([(ax,f(panel.loc[:,:,ax])
 : for ax in panel.minor_axis]))
 :

In [145]: result
Out[145]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [146]: result.loc[:,:,’ItemA’]
Out[146]:
 A B C D
2000-01-03 0.783778 -0.648605 -0.903128 0.450190
2000-01-04 -0.884670 -1.046087 -1.096521 -0.900467
2000-01-05 1.140729 -1.124651 0.716895 0.754324
2000-01-06 -1.043494 0.029043 -0.991042 0.845339
2000-01-07 -1.125870 -0.536928 -1.152240 -0.182526

9.7 Reindexing and altering labels

reindex is the fundamental data alignment method in pandas. It is used to implement nearly all other features relying on label-alignment functionality. To reindex means to conform the data to match a given set of labels along a particular axis. This accomplishes several things:

- Reorders the existing data to match a new set of labels
- Inserts missing value (NA) markers in label locations where no data for that label existed
- If specified, fill data for missing labels using logic (highly relevant to working with time series data)

Here is a simple example:

In [147]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [148]: s
Out[148]:
a 1.112686
b -1.069046
c -1.218080
d -0.944778
e 0.005240
dtype: float64

In [149]: s.reindex([‘e’, ‘b’, ‘f’, ‘d’])
Out[149]:
e 0.005240
b -1.069046
f NaN
Here, the \(f \) label was not contained in the Series and hence appears as NaN in the result.

With a DataFrame, you can simultaneously reindex the index and columns:

```python
In [150]: df
Out[150]:
   one  three  two
a -0.701368  NaN  0.087103
b  0.109333 -0.354359  0.637674
c -0.231617 -0.148387 -0.002666
d   NaN     NaN     NaN

In [151]: df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one'])
Out[151]:
   three  two  one
  c  0.002666  NaN  0.231617
  f  0.637674  NaN   NaN
  b  0.109333  0.637674  0.109333
```

For convenience, you may utilize the `reindex_axis` method, which takes the labels and a keyword `axis` parameter.

Note that the Index objects containing the actual axis labels can be shared between objects. So if we have a Series and a DataFrame, the following can be done:

```python
In [152]: rs = s.reindex(df.index)

In [153]: rs
Out[153]:
   a  1.112686
   b -1.069046
   c -1.218080
   d -0.944778
dtype: float64

In [154]: rs.index is df.index
Out[154]: True
```

This means that the reindexed Series’s index is the same Python object as the DataFrame’s index.

See Also:

Advanced indexing is an even more concise way of doing reindexing.

Note: When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing ninja: *many operations are faster on pre-aligned data*. Adding two unaligned DataFrames internally triggers a reindexing step. For exploratory analysis you will hardly notice the difference (because `reindex` has been heavily optimized), but when CPU cycles matter sprinkling a few explicit `reindex` calls here and there can have an impact.

9.7.1 Reindexing to align with another object

You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this is straightforward albeit verbose, it is a common enough operation that the `reindex_like` method is available to make this simpler:
9.7.2 Reindexing with reindex_axis

9.7.3 Aligning objects with each other with align

The align method is the fastest way to simultaneously align two objects. It supports a join argument (related to joining and merging):

- join='outer': take the union of the indexes
- join='left': use the calling object’s index
- join='right': use the passed object’s index
- join='inner': intersect the indexes

It returns a tuple with both of the reindexed Series:

In [158]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [159]: s1 = s[:4]
In [160]: s2 = s[1:]
In [161]: s1.align(s2)
Out[161]:
 a b c d e
0 0.479090 0.686579 -0.949750 -0.257472 NaN
1 NaN NaN NaN NaN -0.568459

dtype: float64, a NaN
b 0.686579
c -0.949750
d -0.257472
e -0.568459
dtype: float64)
In [162]: s1.align(s2, join='inner')
Out[162]:
(b 0.686579
c -0.949750
d -0.257472
dtype: float64, b 0.686579
c -0.949750
d -0.257472
dtype: float64)

In [163]: s1.align(s2, join='left')
Out[163]:
(a 0.479090
b 0.686579
c -0.949750
d -0.257472
dtype: float64, a NaN
b 0.686579
c -0.949750
d -0.257472
dtype: float64)

For DataFrames, the join method will be applied to both the index and the columns by default:

In [164]: df.align(df2, join='inner')
Out[164]:
(one two
a -0.701368 -0.087103
b 0.109333 0.637674
c -0.231617 -0.002666, one two
a -0.701368 -0.087103
b 0.109333 0.637674
c -0.231617 -0.002666)

You can also pass an axis option to only align on the specified axis:

In [165]: df.align(df2, join='inner', axis=0)
Out[165]:
(one three two
a -0.701368 NaN -0.087103
b 0.109333 -0.354359 0.637674
c -0.231617 -0.148387 -0.002666, one two
a -0.701368 -0.087103
b 0.109333 0.637674
c -0.231617 -0.002666)

If you pass a Series to DataFrame.align, you can choose to align both objects either on the DataFrame’s index or columns using the axis argument:

In [166]: df.align(df2.ix[0], axis=1)
Out[166]:
(one three two
a -0.701368 NaN -0.087103
b 0.109333 -0.354359 0.637674
c -0.231617 -0.148387 -0.002666, one three two
a -0.701368 -0.087103
b 0.109333 0.637674
c -0.231617 -0.002666)

9.7. Reindexing and altering labels
9.7.4 Filling while reindexing

reindex takes an optional parameter method which is a filling method chosen from the following table:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad / ffill</td>
<td>Fill values forward</td>
</tr>
<tr>
<td>bfill / backfill</td>
<td>Fill values backward</td>
</tr>
</tbody>
</table>

Other fill methods could be added, of course, but these are the two most commonly used for time series data. In a way they only make sense for time series or otherwise ordered data, but you may have an application on non-time series data where this sort of “interpolation” logic is the correct thing to do. More sophisticated interpolation of missing values would be an obvious extension.

We illustrate these fill methods on a simple TimeSeries:

In [167]: rng = date_range('1/3/2000', periods=8)

In [168]: ts = Series(randn(8), index=rng)

In [169]: ts2 = ts[[0, 3, 6]]

In [170]: ts
Out[170]:
2000-01-03 -0.059786
2000-01-04 0.936271
2000-01-05 0.040623
2000-01-06 0.836517
2000-01-07 1.849649
2000-01-08 -1.198994
2000-01-09 0.688500
2000-01-10 -0.696903
Freq: D, dtype: float64

In [171]: ts2
Out[171]:
2000-01-03 -0.059786
2000-01-06 0.836517
2000-01-09 0.688500
dtype: float64

In [172]: ts2.reindex(ts.index)
Out[172]:
2000-01-03 -0.059786
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 0.836517
2000-01-07 NaN
2000-01-08 NaN
2000-01-09 0.688500
2000-01-10 NaN
Freq: D, dtype: float64

In [173]: ts2.reindex(ts.index, method='ffill')
Out[173]:
2000-01-03 -0.059786
2000-01-04 -0.059786
2000-01-05 -0.059786
2000-01-06 0.836517
2000-01-07 0.836517
In [174]: ts2.reindex(ts.index, method='bfill')
Out[174]:
2000-01-03 -0.059786
2000-01-04 0.836517
2000-01-05 0.836517
2000-01-06 0.836517
2000-01-07 0.688500
2000-01-08 0.688500
2000-01-09 0.688500
2000-01-10 NaN
Freq: D, dtype: float64

Note these methods require that the indexes are order increasing.

Note the same result could have been achieved using `fillna`:

In [175]: ts2.reindex(ts.index).fillna(method='ffill')
Out[175]:
2000-01-03 -0.059786
2000-01-04 -0.059786
2000-01-05 -0.059786
2000-01-06 0.836517
2000-01-07 0.836517
2000-01-08 0.836517
2000-01-09 0.688500
2000-01-10 0.688500
Freq: D, dtype: float64

Note that `reindex` will raise a ValueError if the index is not monotonic. `fillna` will not make any checks on the order of the index.

9.7.5 Dropping labels from an axis

A method closely related to `reindex` is the `drop` function. It removes a set of labels from an axis:

In [176]: df
Out[176]:
 one three two
a -0.701368 NaN -0.087103
b 0.109333 -0.354359 0.637674
c -0.231617 -0.148387 -0.002666
d NaN -0.167407 0.104044

In [177]: df.drop(['a', 'd'], axis=0)
Out[177]:
 one three two
b 0.109333 -0.354359 0.637674
c -0.231617 -0.148387 -0.002666

In [178]: df.drop(['one'], axis=1)
Out[178]:
 three two
a NaN -0.087103

9.7. Reindexing and altering labels 235
b -0.354359 0.637674
c -0.148387 -0.002666
d -0.167407 0.104044

Note that the following also works, but is a bit less obvious / clean:

In [179]: df.reindex(df.index - ['a', 'd'])
Out[179]:
 one three two
b 0.109333 -0.354359 0.637674
c -0.231617 -0.148387 -0.002666

9.7.6 Renaming / mapping labels

The rename method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.

In [180]: s
Out[180]:
a 0.479090
b 0.686579
c -0.949750
d -0.257472
e -0.568459
dtype: float64

In [181]: s.rename(str.upper)
Out[181]:
A 0.479090
B 0.686579
C -0.949750
D -0.257472
E -0.568459
dtype: float64

If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique values). But if you pass a dict or Series, it need only contain a subset of the labels as keys:

In [182]: df.rename(columns={'one' : 'foo', 'two' : 'bar'},
 index={'a' : 'apple', 'b' : 'banana', 'd' : 'durian'})
Out[182]:
 foo three bar
apple -0.701368 NaN -0.087103
banana 0.109333 -0.354359 0.637674
c -0.231617 -0.148387 -0.002666
durian NaN -0.167407 0.104044

The rename method also provides an inplace named parameter that is by default False and copies the underlying data. Pass inplace=True to rename the data in place. The Panel class has a related rename_axis class which can rename any of its three axes.

9.8 Iteration

Because Series is array-like, basic iteration produces the values. Other data structures follow the dict-like convention of iterating over the “keys” of the objects. In short:
• **Series**: values
• **DataFrame**: column labels
• **Panel**: item labels

Thus, for example:

```python
In [183]: for col in df:
    ....:     print(col)
    ....:
one
three
two
```

9.8.1 `iteritems`

Consistent with the dict-like interface, `iteritems` iterates through key-value pairs:

• **Series**: (index, scalar value) pairs
• **DataFrame**: (column, Series) pairs
• **Panel**: (item, DataFrame) pairs

For example:

```python
In [184]: for item, frame in wp.iteritems():
    ....:     print(item)
    ....:     print(frame)
    ....:
Item1
  A  B  C  D
2000-01-01 -1.118121 0.431279 0.554724 -1.333649
2000-01-02 -0.332174 -0.485882 1.725945 1.799276
2000-01-03 -0.968916 -0.779465 -2.000701 -1.866630
2000-01-04 -1.101268 1.957478 0.058889 0.758071
2000-01-05 0.076612 -0.548502 -0.160485 -0.377780
Item2
  A  B  C  D
2000-01-01 0.249911 -0.341270 -0.272599 -0.277446
2000-01-02 -1.102896 0.100307 -1.602814 0.920139
2000-01-03 -0.643870 0.060336 -0.434942 -0.494305
2000-01-04 0.737973 0.451632 0.334124 -0.787062
2000-01-05 0.651396 -0.741919 1.193881 -2.395763
```

9.8.2 `iterrows`

New in v0.7 is the ability to iterate efficiently through rows of a DataFrame. It returns an iterator yielding each index value along with a Series containing the data in each row:

```python
In [185]: for row_index, row in df2.iterrows():
    ....:     print('%s
%s' % (row_index, row))
    ....:
a
one   -0.701368
two   -0.087103
Name: a, dtype: float64
```

9.8. Iteration
For instance, a contrived way to transpose the DataFrame would be:

```python
In [186]: df2 = DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]})

In [187]: print(df2)
   x  y
0  1  4
1  2  5
2  3  6

In [188]: print(df2.T)
   0  1  2
   x  1  2  3
   y  4  5  6

In [189]: df2_t = DataFrame(dict((idx, values) for idx, values in df2.iterrows()))

In [190]: print(df2_t)
   0  1  2
   x  1  2  3
   y  4  5  6
```

Note: `iterrows` does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

```python
In [191]: df_iter = DataFrame([1, 1.0], columns=['x', 'y'])

In [192]: row = next(df_iter.iterrows())[1]

In [193]: print(row['x'].dtype)
float64

In [194]: print(df_iter['x'].dtype)
int64
```

9.8.3 `itertuples`

This method will return an iterator yielding a tuple for each row in the DataFrame. The first element of the tuple will be the row’s corresponding index value, while the remaining values are the row values proper.

For instance,

```python
In [195]: for r in df2.itertuples():
   .....:     print(r)
   .....:
   (0, 1, 4)
   (1, 2, 5)
   (2, 3, 6)
```
9.9 Vectorized string methods

Series is equipped (as of pandas 0.8.1) with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series’s `str` attribute and generally have names matching the equivalent (scalar) build-in string methods:

9.9.1 Splitting and Replacing Strings

In [196]: s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [197]: s.str.lower()

```
0    a
1    b
2    c
3   aaba
4   baca
5   NaN
6   caba
7    dog
8    cat
dtype: object
```

In [198]: s.str.upper()

```
0    A
1    B
2    C
3   AABA
4   BACA
5   NaN
6   CABA
7    DOG
8    CAT
```

dtype: object

In [199]: s.str.len()

```
0    1
1    1
2    1
3    4
4    4
5   NaN
6    4
7    3
8    3
```

dtype: float64

Methods like `split` return a Series of lists:

In [200]: s2 = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])

In [201]: s2.str.split('_')
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
dtype: object

Elements in the split lists can be accessed using get or [] notation:

In [202]: s2.str.split('_').str.get(1)
Out[202]:
0 b
1 d
2 NaN
3 g
dtype: object

In [203]: s2.str.split('_').str[1]
Out[203]:
0 b
1 d
2 NaN
3 g
dtype: object

Methods like replace and findall take regular expressions, too:

In [204]: s3 = Series(['A', 'B', 'C', 'Aaba', 'Baca',
 : '', np.nan, 'CABA', 'dog', 'cat'])
 :
In [205]: s3
Out[205]:
0 A
1 B
2 C
3 Aaba
4 Baca
5 NaN
6 CABA
7 dog
8 cat
dtype: object

In [206]: s3.str.replace('^a|dog', 'XX-XX ', case=False)
Out[206]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5 NaN
6 XX-XX BA
7 XX-XX
dtype: object
9.9.2 Extracting Substrings

The method `extract` (introduced in version 0.13) accepts regular expressions with match groups. Extracting a regular expression with one group returns a Series of strings.

```
In [207]: Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)')
Out[207]:
      0  1
     0  a  1
     1  b  2
     2  NaN NaN
```

Elements that do not match return `NaN`. Extracting a regular expression with more than one group returns a DataFrame with one column per group.

```
In [208]: Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)')
Out[208]:
     0   1
    0   a  1
    1   b  2
    2  NaN NaN
```

Elements that do not match return a row filled with `NaN`. Thus, a Series of messy strings can be “converted” into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating get() to access tuples or re.match objects.

The results dtype always is object, even if no match is found and the result only contains `NaN`.

Named groups like

```
In [209]: Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)')
Out[209]:
        letter  digit
       0       a      1
       1       b      2
       2  NaN  NaN
```

and optional groups like

```
In [210]: Series(['a1', 'b2', '3']).str.extract('(?P<letter>[ab])?(?P<digit>\d)')
Out[210]:
        letter  digit
       0       a      1
       1       b      2
       2  NaN      3
```

can also be used.

9.9.3 Testing for Strings that Match or Contain a Pattern

You can check whether elements contain a pattern:

```
In [211]: pattern = r'[a-z][0-9]'

In [212]: Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
Out[212]:
    0   False
    1   False
    2   False
```
or match a pattern:

\[
\text{In [213]: Series(['1', '2', '3a', '3b', '03c']).str.match(pattern, as_indexer=True)}
\]

\[
\text{Out [213]:}
\]

\[
\begin{array}{cccc}
0 & False & 1 & False \\
2 & False & 3 & False \\
4 & False & dtype: bool
\end{array}
\]

The distinction between \texttt{match} and \texttt{contains} is strictness: \texttt{match} relies on strict \texttt{re.match}, while \texttt{contains} relies on \texttt{re.search}.

\begin{shaded}
\textbf{Warning:} In previous versions, \texttt{match} was for \texttt{extracting} groups, returning a not-so-convenient Series of tuples. The new method \texttt{extract} (described in the previous section) is now preferred. This old, deprecated behavior of \texttt{match} is still the default. As demonstrated above, use the new behavior by setting \texttt{as_indexer=True}. In this mode, \texttt{match} is analogous to \texttt{contains}, returning a boolean Series. The new behavior will become the default behavior in a future release.
\end{shaded}

Methods like \texttt{match}, \texttt{contains}, \texttt{startswith}, and \texttt{endswith take} an extra \texttt{na} argument so missing values can be considered True or False:

\[
\text{In [214]: s4 = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])}
\]

\[
\text{In [215]: s4.str.contains('A', na=False)}
\]

\[
\text{Out [215]:}
\]

\[
\begin{array}{cccc}
0 & True & 1 & False \\
2 & False & 3 & True \\
4 & False & 5 & False \\
6 & True & 7 & False \\
8 & False & dtype: bool
\end{array}
\]
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>Concatenate strings</td>
</tr>
<tr>
<td>split</td>
<td>Split strings on delimiter</td>
</tr>
<tr>
<td>get</td>
<td>Index into each element (retrieve i-th element)</td>
</tr>
<tr>
<td>join</td>
<td>Join strings in each element of the Series with passed separator</td>
</tr>
<tr>
<td>contains</td>
<td>Return boolean array if each string contains pattern/regex</td>
</tr>
<tr>
<td>replace</td>
<td>Replace occurrences of pattern/regex with some other string</td>
</tr>
<tr>
<td>repeat</td>
<td>Duplicate values (s.str.repeat(3) equivalent to x * 3)</td>
</tr>
<tr>
<td>pad</td>
<td>Add whitespace to left, right, or both sides of strings</td>
</tr>
<tr>
<td>center</td>
<td>Equivalent to pad(side='both')</td>
</tr>
<tr>
<td>wrap</td>
<td>Split long strings into lines with length less than a given width</td>
</tr>
<tr>
<td>slice</td>
<td>Slice each string in the Series</td>
</tr>
<tr>
<td>slice_replace</td>
<td>Replace slice in each string with passed value</td>
</tr>
<tr>
<td>count</td>
<td>Count occurrences of pattern</td>
</tr>
<tr>
<td>startswith</td>
<td>Equivalent to str.startswith(pat) for each element</td>
</tr>
<tr>
<td>endswith</td>
<td>Equivalent to str.endswith(pat) for each element</td>
</tr>
<tr>
<td>findall</td>
<td>Compute list of all occurrences of pattern/regex for each string</td>
</tr>
<tr>
<td>match</td>
<td>Call re.match on each element, returning matched groups as list</td>
</tr>
<tr>
<td>extract</td>
<td>Call re.match on each element, as match does, but return matched groups as</td>
</tr>
<tr>
<td></td>
<td>strings for convenience.</td>
</tr>
<tr>
<td>len</td>
<td>Compute string lengths</td>
</tr>
<tr>
<td>strip</td>
<td>Equivalent to str.strip</td>
</tr>
<tr>
<td>rstrip</td>
<td>Equivalent to str.rstrip</td>
</tr>
<tr>
<td>lstrip</td>
<td>Equivalent to str.lstrip</td>
</tr>
<tr>
<td>lower</td>
<td>Equivalent to str.lower</td>
</tr>
<tr>
<td>upper</td>
<td>Equivalent to str.upper</td>
</tr>
</tbody>
</table>

9.9.4 Getting indicator variables from separated strings

You can extract dummy variables from string columns. For example if they are separated by a ’|’:

```
In [216]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])

In [217]: s.str.get_dummies(sep='|')
Out[217]:
    a  b  c
0  1  0  0
1  1  1  0
2  0  0  0
3  1  0  1
```

See also `get_dummies()`.

9.10 Sorting by index and value

There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values. The primary method for sorting axis labels (indexes) across data structures is the `sort_index` method.

```
In [218]: unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'],
                                    columns=['three', 'two', 'one'])
```

9.10. Sorting by index and value 243
In [219]: unsorted_df.sort_index()
Out[219]:
 three two one
 a NaN -0.087103 -0.701368
 b -0.354359 0.637674 0.109333
 c -0.148387 -0.002666 -0.231617
 d -0.167407 0.104044 NaN

In [220]: unsorted_df.sort_index(ascending=False)
Out[220]:
 three two one
 d NaN -0.167407 0.104044
 c -0.148387 -0.002666 -0.231617
 b -0.354359 0.637674 0.109333
 a NaN -0.087103 -0.701368

In [221]: unsorted_df.sort_index(axis=1)
Out[221]:
 one three two
 a -0.701368 NaN -0.087103
 d NaN -0.167407 0.104044
 c -0.231617 -0.148387 -0.002666
 b 0.109333 -0.354359 0.637674

DataFrame.sort_index can accept an optional by argument for axis=0 which will use an arbitrary vector or a column name of the DataFrame to determine the sort order:

In [222]: df1 = DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]})

In [223]: df1.sort_index(by='two')
Out[223]:
 one three two
 0 2 5 1
 2 1 3 2
 1 1 4 3
 3 1 2 4

The by argument can take a list of column names, e.g.:

In [224]: df1[['one', 'two', 'three']].sort_index(by=['one','two'])
Out[224]:
 one two three
 2 1 2 3
 1 1 3 4
 3 1 4 2
 0 2 1 5

Series has the method order (analogous to R’s order function) which sorts by value, with special treatment of NA values via the na_position argument:

In [225]: s[2] = np.nan

In [226]: s.order()
Out[226]:
0 a
1 a|b
3 a|c
2 NaN
dtype: object
In [227]: s.order(na_position='first')
Out[227]:
2 NaN
0 a
1 a|b
3 a|c
dtype: object

Note: Series.sort sorts a Series by value in-place. This is to provide compatibility with NumPy methods which expect the ndarray.sort behavior. Series.order returns a copy of the sorted data.

9.10.1 smallest / largest values

New in version 0.14.0. Series has the nsmallest and nlargest methods which return the smallest or largest \(n \) values. For a large Series this can be much faster than sorting the entire Series and calling head\((n)\) on the result.

In [228]: s = Series(np.random.permutation(10))

In [229]: s
Out[229]:
0 6
1 2
2 7
3 3
4 9
5 4
6 8
7 0
8 1
9 5
dtype: int32

In [230]: s.order()
Out[230]:
7 0
8 1
1 2
3 3
5 4
9 5
0 6
2 7
6 8
4 9
dtype: int32

In [231]: s.nsmallest(3)
Out[231]:
7 0
8 1
1 2
dtype: int32

In [232]: s.nlargest(3)
9.10.2 Sorting by a multi-index column

You must be explicit about sorting when the column is a multi-index, and fully specify all levels to `by`.

```python
In [233]: df1.columns = MultiIndex.from_tuples([('a','one'),('a','two'),('b','three')])
In [234]: df1.sort_index(by=('a','two'))
```

```
Out[234]:
a b
one two three
3 1 2 4
2 1 3 2
1 1 4 3
0 2 5 1
```

9.11 Copying

The `copy` method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable) and returns a new object. Note that it is seldom necessary to copy objects. For example, there are only a handful of ways to alter a DataFrame `in-place`:

- Inserting, deleting, or modifying a column
- Assigning to the `index` or `columns` attributes
- For homogeneous data, directly modifying the values via the `values` attribute or advanced indexing

To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects, leaving the original object untouched. If data is modified, it is because you did so explicitly.

9.12 dtypes

The main types stored in pandas objects are `float`, `int`, `bool`, `datetime64[ns]`, `timedelta[ns]`, and `object`. In addition these dtypes have item sizes, e.g. `int64` and `int32`. A convenient `dtypes` attribute for DataFrames returns a Series with the data type of each column.

```python
In [235]: dft = DataFrame(dict( A = np.random.rand(3),
                                      B = 1,
                                      C = 'foo',
                                      D = Timestamp('20010102'),
                                      E = Series([1.0]*3).astype('float32'),
                                      F = False,
                                      G = Series([1]*3,dtype='int8')))
```

```
In [236]: dft
```

```
Out[236]:
         A  B  C   D    E   F  G
```

Chapter 9. Essential Basic Functionality
In [237]: dft.dtypes
Out[237]:
A float64
B int64
C object
D datetime64[ns]
E float32
F bool
G int8
dtype: object

On a Series use the dtype method.

In [238]: dft['A'].dtype
Out[238]: dtype('float64')

If a pandas object contains data multiple dtypes IN A SINGLE COLUMN, the dtype of the column will be chosen to accommodate all of the data types (object is the most general).

these ints are coerced to floats
In [239]: Series([1, 2, 3, 4, 5, 6.])
Out[239]:
0 1
1 2
2 3
3 4
4 5
5 6
dtype: float64

string data forces an 'object' dtype
In [240]: Series([1, 2, 3, 6., 'foo'])
Out[240]:
0 1
1 2
2 3
3 6
4 foo
dtype: object

The method get_dtype_counts will return the number of columns of each type in a DataFrame:

In [241]: dft.get_dtype_counts()
Out[241]:
bool 1
datetime64[ns] 1
float32 1
float64 1
int64 1
int8 1
object 1
dtype: int64

Numeric dtypes will propagate and can coexist in DataFrames (starting in v0.11.0). If a dtype is passed (either directly via the dtype keyword, a passed ndarray, or a passed Series, then it will be preserved in DataFrame operations.
Furthermore, different numeric dtypes will **NOT** be combined. The following example will give you a taste.

```python
In [242]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')

In [243]: df1
Out[243]:
   A
0  1.111528
1 -1.805497
2 -0.125340
3  2.055101
4  0.170350
5 -1.551268
6 -0.503071
7  0.370166

In [244]: df1.dtypes
Out[244]:
A        float32
dtype: object

In [245]: df2 = DataFrame(dict(A = Series(randn(8),dtype='float16'),
                         B = Series(randn(8)),
                         C = Series(np.array(randn(8),dtype='uint8')) ))

In [246]: df2
Out[246]:
   A     B     C
0  2.220703  0.447712  0
1  0.589355  0.429500  0
2  1.896484 -1.947809 255
3 -0.916992 -0.046360  0
4  0.614746  0.044316  0
5 -0.392578  0.234849  2
6  0.604004 -0.622669  0
7 -0.061737 -0.351207  0

In [247]: df2.dtypes
Out[247]:
A    float16
B    float64
C    uint8
dtype: object
```

9.12.1 defaults

By default integer types are `int64` and float types are `float64`, **REGardless** of platform (32-bit or 64-bit). The following will all result in `int64` dtypes.

```python
In [248]: DataFrame([1, 2], columns=['a']).dtypes
Out[248]:
a    int64
dtype: object

In [249]: DataFrame({'a': [1, 2]})
Out[249]:
a int64
dtype: object

In [250]: DataFrame({'a': 1}, index=list(range(2))).dtypes
Out[250]:
a int64
dtype: object

Numpy, however will choose platform-dependent types when creating arrays. The following WILL result in int32 on 32-bit platform.

In [251]: frame = DataFrame(np.array([1, 2]))

9.12.2 upcasting

Types can potentially be upcasted when combined with other types, meaning they are promoted from the current type (say int to float)

In [252]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [253]: df3
Out[253]:
          A          B          C
0  3.332231  0.447712   0.0
1 -1.216141  0.429500   0.0
2  1.771144 -1.947809  255.0
3  1.138109 -0.046360   0.0
4  0.785096  0.044316   0.0
5 -1.943846  0.234849   2.0
6  0.100933 -0.622669   0.0
7  0.308429 -0.351207   0.0

In [254]: df3.dtypes
Out[254]:
A float32
B float64
C float64
dtype: object

The values attribute on a DataFrame return the lower-common-denominator of the dtypes, meaning the dtype that can accommodate ALL of the types in the resulting homogenous dtyped numpy array. This can force some upcasting.

In [255]: df3.values.dtype
Out[255]: dtype('float64')

9.12.3 astype

You can use the astype method to explicitly convert dtypes from one to another. These will by default return a copy, even if the dtype was unchanged (pass copy=False to change this behavior). In addition, they will raise an exception if the astype operation is invalid.

Upcasting is always according to the numpy rules. If two different dtypes are involved in an operation, then the more general one will be used as the result of the operation.

In [256]: df3
Out[256]:
In [257]: df3.dtypes
Out[257]:
A  float32
B  float64
C  float64
dtype: object

# conversion of dtypes
In [258]: df3.astype('float32').dtypes
Out[258]:
A  float32
B  float32
C  float32
dtype: object

### 9.12.4 object conversion

`convert_objects` is a method to try to force conversion of types from the `object` dtype to other types. To force conversion of specific types that are `number like`, e.g. could be a string that represents a number, pass `convert_numeric=True`. This will force strings and numbers alike to be numbers if possible, otherwise they will be set to `np.nan`.

In [259]: df3['D'] = '1.'

In [260]: df3['E'] = '1'

In [261]: df3.convert_objects(convert_numeric=True).dtypes
Out[261]:
A  float32
B  float64
C  float64
D  float64
E  int64
dtype: object

# same, but specific dtype conversion
In [262]: df3['D'] = df3['D'].astype('float16')

In [263]: df3['E'] = df3['E'].astype('int32')

In [264]: df3.dtypes
Out[264]:
A  float32
B  float64
C  float64
D  float16
To force conversion to `datetime64[ns]`, pass `convert_dates='coerce'`. This will convert any datetime-like object to dates, forcing other values to NaT. This might be useful if you are reading in data which is mostly dates, but occasionally has non-dates intermixed and you want to represent as missing.

```python
In [265]: s = Series([datetime(2001,1,1,0,0),
 'foo', 1.0, 1, Timestamp('20010104'),
 '20010105'],dtype='O')

In [266]: s.convert_objects(convert_dates='coerce')
```

In addition, `convert_objects` will attempt the soft conversion of any `object` dtypes, meaning that if all the objects in a Series are of the same type, the Series will have that dtype.

### 9.12.5 gotchas

Performing selection operations on integer type data can easily upcast the data to floating. The dtype of the input data will be preserved in cases where nans are not introduced (starting in 0.11.0) See also `integer na gotchas`.

```python
In [268]: dfi = df3.astype('int32')

In [269]: dfi['E'] = 1

In [270]: dfi
```
Out[271]:
A    int32
B    int32
C    int32
D    int32
E    int64
dtype: object

In[272]: casted = dfi[dfi>0]

In[273]: casted
Out[273]:
     A   B   C   D   E
0  3  NaN  NaN  NaN  1 1
1  NaN  NaN  NaN  NaN  1 1
2  1  NaN  255  NaN  1 1
3  1  NaN  NaN  1 1
4  NaN  NaN  NaN  NaN  1 1
5  NaN  NaN  2  1 1
6  NaN  NaN  NaN  NaN  1 1
7  NaN  NaN  NaN  NaN  1 1

In[274]: casted.dtypes
Out[274]:
A    float64
B    float64
C    float64
D    int32
E    int64
dtype: object

While float dtypes are unchanged.

In[275]: dfa = df3.copy()

In[276]: dfa['A'] = dfa['A'].astype('float32')

In[277]: dfa.dtypes
Out[277]:
A    float32
B    float64
C    float64
D    float16
E    int32
dtype: object

In[278]: casted = dfa[df2>0]

In[279]: casted
Out[279]:
     A  B  C  D  E
0  3.332231  0.447712  NaN  NaN  NaN
1 -1.216141  0.429500  NaN  NaN  NaN
2  1.771144  NaN  255  NaN  NaN
3  NaN  NaN  NaN  NaN  NaN
4  0.785096  0.044316  NaN  NaN  NaN
5  NaN  0.234849  2  NaN  NaN
6  0.100933  NaN  NaN  NaN  NaN
In [280]: casted.dtypes
Out[280]:
A float32
B float64
C float64
D float16
E float64
dtype: object

9.13 Selecting columns based on dtype

New in version 0.14.1. The select_dtypes() method implements subsetting of columns based on their dtype.

First, let's create a DataFrame with a slew of different dtypes:

In [281]: df = DataFrame({'string': list('abc'),
                     'int64': list(range(1, 4)),
                     'uint8': np.arange(3, 6).astype('u1'),
                     'float64': np.arange(4.0, 7.0),
                     'bool1': [True, False, True],
                     'bool2': [False, True, False],
                     'dates': pd.date_range('now', periods=3).values})
.....:
In [282]: df['tdeltas'] = df.dates.diff()
In [283]: df['uint64'] = np.arange(3, 6).astype('u8')
In [284]: df['other_dates'] = pd.date_range('20130101', periods=3).values
In [285]: df
Out[285]:
bool1  bool2  dates  float64  int64  string  uint8  tdeltas
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>True</td>
<td>False</td>
<td>2014-07-11 09:13:45</td>
<td>4</td>
<td>1</td>
<td>a</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>False</td>
<td>True</td>
<td>2014-07-12 09:13:45</td>
<td>5</td>
<td>2</td>
<td>b</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>True</td>
<td>False</td>
<td>2014-07-13 09:13:45</td>
<td>6</td>
<td>3</td>
<td>c</td>
<td>5</td>
</tr>
</tbody>
</table>

select_dtypes has two parameters include and exclude that allow you to say “give me the columns WITH these dtypes” (include) and/or “give the columns WITHOUT these dtypes” (exclude).

For example, to select bool columns

In [286]: df.select_dtypes(include=[bool])
Out[286]:
bool1  bool2
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>True</td>
</tr>
<tr>
<td>1</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>True</td>
</tr>
</tbody>
</table>

You can also pass the name of a dtype in the numpy dtype hierarchy:
In [287]: df.select_dtypes(include=['bool'])
Out[287]:
   bool1  bool2
0   True   False
1  False    True
2   True   False

`select_dtypes()` also works with generic dtypes as well.

For example, to select all numeric and boolean columns while excluding unsigned integers

In [288]: df.select_dtypes(include=['number', 'bool'], exclude=['unsignedinteger'])
Out[288]:
   bool1  bool2  float64  int64  tdeltas
0   True    False  4      1      NaT
1  False     True   5      2      1 days
2   True    False   6      3      1 days

To select string columns you must use the `object` dtype:

In [289]: df.select_dtypes(include=['object'])
Out[289]:
   string
0    a
1    b
2    c

To see all the child dtypes of a generic dtype like `numpy.number` you can define a function that returns a tree of child dtypes:

In [290]: def subdtypes(dtype):
        ....:     subs = dtype.__subclasses__()
        ....:     if not subs:
        ....:         return dtype
        ....:     return [dtype, [subdtypes(dt) for dt in subs]]

All numpy dtypes are subclasses of `numpy.generic`:

In [291]: subdtypes(np.generic)
Out[291]:
   [numpy.generic,
    [numpy.number,
     [numpy.integer,
      [numpy.signedinteger,
       [numpy.int8, numpy.int16, numpy.int32, numpy.int64, numpy.timedelta64]],
      [numpy.unsignedinteger,
       [numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64]],
     [numpy.inexact,
      [numpy.floating,
       [numpy.float16, numpy.float32, numpy.float64, numpy.float96]]]}},
Note: The **include** and **exclude** parameters must be non-string sequences.
10.1 Overview

pandas has an options system that lets you customize some aspects of its behaviour, display-related options being those the user is most likely to adjust.

Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows). You can get/set options directly as attributes of the top-level options attribute:

```python
In [1]: import pandas as pd
In [2]: pd.options.display.max_rows
Out[2]: 15
```

```python
In [3]: pd.options.display.max_rows = 999
```

```python
In [4]: pd.options.display.max_rows
Out[4]: 999
```

There is also an API composed of 5 relevant functions, available directly from the pandas namespace, and they are:

- `get_option()` / `set_option()` - get/set the value of a single option.
- `reset_option()` - reset one or more options to their default value.
- `describe_option()` - print the descriptions of one or more options.
- `option_context()` - execute a codeblock with a set of options that revert to prior settings after execution.

**Note:** developers can check out pandas/core/config.py for more info.

All of the functions above accept a regexp pattern (re.search style) as an argument, and so passing in a substring will work - as long as it is unambiguous:

```python
In [5]: pd.get_option("display.max_rows")
Out[5]: 999
```

```python
In [6]: pd.set_option("display.max_rows",101)
```

```python
In [7]: pd.get_option("display.max_rows")
Out[7]: 101
```

```python
In [8]: pd.set_option("max_r",102)
```

```python
In [9]: pd.get_option("display.max_rows")
Out[9]: 102
```
The following will not work because it matches multiple option names, e.g. display.max_colwidth, display.max_rows, display.max_columns:

```python
In [10]: try:
 : pd.get_option("column")
 : except KeyError as e:
 : print(e)
 :
'Pattern matched multiple keys'
```

Note: Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.

You can get a list of available options and their descriptions with describe_option. When called with no argument describe_option will print out the descriptions for all available options.

### 10.2 Getting and Setting Options

As described above, get_option() and set_option() are available from the pandas namespace. To change an option, call set_option(’option regex’, new_value)

```python
In [11]: pd.get_option(‘mode.sim_interactive’)
Out[11]: False

In [12]: pd.set_option(‘mode.sim_interactive’, True)

In [13]: pd.get_option(‘mode.sim_interactive’)
Out[13]: True
```

All options also have a default value, and you can use reset_option to do just that:

```python
In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60
```

It's also possible to reset multiple options at once (using a regex):

```python
In [19]: pd.reset_option("^display")
height has been deprecated.

line_width has been deprecated, use display.width instead (currently both are identical)

option_context context manager has been exposed through the top-level API, allowing you to execute code with given option values. Option values are restored automatically when you exit the with block:

In [20]: with pd.option_context("display.max_rows",10,"display.maxColumns", 5):
 : print(pd.get_option("display.max_rows"))
 : print(pd.get_option("display.max_columns"))
```
10.3 Frequently Used Options

The following is a walkthrough of the more frequently used display options.

display.max_rows and display.max_columns sets the maximum number of rows and columns displayed when a frame is pretty-printed. Truncated lines are replaced by an ellipsis.

```python
In [23]: df=pd.DataFrame(np.random.randn(7,2))
In [24]: pd.set_option('max_rows', 7)
In [25]: df
Out[25]:
 0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
3 0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929 1.071804
6 0.721555 -0.706771
```

```python
In [26]: pd.set_option('max_rows', 5)
In [27]: df
Out[27]:
 0 1
0 0.469112 -0.282863
1 -1.509059 -1.135632
2 1.212112 -0.173215
3 0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929 1.071804
\[7 rows x 2 columns\]
```

```python
In [28]: pd.reset_option('max_rows')
```

display.expand_frame_repr allows for the the representation of dataframes to stretch across pages, wrapped over the full column vs row-wise.

```python
In [29]: df=pd.DataFrame(np.random.randn(5,10))
In [30]: pd.set_option('expand_frame_repr', True)
In [31]: df
Out[31]:
 0 1 2 3 4 5 6 7 8 9
0 0.469112 -0.282863 -1.509059 1.212112 0.119209 -0.861849 -0.494929 0.721555 -0.706771
1 -1.509059 -1.135632 0.119209 -1.044236 -0.861849 2.104569 1.071804 0.721555 -0.706771
2 1.212112 -0.173215 0.119209 -1.044236 -0.861849 2.104569 1.071804 0.721555 -0.706771
3 0.119209 -1.044236 0.119209 -1.044236 -0.861849 2.104569 1.071804 0.721555 -0.706771
4 -0.861849 -2.104569 -0.861849 2.104569 1.071804 0.721555 -0.706771 0.469112 -0.282863
5 -0.494929 1.071804 -0.494929 1.071804 -0.706771 0.469112 -0.282863 -1.509059 1.212112
6 0.721555 -0.706771 0.721555 -0.706771 0.469112 -0.282863 -1.509059 1.212112 0.119209
7 -0.706771 0.469112 -0.706771 0.469112 -1.509059 1.212112 0.119209 -1.044236 -0.861849
8 0.469112 -0.282863 0.469112 -0.282863 -1.509059 1.212112 0.119209 -1.044236 -0.861849
9 -1.509059 -1.135632 -1.509059 -1.135632 0.119209 -1.044236 -0.861849 2.104569 1.071804
```

10.3. Frequently Used Options
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401 -0.673690
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892 -1.344312
2 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914 -1.294524
3 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244 -1.206412
4 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317 -0.076467

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.844885</td>
<td>1.075770</td>
<td>-0.109050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.413738</td>
<td>0.276662</td>
<td>-0.472035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.565646</td>
<td>1.431256</td>
<td>1.340309</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1.187678</td>
<td>1.130172</td>
<td>-1.436737</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In [32]: `pd.set_option('expand_frame_repr', False)`

In [33]: `df`

Out[33]:

```python
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401 -0.673690 0.113648 -1.478427 0.524988
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892 -1.344312 0.844885 1.075770 -0.109050
2 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914 -1.294524 0.413738 0.276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309
4 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130172 -1.436737
```

In [34]: `pd.reset_option('expand_frame_repr')`

display.large_repr lets you select whether to display dataframes that exceed max_columns or max_rows as a truncated frame, or as a summary.

In [35]: `df=pd.DataFrame(np.random.randn(10,10))`

In [36]: `pd.set_option('max_rows', 5)`

In [37]: `pd.set_option('large_repr', 'truncate')`

In [38]: `df`

Out[38]:

```python
0 -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466
1 0.545952 -1.219217 -1.226825 0.769804 -1.157892 -1.344312 0.844885 1.075770 -0.109050
2 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914 -1.294524 0.413738 0.276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309
4 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130172 -1.436737
```

In [39]: `pd.set_option('large_repr', 'info')`

In [40]: `df`

Out[40]:

```
<class 'pandas.core.frame.DataFrame'>
```

260 Chapter 10. Options and Settings
Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0 10 non-null float64
1 10 non-null float64
2 10 non-null float64
3 10 non-null float64
4 10 non-null float64
5 10 non-null float64
6 10 non-null float64
7 10 non-null float64
8 10 non-null float64
9 10 non-null float64
dtypes: float64(10)

In [41]: pd.reset_option('large_repr')

In [42]: pd.reset_option('max_rows')

display.max_columnwidth sets the maximum width of columns. Cells of this length or longer will be truncated with an ellipsis.

In [43]: df = pd.DataFrame(np.array([['foo', 'bar', 'bim', 'uncomfortably long string'], ....:'horse', 'cow', 'banana', 'apple'])))

In [44]: pd.set_option('max_colwidth', 40)

In [45]: df
Out[45]:
       0    1    2                              3
0  foo  bar  bim  uncomfortably long string
1  horse  cow  banana  apple

In [46]: pd.set_option('max_colwidth', 6)

In [47]: df
Out[47]:
       0    1    2                             3
0  foo  bar  bim  un...
1  horse  cow  ba...

In [48]: pd.reset_option('max_colwidth')

display.max_info_columns sets a threshold for when by-column info will be given.

In [49]: df = pd.DataFrame(np.random.randn(10, 10))

In [50]: pd.set_option('max_info_columns', 11)

In [51]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0 10 non-null float64
1 10 non-null float64
2 10 non-null float64
3 10 non-null float64
4 10 non-null float64
5 10 non-null float64

10.3. Frequently Used Options 261
pandas: powerful Python data analysis toolkit, Release 0.14.1

6 10 non-null float64
7 10 non-null float64
8 10 non-null float64
9 10 non-null float64
dtypes: float64(10)

In [52]: pd.set_option('max_info_columns', 5)

In [53]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Columns: 10 entries, 0 to 9
dtypes: float64(10)

In [54]: pd.reset_option('max_info_columns')

display.max_info_rows: df.info() will usually show null-counts for each column. For large frames this
   can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller
dimensions then specified.

In [55]: df=pd.DataFrame(np.random.choice([0,1,np.nan],size=(10,10)))

In [56]: df
Out[56]:
   0  1  2  3  4  5  6  7  8  9
0  0  1  1  0  1  1  0  NaN  1  NaN
1  1  NaN  0  0  1  1  NaN  1  0  1
2  NaN  NaN  1  1  0  NaN  0  1  NaN
3  0  1  1  NaN  0  NaN  1  NaN  NaN  0
4  0  1  0  0  1  0  0  NaN  0  0
5  NaN  NaN  1  NaN  NaN  NaN  NaN  0  1  NaN
6  0  1  0  0  NaN  1  NaN  NaN  0  NaN
7  0  NaN  1  1  NaN  1  1  1  1  NaN
8  0  0  NaN  0  NaN  1  0  0  NaN  NaN
9  NaN  NaN  0  NaN  NaN  NaN  0  1  1  NaN

In [57]: pd.set_option('max_info_rows', 11)

In [58]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
  0 float64
  1 262 Chapter 10. Options and Settings
1 float64
2 float64
3 float64
4 float64
5 float64
6 float64
7 float64
8 float64
9 float64
dtypes: float64(10)

In [61]: pd.reset_option('max_info_rows')

display.precision sets the output display precision. This is only a suggestion.

In [62]: df=pd.DataFrame(np.random.randn(5,5))

In [63]: pd.set_option('precision',7)

In [64]: df
Out[64]:
          0     1     2     3     4
0 -2.049028  2.846612 -1.208049 -0.450392  2.423905
1  0.121108  0.266916  0.843826 -0.222540  2.021981
2 -0.716789 -2.224485 -1.061137 -0.232825  0.430793
3 -0.665478  1.829807 -1.406509  1.078248  0.322774
4  0.200324  0.890024  0.194813  0.351633  0.448881

In [65]: pd.set_option('precision',4)

In [66]: df
Out[66]:
          0  1  2  3  4
0 -2.049  2.847 -1.208 -0.450  2.424
1  0.121  0.267  0.844 -0.223  2.022
2 -0.717 -2.224 -1.061 -0.233  0.431
3 -0.665  1.830 -1.407  1.078  0.323
4  0.200  0.890  0.195  0.352  0.449

display.chop_threshold sets at what level pandas rounds to zero when it displays a Series of DataFrame. Note, this does not effect the precision at which the number is stored.

In [67]: df=pd.DataFrame(np.random.randn(6,6))

In [68]: pd.set_option('chop_threshold', 0)

In [69]: df
Out[69]:
          0     1     2     3     4     5
0 -0.198  0.966 -1.523 -0.117  0.296 -1.048
1  1.641  1.906  2.772  0.089 -1.144 -0.633
2  0.925 -0.006 -0.820 -0.601 -1.039  0.825
3 -0.824 -0.338 -0.928 -0.840  0.249 -0.109
4  0.432 -0.461  0.337 -3.208 -1.536  0.410
5 -0.673 -0.741 -0.111 -2.673  0.864  0.061

In [70]: pd.set_option('chop_threshold', .5)

In [71]: df
Out[71]:

10.3. Frequently Used Options 263
In [72]: pd.reset_option('chop_threshold')

display.colheader_justify controls the justification of the headers. Options are ‘right’, and ‘left’.

In [73]: df=pd.DataFrame(np.array([np.random.randn(6), np.random.randint(1,9,6)*.1, np.zeros(6)]).T, columns=['A', 'B', 'C'], dtype='float')

In [74]: pd.set_option('colheader_justify', 'right')

In [75]: df
Out[75]:
   A    B    C
0  0.933  0.3  0.0
1  0.289  0.2  0.0
2  1.325  0.2  0.0
3  0.589  0.7  0.0
4  0.531  0.1  0.0
5 -1.199  0.7  0.0

In [76]: pd.set_option('colheader_justify', 'left')

In [77]: df
Out[77]:
   A    B    C
0  0.933  0.3  0.0
1  0.289  0.2  0.0
2  1.325  0.2  0.0
3  0.589  0.7  0.0
4  0.531  0.1  0.0
5 -1.199  0.7  0.0

In [78]: pd.reset_option('colheader_justify')

10.4 List of Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>display.chop_threshold</td>
<td>None</td>
<td>If set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends.</td>
</tr>
<tr>
<td>display.colheader_justify</td>
<td>right</td>
<td>Controls the justification of column headers. used by DataFrameFormatter.</td>
</tr>
<tr>
<td>display.column_space</td>
<td>12</td>
<td>No description available.</td>
</tr>
<tr>
<td>display.date_dayfirst</td>
<td>False</td>
<td>When True, prints and parses dates with the day first, eg 20/01/2005</td>
</tr>
<tr>
<td>display.date_yearfirst</td>
<td>False</td>
<td>When True, prints and parses dates with the year first, eg 2005/01/20</td>
</tr>
<tr>
<td>display.encoding</td>
<td>UTF-8</td>
<td>Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console.</td>
</tr>
<tr>
<td>display.expand_frame_repr</td>
<td>True</td>
<td>Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_rows/max_cols.</td>
</tr>
<tr>
<td>display.float_format</td>
<td>None</td>
<td>The callable should accept a floating point number and return a string with the desired format.</td>
</tr>
<tr>
<td>display.height</td>
<td>60</td>
<td>Deprecated. Use display.max_rows instead.</td>
</tr>
<tr>
<td>display.large_repr</td>
<td>truncate</td>
<td>For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated view.</td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.14.1

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>display.line_width</td>
<td>80</td>
<td>Deprecated. Use display.width instead.</td>
</tr>
<tr>
<td>display.max_columns</td>
<td>20</td>
<td>max_rows and max_columns are used in <strong>repr</strong>() methods to decide if to_string() or info() is used.</td>
</tr>
<tr>
<td>display.max_colwidth</td>
<td>50</td>
<td>The maximum width in characters of a column in the repr of a pandas data structure. When display.mpl_style is used, the width is determined by matplotlib.figure.Figure.</td>
</tr>
<tr>
<td>display.max_info_columns</td>
<td>100</td>
<td>max_info_columns is used in DataFrame.info method to decide if per column information is displayed.</td>
</tr>
<tr>
<td>display.max_info_rows</td>
<td>1690785</td>
<td>df.info() will usually show null-counts for each column. For large frames this can be quite slow.</td>
</tr>
<tr>
<td>display.max_rows</td>
<td>60</td>
<td>This sets the maximum number of rows pandas should output when printing out various output. For large frames this can be quite slow.</td>
</tr>
<tr>
<td>display.max_seq_items</td>
<td>100</td>
<td>When pretty-printing a long sequence, no more then max_seq_items will be printed. If items overflow, a “...” placeholder is embedded in the output.</td>
</tr>
<tr>
<td>display.mpl_style</td>
<td>None</td>
<td>Setting this to 'default' will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value.</td>
</tr>
<tr>
<td>display.multi_sparse</td>
<td>True</td>
<td>“Sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups).</td>
</tr>
<tr>
<td>display.notebook_repr_html</td>
<td>True</td>
<td>When True, IPython notebook will use html representation for pandas objects (if it is available).</td>
</tr>
<tr>
<td>display.pprint_nest_depth</td>
<td>3</td>
<td>Controls the number of nested levels to process when pretty-printing.</td>
</tr>
<tr>
<td>display.precision</td>
<td>7</td>
<td>Floating point output precision (number of significant digits). This is only a suggestion.</td>
</tr>
<tr>
<td>display.show_dimensions</td>
<td>truncate</td>
<td>Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns).</td>
</tr>
<tr>
<td>display.width</td>
<td>80</td>
<td>Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will automatically detect the width.</td>
</tr>
<tr>
<td>io.hdf.default_format</td>
<td>None</td>
<td>None defaults format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’.</td>
</tr>
<tr>
<td>io.hdf.dropna_table</td>
<td>True</td>
<td>drop ALL nan rows when appending to a table.</td>
</tr>
<tr>
<td>mode.chained_assignment</td>
<td>warn</td>
<td>Raise an exception, warn, or no action if trying to use chained assignment. The default is warn.</td>
</tr>
<tr>
<td>mode.sim_interactive</td>
<td>False</td>
<td>Whether to simulate interactive mode for purposes of testing.</td>
</tr>
<tr>
<td>mode.use_inf_as_null</td>
<td>False</td>
<td>True means treat None, NaN, -INF, INF as null (old way), False means None and NaN are not null.</td>
</tr>
</tbody>
</table>

10.5 Number Formatting

pandas also allow you to set how numbers are displayed in the console. This option is not set through the set_options API.

Use the set_eng_float_format function to alter the floating-point formatting of pandas objects to produce a particular format.

For instance:

In [79]: import numpy as np

In [80]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)

In [81]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [82]: s/1.e3
Out[82]:
a  -236.866u
b  846.974u
c  -685.597u
d  609.099u
e  -303.961u
dtype: float64

In [83]: s/1.e6
Out[83]:
a  -236.866n
b  846.974n

10.5. Number Formatting 265
c  -685.597n
d  609.099n
e  -303.961n
dtype: float64
INDEXING AND SELECTING DATA

The axis labeling information in pandas objects serves many purposes:

- Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display
- Enables automatic and explicit data alignment
- Allows intuitive getting and setting of subsets of the data set

In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area. Expect more work to be invested higher-dimensional data structures (including Panel) in the future, especially in label-based advanced indexing.

Note: The Python and NumPy indexing operators [ ] and attribute operator . provide quick and easy access to pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy

See the cookbook for some advanced strategies

11.1 Different Choices for Indexing (loc, iloc, and ix)

New in version 0.11.0. Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing.

- .loc is strictly label based, will raise KeyError when the items are not found, allowed inputs are:
  - A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
  - A list or array of labels ['a', 'b', 'c']
  - A slice object with labels 'a': 'f'. (note that contrary to usual python slices, both the start and the stop are included!)
  - A boolean array
See more at Selection by Label

• `.iloc` is strictly integer position based (from 0 to length−1 of the axis), will raise IndexError if an indexer is requested and it is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with python/numpy slice semantics). Allowed inputs are:
  – An integer e.g. 5
  – A list or array of integers [4, 3, 0]
  – A slice object with ints 1:7

See more at Selection by Position

• `.ix` supports mixed integer and label based access. It is primarily label based, but will fallback to integer positional access. `.ix` is the most general and will support any of the inputs to `.loc` and `.iloc`, as well as support for floating point label schemes. `.ix` is especially useful when dealing with mixed positional and label based hierarchial indexes. As using integer slices with `.ix` have different behavior depending on whether the slice is interpreted as position based or label based, it’s usually better to be explicit and use `.iloc` or `.loc`.

See more at Advanced Indexing, Advanced Hierarchical and Fallback Indexing

Getting values from an object with multi-axes selection uses the following notation (using `.loc` as an example, but applies to `.iloc` and `.ix` as well). Any of the axes accessors may be the null slice :. Axes left out of the specification are assumed to be :. (e.g. `p.loc['a']` is equiv to `p.loc['a'` , :, :])

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Indexers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td><code>s.loc[indexer]</code></td>
</tr>
<tr>
<td>DataFrame</td>
<td><code>df.loc[row_indexer,column_indexer]</code></td>
</tr>
<tr>
<td>Panel</td>
<td><code>p.loc[item_indexer,major_indexer,minor_indexer]</code></td>
</tr>
</tbody>
</table>

### 11.2 Deprecations

Beginning with version 0.11.0, it’s recommended that you transition away from the following methods as they may be deprecated in future versions.

• `irow`
• `icol`
• `iget_value`

See the section Selection by Position for substitutes.

### 11.3 Basics

As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a. `__getitem__` for those familiar with implementing class behavior in Python) is selecting out lower-dimensional slices. Thus,

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Selection</th>
<th>Return Value Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td><code>series[label]</code></td>
<td>scalar value</td>
</tr>
<tr>
<td>DataFrame</td>
<td><code>frame[colname]</code></td>
<td>Series corresponding to colname</td>
</tr>
<tr>
<td>Panel</td>
<td><code>panel[itemname]</code></td>
<td>DataFrame corresponing to the itemname</td>
</tr>
</tbody>
</table>

Here we construct a simple time series data set to use for illustrating the indexing functionality:
In [1]: dates = date_range('1/1/2000', periods=8)

In [2]: df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])

In [3]: df
Out[3]:
      A         B         C         D
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804
2000-01-04  0.721555 -0.706771 -1.039575  0.271860
2000-01-05 -0.424972  0.567020  0.276232 -1.087401
2000-01-06 -0.673690  0.113648 -1.478427  0.524988
2000-01-07  0.404705  0.577046 -1.715002  1.071804
2000-01-08 -0.370647 -0.761943 -1.344312  0.844885

In [4]: panel = Panel({'one' : df, 'two' : df - df.mean()})

In [5]: panel
Out[5]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 8 (major_axis) x 4 (minor_axis)
Items axis: one to two
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00
Minor_axis axis: A to D

Note: None of the indexing functionality is time series specific unless specifically stated.

Thus, as per above, we have the most basic indexing using []:

In [6]: s = df['A']

In [7]: s[dates[5]]
Out[7]: -0.67368970808837025

In [8]: panel['two']
Out[8]:
      A         B         C         D
2000-01-01  0.409571  0.113086 -0.610826 -0.936507
2000-01-02  1.152571  0.222735  1.017442 -0.845111
2000-01-03 -0.921390 -1.708620  0.403304  1.270929
2000-01-04  0.662014 -0.310822 -0.141342  0.470985
2000-01-05 -0.484513  0.962970  1.174465 -0.888276
2000-01-06 -0.733231  0.509598 -0.580194  0.724113
2000-01-07  0.345164  0.972995 -0.816769 -0.840143
2000-01-08 -0.430188 -0.761943 -0.446079  1.044010

You can pass a list of columns to [] to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner:

In [9]: df
Out[9]:
      A         B         C         D
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804
2000-01-04  0.721555 -0.706771 -1.039575  0.271860

11.3. Basics
In [10]: df[['B', 'A']] = df[['A', 'B']]  

In [11]: df  
Out[11]:  
   A     B     C     D  
0 2000-01-01 -0.282863 0.469112 -1.509059 -1.135632  
1 2000-01-02 -0.173215 1.212112 0.119209 -1.044236  
2 2000-01-03 -2.104569 -0.861849 -0.494929 1.071804  
3 2000-01-04 -0.706771 0.721555 -1.039575 0.271860  
4 2000-01-05 0.567020 -0.424972 0.276232 -1.087401  
5 2000-01-06 0.113648 -0.673690 -1.478427 0.524988  
6 2000-01-07 0.577046 0.404705 -1.715002 -1.039268  
7 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

You may find this useful for applying a transform (in-place) to a subset of the columns.

### 11.4 Attribute Access

You may access an index on a Series, column on a DataFrame, and a item on a Panel directly as an attribute:

In [12]: sa = Series([1,2,3],index=list('abc'))

In [13]: dfa = df.copy()

In [14]: sa.b  
Out[14]: 2

In [15]: dfa.A  
Out[15]:  
   A       B       C       D  
0 2000-01-01 -0.282863 0.469112 -1.509059 -1.135632  
1 2000-01-02 -0.173215 1.212112 0.119209 -1.044236  
2 2000-01-03 -2.104569 -0.861849 -0.494929 1.071804  
3 2000-01-04 -0.706771 0.721555 -1.039575 0.271860  
4 2000-01-05 0.567020 -0.424972 0.276232 -1.087401  
5 2000-01-06 0.113648 -0.673690 -1.478427 0.524988  
6 2000-01-07 0.577046 0.404705 -1.715002 -1.039268  
7 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885

Freq: D, Name: A, dtype: float64

In [16]: panel.one  
Out[16]:  
   A       B       C       D  
0 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632  
1 2000-01-02 1.212112 -0.173215 0.119209 -1.044236  
2 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804  
3 2000-01-04 0.721555 -0.706771 -1.039575 0.271860  
4 2000-01-05 -0.424972 0.567020 0.276232 -1.087401  
5 2000-01-06 -0.673690 0.113648 -1.478427 0.524988  
6 2000-01-07 0.404705 0.577046 -1.715002 -1.039268  
7 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it fails silently, creating a new attribute rather than a new column.

```python
In [17]: sa.a = 5

In [18]: sa
Out[18]:
 a b c
0 5 2 3
dtype: int64

In [19]: dfa.A = list(range(len(dfa.index))) # ok if A already exists

In [20]: dfa
Out[20]:
 A B C D
2000-01-01 0 -1.509059 -1.135632
2000-01-02 1 0.119209 -1.044236
2000-01-03 2 -0.494929 1.071804
2000-01-04 3 -1.039575 0.271860
2000-01-05 4 0.276232 -1.087401
2000-01-06 5 -1.478427 0.524988
2000-01-07 6 -1.715002 -1.039268
2000-01-08 7 -1.344312 0.844885

In [21]: dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column

In [22]: dfa
Out[22]:
 A B C D
2000-01-01 0 -1.509059 -1.135632
2000-01-02 1 0.119209 -1.044236
2000-01-03 2 -0.494929 1.071804
2000-01-04 3 -1.039575 0.271860
2000-01-05 4 0.276232 -1.087401
2000-01-06 5 -1.478427 0.524988
2000-01-07 6 -1.715002 -1.039268
2000-01-08 7 -1.344312 0.844885
```

**Warning:**
- You can use this access only if the index element is a valid Python identifier, e.g. `s.1` is not allowed. See here for an explanation of valid identifiers.
- The attribute will not be available if it conflicts with an existing method name, e.g. `s.min` is not allowed.
- The `Series/Panel` accesses are available starting in 0.13.0.

If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.

### 11.5 Slicing ranges

The most robust and consistent way of slicing ranges along arbitrary axes is described in the Selection by Position section detailing the `.iloc` method. For now, we explain the semantics of slicing using the `[]` operator.

With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:
In [23]: s[:5]
Out[23]:
2000-01-01 -0.282863
2000-01-02 -0.173215
2000-01-03 -2.104569
2000-01-04 -0.706771
2000-01-05  0.567020
Freq: D, Name: A, dtype: float64

In [24]: s[::2]
Out[24]:
2000-01-01 -0.282863
2000-01-03 -2.104569
2000-01-05  0.567020
2000-01-07  0.577046
Freq: 2D, Name: A, dtype: float64

In [25]: s[::-1]
Out[25]:
2000-01-08 -1.157892
2000-01-07  0.113648
2000-01-06  0.567020
2000-01-05 -0.706771
2000-01-03 -2.104569
2000-01-02 -0.173215
2000-01-01 -0.282863
Freq: -1D, Name: A, dtype: float64

Note that setting works as well:

In [26]: s2 = s.copy()

In [27]: s2[:5] = 0

In [28]: s2
Out[28]:
2000-01-01  0.000000
2000-01-02  0.000000
2000-01-03  0.000000
2000-01-04  0.000000
2000-01-05  0.000000
2000-01-06  0.113648
2000-01-07  0.577046
2000-01-08 -1.157892
Freq: D, Name: A, dtype: float64

With DataFrame, slicing inside of [] slices the rows. This is provided largely as a convenience since it is such a common operation.

In [29]: df[:3]
Out[29]:
     A         B        C         D
2000-01-01 -0.282863  0.469112 -1.509059 -1.135632
2000-01-02 -0.173215  1.212112  0.119209 -1.044236
2000-01-03 -2.104569 -0.861849 -0.494929  1.071804

In [30]: df[::-1]
Out[30]:
     A         B        C         D
2000-01-08 -1.157892  0.113648  0.577046 -1.157892
2000-01-07  0.577046  0.113648 -1.157892  0.577046
2000-01-06  0.113648  0.000000  0.113648  0.113648
2000-01-05  0.000000  0.000000  0.000000  0.000000
2000-01-04  0.000000  0.000000  0.000000  0.000000
2000-01-03 -2.104569 -0.861849 -0.494929  1.071804
2000-01-02 -0.173215  1.212112  0.119209 -1.044236
2000-01-01 -0.282863  0.469112 -1.509059 -1.135632

272 Chapter 11. Indexing and Selecting Data
11.6 Selection By Label

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy.

pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol. **ALL** of the labels for which you ask, must be in the index or a KeyError will be raised! When slicing, the start bound is included, AND the stop bound is included. Integers are valid labels, but they refer to the label and not the position.

The **.loc** attribute is the primary access method. The following are valid inputs:

- A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
- A list or array of labels ['a', 'b', 'c']
- A slice object with labels 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!)
- A boolean array

In [31]: sl = Series(np.random.randn(6),index=list('abcdef'))

In [32]: sl
Out[32]:
a  1.075770
b -0.109050
c  1.643563
d -1.469388
e  0.357021
f  -0.674600
dtype: float64

In [33]: sl.loc['c:']
Out[33]:
c  1.643563
d -1.469388
e  0.357021
f  -0.674600
dtype: float64

In [34]: sl.loc['b']
Out[34]: -0.1090499752802223

Note that setting works as well:
In [35]: s1.loc[’c’] = 0

In [36]: s1
Out[36]:
    a  1.07577
    b -0.10905
c    0.00000
d    0.00000
e    0.00000
    f  0.00000
dtype: float64

With a DataFrame

In [37]: df1 = DataFrame(np.random.randn(6,4),
....:                   index=list(’abcdef’),
....:                   columns=list(’ABCD’))
....:

In [38]: df1
Out[38]:
     A    B    C    D
a -1.776904 -0.968914 -1.294524 0.413738
b  0.276662 -0.472035 -0.013960 -0.362543
c -0.006154 -0.923061  0.895717  0.805244
d -1.206412  2.565646  1.431256  1.340309
e -1.170299 -0.226169  0.410835  0.813850
f  0.132003 -0.827317 -0.076467 -1.187678

In [39]: df1.loc[’a’,’b’,’d’],:]
Out[39]:
     A    B    C    D
a -1.776904 -0.968914 -1.294524 0.413738
b  0.276662 -0.472035 -0.013960 -0.362543
d -1.206412  2.565646  1.431256  1.340309

Accessing via label slices

In [40]: df1.loc[’d’:,’A’,’C’]
Out[40]:
   A    B    C
d -1.206412  2.565646  1.431256
e -1.170299 -0.226169  0.410835
f  0.132003 -0.827317 -0.076467

For getting a cross section using a label (equiv to df.xs(’a’))

In [41]: df1.loc[’a’]
Out[41]:
   A    B    C    D
Name: a, dtype: float64

For getting values with a boolean array

In [42]: df1.loc[’a’]>0
Out[42]:
   A  False
In [43]: df1.loc[:, df1.loc['a'] > 0]
Out[43]:
       a
D  0.413738
b -0.362543
c  0.805244
d  1.340309
e  0.813850
f -1.187678

For getting a value explicitly (equiv to deprecated `df.get_value('a', 'A')`)

# this is also equivalent to `df1.at['a', 'A']`
In [44]: df1.loc['a', 'A']
Out[44]: -1.7769037169718671

### 11.7 Selection By Position

**Warning:** Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See *Returning a View versus Copy*

pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely python and numpy slicing. These are 0-based indexing. When slicing, the start bounds is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise a `IndexError`.

The `.iloc` attribute is the primary access method. The following are valid inputs:

- An integer e.g. 5
- A list or array of integers [4, 3, 0]
- A slice object with ints 1:7

In [45]: s1 = Series(np.random.randn(5), index=list(range(0, 10, 2)))

In [46]: s1.iloc[:3]
Out[46]:
0  1.130127
2 -1.436737
4 -1.413681
dtype: float64

In [47]: s1.iloc[:3]
Out[47]:
0  1.130127
2 -1.436737
4 -1.413681
dtype: float64
Note that setting works as well:

```
In [49]: s1.iloc[:3] = 0
```

```
In [50]: s1
Out[50]:
0 0.00000
2 0.00000
4 1.60792
6 1.02418
dtype: float64
```

With a DataFrame

```
In [51]: df1 = DataFrame(np.random.randn(6,4),
 index=list(range(0,12,2)),
 columns=list(range(0,8,2))
.....:

In [52]: df1
Out[52]:
0 2 4 6
0 0.569605 0.875906 -2.211372 0.974466
2 -2.006747 -0.410001 -0.078638 0.545952
4 -1.219217 -1.226825 0.769804 -1.281247
6 -0.727707 -0.121306 -0.097883 0.695775
8 0.341734 0.959726 -1.110336 -0.619976
10 0.149748 -0.732339 0.687738 0.176444
```

Select via integer slicing

```
In [53]: df1.iloc[:3]
```

```
Out[53]:
 0 2 4 6
0 0.569605 0.875906 -2.211372 0.974466
2 -2.006747 -0.410001 -0.078638 0.545952
4 -1.219217 -1.226825 0.769804 -1.281247
```

```
In [54]: df1.iloc[1:5,2:4]
```

```
Out[54]:
 4 6
0 0.569605 0.875906 -2.211372 0.974466
2 -2.006747 -0.410001 -0.078638 0.545952
4 -1.219217 -1.226825 0.769804 -1.281247
```

Select via integer list

```
In [55]: df1.iloc[[1,3,5],[1,3]]
```

```
Out[55]:
 2 6
0 -0.410001 0.545952
2 -0.121306 0.695775
10 0.732339 0.176444
```

For slicing rows explicitly (equiv to deprecated `df.irow(slice(1,3))`).
For slicing columns explicitly (equiv to deprecated `df.iloc[:, slice(1,3)]`).

```python
In [57]: df1.iloc[:, 1:3]
Out[57]:
 2 4
0 0.875906 -2.211372
2 -0.410001 -0.078638
4 -1.226825 0.769804
6 -0.121306 -0.097883
8 0.959726 -1.110336
10 -0.732339 0.687738
```

For getting a scalar via integer position (equiv to deprecated `df.iloc[1,1]`)

```python
this is also equivalent to 'df.iloc[1,1]'`
In [58]: df1.iloc[1, 1]
Out[58]: -0.41000056806065832
```

For getting a cross section using an integer position (equiv to `df.iloc[1]`)
4 -0.826591 -0.345352

In [65]: df1.iloc[:,2:3]
Out[65]:
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [66]: df1.iloc[:,1:3]
Out[66]:
   B
0  -0.154951
1  -2.179861
2  -0.954208
3  -1.743161
4  -0.345352

In [67]: df1.iloc[4:6]
Out[67]:
   A    B
4  -0.826591 -0.345352

These are out-of-bounds selections

df1.iloc[[4,5,6]]
IndexError: positional indexers are out-of-bounds
df1.iloc[:,4]
IndexError: single positional indexer is out-of-bounds

11.8 Setting With Enlargement

New in version 0.13. The .loc/.ix/[] operations can perform enlargement when setting a non-existant key for that axis.

In the Series case this is effectively an appending operation

In [68]: se = Series([1,2,3])

In [69]: se
Out[69]:
0 1
1 2
2 3
dtype: int64

In [70]: se[5] = 5.

In [71]: se
Out[71]:
0 1
1 2
2 3
5 5
dtype: float64

A DataFrame can be enlarged on either axis via .loc
In [72]: dfi = DataFrame(np.arange(6).reshape(3,2),
       ....:       columns=['A','B'])
       ....:

In [73]: dfi
Out[73]:
    A  B
0  0  1
1  2  3
2  4  5

In [74]: dfi.loc[:,'C'] = dfi.loc[:,'A']

In [75]: dfi
Out[75]:
    A  B  C
0  0  1  0
1  2  3  2
2  4  5  4

This is like an append operation on the DataFrame.

In [76]: dfi.loc[3] = 5

In [77]: dfi
Out[77]:
    A  B  C
0  0  1  0
1  2  3  2
2  4  5  4
3  5  5  5

11.9 Fast scalar value getting and setting

Since indexing with [] must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to use the at and iat methods, which are implemented on all of the data structures.

Similary to loc, at provides label based scalar lookups, while, iat provides integer based lookups analagously to iloc

In [78]: s.iat[5]
Out[78]: 0.11364840968888545

In [79]: df.at[dates[5], 'A']
Out[79]: 0.11364840968888545

In [80]: df.iat[3, 0]
Out[80]: -0.70677113363008448

You can also set using these same indexers.

In [81]: df.at[dates[5], 'E'] = 7

In [82]: df.iat[3, 0] = 7

at may enlarge the object in-place as above if the indexer is missing.
In [83]: df.at[dates[-1]+1, 0] = 7

In [84]: df
Out[84]:
          A       B       C       D       E 0
2000-01-01 -0.282863  0.469112 -1.509059 -1.135632 NaN NaN
2000-01-02 -0.173215  1.212112  0.119209 -1.044236 NaN NaN
2000-01-03 -2.104569 -0.861849 -0.494929  1.071804 NaN NaN
2000-01-04  7.000000  0.721555 -1.039575  0.271860 NaN NaN
2000-01-05  0.567020 -0.424972  0.276232 -1.087401 NaN NaN
2000-01-06  0.113648 -0.673690 -1.478427  0.524988  7  NaN
2000-01-07  0.577046  0.404705 -1.715002 -1.039268 NaN NaN
2000-01-08 -1.157892 -0.370647 -1.344312  0.844885 NaN NaN
2000-01-09  NaN    NaN    NaN    NaN    NaN    7

11.10 Boolean indexing

Another common operation is the use of boolean vectors to filter the data. The operators are: | for or, & for and, and ~ for not. These must be grouped by using parentheses.

Using a boolean vector to index a Series works exactly as in a numpy ndarray:

In [85]: s[s > 0]
Out[85]:
2000-01-05  0.567020
2000-01-06  0.113648
2000-01-07  0.577046
Freq: D, Name: A, dtype: float64

In [86]: s[(s < 0) & (s > -0.5)]
Out[86]:
2000-01-01 -0.282863
2000-01-02 -0.173215
Freq: D, Name: A, dtype: float64

In [87]: s[(s < -1) | (s > 1 )]
Out[87]:
2000-01-03 -2.104569
2000-01-08 -1.157892
Name: A, dtype: float64

In [88]: s[~(s < 0)]
Out[88]:
2000-01-05  0.567020
2000-01-06  0.113648
2000-01-07  0.577046
Freq: D, Name: A, dtype: float64

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example, something derived from one of the columns of the DataFrame):

In [89]: df[df['A'] > 0]
Out[89]:
          A       B       C       D       E 0
2000-01-04  7.000000  0.721555 -1.039575  0.271860 NaN NaN
2000-01-05  0.567020 -0.424972  0.276232 -1.087401 NaN NaN
List comprehensions and `map` method of Series can also be used to produce more complex criteria:

```
In [90]: df2 = DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
 : 'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
 : 'c' : randn(7))
```

```
only want 'two' or 'three'
In [91]: criterion = df2['a'].map(lambda x: x.startswith('t'))
In [92]: df2[criterion]
Out[92]:
 a b c
2 two y 0.995761
3 three x 2.396780
4 two y 0.014871
```

```
equivalent but slower
In [93]: df2[[x.startswith('t') for x in df2['a']]]
Out[93]:
 a b c
2 two y 0.995761
3 three x 2.396780
4 two y 0.014871
```

```
Multiple criteria
In [94]: df2[criterion & (df2['b'] == 'x')]
Out[94]:
 a b c
3 three x 2.39678
```

Note, with the choice methods `Selection by Label`, `Selection by Position`, and `Advanced Indexing` you may select along more than one axis using boolean vectors combined with other indexing expressions.

```
In [95]: df2.loc[criterion & (df2['b'] == 'x'),'b':'c']
Out[95]:
 b c
3 x 2.39678
```

### 11.10.1 Indexing with `isin`

Consider the `isin` method of Series, which returns a boolean vector that is true wherever the Series elements exist in the passed list. This allows you to select rows where one or more columns have values you want:

```
In [96]: s = Series(np.arange(5),index=np.arange(5)[::-1],dtype='int64')
In [97]: s
Out[97]:
 4 0
 3 1
 2 2
 1 3
 0 4
dtype: int64
```
In [98]: s.isin([2, 4])  
Out[98]:  
4  False  
3  False  
2  True  
1  False  
0  True  
dtype: bool  

In [99]: s[s.isin([2, 4])]  
Out[99]:  
2 2  
0 4  
dtype: int64  

Dataframe also has an isin method. When calling isin, pass a set of values as either an array or dict. If values is an array, isin returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever the element is in the sequence of values.

In [100]: df = DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],  
......:  
     'ids2': ['a', 'n', 'c', 'n']})  
......:  

In [101]: values = ['a', 'b', 1, 3]  

In [102]: df.isin(values)  
Out[102]:  
ids ids2 vals  
0  True  True  True  
1  True  False  False  
2  False  False  True  
3  False  False  False  

Oftentimes you'll want to match certain values with certain columns. Just make values a dict where the key is the column, and the value is a list of items you want to check for.

In [103]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}  

In [104]: df.isin(values)  
Out[104]:  
ids ids2 vals  
0  True  False  True  
1  True  False  False  
2  False  False  True  
3  False  False  False  

Combine DataFrame’s isin with the any() and all() methods to quickly select subsets of your data that meet a given criteria. To select a row where each column meets its own criterion:

In [105]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}  

In [106]: row_mask = df.isin(values).all(1)  

In [107]: df[row_mask]  
Out[107]:  
ids ids2 vals  
0  a  a  1  

Chapter 11. Indexing and Selecting Data
### 11.11 The where() Method and Masking

Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection output has the same shape as the original data, you can use the `where` method in `Series` and `DataFrame`.

To return only the selected rows

```python
In [108]: s[s > 0]
Out[108]:
3 1
2 2
1 3
0 4
dtype: int64
```

To return a Series of the same shape as the original

```python
In [109]: s.where(s > 0)
Out[109]:
4 NaN
3 1
2 2
1 3
0 4
dtype: float64
```

Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. `where` is used under the hood as the implementation. Equivalent is `df.where(df < 0)`

```python
In [110]: df[df < 0]
Out[110]:
 A B C D
2000-01-01 -1.236269 NaN -0.487602 -0.082240
2000-01-02 -2.182937 NaN NaN NaN
2000-01-03 NaN -0.493662 NaN NaN
2000-01-04 NaN -0.023688 NaN NaN
2000-01-05 NaN -0.251905 -2.213588 NaN
2000-01-06 NaN NaN -0.863838 NaN
2000-01-07 -1.048089 NaN -0.988387 NaN
2000-01-08 NaN NaN NaN -0.055758
```

In addition, `where` takes an optional `other` argument for replacement of values where the condition is False, in the returned copy.

```python
In [111]: df.where(df < 0, -df)
Out[111]:
 A B C D
2000-01-01 -1.236269 -0.896171 -0.487602 -0.082240
2000-01-02 -2.182937 -0.380396 NaN NaN
2000-01-03 NaN -0.493662 NaN NaN
2000-01-04 NaN -0.023688 NaN NaN
2000-01-05 NaN -0.251905 -2.410179 -1.450520
2000-01-06 NaN NaN -0.863838 NaN
2000-01-07 -1.048089 NaN -0.988387 NaN
2000-01-08 NaN NaN NaN -0.055758
```

You may wish to set values based on some boolean criteria. This can be done intuitively like so:
In [112]: s2 = s.copy()

In [113]: s2[s2 < 0] = 0

In [114]: s2
Out[114]:
   0   1   2   3
0   4   3   2   1
1   0   4   3   2
2   1   0   4   3
3   2   1   0   4
dtype: int64

In [115]: df2 = df.copy()

In [116]: df2[df2 < 0] = 0

In [117]: df2
Out[117]:
     A         B         C         D
2000-01-01  0.000000  0.896171  0.000000  0.000000
2000-01-02  0.000000  0.380396  0.084844  0.432390
2000-01-03  1.519970  0.000000  0.600178  0.274230
2000-01-04  0.132885  0.000000  2.410179  1.450520
2000-01-05  0.206053  0.000000  0.000000  1.063327
2000-01-06  1.266143  0.299368  0.000000  0.408204
2000-01-07  0.000000  0.000000  0.000000  0.094055
2000-01-08  1.262731  1.289997  0.082423  0.000000

By default, where returns a modified copy of the data. There is an optional parameter inplace so that the original data can be modified without creating a copy:

In [118]: df_orig = df.copy()

In [119]: df_orig.where(df > 0, -df, inplace=True);

In [120]: df_orig
Out[120]:
     A         B         C         D
2000-01-01  1.236269  0.896171  0.487602  0.082240
2000-01-02  2.182937  0.380396  0.084844  0.432390
2000-01-03  1.519970  0.493662  0.600178  0.274230
2000-01-04  0.132885  0.023688  2.410179  1.450520
2000-01-05  0.206053  0.251905  0.863838  0.408204
2000-01-06  1.266143  0.299368  0.988387  0.094055
2000-01-07  1.048089  0.025747  0.988387  0.055758
2000-01-08  1.262731  1.289997  0.082423  0.055758

Furthermore, where aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analogous to partial setting via .ix (but on the contents rather than the axis labels)

In [121]: df2 = df.copy()

In [122]: df2[ df2[[1:4] > 0 ] = 3

In [123]: df2
Out[123]:
     A         B         C         D
2000-01-01  1.236269  0.896171  0.487602  0.082240
2000-01-02  2.182937  0.380396  0.084844  0.432390
2000-01-03  1.519970  0.493662  0.600178  0.274230
2000-01-04  0.132885  0.023688  2.410179  1.450520
2000-01-05  0.206053  0.251905  0.863838  0.408204
2000-01-06  1.266143  0.299368  0.988387  0.094055
2000-01-07  1.048089  0.025747  0.988387  0.055758
2000-01-08  1.262731  1.289997  0.082423  0.055758
```latex
New in version 0.13. Where can also accept axis and level parameters to align the input when performing the where.

In [124]: df2 = df.copy()

In [125]: df2.where(df2>0,df2['A'],axis='index')
Out[125]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.236269</td>
<td>0.896171</td>
<td>-1.236269</td>
<td>-1.236269</td>
</tr>
<tr>
<td>1</td>
<td>-2.182937</td>
<td>0.380396</td>
<td>0.084844</td>
<td>0.432390</td>
</tr>
<tr>
<td>2</td>
<td>1.519970</td>
<td>1.519970</td>
<td>0.600178</td>
<td>0.274230</td>
</tr>
<tr>
<td>3</td>
<td>0.132885</td>
<td>0.132885</td>
<td>2.410179</td>
<td>1.450520</td>
</tr>
<tr>
<td>4</td>
<td>0.206053</td>
<td>0.206053</td>
<td>0.206053</td>
<td>1.063327</td>
</tr>
<tr>
<td>5</td>
<td>1.266143</td>
<td>0.299368</td>
<td>1.266143</td>
<td>0.408204</td>
</tr>
<tr>
<td>6</td>
<td>-1.048089</td>
<td>-1.048089</td>
<td>-1.048089</td>
<td>0.094055</td>
</tr>
<tr>
<td>7</td>
<td>1.262731</td>
<td>1.289997</td>
<td>0.082423</td>
<td>1.262731</td>
</tr>
</tbody>
</table>

This is equivalent (but faster than) the following.

In [126]: df2 = df.copy()

In [127]: df.apply(lambda x, y: x.where(x>0,y), y=df['A'])
Out[127]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.236269</td>
<td>0.896171</td>
<td>-1.236269</td>
<td>-1.236269</td>
</tr>
<tr>
<td>1</td>
<td>-2.182937</td>
<td>0.380396</td>
<td>0.084844</td>
<td>0.432390</td>
</tr>
<tr>
<td>2</td>
<td>1.519970</td>
<td>1.519970</td>
<td>0.600178</td>
<td>0.274230</td>
</tr>
<tr>
<td>3</td>
<td>0.132885</td>
<td>0.132885</td>
<td>2.410179</td>
<td>1.450520</td>
</tr>
<tr>
<td>4</td>
<td>0.206053</td>
<td>0.206053</td>
<td>0.206053</td>
<td>1.063327</td>
</tr>
<tr>
<td>5</td>
<td>1.266143</td>
<td>0.299368</td>
<td>1.266143</td>
<td>0.408204</td>
</tr>
<tr>
<td>6</td>
<td>-1.048089</td>
<td>-1.048089</td>
<td>-1.048089</td>
<td>0.094055</td>
</tr>
<tr>
<td>7</td>
<td>1.262731</td>
<td>1.289997</td>
<td>0.082423</td>
<td>1.262731</td>
</tr>
</tbody>
</table>

mask

mask is the inverse boolean operation of where.

In [128]: s.mask(s >= 0)
Out[128]:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NaN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NaN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>NaN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dtype: float64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In [129]: df.mask(df >= 0)
Out[129]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.236269</td>
<td>NaN</td>
<td>-0.487602</td>
<td>-0.082240</td>
</tr>
</tbody>
</table>

11.11. The where() Method and Masking

285
11.12 The `query()` Method (Experimental)

New in version 0.13. DataFrame objects have a `query()` method that allows selection using an expression. You can get the value of the frame where column `b` has values between the values of columns `a` and `c`. For example:

```
In [10]: n = 10

In [11]: df = DataFrame(rand(n, 3), columns=list('abc'))

In [12]: df
Out[12]:
   a  b  c
0 0.191519 0.622109 0.437728
1 0.785359 0.779976 0.272593
2 0.276464 0.801872 0.958139
3 0.875933 0.357817 0.500995
4 0.683463 0.712702 0.370251
5 0.561196 0.503083 0.013768
6 0.772827 0.882641 0.364886
7 0.615396 0.075381 0.397203
8 0.933140 0.651378 0.397203
9 0.788730 0.316836 0.568099

# pure python
In [13]: df[(df.a < df.b) & (df.b < df.c)]
Out[13]:
   a  b  c
2 0.276464 0.801872 0.958139

# query
In [14]: df.query('(a < b) & (b < c)')
Out[14]:
   a  b  c
2 0.276464 0.801872 0.958139

Do the same thing but fallback on a named index if there is no column with the name `a`.

In [15]: df = DataFrame(randint(n / 2, size=(n, 2)), columns=list('bc'))

In [16]: df.index.name = 'a'

In [17]: df
Out[17]:
   b  c
   a
0 2 3
1 4 1
2 4 0
In [138]: df.query('a < b and b < c')
Out[138]:
   b  c
0 2 3

If instead you don’t want to or cannot name your index, you can use the name `index` in your query expression:

In [139]: df = DataFrame(randint(n, size=(n, 2)), columns=list('bc'))
In [140]: df
Out[140]:
   b  c
0 3 1
1 2 5
2 2 5
3 6 7
4 4 3
5 5 6
6 4 6
7 2 4
8 2 7
9 9 7

In [141]: df.query('index < b < c')
Out[141]:
   b  c
1 2 5
3 6 7

Note: If the name of your index overlaps with a column name, the column name is given precedence. For example,

In [142]: df = DataFrame({'a': randint(5, size=5)})
In [143]: df.index.name = 'a'
In [144]: df.query('a > 2')  # uses the column 'a', not the index
Out[144]:
   a
0 3
3 4
You can still use the index in a query expression by using the special identifier ‘index’:

In [145]: df.query('index > 2')
Out[145]:
   a
   3 4
   4 1
If for some reason you have a column named `index`, then you can refer to the index as `ilevel_0` as well, but at this point you should consider renaming your columns to something less ambiguous.

### 11.12.1 MultiIndex query() Syntax

You can also use the levels of a `DataFrame` with a `MultiIndex` as if they were columns in the frame:

```python
In [146]: import pandas.util.testing as tm

In [147]: n = 10

In [148]: colors = tm.choice(['red', 'green'], size=n)

In [149]: foods = tm.choice(['eggs', 'ham'], size=n)

In [150]: colors
Out[150]:
array(['red', 'green', 'red', 'green', 'red', 'green', 'red', 'green', 'green', 'green'],
dtype='|S5')

In [151]: foods
Out[151]:
array(['ham', 'eggs', 'ham', 'ham', 'ham', 'eggs', 'eggs', 'ham', 'eggs', 'eggs'],
dtype='|S4')

In [152]: index = MultiIndex.from_arrays([colors, foods], names=['color', 'food'])

In [153]: df = DataFrame(randn(n, 2), index=index)

In [154]: df
Out[154]:
 0 1
color food
red ham 0.157622 -0.293555
 red -1.270093 0.120949
 green -0.193898 1.804172
 red -0.234694 0.939908
green eggs -0.171520 -0.153055
 eggs -0.363095 -0.067318
 green 1.444721 0.325771
 ham -0.855732 -0.697595
 eggs -0.276134 -1.258759

In [155]: df.query('color == "red"')
Out[155]:
 0 1
color food
red ham 0.157622 -0.293555
 red -1.270093 0.120949
 red -0.234694 0.939908
 eggs -0.363095 -0.067318
```

If the levels of the `MultiIndex` are unnamed, you can refer to them using special names:
In [156]: df.index.names = [None, None]

In [157]: df
Out[157]:
   0   1
red ham 0.157622 -0.293555
green eggs 0.111560 0.597679
red ham -1.270093 0.120949
green ham -0.193898 1.804172
red ham -0.234694 0.939908
green eggs -0.171520 -0.153055
red eggs -0.363095 -0.067318
green eggs 1.444721 0.325771
ham -0.855732 -0.697595
eggs -0.276134 -1.258759

In [158]: df.query('ilevel_0 == "red"')
Out[158]:
   0   1
red ham 0.157622 -0.293555
ham -1.270093 0.120949
ham -0.234694 0.939908
eggs -0.363095 -0.067318

The convention is ilevel_0, which means “index level 0” for the 0th level of the index.

### 11.12.2 query() Use Cases

A use case for `query()` is when you have a collection of DataFrame objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames _without_ having to specify which frame you’re interested in querying.

In [159]: df = DataFrame(rand(n, 3), columns=list('abc'))

In [160]: df
Out[160]:
   a   b   c
0  0.972113  0.046532  0.917354
1  0.158930  0.943383  0.763162
2  0.053878  0.254082  0.927973
3  0.838312  0.156925  0.690776
4  0.366946  0.937473  0.613365
5  0.699350  0.502946  0.711111
6  0.134386  0.828932  0.742846
7  0.457034  0.079103  0.373047
8  0.933636  0.418725  0.234212
9  0.572485  0.572111  0.416893

In [161]: df2 = DataFrame(rand(n + 2, 3), columns=df.columns)

In [162]: df2
Out[162]:
   a   b   c
0  0.625883  0.220362  0.622059
1  0.477672  0.974342  0.772985
2  0.027139  0.221022  0.120328
3  0.175274  0.429462  0.657769
In [163]: expr = '0.0 <= a <= c <= 0.5'

In [164]: map(lambda frame: frame.query(expr), [df, df2])
Out[164]:
[Empty DataFrame
 Columns: [a, b, c]
Index: [], a b c
2 0.027139 0.221022 0.120328
9 0.339135 0.401351 0.467574]

11.12.3 query () Python versus pandas Syntax Comparison

Full numpy-like syntax

In [165]: df = DataFrame(randint(n, size=(n, 3)), columns=list('abc'))

In [166]: df
Out[166]:
   a  b  c
0  5  3  8
1  8  8  1
2  3  6  8
3  9  1  5
4  8  4  1
5  1  1  2
6  3  4  2
7  1  9  4
8  0  0  2
9  1  2  5

In [167]: df.query('(a < b) & (b < c)')
Out[167]:
   a  b  c
2  3  6  8
9  1  2  5

In [168]: df[(df.a < df.b) & (df.b < df.c)]
Out[168]:
   a  b  c
2  3  6  8
9  1  2  5

Slightly nicer by removing the parentheses (by binding making comparison operators bind tighter than &/|)

In [169]: df.query('a < b & b < c')
Out[169]:
   a  b  c
2  3  6  8
Use English instead of symbols

In [170]: df.query('a < b and b < c')
Out[170]:
   a  b  c
0  2  3  6
1  9  1  2
2  9  1  2

Pretty close to how you might write it on paper

In [171]: df.query('a < b < c')
Out[171]:
   a  b  c
0  2  3  6
1  9  1  2
2  9  1  2

11.12.4 The in and not in operators

query() also supports special use of Python’s in and not in comparison operators, providing a succinct syntax for calling the isin method of a Series or DataFrame.

# get all rows where columns "a" and "b" have overlapping values
In [172]: df = DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),
    ..........:     'c': randint(5, size=12), 'd': randint(9, size=12))
    ..........:
In [173]: df
Out[173]:
   a  b  c  d
0  a  a  1  7
1  a  a  0  0
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8
6  d  b  1  3
7  d  b  1  2
8  e  c  4  4
9  e  c  3  7
10 f  c  2  7
11 f  c  0  0

In [174]: df.query('a in b')
Out[174]:
   a  b  c  d
0  a  a  1  7
1  a  a  0  0
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8

# How you’d do it in pure Python
In [175]: df[df.a.isin(df.b)]
Out[175]:
   a  b  c  d
In [176]: df.query('a not in b')
Out[176]:
   a  b  c  d
0  a  a  1  7
1  a  a  0  0
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8

In [176]:
   a  b  c  d
   6  d  b  1  3
   7  d  b  1  2
   8  e  c  4  4
   9  e  c  3  7
  10  f  c  2  7
  11  f  c  0  0

# pure Python
In [177]: df[~df.a.isin(df.b)]
Out[177]:
   a  b  c  d
0  a  a  1  7
1  a  a  0  0
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8

You can combine this with other expressions for very succinct queries:

# rows where cols a and b have overlapping values and col c’s values are less than col d’s
In [178]: df.query('a in b and c < d')
Out[178]:
   a  b  c  d
0  a  a  1  7
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8
6  d  b  1  3
7  d  b  1  2
8  e  c  4  4
9  e  c  3  7

# pure Python
In [179]: df[df.b.isin(df.a) & (df.c < df.d)]
Out[179]:
   a  b  c  d
0  a  a  1  7
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8
6  d  b  1  3
7  d  b  1  2
8  e  c  4  4
9  e  c  3  7
10 f  c  2  7

Note: Note that in and not in are evaluated in Python, since numexpr has no equivalent of this operation. However, only the in/not in expression itself is evaluated in vanilla Python. For example, in the expression

Chapter 11. Indexing and Selecting Data
df.query('a in b + c + d')

(b + c + d) is evaluated by numexpr and then the in operation is evaluated in plain Python. In general, any operations that can be evaluated using numexpr will be.

### 11.12.5 Special use of the == operator with list objects

Comparing a list of values to a column using ==/!= works similarly to in/not in

```python
In [180]: df.query('b == ["a", "b", "c"]')
Out[180]:
 a b c d
0 a a 1 7
1 a a 0 0
2 b a 0 2
3 b a 2 8
4 c b 0 4
5 c b 0 8
6 d b 1 3
7 d b 1 2
8 e c 4 4
9 e c 3 7
10 f c 2 7
11 f c 0 0
```

# pure Python
```python
In [181]: df[df.b.isin(["a", "b", "c"])]
Out[181]:
 a b c d
0 a a 1 7
1 a a 0 0
2 b a 0 2
3 b a 2 8
4 c b 0 4
5 c b 0 8
6 d b 1 3
7 d b 1 2
8 e c 4 4
9 e c 3 7
10 f c 2 7
11 f c 0 0
```

```python
In [182]: df.query('c == [1, 2]')
Out[182]:
 a b c d
0 a a 1 7
3 b a 2 8
6 d b 1 3
7 d b 1 2
10 f c 2 7
```

```python
In [183]: df.query('c != [1, 2]')
Out[183]:
 a b c d
1 a a 0 0
2 b a 0 2
```

11.12. The query() Method (Experimental) 293
# using in/not in

```
In [184]: df.query('[1, 2] in c')
Out[184]:
 a b c d
0 a a 1 7
3 b a 2 8
6 d b 1 3
7 d b 1 2
10 f c 2 7
```

```
In [185]: df.query('[1, 2] not in c')
Out[185]:
 a b c d
 1 a a 0 0
 2 b a 0 2
 4 c b 0 4
 5 c b 0 8
 8 e c 4 4
 9 e c 3 7
 11 f c 0 0
```

# pure Python

```
In [186]: df[df.c.isin([1, 2])]
Out[186]:
 a b c d
0 a a 1 7
3 b a 2 8
6 d b 1 3
7 d b 1 2
10 f c 2 7
```

## 11.12.6 Boolean Operators

You can negate boolean expressions with the word `not` or the ~ operator.

```
In [187]: df = DataFrame(rand(n, 3), columns=list('abc'))

In [188]: df[~df.bools] = rand(len(df)) > 0.5

In [189]: df.query('~bools')
Out[189]:
 a b c bools
 0 0.395827 0.035597 0.171689 False
 2 0.582329 0.898831 0.435002 False
 3 0.078368 0.224708 0.697626 False
 5 0.877177 0.221076 0.287379 False
 6 0.993264 0.861585 0.108845 False

In [190]: df.query('not bools')
Out[190]:
 a b c bools
In [191]: df.query('not bools') == df[~df.bools]
Out[191]:
 a b c bools
0 True True True True
2 True True True True
3 True True True True
5 True True True True
6 True True True True

Of course, expressions can be arbitrarily complex too

short query syntax
In [192]: shorter = df.query('a < b < c and (not bools) or bools > 2')

equivalent in pure Python
In [193]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)]

In [194]: shorter
Out[194]:
 a b c bools
3 0.078368 0.224708 0.697626 False

In [195]: longer
Out[195]:
 a b c bools
3 0.078368 0.224708 0.697626 False

In [196]: shorter == longer
Out[196]:
 a b c bools
3 True True True True

11.12.7 Performance of query ()

DataFrame.query() using numexpr is slightly faster than Python for large frames
Note: You will only see the performance benefits of using the numexpr engine with DataFrame.query() if your frame has more than approximately 200,000 rows.

This plot was created using a DataFrame with 3 columns each containing floating point values generated using numpy.random.randn().

11.13 Take Methods

Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides the `take` method that retrieves elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index positions. `take` will also accept negative integers as relative positions to the end of the object.

In [197]: index = Index(randint(0, 1000, 10))
In [198]: index
Out[198]: Int64Index([88, 74, 332, 407, 105, 138, 599, 893, 567, 828], dtype='int64')

In [199]: positions = [0, 9, 3]

In [200]: index[positions]
Out[200]: Int64Index([88, 828, 407], dtype='int64')

In [201]: index.take(positions)
Out[201]: Int64Index([88, 828, 407], dtype='int64')

In [202]: ser = Series(randn(10))

In [203]: ser.ix[positions]
Out[203]:
0 1.031070
9 -2.430222
3 -1.387499
dtype: float64

In [204]: ser.take(positions)
Out[204]:
0 1.031070
9 -2.430222
3 -1.387499
dtype: float64

For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.

In [205]: frm = DataFrame(randn(5, 3))

In [206]: frm.take([1, 4, 3])
Out[206]:
 0 1 2
0 0.931070 0.793864 0.911215
1 1.263598 -2.113153 0.191012
4 -1.212239 -1.481208 -1.543384
3 -0.880774 -0.641341 2.391179

In [207]: frm.take([0, 2], axis=1)
Out[207]:
 0 2
0 1.583772 -0.710203
1 1.263598 0.191012
2 0.229587 -1.728525
3 -0.880774 2.391179
4 -1.212239 -1.543384

It is important to note that the take method on pandas objects are not intended to work on boolean indices and may return unexpected results.

In [208]: arr = randn(10)

In [209]: arr.take([False, False, True, True])
Out[209]: array([1.5579, 1.5579, 1.0892, 1.0892])

In [210]: arr[[0, 1]]
Out[210]: array([1.5579, 1.0892])

In [211]: ser = Series(randn(10))

11.13. Take Methods 297
pandas: powerful Python data analysis toolkit, Release 0.14.1

In [212]: ser.take([False, False, True, True])
Out[212]:
0 -1.363210
0 -1.363210
1 0.623587
1 0.623587
dtype: float64

In [213]: ser.ix[[0, 1]]
Out[213]:
0 -1.363210
1 0.623587
dtype: float64

Finally, as a small note on performance, because the take method handles a narrower range of inputs, it can offer performance that is a good deal faster than fancy indexing.

11.14 Duplicate Data

If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated and drop_duplicates. Each takes as an argument the columns to use to identify duplicated rows.

- duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.
- drop_duplicates removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, but each method has a take_last parameter that indicates the last observed row should be taken instead.

In [214]: df2 = DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
.....: 'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
.....: 'c' : np.random.randn(7)})

In [215]: df2.duplicated(['a','b'])
Out[215]:
0 False
1 False
2 False
3 False
4 True
5 True
6 False
dtype: bool

In [216]: df2.drop_duplicates(['a','b'])
Out[216]:
 a b c
0 one x 0.212119
1 one y -0.398384
2 two y -1.480017
3 three x 0.662913
6 six x -2.612829

In [217]: df2.drop_duplicates(['a','b'], take_last=True)
Out[217]:
11.15 Dictionary-like get() method

Each of Series, DataFrame, and Panel have a get method which can return a default value.

In [218]: s = Series([1,2,3], index=['a','b','c'])

In [219]: s.get('a') # equivalent to s['a']
Out[219]: 1

In [220]: s.get('x', default=-1)
Out[220]: -1

11.16 Advanced Indexing with .ix

Note: The recent addition of .loc and .iloc have enabled users to be quite explicit about indexing choices. .ix allows a great flexibility to specify indexing locations by label and/or integer position. pandas will attempt to use any passed integer as label locations first (like what .loc would do, then to fall back on positional indexing, like what .iloc would do). See Fallback Indexing for an example.

The syntax of using .ix is identical to .loc, in Selection by Label, and .iloc in Selection by Position.

The .ix attribute takes the following inputs:

- An integer or single label, e.g. 5 or 'a'
- A list or array of labels ['a', 'b', 'c'] or integers [4, 3, 0]
- A slice object with ints 1:7 or labels 'a':'f'
- A boolean array

We'll illustrate all of these methods. First, note that this provides a concise way of reindexing on multiple axes at once:

In [221]: subindex = dates[[3,4,5]]

In [222]: df.reindex(index=subindex, columns=['C', 'B'])
Out[222]: C B
2000-01-04 -0.042475 0.710816
2000-01-05 0.518029 1.701349
2000-01-06 -0.909180 0.227322

In [223]: df.ix[subindex, ['C', 'B']]
Out[223]: C B
2000-01-04 -0.042475 0.710816
2000-01-05 0.518029 1.701349
2000-01-06 -0.909180 0.227322
Assignment / setting values is possible when using ix:

```
In [224]: df2 = df.copy()
```

```
In [225]: df2.ix[subindex, ['C', 'B']] = 0
```

```
In [226]: df2
Out[226]:
    A         B         C         D
0 2000-01-01  0.454389  0.854294  0.245116  0.484166
1 2000-01-02 -0.036249 -0.546831  1.459886 -1.180301
2 2000-01-03  0.378125 -0.038520  1.926220  0.441177
3 2000-01-04  0.075871  0.000000  0.000000 -1.265025
4 2000-01-05 -0.677097  0.000000  0.000000 -0.592656
5 2000-01-06  1.482845  0.000000  0.000000  0.217613
6 2000-01-07 -0.272681 -0.026829 -1.372775  1.109922
7 2000-01-08 -0.459059 -0.542800  0.869408  0.063119
```

Indexing with an array of integers can also be done:

```
In [227]: df.ix[[4, 3, 1]]
```

```
Out[227]:
     A         B         C         D
0 2000-01-05 -0.677097  1.701349  0.518029 -0.592656
1 2000-01-04  0.075871  0.710816 -0.042475 -1.265025
2 2000-01-02  0.036249 -0.546831  1.459886 -1.180301
```

```
In [228]: df.ix[dates[[4, 3, 1]]]
```

```
Out[228]:
     A         B         C         D
0 2000-01-05 -0.677097  1.701349  0.518029 -0.592656
1 2000-01-04  0.075871  0.710816 -0.042475 -1.265025
2 2000-01-02  0.036249 -0.546831  1.459886 -1.180301
```

Slicing has standard Python semantics for integer slices:

```
In [229]: df.ix[1:7, :2]
```

```
Out[229]:
     A         B
0 2000-01-02  0.036249 -0.546831
1 2000-01-03  0.378125 -0.038520
2 2000-01-04  0.075871  0.710816
3 2000-01-05 -0.677097  1.701349
4 2000-01-06  1.482845  0.227322
5 2000-01-07  0.272681 -0.026829
```

Slicing with labels is semantically slightly different because the slice start and stop are inclusive in the label-based case:

```
In [230]: datel, date2 = dates[[2, 4]]
```

```
In [231]: print(datel, date2)
Timestamp('2000-01-03 00:00:00'), Timestamp('2000-01-05 00:00:00'))
```

```
In [232]: df.ix[datel:date2]
```

```
Out[232]:
    A         B         C         D
0 2000-01-03  0.378125 -0.038520  1.926220  0.441177
1 2000-01-04  0.075871  0.710816 -0.042475 -1.265025
2 2000-01-05 -0.677097  1.701349  0.518029 -0.592656
```
In [233]: df['A'].ix[date1:date2]
Out[233]:
2000-01-03 0.378125
2000-01-04 0.075871
2000-01-05 -0.677097
Freq: D, Name: A, dtype: float64

Getting and setting rows in a DataFrame, especially by their location, is much easier:

In [234]: df2 = df[:5].copy()

In [235]: df2.ix[3]
Out[235]:
A 0.075871
B 0.710816
C -0.042475
D -1.265025
Name: 2000-01-04 00:00:00, dtype: float64

In [236]: df2.ix[3] = np.arange(len(df2.columns))

In [237]: df2
Out[237]:
2000-01-01 0.454389 0.854294 0.245116 0.484166
2000-01-02 0.036249 -0.546831 1.459886 -1.180301
2000-01-03 0.378125 -0.038520 1.926220 0.441177
2000-01-04 0.000000 1.000000 2.000000 3.000000
2000-01-05 -0.677097 1.701349 0.518029 -0.592656

Column or row selection can be combined as you would expect with arrays of labels or even boolean vectors:

In [238]: df.ix[df['A'] > 0, 'B']
Out[238]:
2000-01-01 0.854294
2000-01-02 -0.546831
2000-01-03 -0.038520
2000-01-04 0.710816
2000-01-06 0.227322
2000-01-07 -0.026829
Name: B, dtype: float64

In [239]: df.ix[date1:date2, 'B']
Out[239]:
2000-01-03 -0.038520
2000-01-04 0.710816
2000-01-05 1.701349
Freq: D, Name: B, dtype: float64

In [240]: df.ix[date1, 'B']
Out[240]: -0.038519657937523058

Slicing with labels is closely related to the truncate method which does precisely .ix[start:stop] but returns a copy (for legacy reasons).
11.17 The select() Method

Another way to extract slices from an object is with the select method of Series, DataFrame, and Panel. This method should be used only when there is no more direct way. select takes a function which operates on labels along axis and returns a boolean. For instance:

```python
In [241]: df.select(lambda x: x == 'A', axis=1)
Out[241]:
                      A
2000-01-01  0.454389
2000-01-02  0.036249
2000-01-03  0.378125
2000-01-04  0.075871
2000-01-05 -0.677097
2000-01-06  1.482845
2000-01-07  0.272681
2000-01-08  0.459059
```

11.18 The lookup() Method

Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the lookup method allows for this and returns a numpy array. For instance,

```python
In [242]: dflookup = DataFrame(np.random.rand(20,4), columns = ['A','B','C','D'])
In [243]: dflookup.lookup(list(range(0,10,2)), ['B','C','A','B','D'])
Out[243]: array([ 0.685 , 0.0944, 0.6808, 0.9228, 0.5607])
```

11.19 Float64Index

Note: As of 0.14.0, Float64Index is backed by a native float64 dtype array. Prior to 0.14.0, Float64Index was backed by an object dtype array. Using a float64 dtype in the backend speeds up arithmetic operations by about 30x and boolean indexing operations on the Float64Index itself are about 2x as fast.

New in version 0.13.0. By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing and slicing work exactly the same.

```python
In [244]: indexf = Index([1.5, 2, 3, 4.5, 5])
In [245]: indexf
Out[245]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')
In [246]: sf = Series(range(5),index=indexf)
In [247]: sf
Out[247]:
          1.5
1.5  0
2.0  1
3.0  2
4.5  3
```
Scalar selection for [], .ix, .loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

```
In [248]: sf[3]
Out[248]: 2

In [249]: sf[3.0]
Out[249]: 2

In [250]: sf.ix[3]
Out[250]: 2

In [251]: sf.ix[3.0]
Out[251]: 2

In [252]: sf.loc[3]
Out[252]: 2

In [253]: sf.loc[3.0]
Out[253]: 2
```

The only positional indexing is via iloc

```
In [254]: sf.iloc[3]
Out[254]: 3
```

A scalar index that is not found will raise KeyError

Slicing is ALWAYS on the values of the index, for [], .ix, .loc and ALWAYS positional with iloc

```
In [255]: sf[2:4]
Out[255]:
2  1
3  2
dtype: int32

In [256]: sf.ix[2:4]
Out[256]:
2  1
3  2
dtype: int32

In [257]: sf.loc[2:4]
Out[257]:
2  1
3  2
dtype: int32

In [258]: sf.iloc[2:4]
Out[258]:
3.0  2
4.5  3
dtype: int32
```

In float indexes, slicing using floats is allowed
In [259]: sf[2.1:4.6]
Out[259]:
3.0 2
4.5 3
dtype: int32

In [260]: sf.loc[2.1:4.6]
Out[260]:
3.0 2
4.5 3
dtype: int32

In non-float indexes, slicing using floats will raise a TypeError

In [1]: Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)

In [1]: Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.

In [3]: Series(range(5))[3.0]
Out[3]: 3

Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like indexing scheme, but the data is recorded as floats. This could for example be millisecond offsets.

In [261]: dfir = concat([DataFrame(randn(5,2),
.....: index=np.arange(5) * 250.0,
.....: columns=list('AB')),
.....: DataFrame(randn(6,2),
.....: index=np.arange(4,10) * 250.1,
.....: columns=list('AB'))])

In [262]: dfir
Out[262]:
 A B
0 0.0 -0.781151 -2.784845
250.0 -1.201786 -0.231876
500.0 -0.142467 0.060178
750.0 -0.822858 1.876000
1000.0 -0.932658 -0.635533
1000.4 0.379122 -1.909492
1250.5 -1.431211 1.329653
1500.6 -0.562165 0.585729
1750.7 -0.544104 0.825851
2000.8 -0.062472 2.032089
2250.9 0.639479 -1.550712

Selection operations then will always work on a value basis, for all selection operators.

In [263]: dfir[0:1000.4]
Out[263]:
 A B
0 0.0 -0.781151 -2.784845
250.0 -1.201786 -0.231876
500.0 -0.142467 0.060178
750.0 -0.822858 1.876000
In [264]: dfir.loc[0:1001,'A']
Out[264]:
 0.0 -0.781151
 250.0 -2.784845
 500.0 -0.231876
 750.0 0.060178
 1000.0 -0.635533
 1000.4 0.379122
Name: A, dtype: float64

In [265]: dfir.loc[1000.4]
Out[265]:
 A 0.379122
 B -1.909492
Name: 1000.4, dtype: float64

You could then easily pick out the first 1 second (1000 ms) of data then.

In [266]: dfir[0:1000]
Out[266]:
 A B
 0 -0.781151 -2.784845
 250 -1.201786 -0.231876
 750 -0.635533 1.876000
1000 -0.932658 0.379122

Of course if you need integer based selection, then use iloc

In [267]: dfir.iloc[0:5]
Out[267]:
 A B
 0 -0.781151 -2.784845
 250 -1.201786 -0.231876
 750 -0.635533 1.876000
1000 -0.932658 0.379122

11.20 Returning a view versus a copy

When setting values in a pandas object, care must be taken to avoid what is called chained indexing. Here is an example.

In [268]: dfmi = DataFrame([list('abcd'),
 list('efgh'),
 list('ijkl'),
 list('mnop')],
 columns=MultiIndex.from_product([['one','two'],
 ['first','second']]))

In [269]: dfmi
Out[269]:
 one two
 -- --
 -0.93 -0.78
 -1.20 -0.23
 0.0 0.06
 0.8 1.87
 0.9 -0.63

11.20. Returning a view versus a copy
Compare these two access methods:

```
In [270]: dfmi['one']['second']
Out[270]:
0 b  
1 f  
2 j  
3 n  
Name: second, dtype: object
```

```
In [271]: dfmi.loc[:,('one','second')]
Out[271]:
0 b  
1 f  
2 j  
3 n  
Name: (one, second), dtype: object
```

These both yield the same results, so which should you use? It is instructive to understand the order of operations on
these and why method 2 (`.loc`) is much preferred over method 1 (chained `[]`) dfmi[‘one’] selects the first level of the columns and returns a data frame that is singly-indexed. Then another
python operation dfmi_with_one[‘second’] selects the series indexed by ’second’ happens. This is indi-
cated by the variable dfmi_with_one because pandas sees these operations as separate events. e.g. separate calls
to __getitem__, so it has to treat them as linear operations, they happen one after another.

Contrast this to df.loc[:,('one','second')] which passes a nested tuple of
(slice(None),('one','second')) to a single call to __getitem__. This allows pandas to deal
with this as a single entity. Furthermore this order of operations can be significantly faster, and allows one to index
both axes if so desired.

11.20.1 Why does the assignment when using chained indexing fail!

So, why does this show the SettingWithCopy warning / and possibly not work when you do chained indexing and
assignment:

```
dfmi['one']['second'] = value
```

Since the chained indexing is 2 calls, it is possible that either call may return a copy of the data because of the way
it is sliced. Thus when setting, you are actually setting a copy, and not the original frame data. It is impossible for
pandas to figure this out because their are 2 separate python operations that are not connected.

The SettingWithCopy warning is a ‘heuristic’ to detect this (meaning it tends to catch most cases but is simply a
lightweight check). Figuring this out for real is way complicated.

The .loc operation is a single python operation, and thus can select a slice (which still may be a copy), but allows
pandas to assign that slice back into the frame after it is modified, thus setting the values as you would think.

The reason for having the SettingWithCopy warning is this. Sometimes when you slice an array you will simply
get a view back, which means you can set it no problem. However, even a single dtyped array can generate a copy if
it is sliced in a particular way. A multi-dtyped DataFrame (meaning it has say float and object data), will almost
always yield a copy. Whether a view is created is dependent on the memory layout of the array.
11.20.2 Evaluation order matters

Furthermore, in chained expressions, the order may determine whether a copy is returned or not. If an expression will set values on a copy of a slice, then a SettingWithCopy exception will be raised (this raise/warn behavior is new starting in 0.13.0).

You can control the action of a chained assignment via the option `mode.chained_assignment`, which can take the values `['raise', 'warn', None]`, where showing a warning is the default.

In [272]:
dfb = DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
 'c': np.arange(7)})

passed via reference (will stay)
In [273]:
dfb['c'][dfb.a.str.startswith('o')] = 42

This however is operating on a copy and will not work.

>>> pd.set_option('mode.chained_assignment','warn')
>>> dfb[dfb.a.str.startswith('o')]['c'] = 42
Traceback (most recent call last)
...
SettingWithCopyWarning:
 A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead

A chained assignment can also crop up in setting in a mixed dtype frame.

Note: These setting rules apply to all of `.loc/ .iloc/ .ix`

This is the correct access method

In [274]:
dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})

In [275]:
dfc.loc[0,'A'] = 11

In [276]:
dfc
Out[276]:
 A B
0 11 1
1 bbb 2
2 ccc 3

This can work at times, but is not guaranteed, and so should be avoided

In [277]:
dfc = dfc.copy()

In [278]:
dfc['A'][0] = 111

In [279]:
dfc
Out[279]:
 A B
0 111 1
1 bbb 2
2 ccc 3

This will not work at all, and so should be avoided
>>> pd.set_option('mode.chained_assignment','raise')
>>> dfc.loc[0]['A'] = 1111
Traceback (most recent call last)
 ...:
SettingWithCopyException:
 A value is trying to be set on a copy of a slice from a DataFrame.
 Try using .loc[row_index,col_indexer] = value instead

Warning: The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertently reported.

11.21 Fallback indexing

Float indexes should be used only with caution. If you have a float indexed DataFrame and try to select using an integer, the row that pandas returns might not be what you expect. pandas first attempts to use the integer as a label location, but fails to find a match (because the types are not equal). pandas then falls back to back to positional indexing.

In [280]: df = pd.DataFrame(np.random.randn(4,4),
.....: columns=list('ABCD'), index=[1.0, 2.0, 3.0, 4.0])
.....:

In [281]: df
Out[281]:
 A B C D
0 0.90 0.48 -0.80 -1.59
1 0.24 0.30 1.25 -1.52
2 -0.73 0.28 1.06 -1.78
3 -1.38 0.15 -1.30 -0.34

In [282]: df.ix[1]
Out[282]:
 A B C D
0 0.90 0.48 -0.80 -1.59
2 0.24 0.30 1.25 -1.52
3 -0.73 0.28 1.06 -1.78
4 -1.38 0.15 -1.30 -0.34

In [283]: df.iloc[0]
Out[283]:
 A B C D
0 0.90 0.48 -0.80 -1.59
1 0.24 0.30 1.25 -1.52
2 -0.73 0.28 1.06 -1.78
3 -1.38 0.15 -1.30 -0.34

To select the row you do expect, instead use a float label or use iloc.

In [282]: df.ix[1.0]
Out[282]:
 A B C D
0 0.90 0.48 -0.80 -1.59
1 0.24 0.30 1.25 -1.52
2 -0.73 0.28 1.06 -1.78
4 -1.38 0.15 -1.30 -0.34
Name: 1.0, dtype: float64

In [284]: df.iloc[0]
Out[284]:
 A B C D
0 0.90 0.48 -0.80 -1.59
1 0.24 0.30 1.25 -1.52
2 -0.73 0.28 1.06 -1.78
3 -1.38 0.15 -1.30 -0.34
Name: 1.0, dtype: float64
Instead of using a float index, it is often better to convert to an integer index:

In [285]: df_new = df.reset_index()

In [286]: df_new[df_new['index'] == 1.0]
Out[286]:
 index A B C D
0 0 1.0 0.903 0.476 -0.800

now you can also do "float selection"
In [287]: df_new[(df_new['index'] >= 1.0) & (df_new['index'] < 2)]
Out[287]:
 index A B C D
0 0 1.0 0.903 0.476 -0.800

11.22 Index objects

The pandas Index class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are allowed. However, if you try to convert an Index object with duplicate entries into a set, an exception will be raised.

Index also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create an Index directly is to pass a list or other sequence to Index:

In [288]: index = Index(['e', 'd', 'a', 'b'])

In [289]: index
Out[289]: Index(['e', 'd', 'a', 'b'], dtype='object')

In [290]: 'd' in index
Out[290]: True

You can also pass a name to be stored in the index:

In [291]: index = Index(['e', 'd', 'a', 'b'], name='something')

In [292]: index.name
Out[292]: 'something'

Starting with pandas 0.5, the name, if set, will be shown in the console display:

In [293]: index = Index(list(range(5)), name='rows')

In [294]: columns = Index(['A', 'B', 'C'], name='cols')

In [295]: df = DataFrame(np.random.randn(5, 3), index=index, columns=columns)

In [296]: df
Out[296]:
 A B C
rows 0 -1.97 0.56 1.22
1 0.42 -0.63 -1.05
2 0.58 1.45 0.67
3 -0.02 1.27 1.04
4 0.96 1.45 0.24

11.22. Index objects
In [297]: df['A']
Out[297]:
rows
0 -1.972104
1 0.420597
2 0.588134
3 -0.024028
4 0.956255
Name: A, dtype: float64

11.22.1 Set operations on Index objects

The three main operations are union (|), intersection (&), and diff (-). These can be directly called
as instance methods or used via overloaded operators:

In [298]: a = Index(['c', 'b', 'a'])
In [299]: b = Index(['c', 'e', 'd'])

In [300]: a.union(b)
Out[300]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [301]: a | b
Out[301]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')

In [302]: a & b
Out[302]: Index(['c'], dtype='object')

In [303]: a - b
Out[303]: Index(['a', 'b'], dtype='object')

Also available is the sym_diff (^) operation, which returns elements that appear in either idx1 or idx2 but not
both. This is equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1), with duplicates dropped.

In [304]: idx1 = Index([1, 2, 3, 4])
In [305]: idx2 = Index([2, 3, 4, 5])

In [306]: idx1.sym_diff(idx2)
Out[306]: Int64Index([1, 5], dtype='int64')

In [307]: idx1 ^ idx2
Out[307]: Int64Index([1, 5], dtype='int64')

11.22.2 The isin method of Index objects

One additional operation is the isin method that works analogously to the Series.isin method found here.

11.23 Hierarchical indexing (MultiIndex)

Hierarchical indexing (also referred to as “multi-level” indexing) is brand new in the pandas 0.4 release. It is very
exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with
higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).

In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with the all of the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.

See the cookbook for some advanced strategies.

Note: Given that hierarchical indexing is so new to the library, it is definitely “bleeding-edge” functionality but is certainly suitable for production. But, there may inevitably be some minor API changes as more use cases are explored and any weaknesses in the design / implementation are identified. pandas aims to be “eminently usable” so any feedback about new functionality like this is extremely helpful.

11.23.1 Creating a MultiIndex (hierarchical index) object

The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis labels in pandas objects. You can think of MultiIndex an array of tuples where each tuple is unique. A MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays), an array of tuples (using MultiIndex.from_tuples), or a crossed set of iterables (using MultiIndex.from_product). The Index constructor will attempt to return a MultiIndex when it is passed a list of tuples. The following examples demo different ways to initialize MultiIndexes.

```
In [308]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ...
     :     ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], ...
     :]

In [309]: tuples = list(zip(*arrays))

In [310]: tuples
Out[310]:
[('bar', 'one'),
 ('bar', 'two'),
 ('baz', 'one'),
 ('baz', 'two'),
 ('foo', 'one'),
 ('foo', 'two'),
 ('qux', 'one'),
 ('qux', 'two')]

In [311]: index = MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [312]: index
Out[312]:
MultiIndex(levels=[u'bar', u'baz', u'foo', u'qux'], [u'one', u'two'],
 labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
 names=['first', 'second'])

In [313]: s = Series(randn(8), index=index)

In [314]: s
Out[314]:
first  second
bar   one   0.174031
     two   -0.793292
baz   one   0.051545
When you want every pairing of the elements in two iterables, it can be easier to use the `MultiIndex.from_product` function:

```python
In [315]: iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]

In [316]: MultiIndex.from_product(iterables, names=['first', 'second'])
```

As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automatically:

```python
In [317]: arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'])
 : ,
 : np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])
 :]

In [318]: s = Series(randn(8), index=arrays)
In [319]: s
```

All of the `MultiIndex` constructors accept a `names` argument which stores string names for the levels themselves. If no names are provided, `None` will be assigned.
This index can back any axis of a pandas object, and the number of levels of the index is up to you:

```python
In [323]: df = DataFrame(randn(3, 8), index=['A', 'B', 'C'], columns=index)
In [324]: df
Out[324]:
 first second bar baz foo qux
first one two -1.250595 0.333150 0.616471 -0.915417 -0.024817 -0.795125 -0.408384
second one two 0.781722 0.133331 -0.298493 -1.367644 0.392245 -0.738972 0.357817
C one two -0.787450 1.023850 0.475844 0.159213 1.002647 0.137063 0.287958
```

We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes.

It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis:

```python
In [325]: Series(randn(8), index=tuples)
Out[325]:
(bar, one) -0.557549
(bar, two) 0.126204
(baz, one) 1.643615
(baz, two) -0.067716
(foo, one) 0.127064
(foo, two) 0.396144
(qux, one) 1.043289
(qux, two) -0.229627
```

dtype: float64

The reason that the MultiIndex matters is that it can allow you to do grouping, selection, and reshaping operations as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However, when loading data from a file, you may wish to generate your own MultiIndex when preparing the data set.

Note that how the index is displayed by be controlled using the multi_sparse option in pandas.set_printoptions:

```python
In [327]: pd.set_option('display.multi_sparse', False)
```

```python
In [328]: df
```
Out[328]:

<table>
<thead>
<tr>
<th>first</th>
<th>bar</th>
<th>bar</th>
<th>baz</th>
<th>baz</th>
<th>foo</th>
<th>foo</th>
<th>qux</th>
</tr>
</thead>
<tbody>
<tr>
<td>second</td>
<td>one</td>
<td>two</td>
<td>one</td>
<td>two</td>
<td>one</td>
<td>two</td>
<td>one</td>
</tr>
<tr>
<td>A</td>
<td>-1.250595</td>
<td>0.333150</td>
<td>0.616471</td>
<td>-0.915417</td>
<td>-0.024817</td>
<td>-0.795125</td>
<td>-0.408384</td>
</tr>
<tr>
<td>B</td>
<td>0.781722</td>
<td>0.133331</td>
<td>-0.298493</td>
<td>-1.367644</td>
<td>0.392245</td>
<td>-0.738972</td>
<td>0.357817</td>
</tr>
<tr>
<td>C</td>
<td>-0.787450</td>
<td>1.023850</td>
<td>0.475844</td>
<td>0.159213</td>
<td>1.002647</td>
<td>0.137063</td>
<td>0.287958</td>
</tr>
</tbody>
</table>

In [329]: pd.set_option(‘display.multi_sparse’, True)

11.23.2 Reconstructing the level labels

The method `get_level_values` will return a vector of the labels for each location at a particular level:

In [330]: index.get_level_values(0)

In [331]: index.get_level_values(‘second’)
Out[331]: Index([u’one’, u’two’, u’one’, u’two’, u’one’, u’two’, u’one’, u’two’], dtype=’object’)

11.23.3 Basic indexing on axis with MultiIndex

One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous way to selecting a column in a regular DataFrame:

In [332]: df[‘bar’]
Out[332]:

<table>
<thead>
<tr>
<th>second</th>
<th>one</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1.250595</td>
<td>0.333150</td>
</tr>
<tr>
<td>B</td>
<td>0.781722</td>
<td>0.133331</td>
</tr>
<tr>
<td>C</td>
<td>-0.787450</td>
<td>1.023850</td>
</tr>
</tbody>
</table>

In [333]: df[‘bar’][‘one’]
Out[333]:

A	-1.250595
B	0.781722
C	-0.787450

Name: (bar, one), dtype: float64

In [334]: df[‘bar’][‘one’]
Out[334]:

A	-1.250595
B	0.781722
C	-0.787450

Name: one, dtype: float64

In [335]: s[‘qux’]
Out[335]:

| one | 0.030047 |

314 Chapter 11. Indexing and Selecting Data
two    1.978266
dtype: float64

See *Cross-section with hierarchical index* for how to select on a deeper level.

### 11.23.4 Data alignment and using `reindex`

Operations between differently-indexed objects having `MultiIndex` on the axes will work as you expect; data alignment will work the same as an Index of tuples:

```
In [336]: s + s[:-2]
Out[336]:
bar one 1.781221
 two -0.341908
baz one 0.711018
 two -0.568917
foo one 2.188764
 two 0.109440
qux one NaN
 two NaN
dtype: float64

In [337]: s + s[::2]
Out[337]:
bar one 1.781221
 two NaN
baz one 0.711018
 two NaN
foo one 2.188764
 two NaN
qux one 0.060093
 two NaN
dtype: float64
```

`reindex` can be called with another `MultiIndex` or even a list or array of tuples:

```
In [338]: s.reindex(index[:3])
Out[338]:
first second
bar one 0.890610
 two -0.170954
baz one 0.355509
dtype: float64

In [339]: s.reindex([('foo', 'two'), ('bar', 'one'), ('qux', 'one'), ('baz', 'one')])
Out[339]:
foo two 0.054720
bar one 0.890610
qux one 0.030047
baz one 0.355509
dtype: float64
```

### 11.23.5 Advanced indexing with hierarchical index

Syntactically integrating `MultiIndex` in advanced indexing with `.loc/.ix` is a bit challenging, but we’ve made every effort to do so. For example the following works as you would expect:
In [340]: df = df.T

In [341]: df
Out[341]:
   A     B     C
first second
bar one  -1.250595  0.781722 -0.787450
two    0.333150  0.133331  1.023850
baz one  0.616471 -0.298493  0.475844
two    -0.915417 -1.367644  0.159213
foo one  -0.024817  0.392245  1.002647
two    -0.795125 -0.738972  0.137063
qux one  -0.408384  0.357817  0.287958
two    -1.849202  1.291147 -0.651968

In [342]: df.loc['bar']
Out[342]:
   A     B     C
second
one  -1.250595  0.781722 -0.787450
two    0.333150  0.133331  1.023850

In [343]: df.loc['bar', 'two']
Out[343]:
   A     B     C
Name: (bar, two), dtype: float64
   second
one  -1.250595  0.781722 -0.787450
two    0.333150  0.133331  1.023850

“Partial” slicing also works quite nicely.

In [344]: df.loc['baz':'foo']
Out[344]:
   A     B     C
first second
baz one  0.616471 -0.298493  0.475844
two    -0.915417 -1.367644  0.159213
foo one  -0.024817  0.392245  1.002647
two    -0.795125 -0.738972  0.137063

You can slice with a ‘range’ of values, by providing a slice of tuples.

In [345]: df.loc[('baz', 'two'):('qux', 'one')]
Out[345]:
   A     B     C
first second
baz two  -0.915417 -1.367644  0.159213
foo one  -0.024817  0.392245  1.002647
two    -0.795125 -0.738972  0.137063
qux one  -0.408384  0.357817  0.287958

In [346]: df.loc[('baz', 'two'):('foo')]
Out[346]:
   A     B     C
first second
baz two  -0.915417 -1.367644  0.159213
foo one  -0.024817  0.392245  1.002647
two    -0.795125 -0.738972  0.137063

Chapter 11. Indexing and Selecting Data
Passing a list of labels or tuples works similar to reindexing:

```python
In [347]: df.ix[['bar', 'two'], ('qux', 'one')]
Out[347]:
 A B C
first second
bar two 0.333150 0.133331 1.023850
qux one 0.408384 0.357817 0.287958
```

### 11.23.6 Multiindexing using slicers

New in version 0.14.0. In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.

You can use `slice(,)` to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as `slice(,)`.

As usual, both sides of the slicers are included as this is label indexing.

**Warning:** You should specify all axes in the `.loc` specifier, meaning the indexer for the index and for the columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex for the rows.

You should do this:

```python
df.loc[(slice('A1','A3'),),:]
```

rather than this:

```python
df.loc[(slice('A1','A3'),),:]
```

**Warning:** You will need to make sure that the selection axes are fully lexsorted!

```python
In [348]: def mklbl(prefix,n):
 : return ["%s%s" % (prefix,i) for i in range(n)]
 :
In [349]: miindex = MultiIndex.from_product([mklbl('A',4),
 : mklbl('B',2),
 : mklbl('C',4),
 : mklbl('D',2)])
 :
In [350]: micolumns = MultiIndex.from_tuples([('a','foo'),('a','bar'),
 : ('b','foo'),('b','bah')],
 : names=['lvl0', 'lvl1'])
 :
In [351]: dfmi = DataFrame(np.arange(len(miindex)*len(micolumns)).reshape((len(miindex),len(micolumns))),
 : index=miindex,
 : columns=micolumns).sortlevel().sortlevel(axis=1)
 :
In [352]: dfmi
```

11.23. Hierarchical indexing (MultiIndex) 317
Basic multi-index slicing using slices, lists, and labels.

In [353]: dfmi.loc[ { slice('A1', 'A3'), slice(None), ['C1', 'C3'] }, :]
Out[353]:

You can use a `pd.IndexSlice` to shortcut the creation of these slices

In [354]: idx = pd.IndexSlice
In [355]: dfmi.loc[ [ slice(None), ['C1', 'C3'] ], idx[:, 'foo'] ]
It is possible to perform quite complicated selections using this method on multiple axes at the same time.

**In [356]:**  
```python
dfmi.loc['A1',(slice(None),'foo')]
```
**Out[356]:**
```
 lvl0 a b
 lvl1 foo foo

B0 C0 D0 64 66
 D1 68 70
C1 D0 72 74
 D1 76 78
C2 D0 80 82
 D1 84 86
C3 D0 88 90
...
...
B1 C0 D1 100 102
C1 D0 104 106
 D1 108 110
C2 D0 112 114
 D1 116 118
C3 D0 120 122
 D1 124 126
```
[16 rows x 2 columns]

**In [357]:**  
```python
dfmi.loc[idx[:,:,,['C1','C3']],idx[:,,'foo']]
```
**Out[357]:**
```
 lvl0 a b
 lvl1 foo foo

A0 B0 C1 D0 8 10
 D1 12 14
C3 D0 24 26
 D1 28 30
B1 C1 D0 40 42
 D1 44 46
C3 D0 56 58
...
...
A3 B0 C1 D1 204 206
C3 D0 216 218
 D1 220 222
B1 C1 D0 232 234
 D1 236 238
C3 D0 248 250
 D1 252 254
```
[32 rows x 2 columns]

Using a boolean indexer you can provide selection related to the values.
In [358]: mask = dfmi[('a','foo')]>200

In [359]: dfmi.loc[idx[mask,;,['C1','C3']],idx,;,'foo']
Out[359]:
   lvl0  a  b
A3  B0  C1  D1  204  206
   C3  D0  216  218
   D1   220  222
B1  C1  D0  232  234
   D1   236  238
C3  D0  248  250
   D1   252  254

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.

In [360]: dfmi.loc(axis=0)[;,:,['C1','C3']]
Out[360]:
   lvl0  a  b
A0  B0  C1  D0   9  8 11 10
   D1  13  12  15  14
C3  D0  25  24  27  26
   D1  29  28  31  30
B1  C1  D0  41  40  43  42
   D1  45  44  47  46
C3  D0  57  56  59  58
... ... ... ... ...
A3  B0  C1  D1  205 204 207 206
C3  D0  217 216 219 218
   D1  221 220 223 222
B1  C1  D0  233 232 235 234
   D1  237 236 239 238
C3  D0  249 248 251 250
   D1  253 252 255 254
[32 rows x 4 columns]

Furthermore you can set the values using these methods

In [361]: df2 = dfmi.copy()

In [362]: df2.loc(axis=0)[;,:,['C1','C3']] = -10

In [363]: df2
Out[363]:
   lvl0  a  b
A0  B0  C0  D0  1  0  3  2
   D1   5  4  7  6
C1  D0 -10 -10 -10 -10
   D1 -10 -10 -10 -10
C2  D0  17  16  19  18
   D1  21  20  23  22
C3  D0 -10 -10 -10 -10
... ... ... ... ...
A3  B1  C0  D1  229 228 231 230
C1  D0 -10 -10 -10 -10
   D1 -10 -10 -10 -10

320 Chapter 11. Indexing and Selecting Data
You can use a right-hand-side of an alignable object as well.

In [364]: df2 = dfmi.copy()

In [365]: df2.loc[idx[:,:,['C1','C3']],:] = df2*1000

In [366]: df2
Out[366]:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[64 rows x 4 columns]

11.23.7 Cross-section with hierarchical index

The `xs` method of `DataFrame` additionally takes a level argument to make selecting data at a particular level of a MultiIndex easier.

In [367]: df.xs('one', level='second')
Out[367]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

# using the slicers (new in 0.14.0)

In [368]: df.loc[(slice(None),'one'),:]  
Out[368]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.23. Hierarchical indexing (MultiIndex)
pandas: powerful Python data analysis toolkit, Release 0.14.1

foo one -0.024817 0.392245 1.002647
qux one -0.408384 0.357817 0.287958

You can also select on the columns with `xs()`, by providing the axis argument

```
In [369]: df = df.T

In [370]: df.xs('one', level='second', axis=1)
Out[370]:
first bar baz foo qux
A -1.250595 0.616471 -0.024817 -0.408384
B 0.781722 -0.298493 0.392245 0.357817
C -0.787450 0.475844 1.002647 0.287958

using the slicers (new in 0.14.0)
In [371]: df.loc[:,(slice(None),'one')]
Out[371]:
first bar baz foo qux
second one one one one
A -1.250595 0.616471 -0.024817 -0.408384
B 0.781722 -0.298493 0.392245 0.357817
C -0.787450 0.475844 1.002647 0.287958

xs() also allows selection with multiple keys

```
In [372]: df.xs(('one', 'bar'), level=('second', 'first'), axis=1)
Out[372]:
first  bar
second one
A    -1.250595
B     0.781722
C    -0.787450

# using the slicers (new in 0.14.0)
In [373]: df.loc[:,('bar','one')]
Out[373]:
A    -1.250595
B     0.781722
C    -0.787450
Name: (bar, one), dtype: float64

New in version 0.13.0. You can pass `drop_level=False` to `xs()` to retain the level that was selected

```
In [374]: df.xs('one', level='second', axis=1, drop_level=False)
Out[374]:
first bar baz foo qux
second one one one one
A -1.250595 0.616471 -0.024817 -0.408384
B 0.781722 -0.298493 0.392245 0.357817
C -0.787450 0.475844 1.002647 0.287958

versus the result with `drop_level=True` (the default value)

```
In [375]: df.xs('one', level='second', axis=1, drop_level=True)
Out[375]:
first  bar  baz  foo  qux
A    -1.250595  0.616471 -0.024817 -0.408384
B     0.781722 -0.298493  0.392245  0.357817
C    -0.787450  0.475844  1.002647  0.287958

```
11.23.8 Advanced reindexing and alignment with hierarchical index

The parameter `level` has been added to the `reindex` and `align` methods of pandas objects. This is useful to broadcast values across a level. For instance:

```python
In [376]: midx = MultiIndex(levels=[['zero', 'one'], ['x', 'y']],
                            labels=[[1, 1, 0, 0], [1, 0, 1, 0]])

In [377]: df = DataFrame(randn(4,2), index=midx)

In [378]: print(df)
   0  1
one y 0.158186 -0.281965
   x 1.255148  3.063464
zero y 0.304771 -0.766820
   x -0.878886  0.105620

In [379]: df2 = df.mean(level=0)

In [380]: print(df2)
   0  1
zero -0.287058 -0.330600
one  0.706667  1.390749

In [381]: print(df2.reindex(df.index, level=0))
   0  1
one y 0.706667  1.390749
   x 0.706667  1.390749
zero y -0.287058 -0.330600
   x -0.287058 -0.330600

In [382]: df_aligned, df2_aligned = df.align(df2, level=0)

In [383]: print(df_aligned)
   0  1
one y 0.158186 -0.281965
   x 1.255148  3.063464
zero y 0.304771 -0.766820
   x -0.878886  0.105620

In [384]: print(df2_aligned)
   0  1
one y 0.706667  1.390749
   x 0.706667  1.390749
zero y -0.287058 -0.330600
   x -0.287058 -0.330600
```

11.23.9 The need for sortedness with MultiIndex

Caveat emptor: the present implementation of MultiIndex requires that the labels be sorted for some of the slicing / indexing routines to work correctly. You can think about breaking the axis into unique groups, where at the hierarchical level of interest, each distinct group shares a label, but no two have the same label. However, the MultiIndex does not enforce this: you are responsible for ensuring that things are properly sorted. There is an important new method `sortlevel` to sort an axis within a MultiIndex so that its labels are grouped and sorted by the original ordering of the associated factor at that level. Note that this does not necessarily mean the labels will be sorted lexicographically!
In [385]: import random; random.shuffle(tuples)

In [386]: s = Series(randn(8), index=MultiIndex.from_tuples(tuples))

In [387]: s
Out[387]:
 L1 L2
baz two 0.248051
 one 1.691324
bar two-0.151669
 two 1.766577
foo two 0.604424
 one-0.337383
qux two 0.604424
 one-1.348017
dtype: float64

In [388]: s.sortlevel(0)
Out[388]:
 L1 L2
bar two-0.337383
 two-0.151669
baz one 1.691324
 two 0.248051
foo one 0.072225
 two 1.766577
qux one-1.348017
 two 0.604424
dtype: float64

In [389]: s.sortlevel(1)
Out[389]:
 L1 L2
bar one-0.337383
 two-0.151669
baz one 1.691324
 two 0.248051
foo one 0.072225
 two 1.766577
qux one-1.348017
 two 0.604424
dtype: float64

Note, you may also pass a level name to sortlevel if the MultiIndex levels are named.

In [390]: s.index.set_names(['L1', 'L2'], inplace=True)

In [391]: s.sortlevel(level='L1')
Out[391]:
 L1 L2
bar one-0.337383
 two-0.151669
baz one 1.691324
 two 0.248051
foo one 0.072225
 two 1.766577
qux one-1.348017
 two 0.604424
dtype: float64

In [392]: s.sortlevel(level='L2')
Out[392]:
L1 L2
bar one -0.337383
baz one 1.691324
foo one 0.072225
qux one -1.348017
bar two -0.151669
baz two 0.248051
foo two 1.766577
qux two 0.604424
dtype: float64

Some indexing will work even if the data are not sorted, but will be rather inefficient and will also return a copy of the data rather than a view:

In [393]: s['qux']
Out[393]:
L2
 two 0.604424
 one -1.348017
dtype: float64

In [394]: s.sortlevel(1)['qux']
Out[394]:
L2
 one -1.348017
 two 0.604424
dtype: float64

On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex:

In [395]: df.T.sortlevel(1, axis=1)
Out[395]:
 zero one zero one
 x x y y
 0 -0.878886 1.255148 0.304771 0.158186
 1 1.056200 3.063464 -0.766820 -0.281965

The MultiIndex object has code to explicitly check the sort depth. Thus, if you try to index at a depth at which the index is not sorted, it will raise an exception. Here is a concrete example to illustrate this:

In [396]: tuples = [('a', 'a'), ('a', 'b'), ('b', 'a'), ('b', 'b')]
In [397]: idx = MultiIndex.from_tuples(tuples)
In [398]: idx.lexsort_depth
Out[398]: 2
In [399]: reordered = idx[[1, 0, 3, 2]]
In [400]: reordered.lexsort_depth
Out[400]: 1
In [401]: s = Series(randn(4), index=reordered)
In [402]: s.ix['a':'a']
Out[402]:
a b -0.157935
 a 0.766538
However:

```python
>>> s.ix[('a', 'b'):('b', 'a')]
Traceback (most recent call last)
...
KeyError: Key length (3) was greater than MultiIndex lexsort depth (2)
```

11.23.10 Swapping levels with `swaplevel()`

The `swaplevel` function can switch the order of two levels:

```python
In [403]: df[:5]
Out[403]:
   0  1
one y  0.158186 -0.281965
     x  1.255148  3.063464
zero y  0.304771 -0.766820
     x -0.878886  0.105620
```

```python
In [404]: df[:5].swaplevel(0, 1, axis=0)
Out[404]:
   0  1
   y one  0.158186 -0.281965
     x one  1.255148  3.063464
   y zero  0.304771 -0.766820
     x zero -0.878886  0.105620
```

11.23.11 Reordering levels with `reorder_levels()`

The `reorder_levels` function generalizes the `swaplevel` function, allowing you to permute the hierarchical index levels in one step:

```python
In [405]: df[:5].reorder_levels([1,0], axis=0)
Out[405]:
   0  1
   y one  0.158186 -0.281965
     x one  1.255148  3.063464
   y zero  0.304771 -0.766820
     x zero -0.878886  0.105620
```

11.23.12 Some gory internal details

Internally, the `MultiIndex` consists of a few things: the `levels`, the integer `labels`, and the level `names`:

```python
In [406]: index
Out[406]:
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
```

```python
In [407]: index.levels
Out[407]: FrozenList([['bar', 'baz', 'foo', 'qux'], ['one', 'two']])
```
In [408]: index.labels
Out[408]: FrozenList([[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]])

In [409]: index.names
Out[409]: FrozenList([u'first', u'second'])

You can probably guess that the labels determine which unique element is identified with that location at each layer
of the index. It’s important to note that sortedness is determined solely from the integer labels and does not check
(or care) whether the levels themselves are sorted. Fortunately, the constructors from_tuples and from_arrays
ensure that this is true, but if you compute the levels and labels yourself, please be careful.

11.24 Setting index metadata (name(s), levels, labels)

New in version 0.13.0. Indexes are “mostly immutable”, but it is possible to set and change their metadata, like the
index name (or, for MultiIndex, levels and labels).

You can use the rename, set_names, set_levels, and set_labels to set these attributes directly. They
default to returning a copy; however, you can specify inplace=True to have the data change inplace.

In [410]: ind = Index([1, 2, 3])

In [411]: ind.rename("apple")
Out[411]: Int64Index([1, 2, 3], dtype='int64')

In [412]: ind
Out[412]: Int64Index([1, 2, 3], dtype='int64')

In [413]: ind.set_names(['apple'], inplace=True)

In [414]: ind.name = "bob"

In [415]: ind
Out[415]: Int64Index([1, 2, 3], dtype='int64')

11.25 Adding an index to an existing DataFrame

Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done
so. There are a couple of different ways.

11.26 Add an index using DataFrame columns

DataFrame has a set_index method which takes a column name (for a regular Index) or a list of column names
(for a MultiIndex), to create a new, indexed DataFrame:

In [416]: data
Out[416]:
a b c d
0 bar one z 1
1 bar two y 2
2 foo one x 3
3 foo two w 4
In [417]: indexed1 = data.set_index('c')

In [418]: indexed1
Out[418]:
 c
 a b d
 z bar one 1
 y bar two 2
 x foo one 3
 w foo two 4

In [419]: indexed2 = data.set_index(['a', 'b'])

In [420]: indexed2
Out[420]:
 c d
 a b
 bar one z 1
 two y 2
 foo one x 3
 two w 4

The `append` keyword option allows you to keep the existing index and append the given columns to a MultiIndex:

In [421]: frame = data.set_index('c', drop=False)

In [422]: frame = frame.set_index(['a', 'b'], append=True)

In [423]: frame
Out[423]:
 c d
 c a b
 z bar one z 1
 y bar two y 2
 x foo one x 3
 w foo two w 4

Other options in `set_index` allow you not to drop the index columns or to add the index in-place (without creating a new object):

In [424]: data.set_index('c', drop=False)
Out[424]:
 a b c d
 c z bar one z 1
 y bar two y 2
 x foo one x 3
 w foo two w 4

In [425]: data.set_index(['a', 'b'], inplace=True)

In [426]: data
Out[426]:
 c d
 a b
 bar one z 1
 two y 2
 foo one x 3
11.27 Remove / reset the index, reset_index

As a convenience, there is a new function on DataFrame called `reset_index` which transfers the index values into the DataFrame’s columns and sets a simple integer index. This is the inverse operation to `set_index`

```
In [427]: data
Out[427]:
   c  d
  a  b
bar one z 1
two y 2
foo one x 3
two w 4

In [428]: data.reset_index()
Out[428]:
   a  b  c  d
0 bar one z 1
1 bar two y 2
2 foo one x 3
3 foo two w 4
```

The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the ones stored in the `names` attribute.

You can use the `level` keyword to remove only a portion of the index:

```
In [429]: frame
Out[429]:
   c  d
  c  a  b
z bar one z 1
y bar two y 2
x foo one x 3
w foo two w 4

In [430]: frame.reset_index(level=1)
Out[430]:
   a  c  d
  c  b
z one bar z 1
y two bar y 2
x one foo x 3
w two foo w 4
```

`reset_index` takes an optional parameter `drop` which if true simply discards the index, instead of putting index values in the DataFrame’s columns.

Note: The `reset_index` method used to be called `delevel` which is now deprecated.
11.28 Adding an ad hoc index

If you create an index yourself, you can just assign it to the index field:

```python
data.index = index
```
12.1 Statistical functions

12.1.1 Percent Change

Series, DataFrame, and Panel all have a method pct_change to compute the percent change over a given number of periods (using fill_method to fill NA/null values before computing the percent change).

In [1]: ser = Series(randn(8))

In [2]: ser.pct_change()

Out[2]:
 0 NaN
 1 -1.602976
 2 4.334938
 3 -0.247456
 4 -2.067345
 5 -1.142903
 6 -1.688214
 7 -9.759729
 dtype: float64

In [3]: df = DataFrame(randn(10, 4))

In [4]: df.pct_change(periods=3)

Out[4]:
 0 1 2 3
 0 NaN NaN NaN NaN
 1 NaN NaN NaN NaN
 2 0.218320 1.054001 1.987147 0.510183
 3 -0.439121 1.816454 0.649715 4.822809
 4 -0.127833 3.042065 5.866604 1.776977
 5 2.596833 1.959538 2.111697 3.798900
 6 -0.117826 2.169058 0.036094 0.067696
 7 -1.012977 2.324558 1.703744 -0.371806
 8 2.492606 -1.357320 1.205802 -1.558697
 9 -1.012977 2.324558 -1.003744 -0.371806

12.1.2 Covariance

The Series object has a method cov to compute covariance between series (excluding NA/null values).
In [5]: s1 = Series(randn(1000))
In [6]: s2 = Series(randn(1000))
In [7]: s1.cov(s2)
Out[7]: 0.00068010881743109993

Analogously, DataFrame has a method cov to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.

Note: Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.

In [8]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [9]: frame.cov()
Out[9]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.000882</td>
<td>-0.003177</td>
<td>-0.002698</td>
<td>-0.006889</td>
<td>0.031912</td>
</tr>
<tr>
<td>b</td>
<td>-0.003177</td>
<td>1.024721</td>
<td>0.000191</td>
<td>0.009212</td>
<td>0.000857</td>
</tr>
<tr>
<td>c</td>
<td>-0.002698</td>
<td>0.000191</td>
<td>0.950735</td>
<td>-0.031743</td>
<td>-0.005087</td>
</tr>
<tr>
<td>d</td>
<td>-0.006889</td>
<td>0.009212</td>
<td>-0.031743</td>
<td>1.002983</td>
<td>-0.047952</td>
</tr>
<tr>
<td>e</td>
<td>0.031912</td>
<td>0.000857</td>
<td>-0.005087</td>
<td>-0.047952</td>
<td>1.042487</td>
</tr>
</tbody>
</table>

DataFrame.cov also supports an optional min_periods keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.

In [10]: frame = DataFrame(randn(20, 3), columns=['a', 'b', 'c'])
In [11]: frame.ix[:5, 'a'] = np.nan
In [12]: frame.ix[5:10, 'b'] = np.nan
In [13]: frame.cov()
Out[13]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.210090</td>
<td>-0.430629</td>
<td>0.018002</td>
</tr>
<tr>
<td>b</td>
<td>-0.430629</td>
<td>1.240960</td>
<td>0.347188</td>
</tr>
<tr>
<td>c</td>
<td>0.018002</td>
<td>0.347188</td>
<td>1.301149</td>
</tr>
</tbody>
</table>

In [14]: frame.cov(min_periods=12)
Out[14]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.210090</td>
<td>NaN</td>
<td>0.018002</td>
</tr>
<tr>
<td>b</td>
<td>NaN</td>
<td>1.240960</td>
<td>0.347188</td>
</tr>
<tr>
<td>c</td>
<td>0.018002</td>
<td>0.347188</td>
<td>1.301149</td>
</tr>
</tbody>
</table>

12.1.3 Correlation

Several methods for computing correlations are provided:
<table>
<thead>
<tr>
<th>Method name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pearson (default)</td>
<td>Standard correlation coefficient</td>
</tr>
<tr>
<td>kendall</td>
<td>Kendall Tau correlation coefficient</td>
</tr>
<tr>
<td>spearman</td>
<td>Spearman rank correlation coefficient</td>
</tr>
</tbody>
</table>

All of these are currently computed using pairwise complete observations.

Note: Please see the caveats associated with this method of calculating correlation matrices in the covariance section.

```
In [15]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])

In [16]: frame.ix[:2] = np.nan

# Series with Series
In [17]: frame['a'].corr(frame['b'])
Out[17]: 0.013479040400098801

In [18]: frame['a'].corr(frame['b'], method='spearman')
Out[18]: -0.0072898851595406388

# Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.000000</td>
<td>-0.049269</td>
<td>-0.042239</td>
<td>-0.028525</td>
<td>NaN</td>
</tr>
<tr>
<td>b</td>
<td>-0.049269</td>
<td>1.000000</td>
<td>-0.020433</td>
<td>-0.011139</td>
<td>0.005654</td>
</tr>
<tr>
<td>c</td>
<td>-0.042239</td>
<td>-0.020433</td>
<td>1.000000</td>
<td>0.018587</td>
<td>-0.054269</td>
</tr>
<tr>
<td>d</td>
<td>-0.028525</td>
<td>-0.011139</td>
<td>0.018587</td>
<td>1.000000</td>
<td>-0.017060</td>
</tr>
<tr>
<td>e</td>
<td>NaN</td>
<td>0.005654</td>
<td>-0.054269</td>
<td>-0.017060</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Note that non-numeric columns will be automatically excluded from the correlation calculation.

Like cov, corr also supports the optional min_periods keyword:

```
In [20]: frame = DataFrame(randn(20, 3), columns=['a', 'b', 'c'])

In [21]: frame.ix[:5, 'a'] = np.nan

In [22]: frame.ix[5:10, 'b'] = np.nan

In [23]: frame.corr()
Out[23]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.000000</td>
<td>-0.076520</td>
<td>0.160092</td>
</tr>
<tr>
<td>b</td>
<td>-0.076520</td>
<td>1.000000</td>
<td>0.135967</td>
</tr>
<tr>
<td>c</td>
<td>0.160092</td>
<td>0.135967</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

In [24]: frame.corr(min_periods=12)
Out[24]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.000000</td>
<td>NaN</td>
<td>0.160092</td>
</tr>
<tr>
<td>b</td>
<td>NaN</td>
<td>1.000000</td>
<td>0.135967</td>
</tr>
<tr>
<td>c</td>
<td>0.160092</td>
<td>0.135967</td>
<td>1.000000</td>
</tr>
</tbody>
</table>
```

A related method corrwith is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.

12.1. Statistical functions
In [25]: index = ['a', 'b', 'c', 'd', 'e']

In [26]: columns = ['one', 'two', 'three', 'four']

In [27]: df1 = DataFrame(randn(5, 4), index=index, columns=columns)

In [28]: df2 = DataFrame(randn(4, 4), index=index[:4], columns=columns)

In [29]: df1.corrwith(df2)
Out[29]:
   one   two   three   four
a -0.125501 -0.493244  0.344056  0.004183
dtype: float64

In [30]: df2.corrwith(df1, axis=1)
Out[30]:
   a   b   c   d
a -0.675817  0.458296  0.190809 -0.186275
d   NaN
dtype: float64

12.1.4 Data ranking

The rank method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:

In [31]: s = Series(np.random.randn(5), index=list('abcde'))

In [32]: s['d'] = s['b']  # so there's a tie

In [33]: s.rank()
Out[33]:
   a   b   c   d
da  5.0  2.5  1.0  2.5
dtype: float64

rank is also a DataFrame method and can rank either the rows (axis=0) or the columns (axis=1). NaN values are excluded from the ranking.

In [34]: df = DataFrame(np.random.randn(10, 6))


In [36]: df
Out[36]:
   0      1      2      3      4      5
0 -0.904948 -1.163537 -1.457187  0.135463 -1.457187  0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2  0.401965  1.460840  1.256057  1.308127  1.256057  0.876004
3  0.205954  0.369552 -0.669304  0.038378 -0.669304  1.140296
4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196

334 Chapter 12. Computational tools
```python
df.rank(1)
```

```
0 1 2 3 4 5
1 0 4 3 1.5 5 1.5 6
2 1 6 4.5 1 4.5 3
3 2 1 6 3.5 5 3.5 2
4 3 4 5 1.5 3 1.5 6
5 4 5 3 1.5 4 1.5 6
6 5 1 2 5 0 3 NaN 4
7 6 4 5 3.0 1 NaN 2
8 7 2 5 3.0 4 NaN 1
9 8 2 5 3.0 4 NaN 1
10 9 2 3 1.0 4 NaN 5
```

The `rank` function optionally takes a parameter `ascending` which by default is True; when false, data is reverse-ranked, with larger values assigned a smaller rank.

`rank` supports different tie-breaking methods, specified with the `method` parameter:

- **average**: average rank of tied group
- **min**: lowest rank in the group
- **max**: highest rank in the group
- **first**: ranks assigned in the order they appear in the array

### 12.2 Moving (rolling) statistics / moments

For working with time series data, a number of functions are provided for computing common *moving* or *rolling* statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis. All of these methods are in the `pandas` namespace, but otherwise they can be found in `pandas.stats.moments`.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rolling_count</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>rolling_sum</td>
<td>Sum of values</td>
</tr>
<tr>
<td>rolling_mean</td>
<td>Mean of values</td>
</tr>
<tr>
<td>rolling_median</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>rolling_min</td>
<td>Minimum</td>
</tr>
<tr>
<td>rolling_max</td>
<td>Maximum</td>
</tr>
<tr>
<td>rolling_std</td>
<td>Unbiased standard deviation</td>
</tr>
<tr>
<td>rolling_var</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>rolling_skew</td>
<td>Unbiased skewness (3rd moment)</td>
</tr>
<tr>
<td>rolling_kurt</td>
<td>Unbiased kurtosis (4th moment)</td>
</tr>
<tr>
<td>rolling_quantile</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>rolling_apply</td>
<td>Generic apply</td>
</tr>
<tr>
<td>rolling_cov</td>
<td>Unbiased covariance (binary)</td>
</tr>
<tr>
<td>rolling_corr</td>
<td>Correlation (binary)</td>
</tr>
<tr>
<td>rolling_window</td>
<td>Moving window function</td>
</tr>
</tbody>
</table>

12.2. Moving (rolling) statistics / moments 335
Generally these methods all have the same interface. The binary operators (e.g. `rolling_corr`) take two Series or DataFrames. Otherwise, they all accept the following arguments:

- `window`: size of moving window
- `min_periods`: threshold of non-null data points to require (otherwise result is NA)
- `freq`: optionally specify a frequency string or `DateOffset` to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argument `time_rule` was used instead of `freq` that referred to the legacy time rule constants
- `how`: optionally specify method for down or re-sampling. Default is `min` for `rolling_min`, `max` for `rolling_max`, median for `rolling_median`, and mean for all other rolling functions. See `DataFrame.resample()`’s `how` argument for more information.

These functions can be applied to ndarrays or Series objects:

```python
In [38]: ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
In [39]: ts = ts.cumsum()
In [40]: ts.plot(style='k--')
Out[40]: <matplotlib.axes.AxesSubplot at 0xad5fc40c>
In [41]: rolling_mean(ts, 60).plot(style='k')
Out[41]: <matplotlib.axes.AxesSubplot at 0xad5fc40c>
```

They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame’s columns:

```python
In [42]: df = DataFrame(randn(1000, 4), index=ts.index,
 : columns=['A', 'B', 'C', 'D'])
```
In [43]: df = df.cumsum()

In [44]: rolling_sum(df, 60).plot(subplots=True)
Out[44]: array([<matplotlib.axes.AxesSubplot object at 0xad3188ac>,
       <matplotlib.axes.AxesSubplot object at 0xadaf56ac>,
       <matplotlib.axes.AxesSubplot object at 0xadbf597ec>,
       <matplotlib.axes.AxesSubplot object at 0xad8a19ac>], dtype=object)

The `rolling_apply` function takes an extra `func` argument and performs generic rolling computations. The `func` argument should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute the mean absolute deviation on a rolling basis:

In [45]: mad = lambda x: np.fabs(x - x.mean()).mean()

In [46]: rolling_apply(ts, 60, mad).plot(style='k')
Out[46]: <matplotlib.axes.AxesSubplot at 0xad5d470c>
The `rolling_window` function performs a generic rolling window computation on the input data. The weights used in the window are specified by the `win_type` keyword. The list of recognized types are:

- boxcar
- triang
- blackman
- hamming
- bartlett
- parzen
- bohman
- blackmanharris
- nuttall
- barthann
- kaiser (needs beta)
- gaussian (needs std)
- general_gaussian (needs power, width)
- slepian (needs width).

```
In [47]: ser = Series(randn(10), index=date_range('1/1/2000', periods=10))

In [48]: rolling_window(ser, 5, 'triang')
```
```
Out[48]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.622722
```

2000-01-06  -0.460623
2000-01-07  -0.229918
2000-01-08  -0.237308
2000-01-09  -0.335064
2000-01-10  -0.403449
Freq: D, dtype: float64

Note that the boxcar window is equivalent to rolling_mean:

In [49]: rolling_window(ser, 5, 'boxcar')
Out[49]:
2000-01-01  NaN
2000-01-02  NaN
2000-01-03  NaN
2000-01-04  NaN
2000-01-05  -0.841164
2000-01-06  -0.779948
2000-01-07  -0.565487
2000-01-08  -0.502815
2000-01-09  -0.553755
2000-01-10  -0.472211
Freq: D, dtype: float64

In [50]: rolling_mean(ser, 5)
Out[50]:
2000-01-01  NaN
2000-01-02  NaN
2000-01-03  NaN
2000-01-04  NaN
2000-01-05  -0.841164
2000-01-06  -0.779948
2000-01-07  -0.565487
2000-01-08  -0.502815
2000-01-09  -0.553755
2000-01-10  -0.472211
Freq: D, dtype: float64

For some windowing functions, additional parameters must be specified:

In [51]: rolling_window(ser, 5, 'gaussian', std=0.1)
Out[51]:
2000-01-01  NaN
2000-01-02  NaN
2000-01-03  NaN
2000-01-04  NaN
2000-01-05  -0.261998
2000-01-06  -0.230600
2000-01-07  0.121276
2000-01-08  -0.136220
2000-01-09  -0.057945
2000-01-10  -0.199326
Freq: D, dtype: float64

By default the labels are set to the right edge of the window, but a center keyword is available so the labels can be set at the center. This keyword is available in other rolling functions as well.

In [52]: rolling_window(ser, 5, 'boxcar')
Out[52]:
2000-01-01  NaN

12.2. Moving (rolling) statistics / moments
2000-01-02    NaN
2000-01-03    NaN
2000-01-04    NaN
2000-01-05  -0.841164
2000-01-06  -0.779948
2000-01-07  -0.565487
2000-01-08  -0.502815
2000-01-09  -0.553755
2000-01-10  -0.472211
Freq: D, dtype: float64

In [53]: rolling_window(ser, 5, 'boxcar', center=True)
Out[53]:
2000-01-01    NaN
2000-01-02    NaN
2000-01-03  -0.841164
2000-01-04  -0.779948
2000-01-05  -0.565487
2000-01-06  -0.502815
2000-01-07  -0.553755
2000-01-08  -0.472211
2000-01-09    NaN
2000-01-10    NaN
Freq: D, dtype: float64

In [54]: rolling_mean(ser, 5, center=True)
Out[54]:
2000-01-01    NaN
2000-01-02    NaN
2000-01-03  -0.841164
2000-01-04  -0.779948
2000-01-05  -0.565487
2000-01-06  -0.502815
2000-01-07  -0.553755
2000-01-08  -0.472211
2000-01-09    NaN
2000-01-10    NaN
Freq: D, dtype: float64

12.2.1 Binary rolling moments

rolling_cov and rolling_corr can compute moving window statistics about two Series or any combination
of DataFrame/Series or DataFrame/DataFrame. Here is the behavior in each case:

• two Series: compute the statistic for the pairing.
• DataFrame/Series: compute the statistics for each column of the DataFrame with the passed Series, thus
  returning a DataFrame.
• DataFrame/DataFrame: by default compute the statistic for matching column names, returning a
  DataFrame. If the keyword argument pairwise=True is passed then computes the statistic for each pair
  of columns, returning a Panel whose items are the dates in question (see the next section).

For example:
In [55]: df2 = df[:20]

In [56]: rolling_corr(df2, df2['B'], window=5)
12.2.2 Computing rolling pairwise covariances and correlations

In financial data analysis and other fields it’s common to compute covariance and correlation matrices for a collection of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done by passing the `pairwise` keyword argument, which in the case of `DataFrame` inputs will yield a `Panel` whose items are the dates in question. In the case of a single `DataFrame` argument the `pairwise` argument can even be omitted:

**Note:** Missing values are ignored and each entry is computed using the pairwise complete observations. Please see the covariance section for caveats associated with this method of calculating covariance and correlation matrices.

In [57]:
covs = rolling_cov(df[['B','C','D']], df[['A','B','C']], 50, pairwise=True)

In [58]:
covs[df.index[-50]]

Out[58]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>2.667506</td>
<td>1.671711</td>
<td>1.938634</td>
</tr>
<tr>
<td>C</td>
<td>8.513843</td>
<td>1.938634</td>
<td>10.556436</td>
</tr>
<tr>
<td>D</td>
<td>-7.714737</td>
<td>-1.434529</td>
<td>-7.082653</td>
</tr>
</tbody>
</table>

In [59]:
correls = rolling_corr(df, 50)

In [60]:
correls[df.index[-50]]

Out[60]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.000000</td>
<td>0.604221</td>
<td>0.767429</td>
<td>-0.776170</td>
</tr>
<tr>
<td>B</td>
<td>0.604221</td>
<td>1.000000</td>
<td>0.461484</td>
<td>-0.381148</td>
</tr>
<tr>
<td>C</td>
<td>0.767429</td>
<td>0.461484</td>
<td>1.000000</td>
<td>-0.748863</td>
</tr>
<tr>
<td>D</td>
<td>-0.776170</td>
<td>-0.381148</td>
<td>-0.748863</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

**Note:** Prior to version 0.14 this was available through `rolling_corr_pairwise` which is now simply syntactic sugar for calling `rolling_corr(..., pairwise=True)` and deprecated. This is likely to be removed in a future release.
You can efficiently retrieve the time series of correlations between two columns using `ix` indexing:

```python
In [61]: correls.ix[:, 'A', 'C'].plot()
Out[61]: <matplotlib.axes.AxesSubplot at 0xad7a9bec>
```

### 12.3 Expanding window moment functions

A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with all the data available up to that point in time. As these calculations are a special case of rolling statistics, they are implemented in pandas such that the following two calls are equivalent:

```python
In [62]: rolling_mean(df, window=len(df), min_periods=1)[:5]
Out[62]:
 A B C D
2000-01-01 -1.388345 3.317290 0.344542 -0.036968
2000-01-02 -1.123132 3.622300 1.675867 0.595300
2000-01-03 -0.628502 3.626503 2.455240 1.060158
2000-01-04 -0.768740 3.888917 2.451354 1.281874
2000-01-05 -0.824034 4.108035 2.556112 1.140723
```

```python
In [63]: expanding_mean(df)[:5]
Out[63]:
 A B C D
2000-01-01 -1.388345 3.317290 0.344542 -0.036968
2000-01-02 -1.123132 3.622300 1.675867 0.595300
2000-01-03 -0.628502 3.626503 2.455240 1.060158
2000-01-04 -0.768740 3.888917 2.451354 1.281874
2000-01-05 -0.824034 4.108035 2.556112 1.140723
```

Like the `rolling_` functions, the following methods are included in the pandas namespace or can be located in `pandas.stats.moments`.
### Expanding window moment functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expanding_count</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>expanding_sum</td>
<td>Sum of values</td>
</tr>
<tr>
<td>expanding_mean</td>
<td>Mean of values</td>
</tr>
<tr>
<td>expanding_median</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>expanding_min</td>
<td>Minimum</td>
</tr>
<tr>
<td>expanding_max</td>
<td>Maximum</td>
</tr>
<tr>
<td>expanding_std</td>
<td>Unbiased standard deviation</td>
</tr>
<tr>
<td>expanding_var</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>expanding_skew</td>
<td>Unbiased skewness (3rd moment)</td>
</tr>
<tr>
<td>expanding_kurt</td>
<td>Unbiased kurtosis (4th moment)</td>
</tr>
<tr>
<td>expanding_quantile</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>expanding_apply</td>
<td>Generic apply</td>
</tr>
<tr>
<td>expanding_cov</td>
<td>Unbiased covariance (binary)</td>
</tr>
<tr>
<td>expanding_corr</td>
<td>Correlation (binary)</td>
</tr>
</tbody>
</table>

Aside from not having a `window` parameter, these functions have the same interfaces as their `rolling_` counterpart. Like above, the parameters they all accept are:

- **min_periods**: threshold of non-null data points to require. Defaults to minimum needed to compute statistic. No NaNs will be output once `min_periods` non-null data points have been seen.
- **freq**: optionally specify a `frequency string` or `DateOffset` to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argument `time_rule` was used instead of `freq` that referred to the legacy time rule constants

**Note:** The output of the `rolling_` and `expanding_` functions do not return a NaN if there are at least `min_periods` non-null values in the current window. This differs from `cumsum`, `cumprod`, `cummax`, and `cummin`, which return NaN in the output wherever a NaN is encountered in the input.

An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as the increasing window size decreases the relative impact of an individual data point. As an example, here is the `expanding_mean` output for the previous time series dataset:

```python
In [64]: ts.plot(style='k--')
Out[64]: <matplotlib.axes.AxesSubplot at 0xad7f446c>

In [65]: expanding_mean(ts).plot(style='k')
Out[65]: <matplotlib.axes.AxesSubplot at 0xad7f446c>
```
12.4 Exponentially weighted moment functions

A related set of functions are exponentially weighted versions of many of the above statistics. A number of EW (exponentially weighted) functions are provided using the blending method. For example, where \( y_t \) is the result and \( x_t \) the input, we compute an exponentially weighted moving average as

\[
y_t = (1 - \alpha)y_{t-1} + \alpha x_t
\]

One must have \( 0 < \alpha \leq 1 \), but rather than pass \( \alpha \) directly, it’s easier to think about either the **span**, **center of mass** (**com**) or **halflife** of an EW moment:

\[
\alpha = \begin{cases} 
\frac{2}{s+1}, & s = \text{span} \\
\frac{1}{1+c}, & c = \text{center of mass} \\
1 - \exp^\frac{\log 0.5}{h}, & h = \text{halflife}
\end{cases}
\]

**Note:** the equation above is sometimes written in the form

\[
y_t = \alpha' y_{t-1} + (1 - \alpha') x_t
\]

where \( \alpha' = 1 - \alpha \).

You can pass one of the three to these functions but not more. **Span** corresponds to what is commonly called a “20-day EW moving average” for example. **Center of mass** has a more physical interpretation. For example, **span = 20** corresponds to **com = 9.5**. **Halflife** is the period of time for the exponential weight to reduce to one half. Here is the list of functions available:
Function	Description
**ewma** | EW moving average
**ewmvar** | EW moving variance
**ewmstd** | EW moving standard deviation
**ewmcov** | EW moving covariance

Here are an example for a univariate time series:

```python
In [66]: plt.close('all')

In [67]: ts.plot(style='k--')
Out[67]: <matplotlib.axes.AxesSubplot at 0xad5d494c>

In [68]: ewma(ts, span=20).plot(style='k')
Out[68]: <matplotlib.axes.AxesSubplot at 0xad5d494c>
```

```

Note: The EW functions perform a standard adjustment to the initial observations whereby if there are fewer observations than called for in the span, those observations are reweighted accordingly.

12.4. Exponentially weighted moment functions

345
In this section, we will discuss missing (also referred to as NA) values in pandas.

Note: The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons. It differs from the MaskedArray approach of, for example, scikits.timeseries. We are hopeful that NumPy will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas.

See the *cookbook* for some advanced strategies.

13.1 Missing data basics

13.1.1 When / why does data become missing?

Some might quibble over our usage of *missing*. By “missing” we simply mean **null** or “not present for whatever reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing.

In pandas, one of the most common ways that missing data is **introduced** into a data set is by reindexing. For example

```python
In [1]: df = DataFrame(randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
   ...:     columns=['one', 'two', 'three'])
   ...

In [2]: df['four'] = 'bar'

In [3]: df['five'] = df['one'] > 0

In [4]: df
Out[4]:
   one   two   three  four  five
a -1.42  0.01 -1.15   bar  False
b -1.02  0.01 -1.53   bar  False
c -0.79  0.56  0.38   bar  False
d  1.34 -1.53  1.34   bar   True
e -0.57 -0.03 -0.48   bar  False
f  1.14 -0.08 -1.08   bar  False
h -1.11  0.05 -0.49   bar  False

In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

In [6]: df2
Out[6]:
```
13.1.2 **Values considered “missing”**

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python `None` will arise and we wish to also consider that “missing” or “null”.

Until recently, for legacy reasons `inf` and `-inf` were also considered to be “null” in computations. This is no longer the case by default; use the `mode.use_inf_as_null` option to recover it. To make detecting missing values easier (and across different array dtypes), pandas provides the `isnull()` and `notnull()` functions, which are also methods on `Series` objects:

```
In [7]: df2['one']
Out[7]:
a   -1.420361
   NaN
b   -0.798334
   NaN
c   1.337122
   NaN
d   0.571329
   NaN
e   1.114738
   NaN
Name: one, dtype: float64

In [8]: isnull(df2['one'])
Out[8]:
a   False
b   True
c   False
d   True
e   False
f   False
g   True
h   False
Name: one, dtype: bool
```

```
In [9]: df2['four'].notnull()
Out[9]:
a   True
b   False
c   True
d   False
e   True
f   True
g   False
h   True
Name: four, dtype: bool
```
Summary: NaN and None (in object arrays) are considered missing by the `isnull` and `notnull` functions. inf and -inf are no longer considered missing by default.

13.2 Datetimes

For datetime64[ns] types, NaT represents missing values. This is a pseudo-native sentinel value that can be represented by numpy in a singular dtype (datetime64[ns]). pandas objects provide intercompatibility between NaT and NaN.

```python
In [10]: df2 = df.copy()

In [11]: df2['timestamp'] = Timestamp('20120101')

In [12]: df2
Out[12]:
   one  two  three  four  five    timestamp
  --- --- --- --- ---           -------
  a  NaN -0.015601 1.150641  bar  False NaT
  c  NaN  0.381353 0.557697  bar  False 2012-01-01
  e  1.337122  1.331458 1.331095  bar   True 2012-01-01
  f  NaN  0.026671 0.026671  bar  False 2012-01-01
  h  1.114738  0.486768 0.486768  bar  False 2012-01-01

In [13]: df2.ix[['a','c','h'],['one','timestamp']] = np.nan

In [14]: df2
Out[14]:
   one  two  three  four  five    timestamp
  --- --- --- --- ---           -------
  a NaN  0.381353 0.557697  bar  False 2012-01-01
  c NaN  0.557697 0.381353  bar  False 2012-01-01
  e  1.337122  1.331458 1.331095  bar   True 2012-01-01
  f  NaN  0.026671 0.026671  bar  False 2012-01-01
  h NaN  0.486768 0.486768  bar  False 2012-01-01

In [15]: df2.get_dtype_counts()
Out[15]:
bool     1
datetime64[ns]  1
float64    3
object    1
dtype: int64
```

13.3 Calculations with missing data

Missing values propagate naturally through arithmetic operations between pandas objects.

```python
In [16]: a
Out[16]:
   one  two
  --- ---
  a  NaN -0.015601
  c  NaN -0.557697
  e  1.337122 -1.531095
  f -0.571329 -0.026671
  h -0.571329 -0.058216

In [17]: b
```
The descriptive statistics and computational methods discussed in the data structure overview (and listed here and here) are all written to account for missing data. For example:

- When summing data, NA (missing) values will be treated as zero
- If the data are all NA, the result will be NA
- Methods like `cumsum` and `cumprod` ignore NA values, but preserve them in the resulting arrays
13.3.1 NA values in GroupBy

NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example.

13.4 Cleaning / filling missing data

pandas objects are equipped with various data manipulation methods for dealing with missing data.

13.4.1 Filling missing values: fillna

The `fillna` function can “fill in” NA values with non-null data in a couple of ways, which we illustrate:

Replace NA with a scalar value

In [23]: df2
Out[23]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>two</th>
<th>three</th>
<th>four</th>
<th>five</th>
<th>timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NaN</td>
<td>-0.015601</td>
<td>-1.150641</td>
<td>bar</td>
<td>False</td>
<td>NaT</td>
</tr>
<tr>
<td>c</td>
<td>NaN</td>
<td>-0.557697</td>
<td>0.381353</td>
<td>bar</td>
<td>False</td>
<td>NaT</td>
</tr>
<tr>
<td>e</td>
<td>1.337122</td>
<td>-1.531095</td>
<td>1.331458</td>
<td>bar</td>
<td>True</td>
<td>2012-01-01</td>
</tr>
<tr>
<td>f</td>
<td>-0.571329</td>
<td>-0.026671</td>
<td>-1.085663</td>
<td>bar</td>
<td>False</td>
<td>2012-01-01</td>
</tr>
<tr>
<td>h</td>
<td>NaN</td>
<td>-0.058216</td>
<td>-0.486768</td>
<td>bar</td>
<td>False</td>
<td>NaT</td>
</tr>
</tbody>
</table>

In [24]: df2.fillna(0)
Out[24]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>two</th>
<th>three</th>
<th>four</th>
<th>five</th>
<th>timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.000000</td>
<td>-0.015601</td>
<td>-1.150641</td>
<td>bar</td>
<td>False</td>
<td>1970-01-01</td>
</tr>
<tr>
<td>c</td>
<td>0.000000</td>
<td>-0.557697</td>
<td>0.381353</td>
<td>bar</td>
<td>False</td>
<td>1970-01-01</td>
</tr>
<tr>
<td>e</td>
<td>1.337122</td>
<td>-1.531095</td>
<td>1.331458</td>
<td>bar</td>
<td>True</td>
<td>2012-01-01</td>
</tr>
<tr>
<td>f</td>
<td>-0.571329</td>
<td>-0.026671</td>
<td>-1.085663</td>
<td>bar</td>
<td>False</td>
<td>2012-01-01</td>
</tr>
<tr>
<td>h</td>
<td>0.000000</td>
<td>-0.058216</td>
<td>-0.486768</td>
<td>bar</td>
<td>False</td>
<td>1970-01-01</td>
</tr>
</tbody>
</table>

In [25]: df2['four'].fillna('missing')
Out[25]:

<table>
<thead>
<tr>
<th></th>
<th>four</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>bar</td>
</tr>
<tr>
<td>c</td>
<td>bar</td>
</tr>
<tr>
<td>e</td>
<td>bar</td>
</tr>
<tr>
<td>f</td>
<td>bar</td>
</tr>
<tr>
<td>h</td>
<td>bar</td>
</tr>
</tbody>
</table>
Name: four, dtype: object

Fill gaps forward or backward

Using the same filling arguments as `reindexing`, we can propagate non-null values forward or backward:

In [26]: df
Out[26]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>two</th>
<th>three</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NaN</td>
<td>-0.015601</td>
<td>-1.150641</td>
</tr>
<tr>
<td>c</td>
<td>NaN</td>
<td>-0.557697</td>
<td>0.381353</td>
</tr>
<tr>
<td>e</td>
<td>1.337122</td>
<td>-1.531095</td>
<td>1.331458</td>
</tr>
<tr>
<td>f</td>
<td>-0.571329</td>
<td>-0.026671</td>
<td>-1.085663</td>
</tr>
<tr>
<td>h</td>
<td>NaN</td>
<td>-0.058216</td>
<td>-0.486768</td>
</tr>
</tbody>
</table>

In [27]: df.fillna(method='pad')
Out[27]:

13.4. Cleaning / filling missing data
Limit the amount of filling

If we only want consecutive gaps filled up to a certain number of data points, we can use the `limit` keyword:

```python
In [28]: df
Out[28]:
        one  two  three
   a    NaN -0.015601 -1.150641
   c    NaN  0.557697  0.381353
   e    NaN         NaN         NaN
   f    NaN         NaN         NaN
   h    NaN -0.058216 -0.486768

In [29]: df.fillna(method='pad', limit=1)
Out[29]:
        one  two  three
   a    NaN -0.015601 -1.150641
   c    NaN  0.557697  0.381353
   e    NaN  0.557697  0.381353
   f    NaN         NaN         NaN
   h    NaN -0.058216 -0.486768
```

To remind you, these are the available filling methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad / ffill</td>
<td>Fill values forward</td>
</tr>
<tr>
<td>bfill / backfill</td>
<td>Fill values backward</td>
</tr>
</tbody>
</table>

With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time point.

The `ffill()` function is equivalent to `fillna(method='ffill')` and `bfill()` is equivalent to `fillna(method='bfill')`

13.4.2 Filling with a PandasObject

New in version 0.12. You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.

```python
In [30]: dff = DataFrame(np.random.randn(10,3),columns=list('ABC'))

In [31]: dff.iloc[3:5,0] = np.nan

In [32]: dff.iloc[4:6,1] = np.nan

In [33]: dff.iloc[5:8,2] = np.nan

In [34]: dff
Out[34]:
       A     B     C
0  1.685148  0.112572 -1.495309
```
In [35]: dff.fillna(dff.mean())
Out[35]:
 A B C
0 1.685148 0.112572 -1.495309
1 0.898435 -0.148217 -1.596070
2 0.159653 0.262136 0.036220
3 0.802538 -0.255069 -0.271020
4 0.802538 0.013207 -1.165787
5 0.846974 0.013207 -0.748868
6 -0.303961 0.625555 -0.748868
7 0.249698 1.103949 -0.748868
8 1.998044 -0.244548 0.136235
9 0.886313 -1.350722 -0.886348

In [36]: dff.fillna(dff.mean()['B':'C'])
Out[36]:
 A B C
0 1.685148 0.112572 -1.495309
1 0.898435 -0.148217 -1.596070
2 0.159653 0.262136 0.036220
3 0.802538 -0.255069 -0.271020
4 0.802538 0.013207 -1.165787
5 0.846974 0.013207 -0.748868
6 -0.303961 0.625555 -0.748868
7 0.249698 1.103949 -0.748868
8 1.998044 -0.244548 0.136235
9 0.886313 -1.350722 -0.886348

New in version 0.13. Same result as above, but is aligning the ‘fill’ value which is a Series in this case.

In [37]: dff.where(notnull(dff),dff.mean(),axis='columns')
Out[37]:
 A B C
0 1.685148 0.112572 -1.495309
1 0.898435 -0.148217 -1.596070
2 0.159653 0.262136 0.036220
3 0.802538 -0.255069 -0.271020
4 0.802538 0.013207 -1.165787
5 0.846974 0.013207 -0.748868
6 -0.303961 0.625555 -0.748868
7 0.249698 1.103949 -0.748868
8 1.998044 -0.244548 0.136235
9 0.886313 -1.350722 -0.886348

13.4.3 Dropping axis labels with missing data: dropna

You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the dropna method:
13.4.4 Interpolation

New in version 0.13.0. Both Series and DataFrame objects have an `interpolate` method that, by default, performs linear interpolation at missing datapoints.

```python
In [42]: ts
Out[42]:
2000-01-31    0.469112
2000-02-29     NaN
2000-03-31     NaN
2000-04-28     NaN
2000-05-31     NaN
...  
2007-11-30   -5.485119
2007-12-31   -6.854968
2008-01-31   -7.809176
2008-02-29   -6.346480
2008-03-31   -8.089641
2008-04-30   -8.916232
Freq: BM, Length: 100
```

```python
In [43]: ts.count()
Out[43]: 61
```

```python
In [44]: ts.interpolate().count()
Out[44]: 100
```
In [45]: plt.figure()
Out[45]: <matplotlib.figure.Figure at 0xa9f9da6c>

In [46]: ts.interpolate().plot()
Out[46]: <matplotlib.axes.AxesSubplot at 0xa9f71b8c>

Index aware interpolation is available via the `method` keyword:

In [47]: ts2
Out[47]:
2000-01-31 0.469112
2000-02-29 NaN
2002-07-31 -5.689738
2005-01-31 NaN
2008-04-30 -8.916232
dtype: float64

In [48]: ts2.interpolate()
Out[48]:
2000-01-31 0.469112
2000-02-29 -2.610313
2002-07-31 -5.689738
2005-01-31 -7.095568
2008-04-30 -8.916232
dtype: float64

In [49]: ts2.interpolate(method='time')
Out[49]:
2000-01-31 0.469112
2000-02-29 0.273272
2002-07-31 -5.689738
2005-01-31 -7.095568
2008-04-30 -8.916232

13.4. Cleaning / filling missing data
pandas: powerful Python data analysis toolkit, Release 0.14.1

```
dtype: float64

For a floating-point index, use `method='values'`:

```
In [50]: ser
Out[50]:
0 0
1 NaN
10 10
dtype: float64

In [51]: ser.interpolate()
Out[51]:
0 0
1 5
10 10
dtype: float64

In [52]: ser.interpolate(method='values')
Out[52]:
0 0
1 1
10 10
dtype: float64
```

You can also interpolate with a DataFrame:

```
In [53]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
 :
 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})

In [54]: df
Out[54]:
 A B
0 1.0 0.25
1 2.1 NaN
2 NaN NaN
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40

In [55]: df.interpolate()
Out[55]:
 A B
0 1.0 0.25
1 2.1 1.50
2 3.4 2.75
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
```

The `method` argument gives access to fancier interpolation methods. If you have `scipy` installed, you can set pass the name of a 1-d interpolation routine to `method`. You’ll want to consult the full scipy interpolation documentation and reference guide for details. The appropriate interpolation method will depend on the type of data you are working with. For example, if you are dealing with a time series that is growing at an increasing rate, `method='quadratic'` may be appropriate. If you have values approximating a cumulative distribution function, then `method='pchip'` should work well.
Warning: These methods require scipy.

```python
In [56]: df.interpolate(method='barycentric')
Out[56]:
 A B
0 1.00 0.250
1 2.10 -7.660
2 3.53 -4.515
3 4.70 4.000
4 5.60 12.200
5 6.80 14.400
```

```python
In [57]: df.interpolate(method='pchip')
Out[57]:
 A B
0 1.000000 0.250000
1 2.100000 1.130135
2 3.429309 2.337586
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
```

When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:

```python
In [58]: df.interpolate(method='spline', order=2)
Out[58]:
 A B
0 1.000000 0.250000
1 2.100000 -0.428598
2 3.404545 1.206900
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
```

```python
In [59]: df.interpolate(method='polynomial', order=2)
Out[59]:
 A B
0 1.000000 0.250000
1 2.100000 -4.161538
2 3.547059 -2.911538
3 4.700000 4.000000
4 5.600000 12.200000
5 6.800000 14.400000
```

Compare several methods:

```python
In [60]: np.random.seed(2)
In [61]: ser = Series(np.arange(1, 10.1, .25)**2 + np.random.randn(37))
In [62]: bad = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])
In [63]: ser[bad] = np.nan
In [64]: methods = ['linear', 'quadratic', 'cubic']
In [65]: df = DataFrame({m: ser.interpolate(method=m) for m in methods})
```

13.4. Cleaning / filling missing data
Another use case is interpolation at new values. Suppose you have 100 observations from some distribution. And let’s suppose that you’re particularly interested in what’s happening around the middle. You can mix pandas’ `reindex` and `interpolate` methods to interpolate at the new values.

```
In [68]: ser = Series(np.sort(np.random.uniform(size=100)))

interpolate at new_index
In [69]: new_index = ser.index + Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])

In [70]: interp_s = ser.reindex(new_index).interpolate(method='pchip')
```

```
In [71]: interp_s[49:51]
Out[71]:
49.00 0.471410
49.25 0.476841
49.50 0.481780
49.75 0.485998
50.00 0.489266
50.25 0.491814
50.50 0.493995
50.75 0.495763
51.00 0.497074

dtype: float64
```

Like other pandas fill methods, `interpolate` accepts a `limit` keyword argument. Use this to limit the number of consecutive interpolations, keeping NaN values for interpolations that are too far from the last valid observation:
In [72]: ser = Series([1, 3, np.nan, np.nan, np.nan, 11])

In [73]: ser.interpolate(limit=2)
Out[73]:
0  1
1  3
2  5
3  7
4  NaN
5  11
dtype: float64

### 13.4.5 Replacing Generic Values

Often times we want to replace arbitrary values with other values. New in v0.8 is the replace method in Series/DataFrame that provides an efficient yet flexible way to perform such replacements.

For a Series, you can replace a single value or a list of values by another value:

In [74]: ser = Series([0., 1., 2., 3., 4.])

In [75]: ser.replace(0, 5)
Out[75]:
0  5
1  1
2  2
3  3
4  4
dtype: float64

You can replace a list of values by a list of other values:

In [76]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
Out[76]:
0  4
1  3
2  2
3  1
4  0
dtype: float64

You can also specify a mapping dict:

In [77]: ser.replace({0: 10, 1: 100})
Out[77]:
0  10
1  100
2  2
3  3
4  4
dtype: float64

For a DataFrame, you can specify individual values by column:

In [78]: df = DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]})

In [79]: df.replace({'a': 0, 'b': 5}, 100)
Out[79]:

13.4. Cleaning / filling missing data
Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:

```python
In [80]: ser.replace([1, 2, 3], method='pad')
Out[80]:
0 0
1 0
2 0
3 0
4 4
dtype: float64
```

### 13.4.6 String/Regular Expression Replacement

**Note:** Python strings prefixed with the `r` character such as `r'hello world'` are so-called “raw” strings. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., `r'\' == '\`. You should read about them if this is unclear.

Replace the `.` with `nan` (str -> str)

```python
In [81]: d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', nan, 'd']}
In [82]: df = DataFrame(d)
In [83]: df.replace('.', nan)
Out[83]:
 a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
```

Now do it with a regular expression that removes surrounding whitespace (regex -> regex)

```python
In [84]: df.replace(r'\s*\.', nan, regex=True)
Out[84]:
 a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
```

Replace a few different values (list -> list)

```python
In [85]: df.replace(['a', '.'], ['b', nan])
Out[85]:
 a b c
0 0 b b
1 1 b b
2 2 NaN NaN
3 3 NaN d
```
list of regex -> list of regex

In [86]: df.replace([r'\.', r'(a)'], ['dot', '{stuff'], regex=True)
Out[86]:
   a  b  c
0 0  {stuff  {stuff
1 1  b  b
2 2  dot  NaN
3 3  dot  d

Only search in column 'b' (dict -> dict)

In [87]: df.replace({'b': '.'}, {'b': nan})
Out[87]:
   a  b  c
0 0  a  a
1 1  b  b
2 2  NaN  NaN
3 3  NaN  d

Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict)

In [88]: df.replace({'b': r'^\s*\s+\s*.\s+$'}, {'b': nan}, regex=True)
Out[88]:
   a  b  c
0 0  a  a
1 1  b  b
2 2  NaN  NaN
3 3  NaN  d

You can pass nested dictionaries of regular expressions that use regex=True

In [89]: df.replace({'b': r'\s*(\.)\s*'}, {'b': r'\1ty'}, regex=True)
Out[89]:
   a  b  c
0 0  a  a
1 1  b  b
2 2  .ty  NaN
3 3  .ty  d

or you can pass the nested dictionary like so

In [90]: df.replace(regex={'b': {r'^\s*\s+\s*.\s+$': nan}})
Out[90]:
   a  b  c
0 0  a  a
1 1  b  b
2 2  NaN  NaN
3 3  NaN  d

You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well

In [91]: df.replace({r'^\s*\s+\s*.\s+$': nan})
Out[91]:
   a  b  c
0 0  a  a
1 1  b  b
2 2  .ty  NaN
3 3  .ty  d

13.4. Cleaning / filling missing data
You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex)

```
In [92]: df.replace([r'\s*\./\s*\.', r'a|b'], nan, regex=True)
Out[92]:
 a b c
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN d
```

All of the regular expression examples can also be passed with the `to_replace` argument as the `regex` argument. In this case the `value` argument must be passed explicitly by name or `regex` must be a nested dictionary. The previous example, in this case, would then be

```
In [93]: df.replace(regex=[r'\s*\./\s*\.', r'a|b'], value=nan)
Out[93]:
 a b c
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN d
```

This can be convenient if you do not want to pass `regex=True` every time you want to use a regular expression.

**Note:** Anywhere in the above `replace` examples that you see a regular expression a compiled regular expression is valid as well.

### 13.4.7 Numeric Replacement

Similar to `DataFrame.fillna`

```
In [94]: df = DataFrame(randn(10, 2))
In [95]: df[rand(df.shape[0]) > 0.5] = 1.5
In [96]: df.replace(1.5, nan)
Out[96]:
 0 1
0 -0.844214 -1.021415
1 0.432396 -0.323580
2 0.423825 0.799180
3 1.262614 0.751965
4 NaN NaN
5 NaN NaN
6 -1.498174 -1.060799
7 0.591667 -0.183257
8 1.019855 -1.482465
9 NaN NaN

Replacing more than one value via lists works as well

```
In [97]: df00 = df.values[0, 0]
In [98]: df.replace([1.5, df00], [nan, 'a'])
Out[98]:
   0    1
0   NaN   NaN
```
In [99]: df[1].dtype
Out[99]: dtype('float64')

You can also operate on the DataFrame in place

In [100]: df.replace(1.5, nan, inplace=True)

Warning: When replacing multiple bool or datetime64 objects, the first argument to replace (to_replace) must match the type of the value being replaced type. For example,

```
s = Series([True, False, True])
s.replace({'a string': 'new value', True: False})  # raises
```

TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

will raise a TypeError because one of the dict keys is not of the correct type for replacement. However, when replacing a single object such as,

```
In [101]: s = Series([True, False, True])
```

```
In [102]: s.replace('a string', 'another string')
```

```
Out[102]:
0  True
1  False
2   True
dtype: bool
```

the original NDFrame object will be returned untouched. We're working on unifying this API, but for backwards compatibility reasons we cannot break the latter behavior. See GH6354 for more details.

13.5 Missing data casting rules and indexing

While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we’ve established some “casting rules” when reindexing will cause missing data to be introduced into, say, a Series or DataFrame. Here they are:

<table>
<thead>
<tr>
<th>data type</th>
<th>Cast to</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>float</td>
</tr>
<tr>
<td>boolean</td>
<td>object</td>
</tr>
<tr>
<td>float</td>
<td>object</td>
</tr>
<tr>
<td>object</td>
<td>no cast</td>
</tr>
</tbody>
</table>

For example:
In [103]: s = Series(randn(5), index=[0, 2, 4, 6, 7])

In [104]: s > 0
Out[104]:
0 True
2 True
4 True
6 True
7 True
dtype: bool

In [105]: (s > 0).dtype
Out[105]: dtype('bool')

In [106]: crit = (s > 0).reindex(list(range(8)))

In [107]: crit
Out[107]:
0 True
1 NaN
2 True
3 NaN
4 True
5 NaN
6 True
7 True
dtype: object

In [108]: crit.dtype
Out[108]: dtype('O')

Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated:

In [109]: reindexed = s.reindex(list(range(8))).fillna(0)

In [110]: reindexed[crit]

ValueError Traceback (most recent call last)
<ipython-input-110-2da204ed1ac7> in <module>()
 1 reindexed[crit]
----> 2 ValueError('cannot index with vector containing NA / NaN values')

/home/joris/scipy/pandas/pandas/core/series.pyc in __getitem__(self, key)
 519 key = _check_bool_indexer(self.index, key)
 520 --> 521 if _is_bool_indexer(key):
 522 key = _check_bool_indexer(self.index, key)
 523

/home/joris/scipy/pandas/pandas/core/common.pyc in _is_bool_indexer(key)
 1938 if not lib.is_bool_array(key):
 1939 if isnull(key).any():
-> 1940 raise ValueError('cannot index with vector containing ’
 1941 ‘NA / NaN values’)
 1942

ValueError: cannot index with vector containing NA / NaN values

364 Chapter 13. Working with missing data
However, these can be filled in using `fillna` and it will work fine:

```python
In [111]: reindexed[crit.fillna(False)]
Out[111]:
0  0.126504
2  0.696198
4  0.697416
6  0.601516
7  0.003659
```
```
dtype: float64
```

```python
In [112]: reindexed[crit.fillna(True)]
Out[112]:
0  0.126504
1  0.000000
2  0.696198
3  0.000000
4  0.697416
5  0.000000
6  0.601516
7  0.003659
```
```
dtype: float64
```

13.5. Missing data casting rules and indexing
GROUP BY: SPLIT-APPLY-COMBINE

By “group by” we are referring to a process involving one or more of the following steps:

- **Splitting**: the data into groups based on some criteria
- **Applying**: a function to each group independently
- **Combining**: the results into a data structure

Of these, the split step is the most straightforward. In fact, in many situations you may wish to split the data set into groups and do something with those groups yourself. In the apply step, we might wish to one of the following:

- **Aggregation**: computing a summary statistic (or statistics) about each group. Some examples:
 - Compute group sums or means
 - Compute group sizes / counts

- **Transformation**: perform some group-specific computations and return a like-indexed. Some examples:
 - Standardizing data (zscore) within group
 - Filling NAs within groups with a value derived from each group

- **Filtration**: discard some groups, according to a group-wise computation that evaluates True or False. Some examples:
 - Discarding data that belongs to groups with only a few members
 - Filtering out data based on the group sum or mean

- Some combination of the above: GroupBy will examine the results of the apply step and try to return a sensibly combined result if it doesn’t fit into either of the above two categories

Since the set of object instance method on pandas data structures are generally rich and expressive, we often simply want to invoke, say, a DataFrame function on each group. The name GroupBy should be quite familiar to those who have used a SQL-based tool (or itertools), in which you can write code like:

```sql
SELECT Column1, Column2, mean(Column3), sum(Column4)
FROM SomeTable
GROUP BY Column1, Column2
```

We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy functionality then provide some non-trivial examples / use cases.

See the *cookbook* for some advanced strategies.
14.1 Splitting an object into groups

Pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. To create a GroupBy object (more on what the GroupBy object is later), you do the following:

```python
>>> grouped = obj.groupby(key)
>>> grouped = obj.groupby(key, axis=1)
>>> grouped = obj.groupby([key1, key2])
```

The mapping can be specified many different ways:

- A Python function, to be called on each of the axis labels
- A list or NumPy array of the same length as the selected axis
- A dict or Series, providing a `label -> group name` mapping
- For DataFrame objects, a string indicating a column to be used to group. Of course `df.groupby('A')` is just syntactic sugar for `df.groupby(df['A'])`, but it makes life simpler
- A list of any of the above things

Collectively we refer to the grouping objects as the *keys*. For example, consider the following DataFrame:

```python
In [1]: df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'], ...
                    'B' : ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'], ...
                    'C' : randn(8), 'D' : randn(8)})
```

We could naturally group by either the A or B columns or both:

```python
In [3]: grouped = df.groupby('A')
In [4]: grouped = df.groupby(['A', 'B'])
```

These will split the DataFrame on its index (rows). We could also split by the columns:

```python
In [5]: def get_letter_type(letter):
   ...:     if letter.lower() in 'aeiou':
   ...:         return 'vowel'
   ...:     else:
   ...:         return 'consonant'
   ...

In [6]: grouped = df.groupby(get_letter_type, axis=1)
```
Starting with 0.8, pandas Index objects now support duplicate values. If a non-unique index is used as the group key in a groupby operation, all values for the same index value will be considered to be in one group and thus the output of aggregation functions will only contain unique index values:

```
In [7]: lst = [1, 2, 3, 1, 2, 3]
In [8]: s = Series([1, 2, 3, 10, 20, 30], lst)
In [9]: grouped = s.groupby(level=0)
In [10]: grouped.first()
Out[10]:
    1  1
    2  2
    3  3
    dtype: int64
In [11]: grouped.last()
Out[11]:
    1  10
    2  20
    3  30
    dtype: int64
In [12]: grouped.sum()
Out[12]:
    1  11
    2  22
    3  33
    dtype: int64
```

Note that no splitting occurs until it’s needed. Creating the GroupBy object only verifies that you’ve passed a valid mapping.

Note: Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though can’t be guaranteed to be the most efficient). You can get quite creative with the label mapping functions.

14.1.1 GroupBy object attributes

The **groups** attribute is a dict whose keys are the computed unique groups and corresponding values being the axis labels belonging to each group. In the above example we have:

```
In [13]: df.groupby('A').groups
Out[13]: {'bar': [1L, 3L, 5L], 'foo': [0L, 2L, 4L, 6L, 7L]}
In [14]: df.groupby(get_letter_type, axis=1).groups
Out[14]: {'consonant': ['B', 'C', 'D'], 'vowel': ['A']}
```

Calling the standard Python `len` function on the GroupBy object just returns the length of the **groups** dict, so it is largely just a convenience:

```
In [15]: grouped = df.groupby(['A', 'B'])
In [16]: grouped.groups
Out[16]:
{(‘bar’, ‘one’): [1L],
```

14.1. Splitting an object into groups

369
By default the group keys are sorted during the groupby operation. You may however pass `sort=False` for potential speedups:

```python
In [18]: df2 = DataFrame({'X' : ['B', 'B', 'A', 'A'], 'Y' : [1, 2, 3, 4]})

In [19]: df2.groupby(['X'], sort=True).sum()
Out[19]:
          Y
    X  
      A   7
      B   3

In [20]: df2.groupby(['X'], sort=False).sum()
Out[20]:
          Y
    X  
      B   3
      A   7
```

GroupBy will tab complete column names (and other attributes)

```python
In [21]: df
Out[21]:
   gender  height    weight
0  2000-01-01  male  42.849980  157.500553
1  2000-01-02  male  49.607315  177.340407
2  2000-01-03  male  56.293531  171.524640
3  2000-01-04  female  48.421077  144.251986
4  2000-01-05  male  46.556882  152.526206
5  2000-01-06  female  68.448851  168.272968
6  2000-01-07  male  70.757698  136.431469
7  2000-01-08  female  58.909500  176.499753
8  2000-01-09  female  76.435631  174.094104
9  2000-01-10  male  45.306120  177.540920

In [22]: gb = df.groupby('gender')

In [23]: gb.<TAB>
gb.agg  gb.boxplot  gb.cummin  gb.describe  gb.filter  gb.get_group  gb.height  gb.aggregate  gb.count  gb.cumprod  gb.dtype  gb.first  gb.groups  gb.hist  gb.apply  gb.cummax  gb.cumsum  gb.fillna  gb.gender  gb.head  gb.indices  gb
```

14.1.2 GroupBy with MultiIndex

With hierarchically-indexed data, it’s quite natural to group by one of the levels of the hierarchy.

```python
In [24]: s
Out[24]:
```
first second
bar one -0.575247
 two 0.254161
baz one -1.143704
 two 0.215897
foo one 1.193555
 two -0.077118
qux one -0.408530
 two -0.862495
dtype: float64

In [25]: grouped = s.groupby(level=0)

In [26]: grouped.sum()
Out[26]:
 first
 bar -0.321085
 baz -0.927807
 foo 1.116437
 qux -1.271025
dtype: float64

If the MultiIndex has names specified, these can be passed instead of the level number:

In [27]: s.groupby(level='second').sum()
Out[27]:
 second
one -0.933926
two -0.469555
dtype: float64

The aggregation functions such as `sum` will take the level parameter directly. Additionally, the resulting index will be named according to the chosen level:

In [28]: s.sum(level='second')
Out[28]:
 second
one -0.933926
two -0.469555
dtype: float64

Also as of v0.6, grouping with multiple levels is supported.

In [29]: s
Out[29]:
 first second third
 bar doo one 1.346061
 two 1.511763
 baz bee one 1.627081
 two -0.990582
 foo bop one -0.441652
 two 1.211526
 qux bop one 0.268520
 two 0.024580
dtype: float64

In [30]: s.groupby(level=['first','second']).sum()
Out[30]:
 first second
 bar doo one 1.346061
 two 1.511763
 baz bee one 1.627081
 two -0.990582
 foo bop one -0.441652
 two 1.211526
 qux bop one 0.268520
 two 0.024580

More on the `sum` function and aggregation later.

14.1.3 DataFrame column selection in GroupBy

Once you have created the GroupBy object from a DataFrame, for example, you might want to do something different for each of the columns. Thus, using `[]` similar to getting a column from a DataFrame, you can do:

```python
In [31]: grouped = df.groupby(['A'])
In [32]: grouped_C = grouped['C']
In [33]: grouped_D = grouped['D']
```

This is mainly syntactic sugar for the alternative and much more verbose:

```python
In [34]: df['C'].groupby(df['A'])
Out[34]: <pandas.core.groupby.SeriesGroupBy object at 0xa2b25fec>
```

Additionally this method avoids recomputing the internal grouping information derived from the passed key.

14.2 Iterating through groups

With the GroupBy object in hand, iterating through the grouped data is very natural and functions similarly to `itertools.groupby`:

```python
In [35]: grouped = df.groupby('A')
In [36]: for name, group in grouped:
    ....:     print(name)
    ....:     print(group)
    ....:
bar  
   A   B   C   D
  1  bar one -0.042379 -0.089329
  3  bar three -0.009920 -0.945867
  5  bar two  0.495767  1.956030
foo  
   A   B   C   D
  0  foo one -0.919854 -1.131345
  2  foo two  1.247642  0.337863
  4  foo two  0.290213 -0.932132
  6  foo one  0.362949  0.017587
  7  foo three  1.548106 -0.016692
```

In the case of grouping by multiple keys, the group name will be a tuple:

```python
In [37]: for name, group in df.groupby(['A', 'B']):
    ....:     print(name)
    ....:     print(group)
    ....:
```
It’s standard Python-fu but remember you can unpack the tuple in the for loop statement if you wish: `for (k1, k2), group in grouped:`.

14.3 Aggregation

Once the GroupBy object has been created, several methods are available to perform a computation on the grouped data.

An obvious one is aggregation via the `aggregate` or equivalently `agg` method:

In [38]: grouped = df.groupby('A')

In [39]: grouped.aggregate(np.sum)

```
Out[39]:
          C      D
A bar   0.443469  0.920834
     foo  2.529056 -1.724719
```

In [40]: grouped = df.groupby(['A', 'B'])

In [41]: grouped.aggregate(np.sum)

```
Out[41]:
          C      D
A B bar one -0.042379 -0.089329
     three -0.009920 -0.945867
     two  0.495767  1.956030
     foo one -0.919854 -1.131345
     three  1.548106 -0.016692
     two  0.362949  0.017587
```

As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In the case of multiple keys, the result is a `MultiIndex` by default, though this can be changed by using the `as_index` option:
In [42]: grouped = df.groupby(['A', 'B'], as_index=False)

In [43]: grouped.aggregate(np.sum)
Out[43]:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>bar</td>
<td>one</td>
<td>-0.042379</td>
<td>-0.089329</td>
</tr>
<tr>
<td>1</td>
<td>bar</td>
<td>three</td>
<td>-0.009920</td>
<td>-0.945867</td>
</tr>
<tr>
<td>2</td>
<td>bar</td>
<td>two</td>
<td>0.495767</td>
<td>1.956030</td>
</tr>
<tr>
<td>3</td>
<td>foo</td>
<td>one</td>
<td>-0.556905</td>
<td>-1.113758</td>
</tr>
<tr>
<td>4</td>
<td>foo</td>
<td>three</td>
<td>1.548106</td>
<td>-0.016692</td>
</tr>
<tr>
<td>5</td>
<td>foo</td>
<td>two</td>
<td>1.537855</td>
<td>-0.594269</td>
</tr>
</tbody>
</table>

In [44]: df.groupby('A', as_index=False).sum()
Out[44]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>0</td>
<td>bar</td>
<td>0.443469</td>
</tr>
<tr>
<td>1</td>
<td>foo</td>
<td>2.529056</td>
</tr>
</tbody>
</table>

Note that you could use the `reset_index` DataFrame function to achieve the same result as the column names are stored in the resulting `MultiIndex`:

In [45]: df.groupby(['A', 'B']).sum().reset_index()
Out[45]:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>bar</td>
<td>one</td>
<td>-0.042379</td>
<td>-0.089329</td>
</tr>
<tr>
<td>1</td>
<td>bar</td>
<td>three</td>
<td>-0.009920</td>
<td>-0.945867</td>
</tr>
<tr>
<td>2</td>
<td>bar</td>
<td>two</td>
<td>0.495767</td>
<td>1.956030</td>
</tr>
<tr>
<td>3</td>
<td>foo</td>
<td>one</td>
<td>-0.556905</td>
<td>-1.113758</td>
</tr>
<tr>
<td>4</td>
<td>foo</td>
<td>three</td>
<td>1.548106</td>
<td>-0.016692</td>
</tr>
<tr>
<td>5</td>
<td>foo</td>
<td>two</td>
<td>1.537855</td>
<td>-0.594269</td>
</tr>
</tbody>
</table>

Another simple aggregation example is to compute the size of each group. This is included in GroupBy as the `size` method. It returns a Series whose index are the group names and whose values are the sizes of each group.

In [46]: grouped.size()
Out[46]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>one</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>three</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>1</td>
</tr>
<tr>
<td>foo</td>
<td>one</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>three</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>2</td>
</tr>
</tbody>
</table>
dtype: int64

In [47]: grouped.describe()
Out[47]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>count</td>
<td>1.000000</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>5 mean</td>
<td>0.768928</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>0.677005</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>0.290213</td>
</tr>
</tbody>
</table>
Note: Aggregation functions will not return the groups that you are aggregating over if they are named columns, when as_index=True, the default. The grouped columns will be the indices of the returned object.

Passing as_index=False will return the groups that you are aggregating over, if they are named columns.

Aggregating functions are ones that reduce the dimension of the returned objects, for example: mean, sum, size, count, std, var, sem, describe, first, last, nth, min, max. This is what happens when you do for example DataFrame.sum() and get back a Series. nth can act as a reducer or a filter, see here

14.3.1 Applying multiple functions at once

With grouped Series you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame:

```
In [48]: grouped = df.groupby('A')

In [49]: grouped['C'].agg([np.sum, np.mean, np.std])
```

```
Out[49]:
         sum  mean     std
A  
bar  0.443469 0.147823 0.301765
foo  2.529056 0.505811 0.966450
```

If a dict is passed, the keys will be used to name the columns. Otherwise the function’s name (stored in the function object) will be used.

```
In [50]: grouped['D'].agg({'result1' : np.sum, 'result2' : np.mean})
```

```
Out[50]:
       result2  result1
A  
bar   0.306945  0.920834
foo  -0.344944 -1.724719
```

On a grouped DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:

```
In [51]: grouped.agg([np.sum, np.mean, np.std])
```

```
Out[51]:
         C         D
sum  mean   std   sum  mean   std
A  
bar  0.443469 0.147823 0.301765  0.920834 0.306945 1.490982
foo  2.529056 0.505811 0.966450  0.86450 -1.724719 -0.344944 0.645875
```

Passing a dict of functions has different behavior by default, see the next section.

14.3. Aggregation
14.3.2 Applying different functions to DataFrame columns

By passing a dict to `aggregate` you can apply a different aggregation to the columns of a DataFrame:

```
In [52]: grouped.agg({'C' : np.sum,
             ....:         'D' : lambda x: np.std(x, ddof=1)})
```

```
Out[52]:
     C     D
   --  ----
A bar  0.443469 1.490982
   foo  2.529056 0.645875
```

The function names can also be strings. In order for a string to be valid it must be either implemented on GroupBy or available via dispatching:

```
In [53]: grouped.agg({'C' : 'sum', 'D' : 'std'})
```

```
Out[53]:
     C    D
   --  ---
A bar  0.443469 1.490982
   foo  2.529056 0.645875
```

14.3.3 Cython-optimized aggregation functions

Some common aggregations, currently only `sum`, `mean`, `std`, and `sem`, have optimized Cython implementations:

```
In [54]: df.groupby('A').sum()
```

```
Out[54]:
     C    D
   --  ---
A bar  0.443469 0.920834
   foo  2.529056 -1.724719
```

```
In [55]: df.groupby(['A', 'B']).mean()
```

```
Out[55]:
     C     D
   --  ----
A B  
   bar one -0.042379 -0.089329
       three -0.009920 -0.945867
       two  0.495767 1.956030
   foo one -0.278452 -0.556879
       three 1.548106 -0.016692
       two  0.768928 -0.297134
```

Of course `sum` and `mean` are implemented on pandas objects, so the above code would work even without the special versions via dispatching (see below).

14.4 Transformation

The `transform` method returns an object that is indexed the same (same size) as the one being grouped. Thus, the passed transform function should return a result that is the same size as the group chunk. For example, suppose we wished to standardize the data within each group:
In [56]: index = date_range('10/1/1999', periods=1100)

In [57]: ts = Series(np.random.normal(0.5, 2, 1100), index)

In [58]: ts = rolling_mean(ts, 100, 100).dropna()

In [59]: ts.head()
Out[59]:
2000-01-08 0.779333
2000-01-09 0.778852
2000-01-10 0.786476
2000-01-11 0.782797
2000-01-12 0.798110
Freq: D, dtype: float64

In [60]: ts.tail()
Out[60]:
2002-09-30 0.660294
2002-10-01 0.631095
2002-10-02 0.673601
2002-10-03 0.709213
2002-10-04 0.719369
Freq: D, dtype: float64

In [61]: key = lambda x: x.year

In [62]: zscore = lambda x: (x - x.mean()) / x.std()

In [63]: transformed = ts.groupby(key).transform(zscore)

We would expect the result to now have mean 0 and standard deviation 1 within each group, which we can easily check:

Original Data
In [64]: grouped = ts.groupby(key)

In [65]: grouped.mean()
Out[65]:
2000 0.442441
2001 0.526246
2002 0.459365
dtype: float64

In [66]: grouped.std()
Out[66]:
2000 0.131752
2001 0.210945
2002 0.128753
dtype: float64

Transformed Data
In [67]: grouped_trans = transformed.groupby(key)

In [68]: grouped_trans.mean()
Out[68]:
2000 -7.561268e-17
2001 -4.194514e-16
2002 -1.362729e-16

14.4. Transformation
Another common data transform is to replace missing data with the group mean.

In [72]: data_df
Out [72]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.539708</td>
<td>-1.166480</td>
<td>0.533026</td>
</tr>
<tr>
<td>1</td>
<td>1.302092</td>
<td>-0.505754</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>-0.371983</td>
<td>1.104803</td>
<td>-0.651520</td>
</tr>
<tr>
<td>3</td>
<td>-1.309622</td>
<td>1.118697</td>
<td>-1.161657</td>
</tr>
<tr>
<td>4</td>
<td>-1.924296</td>
<td>0.396437</td>
<td>0.812436</td>
</tr>
<tr>
<td>5</td>
<td>0.815643</td>
<td>0.367816</td>
<td>-0.469478</td>
</tr>
<tr>
<td>6</td>
<td>-0.030651</td>
<td>1.376106</td>
<td>-0.645129</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>993</td>
<td>0.012359</td>
<td>0.554602</td>
<td>-1.976159</td>
</tr>
<tr>
<td>994</td>
<td>0.042312</td>
<td>-1.628835</td>
<td>1.013822</td>
</tr>
<tr>
<td>995</td>
<td>-0.093110</td>
<td>0.683847</td>
<td>-0.774753</td>
</tr>
<tr>
<td>996</td>
<td>-0.185043</td>
<td>1.438572</td>
<td>NaN</td>
</tr>
</tbody>
</table>
In [73]: countries = np.array(['US', 'UK', 'GR', 'JP'])

In [74]: key = countries[np.random.randint(0, 4, 1000)]

In [75]: grouped = data_df.groupby(key)

Non-NA count in each group
In [76]: grouped.count()

Out[76]:
 A B C
GR 209 217 189
JP 240 255 217
UK 216 231 193
US 239 250 217

In [77]: f = lambda x: x.fillna(x.mean())

In [78]: transformed = grouped.transform(f)

We can verify that the group means have not changed in the transformed data and that the transformed data contains no NAs.

In [79]: grouped_trans = transformed.groupby(key)

In [80]: grouped.mean() # original group means

Out[80]:
 A B C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603

In [81]: grouped_trans.mean() # transformation did not change group means

Out[81]:
 A B C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603

In [82]: grouped.count() # original has some missing data points

Out[82]:
 A B C
GR 209 217 189
JP 240 255 217
UK 216 231 193
US 239 250 217

In [83]: grouped_trans.count() # counts after transformation

Out[83]:
 A B C
GR 228 228 228
In [84]: grouped_trans.size() # Verify non-NA count equals group size
 Out[84]:
 GR 228
 JP 267
 UK 247
 US 258
dtype: int64

Note: Some functions when applied to a groupby object will automatically transform the input, returning an object of the same shape as the original. Passing as_index=False will not affect these transformation methods.

For example: fillna, ffill, bfill, shift.

In [85]: grouped.ffill()
 Out[85]:
 A B C
 0 1.539708 -1.166480 0.533026
 1 1.302092 -0.505754 0.533026
 2 -0.371983 1.104803 -0.651520
 3 -1.309622 1.118697 -1.161657
 4 -1.924296 0.396437 0.812436
 5 0.815643 0.367816 -0.469478
 6 -0.030651 1.376106 -0.645129

993 0.012359 0.554602 -1.976159
994 0.042312 -1.628835 1.013822
995-0.093110 0.683847 -0.774753
996-0.185043 1.438572 -0.774753
997-0.394469 -0.642343 0.011374
998-1.174126 1.857148 -0.774753
999 0.234564 0.517098 0.393534
[1000 rows x 3 columns]

14.5 Filtration

New in version 0.12. The filter method returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.

In [86]: sf = Series([1, 1, 2, 3, 3, 3])

In [87]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
 Out[87]:
 3
 4 3
 5 3
dtype: int64

The argument of filter must be a function that, applied to the group as a whole, returns True or False.

Another useful operation is filtering out elements that belong to groups with only a couple members.
In [88]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc'))

In [89]: dff.groupby('B').filter(lambda x: len(x) > 2)

Out[89]:
 A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 b
5 5 b

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

In [90]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)

Out[90]:
 A B
0 NaN NaN
1 NaN NaN
2 2 b
3 3 b
4 4 b
5 5 b
6 NaN NaN
7 NaN NaN

For dataframes with multiple columns, filters should explicitly specify a column as the filter criterion.

In [91]: dff['C'] = np.arange(8)

In [92]: dff.groupby('B').filter(lambda x: len(x['C']) > 2)

Out[92]:
 A B C
0 0 a 0
1 1 a 1
2 2 b 2
3 3 b 3
4 4 b 4
5 5 b 5

Note: Some functions when applied to a groupby object will act as a filter on the input, returning a reduced shape of the original (and potentially eliminating groups), but with the index unchanged. Passing as_index=False will not affect these transformation methods.

For example: head, tail.

In [93]: dff.groupby('B').head(2)

Out[93]:
 A B C
0 0 a 0
1 1 a 1
2 2 b 2
3 3 b 3
6 6 c 6
7 7 c 7
14.6 Dispatching to instance methods

When doing an aggregation or transformation, you might just want to call an instance method on each data group. This is pretty easy to do by passing lambda functions:

```python
In [94]: grouped = df.groupby('A')

In [95]: grouped.agg(lambda x: x.std())
Out[95]:
   B      C      D
A
bar 0.301765 1.490982
foo 0.966450 0.645875
```

But, it’s rather verbose and can be untidy if you need to pass additional arguments. Using a bit of metaprogramming cleverness, GroupBy now has the ability to “dispatch” method calls to the groups:

```python
In [96]: grouped.std()
Out[96]:
   C       D
A
bar 0.301765 1.490982
foo 0.966450 0.645875
```

What is actually happening here is that a function wrapper is being generated. When invoked, it takes any passed arguments and invokes the function with any arguments on each group (in the above example, the `std` function). The results are then combined together much in the style of `agg` and `transform` (it actually uses `apply` to infer the gluing, documented next). This enables some operations to be carried out rather succinctly:

```python
In [97]: tsdf = DataFrame(randn(1000, 3),
                  index=date_range('1/1/2000', periods=1000),
                  columns=['A', 'B', 'C'])

In [98]: tsdf.ix[::2] = np.nan

In [99]: grouped = tsdf.groupby(lambda x: x.year)

In [100]: grouped.fillna(method='pad')
Out[100]:
   A      B      C
2000-01-01 NaN     NaN     NaN
2000-01-02 -0.353501 -0.080957 -0.876864
2000-01-03 -0.353501 -0.080957 -0.876864
2000-01-04  0.050976  0.044273 -0.559849
2000-01-05  0.050976  0.044273 -0.559849
2000-01-06  0.030091  0.186460 -0.680149
2000-01-07  0.030091  0.186460 -0.680149
...      ...      ...
2002-09-20  2.310215  0.157482 -0.064476
2002-09-21  2.310215  0.157482 -0.064476
2002-09-22  0.005011  0.053897 -1.026922
2002-09-23  0.005011  0.053897 -1.026922
2002-09-24 -0.456542 -1.849051  1.559856
2002-09-25 -0.456542 -1.849051  1.559856
2002-09-26  1.123162  0.354660  1.128135
[1000 rows x 3 columns]
```
In this example, we chopped the collection of time series into yearly chunks then independently called `fillna` on the groups. New in version 0.14.1. The `nlargest` and `nsmallest` methods work on `Series` style groupbys:

```python
In [101]: s = Series([9, 8, 7, 5, 19, 1, 4.2, 3.3])
In [102]: g = Series(list('abababab'))
In [103]: gb = s.groupby(g)
In [104]: gb.nlargest(3)
Out[104]:
a    4  19.0
   0  9.0
   2  7.0
b    1  8.0
   3  5.0
   7  3.3
dtype: float64
In [105]: gb.nsmallest(3)
Out[105]:
a    6  4.2
   2  7.0
   0  9.0
b    5  1.0
   7  3.3
   3  5.0
dtype: float64
```

14.7 Flexible apply

Some operations on the grouped data might not fit into either the aggregate or transform categories. Or, you may simply want GroupBy to infer how to combine the results. For these, use the `apply` function, which can be substituted for both `aggregate` and `transform` in many standard use cases. However, `apply` can handle some exceptional use cases, for example:

```python
In [106]: df
Out[106]:
      A      B     C       D
0   foo   one -0.919854 -1.131345
1   bar   one -0.042379 -0.089329
2   foo   two  1.247642  0.337863
3   bar  three -0.009920 -0.945867
4   foo   two  0.290213 -0.932132
5   bar   two  0.495767  1.956030
6   foo   one  0.362949  0.017587
7   foo  three  1.548106 -0.016692
In [107]: grouped = df.groupby('A')
Out[107]:

# could also just call .describe()
In [108]: grouped['C'].apply(lambda x: x.describe())
Out[108]:
      A
bar  count    3.000000
         mean  0.147823
```

14.7. Flexible apply
```
  std    0.301765
  min   -0.042379
  25%   -0.026149
...
  foo   std   0.966450
           min  -0.919854
           25%   0.290213
           50%   0.362949
           75%   1.247642
           max   1.548106
Length: 16, dtype: float64
```

The dimension of the returned result can also change:

```
In [109]: grouped = df.groupby('A')['C']

In [110]: def f(group):
   ..:     return DataFrame({'original': group,
   ..:                            'demeaned': group - group.mean()})

In [111]: grouped.apply(f)
Out[111]:
  demeaned  original
     0 -1.425665 -0.919854
     1 -0.190202 -0.042379
     2  0.741831  1.247642
     3 -0.157743 -0.009920
     4 -0.215598  0.290213
     5  0.347944  0.495767
     6 -0.142862  0.362949
     7  1.042295  1.548106
```

apply on a Series can operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame

```
In [112]: def f(x):
   ..:     return Series([ x, x**2 ], index = ['x', 'x^s'])

In [113]: s
Out[113]:
  0  9.0
  1  8.0
  2  7.0
  3  5.0
  4  9.0
  5  1.0
  6  4.2
  7  3.3
dtype: float64

In [114]: s.apply(f)
Out[114]:
     x     x^s
    0  9.0   81.00
    1  8.0   64.00
    2  7.0   49.00
    3  5.0   25.00
```
Note: apply can act as a reducer, transformer, or filter function, depending on exactly what is passed to apply. So depending on the path taken, and exactly what you are grouping. Thus the grouped columns(s) may be included in the output as well as set the indices.

Warning: In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group.

In [115]: d = DataFrame({"a": ["x", "y"], "b": [1,2]})

In [116]: def identity(df):
 : print df
 : return df
 :

In [117]: d.groupby("a").apply(identity)

14.8 Other useful features

14.8.1 Automatic exclusion of “nuisance” columns

Again consider the example DataFrame we’ve been looking at:

In [118]: df
Out[118]:
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>foo</td>
<td>one</td>
<td>-0.919854</td>
<td>-1.131345</td>
</tr>
<tr>
<td>bar</td>
<td>one</td>
<td>-0.042379</td>
<td>-0.089329</td>
</tr>
<tr>
<td>foo</td>
<td>two</td>
<td>1.247642</td>
<td>0.337863</td>
</tr>
<tr>
<td>bar</td>
<td>three</td>
<td>-0.009920</td>
<td>-0.945867</td>
</tr>
<tr>
<td>foo</td>
<td>two</td>
<td>0.290213</td>
<td>-0.932132</td>
</tr>
<tr>
<td>bar</td>
<td>two</td>
<td>0.495767</td>
<td>1.956030</td>
</tr>
<tr>
<td>foo</td>
<td>one</td>
<td>0.362949</td>
<td>0.017587</td>
</tr>
<tr>
<td>foo</td>
<td>three</td>
<td>1.548106</td>
<td>-0.016692</td>
</tr>
</tbody>
</table>

Supposed we wished to compute the standard deviation grouped by the A column. There is a slight problem, namely that we don’t care about the data in column B. We refer to this as a “nuisance” column. If the passed aggregation
function can’t be applied to some columns, the troublesome columns will be (silently) dropped. Thus, this does not pose any problems:

```python
In [119]: df.groupby('A').std()
Out[119]:
         C   D
A
bar  0.301765 1.490982
foo  0.966450 0.645875
```

14.8.2 NA group handling

If there are any NaN values in the grouping key, these will be automatically excluded. So there will never be an “NA group”. This was not the case in older versions of pandas, but users were generally discarding the NA group anyway (and supporting it was an implementation headache).

14.8.3 Grouping with ordered factors

Categorical variables represented as instance of pandas’s `Categorical` class can be used as group keys. If so, the order of the levels will be preserved:

```python
In [120]: data = Series(np.random.randn(100))
In [121]: factor = qcut(data, [0, .25, .5, .75, 1.])
In [122]: data.groupby(factor).mean()
```

```
Out[122]:
[[-2.617, -0.684]  -1.331461
  (-0.684, -0.0232]  -0.272816
  (-0.0232, 0.541]   0.263607
  (0.541, 2.369]    1.166038
]  dtype: float64
```

14.8.4 Grouping with a Grouper specification

Your may need to specify a bit more data to properly group. You can use the `pd.Grouper` to provide this local control.

```python
In [123]: import datetime as DT
In [124]: df = DataFrame({
          ....:
  'Branch' : 'A A A A A A A B'.split(),
  'Buyer': 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
    ....:
  'Quantity': [1,3,5,1,8,1,9,3],
  'Date' : [
          ....:
    DT.datetime(2013,1,1,13,0),
          ....:
    DT.datetime(2013,1,1,13,5),
          ....:
    DT.datetime(2013,10,1,20,0),
          ....:
    DT.datetime(2013,10,2,10,0),
          ....:
    DT.datetime(2013,10,1,20,0),
          ....:
    DT.datetime(2013,10,2,10,0),
          ....:
    DT.datetime(2013,12,2,12,0),
          ....:
    DT.datetime(2013,12,2,14,0),
          ....:
})
```

Chapter 14. Group By: split-apply-combine

In [125]: df
Out[125]:
<table>
<thead>
<tr>
<th>Branch</th>
<th>Buyer</th>
<th>Date</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2013-01-01</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>2013-01-01</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2013-10-01</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>2013-10-02</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>2013-10-01</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>2013-10-02</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>2013-12-02</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>2013-12-02</td>
<td>3</td>
</tr>
</tbody>
</table>

Groupby a specific column with the desired frequency. This is like resampling.

In [126]: df.groupby([pd.Grouper(freq='1M', key='Date'), 'Buyer']).sum()
Out[126]:
<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-31</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2013-10-31</td>
<td>Carl</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>9</td>
</tr>
<tr>
<td>2013-12-31</td>
<td>Carl</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>9</td>
</tr>
</tbody>
</table>

You have an ambiguous specification in that you have a named index and a column that could be potential groupers.

In [127]: df = df.set_index('Date')
In [128]: df['Date'] = df.index + pd.offsets.MonthEnd(2)
In [129]: df.groupby([pd.Grouper(freq='6M', key='Date'), 'Buyer']).sum()
Out[129]:
<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-02-28</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2014-02-28</td>
<td>Carl</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>18</td>
</tr>
</tbody>
</table>

In [130]: df.groupby([pd.Grouper(freq='6M', level='Date'), 'Buyer']).sum()
Out[130]:
<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-31</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2014-01-31</td>
<td>Carl</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>18</td>
</tr>
</tbody>
</table>

14.8.5 Taking the first rows of each group

Just like for a DataFrame or Series you can call head and tail on a groupby:

In [131]: df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
In [132]: df
Out[132]:
 A B
0 1 2
1 1 4
2 5 6

In [133]: g = df.groupby('A')

In [134]: g.head(1)
Out[134]:
 A B
0 1 2
1 5 6

In [135]: g.tail(1)
Out[135]:
 A B
1 1 4
2 5 6

This shows the first or last n rows from each group.

Warning: Before 0.14.0 this was implemented with a fall-through apply, so the result would incorrectly respect the as_index flag:

```python
>>> g.head(1):  # was equivalent to g.apply(lambda x: x.head(1))
   A  B
A  1  0  1  2
   5  2  5  6
```

14.8.6 Taking the nth row of each group

To select from a DataFrame or Series the nth item, use the nth method. This is a reduction method, and will return a single row (or no row) per group:

In [136]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [137]: g = df.groupby('A')

In [138]: g.nth(0)
Out[138]:
 B
A
1 NaN
5 6

In [139]: g.nth(-1)
Out[139]:
 B
A
1 4
5 6

In [140]: g.nth(1)
If you want to select the nth not-null method, use the `dropna` kwarg. For a DataFrame this should be either 'any' or 'all' just like you would pass to `dropna`, for a Series this just needs to be truthy.

```python
# nth(0) is the same as g.first()
In [141]: g.nth(0, dropna='any')
Out[141]:
   B
A  1  4
  5  6

In [142]: g.first()
Out[142]:
   B
A  1  4
  5  6

# nth(-1) is the same as g.last()
In [143]: g.nth(-1, dropna='any')  # NaNs denote group exhausted when using dropna
Out[143]:
   B
A  1  4
  5  6

In [144]: g.last()
Out[144]:
   B
A  1  4
  5  6

In [145]: g.B.nth(0, dropna=True)
Out[145]:
   A
A  1  4
  5  6
Name: B, dtype: float64
```

As with other methods, passing `as_index=False`, will achieve a filtration, which returns the grouped row.

```python
In [146]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [147]: g = df.groupby('A', as_index=False)

In [148]: g.nth(0)
Out[148]:
   A   B
0  1  NaN
2  5   6

In [149]: g.nth(-1)
Out[149]:
   A   B
0  1  NaN
2  5   6
```

14.8. Other useful features 389
14.8.7 Enumerate group items

New in version 0.13.0. To see the order in which each row appears within its group, use the `cumcount` method:

```
In [150]: df = pd.DataFrame(list('aaabba'), columns=['A'])
In [151]: df
Out[151]:
   A
0  a
1  a
2  a
3  b
4  b
5  a
```

```
In [152]: df.groupby('A').cumcount()
Out[152]:
0  0
1  1
2  2
3  0
4  1
5  3
dtype: int64
```

```
In [153]: df.groupby('A').cumcount(ascending=False)  # kwarg only
Out[153]:
0  3
1  2
2  1
3  1
4  0
5  0
dtype: int64
```

14.8.8 Plotting

Groupby also works with some plotting methods. For example, suppose we suspect that some features in a DataFrame my differ by group, in this case, the values in column 1 where the group is “B” are 3 higher on average.

```
In [154]: np.random.seed(1234)
In [155]: df = DataFrame(np.random.randn(50, 2))
In [156]: df['g'] = np.random.choice(['A', 'B'], size=50)
In [157]: df.loc[df['g'] == 'B', 1] += 3
```

We can easily visualize this with a boxplot:

```
In [158]: df.groupby('g').boxplot()
Out[158]: OrderedDict([('A', {'medians': [<matplotlib.lines.Line2D object at 0xa2f2126c>, <matplotlib.lines.Line2D object at 0xa2f323ec>, <matplotlib.lines.Line2D object at 0xa2c6474c>, <matplotlib.lines.Line2D object at 0xa28f246c>], 'means': [0.013716741607, 0.013716741607, 0.013716741607, 0.013716741607], 'q1': [0.25, 0.25, 0.25, 0.25], 'q3': [0.4925, 0.4925, 0.4925, 0.4925], 'fliers': [0.013716741607, 0.013716741607, 0.013716741607, 0.013716741607]], 'B', {'medians': [0.013716741607, 0.013716741607, 0.013716741607, 0.013716741607], 'means': [0.013716741607, 0.013716741607, 0.013716741607, 0.013716741607], 'q1': [0.25, 0.25, 0.25, 0.25], 'q3': [0.4925, 0.4925, 0.4925, 0.4925], 'fliers': [0.013716741607, 0.013716741607, 0.013716741607, 0.013716741607]])
```
The result of calling `boxplot` is a dictionary whose keys are the values of our grouping column `g` (“A” and “B”). The values of the resulting dictionary can be controlled by the `return_type` keyword of `boxplot`. See the visualization documentation for more.

Warning: For historical reasons, `df.groupby("g").boxplot()` is not equivalent to `df.boxplot(by="g")`. See [here](#) for an explanation.

14.9 Examples

14.9.1 Regrouping by factor

Regroup columns of a DataFrame according to their sum, and sum the aggregated ones.

```
In [159]: df = pd.DataFrame({'a':[1,0,0], 'b':[0,1,0], 'c':[1,0,0], 'd':[2,3,4]})
```

```
In [160]: df
Out[160]:
   a  b  c  d
0  1  0  1  2
1  0  1  0  3
2  0  0  0  4
```

```
In [161]: df.groupby(df.sum(), axis=1).sum()
Out[161]:
   0  1  2
0  1  9
1  0  2
2  1  3
   0  4
```
14.9.2 Returning a Series to propagate names

Group DataFrame columns, compute a set of metrics and return a named Series. The Series name is used as the name for the column index. This is especially useful in conjunction with reshaping operations such as stacking in which the column index name will be used as the name of the inserted column:

```python
In [162]: df = pd.DataFrame(
    .....:     'a': [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],
    .....:     'b': [0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0],
    .....:     'c': [0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0],
    .....:     'd': [0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1],
    .....:     )
......:

In [163]: def compute_metrics(x):
    .....:     result = {'b_sum': x['b'].sum(), 'c_mean': x['c'].mean()}
    .....:     return pd.Series(result, name='metrics')
    .....:

In [164]: result = df.groupby('a').apply(compute_metrics)
```

```
In [165]: result
Out[165]:
               b_sum  c_mean
a
0       2.0    0.5
1       2.0    0.5
2       2.0    0.5

In [166]: result.stack()
Out[166]:
   a metrics
0      a  b_sum  2.0
      a  c_mean  0.5
1      a  b_sum  2.0
      a  c_mean  0.5
2      a  b_sum  2.0
      a  c_mean  0.5
dtype: float64
```
CHAPTER
FIFTEEN

MERGE, JOIN, AND CONCATENATE

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

15.1 Concatenating objects

The `concat` function (in the main pandas namespace) does all of the heavy lifting of performing concatenation operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other axes. Note that I say “if any” because there is only a single possible axis of concatenation for Series.

Before diving into all of the details of `concat` and what it can do, here is a simple example:

```
In [1]: df = DataFrame(np.random.randn(10, 4))

In [2]: df
Out[2]:
        0     1     2     3
0  0.469112 -0.282863 -1.509059 -1.135632
1  1.212112 -0.173215  0.119209 -1.044236
2 -0.861849 -2.104569 -0.494929  1.071804
3  0.721555 -0.706771 -1.039575  0.271860
4 -0.424972  0.567020  0.276232 -1.087401
5 -0.673690  0.113648 -1.478427  0.524988
6  0.404705  0.577046 -1.715002 -1.039268
7 -0.370647 -1.157892 -1.344312  0.844885
8  1.075770 -0.109050  1.643563 -1.469388
9  0.357021 -0.674600 -1.776904 -0.968914

# break it into pieces
In [3]: pieces = [df[:3], df[3:7], df[7:]]

In [4]: concatenated = concat(pieces)

In [5]: concatenated
Out[5]:
        0     1     2     3
0  0.469112 -0.282863 -1.509059 -1.135632
1  1.212112 -0.173215  0.119209 -1.044236
2 -0.861849 -2.104569 -0.494929  1.071804
3  0.721555 -0.706771 -1.039575  0.271860
4 -0.424972  0.567020  0.276232 -1.087401
5 -0.673690  0.113648 -1.478427  0.524988
6  0.404705  0.577046 -1.715002 -1.039268
7 -0.370647 -1.157892 -1.344312  0.844885
8  1.075770 -0.109050  1.643563 -1.469388
9  0.357021 -0.674600 -1.776904 -0.968914
```
Like its sibling function on ndarrays, `numpy.concatenate`, `pandas.concat` takes a list or dict of homogeneously-typed objects and concatenates them with some configurable handling of “what to do with the other axes”:

```python
concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
       keys=None, levels=None, names=None, verify_integrity=False)
```

- `objs`: list or dict of Series, DataFrame, or Panel objects. If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below)
- `axis`: {0, 1, ...}, default 0. The axis to concatenate along
- `join`: {'inner', 'outer'}, default 'outer'. How to handle indexes on other axis(es). Outer for union and inner for intersection
- `join_axes`: list of Index objects. Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic
- `keys`: sequence, default None. Construct hierarchical index using the passed keys as the outermost level. If multiple levels passed, should contain tuples.
- `levels`: list of sequences, default None. If keys passed, specific levels to use for the resulting MultiIndex. Otherwise they will be inferred from the keys
- `names`: list, default None. Names for the levels in the resulting hierarchical index
- `verify_integrity`: boolean, default False. Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation
- `ignore_index`: boolean, default False. If True, do not use the index values on the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information.

Without a little bit of context and example many of these arguments don’t make much sense. Let’s take the above example. Suppose we wanted to associate specific keys with each of the pieces of the chopped up DataFrame. We can do this using the `keys` argument:

```python
In [6]: concatenated = concat(pieces, keys=['first', 'second', 'third'])
```

```python
In [7]: concatenated
Out[7]:
```

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
<td></td>
</tr>
<tr>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>1.071804</td>
</tr>
<tr>
<td>second</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
<td></td>
</tr>
<tr>
<td>0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
<td></td>
</tr>
<tr>
<td>0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
<td></td>
</tr>
<tr>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
<td>-1.039268</td>
<td></td>
</tr>
<tr>
<td>third</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.370647</td>
<td>-1.157892</td>
<td>-1.344312</td>
<td>0.844885</td>
<td></td>
</tr>
<tr>
<td>1.075770</td>
<td>-0.109050</td>
<td>1.643563</td>
<td>-1.469388</td>
<td></td>
</tr>
<tr>
<td>0.357021</td>
<td>-0.674600</td>
<td>-1.776904</td>
<td>-0.968914</td>
<td></td>
</tr>
</tbody>
</table>
```

As you can see (if you’ve read the rest of the documentation), the resulting object’s index has a hierarchical index. This means that we can now do stuff like select out each chunk by key:
In [8]: concatenated.ix['second']
Out[8]:
0 1 2 3
3 0.721555 -0.706771 -1.039757 0.271860
4 -0.424972 0.567020 0.276232 -1.087401
5 -0.673690 0.113648 -1.478427 0.524988
6 0.404705 0.577046 -1.715002 -1.039268

It’s not a stretch to see how this can be very useful. More detail on this functionality below.

15.1.1 Set logic on the other axes

When gluing together multiple DataFrames (or Panels or...), for example, you have a choice of how to handle the other axes (other than the one being concatenated). This can be done in three ways:

- Take the (sorted) union of them all, join=’outer’. This is the default option as it results in zero information loss.
- Take the intersection, join=’inner’.
- Use a specific index (in the case of DataFrame) or indexes (in the case of Panel or future higher dimensional objects), i.e. the join_axes argument

Here is an example of each of these methods. First, the default join=’outer’ behavior:

In [9]: from pandas.util.testing import rands

In [10]: df = DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'],
 : index=[rands(5) for _ in range(10)])
 :

In [11]: df
Out[11]:
 a b c d
Ch8kU -1.294524 0.413738 0.276662 -0.472035
xi63w -0.013960 -0.362543 -0.006154 -0.923061
tv1FR 0.895717 0.805244 -1.206412 2.565646
X12HN 1.431256 1.340309 -1.170299 0.226169
5xOkN 0.410835 0.813850 0.132003 -0.827317
wbHF6 -0.076467 -1.187678 1.130127 -1.436737
P0rpc -1.413681 1.607920 1.024180 0.569605
6TVnm 0.875906 -2.211372 0.974466 -2.006747
eGujd -0.410001 -0.078638 0.545952 -1.219217
lropa -1.226825 0.769804 -1.281247 -0.727707

In [12]: concat([df.ix[:, ['a', 'b']], df.ix[2:-2, ['c']],
 : df.ix[-7:, ['d']], axis=1)
 :
Out[12]:
 a b c d
5xOkN 0.410835 0.813850 0.132003 -0.827317
6TVnm NaN NaN 0.974466 -2.006747
Ch8kU -1.294524 0.413738 NaN NaN
P0rpc -1.413681 1.607920 1.024180 0.569605
X12HN 1.431256 1.340309 -1.170299 -0.226169
eGujd NaN NaN NaN -1.219217
lropa NaN NaN NaN -0.727707
tv1FR 0.895717 0.805244 -1.206412 NaN

15.1. Concatenating objects
Note that the row indexes have been unioned and sorted. Here is the same thing with `join='inner'`:

```
In [13]: concat([df.ix[:7, ['a', 'b']], df.ix[2:-2, ['c']],
   ....:   df.ix[-7:, ['d']], axis=1, join='inner')
   ....:
Out[13]:
   a      b      c      d
X12HN   1.431256 1.340309 -1.170299 -0.226169
5xOkN   0.410835 0.813850  0.132003 -0.827317
wbHF6  -0.076467 -1.187678  1.130127 -1.436737
P0rpc  -1.413681 1.607920  1.024180  0.569605
```

Lastly, suppose we just wanted to reuse the exact index from the original DataFrame:

```
In [14]: concat([df.ix[:7, ['a', 'b']], df.ix[2:-2, ['c']],
   ....:   df.ix[-7:, ['d']], axis=1, join_axes=[df.index])
   ....:
Out[14]:
   a      b      c      d
Ch8kU   -1.294524 0.413738 NaN   NaN
xI63w  -0.013960 -0.362543 NaN   NaN
tvFR   0.895717 0.805244 -1.206412 NaN
X12HN   1.431256 1.340309 -1.170299 -0.226169
5xOkN   0.410835 0.813850  0.132003 -0.827317
wbHF6  -0.076467 -1.187678  1.130127 -1.436737
P0rpc  -1.413681 1.607920  1.024180  0.569605
6TVnm  NaN    NaN    0.974466 -2.006747
eGujd  NaN    NaN    NaN   -1.219217
lropa  NaN    NaN    NaN   -0.727707
```

15.1.2 Concatenating using append

A useful shortcut to `concat` are the `append` instance methods on Series and DataFrame. These methods actually predated `concat`. They concatenate along `axis=0`, namely the index:

```
In [15]: s = Series(randn(10), index=np.arange(10))
In [16]: s1 = s[:5]  # note we're slicing with labels here, so 5 is included
In [17]: s2 = s[6:]
In [18]: s1.append(s2)
Out[18]:
   0  -0.121306
   1   0.097883
   2   0.695775
   3   0.341734
   4   0.959726
   6  -0.619976
   7   0.149748
   8  -0.732339
   9   0.687738
dtype: float64
```

In the case of DataFrame, the indexes must be disjoint but the columns do not need to be:
```
In [19]: df = DataFrame(randn(6, 4), index=date_range('1/1/2000', periods=6),
       ...: columns=['A', 'B', 'C', 'D'])
....:
In [20]: df1 = df.ix[:3]
In [21]: df2 = df.ix[3:, :3]
In [22]: df1
Out[22]:
          A      B      C      D
2000-01-01  0.176444  0.403310 -0.154951  0.301624
2000-01-02 -2.179861 -1.369849 -0.954208  1.462696
2000-01-03 -1.743161 -0.826591 -0.345352  1.314232
In [23]: df2
Out[23]:
          A      B      C
2000-01-04  0.690579  0.995761  2.396780
2000-01-05  3.357427 -0.317441 -1.236269
2000-01-06 -0.487602 -0.082240 -2.182937
In [24]: df1.append(df2)
Out[24]:
          A      B      C      D
2000-01-01  0.176444  0.403310 -0.154951  0.301624
2000-01-02 -2.179861 -1.369849 -0.954208  1.462696
2000-01-03 -1.743161 -0.826591 -0.345352  1.314232
2000-01-04  0.690579  0.995761  2.396780   NaN
2000-01-05  3.357427 -0.317441 -1.236269   NaN
2000-01-06 -0.487602 -0.082240 -2.182937   NaN
```

The `append` method may take multiple objects to concatenate:

```
In [25]: df1 = df.ix[:2]
In [26]: df2 = df.ix[2:4]
In [27]: df3 = df.ix[4:]
In [28]: df1.append([df2, df3])
Out[28]:
          A      B      C      D
2000-01-01  0.176444  0.403310 -0.154951  0.301624
2000-01-02 -2.179861 -1.369849 -0.954208  1.462696
2000-01-03 -1.743161 -0.826591 -0.345352  1.314232
2000-01-04  0.690579  0.995761  2.396780   NaN
2000-01-05  3.357427 -0.317441 -1.236269   NaN
2000-01-06 -0.487602 -0.082240 -2.182937   NaN
```

Note: Unlike the `list.append` method, which appends to the original list and returns nothing, `append` here does not modify `df1` and returns its copy with `df2` appended.

15.1. Concatenating objects
15.1.3 Ignoring indexes on the concatenation axis

For DataFrames which don’t have a meaningful index, you may wish to append them and ignore the fact that they may have overlapping indexes:

```
In [29]: df1 = DataFrame(randn(6, 4), columns=['A', 'B', 'C', 'D'])
In [30]: df2 = DataFrame(randn(3, 4), columns=['A', 'B', 'C', 'D'])
In [31]: df1
Out[31]:
    A  B  C  D
0  0.084844  0.432390  1.519970  -0.493662
1  0.600178  0.274230  0.132885  -0.023688
2  2.410179  1.450520  0.206053  -0.251905
3 -2.213588  1.063327  1.266143  0.299368
4 -0.863838  0.408204  -1.048089  0.295747
5 -0.988387  0.094055  1.262731  1.289997

In [32]: df2
Out[32]:
    A    B     C      D
0  0.082423 -0.055758  0.536580  -0.489682
1  0.369374 -0.034571 -2.484478  -0.281461
2  0.030711  0.109121  1.126203  -0.977349

To do this, use the ignore_index argument:

In [33]: concat([df1, df2], ignore_index=True)
Out[33]:
    A         B         C         D
0  0.084844  0.432390  1.519970  -0.493662
1  0.600178  0.274230  0.132885  -0.023688
2  2.410179  1.450520  0.206053  -0.251905
3 -2.213588  1.063327  1.266143  0.299368
4 -0.863838  0.408204  -1.048089  0.295747
5 -0.988387  0.094055  1.262731  1.289997
6  0.082423 -0.055758  0.536580  -0.489682
7  0.369374 -0.034571 -2.484478  -0.281461
8  0.030711  0.109121  1.126203  -0.977349

This is also a valid argument to DataFrame.append:

In [34]: df1.append(df2, ignore_index=True)
Out[34]:
    A         B         C         D
0  0.084844  0.432390  1.519970  -0.493662
1  0.600178  0.274230  0.132885  -0.023688
2  2.410179  1.450520  0.206053  -0.251905
3 -2.213588  1.063327  1.266143  0.299368
4 -0.863838  0.408204  -1.048089  0.295747
5 -0.988387  0.094055  1.262731  1.289997
6  0.082423 -0.055758  0.536580  -0.489682
7  0.369374 -0.034571 -2.484478  -0.281461
8  0.030711  0.109121  1.126203  -0.977349
15.1.4 Concatenating with mixed ndims

You can concatenate a mix of Series and DataFrames. The Series will be transformed to DataFrames with the column name as the name of the Series.

```
In [35]: df1 = DataFrame(randn(6, 4), columns=['A', 'B', 'C', 'D'])

In [36]: s1 = Series(randn(6), name='foo')

In [37]: concat([df1, s1], axis=1)
```

```
Out[37]:
 A B C D foo
0 1.474071 -0.064034 -1.282782 0.781836 -1.197071
1 -1.071357 0.441153 2.353925 0.583787 -1.066969
2 0.221471 -0.744471 0.758527 1.729689 -0.303421
3 -0.964980 -0.845696 -1.340896 1.846883 -0.858447
4 -1.328865 1.682706 -1.717693 0.888782 0.306996
5 0.228440 0.901805 1.171216 0.520260 -0.028665
```

If unnamed Series are passed they will be numbered consecutively.

```
In [38]: s2 = Series(randn(6))

In [39]: concat([df1, s2, s2, s2], axis=1)
```

```
Out[39]:
 A B C D 0 1 2
0 1.474071 -0.064034 -1.282782 0.781836 0.384316 0.384316 0.384316
1 -1.071357 0.441153 2.353925 0.583787 1.574159 1.574159 1.574159
2 0.221471 -0.744471 0.758527 1.729689 1.588931 1.588931 1.588931
3 -0.964980 -0.845696 -1.340896 1.846883 0.476720 0.476720 0.476720
4 -1.328865 1.682706 -1.717693 0.888782 0.473424 0.473424 0.473424
5 0.228440 0.901805 1.171216 0.520260 -0.242861 -0.242861 -0.242861
```

Passing `ignore_index=True` will drop all name references.

```
In [40]: concat([df1, s1], axis=1, ignore_index=True)
```

```
Out[40]:
 0 1 2 3 4
0 1.474071 -0.064034 -1.282782 0.781836 -1.197071
1 -1.071357 0.441153 2.353925 0.583787 -1.066969
2 0.221471 -0.744471 0.758527 1.729689 -0.303421
3 -0.964980 -0.845696 -1.340896 1.846883 -0.858447
4 -1.328865 1.682706 -1.717693 0.888782 0.306996
5 0.228440 0.901805 1.171216 0.520260 -0.028665
```

15.1.5 More concatenating with group keys

Let’s consider a variation on the first example presented:

```
In [41]: df = DataFrame(np.random.randn(10, 4))

In [42]: df
```

```
Out[42]:
 0 1 2 3
0 -0.014805 -0.284319 0.650776 -1.461665
1 -1.137707 -0.891060 -0.693921 1.613616
2 0.464000 0.227371 -0.496922 0.306389
3 -2.290613 -1.134623 -1.561819 -0.260838
```
# break it into pieces
In [43]: pieces = [df.ix[:, [0, 1]], df.ix[:, [2]], df.ix[:, [3]]]

In [44]: result = concat(pieces, axis=1, keys=['one', 'two', 'three'])

In [45]: result
Out[45]:
   one  two  three
0  0.014805 -0.284319  0.650776 -1.461665
1 -1.137707 -0.891060 -0.693921  1.613616
2  0.464000  0.227371 -0.496922  0.306389
3 -2.290613 -1.134623 -1.561819  0.260838
4  0.281957  1.523962 -0.902937  0.068159
5 -0.057873 -0.368204  0.861209 -1.144073
6  0.800193  0.782098 -1.069094 -1.099248
7  0.255269  0.009750  0.661084  0.379319
8 -0.008434  1.952541 -1.056652  0.533946
9 -1.226970  0.040403 -0.507516  0.230096

You can also pass a dict to `concat` in which case the dict keys will be used for the `keys` argument (unless other keys are specified):

In [46]: pieces = {'one': df.ix[:, [0, 1]],
               ....:     'two': df.ix[:, [2]],
               ....:     'three': df.ix[:, [3]]}

In [47]: concat(pieces, axis=1)
Out[47]:
   one  three  two
0  0.014805 -1.461665  0.650776
1 -1.137707  1.613616 -0.693921
2  0.464000  0.306389 -0.496922
3 -2.290613 -1.561819  0.260838
4  0.281957 -0.902937  0.068159
5 -0.057873  0.861209 -1.144073
6  0.800193 -1.069094  0.306389
7  0.255269 -1.099248  0.661084
8 -0.008434 -1.56652  0.533946
9 -1.226970 -0.230096  0.230096

In [48]: concat(pieces, keys=['three', 'two'])
Out[48]:

   three  two
0  NaN  1.461665
1  NaN  1.613616
2  NaN  0.306389
3  NaN -0.260838
4  NaN  0.068159
The MultiIndex created has levels that are constructed from the passed keys and the columns of the DataFrame pieces:

```
In [49]: result.columns.levels
Out[49]: FrozenList([u'one', u'two', u'three'], [0, 1, 2, 3])
```

If you wish to specify other levels (as will occasionally be the case), you can do so using the **levels** argument:

```
In [50]: result = concat(pieces, axis=1, keys=['one', 'two', 'three'],
 levels=[['three', 'two', 'one', 'zero']],
 names=['group_key'])
```

```
In [51]: result
Out[51]:
group_key one two three
0 1 2 3
0 -0.014805 -0.284319 0.650776 -1.461665
1 -1.137707 -0.891060 -0.693921 1.613616
2 0.464000 0.227371 -0.496922 0.306389
3 -2.290613 -1.134623 -1.561819 -0.260838
4 0.281957 1.523962 -0.902937 0.068159
5 -0.057873 -0.368204 -1.144073 0.861209
6 0.800193 0.782098 -1.069094 -1.099248
7 0.255269 0.009750 0.661084 0.379319
8 -0.008434 1.952541 -1.056652 0.533946
9 -1.226970 0.040403 -0.507516 -0.230096
```

```
In [52]: result.columns.levels
Out[52]: FrozenList([u'three', u'two', u'one', u'zero'], [0, 1, 2, 3])
```

Yes, this is fairly esoteric, but is actually necessary for implementing things like GroupBy where the order of a categorical variable is meaningful.

### 15.1.6 Appending rows to a DataFrame

While not especially efficient (since a new object must be created), you can append a single row to a DataFrame by passing a Series or dict to **append**, which returns a new DataFrame as above.

```
In [53]: df = DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
```

```
In [54]: df
Out[54]:
 A B C D
0 0.394500 -1.934370 -1.652499 1.488753
1 -0.896484 0.576897 1.146000 1.487349
```

**15.1. Concatenating objects**
You should use `ignore_index` with this method to instruct DataFrame to discard its index. If you wish to preserve the index, you should construct an appropriately-indexed DataFrame and append or concatenate those objects.

You can also pass a list of dicts or Series:

```python
In [57]: df = DataFrame(np.random.randn(5, 4),
 columns=['foo', 'bar', 'baz', 'qux'])

In [58]: dicts = [{'foo': 1, 'bar': 2, 'baz': 3, 'peekaboo': 4},
 {'foo': 5, 'bar': 6, 'baz': 7, 'peekaboo': 8}]

In [59]: result = df.append(dicts, ignore_index=True)
```

15.2 Database-style DataFrame joining/merging

Pandas has full-featured, high performance in-memory join operations idiomatically very similar to relational databases like SQL. These methods perform significantly better (in some cases well over an order of magnitude better) than other open source implementations (like `base::merge.data.frame` in R). The reason for this is careful algorithmic design and internal layout of the data in DataFrame.

See the cookbook for some advanced strategies.
Users who are familiar with SQL but new to pandas might be interested in a comparison with SQL.

pandas provides a single function, `merge`, as the entry point for all standard database join operations between DataFrame objects:

```python
merge(left, right, how='left', on=None, left_on=None, right_on=None,
 left_index=False, right_index=False, sort=True,
 suffixes=('_x', '_y'), copy=True)
```

Here’s a description of what each argument is for:

- **left**: A DataFrame object
- **right**: Another DataFrame object
- **on**: Columns (names) to join on. Must be found in both the left and right DataFrame objects. If not passed and `left_index` and `right_index` are False, the intersection of the columns in the DataFrames will be inferred to be the join keys
- **left_on**: Columns from the left DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- **right_on**: Columns from the right DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- **left_index**: If True, use the index (row labels) from the left DataFrame as its join key(s). In the case of a DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the right DataFrame
- **right_index**: Same usage as `left_index` for the right DataFrame
- **how**: One of 'left', 'right', 'outer', 'inner'. Defaults to 'inner'. See below for more detailed description of each method
- **sort**: Sort the result DataFrame by the join keys in lexicographical order. Defaults to `True`, setting to `False` will improve performance substantially in many cases
- **suffixes**: A tuple of string suffixes to apply to overlapping columns. Defaults to ('_x', '_y')
- **copy**: Always copy data (default `True`) from the passed DataFrame objects, even when reindexing is not necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where copying can be avoided are somewhat pathological but this option is provided nonetheless.

`merge` is a function in the pandas namespace, and it is also available as a DataFrame instance method, with the calling DataFrame being implicitly considered the left object in the join.

The related `DataFrame.join` method, uses `merge` internally for the index-on-index and index-on-column(s) joins, but `joins on indexes` by default rather than trying to join on common columns (the default behavior for `merge`). If you are joining on index, you may wish to use `DataFrame.join` to save yourself some typing.

### 15.2.1 Brief primer on merge methods (relational algebra)

Experienced users of relational databases like SQL will be familiar with the terminology used to describe join operations between two SQL-table like structures (DataFrame objects). There are several cases to consider which are very important to understand:

- **one-to-one** joins: for example when joining two DataFrame objects on their indexes (which must contain unique values)
- **many-to-one** joins: for example when joining an index (unique) to one or more columns in a DataFrame
- **many-to-many** joins: joining columns on columns.
Note: When joining columns on columns (potentially a many-to-many join), any indexes on the passed DataFrame objects will be discarded.

It is worth spending some time understanding the result of the many-to-many join case. In SQL / standard relational algebra, if a key combination appears more than once in both tables, the resulting table will have the Cartesian product of the associated data. Here is a very basic example with one unique key combination:

In [61]: left = DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [62]: right = DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [63]: left
Out[63]:
key  lval
0   foo  1
1   foo  2

In [64]: right
Out[64]:
key  rval
0   foo  4
1   foo  5

In [65]: merge(left, right, on='key')
Out[65]:
key  lval  rval
0   foo   1   4
1   foo   1   5
2   foo   2   4
3   foo   2   5

Here is a more complicated example with multiple join keys:

In [66]: left = DataFrame({'key1': ['foo', 'foo', 'bar'],
                     'key2': ['one', 'two', 'one'],
                     'lval': [1, 2, 3]})

In [67]: right = DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
                        'key2': ['one', 'one', 'one', 'two'],
                        'rval': [4, 5, 6, 7]})

In [68]: merge(left, right, how='outer')
Out[68]:
key1  key2  lval  rval
0   foo   one   1   4
1   foo   one   1   5
2   foo   two   2   NaN
3   bar   one   3   6
4   bar   two   NaN   7

In [69]: merge(left, right, how='inner')
Out[69]:
key1  key2  lval  rval
0   foo   one   1   4
1   foo   one   1   5
The `how` argument to `merge` specifies how to determine which keys are to be included in the resulting table. If a key combination does not appear in either the left or right tables, the values in the joined table will be NA. Here is a summary of the `how` options and their SQL equivalent names:

<table>
<thead>
<tr>
<th>Merge method</th>
<th>SQL Join Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>left</td>
<td>LEFT OUTER JOIN</td>
<td>Use keys from left frame only</td>
</tr>
<tr>
<td>right</td>
<td>RIGHT OUTER JOIN</td>
<td>Use keys from right frame only</td>
</tr>
<tr>
<td>outer</td>
<td>FULL OUTER JOIN</td>
<td>Use union of keys from both frames</td>
</tr>
<tr>
<td>inner</td>
<td>INNER JOIN</td>
<td>Use intersection of keys from both frames</td>
</tr>
</tbody>
</table>

### 15.2.2 Joining on index

`DataFrame.join` is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame. Here is a very basic example:

```python
In [70]: df = DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
In [71]: df1 = df.ix[1:, ['A', 'B']]
In [72]: df2 = df.ix[:5, ['C', 'D']]
In [73]: df1
Out[73]:
 A B
1 -0.643834 0.421287
2 0.787872 1.515707
3 1.397431 1.503874
4 -0.730327 -0.033277
5 -2.819487 -0.851985
6 -1.537770 0.555759
7 1.207122 0.178690
In [74]: df2
Out[74]:
 C D
0 -0.649593 0.683758
1 1.032814 -1.290493
2 -0.276487 -0.223762
3 -0.478905 -0.135950
4 0.281151 -1.298915
5 -1.106952 -0.937731
In [75]: df1.join(df2)
Out[75]:
 A B C D
1 -0.643834 0.421287 1.032814 -1.290493
2 0.787872 1.515707 -0.276487 -0.223762
3 1.397431 1.503874 -0.478905 -0.135950
4 -0.730327 -0.033277 0.281151 -1.298915
5 -2.819487 -0.851985 -1.106952 -0.937731
6 -1.537770 0.555759 NaN NaN
7 1.207122 0.178690 NaN NaN
In [76]: df1.join(df2, how='outer')
Out[76]:
 A B C D
1 -0.643834 0.421287 1.032814 -1.290493
2 0.787872 1.515707 -0.276487 -0.223762
3 1.397431 1.503874 -0.478905 -0.135950
4 -0.730327 -0.033277 0.281151 -1.298915
5 -2.819487 -0.851985 -1.106952 -0.937731
6 -1.537770 0.555759 NaN NaN
7 1.207122 0.178690 NaN NaN
```
In [77]: df1.join(df2, how='inner')
Out[77]:
   A         B         C         D
0  NaN       NaN -0.649593  0.683758
1 -0.643834  0.421287  1.032814 -1.290493
2  0.787872  1.515707 -0.276487 -0.223762
3  1.397431  1.503874 -0.478905 -0.135950
4 -0.730327 -0.033277  0.281151 -1.298915
5 -2.819487 -0.851985 -1.106952 -0.937731
6 -1.537770  0.555759   NaN       NaN
7  1.207122  0.178690   NaN       NaN

The data alignment here is on the indexes (row labels). This same behavior can be achieved using merge plus additional arguments instructing it to use the indexes:

In [78]: merge(df1, df2, left_index=True, right_index=True, how='outer')
Out[78]:
   A         B         C         D
0  NaN       NaN       NaN       NaN
1 -0.643834  0.421287  1.032814 -1.290493
2  0.787872  1.515707 -0.276487 -0.223762
3  1.397431  1.503874 -0.478905 -0.135950
4 -0.730327 -0.033277  0.281151 -1.298915
5 -2.819487 -0.851985 -1.106952 -0.937731
6 -1.537770  0.555759   NaN       NaN
7  1.207122  0.178690   NaN       NaN

15.2.3 Joining key columns on an index

join takes an optional on argument which may be a column or multiple column names, which specifies that the passed DataFrame is to be aligned on that column in the DataFrame. These two function calls are completely equivalent:

left.join(right, on=key_or_keys)
merge(left, right, left_on=key_or_keys, right_index=True,
      how='left', sort=False)

Obviously you can choose whichever form you find more convenient. For many-to-one joins (where one of the DataFrame’s is already indexed by the join key), using join may be more convenient. Here is a simple example:

In [79]: df['key'] = ['foo', 'bar'] * 4
In [80]: to_join = DataFrame(randn(2, 2), index=['bar', 'foo'],
                      columns=['j1', 'j2'])

In [81]: df
Out[81]:
   A         B         C         D key
0  0.464794 -0.309337 -0.649593  0.683758 foo
1 -0.643834 0.421287 1.032814 -1.290493 bar
2 0.787872 1.515707 -0.276487 -0.223762 foo
3 1.397431 1.503874 -0.478905 -0.135950 bar
4 -0.730327 -0.033277 0.281151 -1.298915 foo
5 -2.819487 -0.851985 -1.106952 -0.937731 bar
6 -1.537770 0.555759 -2.277282 -0.390201 foo
7 1.207122 0.178690 -1.004168 -1.377627 bar

In [82]: to_join
Out[82]:
   j1          j2
bar 0.499281 -1.405256
foo 0.162565 -0.067785

In [83]: df.join(to_join, on='key')
Out[83]:
   A           B          C            D      key   j1          j2
0   0.464794 -0.309337 -0.649593  0.683758 foo  0.162565 -0.067785
1 -0.643834  0.421287  1.032814 -1.290493 bar  0.499281 -1.405256
2  0.787872  1.515707 -0.276487 -0.223762 foo  0.162565 -0.067785
3  1.397431  1.503874 -0.478905 -0.135950 bar  0.499281 -1.405256
4 -0.730327 -0.033277  0.281151 -1.298915 foo  0.162565 -0.067785
5 -2.819487 -0.851985 -1.106952 -0.937731 bar  0.499281 -1.405256
6 -1.537770  0.555759 -2.277282 -0.390201 foo  0.162565 -0.067785
7  1.207122  0.178690 -1.004168 -1.377627 bar  0.499281 -1.405256

In [84]: merge(df, to_join, left_on='key', right_index=True, how='left', sort=False)

To join on multiple keys, the passed DataFrame must have a MultiIndex:

In [85]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second'])

In [86]: to_join = DataFrame(np.random.randn(10, 3), index=index, columns=['j_one', 'j_two', 'j_three'])

# a little relevant example with NAs
In [87]: key1 = ['bar', 'bar', 'bar', 'foo', 'foo', 'baz', 'baz', 'qux', 'qux', 'snap']

In [88]: key2 = ['two', 'one', 'three', 'one', 'two', 'one', 'two', 'two', 'two', 'two']

15.2. Database-style DataFrame joining/merging
In [89]: data = np.random.randn(len(key1))

In [90]: data = DataFrame({'key1': key1, 'key2': key2, 'data': data})

In [91]: data

Out[91]:
   key1  key2  data
0 bar   two   1.50571
1 bar   one  -2.33859
2 bar   three  1.59267
3 foo   one  -1.38607
4 foo   two   1.13846
5 baz   one  -0.55186
6 baz   two  -1.15788
7 baz   three   1.55932
8 qux   one  -1.26001
9 qux   two   1.10601

In [92]: to_join

Out[92]:
    first  second
foo one   -1.26001  -1.38607
    two    0.30102   0.13846
    three   2.40063  -0.28085
bar one  -1.38607   1.50571
    two    1.05320  -2.33859
baz one  -0.37428  -2.35996
    two   -0.55186   1.59267
    three   1.55932
qux one  1.56244    0.76326
    two  -0.90270  -1.19923
    three   0.45826   0.49104

Now this can be joined by passing the two key column names:

In [93]: data.join(to_join, on=['key1', 'key2'])

Out[93]:
   key1  key2  data  j_one  j_two  j_three
0 bar   two   1.50571  1.50571  1.05320  -2.33859
1 bar   one  -2.33859  1.05320   2.40063  -0.28085
2 bar   three  1.59267  1.59267   1.55932
3 foo   one  -1.26001  0.30102   0.13846
4 foo   two   2.40063  0.30102   1.13846
5 baz   one  -0.37428  0.56363  -0.28085
6 baz   two  -0.55186  0.56363  -1.19923
7 baz   three  1.13846  0.56363   1.55932
8 qux   one  -1.38607  0.30102  -1.38607
9 qux   two  -0.55186  0.30102  -0.55186

The default for DataFrame.join is to perform a left join (essentially a “VLOOKUP” operation, for Excel users), which uses only the keys found in the calling DataFrame. Other join types, for example inner join, can be just as easily performed:
In [94]: data.join(to_join, on=['key1', 'key2'], how='inner')
Out[94]:
  key1  key2  j_one  j_two  j_three
0  1.147862 bar  1.500571  1.053202 -2.338595
1 -1.256860 bar -1.386071  0.863937  0.252462
3 -2.417312 foo -1.132896 -2.006481
4  0.972827 foo  0.301016  0.059117  1.138469
6  1.129659 baz -0.374279 -2.359958 -1.157886
7  0.086926 qux -0.902704  1.106010 -0.199234
8 -0.445645 qux  0.458265  0.491048  0.128594

As you can see, this drops any rows where there was no match.

15.2.4 Overlapping value columns

The merge `suffixes` argument takes a tuple of list of strings to append to overlapping column names in the input DataFrame to disambiguate the result columns:

In [95]: left = DataFrame({'key': ['foo', 'foo'], 'value': [1, 2]})
In [96]: right = DataFrame({'key': ['foo', 'foo'], 'value': [4, 5]})
In [97]: merge(left, right, on='key', suffixes=['_left', '_right'])
Out[97]:
    key value_left  value_right
0   foo          1          4
1   foo          1          5
2   foo          2          4
3   foo          2          5

DataFrame.join has `lsuffix` and `rsuffix` arguments which behave similarly.

15.2.5 Merging Ordered Data

New in v0.8.0 is the ordered_merge function for combining time series and other ordered data. In particular it has an optional `fill_method` keyword to fill/interpolate missing data:

In [98]: A
Out[98]:
   group  key  lvalue
0      a    a    1
1      a    c    2
2      a    e    3
3      b    a    1
4      b    c    2
5      b    e    3

In [99]: B
Out[99]:
   key  rvalue
0    b    1
1    c    2
2    d    3

In [100]: ordered_merge(A, B, fill_method='ffill', left_by='group')
Out[100]:

15.2. Database-style DataFrame joining/merging
15.2.6 Joining multiple DataFrame or Panel objects

A list or tuple of DataFrames can also be passed to DataFrame.join to join them together on their indexes. The same is true for Panel.join.

```
In [101]: df1 = df.ix[:, ['A', 'B']]
In [102]: df2 = df.ix[:, ['C', 'D']]
In [103]: df3 = df.ix[:, ['key']]
In [104]: df1
Out[104]:
 A B
0 0.464794 -0.309337
1 -0.643834 0.421287
2 0.787872 1.515707
3 1.397431 1.503874
4 -0.730327 -0.033277
5 -2.819487 -0.851985
6 -1.537770 0.555759
7 1.207122 0.178690

In [105]: df1.join([df2, df3])
Out[105]:
 A B C D key
0 0.464794 -0.309337 -0.649593 0.683758 foo
1 -0.643834 0.421287 1.032814 -1.290493 bar
2 0.787872 1.515707 -0.276487 -0.223762 foo
3 1.397431 1.503874 -0.478905 -0.135950 bar
4 -0.730327 0.033277 0.281151 -1.298915 foo
5 -2.819487 -0.851985 -1.106952 -0.937731 bar
6 -1.537770 0.555759 -2.277282 -0.390201 foo
7 1.207122 0.178690 -1.004168 -1.377627 bar
```

15.2.7 Merging together values within Series or DataFrame columns

Another fairly common situation is to have two like-indexed (or similarly indexed) Series or DataFrame objects and wanting to “patch” values in one object from values for matching indices in the other. Here is an example:

```
In [106]: df1 = DataFrame([[nan, 3., 5.], [-4.6, np.nan, nan],
 [nan, 7., nan]],
 [nan, 7., nan]])
```
For this, use the `combine_first` method:

```python
In [108]: df1.combine_first(df2)
Out[108]:
 0 1 2
0 NaN 3 5.0
1 -4.6 NaN -8.2
2 -5.0 7 4.0
```

Note that this method only takes values from the right DataFrame if they are missing in the left DataFrame. A related method, `update`, alters non-NA values inplace:

```python
In [109]: df1.update(df2)
In [110]: df1
Out[110]:
 0 1 2
0 NaN 3.0 5.0
1 -42.6 NaN -8.2
2 -5.0 1.6 4.0
```

### 15.3 Merging with Multi-indexes

#### 15.3.1 Joining a single Index to a Multi-index

New in version 0.14.0. You can join a singly-indexed DataFrame with a level of a multi-indexed DataFrame. The level will match on the name of the index of the singly-indexed frame against a level name of the multi-indexed frame.

```python
In [111]: household = DataFrame(dict(household_id = [1,2,3],
 ...: male = [0,1,0],
 ...: wealth = [196087.3,316478.7,294750]),
 ...: columns = [‘household_id’,‘male’,‘wealth’]
 ...:).set_index(‘household_id’)
 ...
In [112]: household
Out[112]:
 male wealth
household_id
1 0 196087.3
2 1 316478.7
3 0 294750.0
```

```python
In [113]: portfolio = DataFrame(dict(household_id = [1,2,2,3,3,3,4],
 ...: asset_id = ["nl0000301109","n10000289783","gb00b03mlx29",
 ...: "gb00b03mlx29","lu0197800237","n10000289965",np.nan],
 ...: name = ["ABN Amro","Robeco","Royal Dutch Shell","Royal Dutch Shell",
 ...: "AAB Eastern Europe Equity Fund","Postbank BioTech Fonds"],
 ...: share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),
 ...: columns = [‘household_id’,‘asset_id’,‘name’,‘share’]
 ...:).set_index([‘household_id’,‘asset_id’])
 ...
```
In [114]: portfolio
Out[114]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>asset_id</th>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n10000301109</td>
<td>ABN Amro</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>n10000289783</td>
<td>Robeco</td>
<td>0.40</td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
<td>Royal Dutch Shell</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>gb00b03mlx29</td>
<td>Royal Dutch Shell</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>lu0197800237</td>
<td>AAB Eastern Europe Equity Fund</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>n10000289965</td>
<td>Postbank BioTech Fonds</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>NaN</td>
<td>NaN</td>
<td>1.00</td>
</tr>
</tbody>
</table>

In [115]: household.join(portfolio, how='inner')
Out[115]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>asset_id</th>
<th>male</th>
<th>wealth</th>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n10000301109</td>
<td>0</td>
<td>196087.3</td>
<td>ABN Amro</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>n10000289783</td>
<td>1</td>
<td>316478.7</td>
<td>Robeco</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>gb00b03mlx29</td>
<td>1</td>
<td>316478.7</td>
<td>Royal Dutch Shell</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
<td>0</td>
<td>294750.0</td>
<td>Royal Dutch Shell</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>lu0197800237</td>
<td>0</td>
<td>294750.0</td>
<td>AAB Eastern Europe Equity Fund</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>n10000289965</td>
<td>0</td>
<td>294750.0</td>
<td>Postbank BioTech Fonds</td>
<td>0.25</td>
</tr>
</tbody>
</table>

This is equivalent but less verbose and more memory efficient / faster than this.

merge(household.reset_index(),
      portfolio.reset_index(),
      on=['household_id'],
      how='inner').set_index(['household_id','asset_id'])

15.3.2 Joining with two multi-indexes

This is not Implemented via `join` at-the-moment, however it can be done using the following.

In [116]:
household = DataFrame(dict(household_id = [1,2,2,3,3,3,4],
                          asset_id = ['n10000301109','n10000301109','gb00b03mlx29','gb00b03mlx29','lu0197800237','n10000289965',np.nan],
                          share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),
                     columns = ['household_id','asset_id','share'])

In [117]:
household
Out[117]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>asset_id</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n10000301109</td>
<td>1.00</td>
</tr>
</tbody>
</table>
In [118]: log_return = DataFrame(dict(asset_id = ["gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "lu0197800237", "lu0197800237"],
                        t = [233, 234, 235, 180, 181],
                        log_return = [.09604978, -.06524096, .03532373, .03025441, .036997]),
                        ).set_index(["asset_id","t"])

In [119]: log_return
Out[119]:

<table>
<thead>
<tr>
<th></th>
<th>asset_id</th>
<th>t</th>
<th>log_return</th>
</tr>
</thead>
<tbody>
<tr>
<td>gb00b03mlx29</td>
<td>233</td>
<td>0.096050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>-0.065241</td>
<td></td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>0.035324</td>
<td></td>
</tr>
<tr>
<td>lu0197800237</td>
<td>180</td>
<td>0.030254</td>
<td></td>
</tr>
<tr>
<td></td>
<td>181</td>
<td>0.036997</td>
<td></td>
</tr>
</tbody>
</table>

In [120]: merge(household.reset_index(),
            log_return.reset_index(),
            on=['asset_id'],
            how='inner').set_index(['household_id','asset_id','t'])

Out[120]:

<table>
<thead>
<tr>
<th></th>
<th>household_id</th>
<th>asset_id</th>
<th>t</th>
<th>share</th>
<th>log_return</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>gb00b03mlx29</td>
<td>233</td>
<td>0.60</td>
<td>0.096050</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>234</td>
<td>0.60</td>
<td>-0.065241</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>235</td>
<td>0.60</td>
<td>0.035324</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
<td>233</td>
<td>0.15</td>
<td>0.096050</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>234</td>
<td>0.15</td>
<td>-0.065241</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>235</td>
<td>0.15</td>
<td>0.035324</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lu0197800237</td>
<td>180</td>
<td>0.60</td>
<td>0.030254</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>181</td>
<td>0.60</td>
<td>0.036997</td>
<td></td>
</tr>
</tbody>
</table>
16.1 Reshaping by pivoting DataFrame objects

Data is often stored in CSV files or databases in so-called “stacked” or “record” format:

In [1]: df
Out[1]:

<table>
<thead>
<tr>
<th>date</th>
<th>variable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-03</td>
<td>A</td>
<td>0.469112</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>A</td>
<td>-0.282863</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>A</td>
<td>-1.509059</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>B</td>
<td>-1.135632</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>B</td>
<td>1.212112</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>B</td>
<td>-0.173215</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>C</td>
<td>0.119209</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>C</td>
<td>-1.044236</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>C</td>
<td>-0.861849</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>D</td>
<td>-2.104569</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>D</td>
<td>-0.494929</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>D</td>
<td>1.071804</td>
</tr>
</tbody>
</table>

For the curious here is how the above DataFrame was created:

```python
import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):
 N, K = frame.shape
 data = {
 'value': frame.values.ravel('F'),
 'variable': np.asarray(frame.columns).repeat(N),
 'date': np.tile(np.asarray(frame.index), K)
 }
 return DataFrame(data, columns=['date', 'variable', 'value'])

df = unpivot(tm.makeTimeDataFrame())
```

To select out everything for variable A we could do:

In [2]: df[df['variable'] == 'A']
Out[2]:

<table>
<thead>
<tr>
<th>date</th>
<th>variable</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-03</td>
<td>A</td>
<td>0.469112</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>A</td>
<td>-0.282863</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>A</td>
<td>-1.509059</td>
</tr>
</tbody>
</table>

But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and an index of dates identifies individual observations. To reshape the data into this form, use the pivot function:
pandas: powerful Python data analysis toolkit, Release 0.14.1

In [3]: df.pivot(index='date', columns='variable', values='value')
Out[3]:
variable   A   B   C   D
date
2000-01-03 0.469112 -1.135632 0.119209 -2.104569
2000-01-04 -0.282863 1.212112 -1.044236 -0.494929
2000-01-05 -1.509059 -0.173215 -0.861849 1.071804

If the values argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to pivot, then the resulting “pivoted” DataFrame will have hierarchical columns whose topmost level indicates the respective value column:

In [4]: df['value2'] = df['value'] * 2

In [5]: pivoted = df.pivot('date', 'variable')

In [6]: pivoted
Out[6]:

<table>
<thead>
<tr>
<th>variable</th>
<th>value</th>
<th>value2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.469112</td>
<td>-1.135632</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.282863</td>
<td>1.212112</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-1.509059</td>
<td>-0.173215</td>
</tr>
</tbody>
</table>

You of course can then select subsets from the pivoted DataFrame:

In [7]: pivoted['value2']
Out[7]:

variable	A	B	C	D
date				
2000-01-03	0.938225	-2.271265	0.238417	-4.209138
2000-01-04	-0.565727	2.424224	-2.088472	-0.989859
2000-01-05	-3.018117	-0.346429	-1.723698	2.143608

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

16.2 Reshaping by stacking and unstacking

Closely related to the pivot function are the related stack and unstack functions currently available on Series and DataFrame. These functions are designed to work together with MultiIndex objects (see the section on hierarchical indexing). Here are essentially what these functions do:

- **stack**: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
- **unstack**: inverse operation from stack: “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.

The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:
In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                        ...:                      'foo', 'foo', 'qux', 'qux'],
                        ...:                      ['one', 'two', 'one', 'two',
                        ...:                      'one', 'two', 'one', 'two']])))

In [9]: index = MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [10]: df = DataFrame(randn(8, 2), index=index, columns=['A', 'B'])

In [11]: df2 = df[:4]

In [12]: df2
Out[12]:
     A   B
first second
bar one 0.721555 -0.706771
  two -1.039575  0.271860
baz one -0.424972  0.567020
  two  0.276232 -1.087401

The stack function “compresses” a level in the DataFrame’s columns to produce either:

- A Series, in the case of a simple column Index
- A DataFrame, in the case of a MultiIndex in the columns

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:

In [13]: stacked = df2.stack()

In [14]: stacked
Out[14]:
     A    B
first second
bar one  A   0.721555
        B  -0.706771
  two  A  -1.039575
        B   0.271860
baz one  A  -0.424972
        B   0.567020
  two  A   0.276232
        B -1.087401
dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:

In [15]: stacked.unstack()
Out[15]:
     A    B
first second
bar one  A   0.721555
        B  -0.706771
  two  A  -1.039575
        B   0.271860
baz one  A  -0.424972
        B   0.567020
  two  A   0.276232
        B -1.087401

In [16]: stacked.unstack(1)
Out[16]:
second one  two
first
bar  A  0.721555 -1.039575
     B -0.706771  0.271860
baz  A -0.424972  0.276232
     B  0.567020 -1.087401

In [17]: stacked.unstack(0)
Out[17]:
first   bar   baz
second
one  A  0.721555 -0.424972
     B -0.706771  0.567020
two  A -1.039575  0.276232
     B  0.271860 -1.087401

If the indexes have names, you can use the level names instead of specifying the level numbers:

In [18]: stacked.unstack('second')
Out[18]:
second   one   two
first
bar  A  0.721555 -1.039575
     B -0.706771  0.271860
baz  A -0.424972  0.276232
     B  0.567020 -1.087401

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sortlevel, of course). Here is a more complex example:

In [19]: columns = MultiIndex.from_tuples([(‘A’, ‘cat’), (‘B’, ‘dog’),
                                          (‘B’, ‘cat’), (‘A’, ‘dog’)],
                                          names=[‘exp’, ‘animal’])

In [20]: df = DataFrame(randn(8, 4), index=index, columns=columns)

In [21]: df2 = df.ix[[0, 1, 2, 4, 5, 7]]

In [22]: df2
Out[22]:
exp    animal
      A     B     A
animal  cat   dog   cat   dog
first  second
bar   one  -0.370647 -1.157892 -1.344312  0.844885
     two  1.075770  -0.109050  1.643563 -1.469388
baz   one   0.357021  -0.674600 -1.776904 -0.968914
     two  -0.013960  -0.362543 -0.006154  0.4923061
foo   one  0.895717   0.805244 -1.206412  2.565646
     two  0.410835   0.813850  0.132003 -0.827317
qux   two  0.410835   0.813850  0.132003 -0.827317

As mentioned above, stack can be called with a level argument to select which level in the columns to stack:

In [23]: df2.stack(‘exp’)
Out[23]:
animal      cat   dog

Chapter 16. Reshaping and Pivot Tables
```python
In [24]: df2.stack('animal')
```

```
Out[24]:
```
```
<table>
<thead>
<tr>
<th>exp</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>first second animal cat</td>
<td>-0.370647</td>
<td>-1.344312</td>
</tr>
<tr>
<td>dog</td>
<td>0.844885</td>
<td>-1.157892</td>
</tr>
<tr>
<td>two cat</td>
<td>1.075770</td>
<td>1.643563</td>
</tr>
<tr>
<td>dog</td>
<td>-1.469388</td>
<td>-0.109050</td>
</tr>
</tbody>
</table>
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
```
pandas: powerful Python data analysis toolkit, Release 0.14.1

qux

NaN

0.410835

NaN

0.813850

NaN

0.132003

NaN

exp
animal
second
two
first
bar
-1.469388
baz
NaN
foo
2.565646
qux
-0.827317

16.3 Reshaping by Melt
The melt() function is useful to massage a DataFrame into a format where one or more columns are identifier
variables, while all other columns, considered measured variables, are “unpivoted” to the row axis, leaving just two
non-identifier columns, “variable” and “value”. The names of those columns can be customized by supplying the
var_name and value_name parameters.
For instance,
In [27]: cheese = DataFrame({’first’ : [’John’, ’Mary’],
....:
’last’ : [’Doe’, ’Bo’],
....:
’height’ : [5.5, 6.0],
....:
’weight’ : [130, 150]})
....:
In [28]: cheese
Out[28]:
first height last
0 John
5.5 Doe
1 Mary
6.0
Bo

weight
130
150

In [29]: melt(cheese, id_vars=[’first’, ’last’])
Out[29]:
first last variable value
0 John Doe
height
5.5
1 Mary
Bo
height
6.0
2 John Doe
weight 130.0
3 Mary
Bo
weight 150.0
In [30]: melt(cheese, id_vars=[’first’, ’last’], var_name=’quantity’)
Out[30]:
first last quantity value
0 John Doe
height
5.5
1 Mary
Bo
height
6.0
2 John Doe
weight 130.0
3 Mary
Bo
weight 150.0

Another way to transform is to use the wide_to_long panel data convenience function.
In [31]: dft = pd.DataFrame({"A1970" : {0 : "a", 1 : "b",
....:
"A1980" : {0 : "d", 1 : "e",
....:
"B1970" : {0 : 2.5, 1 : 1.2,
....:
"B1980" : {0 : 3.2, 1 : 1.3,
....:
"X"
: dict(zip(range(3),
....:
})

420

2 : "c"},
2 : "f"},
2 : .7},
2 : .1},
np.random.randn(3)))

Chapter 16. Reshaping and Pivot Tables


In [32]: dft["id"] = dft.index

In [33]: dft
Out[33]:
0    a    d    2.5    3.2 -0.076467  0
1    b    e    1.2    1.3 -1.187678  1
2    c    f    0.7    0.1  1.130127  2

In [34]: pd.wide_to_long(dft, ["A", "B"], i="id", j="year")
Out[34]:
   X  A  B
id year
  0 1970 -0.076467 a  2.5
  1 1970 -1.187678 b  1.2
  2 1970  1.130127 c  0.7
  0 1980 -0.076467 d  3.2
  1 1980 -1.187678 e  1.3
  2 1980  1.130127 f  0.1

16.4 Combining with stats and GroupBy

It should be no shock that combining pivot / stack / unstack with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.

In [35]: df
Out[35]:
   exp  A  B  A
animal first second  cat  dog  cat  dog
bar    one  -0.370647 -1.157892 -1.344312  0.844885
      two  1.075770 -0.109050  1.643563 -1.469388
baz    one  0.357021 -0.674600 -0.776904 -0.968914
      two -1.294524  0.413738  0.276662 -0.472035
foo    one -0.013960 -0.362543 -0.006154 -0.923061
      two  0.895717  0.805244 -1.206412  2.565646
qux    one  1.431256  1.340309 -1.170299 -0.226169
      two  0.410835  0.813850  0.132003 -0.827317

In [36]: df.stack().mean(1).unstack()
Out[36]:
   animal  cat  dog
first second
bar    one -0.857479 -0.565504
      two  1.359666 -0.789219
baz    one -0.709942 -0.821757
      two -0.508931 -0.029148
foo    one -0.010057 -0.642802
      two -0.155347  1.685445
qux    one  0.130479  0.557070
      two  0.271419 -0.006733

# same result, another way
In [37]: df.groupby(level=1, axis=1).mean()
16.5 Pivot tables and cross-tabulations

The function `pandas.pivot_table` can be used to create spreadsheet-style pivot tables. See the cookbook for some advanced strategies.

It takes a number of arguments:

- `data`: A DataFrame object
- `values`: a column or a list of columns to aggregate
- `index`: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- `columns`: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- `aggfunc`: function to use for aggregation, defaulting to `numpy.mean`

Consider a data set like this:

```
In [40]: import datetime
In [41]:
 ...: df = DataFrame({'A' : ['one', 'one', 'two', 'three'] * 6,
 ...: 'B' : ['A', 'B', 'C'] * 8,
 ...: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
 ...: 'D' : np.random.randn(24),
 ...: 'E' : np.random.randn(24),
 ...: 'F' : [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
 ...: [datetime.datetime(2013, i, 15) for i in range(1, 13)_UC3_F2018]})
 ...
```

In this example, we have:

- A: a categorical variable with three levels: one, two, three
- B: another categorical variable with three levels: A, B, C
- C: a numerical variable consisting of repeated strings: foo, foo, foo, bar, bar, bar
- D: a numerical variable generated from random normal distribution
- E: another numerical variable generated from random normal distribution
- F: a datetime variable generated from a range of dates

We can use `pandas.pivot_table` to create a pivot table based on these variables. For example:

```
In [42]: pivot_table = pandas.pivot_table(df, index='A', columns='B', values='C', aggfunc='mean')
```

This will create a pivot table with the mean of the 'C' values grouped by 'A' and 'B'. The result will be a DataFrame where the index is 'A', the columns are 'B', and the values are the means of 'C'.

```
 B A
 A B C
 --- ----- ----- ----
 A 0.50000 0.00000 0.50000
 B 0.50000 0.00000 0.50000
 C 0.50000 0.00000 0.50000
```

This table shows the mean of 'C' values for each combination of 'A' and 'B'. For example, in the cell where 'A' is 'A' and 'B' is 'B', the mean of 'C' is 0.50000.
We can produce pivot tables from this data very easily:

In 
```python
pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
```
Out:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>foo</td>
<td>bar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In 
```python
pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)
```
Out:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In 
```python
pivot_table(df, values=['D','E'], index=['B'], columns=['A', 'C'], aggfunc=np.sum)
```
Out:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16.5. Pivot tables and cross-tabulations
The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the `values` column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:

```
In [46]: pivot_table(df, index=['A', 'B'], columns=['C'])
Out[46]:

<table>
<thead>
<tr>
<th></th>
<th>bar</th>
<th>foo</th>
<th>bar</th>
<th>foo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.274863</td>
<td>-1.327977</td>
<td>-1.095238</td>
<td>-0.338421</td>
</tr>
<tr>
<td>B</td>
<td>-0.079051</td>
<td>-1.320253</td>
<td>0.699535</td>
<td>-0.538846</td>
</tr>
<tr>
<td>C</td>
<td>0.377300</td>
<td>-0.832506</td>
<td>1.120915</td>
<td>-0.843645</td>
</tr>
<tr>
<td>three A</td>
<td>-0.128534</td>
<td>NaN</td>
<td>0.433512</td>
<td>NaN</td>
</tr>
<tr>
<td>B</td>
<td>NaN</td>
<td>0.835120</td>
<td>NaN</td>
<td>0.588783</td>
</tr>
<tr>
<td>C</td>
<td>-0.037012</td>
<td>NaN</td>
<td>-1.115381</td>
<td>NaN</td>
</tr>
<tr>
<td>two A</td>
<td>NaN</td>
<td>-1.154627</td>
<td>NaN</td>
<td>0.158248</td>
</tr>
<tr>
<td>B</td>
<td>-0.594487</td>
<td>NaN</td>
<td>1.179433</td>
<td>NaN</td>
</tr>
<tr>
<td>C</td>
<td>NaN</td>
<td>1.188862</td>
<td>NaN</td>
<td>1.000985</td>
</tr>
</tbody>
</table>
```

Also, you can use `Grouper` for `index` and `columns` keywords. For detail of `Grouper`, see *Grouping with a Grouper specification*.

```
In [47]: pivot_table(df, values='D', index=Grouper(freq='M', key='F'), columns='C')
Out[47]:

<table>
<thead>
<tr>
<th></th>
<th>bar</th>
<th>foo</th>
<th>bar</th>
<th>foo</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>NaN</td>
<td>-1.327977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-02-28</td>
<td>NaN</td>
<td>-1.320253</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-03-31</td>
<td>NaN</td>
<td>1.188862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-04-30</td>
<td>-0.128534</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-05-31</td>
<td>-0.079051</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-06-30</td>
<td>0.377300</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-07-31</td>
<td>NaN</td>
<td>-1.154627</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-08-31</td>
<td>NaN</td>
<td>0.835120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-09-30</td>
<td>NaN</td>
<td>-0.832506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-10-31</td>
<td>0.274863</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-11-30</td>
<td>-0.594487</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-12-31</td>
<td>-0.037012</td>
<td>NaN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

You can render a nice output of the table omitting the missing values by calling `to_string` if you wish:

```
In [48]: table = pivot_table(df, index=['A', 'B'], columns=['C'])
In [49]: print(table.to_string(na_rep=''))
```

```
<table>
<thead>
<tr>
<th></th>
<th>bar</th>
<th>foo</th>
<th>bar</th>
<th>foo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.274863</td>
<td>-1.327977</td>
<td>-1.095238</td>
<td>-0.338421</td>
</tr>
<tr>
<td>B</td>
<td>-0.079051</td>
<td>-1.320253</td>
<td>0.699535</td>
<td>-0.538846</td>
</tr>
<tr>
<td>C</td>
<td>0.377300</td>
<td>-0.832506</td>
<td>1.120915</td>
<td>-0.843645</td>
</tr>
<tr>
<td>three A</td>
<td>-0.128534</td>
<td>0.433512</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.835120</td>
<td>0.588783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.037012</td>
<td>-1.115381</td>
<td></td>
<td></td>
</tr>
<tr>
<td>two A</td>
<td>-1.154627</td>
<td>0.158248</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Note that `pivot_table` is also available as an instance method on DataFrame.

### 16.5.1 Cross tabulations

Use the `crosstab` function to compute a cross-tabulation of two (or more) factors. By default `crosstab` computes a frequency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments:

- `index`: array-like, values to group by in the rows
- `columns`: array-like, values to group by in the columns
- `values`: array-like, optional, array of values to aggregate according to the factors
- `aggfunc`: function, optional, If no values array is passed, computes a frequency table
- `rownames`: sequence, default None, must match number of row arrays passed
- `colnames`: sequence, default None, if passed, must match number of column arrays passed
- `margins`: boolean, default False, Add row/column margins (subtotals)

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified.

For example:

```python
In [50]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
In [51]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
In [52]: b = np.array([one, one, two, one, two, one], dtype=object)
In [53]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
In [54]: crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
```

```
Out[54]:
 b one two
 c dull shiny dull shiny
a
 bar 1 0 0 1
 foo 2 1 1 0
```

### 16.5.2 Adding margins (partial aggregates)

If you pass `margins=True` to `pivot_table`, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns:

```python
In [55]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
```

```
Out[55]:
 D E
 bar foo All bar foo All
A
 one A 0.968543 0.153810 1.084870 0.199447 0.690376 0.602542
 B 0.917338 0.132127 0.894343 0.418926 0.273641 0.771139
```
16.6 Tiling

The `cut` function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:

```
In [56]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])

In [57]: cut(ages, bins=3)
```

```
Out[57]:

(9.95, 26.667]
(9.95, 26.667]
(9.95, 26.667]
(9.95, 26.667]
(9.95, 26.667]
(9.95, 26.667]
(26.667, 43.333]
(43.333, 60]
(43.333, 60]

Levels (3): Index([‘(9.95, 26.667]’, ‘(26.667, 43.333]’, ‘(43.333, 60]’], dtype=object)
```

If the `bins` keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

```
In [58]: cut(ages, bins=[0, 18, 35, 70])
```

```
Out[58]:

(0, 18]
(0, 18]
(0, 18]
(0, 18]
(18, 35]
(18, 35]
(35, 70]
(35, 70]

Levels (3): Index([‘(0, 18]’, ‘(18, 35]’, ‘(35, 70]’], dtype=object)
```

16.7 Computing indicator / dummy variables

To convert a categorical variable into a “dummy” or “indicator” DataFrame, for example a column in a DataFrame (a Series) which has \( k \) distinct values, can derive a DataFrame containing \( k \) columns of 1s and 0s:

```
In [59]: df = DataFrame({'key': list('bbacab'), 'data1': range(6)})

In [60]: get_dummies(df[‘key’])
```

```
Out[60]:

a b c
426 Chapter 16. Reshaping and Pivot Tables
Sometimes it’s useful to prefix the column names, for example when merging the result with the original DataFrame:

In [61]: dummies = get_dummies(df[‘key’], prefix=’key’)

In [62]: dummies
Out[62]:
 key_a key_b key_c
0 0 1 0
1 0 1 0
2 1 0 0
3 0 0 1
4 1 0 0
5 0 1 0

In [63]: df[[‘data1’]].join(dummies)
Out[63]:
 data1 key_a key_b key_c
0 0 0 1 0
1 1 0 1 0
2 2 1 0 0
3 3 0 0 1
4 4 1 0 0
5 5 0 1 0

This function is often used along with discretization functions like cut:

In [64]: values = randn(10)

In [65]: values
Out[65]:
array([-0.0822, -2.1829, 0.3804, 0.0848, 0.4324, 1.520, -0.4937, 0.6002, 0.2742, 0.1329])

In [66]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [67]: get_dummies(cut(values, bins))
Out[67]:
 0 0.2 0.4 0.6 0.8
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 1 0
8 0 0 1 0 0
9 0 0 0 0 0

See also Series.str.get_dummies.
16.8 Factorizing values

To encode 1-d values as an enumerated type use `factorize`:

```
In [68]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])

In [69]: x
Out[69]:
      0  A
      1  A
      2  NaN
      3  B
      4  3.14
      5  inf
      dtype: object

In [70]: labels, uniques = pd.factorize(x)

In [71]: labels
Out[71]: array([ 0,  0, -1,  1,  2,  3])

In [72]: uniques
Out[72]: Index([u'A', u'B', 3.14, inf], dtype='object')
```

Note that `factorize` is similar to `numpy.unique`, but differs in its handling of NaN:

```
Note: The following `numpy.unique` will fail under Python 3 with a `TypeError` because of an ordering bug. See also Here

In [73]: pd.factorize(x, sort=True)
Out[73]:
(array([ 2,  2, -1,  3,  0,  1]),
     Index([3.14, inf, u'A', u'B'], dtype='object'))

In [74]: np.unique(x, return_inverse=True)[::-1]
Out[74]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))
```
CHAPTER SEVENTEEN

TIME SERIES / DATE FUNCTIONALITY

pandas has proven very successful as a tool for working with time series data, especially in the financial data analysis space. With the 0.8 release, we have further improved the time series API in pandas by leaps and bounds. Using the new NumPy `datetime64` dtype, we have consolidated a large number of features from other Python libraries like `scikits.timeseries` as well as created a tremendous amount of new functionality for manipulating time series data.

In working with time series data, we will frequently seek to:

- generate sequences of fixed-frequency dates and time spans
- conform or convert time series to a particular frequency
- compute “relative” dates based on various non-standard time increments (e.g. 5 business days before the last business day of the year), or “roll” dates forward or backward

pandas provides a relatively compact and self-contained set of tools for performing the above tasks.

Create a range of dates:

```python
# 72 hours starting with midnight Jan 1st, 2011
In [1]: rng = date_range('1/1/2011', periods=72, freq='H')
In [2]: rng[:5]
Out[2]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01 00:00:00, ..., 2011-01-01 04:00:00]
Length: 5, Freq: H, Timezone: None
```

Index pandas objects with dates:

```python
In [3]: ts = Series(randn(len(rng)), index=rng)
In [4]: ts.head()
Out[4]:
2011-01-01 00:00:00 0.469112
2011-01-01 01:00:00 -0.282863
2011-01-01 02:00:00 -1.509059
2011-01-01 03:00:00 -1.135632
2011-01-01 04:00:00 1.212112
Freq: H, dtype: float64
```

Change frequency and fill gaps:

```python
# to 45 minute frequency and forward fill
In [5]: converted = ts.asfreq('45Min', method='pad')
```
Resample:

Daily means
In [7]: ts.resample('D', how='mean')
Out[7]:
2011-01-01 -0.319569
2011-01-02 -0.337703
2011-01-03 0.117258
Freq: D, dtype: float64

17.1 Time Stamps vs. Time Spans

Time-stamped data is the most basic type of timeseries data that associates values with points in time. For pandas objects it means using the points in time to create the index.

In [8]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]
In [9]: ts = Series(np.random.randn(3), dates)
In [10]: type(ts.index)
Out[10]: pandas.tseries.index.DatetimeIndex
In [11]: ts
Out[11]:
2012-05-01 -0.410001
2012-05-02 -0.078638
2012-05-03 0.545952
dtype: float64

However, in many cases it is more natural to associate things like change variables with a time span instead. For example:

In [12]: periods = PeriodIndex([Period('2012-01'), Period('2012-02'), Period('2012-03')])
....:
In [13]: ts = Series(np.random.randn(3), periods)
In [14]: type(ts.index)
Out[14]: pandas.tseries.period.PeriodIndex
In [15]: ts
Out[15]:
2012-01 -1.219217
2012-02 -1.226825
2012-03 0.769804
Freq: M, dtype: float64
Starting with 0.8, pandas allows you to capture both representations and convert between them. Under the hood, pandas represents timestamps using instances of `Timestamp` and sequences of timestamps using instances of `DatetimeIndex`. For regular time spans, pandas uses `Period` objects for scalar values and `PeriodIndex` for sequences of spans. Better support for irregular intervals with arbitrary start and end points are forthcoming in future releases.

17.2 Converting to Timestamps

To convert a Series or list-like object of date-like objects e.g. strings, epochs, or a mixture, you can use the `to_datetime` function. When passed a Series, this returns a Series (with the same index), while a list-like is converted to a `DatetimeIndex`:

```python
In [16]: to_datetime(Series(['Jul 31, 2009', '2010-01-10', None]))
Out[16]:
0 2009-07-31
1 2010-01-10
2 NaT
dtype: datetime64[ns]
```

```python
In [17]: to_datetime(['2005/11/23', '2010.12.31'])
Out[17]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2005-11-23, 2010-12-31]
Length: 2, Freq: None, Timezone: None
```

If you use dates which start with the day first (i.e. European style), you can pass the `dayfirst` flag:

```python
In [18]: to_datetime(['04-01-2012 10:00'], dayfirst=True)
Out[18]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-01-04 10:00:00]
Length: 1, Freq: None, Timezone: None
```

```python
In [19]: to_datetime(['14-01-2012', '01-14-2012'], dayfirst=True)
Out[19]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-01-14, 2012-01-14]
Length: 2, Freq: None, Timezone: None
```

Warning: You see in the above example that `dayfirst` isn’t strict, so if a date can’t be parsed with the day being first it will be parsed as if `dayfirst` were `False`.

Note: Specifying a `format` argument will potentially speed up the conversion considerably and on versions later than 0.13.0 explicitly specifying a format string of ‘%Y%m%d’ takes a faster path still.

17.2.1 Invalid Data

Pass `coerce=True` to convert invalid data to `NaT` (not a time):

```python
In [20]: to_datetime(['2009-07-31', 'asd'])
Out[20]: array(['2009-07-31', 'asd'], dtype=object)
```

```python
In [21]: to_datetime(['2009-07-31', 'asd'], coerce=True)
```
Out[21]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2009-07-31, NaT]
Length: 2, Freq: None, Timezone: None

Take care, `to_datetime` may not act as you expect on mixed data:

In [22]: to_datetime([1, '1'])
Out[22]: array([1, '1'], dtype=object)

17.2.2 Epoch Timestamps

It’s also possible to convert integer or float epoch times. The default unit for these is nanoseconds (since these are how Timestamps are stored). However, often epochs are stored in another unit which can be specified:

Typical epoch stored units

In [23]: to_datetime([1349720105, 1349806505, 1349892905, ...
 : 1349979305, 1350065705], unit='s')
 :
Out[23]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-10-08 18:15:05, ..., 2012-10-12 18:15:05]
Length: 5, Freq: None, Timezone: None

In [24]: to_datetime([1349720105100, 1349720105200, 1349720105300, ...
 : 1349720105400, 1349720105500], unit='ms')
 :
Out[24]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-10-08 18:15:05.100000, ..., 2012-10-08 18:15:05.500000]
Length: 5, Freq: None, Timezone: None

These work, but the results may be unexpected.

In [25]: to_datetime([1])
Out[25]:
<class 'pandas.tseries.index.DatetimeIndex'>
[1970-01-01 00:00:00.000001]
Length: 1, Freq: None, Timezone: None

In [26]: to_datetime([1, 3.14], unit='s')
Out[26]:
<class 'pandas.tseries.index.DatetimeIndex'>
[1970-01-01 00:00:00, 1970-01-01 00:00:03.140000]
Length: 2, Freq: None, Timezone: None

Note: Epoch times will be rounded to the nearest nanosecond.

17.3 Generating Ranges of Timestamps

To generate an index with time stamps, you can use either the DatetimeIndex or Index constructor and pass in a list of datetime objects:
In [27]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]

In [28]: index = DatetimeIndex(dates)

In [29]: index # Note the frequency information
Out[29]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-01, ..., 2012-05-03]
Length: 3, Freq: None, Timezone: None

In [30]: index = Index(dates)

In [31]: index # Automatically converted to DatetimeIndex
Out[31]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-01, ..., 2012-05-03]
Length: 3, Freq: None, Timezone: None

Practically, this becomes very cumbersome because we often need a very long index with a large number of
timestamps. If we need timestamps on a regular frequency, we can use the pandas functions date_range and
bdate_range to create timestamp indexes.

In [32]: index = date_range('2000-1-1', periods=1000, freq='M')

In [33]: index
Out[33]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-31, ..., 2083-04-30]
Length: 1000, Freq: M, Timezone: None

In [34]: index = bdate_range('2012-1-1', periods=250)

In [35]: index
Out[35]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-01-02, ..., 2012-12-14]
Length: 250, Freq: B, Timezone: None

Convenience functions like date_range and bdate_range utilize a variety of frequency aliases. The default
frequency for date_range is a calendar day while the default for bdate_range is a business day

In [36]: start = datetime(2011, 1, 1)

In [37]: end = datetime(2012, 1, 1)

In [38]: rng = date_range(start, end)

In [39]: rng
Out[39]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01, ..., 2012-01-01]
Length: 366, Freq: D, Timezone: None

In [40]: rng = bdate_range(start, end)

In [41]: rng
Out[41]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-03, ..., 2011-12-30]
date_range and bdate_range makes it easy to generate a range of dates using various combinations of parameters like start, end, periods, and freq:

In [42]: date_range(start, end, freq='BM')
Out[42]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-31, ..., 2011-12-30]
Length: 12, Freq: BM, Timezone: None

In [43]: date_range(start, end, freq='W')
Out[43]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-02, ..., 2012-01-01]
Length: 53, Freq: W-SUN, Timezone: None

In [44]: bdate_range(end=end, periods=20)
Out[44]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-12-05, ..., 2011-12-30]
Length: 20, Freq: B, Timezone: None

In [45]: bdate_range(start=start, periods=20)
Out[45]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-03, ..., 2011-01-28]
Length: 20, Freq: B, Timezone: None

The start and end dates are strictly inclusive. So it will not generate any dates outside of those dates if specified.

17.4 DatetimeIndex

One of the main uses for DatetimeIndex is as an index for pandas objects. The DatetimeIndex class contains many timeseries related optimizations:

- A large range of dates for various offsets are pre-computed and cached under the hood in order to make generating subsequent date ranges very fast (just have to grab a slice)
- Fast shifting using the shift and tshift method on pandas objects
- Unioning of overlapping DatetimeIndex objects with the same frequency is very fast (important for fast data alignment)
- Quick access to date fields via properties such as year, month, etc.
- Regularization functions like snap and very fast asof logic

DatetimeIndex objects has all the basic functionality of regular Index objects and a smorgasbord of advanced timeseries-specific methods for easy frequency processing.

See Also:

Reindexing methods

Note: While pandas does not force you to have a sorted date index, some of these methods may have unexpected or incorrect behavior if the dates are unsorted. So please be careful.
DatetimeIndex can be used like a regular index and offers all of its intelligent functionality like selection, slicing, etc.

In [46]: rng = date_range(start, end, freq='BM')

In [47]: ts = Series(randn(len(rng)), index=rng)

In [48]: ts.index
Out[48]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-31, ..., 2011-12-30]
Length: 12, Freq: BM, Timezone: None

In [49]: ts[:5].index
Out[49]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-31, ..., 2011-05-31]
Length: 5, Freq: BM, Timezone: None

In [50]: ts[::2].index
Out[50]:
<class 'pandas.tseries.index.DatetimeIndex'>
Length: 6, Freq: 2BM, Timezone: None

17.4.1 DatetimeIndex Partial String Indexing

You can pass in dates and strings that parse to dates as indexing parameters:

In [51]: ts['1/31/2011']
Out[51]: -1.2812473076599529

In [52]: ts[datetime(2011, 12, 25):]
Out[52]:
2011-12-30 0.687738
Freq: BM, dtype: float64

In [53]: ts['10/31/2011':'12/31/2011']
Out[53]:
2011-10-31 0.149748
2011-11-30 -0.732339
2011-12-30 0.687738
Freq: BM, dtype: float64

To provide convenience for accessing longer time series, you can also pass in the year or year and month as strings:

In [54]: ts['2011']
Out[54]:
2011-01-31 -1.281247
2011-02-28 -0.727707
2011-03-31 -0.121306
2011-04-29 -0.097883
2011-05-31 0.695775
2011-06-30 0.341734
2011-07-29 0.959726
2011-08-31 -1.110336
2011-09-30 -0.619976
2011-10-31 0.149748

17.4. DatetimeIndex
In [55]: ts['2011-6']
Out[55]:
2011-06-30 0.341734
Freq: BM, dtype: float64

This type of slicing will work on a DataFrame with a DateTimeIndex as well. Since the partial string selection is a form of label slicing, the endpoints will be included. This would include matching times on an included date. Here's an example:

In [56]: dft = DataFrame(randn(100000,1),columns=['A'],index=date_range('20130101',periods=100000,freq='T'))

In [57]: dft
Out[57]:
 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00 1.252450
2013-03-11 10:36:00 0.046611
2013-03-11 10:37:00 0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00 0.841669
[100000 rows x 1 columns]

In [58]: dft['2013']
Out[58]:
 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00 1.252450
2013-03-11 10:36:00 0.046611
2013-03-11 10:37:00 0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00 0.841669
[100000 rows x 1 columns]

This starts on the very first time in the month, and includes the last date & time for the month
In [59]: dft['2013-1':'2013-2']
Out [59]:
 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...
2013-02-28 23:53:00 0.103114
2013-02-28 23:54:00 -1.303422
2013-02-28 23:55:00 0.451943
2013-02-28 23:56:00 0.220534
2013-02-28 23:57:00 -1.624220
2013-02-28 23:58:00 0.093915
2013-02-28 23:59:00 -1.087454
[84960 rows x 1 columns]

This specifies a stop time that includes all of the times on the last day

In [60]: dft['2013-1':'2013-2-28']
Out [60]:
 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...
2013-02-28 23:53:00 0.103114
2013-02-28 23:54:00 -1.303422
2013-02-28 23:55:00 0.451943
2013-02-28 23:56:00 0.220534
2013-02-28 23:57:00 -1.624220
2013-02-28 23:58:00 0.093915
2013-02-28 23:59:00 -1.087454
[84960 rows x 1 columns]

This specifies an exact stop time (and is not the same as the above)

In [61]: dft['2013-1':'2013-2-28 00:00:00']
Out [61]:
 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...
2013-02-28 23:54:00 0.897051
2013-02-28 23:55:00 -0.309230
2013-02-28 23:56:00 0.451943
2013-02-28 23:57:00 0.220534
2013-02-28 23:58:00 -1.624220
2013-02-28 23:59:00 0.093915
2013-02-28 23:59:00 -1.087454
[84960 rows x 1 columns]
We are stopping on the included end-point as its part of the index

In [62]: dft['2013-1-15':'2013-1-15 12:30:00']
Out[62]:

A
2013-01-15 00:00:00 0.501288
2013-01-15 00:01:00 -0.605198
2013-01-15 00:02:00 0.215146
2013-01-15 00:03:00 0.924732
2013-01-15 00:04:00 -2.228519
2013-01-15 00:05:00 1.517331
2013-01-15 00:06:00 -1.188774
... ...
2013-01-15 12:24:00 1.358314
2013-01-15 12:25:00 -0.737727
2013-01-15 12:26:00 1.838323
2013-01-15 12:27:00 -0.774090
2013-01-15 12:28:00 0.622261
2013-01-15 12:29:00 -0.631649
2013-01-15 12:30:00 0.193284

[751 rows x 1 columns]

Warning: The following selection will raise a KeyError; otherwise this selection methodology would be inconsistent with other selection methods in pandas (as this is not a slice, nor does it resolve to one)

dft['2013-1-15 12:30:00']

To select a single row, use .loc

In [63]: dft.loc['2013-1-15 12:30:00']
Out[63]:

A 0.193284
Name: 2013-01-15 12:30:00, dtype: float64

17.4.2 Datetime Indexing

Indexing a DateTimeIndex with a partial string depends on the “accuracy” of the period, in other words how specific the interval is in relation to the frequency of the index. In contrast, indexing with datetime objects is exact, because the objects have exact meaning. These also follow the semantics of including both endpoints.

These datetime objects are specific hours, minutes, and seconds even though they were not explicitly specified (they are 0).

In [64]: dft[datetime(2013, 1, 1):datetime(2013,2,28)]
Out[64]:

A
2013-01-01 00:00:00 0.176444
17.4.3 Truncating & Fancy Indexing

A `truncat` convenience function is provided that is equivalent to slicing:

```
In [66]: ts.truncate(before='10/31/2011', after='12/31/2011')
Out[66]:
2011-10-31  0.149748
2011-11-30 -0.732339
2011-12-30  0.687738
Freq: BM, dtype: float64
```

Even complicated fancy indexing that breaks the DatetimeIndex’s frequency regularity will result in a DatetimeIndex (but frequency is lost):

```
In [67]: ts[[0, 2, 6]].index
Out[67]:
<class 'pandas.tseries.index.DatetimeIndex'>
```
17.4.4 Time/Date Components

There are several time/date properties that one can access from Timestamp or a collection of timestamps like a DateTimeIndex.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>The year of the datetime</td>
</tr>
<tr>
<td>month</td>
<td>The month of the datetime</td>
</tr>
<tr>
<td>day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>hour</td>
<td>The hour of the datetime</td>
</tr>
<tr>
<td>minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>date</td>
<td>Returns datetime.date</td>
</tr>
<tr>
<td>time</td>
<td>Returns datetime.time</td>
</tr>
<tr>
<td>dayofyear</td>
<td>The ordinal day of year</td>
</tr>
<tr>
<td>weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>dayofweek</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>weekday</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>quarter</td>
<td>Quarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc.</td>
</tr>
<tr>
<td>is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td>is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
</tbody>
</table>

17.5 DateOffset objects

In the preceding examples, we created DatetimeIndex objects at various frequencies by passing in frequency strings like ‘M’, ‘W’, and ‘BM’ to the freq keyword. Under the hood, these frequency strings are being translated into an instance of pandas DateOffset, which represents a regular frequency increment. Specific offset logic like “month”, “business day”, or “one hour” is represented in its various subclasses.
### Class name	Description
DateOffset | Generic offset class, defaults to 1 calendar day
BDay | business day (weekday)
CDay | custom business day (experimental)
Week | one week, optionally anchored on a day of the week
WeekOfMonth | the x-th day of the y-th week of each month
LastWeekOfMonth | the x-th day of the last week of each month
MonthEnd | calendar month end
MonthBegin | calendar month begin
BMonthEnd | business month end
BMonthBegin | business month begin
CBMonthEnd | custom business month end
CBMonthBegin | custom business month begin
QuarterEnd | calendar quarter end
QuarterBegin | calendar quarter begin
BQuarterEnd | business quarter end
BQuarterBegin | business quarter begin
FY5253Quarter | retail (aka 52-53 week) quarter
YearEnd | calendar year end
YearBegin | calendar year begin
BYearEnd | business year end
BYearBegin | business year begin
FY5253 | retail (aka 52-53 week) year
Hour | one hour
Minute | one minute
Second | one second
Milli | one millisecond
Micro | one microsecond

The basic `DateOffset` takes the same arguments as `dateutil.relativedelta`, which works like:

```
In [68]: d = datetime(2008, 8, 18, 9, 0)
In [69]: d + relativedelta(months=4, days=5)
Out[69]: datetime.datetime(2008, 12, 23, 9, 0)
```

We could have done the same thing with `DateOffset`:

```
In [70]: from pandas.tseries.offsets import *
In [71]: d + DateOffset(months=4, days=5)
Out[71]: Timestamp('2008-12-23 09:00:00')
```

The key features of a `DateOffset` object are:

- it can be added / subtracted to/from a datetime object to obtain a shifted date
- it can be multiplied by an integer (positive or negative) so that the increment will be applied multiple times
- it has `rollforward` and `rollback` methods for moving a date forward or backward to the next or previous “offset date”

Subclasses of `DateOffset` define the `apply` function which dictates custom date increment logic, such as adding business days:

```
class BDay(DateOffset):
    """DateOffset increments between business days""
```

17.5. `DateOffset` objects
```python
def apply(self, other):
...
```

```
In [72]: d = 5 * BDay()
Out[72]: Timestamp('2008-08-11 09:00:00')
```

```
In [73]: d + BMonthEnd()
Out[73]: Timestamp('2008-08-29 09:00:00')
```

The `rollforward` and `rollback` methods do exactly what you would expect:

```
In [74]: d
Out[74]: datetime.datetime(2008, 8, 18, 9, 0)
```

```
In [75]: offset = BMonthEnd()
In [76]: offset.rollforward(d)
Out[76]: Timestamp('2008-08-29 09:00:00')
```

```
In [77]: offset.rollback(d)
Out[77]: Timestamp('2008-07-31 09:00:00')
```

It's definitely worth exploring the `pandas.tseries.offsets` module and the various docstrings for the classes. These operations (`apply`, `rollforward` and `rollback`) preserves time (hour, minute, etc) information by default. To reset time, use `normalize=True` keyword when create offset instance. If `normalize=True`, result is normalized after the function is applied.

```
In [78]: day = Day()
In [79]: day.apply(Timestamp('2014-01-01 09:00'))
Out[79]: Timestamp('2014-01-02 09:00:00')
```

```
In [80]: day = Day(normalize=True)
In [81]: day.apply(Timestamp('2014-01-01 09:00'))
Out[81]: Timestamp('2014-01-02 00:00:00')
```

```
In [82]: hour = Hour()
In [83]: hour.apply(Timestamp('2014-01-01 22:00'))
Out[83]: Timestamp('2014-01-02 00:00:00')
```

```
In [84]: hour = Hour(normalize=True)
In [85]: hour.apply(Timestamp('2014-01-01 22:00'))
Out[85]: Timestamp('2014-01-02 00:00:00')
```

```
In [86]: hour.apply(Timestamp('2014-01-01 23:00'))
Out[86]: Timestamp('2014-01-02 00:00:00')
```

17.5.1 Parametric offsets

Some of the offsets can be “parameterized” when created to result in different behavior. For example, the `Week` offset for generating weekly data accepts a `weekday` parameter which results in the generated dates always lying on a particular day of the week:
In [87]: d
Out[87]: datetime.datetime(2008, 8, 18, 9, 0)

In [88]: d + Week()
Out[88]: Timestamp('2008-08-25 09:00:00')

In [89]: d + Week(weekday=4)
Out[89]: Timestamp('2008-08-22 09:00:00')

In [90]: (d + Week(weekday=4)).weekday()
Out[90]: 4

In [91]: d - Week()
Out[91]: Timestamp('2008-08-11 09:00:00')

normalize option will be effective for addition and subtraction.

In [92]: d + Week(normalize=True)
Out[92]: Timestamp('2008-08-25 00:00:00')

In [93]: d - Week(normalize=True)
Out[93]: Timestamp('2008-08-11 00:00:00')

Another example is parameterizing YearEnd with the specific ending month:

In [94]: d + YearEnd()
Out[94]: Timestamp('2008-12-31 09:00:00')

In [95]: d + YearEnd(month=6)
Out[95]: Timestamp('2009-06-30 09:00:00')

17.5.2 Custom Business Days (Experimental)

The CDay or CustomBusinessDay class provides a parametric BusinessDay class which can be used to create customized business day calendars which account for local holidays and local weekend conventions.

In [96]: from pandas.tseries.offsets import CustomBusinessDay

As an interesting example, let’s look at Egypt where
a Friday-Saturday weekend is observed.
In [97]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

They also observe International Workers’ Day so let’s
add that for a couple of years
In [98]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]

In [99]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)

In [100]: dt = datetime(2013, 4, 30)

In [101]: dt + 2 * bday_egypt
Out[101]: Timestamp('2013-05-05 00:00:00')

In [102]: dts = date_range(dt, periods=5, freq=bday_egypt)

In [103]: Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'.split()))
Out[103]:

17.5. DateOffset objects 443
As of v0.14 holiday calendars can be used to provide the list of holidays. See the holiday calendar section for more information.

```
In [104]: from pandas.tseries.holiday import USFederalHolidayCalendar

In [105]: bday_us = CustomBusinessDay(calendar=USFederalHolidayCalendar())

# Friday before MLK Day
In [106]: dt = datetime(2014, 1, 17)

# Tuesday after MLK Day (Monday is skipped because it’s a holiday)
In [107]: dt + bday_us
Out[107]: Timestamp('2014-01-21 00:00:00')
```

Monthly offsets that respect a certain holiday calendar can be defined in the usual way.

```
In [108]: from pandas.tseries.offsets import CustomBusinessMonthBegin

In [109]: bmth_us = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())

# Skip new years
In [110]: dt = datetime(2013, 12, 17)

In [111]: dt + bmth_us
Out[111]: Timestamp('2014-01-02 00:00:00')
```

To define a date index with custom offset:

```
In [112]: from pandas import DatetimeIndex

In [113]: DatetimeIndex(start='20100101', end='20120101', freq=bmth_us)
Out[113]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2010-01-04, ..., 2011-12-01]
Length: 24, Freq: CBMS, Timezone: None
```

Note: The frequency string ‘C’ is used to indicate that a CustomBusinessDay DateOffset is used, it is important to note that since CustomBusinessDay is a parameterised type, instances of CustomBusinessDay may differ and this is not detectable from the ‘C’ frequency string. The user therefore needs to ensure that the ‘C’ frequency string is used consistently within the user’s application.

Note: This uses the numpy.busdaycalendar API introduced in Numpy 1.7 and therefore requires Numpy 1.7.0 or newer.

Warning: There are known problems with the timezone handling in Numpy 1.7 and users should therefore use this experimental(!) feature with caution and at their own risk. To the extent that the datetime64 and busdaycalendar APIs in Numpy have to change to fix the timezone issues, the behaviour of the CustomBusinessDay class may have to change in future versions.
17.5.3 Offset Aliases

A number of string aliases are given to useful common time series frequencies. We will refer to these aliases as offset aliases (referred to as time rules prior to v0.8.0).

<table>
<thead>
<tr>
<th>Alias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>business day frequency</td>
</tr>
<tr>
<td>C</td>
<td>custom business day frequency (experimental)</td>
</tr>
<tr>
<td>D</td>
<td>calendar day frequency</td>
</tr>
<tr>
<td>W</td>
<td>weekly frequency</td>
</tr>
<tr>
<td>M</td>
<td>month end frequency</td>
</tr>
<tr>
<td>BM</td>
<td>business month end frequency</td>
</tr>
<tr>
<td>CBM</td>
<td>custom business month end frequency</td>
</tr>
<tr>
<td>MS</td>
<td>month start frequency</td>
</tr>
<tr>
<td>BMS</td>
<td>business month start frequency</td>
</tr>
<tr>
<td>CBMS</td>
<td>custom business month start frequency</td>
</tr>
<tr>
<td>Q</td>
<td>quarter end frequency</td>
</tr>
<tr>
<td>BQ</td>
<td>business quarter end frequency</td>
</tr>
<tr>
<td>QS</td>
<td>quarter start frequency</td>
</tr>
<tr>
<td>BQS</td>
<td>business quarter start frequency</td>
</tr>
<tr>
<td>A</td>
<td>year end frequency</td>
</tr>
<tr>
<td>BA</td>
<td>business year end frequency</td>
</tr>
<tr>
<td>AS</td>
<td>year start frequency</td>
</tr>
<tr>
<td>BAS</td>
<td>business year start frequency</td>
</tr>
<tr>
<td>H</td>
<td>hourly frequency</td>
</tr>
<tr>
<td>T</td>
<td>minutely frequency</td>
</tr>
<tr>
<td>S</td>
<td>secondly frequency</td>
</tr>
<tr>
<td>L</td>
<td>millisecond</td>
</tr>
<tr>
<td>U</td>
<td>microsecond</td>
</tr>
</tbody>
</table>

17.5.4 Combining Aliases

As we have seen previously, the alias and the offset instance are fungible in most functions:

In [114]: date_range(start, periods=5, freq='B')
Out[114]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-03, ..., 2011-01-07]
Length: 5, Freq: B, Timezone: None

In [115]: date_range(start, periods=5, freq=BDay())
Out[115]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-03, ..., 2011-01-07]
Length: 5, Freq: B, Timezone: None

You can combine together day and intraday offsets:

In [116]: date_range(start, periods=10, freq='2h20min')
Out[116]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01 00:00:00, ..., 2011-01-01 21:00:00]
Length: 10, Freq: 140T, Timezone: None

In [117]: date_range(start, periods=10, freq='1D10U')
17.5.5 Anchored Offsets

For some frequencies you can specify an anchoring suffix:

<table>
<thead>
<tr>
<th>Alias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-SUN</td>
<td>weekly frequency (sundays). Same as ‘W’</td>
</tr>
<tr>
<td>W-MON</td>
<td>weekly frequency (mondays)</td>
</tr>
<tr>
<td>W-TUE</td>
<td>weekly frequency (tuesdays)</td>
</tr>
<tr>
<td>W-WED</td>
<td>weekly frequency (wednesdays)</td>
</tr>
<tr>
<td>W-THU</td>
<td>weekly frequency (thursdays)</td>
</tr>
<tr>
<td>W-FRI</td>
<td>weekly frequency (fridays)</td>
</tr>
<tr>
<td>W-SAT</td>
<td>weekly frequency (saturdays)</td>
</tr>
<tr>
<td>(B)Q(S)-DEC</td>
<td>quarterly frequency, year ends in December. Same as ‘Q’</td>
</tr>
<tr>
<td>(B)Q(S)-JAN</td>
<td>quarterly frequency, year ends in January</td>
</tr>
<tr>
<td>(B)Q(S)-FEB</td>
<td>quarterly frequency, year ends in February</td>
</tr>
<tr>
<td>(B)Q(S)-MAR</td>
<td>quarterly frequency, year ends in March</td>
</tr>
<tr>
<td>(B)Q(S)-APR</td>
<td>quarterly frequency, year ends in April</td>
</tr>
<tr>
<td>(B)Q(S)-MAY</td>
<td>quarterly frequency, year ends in May</td>
</tr>
<tr>
<td>(B)Q(S)-JUN</td>
<td>quarterly frequency, year ends in June</td>
</tr>
<tr>
<td>(B)Q(S)-JUL</td>
<td>quarterly frequency, year ends in July</td>
</tr>
<tr>
<td>(B)Q(S)-AUG</td>
<td>quarterly frequency, year ends in August</td>
</tr>
<tr>
<td>(B)Q(S)-SEP</td>
<td>quarterly frequency, year ends in September</td>
</tr>
<tr>
<td>(B)Q(S)-OCT</td>
<td>quarterly frequency, year ends in October</td>
</tr>
<tr>
<td>(B)Q(S)-NOV</td>
<td>quarterly frequency, year ends in November</td>
</tr>
<tr>
<td>(B)A(S)-DEC</td>
<td>annual frequency, anchored end of December. Same as ‘A’</td>
</tr>
<tr>
<td>(B)A(S)-JAN</td>
<td>annual frequency, anchored end of January</td>
</tr>
<tr>
<td>(B)A(S)-FEB</td>
<td>annual frequency, anchored end of February</td>
</tr>
<tr>
<td>(B)A(S)-MAR</td>
<td>annual frequency, anchored end of March</td>
</tr>
<tr>
<td>(B)A(S)-APR</td>
<td>annual frequency, anchored end of April</td>
</tr>
<tr>
<td>(B)A(S)-MAY</td>
<td>annual frequency, anchored end of May</td>
</tr>
<tr>
<td>(B)A(S)-JUN</td>
<td>annual frequency, anchored end of June</td>
</tr>
<tr>
<td>(B)A(S)-JUL</td>
<td>annual frequency, anchored end of July</td>
</tr>
<tr>
<td>(B)A(S)-AUG</td>
<td>annual frequency, anchored end of August</td>
</tr>
<tr>
<td>(B)A(S)-SEP</td>
<td>annual frequency, anchored end of September</td>
</tr>
<tr>
<td>(B)A(S)-OCT</td>
<td>annual frequency, anchored end of October</td>
</tr>
<tr>
<td>(B)A(S)-NOV</td>
<td>annual frequency, anchored end of November</td>
</tr>
</tbody>
</table>

These can be used as arguments to `date_range`, `bdate_range`, constructors for `DatetimeIndex`, as well as various other timeseries-related functions in pandas.

17.5.6 Legacy Aliases

Note that prior to v0.8.0, time rules had a slightly different look. pandas will continue to support the legacy time rules for the time being but it is strongly recommended that you switch to using the new offset aliases.
As you can see, legacy quarterly and annual frequencies are business quarter and business year ends. Please also note the legacy time rule for milliseconds ms versus the new offset alias for month start MS. This means that offset alias parsing is case sensitive.

17.5.7 Holidays / Holiday Calendars

Holidays and calendars provide a simple way to define holiday rules to be used with CustomBusinessDay or in other analysis that requires a predefined set of holidays. The AbstractHolidayCalendar class provides all the necessary methods to return a list of holidays and only rules need to be defined in a specific holiday calendar class. Further, start_date and end_date class attributes determine over what date range holidays are generated. These should be overwritten on the AbstractHolidayCalendar class to have the range apply to all calendar subclasses. USFederalHolidayCalendar is the only calendar that exists and primarily serves as an example for developing other calendars.

For holidays that occur on fixed dates (e.g., US Memorial Day or July 4th) an observance rule determines when that holiday is observed if it falls on a weekend or some other non-observed day. Defined observance rules are:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nearest_workday</td>
<td>move Saturday to Friday and Sunday to Monday</td>
</tr>
<tr>
<td>sunday_to_monday</td>
<td>move Sunday to following Monday</td>
</tr>
<tr>
<td>next_monday_or_tuesday</td>
<td>move Saturday to Monday and Sunday/Monday to Tuesday</td>
</tr>
<tr>
<td>previous_friday</td>
<td>move Saturday and Sunday to previous Friday</td>
</tr>
<tr>
<td>next_monday</td>
<td>move Saturday and Sunday to following Monday</td>
</tr>
</tbody>
</table>

An example of how holidays and holiday calendars are defined:
In [118]: from pandas.tseries.holiday import Holiday, USMemorialDay,
 AbstractHolidayCalendar, nearest_workday, MO

In [119]: class ExampleCalendar(AbstractHolidayCalendar):
 rules = [
 USMemorialDay,
 Holiday('July 4th', month=7, day=4, observance=nearest_workday),
 Holiday('Columbus Day', month=10, day=1,
 offset=DateOffset(weekday=MO(2))), #same as 2*Week(weekday=2)
]

In [120]: cal = ExampleCalendar()

In [121]: cal.holidays(datetime(2012, 1, 1), datetime(2012, 12, 31))
Out[121]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-28, ..., 2012-10-08]
Length: 3, Freq: None, Timezone: None

Using this calendar, creating an index or doing offset arithmetic skips weekends and holidays (i.e., Memorial Day/July 4th).

In [122]: DatetimeIndex(start='7/1/2012', end='7/10/2012',
 freq=CDay(calendar=cal)).to_pydatetime()
Out[122]:
array([datetime.datetime(2012, 7, 2, 0, 0),
 datetime.datetime(2012, 7, 3, 0, 0),
 datetime.datetime(2012, 7, 5, 0, 0),
 datetime.datetime(2012, 7, 6, 0, 0),
 datetime.datetime(2012, 7, 9, 0, 0),
 datetime.datetime(2012, 7, 10, 0, 0)], dtype=object)

In [123]: offset = CustomBusinessDay(calendar=cal)

In [124]: datetime(2012, 5, 25) + offset
Out[124]: Timestamp('2012-05-29 00:00:00')

In [125]: datetime(2012, 7, 3) + offset
Out[125]: Timestamp('2012-07-05 00:00:00')

In [126]: datetime(2012, 7, 3) + 2 * offset
Out[126]: Timestamp('2012-07-06 00:00:00')

In [127]: datetime(2012, 7, 6) + offset
Out[127]: Timestamp('2012-07-09 00:00:00')

Ranges are defined by the start_date and end_date class attributes of AbstractHolidayCalendar. The defaults are below.

In [128]: AbstractHolidayCalendar.start_date
Out[128]: Timestamp('1970-01-01 00:00:00')

In [129]: AbstractHolidayCalendar.end_date
Out[129]: Timestamp('2030-12-31 00:00:00')

These dates can be overwritten by setting the attributes as datetime/Timestamp/string.
In [130]: AbstractHolidayCalendar.start_date = datetime(2012, 1, 1)

In [131]: AbstractHolidayCalendar.end_date = datetime(2012, 12, 31)

In [132]: cal.holidays()
Out[132]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-28, ..., 2012-10-08]
Length: 3, Freq: None, Timezone: None

Every calendar class is accessible by name using the `get_calendar` function which returns a holiday class instance. Any imported calendar class will automatically be available by this function. Also, `HolidayCalendarFactory` provides an easy interface to create calendars that are combinations of calendars or calendars with additional rules.

In [133]: from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory,
 :
 : USLaborDay
 :

In [134]: cal = get_calendar('ExampleCalendar')

In [135]: cal.rules
Out[135]:
[Holiday: MemorialDay (month=5, day=24, offset=<DateOffset: kwds={'weekday': MO(+1)>}),
Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at 0xa83966f4>),
Holiday: Columbus Day (month=10, day=1, offset=<DateOffset: kwds={'weekday': MO(+2)}>)]

In [136]: new_cal = HolidayCalendarFactory('NewExampleCalendar', cal, USLaborDay)

In [137]: new_cal.rules
Out[137]:
[Holiday: Labor Day (month=9, day=1, offset=<DateOffset: kwds={'weekday': MO(+1)}>),
Holiday: Columbus Day (month=10, day=1, offset=<DateOffset: kwds={'weekday': MO(+2)}>),
Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at 0xa83966f4>),
Holiday: Memorial Day (month=5, day=24, offset=<DateOffset: kwds={'weekday': MO(+1)>})]

17.6 Time series-related instance methods

17.6.1 Shifting / lagging

One may want to shift or lag the values in a TimeSeries back and forward in time. The method for this is `shift`, which is available on all of the pandas objects. In DataFrame, `shift` will currently only shift along the index and in Panel along the major_axis.

In [138]: ts = ts[:5]

In [139]: ts.shift(1)
Out[139]:
2011-01-31 NaN
2011-02-28 -1.281247
2011-03-31 -0.727707
2011-04-29 -0.121306
2011-05-31 -0.097883
Freq: BM, dtype: float64

The shift method accepts an freq argument which can accept a DateOffset class or other timedelta-like object or also an offset alias:
In [140]: ts.shift(5, freq=datetools.bday)
Out[140]:
2011-02-07 -1.281247
2011-03-07 -0.727707
2011-04-07 -0.121306
2011-05-06 -0.097883
2011-06-07 0.695775
dtype: float64

In [141]: ts.shift(5, freq='BM')
Out[141]:
2011-06-30 -1.281247
2011-07-29 -0.727707
2011-08-31 -0.121306
2011-09-30 -0.097883
2011-10-31 0.695775
Freq: BM, dtype: float64

Rather than changing the alignment of the data and the index, DataFrame and TimeSeries objects also have a tshift convenience method that changes all the dates in the index by a specified number of offsets:

In [142]: ts.tshift(5, freq='D')
Out[142]:
2011-02-05 -1.281247
2011-03-05 -0.727707
2011-04-05 -0.121306
2011-05-04 -0.097883
2011-06-05 0.695775
dtype: float64

Note that with tshift, the leading entry is no longer NaN because the data is not being realigned.

17.6.2 Frequency conversion

The primary function for changing frequencies is the asfreq function. For a DatetimeIndex, this is basically just a thin, but convenient wrapper around reindex which generates a date_range and calls reindex.

In [143]: dr = date_range('1/1/2010', periods=3, freq=3 * datetools.bday)
In [144]: ts = Series(randn(3), index=dr)

In [145]: ts
Out[145]:
2010-01-01 -0.659574
2010-01-06 1.494522
2010-01-11 -0.778425
Freq: 3B, dtype: float64

In [146]: ts.asfreq(BDay())
Out[146]:
2010-01-01 -0.659574
2010-01-04 NaN
2010-01-05 NaN
2010-01-06 1.494522
2010-01-07 NaN
2010-01-08 NaN
2010-01-11 -0.778425
Freq: B, dtype: float64

`asfreq` provides a further convenience so you can specify an interpolation method for any gaps that may appear after the frequency conversion

```
In [147]: ts.asfreq(BDay(), method='pad')
Out[147]:
2010-01-01  -0.659574
2010-01-04  -0.659574
2010-01-05  -0.659574
2010-01-06   1.494522
2010-01-07   1.494522
2010-01-08   1.494522
2010-01-11  -0.778425
Freq: B, dtype: float64
```

17.6.3 Filling forward / backward

Related to `asfreq` and `reindex` is the `fillna` function documented in the *missing data section*.

17.6.4 Converting to Python datetimes

`DatetimeIndex` can be converted to an array of Python native `datetime.datetime` objects using the `to_pydatetime` method.

17.7 Up- and downsampling

With 0.8, pandas introduces simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications.

See some *cookbook examples* for some advanced strategies

```
In [148]: rng = date_range('1/1/2012', periods=100, freq='S')

In [149]: ts = Series(randint(0, 500, len(rng)), index=rng)

In [150]: ts.resample('5Min', how='sum')
Out[150]:
2012-01-01  25103
Freq: 5T, dtype: int32
```

The `resample` function is very flexible and allows you to specify many different parameters to control the frequency conversion and resampling operation.

The `how` parameter can be a function name or numpy array function that takes an array and produces aggregated values:

```
In [151]: ts.resample('5Min') # default is mean
Out[151]:
2012-01-01  251.03
Freq: 5T, dtype: float64
```

```
In [152]: ts.resample('5Min', how='ohlc')
```
pandas: powerful Python data analysis toolkit, Release 0.14.1

Out[152]:
 open high low close
2012-01-01 308 460 9 205

In[153]: ts.resample('5Min', how=np.max)
Out[153]:
2012-01-01 460
Freq: 5T, dtype: int32

Any function available via dispatching can be given to the how parameter by name, including sum, mean, std, sem, max, min, median, first, last, ohlc.

For downsampling, closed can be set to ‘left’ or ‘right’ to specify which end of the interval is closed:

In[154]: ts.resample('5Min', closed='right')
Out[154]:
2011-12-31 23:55:00 308.000000
2012-01-01 00:00:00 250.454545
Freq: 5T, dtype: float64

In[155]: ts.resample('5Min', closed='left')
Out[155]:
2012-01-01 251.03
Freq: 5T, dtype: float64

For upsampling, the fill_method and limit parameters can be specified to interpolate over the gaps that are created:

from secondly to every 250 milliseconds
In[156]: ts[:2].resample('250L')
Out[156]:
2012-01-01 00:00:00 308
2012-01-01 00:00:00.250000 NaN
2012-01-01 00:00:00.500000 NaN
2012-01-01 00:00:00.750000 NaN
2012-01-01 00:00:01 204
Freq: 250L, dtype: float64

In[157]: ts[:2].resample('250L', fill_method='pad')
Out[157]:
2012-01-01 00:00:00 308
2012-01-01 00:00:00.250000 308
2012-01-01 00:00:00.500000 308
2012-01-01 00:00:00.750000 308
2012-01-01 00:00:01 204
Freq: 250L, dtype: int32

In[158]: ts[:2].resample('250L', fill_method='pad', limit=2)
Out[158]:
2012-01-01 00:00:00 308
2012-01-01 00:00:00.250000 308
2012-01-01 00:00:00.500000 308
2012-01-01 00:00:00.750000 NaN
2012-01-01 00:00:01 204
Freq: 250L, dtype: float64

Parameters like label and loffset are used to manipulate the resulting labels. label specifies whether the result is labeled with the beginning or the end of the interval. loffset performs a time adjustment on the output labels.
In [159]: ts.resample('5Min') # by default label='right'
Out[159]:
2012-01-01 251.03
Freq: 5T, dtype: float64

In [160]: ts.resample('5Min', label='left')
Out[160]:
2012-01-01 251.03
Freq: 5T, dtype: float64

In [161]: ts.resample('5Min', label='left', loffset='1s')
Out[161]:
2012-01-01 00:00:01 251.03
dtype: float64

The `axis` parameter can be set to 0 or 1 and allows you to resample the specified axis for a DataFrame.

The `kind` parameter can be set to 'timestamp' or 'period' to convert the resulting index to/from time-stamp and time-span representations. By default, `resample` retains the input representation.

The `convention` parameter can be set to 'start' or 'end' when resampling period data (detail below). It specifies how low frequency periods are converted to higher frequency periods.

Note that 0.8 marks a watershed in the timeseries functionality in pandas. In previous versions, resampling had to be done using a combination of `date_range`, `groupby` with `asof`, and then calling an aggregation function on the grouped object. This was not nearly convenient or performant as the new pandas timeseries API.

17.8 Time Span Representation

Regular intervals of time are represented by `Period` objects in pandas while sequences of `Period` objects are collected in a `PeriodIndex`, which can be created with the convenience function `period_range`.

17.8.1 Period

A `Period` represents a span of time (e.g., a day, a month, a quarter, etc). It can be created using a frequency alias:

In [162]: Period('2012', freq='A-DEC')
Out[162]: Period('2012', 'A-DEC')

In [163]: Period('2012-1-1', freq='D')
Out[163]: Period('2012-01-01', 'D')

In [164]: Period('2012-1-1 19:00', freq='H')
Out[164]: Period('2012-01-01 19:00', 'H')

Unlike time stamped data, pandas does not support frequencies at multiples of `DateOffsets` (e.g., '3Min') for periods. Adding and subtracting integers from periods shifts the period by its own frequency.

In [165]: p = Period('2012', freq='A-DEC')

In [166]: p + 1
Out[166]: Period('2013', 'A-DEC')

In [167]: p - 3
Out[167]: Period('2009', 'A-DEC')
Taking the difference of `Period` instances with the same frequency will return the number of frequency units between them:

```
In [168]: Period('2012', freq='A-DEC') - Period('2002', freq='A-DEC')
Out[168]: 10L
```

17.8.2 PeriodIndex and period_range

Regular sequences of `Period` objects can be collected in a `PeriodIndex`, which can be constructed using the `period_range` convenience function:

```
In [169]: prng = period_range('1/1/2011', '1/1/2012', freq='M')
In [170]: prng
Out[170]: <class 'pandas.tseries.period.PeriodIndex'>
[2011-01, ..., 2012-01]
Length: 13, Freq: M
```

The `PeriodIndex` constructor can also be used directly:

```
In [171]: PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M')
Out[171]: <class 'pandas.tseries.period.PeriodIndex'>
[2011-01, ..., 2011-03]
Length: 3, Freq: M
```

Just like `DatetimeIndex`, a `PeriodIndex` can also be used to index pandas objects:

```
In [172]: ps = Series(randn(len(prng)), prng)
In [173]: ps['2011-01']
Out[173]: -0.25335528290092818
```

17.8.3 PeriodIndex Partial String Indexing

You can pass in dates and strings to `Series` and `DataFrame` with `PeriodIndex`, as the same manner as `DatetimeIndex`. For details, refer to `DatetimeIndex Partial String Indexing`.

```
In [174]: ps['2011-01']
Out[174]: -0.25335528290092818
```

Chapter 17. Time Series / Date functionality
In [175]: ps[datetime(2011, 12, 25)]
Out[175]:
2011-12 1.756171
2012-01 0.256502
Freq: M, dtype: float64

In [176]: ps['10/31/2011':'12/31/2011']
Out[176]:
2011-10 -0.761200
2011-11 -1.603608
2011-12 1.756171
Freq: M, dtype: float64

Passing string represents lower frequency than PeriodIndex returns partial sliced data.

In [177]: ps['2011']
Out[177]:
2011-01 -0.253355
2011-02 -1.426908
2011-03 1.548971
2011-04 -0.088718
2011-05 -1.771348
2011-06 -0.989328
2011-07 -1.584789
2011-08 -0.288786
2011-09 -2.029806
2011-10 -0.761200
2011-11 -1.603608
2011-12 1.756171
Freq: M, dtype: float64

In [178]: dfp = DataFrame(randn(600,1), columns=['A'],
 index=period_range('2013-01-01 09:00', periods=600, freq='T'))

In [179]: dfp
Out[179]:
 A
2013-01-01 09:00 0.020601
2013-01-01 09:01 -0.411719
2013-01-01 09:02 2.079413
2013-01-01 09:03 1.077911
2013-01-01 09:04 0.992558
2013-01-01 09:05 -0.089851
2013-01-01 09:06 0.711329
... ...
2013-01-01 18:53 -1.340038
2013-01-01 18:54 1.315461
2013-01-01 18:55 2.396188
2013-01-01 18:56 -0.501527
2013-01-01 18:57 3.171938
2013-01-01 18:58 0.142019
2013-01-01 18:59 0.606998

[600 rows x 1 columns]

In [180]: dfp['2013-01-01 10H']
Out[180]:
 A
2013-01-01 10:00 0.884946
2013-01-01 10:01 -1.085199
2013-01-01 10:02 0.147901
2013-01-01 10:03 0.742289
2013-01-01 10:04 0.585118
2013-01-01 10:05 -0.039453
2013-01-01 10:06 -0.563491
... ...
2013-01-01 19:58 -1.845837
2013-01-01 19:59 0.086909
2013-01-01 20:00 1.516371
2013-01-01 20:01 0.451273
2013-01-01 20:02 -0.119781
2013-01-01 20:03 0.876702
2013-01-01 20:04 1.075929

[600 rows x 1 columns]
As the same as DatetimeIndex, the endpoints will be included in the result. Below example slices data starting from 10:00 to 11:59.

```
In [181]: dfp['2013-01-01 10H':'2013-01-01 11H']
```

```
Out[181]:
    A
2013-01-01 10:00 -0.745396
2013-01-01 10:01  0.141880
2013-01-01 10:02 -1.077754
2013-01-01 10:03 -1.301174
2013-01-01 10:04 -0.269628
2013-01-01 10:05 -0.456347
2013-01-01 10:06  0.157766
... ...
2013-01-01 11:53  0.168057
2013-01-01 11:54 -0.214306
2013-01-01 11:55 -0.069739
2013-01-01 11:56 -1.511809
2013-01-01 11:57  0.307021
2013-01-01 11:58  1.449776
2013-01-01 11:59  0.782537

[120 rows x 1 columns]
```

17.8.4 Frequency Conversion and Resampling with PeriodIndex

The frequency of Periods and PeriodIndex can be converted via the `asfreq` method. Let's start with the fiscal year 2011, ending in December:

```
In [182]: p = Period('2011', freq='A-DEC')
```

```
In [183]: p
Out[183]: Period('2011', 'A-DEC')
```

We can convert it to a monthly frequency. Using the `how` parameter, we can specify whether to return the starting or ending month:

```
In [184]: p = Period('2011', freq='A-DEC')
In [185]: p = Period('2011', freq='A-DEC')
```

```
Out[185]: Period('2011', 'A-DEC')
```
In [184]: p.asfreq('M', how='start')
Out[184]: Period('2011-01', 'M')

In [185]: p.asfreq('M', how='end')
Out[185]: Period('2011-12', 'M')

The shorthands ‘s’ and ‘e’ are provided for convenience:

In [186]: p.asfreq('M', 's')
Out[186]: Period('2011-01', 'M')

In [187]: p.asfreq('M', 'e')
Out[187]: Period('2011-12', 'M')

Converting to a “super-period” (e.g., annual frequency is a super-period of quarterly frequency) automatically returns the super-period that includes the input period:

In [188]: p = Period('2011-12', freq='M')
In [189]: p.asfreq('A-NOV')
Out[189]: Period('2012', 'A-NOV')

Note that since we converted to an annual frequency that ends the year in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common to economics, business, and other fields. Many organizations define quarters relative to the month in which their fiscal year start and ends. Thus, first quarter of 2011 could start in 2010 or a few months into 2011. Via anchored frequencies, pandas works all quarterly frequencies Q-JAN through Q-DEC.

Q-DEC define regular calendar quarters:

In [190]: p = Period('2012Q1', freq='Q-DEC')
In [191]: p.asfreq('D', 's')
Out[191]: Period('2012-01-01', 'D')

In [192]: p.asfreq('D', 'e')
Out[192]: Period('2012-03-31', 'D')

Q-MAR defines fiscal year end in March:

In [193]: p = Period('2011Q4', freq='Q-MAR')
In [194]: p.asfreq('D', 's')
Out[194]: Period('2011-01-01', 'D')

In [195]: p.asfreq('D', 'e')
Out[195]: Period('2011-03-31', 'D')

17.9 Converting between Representations

Timestamped data can be converted to PeriodIndex-ed data using to_period and vice-versa using to_timestamp:

In [196]: rng = date_range('1/1/2012', periods=5, freq='M')

In [197]: ts = Series(randn(len(rng)), index=rng)
In [198]: ts
Out[198]:
2012-01-31 -0.016142
2012-02-29 0.865782
2012-03-31 0.246439
2012-04-30 -1.199736
2012-05-31 0.407620
Freq: M, dtype: float64

In [199]: ps = ts.to_period()

In [200]: ps
Out[200]:
2012-01 -0.016142
2012-02 0.865782
2012-03 0.246439
2012-04 -1.199736
2012-05 0.407620
Freq: M, dtype: float64

In [201]: ps.to_timestamp()
Out[201]:
2012-01-01 -0.016142
2012-02-01 0.865782
2012-03-01 0.246439
2012-04-01 -1.199736
2012-05-01 0.407620
Freq: MS, dtype: float64

Remember that ‘s’ and ‘e’ can be used to return the timestamps at the start or end of the period:

In [202]: ps.to_timestamp('D', how='s')
Out[202]:
2012-01-01 -0.016142
2012-02-01 0.865782
2012-03-01 0.246439
2012-04-01 -1.199736
2012-05-01 0.407620
Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

In [203]: prng = period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [204]: ts = Series(randn(len(prng)), prng)

In [205]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [206]: ts.head()
Out[206]:
1990-03-01 09:00 -2.470970
1990-06-01 09:00 -0.929915
1990-09-01 09:00 1.385889
1990-12-01 09:00 -1.830966
1991-03-01 09:00 -0.328505
Freq: H, dtype: float64
17.10 Time Zone Handling

Pandas provides rich support for working with timestamps in different time zones using pytz and dateutil libraries. dateutil support is new [in 0.14.1] and currently only supported for fixed offset and tzfile zones. The default library is pytz. Support for dateutil is provided for compatibility with other applications e.g. if you use dateutil in other python packages.

By default, pandas objects are time zone unaware:

```
In [207]: rng = date_range('3/6/2012 00:00', periods=15, freq='D')
```

```
In [208]: rng.tz is None
Out[208]: True
```

To supply the time zone, you can use the tz keyword to date_range and other functions. Dateutil time zone strings are distinguished from pytz time zones by starting with dateutil/.

- In pytz you can find a list of common (and less common) time zones using from pytz import common_timezones, all_timezones.

- dateutil uses the OS timezones so there isn’t a fixed list available. For common zones, the names are the same as pytz.

pytz

```
In [209]: rng_pytz = date_range('3/6/2012 00:00', periods=10, freq='D', tz='Europe/London')
```

```
In [210]: rng_pytz.tz
Out[210]: <DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>
```

dateutil

```
In [211]: rng_dateutil = date_range('3/6/2012 00:00', periods=10, freq='D', tz='dateutil/Europe/London')
```

```
In [212]: rng_dateutil.tz
Out[212]: tzfile('/usr/share/zoneinfo/Europe/London')
```

dateutil - utc special case

```
In [213]: rng_utc = date_range('3/6/2012 00:00', periods=10, freq='D', tz=dateutil.tz.tzutc())
```

```
In [214]: rng_utc.tz
Out[214]: tzutc()
```

Note that the UTC timezone is a special case in dateutil and should be constructed explicitly as an instance of dateutil.tz.tzutc. You can also construct other timezones explicitly first, which gives you more control over which time zone is used:

pytz

```
In [215]: tz_pytz = pytz.timezone('Europe/London')
```

```
In [216]: rng_pytyz = date_range('3/6/2012 00:00', periods=10, freq='D', tz=tz_pytz)
```

```
In [217]: rng_pytyz.tz == tz_pytz
```
Out[217]: True

dateutil
In [218]: tz_dateutil = dateutil.tz.gettz('Europe/London')

In [219]: rng_dateutil = date_range('3/6/2012 00:00', periods=10, freq='D', tz=tz_dateutil)

In [220]: rng_dateutil.tz == tz_dateutil
Out[220]: True

Timestamps, like Python’s datetime.datetime object can be either time zone naive or time zone aware. Naive time series and DatetimeIndex objects can be localized using tz_localize:

In [221]: ts = Series(randn(len(rng)), rng)

In [222]: ts_utc = ts.tz_localize('UTC')

In [223]: ts_utc
Out[223]:
2012-03-06 00:00:00+00:00 0.758606
2012-03-07 00:00:00+00:00 2.190827
2012-03-08 00:00:00+00:00 0.706087
2012-03-09 00:00:00+00:00 1.798831
2012-03-10 00:00:00+00:00 1.228481
2012-03-11 00:00:00+00:00 -0.179494
2012-03-12 00:00:00+00:00 0.634073
2012-03-13 00:00:00+00:00 0.262123
2012-03-14 00:00:00+00:00 1.928233
2012-03-15 00:00:00+00:00 0.322573
2012-03-16 00:00:00+00:00 -0.711113
2012-03-17 00:00:00+00:00 1.444272
2012-03-18 00:00:00+00:00 -0.352268
2012-03-19 00:00:00+00:00 0.213008
2012-03-20 00:00:00+00:00 -0.619340
Freq: D, dtype: float64

Again, you can explicitly construct the timezone object first. You can use the tz_convert method to convert pandas objects to convert tz-aware data to another time zone:

In [224]: ts_utc.tz_convert('US/Eastern')
Out[224]:
2012-03-05 19:00:00-05:00 0.758606
2012-03-06 19:00:00-05:00 2.190827
2012-03-07 19:00:00-05:00 0.706087
2012-03-08 19:00:00-05:00 1.798831
2012-03-09 19:00:00-05:00 1.228481
2012-03-10 19:00:00-05:00 -0.179494
2012-03-11 20:00:00-04:00 0.634073
2012-03-12 20:00:00-04:00 0.262123
2012-03-13 20:00:00-04:00 1.928233
2012-03-14 20:00:00-04:00 0.322573
2012-03-15 20:00:00-04:00 -0.711113
2012-03-16 20:00:00-04:00 1.444272
2012-03-17 20:00:00-04:00 -0.352268
2012-03-18 20:00:00-04:00 0.213008
2012-03-19 20:00:00-04:00 -0.619340
Freq: D, dtype: float64
Warning: Be wary of conversions between libraries. For some zones `pytz` and `dateutil` have different definitions of the zone. This is more of a problem for unusual timezones than for ‘standard’ zones like `US/Eastern`.

Warning: Be aware that a timezone definition across versions of timezone libraries may not be considered equal. This may cause problems when working with stored data that is localized using one version and operated on with a different version. See `here` for how to handle such a situation.

Under the hood, all timestamps are stored in UTC. Scalar values from a `DatetimeIndex` with a time zone will have their fields (day, hour, minute) localized to the time zone. However, timestamps with the same UTC value are still considered to be equal even if they are in different time zones:

```
In [225]: rng_eastern = rng_utc.tz_convert('US/Eastern')
In [226]: rng_berlin = rng_utc.tz_convert('Europe/Berlin')
In [227]: rng_eastern[5]
Out[227]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', offset='D')
In [228]: rng_berlin[5]
Out[228]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', offset='D')
Out[229]: True
```

Like Series, DataFrame, and DatetimeIndex, Timestamps can be converted to other time zones using `tz_convert`:

```
In [230]: rng_eastern[5]
Out[230]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', offset='D')
In [231]: rng_berlin[5]
Out[231]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', offset='D')
In [232]: rng_eastern[5].tz_convert('Europe/Berlin')
Out[232]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin')
```

Localization of Timestamps functions just like DatetimeIndex and TimeSeries:

```
In [233]: rng[5]
Out[233]: Timestamp('2012-03-11 00:00:00', offset='D')
In [234]: rng[5].tz_localize('Asia/Shanghai')
Out[234]: Timestamp('2012-03-11 00:00:00+0800', tz='Asia/Shanghai')
```

Operations between TimeSeries in different time zones will yield UTC TimeSeries, aligning the data on the UTC timestamps:

```
In [235]: eastern = ts_utc.tz_convert('US/Eastern')
In [236]: berlin = ts_utc.tz_convert('Europe/Berlin')
In [237]: result = eastern + berlin

In [238]: result
Out[238]:
2012-03-06 00:00:00+00:00   1.517212
2012-03-07 00:00:00+00:00   4.381654
2012-03-08 00:00:00+00:00   1.412174
2012-03-09 00:00:00+00:00   3.597662
```
In some cases, localize cannot determine the DST and non-DST hours when there are duplicates. This often happens when reading files that simply duplicate the hours. The infer_dst argument in tz_localize will attempt to determine the right offset.

```
In [240]: rng_hourly = DatetimeIndex(["11/06/2011 00:00", '11/06/2011 01:00',
                       .....:
                       '11/06/2011 01:00', '11/06/2011 02:00',
                       .....:
                       '11/06/2011 03:00'])
```

```
In [241]: rng_hourly_eastern = rng_hourly.tz_localize('US/Eastern', infer_dst=True)
```

```
In [242]: rng_hourly_eastern.values
```

```
Out[243]:
array(['2011-11-06T05:00:00.000000000+0100',
       '2011-11-06T06:00:00.000000000+0100',
       '2011-11-06T07:00:00.000000000+0100',
       '2011-11-06T08:00:00.000000000+0100',
       '2011-11-06T09:00:00.000000000+0100'], dtype='datetime64[ns]')
```
17.11 Time Deltas

Timedeltas are differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. They can be both positive and negative. DateOffsets that are absolute in nature (Day, Hour, Minute, Second, Milli, Micro, Nano) can be used as timedeltas.

In [244]: from datetime import datetime, timedelta

In [245]: s = Series(date_range('2012-1-1', periods=3, freq='D'))

In [246]: td = Series([timedelta(days=i) for i in range(3)])

In [247]: df = DataFrame(dict(A=s, B=td))

In [248]: df
Out[248]:
 A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [249]: df['C'] = df['A'] + df['B']

In [250]: df
Out[250]:
 A B C
0 2012-01-01 0 days 2012-01-01
1 2012-01-02 1 days 2012-01-03
2 2012-01-03 2 days 2012-01-05

In [251]: df.dtypes
Out[251]:
A datetime64[ns]
B timedelta64[ns]
C datetime64[ns]
dtype: object

In [252]: s - s.max()
Out[252]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]

In [253]: s - datetime(2011,1,1,3,5)
Out[253]:
0 364 days, 20:55:00
1 365 days, 20:55:00
2 366 days, 20:55:00
dtype: timedelta64[ns]

In [254]: s + timedelta(minutes=5)
Out[254]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
In [255]: s + Minute(5)
Out[255]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

In [256]: s + Minute(5) + Milli(5)
Out[256]:
0 2012-01-01 00:05:00.005000
1 2012-01-02 00:05:00.005000
2 2012-01-03 00:05:00.005000
dtype: datetime64[ns]

Getting scalar results from a timedelta64[ns] series

In [257]: y = s - s[0]

In [258]: y
Out[258]:
0 0 days
1 1 days
2 2 days
dtype: timedelta64[ns]

Series of timedeltas with NaT values are supported

In [259]: y = s - s.shift()

In [260]: y
Out[260]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]

Elements can be set to NaT using np.nan analogously to datetimes

In [261]: y[1] = np.nan

In [262]: y
Out[262]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]

Operands can also appear in a reversed order (a singular object operated with a Series)

In [263]: s.max() - s
Out[263]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]

In [264]: datetime(2011,1,1,3,5) - s
Out[264]:
0 -364 days, 20:55:00
Some timedelta numeric like operations are supported.

```
In [266]: td - timedelta(minutes=5, seconds=5, microseconds=5)
Out[266]:
0  -0 days, 00:05:05.000005
1   0 days, 23:54:54.999995
2   1 days, 23:54:54.999995
dtype: timedelta64[ns]
```

`min`, `max` and the corresponding `idxmin`, `idxmax` operations are supported on frames.

```
In [267]: A = s - Timestamp('20120101') - timedelta(minutes=5, seconds=5)
In [268]: B = s - Series(date_range('2012-1-2', periods=3, freq='D'))
In [269]: df = DataFrame(dict(A=A, B=B))
In [270]: df
Out[270]:
     A                  B
0 -0 days, 00:05:05 -1 days
1  0 days, 23:54:55 -1 days
2  1 days, 23:54:55 -1 days
In [271]: df.min()
Out[271]:
A  -0 days, 00:05:05
B  -1 days, 00:00:00
dtype: timedelta64[ns]
In [272]: df.min(axis=1)
Out[272]:
 0  -1 days
 1  -1 days
 2  -1 days
dtype: timedelta64[ns]
In [273]: df.idxmin()
Out[273]:
A   0
B   0
dtype: int64
In [274]: df.idxmax()
Out[274]:
A   2
B   0
dtype: int64
```

17.11. Time Deltas
min, max operations are supported on series; these return a single element `timedelta64[ns]` Series (this avoids having to deal with numpy timedelta64 issues). `idxmin`, `idxmax` are supported as well.

```python
In [275]: df.min().max()
Out[275]:
0 -00:05:05
dtype: timedelta64[ns]
```

```python
In [276]: df.min(axis=1).min()
Out[276]:
0 -1 days
dtype: timedelta64[ns]
```

```python
In [277]: df.min().idxmax()
Out[277]: 'A'
```

```python
In [278]: df.min(axis=1).idxmin()
Out[278]: 0
```

You can fillna on timedeltas. Integers will be interpreted as seconds. You can pass a timedelta to get a particular value.

```python
In [279]: y.fillna(0)
Out[279]:
0 0 days
1 0 days
2 1 days
dtype: timedelta64[ns]
```

```python
In [280]: y.fillna(10)
Out[280]:
0 0 days, 00:00:10
1 0 days, 00:00:10
2 1 days, 00:00:00
dtype: timedelta64[ns]
```

```python
In [281]: y.fillna(timedelta(days=-1,seconds=5))
Out[281]:
0 -0 days, 23:59:55
1 -0 days, 23:59:55
2 1 days, 00:00:00
dtype: timedelta64[ns]
```

17.12 Time Deltas & Reductions

Warning: A numeric reduction operation for `timedelta64[ns]` can return a single-element Series of dtype `timedelta64[ns]`.

You can do numeric reduction operations on timedeltas.

```python
In [282]: y2 = y.fillna(timedelta(days=-1,seconds=5))
```

```python
In [283]: y2
Out[283]:
0 -0 days, 23:59:55
1 -0 days, 23:59:55
2 1 days, 00:00:00
```
In [284]: y2.mean()
Out[284]:
0 -07:59:56.666667
dtype: timedelta64[ns]

In [285]: y2.quantile(.1)
Out[285]: numpy.timedelta64(-86395000000000,'ns')

17.13 Time Deltas & Conversions

New in version 0.13. string/integer conversion

Using the top-level to_timedelta, you can convert a scalar or array from the standard timedelta format (produced by to_csv) into a timedelta type (np.timedelta64 in nanoseconds). It can also construct Series.

Warning: This requires numpy >= 1.7

In [286]: to_timedelta('1 days 06:05:01.00003')
Out[286]: numpy.timedelta64(108301000000000,'ns')

In [287]: to_timedelta('15.5us')
Out[287]: numpy.timedelta64(15500,'ns')

In [288]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
Out[288]:
0 1 days, 06:05:01.000030
1 0 days, 00:00:00.000016
 NaT
dtype: timedelta64[ns]

In [289]: to_timedelta(np.arange(5),unit='s')
Out[289]:
0 00:00:00
1 00:00:01
2 00:00:02
3 00:00:03
4 00:00:04
dtype: timedelta64[ns]

In [290]: to_timedelta(np.arange(5),unit='d')
Out[290]:
0 0 days
1 1 days
2 2 days
3 3 days
4 4 days
dtype: timedelta64[ns]

frequency conversion

Timedeltas can be converted to other ‘frequencies’ by dividing by another timedelta, or by astyping to a specific timedelta type. These operations yield float64 dtyped Series.
In [291]: td = Series(date_range('20130101', periods=4)) - Series(date_range('20121201', periods=4))

In [292]: td[2] += np.timedelta64(timedelta(minutes=5, seconds=3))

In [293]: td[3] = np.nan

In [294]: td
Out[294]:
0 31 days, 00:00:00
1 31 days, 00:00:00
2 31 days, 00:05:03
3 NaT
dtype: timedelta64[ns]

to days
In [295]: td / np.timedelta64(1, 'D')
Out[295]:
0 31.000000
1 31.000000
2 31.003507
3 NaN
dtype: float64

In [296]: td.astype('timedelta64[D]')
Out[296]:
0 31
1 31
2 31
3 NaN
dtype: float64

to seconds
In [297]: td / np.timedelta64(1, 's')
Out[297]:
0 2678400
1 2678400
2 2678703
3 NaN
dtype: float64

In [298]: td.astype('timedelta64[s]')
Out[298]:
0 2678400
1 2678400
2 2678703
3 NaN
dtype: float64

Dividing or multiplying a timedelta64[ns] Series by an integer or integer Series yields another timedelta64[ns] dtypes Series.

In [299]: td * -1
Out[299]:
0 -31 days, 00:00:00
1 -31 days, 00:00:00
2 -31 days, 00:05:03
3 NaT
dtype: timedelta64[ns]
In [300]: td * Series([1,2,3,4])
Out[300]:
 0 31 days, 00:00:00
 1 62 days, 00:00:00
 2 93 days, 00:15:09
 3 NaT
dtype: timedelta64[ns]

17.13.1 Numpy < 1.7 Compatibility

Numpy < 1.7 has a broken timedelta64 type that does not correctly work for arithmetic. pandas bypasses this, but for frequency conversion as above, you need to create the divisor yourself. The np.timedelta64 type only has 1 argument, the number of micro seconds.

The following are equivalent statements in the two versions of numpy.

```python
from distutils.version import LooseVersion
if LooseVersion(np.__version__) <= '1.6.2':
    y / np.timedelta(86400*int(1e6))
    y / np.timedelta(int(1e6))
else:
    y / np.timedelta64(1,'D')
    y / np.timedelta64(1,'s')
```
We use the standard convention for referencing the matplotlib API:

```
In [1]: import matplotlib.pyplot as plt
```

New in version 0.11.0. The `display.mpl_style` produces more appealing plots. When set, matplotlib's `rcParams` are changed (globally!) to nicer-looking settings. All the plots in the documentation are rendered with this option set to the ‘default’ style.

```
In [2]: pd.options.display.mpl_style = 'default'
```

We provide the basics in pandas to easily create decent looking plots. See the `ecosystem` section for visualization libraries that go beyond the basics documented here.

Note: All calls to `np.random` are seeded with 123456.

18.1 Basic Plotting: `plot`

See the `cookbook` for some advanced strategies

The `plot` method on Series and DataFrame is just a simple wrapper around `plt.plot()`:

```
In [3]: ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))

In [4]: ts = ts.cumsum()

In [5]: ts.plot()
Out[5]: <matplotlib.axes.AxesSubplot at 0xb08c6c0c>
```
If the index consists of dates, it calls `gcf().autofmt_xdate()` to try to format the x-axis nicely as per above.

On DataFrame, `plot()` is a convenience to plot all of the columns with labels:

```
In [6]: df = DataFrame(randn(1000, 4), index=ts.index, columns=list(’ABCD’))

In [7]: df = df.cumsum()

In [8]: plt.figure(); df.plot();
```
You can plot one column versus another using the \texttt{x} and \texttt{y} keywords in \texttt{plot()}:

\begin{verbatim}
In [9]: df3 = DataFrame(randn(1000, 2), columns=['B', 'C']).cumsum()

In [10]: df3['A'] = Series(list(range(len(df))))

In [11]: df3.plot(x='A', y='B')
Out[11]: <matplotlib.axes.AxesSubplot at 0xafaef4ac>
\end{verbatim}
18.2 Other Plots

The `kind` keyword argument of `plot()` accepts a handful of values for plots other than the default Line plot. These include:

- `'bar'` or `'barh'` for bar plots
- `'kde'` or `'density'` for density plots
- `'area'` for area plots
- `'scatter'` for scatter plots
- `'hexbin'` for hexagonal bin plots
- `'pie'` for pie plots

In addition to these `kind`s, there are the `DataFrame.hist()`, and `DataFrame.boxplot()` methods, which use a separate interface.

Finally, there are several plotting functions in `pandas.tools.plotting` that take a `Series` or `DataFrame` as an argument. These include:

- Scatter Matrix
- Andrews Curves
- Parallel Coordinates
- Lag Plot
• *Autocorrelation Plot*
• *Bootstrap Plot*
• *RadViz*

Plots may also be adorned with *errorbars* or *tables*.

18.2.1 Bar plots

For labeled, non-time series data, you may wish to produce a bar plot:

```
In [12]: plt.figure();

In [13]: df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')
Out[13]: <matplotlib.lines.Line2D at 0xafae0c8c>
```

![Bar plot example](image)

Calling a DataFrame's `plot()` method with `kind='bar'` produces a multiple bar plot:

```
In [14]: df2 = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd'])

In [15]: df2.plot(kind='bar');
```
To produce a stacked bar plot, pass `stacked=True`:

```python
In [16]: df2.plot(kind='bar', stacked=True);
```

To get horizontal bar plots, pass `kind='barh'`:
18.2.2 Histograms

In [18]: plt.figure();

In [19]: df['A'].diff().hist()
Out[19]: <matplotlib.axes.AxesSubplot at 0xafa2d16c>
DataFrame.hist() plots the histograms of the columns on multiple subplots:

In [20]: plt.figure()
Out[20]: <matplotlib.figure.Figure at 0xafa69a2c>

In [21]: df.diff().hist(color='k', alpha=0.5, bins=50)
Out[21]:
array([[[<matplotlib.axes.AxesSubplot object at 0xafa938ec>],
 <matplotlib.axes.AxesSubplot object at 0xaf5cbbec>],
 [<matplotlib.axes.AxesSubplot object at 0xaf6abaac>],
 <matplotlib.axes.AxesSubplot object at 0xaf66016c>]], dtype=object)
The `by` keyword can be specified to plot grouped histograms:

```
In [22]: data = Series(randn(1000))

In [23]: data.hist(by=randint(0, 4, 1000), figsize=(6, 4))
```

New in version 0.10.0.
18.2.3 Box Plots

DataFrame has a boxplot() method that allows you to visualize the distribution of values within each column. For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).

In [24]: df = DataFrame(rand(10,5))

In [25]: plt.figure();

In [26]: bp = df.boxplot()
You can create a stratified boxplot using the `by` keyword argument to create groupings. For instance,

```
In [27]: df = DataFrame(rand(10,2), columns=['Col1', 'Col2'])

In [28]: df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])

In [29]: plt.figure();

In [30]: bp = df.boxplot(by='X')
```
You can also pass a subset of columns to plot, as well as group by multiple columns:

```python
In [31]: df = DataFrame(rand(10,3), columns=['Col1', 'Col2', 'Col3'])
In [32]: df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])
In [33]: df['Y'] = Series(['A','B','A','B','A','B','A','B','A','B'])
In [34]: plt.figure();
In [35]: bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
```
The return type of `boxplot` depends on two keyword arguments: `by` and `return_type`. When `by` is `None`:

- if `return_type` is `dict`, a dictionary containing the `matplotlib Lines` is returned. The keys are “boxes”, “caps”

 This is the default.

- if `return_type` is `axes`, a `matplotlib Axes` containing the boxplot is returned.

- if `return_type` is `both` a namedtuple containing the `matplotlib Axes` and `matplotlib` `Lines` is returned

When `by` is some column of the DataFrame, a dict of `return_type` is returned, where the keys are the columns of the DataFrame. The plot has a facet for each column of the DataFrame, with a separate box for each value of `by`.

Finally, when calling boxplot on a `Groupby` object, a dict of `return_type` is returned, where the keys are the same as the `Groupby` object. The plot has a facet for each key, with each facet containing a box for each column of the DataFrame.

```
In [36]: np.random.seed(1234)

In [37]: df_box = DataFrame(np.random.randn(50, 2))

In [38]: df_box['g'] = np.random.choice(['A', 'B'], size=50)

In [39]: df_box.loc[df_box['g'] == 'B', 1] += 3

In [40]: bp = df_box.boxplot(by='g')
```
Compare to:

```python
In [41]: bp = df_box.groupby('g').boxplot()
```
18.2.4 Area Plot

New in version 0.14. You can create area plots with `Series.plot` and `DataFrame.plot` by passing `kind='area'`. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.

When input data contains `NaN`, it will be automatically filled by 0. If you want to drop or fill by different values, use `dataframe.dropna()` or `dataframe.fillna()` before calling `plot`.

```
In [42]: df = DataFrame(rand(10, 4), columns=[‘a’, ‘b’, ‘c’, ‘d’])

In [43]: df.plot(kind=’area’);
```

To produce an unstacked plot, pass `stacked=False`. Alpha value is set to 0.5 unless otherwise specified:

```
In [44]: df.plot(kind=’area’, stacked=False);
```
18.2.5 Hexagonal Bin Plot

New in version 0.14. You can create hexagonal bin plots with `DataFrame.plot()` and `kind='hexbin'`. Hexbin plots can be a useful alternative to scatter plots if your data are too dense to plot each point individually.

In [45]: df = DataFrame(randn(1000, 2), columns=['a', 'b'])

In [46]: df['b'] = df['b'] + np.arange(1000)

In [47]: df.plot(kind='hexbin', x='a', y='b', gridsize=25)
Out[47]: <matplotlib.axes.AxesSubplot at 0xaec9610c>
A useful keyword argument is `gridsize`; it controls the number of hexagons in the x-direction, and defaults to 100. A larger `gridsize` means more, smaller bins.

By default, a histogram of the counts around each \((x, y)\) point is computed. You can specify alternative aggregations by passing values to the `C` and `reduce_C_function` arguments. `C` specifies the value at each \((x, y)\) point and `reduce_C_function` is a function of one argument that reduces all the values in a bin to a single number (e.g. `mean`, `max`, `sum`, `std`). In this example the positions are given by columns `a` and `b`, while the value is given by column `z`. The bins are aggregated with numpy's `max` function.

```python
In [48]: df = DataFrame(randn(1000, 2), columns=['a', 'b'])

In [49]: df['b'] = df['b'] + np.arange(1000)

In [50]: df['z'] = np.random.uniform(0, 3, 1000)

In [51]: df.plot(kind='hexbin', x='a', y='b', C='z', reduce_C_function=np.max, ....:      gridsize=25)
    ....:
Out[51]: <matplotlib.axes.AxesSubplot at 0xaf59562c>
```
See the hexbin method and the matplotlib hexbin documentation for more.

18.2.6 Pie plot

New in version 0.14. You can create a pie plot with `DataFrame.plot()` or `Series.plot()` with `kind='pie'`. If your data includes any NaN, they will be automatically filled with 0. A `ValueError` will be raised if there are any negative values in your data.

```python
In [52]: series = Series(3 * rand(4), index=['a', 'b', 'c', 'd'], name='series')

In [53]: series.plot(kind='pie')
Out[53]: <matplotlib.axes.AxesSubplot at 0xaf72606c>
```
Note that pie plot with `DataFrame` requires that you either specify a target column by the `y` argument or `subplots=True`. When `y` is specified, pie plot of selected column will be drawn. If `subplots=True` is specified, pie plots for each column are drawn as subplots. A legend will be drawn in each pie plots by default; specify `legend=False` to hide it.

```python
In [54]: df = DataFrame(3 * rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y'])
In [55]: df.plot(kind='pie', subplots=True)
Out[55]:
array([<matplotlib.axes.AxesSubplot object at 0xaf561c4c>,
       <matplotlib.axes.AxesSubplot object at 0xaec60fec>], dtype=object)
```

You can use the `labels` and `colors` keywords to specify the labels and colors of each wedge.
Warning: Most pandas plots use the `label` and `color` arguments (not the lack of “s” on those). To be consistent with `matplotlib.pyplot.pie()` you must use `labels` and `colors`.

If you want to hide wedge labels, specify `labels=None`. If `fontsize` is specified, the value will be applied to wedge labels. Also, other keywords supported by `matplotlib.pyplot.pie()` can be used.

```python
In [56]: series.plot(kind='pie', labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'],
   ....: autopct='%.2f', fontsize=20)
   ....:
Out[56]: <matplotlib.axes.AxesSubplot at 0xae6bd1ec>
```

If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.

```python
In [57]: series = Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2')
In [58]: series.plot(kind='pie')
Out[58]: <matplotlib.axes.AxesSubplot at 0xa6f6192c>
```
18.3 Plotting Tools

These functions can be imported from pandas.tools.plotting and take a Series or DataFrame as an argument.

18.3.1 Scatter Matrix Plot

New in version 0.7.3.

You can create a scatter plot matrix using the scatter_matrix method in pandas.tools.plotting:

```python
In [59]: from pandas.tools.plotting import scatter_matrix

In [60]: df = DataFrame(randn(1000, 4), columns=['a', 'b', 'c', 'd'])

In [61]: scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
```

See the matplotlib pie documentation for more.
18.3.2 Density Plot

New in version 0.8.0. You can create density plots using the Series/DataFrame.plot and setting kind='kde':

In [62]: ser = Series(randn(1000))

In [63]: ser.plot(kind='kde')
Out[63]: <matplotlib.axes.AxesSubplot at 0xabc3d42c>
18.3.3 Andrews Curves

Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures.

Note: The “Iris” dataset is available here.

In [64]: from pandas import read_csv

In [65]: from pandas.tools.plotting import andrews_curves

In [66]: data = read_csv(‘data/iris.data’)

In [67]: plt.figure()
Out[67]: <matplotlib.figure.Figure at 0xaba9e40c>

In [68]: andrews_curves(data, ‘Name’)
Out[68]: <matplotlib.axes.AxesSubplot at 0xaba9efac>
18.3.4 Parallel Coordinates

Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together.

In [69]: from pandas import read_csv

In [70]: from pandas.tools.plotting import parallel_coordinates

In [71]: data = read_csv('data/iris.data')

In [72]: plt.figure()
Out[72]: <matplotlib.figure.Figure at 0xab7afb4c>

In [73]: parallel_coordinates(data, 'Name')
Out[73]: <matplotlib.axes.AxesSubplot at 0xab7b46ec>
Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random.

In [74]: from pandas.tools.plotting import lag_plot

In [75]: plt.figure()
Out[75]: <matplotlib.figure.Figure at 0xab56560c>

In [76]: data = Series(0.1 * rand(1000) +
.....: 0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))
.....:

In [77]: lag_plot(data)
Out[77]: <matplotlib.axes.AxesSubplot at 0xab56a7cc>
18.3.6 Autocorrelation Plot

Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band.

In [78]: from pandas.tools.plotting import autocorrelation_plot

In [79]: plt.figure()
Out [79]: <matplotlib.figure.Figure at 0xab2d8d4c>

In [80]: data = Series(0.7 * rand(1000) +
 : 0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))
 :

In [81]: autocorrelation_plot(data)
Out [81]: <matplotlib.axes.AxesSubplot at 0xab7253ec>
18.3.7 Bootstrap Plot

Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot.

```
In [82]: from pandas.tools.plotting import bootstrap_plot

In [83]: data = Series(rand(1000))

In [84]: bootstrap_plot(data, size=50, samples=500, color='grey')
```

```
Out[84]: <matplotlib.figure.Figure at 0xab2fce4c>
```
RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently.

Note: The “Iris” dataset is available here.

In [85]: from pandas import read_csv

In [86]: from pandas.tools.plotting import radviz

In [87]: data = read_csv('data/iris.data')

In [88]: plt.figure()
Out[88]: <matplotlib.figure.Figure at 0xaafbbeac>

In [89]: radviz(data, 'Name')
Out[89]: <matplotlib.axes.AxesSubplot at 0xab1bd8cc>
18.4 Plot Formatting

Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot:

```
In [90]: plt.figure(); ts.plot(style='k--', label='Series');
```

![Plot Formatting Diagram]
For each kind of plot (e.g. `line`, `bar`, `scatter`) any additional arguments keywords are passed along to the corresponding matplotlib function (`ax.plot()`, `ax.bar()`, `ax.scatter()`). These can be used to control additional styling, beyond what pandas provides.

18.4.1 Controlling the Legend

You may set the `legend` argument to `False` to hide the legend, which is shown by default.

```
In [91]: df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))

In [92]: df = df.cumsum()

In [93]: df.plot(legend=False)
```

18.4.2 Scales

You may pass `logy` to get a log-scale Y axis.

```
In [94]: ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))

In [95]: ts = np.exp(ts.cumsum())

In [96]: ts.plot(logy=True)
```

500 Chapter 18. Plotting
See also the `logx` and `loglog` keyword arguments.

18.4.3 Plotting on a Secondary Y-axis

To plot data on a secondary y-axis, use the `secondary_y` keyword:

```
In [97]: df.A.plot()
Out[97]: <matplotlib.axes.AxesSubplot at 0xaac66e4c>
```

```
In [98]: df.B.plot(secondary_y=True, style='g')
Out[98]: <matplotlib.axes.AxesSubplot at 0xaaf9f26c>
```
To plot some columns in a DataFrame, give the column names to the `secondary_y` keyword:

```python
In [99]: plt.figure()
Out[99]: <matplotlib.figure.Figure at 0xab812f4c>

In [100]: ax = df.plot(secondary_y=['A', 'B'])

In [101]: ax.set_ylabel('CD scale')
Out[101]: <matplotlib.text.Text at 0xaaf6baac>

In [102]: ax.right_ax.set_ylabel('AB scale')
Out[102]: <matplotlib.text.Text at 0xaaa567ec>
```
Note that the columns plotted on the secondary y-axis is automatically marked with “(right)” in the legend. To turn off the automatic marking, use the `mark_right=False` keyword:

```python
In [103]: plt.figure()
Out[103]: <matplotlib.figure.Figure at 0xaaa395cc>

In [104]: df.plot(secondary_y=['A', 'B'], mark_right=False)
Out[104]: <matplotlib.axes.AxesSubplot at 0xaaf2ca4c>
```
18.4.4 Suppressing Tick Resolution Adjustment

pandas includes automatically tick resolution adjustment for regular frequency time-series data. For limited cases where pandas cannot infer the frequency information (e.g., in an externally created twinx), you can choose to suppress this behavior for alignment purposes.

Here is the default behavior, notice how the x-axis tick labelling is performed:

```
In [105]: plt.figure()
Out[105]: <matplotlib.figure.Figure at 0xaaa8f97ac>

In [106]: df.A.plot()
Out[106]: <matplotlib.axes.AxesSubplot at 0xaaa8efb2c>
```
Using the `x_compat` parameter, you can suppress this behavior:

In [107]: plt.figure()
Out[107]: <matplotlib.figure.Figure at 0xaaa6ec8ec>

In [108]: df.A.plot(x_compat=True)
Out[108]: <matplotlib.axes.AxesSubplot at 0xa5ce40c>

If you have more than one plot that needs to be suppressed, the `use` method in `pandas.plot_params` can be used.
in a `with` statement:

```
In [109]: import pandas as pd

In [110]: plt.figure()
Out[110]: <matplotlib.figure.Figure at 0xaac46d6c>

In [111]: with pd.plot_params.use('x_compat', True):
    ....:     df.A.plot(color='r')
    ....:     df.B.plot(color='g')
    ....:     df.C.plot(color='b')
    ....:
```

![Graph of three series plotted with different colors](image)

18.4.5 Subplots

Each Series in a DataFrame can be plotted on a different axis with the `subplots` keyword:

```
In [112]: df.plot(subplots=True, figsize=(6, 6));
```
18.4.6 Targeting Different Subplots

You can pass an `ax` argument to `Series.plot()` to plot on a particular axis:

```python
In [113]: fig, axes = plt.subplots(nrows=2, ncols=2)
```

```python
In [114]: df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A')
Out[114]: <matplotlib.text.Text at 0xab823c8c>
```

```python
In [115]: df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B')
Out[115]: <matplotlib.text.Text at 0xaaac512c>
```

```python
In [116]: df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C')
Out[116]: <matplotlib.text.Text at 0xaa3423cc>
```

```python
In [117]: df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D')
Out[117]: <matplotlib.text.Text at 0xaa2ea3cc>
```
18.4.7 Plotting With Error Bars

New in version 0.14. Plotting with error bars is now supported in the `DataFrame.plot()` and `Series.plot()`

Horizontal and vertical errorbars can be supplied to the `xerr` and `yerr` keyword arguments to `plot()`. The error values can be specified using a variety of formats.

- As a `DataFrame` or dict of errors with column names matching the `columns` attribute of the plotting `DataFrame` or matching the name attribute of the `Series`
- As a `str` indicating which of the columns of plotting `DataFrame` contain the error values
- As raw values (`list`, `tuple`, or `np.ndarray`). Must be the same length as the plotting `DataFrame/Series`

Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a M length `Series`, a Mx2 array should be provided indicating lower and upper (or left and right) errors. For a MxN `DataFrame`, asymmetrical errors should be in a Mx2xN array.

Here is an example of one way to easily plot group means with standard deviations from the raw data.

```python
# Generate the data
In [119]: df3 = pd.DataFrame({‘data1’: [3, 2, 4, 3, 2, 4, 3, 2], ‘data2’: [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3)

# Group by index labels and take the means and standard deviations for each group
In [120]: gp3 = df3.groupby(level=('letter', 'word'))
In [121]: means = gp3.mean()
In [122]: errors = gp3.std()
```
In [123]: means
Out[123]:

<table>
<thead>
<tr>
<th>letter</th>
<th>word</th>
<th>data1</th>
<th>data2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>bar</td>
<td>3.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>2.5</td>
<td>5.5</td>
</tr>
<tr>
<td>b</td>
<td>bar</td>
<td>2.5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>3.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

In [124]: errors
Out[124]:

<table>
<thead>
<tr>
<th>letter</th>
<th>word</th>
<th>data1</th>
<th>data2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>bar</td>
<td>0.707107</td>
<td>1.414214</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>0.707107</td>
<td>0.707107</td>
</tr>
<tr>
<td>b</td>
<td>bar</td>
<td>0.707107</td>
<td>0.707107</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>1.414214</td>
<td>0.707107</td>
</tr>
</tbody>
</table>

Plot
In [125]: fig, ax = plt.subplots()

In [126]: means.plot(yerr=errors, ax=ax, kind='bar')
Out[126]: <matplotlib.axes.AxesSubplot at 0xaa156eec>
18.4.8 Plotting Tables

New in version 0.14. Plotting with matplotlib table is now supported in DataFrame.plot() and Series.plot() with a table keyword. The table keyword can accept bool, DataFrame or Series. The simple way to draw a table is to specify table=True. Data will be transposed to meet matplotlib’s default layout.

```
In [127]: fig, ax = plt.subplots(1, 1)

In [128]: df = DataFrame(rand(5, 3), columns=['a', 'b', 'c'])

In [129]: ax.get_xaxis().set_visible(False)   # Hide Ticks

In [130]: df.plot(table=True, ax=ax)
Out[130]: <matplotlib.axes.AxesSubplot at 0xaa18bfac>
```

Also, you can pass different DataFrame or Series for table keyword. The data will be drawn as displayed in print method (not transposed automatically). If required, it should be transposed manually as below example.

```
In [131]: fig, ax = plt.subplots(1, 1)

In [132]: ax.get_xaxis().set_visible(False)   # Hide Ticks

In [133]: df.plot(table=np.round(df.T, 2), ax=ax)
Out[133]: <matplotlib.axes.AxesSubplot at 0xa9e7c24f>
```
Finally, there is a helper function pandas.tools.plotting.table to create a table from DataFrame and Series, and add it to an matplotlib.Axes. This function can accept keywords which matplotlib table has.

```python
In [134]: from pandas.tools.plotting import table

In [135]: fig, ax = plt.subplots(1, 1)

In [136]: table(ax, np.round(df.describe(), 2),
       ......:     loc='upper right', colWidths=[0.2, 0.2, 0.2])
       ......:
Out[136]: <matplotlib.table.Table at 0xaaa9490c>

In [137]: df.plot(ax=ax, ylim=(0, 2), legend=None)
Out[137]: <matplotlib.axes.AxesSubplot at 0xaa1c9e2c>
```
18.4.9 Colormaps

A potential issue when plotting a large number of columns is that it can be difficult to distinguish some series due to repetition in the default colors. To remedy this, DataFrame plotting supports the use of the `colormap=` argument, which accepts either a Matplotlib colormap or a string that is a name of a colormap registered with Matplotlib. A visualization of the default matplotlib colormaps is available here.

As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing determined by the number of columns in the DataFrame. There is no consideration made for background color, so some colormaps will produce lines that are not easily visible.

To use the cubehelix colormap, we can simply pass ‘cubehelix’ to `colormap=`

In [138]: df = DataFrame(randn(1000, 10), index=ts.index)

In [139]: df = df.cumsum()

In [140]: plt.figure()
Out[140]: <matplotlib.figure.Figure at 0xaa19580c>

In [141]: df.plot(colormap='cubehelix')
Out[141]: <matplotlib.axes.AxesSubplot at 0xaa6c716c>
or we can pass the colormap itself

In [142]: from matplotlib import cm

In [143]: plt.figure()
Out[143]: <matplotlib.figure.Figure at 0xa9e736ec>

In [144]: df.plot(colormap=cm.cubehelix)
Out[144]: <matplotlib.axes.AxesSubplot at 0xaa174b0c>
Colormaps can also be used other plot types, like bar charts:

```python
In [145]: dd = DataFrame(randn(10, 10)).applymap(abs)

In [146]: dd = dd.cumsum()

In [147]: plt.figure()
Out[147]: <matplotlib.figure.Figure at 0xaaa7747ac>

In [148]: dd.plot(kind='bar', colormap='Greens')
Out[148]: <matplotlib.axes.AxesSubplot at 0xaaa78076c>
```
Parallel coordinates charts:

```
In [149]: plt.figure()
Out[149]: <matplotlib.figure.Figure at 0xaa12c4ec>
```

```
In [150]: parallel_coordinates(data, 'Name', colormap='gist_rainbow')
Out[150]: <matplotlib.axes.AxesSubplot at 0xaa12caec>
```

Andrews curves charts:

```
18.4. Plot Formatting
```
18.5 Plotting directly with matplotlib

In some situations it may still be preferable or necessary to prepare plots directly with matplotlib, for instance when a certain type of plot or customization is not (yet) supported by pandas. Series and DataFrame objects behave like arrays and can therefore be passed directly to matplotlib functions without explicit casts. pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and time support to practically all plot types available in matplotlib. Although this formatting does not provide the same level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points.

Note: The speed up for large data sets only applies to pandas 0.14.0 and later.

In [153]: price = Series(randn(150).cumsum(),
....: index=date_range('2000-1-1', periods=150, freq='B'))
....:

In [154]: ma = pd.rolling_mean(price, 20)

In [155]: mstd = pd.rolling_std(price, 20)

In [156]: plt.figure()
Out[156]: <matplotlib.figure.Figure at 0xa9a35a6c>

In [157]: plt.plot(price.index, price, 'k')
Out[157]: [<matplotlib.lines.Line2D at 0xaa098d6c>]

In [158]: plt.plot(ma.index, ma, 'b')
Out[158]: [<matplotlib.lines.Line2D at 0xaa0d21cc>]

In [159]: plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
Out[159]: <matplotlib.collections.PolyCollection at 0xaa0d214c>
CHAPTER
NINETEEN

TRELLIS PLOTTING INTERFACE

Note: The tips data set can be downloaded here. Once you download it execute

```python
from pandas import read_csv
tips_data = read_csv('tips.csv')
```

from the directory where you downloaded the file.

We import the rplot API:

```python
In [1]: import pandas.tools.rplot as rplot
```

19.1 Examples

RPlot is a flexible API for producing Trellis plots. These plots allow you to arrange data in a rectangular grid by values of certain attributes.

```python
In [2]: plt.figure()
Out[2]: <matplotlib.figure.Figure at 0x1a1af5e0c>

In [3]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

In [4]: plot.add(rplot.TrellisGrid(["sex", 'smoker']))

In [5]: plot.add(rplot.GeomHistogram())

In [6]: plot.render(plt.gcf())
Out[6]: <matplotlib.figure.Figure at 0x1a1af5e0c>
```
In the example above, data from the tips data set is arranged by the attributes ‘sex’ and ‘smoker’. Since both of those attributes can take on one of two values, the resulting grid has two columns and two rows. A histogram is displayed for each cell of the grid.

```
In [7]: plt.figure()
Out[7]: <matplotlib.figure.Figure at 0xa1b25c4c>

In [8]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

In [9]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))

In [10]: plot.add(rplot.GeomDensity())

In [11]: plot.render(plt.gcf())
Out[11]: <matplotlib.figure.Figure at 0xa1b25c4c>
```
Example above is the same as previous except the plot is set to kernel density estimation. This shows how easy it is to have different plots for the same Trellis structure.

In [12]: plt.figure()
Out [12]: <matplotlib.figure.Figure at 0xa6f5a4ac>

In [13]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

In [14]: plot.add(rplot.TrellisGrid([‘sex’, ‘smoker’]))

In [15]: plot.add(rplot.GeomScatter())

In [16]: plot.add(rplot.GeomPolyFit(degree=2))

In [17]: plot.render(plt.gcf())
Out [17]: <matplotlib.figure.Figure at 0xa6f5a4ac>
The plot above shows that it is possible to have two or more plots for the same data displayed on the same Trellis grid cell.

In [18]: plt.figure()
Out[18]: <matplotlib.figure.Figure at 0xa6f546ac>

In [19]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

In [20]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))

In [21]: plot.add(rplot.GeomScatter())

In [22]: plot.add(rplot.GeomDensity2D())

In [23]: plot.render(plt.gcf())
Out[23]: <matplotlib.figure.Figure at 0xa6f546ac>
Above is a similar plot but with 2D kernel density estimation plot superimposed.

```python
In [24]: plt.figure()
Out[24]: <matplotlib.figure.Figure at 0xa6e2620c>

In [25]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [26]: plot.add(rplot.TrellisGrid([['sex', '.']]))
In [27]: plot.add(rplot.GeomHistogram())
In [28]: plot.render(plt.gcf())
Out[28]: <matplotlib.figure.Figure at 0xa6e2620c>
```
It is possible to only use one attribute for grouping data. The example above only uses ‘sex’ attribute. If the second grouping attribute is not specified, the plots will be arranged in a column.

In [29]: plt.figure()
Out[29]: <matplotlib.figure.Figure at 0xa93937cc>

In [30]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

In [31]: plot.add(rplot.TrellisGrid(['.', 'smoker']))

In [32]: plot.add(rplot.GeomHistogram())

In [33]: plot.render(plt.gcf())
Out[33]: <matplotlib.figure.Figure at 0xa93937cc>
If the first grouping attribute is not specified the plots will be arranged in a row.

```python
In [34]: plt.figure()
Out[34]: <matplotlib.figure.Figure at 0xa1bbae8c>

In [35]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

In [36]: plot.add(rplot.TrellisGrid(['.', 'smoker']))

In [37]: plot.add(rplot.GeomHistogram())

In [38]: plot = rplot.RPlot(tips_data, x='tip', y='total_bill')

In [39]: plot.add(rplot.TrellisGrid(['.', 'smoker']))

In [40]: plot.add(rplot.GeomPoint(size=80.0, colour=rplot.ScaleRandomColour('day'), shape=rplot.ScaleShape('size'), alpha=1.0))

In [41]: plot.render(plt.gcf())
Out[41]: <matplotlib.figure.Figure at 0xa1bbae8c>
```
As shown above, scatter plots are also possible. Scatter plots allow you to map various data attributes to graphical properties of the plot. In the example above the colour and shape of the scatter plot graphical objects is mapped to ‘day’ and ‘size’ attributes respectively. You use scale objects to specify these mappings. The list of scale classes is given below with initialization arguments for quick reference.

19.2 Scales

ScaleGradient(column, colour1, colour2)

This one allows you to map an attribute (specified by parameter column) value to the colour of a graphical object. The larger the value of the attribute the closer the colour will be to colour2, the smaller the value, the closer it will be to colour1.

ScaleGradient2(column, colour1, colour2, colour3)

The same as ScaleGradient but interpolates linearly between three colours instead of two.

ScaleSize(column, min_size, max_size, transform)

Chapter 19. Trellis plotting interface
Map attribute value to size of the graphical object. Parameter min_size (default 5.0) is the minimum size of the graphical object, max_size (default 100.0) is the maximum size and transform is a one argument function that will be used to transform the attribute value (defaults to lambda x: x).

ScaleShape(column)

Map the shape of the object to attribute value. The attribute has to be categorical.

ScaleRandomColour(column)

Assign a random colour to a value of categorical attribute specified by column.
The pandas I/O api is a set of top level reader functions accessed like `pd.read_csv()` that generally return a pandas object.

- `read_csv`
- `read_excel`
- `read_hdf`
- `read_sql`
- `read_json`
- `read_msgpack` (experimental)
- `read_html`
- `read_gbq` (experimental)
- `read_stata`
- `read_clipboard`
- `read_pickle`

The corresponding writer functions are object methods that are accessed like `df.to_csv()`

- `to_csv`
- `to_excel`
- `to_hdf`
- `to_sql`
- `to_json`
- `to_msgpack` (experimental)
- `to_html`
- `to_gbq` (experimental)
- `to_stata`
- `to_clipboard`
- `to_pickle`

Here is an informal performance comparison for some of these IO methods.
Note: For examples that use the `StringIO` class, make sure you import it according to your Python version, i.e. `from StringIO import StringIO` for Python 2 and `from io import StringIO` for Python 3.

20.1 CSV & Text files

The two workhorse functions for reading text files (a.k.a. flat files) are `read_csv()` and `read_table()`. They both use the same parsing code to intelligently convert tabular data into a DataFrame object. See the cookbook for some advanced strategies.

They can take a number of arguments:

- `filepath_or_buffer`: Either a string path to a file, url (including http, ftp, and s3 locations), or any object with a `read` method (such as an open file or `StringIO`).
- `sep` or `delimiter`: A delimiter / separator to split fields on. `read_csv` is capable of inferring the delimiter automatically in some cases by “sniffing.” The separator may be specified as a regular expression; for instance you may use `\s*` to indicate a pipe plus arbitrary whitespace.
- `delim_whitespace`: Parse whitespace-delimited (spaces or tabs) file (much faster than using a regular expression)
- `compression`: decompress ‘gzip’ and ‘bz2’ formats on the fly.
- `dialect`: string or `csv.Dialect` instance to expose more ways to specify the file format
- `dtype`: A data type name or a dict of column name to data type. If not specified, data types will be inferred. (Unsupported with `engine='python'`)
- `header`: row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise `None`. Explicitly pass `header=0` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns. E.g. `[0,1,3]`. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines, so header=0 denotes the first line of data rather than the first line of the file.
- `skiprows`: A collection of numbers for rows in the file to skip. Can also be an integer to skip the first n rows
- `index_col`: column number, column name, or list of column numbers/names, to use as the index (row labels) of the resulting DataFrame. By default, it will number the rows without using any column, unless there is one more data column than there are headers, in which case the first column is taken as the index.
- `names`: List of column names to use as column names. To replace header existing in file, explicitly pass `header=0`.
- `na_values`: optional list of strings to recognize as NaN (missing values), either in addition to or in lieu of the default set.
- `true_values`: list of strings to recognize as `True`
- `false_values`: list of strings to recognize as `False`
- `keep_default_na`: whether to include the default set of missing values in addition to the ones specified in `na_values`
- `parse_dates`: if True then index will be parsed as dates (False by default). You can specify more complicated options to parse a subset of columns or a combination of columns into a single date column (list of ints or names, list of lists, or dict) `[1, 2, 3]` -> try parsing columns 1, 2, 3 each as a separate date column `[[1, 3]]` -> combine columns 1 and 3 and parse as a single date column `{‘foo’ : [1, 3]}` -> parse columns 1, 3 as date and call result ‘foo’
• **keep_date_col**: if True, then date component columns passed into **parse_dates** will be retained in the output (False by default).

• **date_parser**: function to use to parse strings into datetime objects. If **parse_dates** is True, it defaults to the very robust **dateutil.parser**. Specifying this implicitly sets **parse_dates** as True. You can also use functions from community supported date converters from **date_converters.py**

• **dayfirst**: if True then uses the DD/MM international/European date format (This is False by default)

• **thousands**: specifies the thousands separator. If not None, this character will be stripped from numeric dtypes. However, if it is the first character in a field, that column will be imported as a string. In the PythonParser, if not None, then parser will try to look for it in the output and parse relevant data to numeric dtypes. Because it has to essentially scan through the data again, this causes a significant performance hit so only use if necessary.

• **lineterminator**: string (length 1), default None, Character to break file into lines. Only valid with C parser

• **quotechar**: string. The character to used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

• **quoting**: int, Controls whether quotes should be recognized. Values are taken from **csv.QUOTE_*** values. Acceptable values are 0, 1, 2, and 3 for **QUOTE_MINIMAL**, **QUOTE_ALL**, **QUOTE_NONE**, and **QUOTE_NONNUMERIC**, respectively.

• **skipinitialspace**: boolean, default False, Skip spaces after delimiter

• **escapechar**: string, to specify how to escape quoted data

• **comment**: Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Also, fully commented lines are ignored by the parameter **header** but not by **skiprows**. For example, if comment='#', parsing ‘#empty1,2,3na,b,c’ with **header=0** will result in ‘1,2,3’ being treated as the header.

• **nrows**: Number of rows to read out of the file. Useful to only read a small portion of a large file

• **iterator**: If True, return a **TextFileReader** to enable reading a file into memory piece by piece

• **chunksize**: An number of rows to be used to “chunk” a file into pieces. Will cause an **TextFileReader** object to be returned. More on this below in the section on iterating and chunking

• **skip_footer**: number of lines to skip at bottom of file (default 0) (Unsupported with engine='c')

• **converters**: a dictionary of functions for converting values in certain columns, where keys are either integers or column labels

• **encoding**: a string representing the encoding to use for decoding unicode data, e.g. ‘utf-8’ or ‘latin-1’.

• **verbose**: show number of NA values inserted in non-numeric columns

• **squeeze**: if True then output with only one column is turned into Series

• **error_bad_lines**: if False then any lines causing an error will be skipped bad lines

• **usecols**: a subset of columns to return, results in much faster parsing time and lower memory usage.

• **mangle_dupe_cols**: boolean, default True, then duplicate columns will be specified as ‘X.0’...'X.N’, rather than ‘X’...'X’

• **tupleize_cols**: boolean, default False, if False, convert a list of tuples to a multi-index of columns, otherwise, leave the column index as a list of tuples

Consider a typical CSV file containing, in this case, some time series data:
In [1]: `print(open('foo.csv').read())`

```
date, A, B, C
20090101, a, 1, 2
20090102, b, 3, 4
20090103, c, 4, 5
```

The default for `read_csv` is to create a DataFrame with simple numbered rows:

In [2]: `pd.read_csv('foo.csv')`

```
 Out[2]:
    date  A  B  C
0  20090101  a  1  2
1  20090102  b  3  4
2  20090103  c  4  5
```

In the case of indexed data, you can pass the column number or column name you wish to use as the index:

In [3]: `pd.read_csv('foo.csv', index_col=0)`

```
 Out[3]:
     A  B  C
date
20090101  a  1  2
20090102  b  3  4
20090103  c  4  5
```

In [4]: `pd.read_csv('foo.csv', index_col='date')`

```
 Out[4]:
     A  B  C
date
20090101  a  1  2
20090102  b  3  4
20090103  c  4  5
```

You can also use a list of columns to create a hierarchical index:

In [5]: `pd.read_csv('foo.csv', index_col=[0, 'A'])`

```
 Out[5]:
     B  C
date
20090101  a  1  2
20090102  b  3  4
20090103  c  4  5
```

The `dialect` keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but you can specify either the dialect name or a `csv.Dialect` instance.

Suppose you had data with unenclosed quotes:

In [6]: `print(data)`

```
label1, label2, label3
index1, "a, c, e
index2, b, d, f
```

By default, `read_csv` uses the Excel dialect and treats the double quote as the quote character, which causes it to fail when it finds a newline before it finds the closing double quote.

We can get around this using `dialect`

In [7]: `dia = csv.excel()`

In [8]: `dia.quoting = csv.QUOTE_NONE`
In [9]: pd.read_csv(StringIO(data), dialect=dia)
Out[9]:
 label1 label2 label3
index1 "a c e
index2 b d f

All of the dialect options can be specified separately by keyword arguments:

In [10]: data = 'a,b,c~1,2,3~4,5,6'

In [11]: pd.read_csv(StringIO(data), lineterminator='~')
Out[11]:
 a b c
0 1 2 3
1 4 5 6

Another common dialect option is `skipinitialspace`, to skip any whitespace after a delimiter:

In [12]: data = 'a, b, c
1, 2, 3
4, 5, 6'

In [13]: print(data)
a, b, c
1, 2, 3
4, 5, 6

In [14]: pd.read_csv(StringIO(data), skipinitialspace=True)
Out[14]:
 a b c
0 1 2 3
1 4 5 6

Moreover, `read_csv` ignores any completely commented lines:

In [15]: data = 'a,b,c
commented line
1,2,3
#another comment
4,5,6'

In [16]: print(data)
a,b,c
1,2,3
4,5,6

commented line
#another comment
In [17]: pd.read_csv(StringIO(data), comment='#')
Out[17]:
 a b c
0 1 2 3
1 4 5 6

Note: The presence of ignored lines might create ambiguities involving line numbers; the parameter `header` uses row numbers (ignoring commented lines), while `skiprows` uses line numbers (including commented lines):

In [18]: data = '#comment
a,b,c
A,B,C
1,2,3'

In [19]: pd.read_csv(StringIO(data), comment='#', header=1)
Out[19]:
 A B C
0 1 2 3
In [20]: data = 'A,B,C
 #comment
 a,b,c
 1,2,3'

In [21]: pd.read_csv(StringIO(data), comment='#', skiprows=2)
Out[21]:
 a b c
0 1 2 3

The parsers make every attempt to “do the right thing” and not be very fragile. Type inference is a pretty big deal. So if a column can be coerced to integer dtype without altering the contents, it will do so. Any non-numeric columns will come through as object dtype as with the rest of pandas objects.

20.1.1 Specifying column data types

Starting with v0.10, you can indicate the data type for the whole DataFrame or individual columns:

In [22]: data = 'a,b,c
 1,2,3
 4,5,6
 7,8,9'

In [23]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [24]: df = pd.read_csv(StringIO(data), dtype=object)

In [25]: df
Out[25]:
 a b c
0 1 2 3
1 4 5 6
2 7 8 9

In [26]: df['a'][0]
Out[26]: '1'

In [27]: df = pd.read_csv(StringIO(data), dtype={'b': object, 'c': np.float64})

In [28]: df.dtypes
Out[28]:
a int64
b object
c float64
dtype: object

Note: The `dtype` option is currently only supported by the C engine. Specifying `dtype` with `engine` other than ‘c’ raises a `ValueError`.

20.1.2 Handling column names

A file may or may not have a header row. pandas assumes the first row should be used as the column names:

In [29]: data = 'a,b,c
 1,2,3
 4,5,6
 7,8,9'
In [30]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [31]: pd.read_csv(StringIO(data))
Out[31]:
a b c
0 1 2 3
1 4 5 6
2 7 8 9

By specifying the names argument in conjunction with header you can indicate other names to use and whether or not to throw away the header row (if any):

In [32]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [33]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=0)
Out[33]:
foo bar baz
0 1 2 3
1 4 5 6
2 7 8 9

In [34]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=None)
Out[34]:
foo bar baz
0 a b c
1 1 2 3
2 4 5 6
3 7 8 9

If the header is in a row other than the first, pass the row number to header. This will skip the preceding rows:

In [35]: data = ‘skip this skip it

In [36]: pd.read_csv(StringIO(data), header=1)
Out[36]:
 a b c
0 1 2 3
1 4 5 6
2 7 8 9

20.1.3 Filtering columns (usecols)

The usecols argument allows you to select any subset of the columns in a file, either using the column names or position numbers:

In [37]: data = ‘a,b,c,d

In [38]: pd.read_csv(StringIO(data))
Out[38]:
a b c d
20.1.4 Dealing with Unicode Data

The encoding argument should be used for encoded unicode data, which will result in byte strings being decoded to unicode in the result:

```
In [41]: data = b'word,length
20.1.5 Index columns and trailing delimiters

If a file has one more column of data than the number of column names, the first column will be used as the DataFrame’s row names:

```
In [45]: data = 'index,a,b,c
20.1.4 Dealing with Unicode Data

The encoding argument should be used for encoded unicode data, which will result in byte strings being decoded to unicode in the result:

```
In [41]: data = b'word,length
20.1.5 Index columns and trailing delimiters

If a file has one more column of data than the number of column names, the first column will be used as the DataFrame’s row names:

```
In [45]: data = 'index,a,b,c
```
Ordinarily, you can achieve this behavior using the `index_col` option.

There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing the parser. To explicitly disable the index column inference and discard the last column, pass `index_col=False`:

```python
In [49]: data = 'a,b,c

4,apple,bat,
8,orange,cow,'

In [50]: print(data)
a,b,c
4,apple,bat,
8,orange,cow,

In [51]: pd.read_csv(StringIO(data))
Out[51]:
a b c
4 apple bat NaN
8 orange cow NaN

In [52]: pd.read_csv(StringIO(data), index_col=False)
Out[52]:
a b c
0 4 apple bat
1 8 orange cow
```

### 20.1.6 Specifying Date Columns

To better facilitate working with datetime data, `read_csv()` and `read_table()` uses the keyword arguments `parse_dates` and `date_parser` to allow users to specify a variety of columns and date/time formats to turn the input text data into datetime objects.

The simplest case is to just pass in `parse_dates=True`:

```python
Use a column as an index, and parse it as dates.
In [53]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True)

In [54]: df
Out[54]:
 A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5

These are python datetime objects
In [55]: df.index
Out[55]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2009-01-01, ..., 2009-01-03]
Length: 3, Freq: None, Timezone: None
```

It is often the case that we may want to store date and time data separately, or store various date fields separately. the `parse_dates` keyword can be used to specify a combination of columns to parse the dates and/or times from.
You can specify a list of column lists to `parse_dates`, the resulting date columns will be prepended to the output (so as to not affect the existing column order) and the new column names will be the concatenation of the component column names:

```python
In [56]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900

In [57]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]])

In [58]: df
Out[58]:
 1_2 1_3 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
```

By default the parser removes the component date columns, but you can choose to retain them via the `keep_date_col` keyword:

```python
In [59]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]],
 keep_date_col=True)

In [60]: df
Out[60]:
 1_2 1_3 0 1 2
0 1999-01-27 18:56:00 0.81
1 1999-01-27 19:56:00 0.01
2 1999-01-27 20:56:00 -0.59
3 1999-01-27 21:18:00 -0.99
4 1999-01-27 21:56:00 -0.59
5 1999-01-27 22:56:00 -0.59
```

Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other words, `parse_dates=[[1, 2]]` indicates that the second and third columns should each be parsed as separate date columns while `parse_dates=[[1, 2]]` means the two columns should be parsed into a single column.

You can also use a dict to specify custom name columns:

```python
In [61]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}

In [62]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec)

In [63]: df
```
It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column is prepended to the data. The `index_col` specification is based off of this new set of columns rather than the original data columns:

```python
In [64]: date_spec = {'nominal': [1, 2], 'actual': [1, 3])

In [65]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec, ...
 : index_col=0) # index is the nominal column

In [66]: df
Out[66]:
```

Note: `read_csv` has a fast_path for parsing datetime strings in iso8601 format, e.g, “2000-01-01T00:01:02+00:00” and similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly faster, ~20x has been observed.

Note: When passing a dict as the `parse_dates` argument, the order of the columns prepended is not guaranteed, because dict objects do not impose an ordering on their keys. On Python 2.7+ you may use collections.OrderedDict instead of a regular dict if this matters to you. Because of this, when using a dict for ‘parse_dates’ in conjunction with the `index_col` argument, it’s best to specify `index_col` as a column label rather than as an index on the resulting frame.

## 20.1.7 Date Parsing Functions

Finally, the parser allows you can specify a custom `date_parser` function to take full advantage of the flexiblity of the date parsing API:

```python
In [67]: import pandas.io.date_converters as conv

In [68]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec, ...
 : date_parser=conv.parse_date_time)

In [69]: df
Out[69]:
```

### 20.1. CSV & Text files
You can explore the date parsing functionality in `date_converters.py` and add your own. We would love to turn this module into a community supported set of date/time parsers. To get you started, `date_converters.py` contains functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second columns. It also contains a `generic_parser` function so you can curry it with a function that deals with a single date rather than the entire array.

### 20.1.8 Inferring Datetime Format

If you have `parse_dates` enabled for some or all of your columns, and your datetime strings are all formatted the same way, you may get a large speed up by setting `infer_datetime_format=True`. If set, pandas will attempt to guess the format of your datetime strings, and then use a faster means of parsing the strings. 5-10x parsing speeds have been observed. pandas will fallback to the usual parsing if either the format cannot be guessed or the format that was guessed cannot properly parse the entire column of strings. So in general, `infer_datetime_format` should not have any negative consequences if enabled.

Here are some examples of datetime strings that can be guessed (All representing December 30th, 2011 at 00:00:00)

- “20111230”
- “2011/12/30”
- “20111230 00:00:00”
- “12/30/2011 00:00:00”
- “30/Dec/2011 00:00:00”
- “30/December/2011 00:00:00”

`infer_datetime_format` is sensitive to `dayfirst`. With `dayfirst=True`, it will guess “01/12/2011” to be December 1st. With `dayfirst=False` (default) it will guess “01/12/2011” to be January 12th.

```python
Try to infer the format for the index column
In [70]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
 ...: infer_datetime_format=True)
 ...

In [71]: df
Out[71]:
 A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5
```

### 20.1.9 International Date Formats

While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For convenience, a `dayfirst` keyword is provided:
In [72]: print(open('tmp.csv').read())
date,value,cat
1/6/2000,5,a
2/6/2000,10,b
3/6/2000,15,c

In [73]: pd.read_csv('tmp.csv', parse_dates=[0])
Out[73]:
   date  value  cat
0 2000-01-06   5    a
1 2000-02-06  10    b
2 2000-03-06  15    c

In [74]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
Out[74]:
   date  value  cat
0 2000-06-01   5    a
1 2000-06-02  10    b
2 2000-06-03  15    c

20.1.10 Thousand Separators

For large numbers that have been written with a thousands separator, you can set the thousands keyword to a string of length 1 so that integers will be parsed correctly:

By default, numbers with a thousands separator will be parsed as strings

In [75]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [76]: df = pd.read_csv('tmp.csv', sep='|')

In [77]: df
Out[77]:
   ID    level category
0 Patient1    123,000   x
1 Patient2     23,000   y
2 Patient3  1,234,018   z

In [78]: df.level.dtype
Out[78]: dtype('O')

The thousands keyword allows integers to be parsed correctly

In [79]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [80]: df = pd.read_csv('tmp.csv', sep='|', thousands=',')

In [81]: df
Out[81]:
   ID        level category
0 Patient1 123,000       x
1 Patient2  23,000       y
2 Patient3 1,234,018     z
20.1.11 NA Values

To control which values are parsed as missing values (which are signified by NaN), specify a list of strings in na_values. If you specify a number (a float, like 5.0 or an integer like 5), the corresponding equivalent values will also imply a missing value (in this case effectively [5.0, 5] are recognized as NaN).

To completely override the default values that are recognized as missing, specify keep_default_na=False. The default NaN recognized values are 

```
[-1.#IND, 1.#QNAN, 1.#IND, -1.#QNAN,
 #N/A, 'N/A', 'NA', '#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan'].
```

```
read_csv(path, na_values=[5])
```

the default values, in addition to 5,5.0 when interpreted as numbers are recognized as NaN

```
read_csv(path, keep_default_na=False, na_values=[''])
```

only an empty field will be NaN

```
read_csv(path, keep_default_na=False, na_values=['NA', '0'])
```

only NA and 0 as strings are NaN

```
read_csv(path, na_values=['Nope'])
```

the default values, in addition to the string "Nope" are recognized as NaN

20.1.12 Infinity

```
inf like values will be parsed as np.inf (positive infinity), and -inf as -np.inf (negative infinity). These will ignore the case of the value, meaning Inf. will also be parsed as np.inf.
```

20.1.13 Comments

Sometimes comments or meta data may be included in a file:

```
In [83]: print(open('tmp.csv').read())
```

```
ID,level,category
Patient1,123000,x # really unpleasant
Patient2,23000,y # wouldn't take his medicine
Patient3,1234018,z # awesome
```

By default, the parse includes the comments in the output:

```
In [84]: df = pd.read_csv('tmp.csv')
```

```
In [85]: df
Out[85]:
```

```
ID level category
```

```
0 Patient1 123000 x # really unpleasant
1 Patient2 23000 y # wouldn’t take his medicine
2 Patient3 1234018 z # awesome

We can suppress the comments using the comment keyword:

In [86]: df = pd.read_csv('tmp.csv', comment='#')

In [87]: df

Out[87]:
 ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z

20.1.14 Returning Series

Using the squeeze keyword, the parser will return output with a single column as a Series:

In [88]: print(open('tmp.csv').read())

level
Patient1,123000
Patient2,23000
Patient3,1234018

In [89]: output = pd.read_csv('tmp.csv', squeeze=True)

In [90]: output

Out[90]:

Patient1 123000
Patient2 23000
Patient3 1234018
Name: level, dtype: int64

In [91]: type(output)

Out[91]: pandas.core.series.Series

20.1.15 Boolean values

The common values True, False, TRUE, and FALSE are all recognized as boolean. Sometimes you would want to recognize some other values as being boolean. To do this use the true_values and false_values options:

In [92]: data= 'a,b,c
1,Yes,2
3,No,4'

In [93]: print(data)
a,b,c
1,Yes,2
3,No,4

In [94]: pd.read_csv(StringIO(data))

Out[94]:

 a b c
0 1.0 Yes 2
1 3.0 No 4

In [95]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
20.1.16 Handling “bad” lines

Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values filled in the trailing fields. Lines with too many will cause an error by default:

```python
In [27]: data = 'a,b,c
1,2,3
4,5,6,7
8,9,10'
In [28]: pd.read_csv(StringIO(data))
---------------------------------------------------------------------------
CParserError Traceback (most recent call last)
CParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4
```

You can elect to skip bad lines:

```python
In [29]: pd.read_csv(StringIO(data), error_bad_lines=False)
Skipping line 3: expected 3 fields, saw 4
```

Out[29]:

```
a b c
0 1 2 3
1 8 9 10
```

20.1.17 Quoting and Escape Characters

Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use backslashes; to properly parse this data, you should pass the `escapechar` option:

```python
In [96]: data = 'a,b,\"hello, "Bob\", nice to see you\",5'
In [97]: print(data)
a,b,"hello, "Bob\", nice to see you",5
In [98]: pd.read_csv(StringIO(data), escapechar='\')
```

Out[98]:

```
a b
0 hello, "Bob", nice to see you 5
```

20.1.18 Files with Fixed Width Columns

While `read_csv` reads delimited data, the `read_fwf()` function works with data files that have known and fixed column widths. The function parameters to `read_fwf` are largely the same as `read_csv` with two extra parameters:

- `colspecs`: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to]). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data. Default behaviour, if not specified, is to infer.
- `widths`: A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

Consider a typical fixed-width data file:
In [99]: print(open('bar.csv').read())
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3

In order to parse this file into a DataFrame, we simply need to supply the column specifications to the `read_fwf` function along with the file name:

#Column specifications are a list of half-intervals
In [100]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)]

In [101]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0)

In [102]: df
Out[102]:
 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3

Note how the parser automatically picks column names X.<column number> when `header=None` argument is specified. Alternatively, you can supply just the column widths for contiguous columns:

#Widths are a list of integers
In [103]: widths = [6, 14, 13, 10]

In [104]: df = pd.read_fwf('bar.csv', widths=widths, header=None)

In [105]: df
Out[105]:
 0 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3

The parser will take care of extra white spaces around the columns so it’s ok to have extra separation between the columns in the file. New in version 0.13.0. By default, `read_fwf` will try to infer the file’s `colspecs` by using the first 100 rows of the file. It can do it only in cases when the columns are aligned and correctly separated by the provided `delimiter` (default delimiter is whitespace).

In [106]: df = pd.read_fwf('bar.csv', header=None, index_col=0)

In [107]: df
Out[107]:
 0 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3
20.1.19 Files with an “implicit” index column

Consider a file with one less entry in the header than the number of data column:

```python
In [108]: print(open('foo.csv').read())
A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
```

In this special case, `read_csv` assumes that the first column is to be used as the index of the DataFrame:

```python
In [109]: pd.read_csv('foo.csv')
Out[109]:
      A  B  C
20090101 a  1  2
20090102 b  3  4
20090103 c  4  5
```

Note that the dates weren’t automatically parsed. In that case you would need to do as before:

```python
In [110]: df = pd.read_csv('foo.csv', parse_dates=True)
In [111]: df.index
Out[111]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2009-01-01, ..., 2009-01-03]
Length: 3, Freq: None, Timezone: None
```

20.1.20 Reading an index with a MultiIndex

Suppose you have data indexed by two columns:

```python
In [112]: print(open('data/mindex_ex.csv').read())
year,indiv,zit,xit
1977,"A",1.2, .6
1977,"B",1.5, .5
1977,"C",1.7, .8
1977,"A",.2, .06
1977,"B",.7,.2
1977,"C",.8,.3
1977,"D",.9,.5
1977,"E",1.4,.9
1979,"C",.2,.15
1979,"D",.14,.05
1979,"E",.5,.15
1979,"F",1.2,.5
1979,"G",3.4,1.9
1979,"H",5.4,2.7
1979,"I",6.4,1.2
```

The `index_col` argument to `read_csv` and `read_table` can take a list of column numbers to turn multiple columns into a MultiIndex for the index of the returned object:

```python
In [113]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0,1])
In [114]: df
Out[114]:
```
20.1.21 Reading columns with a MultiIndex

By specifying list of row locations for the header argument, you can read in a MultiIndex for the columns. Specifying non-consecutive rows will skip the intervening rows. In order to have the pre-0.13 behavior of tupleizing columns, specify tupleize_cols=True.

In [116]: from pandas.util.testing import makeCustomDataframe as mkdf

In [117]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)

In [118]: df.to_csv('mi.csv')

In [119]: print(open('mi.csv').read())

In [120]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1])

20.1. CSV & Text files 547
Starting in 0.13.0, read_csv will be able to interpret a more common format of multi-columns indices.

```
In [121]: print(open('mi2.csv').read())
a,a,a,b,c,c
   q,r,s,t,u,v
one,1,2,3,4,5,6
two,7,8,9,10,11,12
```

```
In [122]: pd.read_csv('mi2.csv',header=[0,1],index_col=0)
```

```
Out[122]:
     a  b  c
q  r  s  t  u  v
one 1  2  3  4  5  6
two 7  8  9 10 11 12
```

Note: If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(..., index=False)), then any names on the columns index will be lost.

20.1.22 Automatically “sniffing” the delimiter

read_csv is capable of inferring delimited (not necessarily comma-separated) files. YMMV, as pandas uses the csv.Sniffer class of the csv module.

```
In [123]: print(open('tmp2.sv').read())
:0:1:2:3
0:0.4691122999071863:-0.282863433286633:-1.5090585031735124:-1.1356323710171934
1:1.2121120250208506:-0.1732146490533086:-0.1920871129693428:-1.0442359662799567
2:-0.861488634377999:-2.1045692188948086:-0.4949292740687813:-0.718038070373777
3:0.7215551622443669:-0.7067711336300845:-1.0395749851146963:0.271859885428986
4:-0.42497232978883753:0.56702049793672:0.27623201927771873:-1.0874006912859915
5:-0.67368970808883703:-1.13648040968888545:-1.4784265524372233:0.5249726671147046
6:0.407450218668022657:0.770459895204837:-1.7150020161146375:-0.1392684835417725
7:0.370468582364664:1.157892250641999:-1.344311812731667:0.844885141248841
8:1.0757697837155535:-0.1094979528022223:1.6435630703622062:-1.4693879595399115
9:0.35702056413309086:-0.6746001037299882:-1.776903716971867:-0.968913812473498
```

```
In [124]: pd.read_csv('tmp2.sv')
```

```
Out[124]:
```
20.1.23 Iterating through files chunk by chunk

Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory, such as the following:

```python
In [125]: print(open('tmp.sv').read())
```

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
</tr>
<tr>
<td>1</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
</tr>
<tr>
<td>2</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
</tr>
<tr>
<td>3</td>
<td>0.721556</td>
<td>-0.706771</td>
<td>-1.039575</td>
</tr>
<tr>
<td>4</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
</tr>
<tr>
<td>5</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
</tr>
<tr>
<td>6</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
</tr>
<tr>
<td>7</td>
<td>-0.370647</td>
<td>-1.157892</td>
<td>0.844885</td>
</tr>
<tr>
<td>8</td>
<td>1.075769</td>
<td>0.113648</td>
<td>-1.478427</td>
</tr>
<tr>
<td>9</td>
<td>0.357021</td>
<td>-0.674600</td>
<td>-1.776904</td>
</tr>
</tbody>
</table>

By specifying a chunksize to `read_csv` or `read_table`, the return value will be an iterable object of type `TextFileReader`:

```python
In [128]: reader = pd.read_table('tmp.sv', sep='|', chunksize=4)

In [129]: for chunk in reader:
.....:     print(chunk)
```

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
</tr>
<tr>
<td>1</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
</tr>
<tr>
<td>2</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
</tr>
<tr>
<td>3</td>
<td>0.721556</td>
<td>-0.706771</td>
<td>-1.039575</td>
</tr>
<tr>
<td>4</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
</tr>
<tr>
<td>5</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
</tr>
<tr>
<td>6</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
</tr>
<tr>
<td>7</td>
<td>-0.370647</td>
<td>-1.157892</td>
<td>0.844885</td>
</tr>
<tr>
<td>8</td>
<td>1.075769</td>
<td>0.113648</td>
<td>-1.478427</td>
</tr>
<tr>
<td>9</td>
<td>0.357021</td>
<td>-0.674600</td>
<td>-1.776904</td>
</tr>
</tbody>
</table>
2 6 0.404705 0.577046 -1.715002 -1.039268
3 7 -0.370647 -1.157892 -1.344312 0.844885
Unnamed: 0 0 0 1 2 3
0 8 1.075770 -0.10905 1.643563 -1.469388
1 9 0.357021 -0.67460 -1.776904 -0.968914

Specifying iterator=True will also return the TextFileReader object:

\texttt{In [131]: reader = pd.read_table('tmp.sv', sep='|', iterator=True)}

\texttt{In [132]: reader.get_chunk(5)}
\texttt{Out[132]:}

\begin{verbatim}
 Unnamed: 0 0 1 2 3
0 0 0.469112 -0.282863 -1.509059 -1.135632
1 1 1.212112 -0.173215 0.119209 -1.044236
2 2 -0.861849 -2.104569 -0.494929 1.071804
3 3 0.721555 -0.706771 -1.039575 0.271860
4 4 -0.424972 0.567020 0.276232 -1.087401
\end{verbatim}

20.1.24 Specifying the parser engine

Under the hood pandas uses a fast and efficient parser implemented in C as well as a python implementation which is currently more feature-complete. Where possible pandas uses the C parser (specified as engine=’c’), but may fall back to python if C-unsupported options are specified. Currently, C-unsupported options include:

- sep other than a single character (e.g. regex separators)
- skip
- skip_footer
- sep=None with delim_whitespace=False

Specifying any of the above options will produce a ParserWarning unless the python engine is selected explicitly using engine=’python’.

20.1.25 Writing to CSV format

The Series and DataFrame objects have an instance method \texttt{to_csv} which allows storing the contents of the object as a comma-separated-values file. The function takes a number of arguments. Only the first is required.

- \texttt{path_or_buf}: A string path to the file to write or a StringIO
- \texttt{sep}: Field delimiter for the output file (default ”,”)
- \texttt{na_rep}: A string representation of a missing value (default ””)
- \texttt{float_format}: Format string for floating point numbers
- \texttt{cols}: Columns to write (default None)
- \texttt{header}: Whether to write out the column names (default True)
- \texttt{index}: whether to write row (index) names (default True)
- \texttt{index_label}: Column label(s) for index column(s) if desired. If None (default), and header and index are True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex).
- \texttt{mode}: Python write mode, default ‘w’
- \texttt{encoding}: a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
pandas: powerful Python data analysis toolkit, Release 0.14.1

- **line_terminator**: Character sequence denoting line end (default ‘\n’)
- **quoting**: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL)
- **quotechar**: Character used to quote fields (default ‘”’)
- **doublequote**: Control quoting of quotechar in fields (default True)
- **escapechar**: Character used to escape sep and quotechar when appropriate (default None)
- **chunksize**: Number of rows to write at a time
- **tupleize_cols**: If False (default), write as a list of tuples, otherwise write in an expanded line format suitable for read_csv
- **date_format**: Format string for datetime objects

20.1.26 Writing a formatted string

The DataFrame object has an instance method **to_string** which allows control over the string representation of the object. All arguments are optional:

- **buf** default None, for example a StringIO object
- **columns** default None, which columns to write
- **col_space** default None, minimum width of each column.
- **na_rep** default NaN, representation of NA value
- **formatters** default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted string
- **float_format** default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in the DataFrame.
- **sparsify** default True, set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.
- **index_names** default True, will print the names of the indices
- **index** default True, will print the index (ie, row labels)
- **header** default True, will print the column labels
- **justify** default left, will print column headers left- or right-justified

The Series object also has a **to_string** method, but with only the **buf, na_rep, float_format** arguments. There is also a **length** argument which, if set to **True**, will additionally output the length of the Series.

20.2 JSON

Read and write JSON format files and strings.

20.2.1 Writing JSON

A **Series** or **DataFrame** can be converted to a valid JSON string. Use **to_json** with optional parameters:

- **path_or_buf**: the pathname or buffer to write the output This can be **None** in which case a JSON string is returned
• **orient**:
 Series:
 - default is `index`
 - allowed values are `{split, records, index}`
 DataFrame:
 - default is `columns`
 - allowed values are `{split, records, index, columns, values}`

The format of the JSON string:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>split</code></td>
<td>dict like <code>{index -> [index], columns -> [columns], data -> [values]}</code></td>
</tr>
<tr>
<td><code>records</code></td>
<td>list like <code>[[column -> value], ..., [column -> value]]</code></td>
</tr>
<tr>
<td><code>index</code></td>
<td>dict like <code>{index -> [column -> value]}</code></td>
</tr>
<tr>
<td><code>columns</code></td>
<td>dict like <code>{column -> [index -> value]}</code></td>
</tr>
<tr>
<td><code>values</code></td>
<td>just the values array</td>
</tr>
</tbody>
</table>

• **date_format**: string, type of date conversion, ‘epoch’ for timestamp, ‘iso’ for ISO8601.
• **double_precision**: The number of decimal places to use when encoding floating point values, default 10.
• **force_ascii**: force encoded string to be ASCII, default True.
• **date_unit**: The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’ or ‘ns’ for seconds, milliseconds, microseconds and nanoseconds respectively. Default ‘ms’.
• **default_handler**: The handler to call if an object cannot otherwise be converted to a suitable format for JSON. Takes a single argument, which is the object to convert, and returns a serialisable object.

Note NaN’s, NaT’s and None will be converted to null and datetime objects will be converted based on the `date_format` and `date_unit` parameters.

In [133]: dfj = DataFrame(randn(5, 2), columns=list('AB'))

In [134]: json = dfj.to_json()

In [135]: json
Out[135]: '{"A":{"0":-1.2945235903,"1":0.2766617129,"2":-0.0061535699,"3":-0.923060654,"4":0.8957173022},"B":{"0":0.4137381054,"1":-0.472034511,"2":-0.3625429925,"3":-0.0139597524,"4":0.8052440254}}'

Orient Options

There are a number of different options for the format of the resulting JSON file / string. Consider the following DataFrame and Series:

In [136]: dfjo = DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
 columns=list('ABC'), index=list('xyz'))

In [137]: dfjo
Out[137]:
 A B C
 x 1 4 7
 y 2 5 8
 z 3 6 9

In [138]: sjo = Series(dict(x=15, y=16, z=17), name='D')
In [139]: sjo
Out [139]:
x 15
y 16
z 17
Name: D, dtype: int64

Column oriented (the default for DataFrame) serialises the data as nested JSON objects with column labels acting as the primary index:

In [140]: dfjo.to_json(orient="columns")
Out [140]: '{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}'

Index oriented (the default for Series) similar to column oriented but the index labels are now primary:

In [141]: dfjo.to_json(orient="index")
Out [141]: '{"x":{"A":1,"B":4,"C":7},"y":{"A":2,"B":5,"C":8},"z":{"A":3,"B":6,"C":9}}'

In [142]: sjo.to_json(orient="index")
Out [142]: '{"x":15,"y":16,"z":17}'

Record oriented serialises the data to a JSON array of column -> value records, index labels are not included. This is useful for passing DataFrame data to plotting libraries, for example the JavaScript library d3.js:

In [143]: dfjo.to_json(orient="records")
Out [143]: '[[1,4,7],[2,5,8],[3,6,9]]'

In [144]: sjo.to_json(orient="records")
Out [144]: '[15,16,17]'

Value oriented is a bare-bones option which serialises to nested JSON arrays of values only, column and index labels are not included:

In [145]: dfjo.to_json(orient="values")
Out [145]: '[[1,4,7],[2,5,8],[3,6,9]]'

Split oriented serialises to a JSON object containing separate entries for values, index and columns. Name is also included for Series:

In [146]: dfjo.to_json(orient="split")
Out [146]: '{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,6,9]]}'

In [147]: sjo.to_json(orient="split")
Out [147]: '{"name":"D","index":["x","y","z"],"data":[15,16,17]}'

Note: Any orient option that encodes to a JSON object will not preserve the ordering of index and column labels during round-trip serialisation. If you wish to preserve label ordering use the split option as it uses ordered containers.

Date Handling

Writing in iso date format

In [148]: dfd = DataFrame(randn(5, 2), columns=list('AB'))

In [149]: dfd[‘date’] = Timestamp(’20130101’)

In [150]: dfd = dfd.sort_index(1, ascending=False)
In [151]: json = dfd.to_json(date_format='iso')

In [152]: json
Out[152]: '{"0":1.4312559863,"1":0.4108345112,"2":-1.1702987971,"3":-1.2064117817,"4":0.1320031703}'

Writing in iso date format, with microseconds

In [153]: json = dfd.to_json(date_format='iso', date_unit='us')

In [154]: json
Out[154]: '{"0":1356998400,"1":1357084800,..."4":1357344000,"B":false}'

Epoch timestamps, in seconds

In [155]: json = dfd.to_json(date_format='epoch', date_unit='s')

In [156]: json

Writing to a file, with a date index and a date column

In [157]: dfj2 = dfj.copy()

In [158]: dfj2['date'] = Timestamp('20130101')

In [159]: dfj2['ints'] = list(range(5))

In [160]: dfj2['bools'] = True

In [161]: dfj2.index = date_range('20130101', periods=5)

In [162]: dfj2.to_json('test.json')

In [163]: open('test.json').read()
Out[163]: '{"A":("1356998400000":-1.2945235903,"1357084800000":0.2766617129,"1357171200000":-0.013959,...

Fallback Behavior

If the JSON serialiser cannot handle the container contents directly it will fallback in the following manner:

- if a toDict method is defined by the unrecognised object then that will be called and its returned dict will be JSON serialised.
- if a default_handler has been passed to to_json that will be called to convert the object.
- otherwise an attempt is made to convert the object to a dict by parsing its contents. However if the object is complex this will often fail with an OverflowError.

Your best bet when encountering OverflowError during serialisation is to specify a default_handler. For example timedelta can cause problems:

In [141]: from datetime import timedelta

In [142]: dftd = DataFrame([[timedelta(23), timedelta(seconds=5), 42]])

In [143]: dftd.to_json()
OverflowError: Maximum recursion level reached

which can be dealt with by specifying a simple default_handler:

In [164]: dftd.to_json(default_handler=str)
Out[164]: '{"0":{"0":"23 days, 0:00:00","1":"0:00:05","2":42}}'

In [165]: def my_handler(obj):
......: return obj.total_seconds()
......:

20.2.2 Reading JSON

Reading a JSON string to pandas object can take a number of parameters. The parser will try to parse a DataFrame if typ is not supplied or is None. To explicitly force Series parsing, pass typ=series

- filepath_or_buffer: a VALID JSON string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json
- typ: type of object to recover (series or frame), default ‘frame’
- orient:
 - Series:
 - default is index
 - allowed values are {split, records, index}
 - DataFrame
 - default is columns
 - allowed values are {split, records, index, columns, values}

The format of the JSON string

<table>
<thead>
<tr>
<th>split</th>
<th>records</th>
<th>index</th>
<th>columns</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>dict like {index -> [index], columns -> [columns], data -> [values]}</td>
<td>list like [{column -> value}, ..., {column -> value}]</td>
<td>dict like {index -> {column -> value}}</td>
<td>dict like {column -> {index -> value}}</td>
<td>just the values array</td>
</tr>
</tbody>
</table>

- dtype: if True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, default is True, apply only to the data
- convert_axes: boolean, try to convert the axes to the proper dtypes, default is True
- convert_dates: a list of columns to parse for dates; If True, then try to parse datelike columns, default is True
- keep_default_dates: boolean, default True. If parsing dates, then parse the default datelike columns
- numpy: direct decoding to numpy arrays. default is False; Supports numeric data only, although labels may be non-numeric. Also note that the JSON ordering MUST be the same for each term if numpy=True
- precise_float: boolean, default False. Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality
• **date_unit**: string, the timestamp unit to detect if converting dates. Default None. By default the timestamp precision will be detected, if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force timestamp precision to seconds, milliseconds, microseconds or nanoseconds respectively.

The parser will raise one of `ValueError/TypeError/AssertionError` if the JSON is not parsable.

If a non-default `orient` was used when encoding to JSON be sure to pass the same option here so that decoding produces sensible results, see **Orient Options** for an overview.

Data Conversion

The default of `convert_axes=True, dtype=True, and convert_dates=True` will try to parse the axes, and all of the data into appropriate types, including dates. If you need to override specific dtypes, pass a dict to `dtype`. `convert_axes` should only be set to `False` if you need to preserve string-like numbers (e.g. ‘1’, ‘2’) in an axes.

Note: Large integer values may be converted to dates if `convert_dates=True` and the data and / or column labels appear ‘date-like’. The exact threshold depends on the `date_unit` specified.

Warning: When reading JSON data, automatic coercing into dtypes has some quirks:

- an index can be reconstructed in a different order from serialization, that is, the returned order is not guaranteed to be the same as before serialization
- a column that was `float` data will be converted to `integer` if it can be done safely, e.g. a column of 1.
- `bool` columns will be converted to `integer` on reconstruction

Thus there are times where you may want to specify specific dtypes via the `dtype` keyword argument.

Reading from a JSON string:

```python
In [166]: pd.read_json(json)
Out[166]:
     A      B    date
0 -1.206412 2.565646 2013-01-01
1  1.431256 1.340309 2013-01-01
2 -1.170299 -0.226169 2013-01-01
3  0.410835 0.813850 2013-01-01
4  0.132003 -0.827317 2013-01-01
```

Reading from a file:

```python
In [167]: pd.read_json('test.json')
Out[167]:
     A      B   bools    date   ints
2013-01-01 -1.294524 0.413738 2013-01-01  0
2013-01-02  0.276662 -0.472035 2013-01-01  1
2013-01-03 -0.013960 -0.362543 2013-01-01  2
2013-01-04 -0.006154 -0.923061 2013-01-01  3
2013-01-05  0.895717  0.805244 2013-01-01  4
```

Don’t convert any data (but still convert axes and dates):

```python
In [168]: pd.read_json('test.json', dtype=object).dtypes
Out[168]:
         A       B   bools    date   ints
dtype: object  object  object  object  object
```

556 Chapter 20. IO Tools (Text, CSV, HDF5, ...
Specify dtypes for conversion:

```
In [169]: pd.read_json('test.json', dtype={'A' : 'float32', 'bools' : 'int8'}).dtypes
Out[169]:
A    float32
B    float64
bools  int8
date  datetime64[ns]
ints   int64
dtype: object
```

Preserve string indicies:

```
In [170]: si = DataFrame(np.zeros((4, 4)),
                   columns=list(range(4)),
                   index=[str(i) for i in range(4)])

In [171]: si
Out[171]:
   0 1 2 3
  0 0 0 0 0
  1 0 0 0 0
  2 0 0 0 0
  3 0 0 0 0

In [172]: si.index
Out[172]: Index([u'0', u'1', u'2', u'3'], dtype='object')

In [173]: si.columns
Out[173]: Int64Index([0, 1, 2, 3], dtype='int64')

In [174]: json = si.to_json()

In [175]: sij = pd.read_json(json, convert_axes=False)

In [176]: sij
Out[176]:
   0 1 2 3
  0 0 0 0 0
  1 0 0 0 0
  2 0 0 0 0
  3 0 0 0 0

In [177]: sij.index
Out[177]: Index([u'0', u'1', u'2', u'3'], dtype='object')

In [178]: sij.columns
Out[178]: Index([u'0', u'1', u'2', u'3'], dtype='object')

Dates written in nanoseconds need to be read back in nanoseconds:

```
In [179]: json = dfj2.to_json(date_unit='ns')
Try to parse timestamps as milliseconds -> Won't Work
In [180]: dfju = pd.read_json(json, date_unit='ms')
```

```
20.2. JSON
```
pandas: powerful Python data analysis toolkit, Release 0.14.1

Out[181]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>bools</th>
<th>date</th>
<th>ints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.356998e+18</td>
<td>-1.294524</td>
<td>0.413738</td>
<td>1356998400000000000000</td>
<td>0</td>
</tr>
<tr>
<td>1.357085e+18</td>
<td>0.276662</td>
<td>-0.472035</td>
<td>1356998400000000000000</td>
<td>1</td>
</tr>
<tr>
<td>1.357171e+18</td>
<td>-0.013960</td>
<td>-0.362543</td>
<td>1356998400000000000000</td>
<td>2</td>
</tr>
<tr>
<td>1.357258e+18</td>
<td>-0.006154</td>
<td>-0.923061</td>
<td>1356998400000000000000</td>
<td>3</td>
</tr>
<tr>
<td>1.357344e+18</td>
<td>0.895717</td>
<td>0.805244</td>
<td>1356998400000000000000</td>
<td>4</td>
</tr>
</tbody>
</table>

# Let pandas detect the correct precision
In [182]: dfju = pd.read_json(json)

In [183]: dfju
Out[183]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>bools</th>
<th>date</th>
<th>ints</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>-1.294524</td>
<td>0.413738</td>
<td>2013-01-01</td>
<td>0</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>0.276662</td>
<td>-0.472035</td>
<td>2013-01-01</td>
<td>1</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.013960</td>
<td>-0.362543</td>
<td>2013-01-01</td>
<td>2</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>-0.006154</td>
<td>-0.923061</td>
<td>2013-01-01</td>
<td>3</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>0.895717</td>
<td>0.805244</td>
<td>2013-01-01</td>
<td>4</td>
</tr>
</tbody>
</table>

# Or specify that all timestamps are in nanoseconds
In [184]: dfju = pd.read_json(json, date_unit='ns')

In [185]: dfju
Out[185]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>bools</th>
<th>date</th>
<th>ints</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>-1.294524</td>
<td>0.413738</td>
<td>2013-01-01</td>
<td>0</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>0.276662</td>
<td>-0.472035</td>
<td>2013-01-01</td>
<td>1</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.013960</td>
<td>-0.362543</td>
<td>2013-01-01</td>
<td>2</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>-0.006154</td>
<td>-0.923061</td>
<td>2013-01-01</td>
<td>3</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>0.895717</td>
<td>0.805244</td>
<td>2013-01-01</td>
<td>4</td>
</tr>
</tbody>
</table>

The Numpy Parameter

Note: This supports numeric data only. Index and columns labels may be non-numeric, e.g. strings, dates etc.

If numpy=True is passed to read_json an attempt will be made to sniff an appropriate dtype during deserialisation and to subsequently decode directly to numpy arrays, bypassing the need for intermediate Python objects.

This can provide speedups if you are deserialising a large amount of numeric data:

In [186]: randfloats = np.random.uniform(-100, 1000, 10000)

In [187]: randfloats.shape = (1000, 10)

In [188]: dffloats = DataFrame(randfloats, columns=list('ABCDEFGHIJ'))

In [189]: jsonfloats = dffloats.to_json()

In [190]: timeit read_json(jsonfloats)
100 loops, best of 3: 11.2 ms per loop

In [191]: timeit read_json(jsonfloats, numpy=True)
100 loops, best of 3: 5.88 ms per loop

The speedup is less noticable for smaller datasets:
**20.2.3 Normalization**

New in version 0.13.0. pandas provides a utility function to take a dict or list of dicts and normalize this semi-structured data into a flat table.

```
In [195]: from pandas.io.json import json_normalize

In [196]: data = [{
 'state': 'Florida',
 'shortname': 'FL',
 'info': {
 'governor': 'Rick Scott',
 },
 'counties': [
 {'name': 'Dade', 'population': 12345},
 {'name': 'Broward', 'population': 40000},
 {'name': 'Palm Beach', 'population': 60000}
],
 },
 {
 'state': 'Ohio',
 'shortname': 'OH',
 'info': {
 'governor': 'John Kasich',
 },
 'counties': [
 {'name': 'Summit', 'population': 1234},
 {'name': 'Cuyahoga', 'population': 1337}
]
 }]

In [197]: json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])
```

```
Out[197]:
 name population info.governor state shortname
0 Dade 12345 Rick Scott Florida FL
1 Broward 40000 Rick Scott Florida FL
2 Palm Beach 60000 Rick Scott Florida FL
3 Summit 1234 John Kasich Ohio OH
4 Cuyahoga 1337 John Kasich Ohio OH
```
20.3 HTML

20.3.1 Reading HTML Content

<table>
<thead>
<tr>
<th>Bank Name</th>
<th>City</th>
<th>ST</th>
<th>CERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Freedom State Bank</td>
<td>Freedom</td>
<td>OK</td>
<td>12483</td>
</tr>
<tr>
<td>Valley Bank</td>
<td>Fort Lauderdale</td>
<td>FL</td>
<td>21793</td>
</tr>
<tr>
<td>Valley Bank</td>
<td>Moline</td>
<td>IL</td>
<td>10450</td>
</tr>
<tr>
<td>Slavie Federal Savings Bank</td>
<td>Bel Air</td>
<td>MD</td>
<td>32368</td>
</tr>
<tr>
<td>Columbia Savings Bank</td>
<td>Cincinnati</td>
<td>OH</td>
<td>32284</td>
</tr>
<tr>
<td>AztecAmerica Bank</td>
<td>Berwyn</td>
<td>IL</td>
<td>57866</td>
</tr>
<tr>
<td>Allendale County Bank</td>
<td>Fairfax</td>
<td>SC</td>
<td>15062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acquiring Institution</th>
<th>Closing Date</th>
<th>Updated Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alva State Bank &amp; Trust Company</td>
<td>2014-06-27</td>
<td>2014-07-08</td>
</tr>
<tr>
<td>Great Southern Bank</td>
<td>2014-06-20</td>
<td>2014-06-26</td>
</tr>
<tr>
<td>Israel Discount Bank of New York</td>
<td>2002-01-11</td>
<td>2012-06-05</td>
</tr>
<tr>
<td>Delta Trust &amp; Bank</td>
<td>2001-09-07</td>
<td>2004-02-10</td>
</tr>
<tr>
<td>Superior Federal, FSB</td>
<td>2001-07-27</td>
<td>2012-06-05</td>
</tr>
<tr>
<td>North Valley Bank</td>
<td>2001-05-03</td>
<td>2002-11-18</td>
</tr>
<tr>
<td>Southern New Hampshire Bank &amp; Trust</td>
<td>2001-02-02</td>
<td>2003-02-18</td>
</tr>
<tr>
<td>Banterra Bank of Marion</td>
<td>2000-12-14</td>
<td>2005-03-17</td>
</tr>
<tr>
<td>Bank of the Orient</td>
<td>2000-10-13</td>
<td>2005-03-17</td>
</tr>
</tbody>
</table>

**Warning:** We highly encourage you to read the *HTML parsing gotchas* regarding the issues surrounding the BeautifulSoup4/html5lib/lxml parsers.
Note: The data from the above URL changes every Monday so the resulting data above and the data below may be slightly different.

Read in the content of the file from the above URL and pass it to `read_html` as a string.

```python
In [201]: with open(file_path, 'r') as f:
.....:
 dfs = read_html(f.read())
.....:

In [202]: dfs
```

```python
Out[202]:
[Bank Name City ST CERT Acquiring Institution Closing Date Updated Date
0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386 North Shore Bank, FSB 2013-05-31 2013-05-31
1 Central Arizona Bank Scottsdale AZ 34527 Western State Bank 2013-05-14 2013-05-20
2 Sunrise Bank Valdosta GA 58185 Synovus Bank 2013-05-10 2013-05-21
3 Pisgah Community Bank Asheville NC 58701 Capital Bank, N.A. 2013-05-10 2013-05-14
5 Parkway Bank Lenoir NC 57158 CertusBank, National Association 2013-04-26 2013-05-17
.. Israel Discount Bank of New York 2002-01-11 2012-06-05
500 Sinclair National Bank Gravette AR 34248 Delta Trust & Bank 2001-09-07 2004-02-10
501 Superior Bank, FSB Hinsdale IL 32646
502 Malta National Bank Malta OH 6629
503 First Alliance Bank & Trust Co. Manchester NH 34264
504 National State Bank of Metropolis Metropolis IL 3815
505 Bank of Honolulu Honolulu HI 21029
```
You can even pass in an instance of `StringIO` if you so desire

```python
In [203]: with open(file_path, 'r') as f:
......: sio = StringIO(f.read())
......:
In [204]: dfs = read_html(sio)
```

```python
In [205]: dfs
```

```none
Out[205]:
```

```

Note: The following examples are not run by the IPython evaluator due to the fact that having so many network-accessing functions slows down the documentation build. If you spot an error or an example that doesn’t run, please do not hesitate to report it over on pandas GitHub issues page.
Read a URL and match a table that contains specific text

```python
match = 'Metcalf Bank'
df_list = read_html(url, match=match)
```

Specify a header row (by default `<th>` elements are used to form the column index); if specified, the header row is taken from the data minus the parsed header elements (`<th>` elements).

```python
dfs = read_html(url, header=0)
```

Specify an index column

```python
dfs = read_html(url, index_col=0)
```

Specify a number of rows to skip

```python
dfs = read_html(url, skiprows=0)
```

Specify a number of rows to skip using a list (xrange (Python 2 only) works as well)

```python
dfs = read_html(url, skiprows=range(2))
```

Don’t infer numeric and date types

```python
dfs = read_html(url, infer_types=False)
```

Specify an HTML attribute

```python
dfs1 = read_html(url, attrs={'id': 'table'})
dfs2 = read_html(url, attrs={'class': 'sortable'})
print(np.array_equal(dfs1[0], dfs2[0])) # Should be True
```

Use some combination of the above

```python
dfs = read_html(url, match='Metcalf Bank', index_col=0)
```

Read in pandas `to_html` output (with some loss of floating point precision)

```python
df = DataFrame(randn(2, 2))
s = df.to_html(float_format='{{0:.40g}}'.format)
dfin = read_html(s, index_col=0)
```

The lxml backend will raise an error on a failed parse if that is the only parser you provide (if you only have a single parser you can provide just a string, but it is considered good practice to pass a list with one string if, for example, the function expects a sequence of strings)

```python
dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])
```

or

```python
dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')
```

However, if you have bs4 and html5lib installed and pass None or ['lxml', 'bs4'] then the parse will most likely succeed. Note that as soon as a parse succeeds, the function will return.

```python
dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml', 'bs4'])
```

20.3.2 Writing to HTML files

DataFrame objects have an instance method `to_html` which renders the contents of the DataFrame as an HTML table. The function arguments are as in the method `to_string` described above.
Note: Not all of the possible options for DataFrame.to_html are shown here for brevity's sake. See to_html() for the full set of options.

In [206]: df = DataFrame(randn(2, 2))

In [207]: df
Out[207]:
 0 1
0 -0.184744 0.496971
1 -0.856240 1.857977

In [208]: print(df.to_html()) # raw html

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
<td> 0.496971</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
<td> 1.857977</td>
</tr>
</tbody>
</table>

HTML:
The columns argument will limit the columns shown

In [209]: print(df.to_html(columns=[0]))

<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
<td> 0.496971</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
<td> 1.857977</td>
</tr>
</tbody>
</table>
HTML:

float_format takes a Python callable to control the precision of floating point values

```python
In [210]: print(df.to_html(float_format='{{0:.10f}}'.format))
```

```html
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">  
<th></th>  
<th>0</th>  
<th>1</th>  
</tr>
</thead>
<tbody>
<tr>  
<th>0</th>  
<td>-0.1847438576</td>  
<td>0.4969711327</td>  
</tr>
<tr>  
<th>1</th>  
<td>-0.8562396763</td>  
<td>1.8579766508</td>  
</tr>
</tbody>
</table>
```

HTML:

bold_rows will make the row labels bold by default, but you can turn that off

```python
In [211]: print(df.to_html(bold_rows=False))
```

```html
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">  
<th></th>  
<th>0</th>  
<th>1</th>  
</tr>
</thead>
<tbody>
<tr>  
<td>0</td>  
<td>-0.184744</td>  
<td> 0.496971</td>  
</tr>
<tr>  
<td>1</td>  
<td>-0.856240</td>  
<td> 1.857977</td>  
</tr>
</tbody>
</table>
```

The *classes* argument provides the ability to give the resulting HTML table CSS classes. Note that these classes are appended to the existing 'dataframe' class.

```python
In [212]: print(df.to_html(classes=['awesome_table_class', 'even_more_awesome_class']))
```

```html
<table border="1" class="dataframe awesome_table_class even_more_awesome_class">
<thead>
<tr style="text-align: right;">  
<th></th>  
<th>0</th>  
<th>1</th>  
</tr>
</thead>
```
Finally, the `escape` argument allows you to control whether the “<”, “>” and “&” characters escaped in the resulting HTML (by default it is True). So to get the HTML without escaped characters pass `escape=False`

In [213]: df = DataFrame({'a': list('&<>'), 'b': randn(3)})

Escaped:

In [214]: print(df.to_html())

Not escaped:

In [215]: print(df.to_html(escape=False))
The `read_excel()` method can read Excel 2003 (.xls) and Excel 2007 (.xlsx) files using the `xlrd` Python module and use the same parsing code as the above to convert tabular data into a DataFrame. See the cookbook for some advanced strategies.

Besides `read_excel` you can also read Excel files using the `ExcelFile` class. The following two commands are equivalent:

```python
# using the ExcelFile class
xls = pd.ExcelFile('path_to_file.xls')
xls.parse('Sheet1', index_col=None, na_values=['NA'])
```

```python
# using the read_excel function
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
```

The class based approach can be used to read multiple sheets or to introspect the sheet names using the `sheet_names` attribute.

Note: The prior method of accessing `ExcelFile` has been moved from `pandas.io.parsers` to the top level namespace starting from pandas 0.12.0.

New in version 0.13. There are now two ways to read in sheets from an Excel file. You can provide either the index of a sheet or its name to by passing different values for `sheet_name`.

- Pass a string to refer to the name of a particular sheet in the workbook.
Pandas: powerful Python data analysis toolkit, Release 0.14.1

- Pass an integer to refer to the index of a sheet. Indices follow Python convention, beginning at 0.
- The default value is sheet_name=0. This reads the first sheet.

Using the sheet name:
```
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
```

Using the sheet index:
```
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])
```

Using all default values:
```
read_excel('path_to_file.xls')
```

It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read in those columns. `read_excel` takes a `parse_cols` keyword to allow you to specify a subset of columns to parse.

If `parse_cols` is an integer, then it is assumed to indicate the last column to be parsed.
```
read_excel('path_to_file.xls', 'Sheet1', parse_cols=2)
```

If `parse_cols` is a list of integers, then it is assumed to be the file column indices to be parsed.
```
read_excel('path_to_file.xls', 'Sheet1', parse_cols=[0, 2, 3])
```

To write a DataFrame object to a sheet of an Excel file, you can use the `to_excel` instance method. The arguments are largely the same as `to_csv` described above, the first argument being the name of the excel file, and the optional second argument the name of the sheet to which the DataFrame should be written. For example:
```
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
```

Files with a `.xls` extension will be written using `xlwt` and those with a `.xlsx` extension will be written using `xlsxwriter` (if available) or `openpyxl`.

The DataFrame will be written in a way that tries to mimic the REPL output. One difference from 0.12.0 is that the `index_label` will be placed in the second row instead of the first. You can get the previous behaviour by setting the `merge_cells` option in `to_excel()` to `False`:
```
df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)
```

The Panel class also has a `to_excel` instance method, which writes each DataFrame in the Panel to a separate sheet.

In order to write separate DataFrames to separate sheets in a single Excel file, one can pass an `ExcelWriter`.
```
with ExcelWriter('path_to_file.xlsx') as writer:
    df1.to_excel(writer, sheet_name='Sheet1')
    df2.to_excel(writer, sheet_name='Sheet2')
```

Note: Wringing a little more performance out of `read_excel` Internally, Excel stores all numeric data as floats. Because this can produce unexpected behavior when reading in data, pandas defaults to trying to convert integers to floats if it doesn’t lose information (1.0 --> 1). You can pass `convert_float=False` to disable this behavior, which may give a slight performance improvement.

20.4.1 Excel writer engines

New in version 0.13. Pandas chooses an Excel writer via two methods:

1. the `engine` keyword argument
2. the filename extension (via the default specified in config options)

By default, pandas uses the XlsxWriter for .xlsx and openpyxl for .xlsm files and xlwt for .xls files. If you have multiple engines installed, you can set the default engine through setting the config options io.excel.xlsx.writer and io.excel.xlsm.writer. pandas will fall back on openpyxl for .xlsx files if Xlsxwriter is not available.

To specify which writer you want to use, you can pass an engine keyword argument to to_excel and to ExcelWriter.

```python
# By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods.
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')

# By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')

# Or via pandas configuration.
from pandas import options
options.io.excel.xlsx.writer = 'xlsxwriter'
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
```

20.5 Clipboard

A handy way to grab data is to use the read_clipboard method, which takes the contents of the clipboard buffer and passes them to the read_table method. For instance, you can copy the following text to the clipboard (CTRL-C on many operating systems):

```
A B C
x 1 4 p
y 2 5 q
z 3 6 r
```

And then import the data directly to a DataFrame by calling:

```python
clipdf = pd.read_clipboard()
```

```
In [216]: clipdf
Out[216]:
   A  B  C
0  x  1  4  p
1  y  2  5  q
2  z  3  6  r
```

The toClipboard method can be used to write the contents of a DataFrame to the clipboard. Following which you can paste the clipboard contents into other applications (CTRL-V on many operating systems). Here we illustrate writing a DataFrame into clipboard and reading it back.

```
In [217]: df=pd.DataFrame(randn(5,3))
In [218]: df
Out[218]:
   0      1      2
0 -0.288267 -0.084905  0.004772
1  1.382989  0.343635 -1.253994
2 -0.124925  0.212244  0.496654
3  0.525417  1.238640 -1.210543
```

20.5. Clipboard
4 -1.175743 -0.172372 -0.734129

In [219]: df.to_clipboard()

In [220]: pd.read_clipboard()
Out[220]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

We can see that we got the same content back, which we had earlier written to the clipboard.

Note: You may need to install xclip or xsel (with gtk or PyQt4 modules) on Linux to use these methods.

20.6 Pickling

All pandas objects are equipped with `to_pickle` methods which use Python's `cPickle` module to save data structures to disk using the pickle format.

In [221]: df
Out[221]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

In [222]: df.to_pickle('foo.pkl')

The `read_pickle` function in the pandas namespace can be used to load any pickled pandas object (or any other pickled object) from file:

In [223]: read_pickle('foo.pkl')
Out[223]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

Warning: Loading pickled data received from untrusted sources can be unsafe. See: http://docs.python.org/2.7/library/pickle.html

Warning: In 0.13, pickle preserves compatibility with pickles created prior to 0.13. These must be read with `pd.read_pickle`, rather than the default `python pickle.load`. See [this question](https://stackoverflow.com/questions/12238095) for a detailed explanation.

Note: These methods were previously `pd.save` and `pd.load`, prior to 0.12.0, and are now deprecated.
20.7 msgpack (experimental)

New in version 0.13.0. Starting in 0.13.0, pandas is supporting the msgpack format for object serialization. This is a lightweight portable binary format, similar to binary JSON, that is highly space efficient, and provides good performance both on the writing (serialization), and reading (deserialization).

Warning: This is a very new feature of pandas. We intend to provide certain optimizations in the io of the msgpack data. Since this is marked as an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.

In [244]: df = DataFrame(np.random.rand(5,2),columns=list('AB'))

In [225]: df.to_msgpack('foo.msg')

In [226]: pd.read_msgpack('foo.msg')
Out[226]:
 A B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106

In [227]: s = Series(np.random.rand(5),index=date_range('20130101',periods=5))

You can pass a list of objects and you will receive them back on deserialization.

In [228]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1,2,3]), s)

In [229]: pd.read_msgpack('foo.msg')
Out[229]:
 A B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106

foo
[1 2 3]
2013-01-01 0.690810

You can pass `iterator=True` to iterate over the unpacked results

In [230]: for o in pd.read_msgpack('foo.msg',iterator=True):
 ...: print o
 ...
 A B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106

foo
[1 2 3]
2013-01-01 0.690810
You can pass `append=True` to the writer to append to an existing pack

```
In [231]: df.to_msgpack('foo.msg', append=True)
```

```
In [232]: pd.read_msgpack('foo.msg')
Out[232]:

    A   B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106
Freq: D, dtype: float64
```

Unlike other io methods, `to_msgpack` is available on both a per-object basis, `df.to_msgpack()` and using the top-level `pd.to_msgpack(...)` where you can pack arbitrary collections of python lists, dicts, scalars, while intermixing pandas objects.

```
In [233]: pd.to_msgpack('foo2.msg', { 'dict' : [ { 'df' : df }, { 'string' : 'foo' }, { 'scalar' : 1. }, { 's' : s } ] })
```

```
In [234]: pd.read_msgpack('foo2.msg')
Out[234]:

    u'dict': ({u'df': A   B
              0 0.154336 0.710999
              1 0.398096 0.765220
              2 0.586749 0.293052
              3 0.290293 0.710783
              4 0.988593 0.062106},
            {u'string': u'foo'},
            {u'scalar': 1.0},
            {u's': 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493
             Freq: D, dtype: float64})
```

20.7.1 Read/Write API

Msgpacks can also be read from and written to strings.
Furthermore you can concatenate the strings to produce a list of the original objects.

```
In [236]: pd.read_msgpack(df.to_msgpack() + s.to_msgpack())
```
Out[236]:

```
[ A B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106, 2013-01-01 0.690810
2013-01-02 0.235907
2013-01-03 0.712756
2013-01-04 0.119599
2013-01-05 0.023493
Freq: D, dtype: float64]
```

20.8 HDF5 (PyTables)

HDFStore is a dict-like object which reads and writes pandas using the high performance HDF5 format using the excellent PyTables library. See the cookbook for some advanced strategies.

Note: PyTables 3.0.0 was recently released to enable support for Python 3. pandas should be fully compatible (and previously written stores should be backwards compatible) with all PyTables >= 2.3. For python >= 3.2, pandas >= 0.12.0 is required for compatibility.

```
In [237]: store = HDFStore('store.h5')

In [238]: print(store)
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
Empty
```

Objects can be written to the file just like adding key-value pairs to a dict:

```
In [239]: np.random.seed(1234)

In [240]: index = date_range('1/1/2000', periods=8)

In [241]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [242]: df = DataFrame(randn(8, 3), index=index,
......: columns=['A', 'B', 'C'])

In [243]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
......: major_axis=date_range('1/1/2000', periods=5),
......: minor_axis=['A', 'B', 'C', 'D'])

# store.put('s', s) is an equivalent method
In [244]: store['s'] = s
```
In [245]: store['df'] = df

In [246]: store['wp'] = wp

the type of stored data
In [247]: store.root.wp._v_attrs.pandas_type
Out[247]: 'wide'

In [248]: store
Out[248]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame (shape->[8,3])
/s series (shape->[5])
/wp wide (shape->[2,5,4])

In a current or later Python session, you can retrieve stored objects:

store.get('df') is an equivalent method
In [249]: store['df']

Out[249]:
 A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

dotted (attribute) access provides get as well
In [250]: store.df

Out[250]:
 A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

Deletion of the object specified by the key

store.remove('wp') is an equivalent method
In [251]: del store['wp']

In [252]: store
Out[252]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame (shape->[8,3])
/s series (shape->[5])

Closing a Store, Context Manager
In [253]: store.close()

In [254]: store
Out[254]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
File is CLOSED

In [255]: store.is_open
Out[255]: False

Working with, and automatically closing the store with the context
manager
In [256]: with get_store('store.h5') as store:
 : store.keys()
 :

20.8.1 Read/Write API

HDFStore supports an top-level API using read_hdf for reading and to_hdf for writing, similar to how read_csv and to_csv work. (new in 0.11.0)

In [257]: df_tl = DataFrame(dict(A=list(range(5)), B=list(range(5))))

In [258]: df_tl.to_hdf('store_tl.h5','table',append=True)

In [259]: read_hdf('store_tl.h5', 'table', where = ['index>2'])
Out[259]:
 A B
0 3 3
1 4 4

20.8.2 Fixed Format

Note: This was prior to 0.13.0 the Storer format.

The examples above show storing using put, which write the HDF5 to PyTables in a fixed array format, called the fixed format. These types of stores are are not appendable once written (though you can simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety. These offer very fast writing and slightly faster reading than table stores. This format is specified by default when using put or to_hdf or by format='fixed' or format='f'

Warning: A fixed format will raise a TypeError if you try to retrieve using a where.

DataFrame(randn(10,2)).to_hdf('test_fixed.h5','df')

pd.read_hdf('test_fixed.h5','df',where='index>5')
TypeError: cannot pass a where specification when reading a fixed format.
this store must be selected in its entirety
20.8.3 Table Format

HDFStore supports another PyTables format on disk, the table format. Conceptually a table is shaped very much like a DataFrame, with rows and columns. A table may be appended to in the same or other sessions. In addition, delete & query type operations are supported. This format is specified by format='table' or format='t' to append or put or to_hdf New in version 0.13. This format can be set as an option as well pd.set_option('io.hdf.default_format','table') to enable put/append/to_hdf to by default store in the table format.

In [260]: store = HDFStore('store.h5')
In [261]: df1 = df[0:4]
In [262]: df2 = df[4:]

append data (creates a table automatically)
In [263]: store.append('df', df1)
In [264]: store.append('df', df2)

In [265]: store
Out[265]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df
 frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

select the entire object
In [266]: store.select('df')
Out[266]:
 A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

the type of stored data
In [267]: store.root.df._v_attrs.pandas_type
Out[267]: 'frame_table'

Note: You can also create a table by passing format='table' or format='t' to a put operation.

20.8.4 Hierarchical Keys

Keys to a store can be specified as a string. These can be in a hierarchical path-name like format (e.g. foo/bar/bah), which will generate a hierarchy of sub-stores (or Groups in PyTables parlance). Keys can be specified with out the leading '/' and are ALWAYS absolute (e.g. ‘foo’ refers to ‘/foo’). Removal operations can remove everying in the sub-store and BELOW, so be careful.

In [268]: store.put('foo/bar/bah', df)
In [269]: store.append('food/orange', df)
In [270]: store.append('food/apple', df)

In [271]: store
Out[271]: <class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/foo/bar/bah frame (shape->[8,3])

a list of keys are returned
In [272]: store.keys()
Out[272]: ['/df', '/food/apple', '/food/orange', '/foo/bar/bah']

remove all nodes under this level
In [273]: store.remove('food')

In [274]: store
Out[274]: <class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/foo/bar/bah frame (shape->[8,3])

20.8.5 Storing Mixed Types in a Table

Storing mixed-dtype data is supported. Strings are stored as a fixed-width using the maximum size of the appended column. Subsequent appends will truncate strings at this length.

Passing \texttt{min_itemsize={'values': size}} as a parameter to append will set a larger minimum for the string columns. Storing floats, strings, ints, bools, datetime64 are currently supported. For string columns, passing \texttt{nan_rep = 'nan'} to append will change the default nan representation on disk (which converts to/from \texttt{np.nan}), this defaults to \texttt{nan}.

In [275]: df_mixed = DataFrame({ 'A' : randn(8),
......: 'B' : randn(8),
......: 'C' : np.array(randn(8),dtype='float32'),
......: 'string' : 'string',
......: 'int' : 1,
......: 'bool' : True,
......: 'datetime64' : Timestamp('20010102')),
......: index=list(range(8)))

In [276]: df_mixed.ix[3:5,['A', 'B', 'string', 'datetime64']] = np.nan

In [277]: store.append('df_mixed', df_mixed, min_itemsize = {'values': 50})

In [278]: df_mixed1 = store.select('df_mixed')

In [279]: df_mixed1
Out[279]:
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>bool</th>
<th>datetime64</th>
<th>int</th>
<th>string</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.704721</td>
<td>0.115269</td>
<td>0.430096</td>
<td>2001-01-02</td>
<td>1</td>
<td>string</td>
</tr>
<tr>
<td>1</td>
<td>-0.785435</td>
<td>0.631979</td>
<td>0.767369</td>
<td>2001-01-02</td>
<td>1</td>
<td>string</td>
</tr>
</tbody>
</table>
In [280]: df_mixed1.get_dtype_counts()
Out[280]:
bool 1
datetime64[ns] 1
float32 1
float64 2
int64 1
object 1
dtype: int64

we have provided a minimum string column size
In [281]: store.root.df_mixed.table
Out[281]:
Table(8,)

description := {
"index": Int64Col(shape=(), dflt=0, pos=0),
"values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1),
"values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2),
"values_block_2": Int64Col(shape=(1,), dflt=0, pos=3),
"values_block_3": Int64Col(shape=(1,), dflt=0, pos=4),
"values_block_4": BoolCol(shape=(1,), dflt=False, pos=5),
"values_block_5": StringCol(itemsize=50, shape=(1,), dflt='', pos=6)}
byteorder := 'little'
chunkshape := (689,)
autoindex := True
colindexes := {
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

20.8.6 Storing Multi-Index DataFrames

Storing multi-index dataframes as tables is very similar to storing/selecting from homogeneous index DataFrames.

In [282]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
 ['one', 'two', 'three'],
 ['A', 'B', 'C']],
 labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
 [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
 names=['foo', 'bar'])

In [283]: df_mi = DataFrame(np.random.randn(10, 3), index=index,
 columns=['A', 'B', 'C'])

In [284]: df_mi
Out[284]:
 A B C
foo one -0.584718 0.816594 -0.081947
two -0.344766 0.528288 -1.068989
three -0.511881 0.291205 0.566534
```python
In [285]: store.append('df_mi', df_mi)

In [286]: store.select('df_mi')
```

```bash
Out[286]:
A   B     C
foo bar
  one -0.584718 0.816594 -0.081947
  two -0.344766 0.528288 -1.068989
  three -0.511881 0.291205  0.566534
bar one 0.503592 0.285296  0.484288
  two 1.363482 -0.781105 -0.468018
  three -1.710715 -0.450765  0.749164
baz one -0.203933 -0.182175  0.680656
  two -1.818499 0.047072  0.394844
  three -0.248432 -0.617707 -0.682884
qux one -0.203933 -0.182175  0.680656
  two -1.818499 0.047072  0.394844
  three -0.248432 -0.617707 -0.682884

# the levels are automatically included as data columns
In [287]: store.select('df_mi', 'foo=bar')
```

```bash
Out[287]:
A   B     C
foo bar
  one  0.503592 0.285296  0.484288
  two 1.363482 -0.781105 -0.468018
```

20.8.7 Querying a Table

Warning: This query capabilities have changed substantially starting in 0.13.0. Queries from prior version are accepted (with a `DeprecationWarning`) printed if its not string-like.

Select and delete operations have an optional criterion that can be specified to select/delete only a subset of the data. This allows one to have a very large on-disk table and retrieve only a portion of the data.

A query is specified using the `Term` class under the hood, as a boolean expression.

- `index` and `columns` are supported indexers of a DataFrame
- `major_axis`, `minor_axis`, and `items` are supported indexers of the Panel
- if `data_columns` are specified, these can be used as additional indexers

Valid comparison operators are:

- `=`, `==`, `!=`, `>`, `>h`, `<`, `<=`

Valid boolean expressions are combined with:

- `|` : or
- `&` : and
• (and): for grouping

These rules are similar to how boolean expressions are used in pandas for indexing.

Note:

• = will be automatically expanded to the comparison operator ==
• ~ is the not operator, but can only be used in very limited circumstances
• If a list/tuple of expressions is passed they will be combined via &

The following are valid expressions:

- `'index>=date'
- "columns=['A', 'D']"
- "columns in ['A', 'D']"
- 'columns=A'
- 'columns==A'
- "~(columns=['A','B'])"
- 'index>df.index[3] & string="bar"'
- '(index>df.index[3] & index<=df.index[6]) | string="bar"
- "ts>=Timestamp('2012-02-01')"
- "major_axis>=20130101"

The indexers are on the left-hand side of the sub-expression:

- `columns, major_axis, ts`

The right-hand side of the sub-expression (after a comparison operator) can be:

- functions that will be evaluated, e.g. `Timestamp('2012-02-01')`
- strings, e.g. "bar"
- date-like, e.g. 20130101, or "20130101"
- lists, e.g. "['A','B']"
- variables that are defined in the local names space, e.g. `date`

Note: Passing a string to a query by interpolating it into the query expression is not recommended. Simply assign the string of interest to a variable and use that variable in an expression. For example, do this:

```python
string = "HolyMoly"
store.select('df', 'index == string')
```

instead of this:

```python
string = "HolyMoly"
store.select('df', 'index == $s' % string)
```

The latter will **not** work and will raise a `SyntaxError`. Note that there’s a single quote followed by a double quote in the `"string"` variable.
If you *must* interpolate, use the `\``%r\``` format specifier

.. code-block:: python

 store.select('df', 'index == %r % string)

which will quote `\``string\```.

Here are some examples:

In [288]: dfq = DataFrame(randn(10,4),columns=list('ABCD'),index=date_range('20130101',periods=10))

In [289]: store.append('dfq',dfq,format='table',data_columns=True)

Use boolean expressions, with in-line function evaluation.

In [290]: store.select('dfq',"index>Timestamp('20130104') & columns=['A', 'B']")

Out[290]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-05</td>
<td>1.210384</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>-0.850346</td>
</tr>
<tr>
<td>2013-01-07</td>
<td>0.984188</td>
</tr>
<tr>
<td>2013-01-08</td>
<td>0.796595</td>
</tr>
<tr>
<td>2013-01-09</td>
<td>-0.804834</td>
</tr>
<tr>
<td>2013-01-10</td>
<td>0.334198</td>
</tr>
</tbody>
</table>

Use and inline column reference

In [291]: store.select('dfq',where="A>0 or C>0")

Out[291]:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.436258</td>
<td>-1.703013</td>
<td>0.393711</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>-0.299016</td>
<td>0.694103</td>
<td>0.678630</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>0.151227</td>
<td>0.816127</td>
<td>1.893534</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>-0.962029</td>
<td>-2.085266</td>
<td>1.930247</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>1.210384</td>
<td>0.797435</td>
<td></td>
</tr>
<tr>
<td>2013-01-07</td>
<td>0.984188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-08</td>
<td>0.796595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-09</td>
<td>-0.804834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-01-10</td>
<td>0.334198</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Works with a Panel as well.

In [292]: store.append('wp',wp)

In [293]: store

Out[293]:

<class 'pandas.io.pytables.HDFStore'>

File path: store.h5

/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo])
/dfq Mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
/wp wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_axis])
/foo/bar/bah frame (shape->[8,3])

In [294]: store.select('wp', "major_axis>Timestamp('20000102') & minor_axis=['A', 'B']")

Out[294]:

Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B

The `columns` keyword can be supplied to select a list of columns to be returned, this is equivalent to passing a
`'columns=list_of_columns_to_filter'`:

```
In [295]: store.select('df', "columns=['A', 'B']")
Out[295]:
   A   B
2000-01-01  0.887163  0.859588
2000-01-02  0.015696 -2.242685
2000-01-03  0.991946  0.953324
2000-01-04 -0.334077  0.002118
2000-01-05  0.289092  1.321158
2000-01-06 -0.202646 -0.655969
2000-01-07  0.553439  1.318152
2000-01-08  0.675554 -1.817027
```

`start` and `stop` parameters can be specified to limit the total search space. These are in terms of the total number
of rows in a table.

```
# this is effectively what the storage of a Panel looks like
In [296]: wp.to_frame()
Out[296]:
          Item1  Item2
major minor
2000-01-01 A   1.058969  0.215269
       B   -0.397840  0.841009
       C    0.337438 -1.445810
       D    1.047579 -1.401973
2000-01-02 A   1.045938 -0.100918
       B    0.863717 -0.548242
       C  -0.122092 -0.144620
       ...   ...    ...
2000-01-04 B   0.036142  0.307969
       C  -2.074978 -0.208499
       D   0.247792  1.033801
2000-01-05 A  -0.897157 -2.400454
       B  -0.136795  2.030604
       C   0.018289 -1.142631
       D   0.755414  0.211883
[20 rows x 2 columns]
```

```
# limiting the search
In [297]: store.select('wp',"major_axis>20000102 & minor_axis=['A','B']",
             ...:
             start=0, stop=10)
```

Note: select will raise a `ValueError` if the query expression has an unknown variable reference. Usually this
means that you are trying to select on a column that is not a data_column.
select will raise a SyntaxError if the query expression is not valid.

Using timedelta64[ns] New in version 0.13. Beginning in 0.13.0, you can store and query using the timedelta64[ns] type. Terms can be specified in the format: <float>(<unit>), where float may be signed (and fractional), and unit can be D,s,ms,us,ns for the timedelta. Here’s an example:

```
Warning: This requires numpy >= 1.7
```

```
In [298]: from datetime import timedelta
In [299]: dftd = DataFrame(dict(A = Timestamp('20130101'), B = [ Timestamp('20130101') + timedelta(days=i,seconds=10) for i in range(10) ]))
In [300]: dftd['C'] = dftd['A']-dftd['B']
In [301]: dftd
Out[301]:
   A         B         C
0 2013-01-01 2013-01-01 00:00:10 -0 days, 00:00:10
1 2013-01-01 2013-01-02 00:00:10 -1 days, 00:00:10
2 2013-01-01 2013-01-03 00:00:10 -2 days, 00:00:10
3 2013-01-01 2013-01-04 00:00:10 -3 days, 00:00:10
4 2013-01-01 2013-01-05 00:00:10 -4 days, 00:00:10
5 2013-01-01 2013-01-06 00:00:10 -5 days, 00:00:10
6 2013-01-01 2013-01-07 00:00:10 -6 days, 00:00:10
7 2013-01-01 2013-01-08 00:00:10 -7 days, 00:00:10
8 2013-01-01 2013-01-09 00:00:10 -8 days, 00:00:10
9 2013-01-01 2013-01-10 00:00:10 -9 days, 00:00:10
In [302]: store.append('dftd',dftd,data_columns=True)
In [303]: store.select('dftd','C<'-3.5D'')
Out[303]:
   A         B         C
4 2013-01-01 2013-01-05 00:00:10 -4 days, 00:00:10
5 2013-01-01 2013-01-06 00:00:10 -5 days, 00:00:10
6 2013-01-01 2013-01-07 00:00:10 -6 days, 00:00:10
7 2013-01-01 2013-01-08 00:00:10 -7 days, 00:00:10
8 2013-01-01 2013-01-09 00:00:10 -8 days, 00:00:10
9 2013-01-01 2013-01-10 00:00:10 -9 days, 00:00:10
```

20.8.8 Indexing

You can create/modify an index for a table with `create_table_index` after data is already in the table (after and append/put operation). Creating a table index is highly encouraged. This will speed your queries a great deal when you use a `select` with the indexed dimension as the `where`.

Note: Indexes are automatically created (starting 0.10.1) on the indexables and any data columns you specify. This behavior can be turned off by passing `index=False` to `append`.

```
# we have automagically already created an index (in the first section)
In [304]: i = store.root.df.table.cols.index.index
In [305]: i.optlevel, i.kind
Out[305]: (6, 'medium')
```

20.8. HDF5 (PyTables)
change an index by passing new parameters
In [306]: store.create_table_index('df', optlevel=9, kind='full')

In [307]: i = store.root.df.table.cols.index.index

In [308]: i.optlevel, i.kind
Out[308]: (9, 'full')

See here for how to create a completely-sorted-index (CSI) on an existing store.

20.8.9 Query via Data Columns

You can designate (and index) certain columns that you want to be able to perform queries (other than the indexable columns, which you can always query). For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query. You can specify data_columns = True to force all columns to be data_columns

In [309]: df_dc = df.copy()

In [310]: df_dc['string'] = 'foo'

In [311]: df_dc.ix[4:6,'string'] = np.nan

In [312]: df_dc.ix[7:9,'string'] = 'bar'

In [313]: df_dc['string2'] = 'cool'

In [314]: df_dc.ix[1:3,[B,'C']] = 1.0

In [315]: df_dc
Out[315]:
 A B C string string2
0 2000-01-01 0.887163 0.859588 -0.636524 foo cool
1 2000-01-02 0.015696 1.000000 1.000000 foo cool
2 2000-01-03 0.991946 1.000000 1.000000 foo cool
3 2000-01-04 -0.334077 0.002118 0.405453 foo cool
4 2000-01-05 0.289092 1.321158 -1.546906 NaN cool
5 2000-01-07 0.553439 1.318152 -0.469305 foo cool
6 2000-01-08 0.675554 -1.817027 -0.183109 bar cool

on-disk operations
In [316]: store.append('df_dc', df_dc, data_columns = [B, C, 'string', 'string2'])

In [317]: store.select('df_dc', [Term('B>0')])
Out[317]:
 A B C string string2
0 2000-01-01 0.887163 0.859588 -0.636524 foo cool
1 2000-01-02 0.015696 1.000000 1.000000 foo cool
2 2000-01-03 0.991946 1.000000 1.000000 foo cool
3 2000-01-04 -0.334077 0.002118 0.405453 foo cool
4 2000-01-05 0.289092 1.321158 -1.546906 NaN cool
5 2000-01-07 0.553439 1.318152 -0.469305 foo cool
6 2000-01-08 0.675554 -1.817027 -0.183109 bar cool

getting creative
In [318]: store.select('df_dc', 'B > 0 & C > 0 & string == foo')
Out[318]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>string</th>
<th>string2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2000-01-02</td>
<td>0.015696</td>
<td>1.000000</td>
<td>1.000000</td>
<td>foo</td>
</tr>
<tr>
<td>1</td>
<td>2000-01-03</td>
<td>0.991946</td>
<td>1.000000</td>
<td>1.000000</td>
<td>foo</td>
</tr>
<tr>
<td>2</td>
<td>2000-01-04</td>
<td>-0.334077</td>
<td>0.002118</td>
<td>0.405453</td>
<td>foo</td>
</tr>
</tbody>
</table>

this is in-memory version of this type of selection

In[319]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')]

Out[319]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>string</th>
<th>string2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2000-01-02</td>
<td>0.015696</td>
<td>1.000000</td>
<td>1.000000</td>
<td>foo</td>
</tr>
<tr>
<td>1</td>
<td>2000-01-03</td>
<td>0.991946</td>
<td>1.000000</td>
<td>1.000000</td>
<td>foo</td>
</tr>
<tr>
<td>2</td>
<td>2000-01-04</td>
<td>-0.334077</td>
<td>0.002118</td>
<td>0.405453</td>
<td>foo</td>
</tr>
</tbody>
</table>

we have automagically created this index and the B/C/string/string2 columns are stored separately as 'PyTables' columns

In[320]: store.root.df_dc.table

Out[320]:

```
/df_dc/table (Table(8,))
```

description := {
 "index": Int64Col(shape=(), dflt=0, pos=0),
 "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
 "B": Float64Col(shape=(), dflt=0.0, pos=2),
 "C": Float64Col(shape=(), dflt=0.0, pos=3),
 "string": StringCol(itemsize=3, shape=(), dflt='', pos=4),
 "string2": StringCol(itemsize=4, shape=(), dflt='', pos=5)}

dbyteorder := 'little'
chunkshape := (1680,)
autoindex := (1680,)
colindexes := {
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "B": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "string2": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "string": Index(6, medium, shuffle, zlib(1)).is_csi=False}

There is some performance degradation by making lots of columns into data columns, so it is up to the user to designate these. In addition, you cannot change data columns (nor indexables) after the first append/put operation (Of course you can simply read in the data and create a new table!)

20.8.10 Iterator

Starting in 0.11.0, you can pass, iterator=True or chunksize=number_in_a_chunk to select and select_as_multiple to return an iterator on the results. The default is 50,000 rows returned in a chunk.

In[321]: for df in store.select('df', chunksize=3):
 : print(df)
 :
```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2000-01-01</td>
<td>0.887163</td>
<td>0.859588</td>
</tr>
<tr>
<td>1</td>
<td>2000-01-02</td>
<td>0.015696</td>
<td>-2.242685</td>
</tr>
<tr>
<td>2</td>
<td>2000-01-03</td>
<td>0.991946</td>
<td>0.953324</td>
</tr>
</tbody>
</table>
```

```
Note: New in version 0.12.0. You can also use the iterator with `read_hdf` which will open, then automatically close the store when finished iterating.

```python
for df in read_hdf('store.h5','df', chunksize=3):
 print(df)
```

Note, that the chunksize keyword applies to the **source** rows. So if you are doing a query, then the chunksize will subdivide the total rows in the table and the query applied, returning an iterator on potentially unequal sized chunks.

Here is a recipe for generating a query and using it to create equal sized return chunks.

```
In [322]: dfeq = DataFrame({'number': np.arange(1,11)})

In [323]: dfeq
Out[323]:
 number
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

In [324]: store.append('dfeq', dfeq, data_columns=['number'])

In [325]: def chunks(l, n):
 : return [l[i:i+n] for i in range(0, len(l), n)]
 :

In [326]: evens = [2,4,6,8,10]

In [327]: coordinates = store.select_as_coordinates('dfeq','number=evens')

In [328]: for c in chunks(coordinates, 2):
 : print store.select('dfeq',where=c)
 : number
 1 2
 3 4
 number
 5 6
 7 8
 number
 9 10
```

20.8.11 Advanced Queries

Select a Single Column
To retrieve a single indexable or data column, use the method `select_column`. This will, for example, enable you to get the index very quickly. These return a `Series` of the result, indexed by the row number. These do not currently accept the `where` selector.

```
In [329]: store.select_column('df_dc', 'index')
Out[329]:
0 2000-01-01
1 2000-01-02
2 2000-01-03
3 2000-01-04
4 2000-01-05
5 2000-01-06
6 2000-01-07
7 2000-01-08
dtype: datetime64[ns]
```

```
In [330]: store.select_column('df_dc', 'string')
Out[330]:
0 foo
1 foo
2 foo
3 foo
4 NaN
5 NaN
6 foo
7 bar
dtype: object
```

Selecting coordinates

Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an `Int64Index` of the resulting locations. These coordinates can also be passed to subsequent `where` operations.

```
In [331]: df_coord = DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000))

In [332]: store.append('df_coord',df_coord)

In [333]: c = store.select_as_coordinates('df_coord','index>20020101')

In [334]: c.summary()
Out[334]: u'Int64Index: 268 entries, 732 to 999'

In [335]: store.select('df_coord',where=c)
Out[335]:
 0 1
2002-01-02 -0.667994 0.368175
2002-01-03 0.020119 -0.823208
2002-01-04 -0.165481 0.720866
2002-01-05 1.295919 -0.527767
2002-01-06 -0.463393 -0.954387
2002-01-07 -1.139341 0.954387
2002-01-08 0.051837 -0.147048

2002-09-20 0.058626 -0.489107
2002-09-21 -0.356873 0.437071
2002-09-22 -0.243534 -0.093778
2002-09-23 -0.615983 0.414649
2002-09-24 0.202096 -0.297561
2002-09-25 0.681661 0.538311
```

20.8. HDF5 (PyTables)
Selecting using a where mask

Sometime your query can involve creating a list of rows to select. Usually this mask would be a resulting index from an indexing operation. This example selects the months of a datetimeindex which are 5.

```
In [336]: df_mask = DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000))
In [337]: store.append('df_mask',df_mask)
In [338]: c = store.select_column('df_mask','index')
In [339]: where = c[DatetimeIndex(c).month==5].index
In [340]: store.select('df_mask',where=where)
```

```
Out[340]:
 0 1
2000-05-01 -0.098554 -0.280782
2000-05-02 0.739851 1.627182
2000-05-03 0.030132 0.145601
2000-05-04 0.227530 1.048856
2000-05-05 1.773939 1.116887
2000-05-06 1.081251 1.509416
2000-05-07 0.498694 0.913155
...
2002-05-25 0.497252 0.348099
2002-05-26 1.287350 1.488122
2002-05-27 0.726220 0.507747
2002-05-28 0.189871 0.980528
2002-05-29 0.555156 0.369371
2002-05-30 -0.637441 -3.434819
2002-05-31 -0.070283 -0.278044
[93 rows x 2 columns]
```

Storer Object

If you want to inspect the stored object, retrieve via `get_storer`. You could use this programmatically to say get the number of rows in an object.

```
In [341]: store.get_storer('df_dc').nrows
Out[341]: 8
```

20.8.12 Multiple Table Queries

New in 0.10.1 are the methods `append_to_multiple` and `select_as_multiple`, that can perform appending/selecting from multiple tables at once. The idea is to have one table (call it the selector table) that you index most/all of the columns, and perform your queries. The other table(s) are data tables with an index matching the selector table’s index. You can then perform a very fast query on the selector table, yet get lots of data back. This method is similar to having a very wide table, but enables more efficient queries.

The `append_to_multiple` method splits a given single DataFrame into multiple tables according to `d`, a dictionary that maps the table names to a list of ‘columns’ you want in that table. If `None` is used in place of a list, that table will have the remaining unspecified columns of the given DataFrame. The argument `selector` defines which table is the selector table (which you can make queries from). The argument `dropna` will drop rows from the input
DataFrame to ensure tables are synchronized. This means that if a row for one of the tables being written to is entirely np.Nan, that row will be dropped from all tables.

If dropna is False, **THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES.** Remember that entirely np.Nan rows are not written to the HDFStore, so if you choose to call dropna=False, some tables may have more rows than others, and therefore select_as_multiple may not work or it may return unexpected results.

```python
In [342]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
 columns=['A', 'B', 'C', 'D', 'E', 'F'])

In [343]: df_mt['foo'] = 'bar'

In [344]: df_mt.ix[1, ('A', 'B')] = np.nan

you can also create the tables individually
In [345]: store.append_to_multiple({'df1_mt': ['A', 'B'],
 'df2_mt': None },
 df_mt, selector='df1_mt')

In [346]: store.select('df1_mt')
Out[346]:
 A B
2000-01-01 -0.816310 1.282296
2000-01-03 0.684353 -1.755306
2000-01-04 -1.315814 1.455079
2000-01-05 -0.027564 0.046757
2000-01-06 -0.416244 -0.821168
2000-01-07 0.665090 1.084344
2000-01-08 0.607460 0.790907
```

# individual tables were created
In [347]: store.select('df1_mt')
Out[347]:
   A    B
2000-01-01  0.816310  1.282296
2000-01-03  0.684353 -1.755306
2000-01-04  1.315814  1.455079
2000-01-05  0.027564  0.046757
2000-01-06  0.416244 -0.821168
2000-01-07  0.665090  1.084344
2000-01-08  0.607460  0.790907
```

8. HDF5 (PyTables) 589
2000-01-07 -0.709897 -2.022441 0.714697 0.318215 bar
2000-01-08 0.852225 0.096696 -0.379903 0.929313 bar

as a multiple
In [349]: store.select_as_multiple(['df1_mt', 'df2Mt'], where=['A>0', 'B>0'],
 selector = 'df1_mt')

Out[349]:
 A B C D E F foo
2000-01-07 0.66509 1.084344 -0.709897 -2.022441 0.714697 0.318215 bar
2000-01-08 0.60746 0.790907 0.852225 0.096696 -0.379903 0.929313 bar

20.8.13 Delete from a Table

You can delete from a table selectively by specifying a where. In deleting rows, it is important to understand the PyTables deletes rows by erasing the rows, then moving the following data. Thus deleting can potentially be a very expensive operation depending on the orientation of your data. This is especially true in higher dimensional objects (Panel and Panel4D). To get optimal performance, it’s worthwhile to have the dimension you are deleting be the first of the indexables.

Data is ordered (on the disk) in terms of the indexables. Here’s a simple use case. You store panel-type data, with dates in the major_axis and ids in the minor_axis. The data is then interleaved like this:

• date_1
 • id_1
 • id_2
 • .
 • id_n

• date_2
 • id_1
 • .
 • id_n

It should be clear that a delete operation on the major_axis will be fairly quick, as one chunk is removed, then the following data moved. On the other hand a delete operation on the minor_axis will be very expensive. In this case it would almost certainly be faster to rewrite the table using a where that selects all but the missing data.

returns the number of rows deleted
In [350]: store.remove('wp', 'major_axis>20000102')
Out[350]: 12

In [351]: store.select('wp')
Out[351]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-02 00:00:00
Minor_axis axis: A to D

Please note that HDF5 DOES NOT RECLAIM SPACE in the h5 files automatically. Thus, repeatedly deleting (or removing nodes) and adding again WILL TEND TO INCREASE THE FILE SIZE. To clean the file, use ptrepack (see below).
20.8.14 Compression

PyTables allows the stored data to be compressed. This applies to all kinds of stores, not just tables.

- **Pass complevel=int** for a compression level (1-9, with 0 being no compression, and the default)
- **Pass complib=lib** where lib is any of zlib, bzip2, lzo, blosc for whichever compression library you prefer.

HDFStore will use the file based compression scheme if no overriding complib or complevel options are provided. blosc offers very fast compression, and is my most used. Note that lzo and bzip2 may not be installed (by Python) by default.

Compression for all objects within the file

- `store_compressed = HDFStore('store_compressed.h5', complevel=9, complib='blosc')`

Or on-the-fly compression (this only applies to tables). You can turn off file compression for a specific table by passing complevel=0

- `store.append('df', df, complib='zlib', complevel=5)`

ptrepack

PyTables offers better write performance when tables are compressed after they are written, as opposed to turning on compression at the very beginning. You can use the supplied PyTables utility ptrepack. In addition, ptrepack can change compression levels after the fact.

- `ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5`

Furthermore ptrepack in.h5 out.h5 will repack the file to allow you to reuse previously deleted space. Alternatively, one can simply remove the file and write again, or use the copy method.

20.8.15 Notes & Caveats

- Once a table is created its items (Panel) / columns (DataFrame) are fixed; only exactly the same columns can be appended
- If a row has np.nan for EVERY COLUMN (having a nan in a string, or a NaT in a datetime-like column counts as having a value), then those rows WILL BE DROPPED IMPLICITLY. This limitation may be addressed in the future.
- **HDFStore is not-threadsafe for writing.** The underlying PyTables only supports concurrent reads (via threading or processes). If you need reading and writing at the same time, you need to serialize these operations in a single thread in a single process. You will corrupt your data otherwise. See the issue (:2397) for more information.
- If you use locks to manage write access between multiple processes, you may want to use fsync() before releasing write locks. For convenience you can use store.flush(fsync=True) to do this for you.
- **PyTables only supports fixed-width string columns in tables.** The sizes of a string based indexing column (e.g. columns or minor_axis) are determined as the maximum size of the elements in that axis or by passing the parameter
- Be aware that timezones (e.g., pytz.timezone(‘US/Eastern’)) are not necessarily equal across timezone versions. So if data is localized to a specific timezone in the HDFStore using one version of a timezone library and that data is updated with another version, the data will be converted to UTC since these timezones are not considered equal. Either use the same version of timezone library or use tz_convert with the updated timezone definition.
Warning: PyTables will show a NaturalNameWarning if a column name cannot be used as an attribute selector. Generally identifiers that have spaces, start with numbers, or _ or have – embedded are not considered natural. These types of identifiers cannot be used in a where clause and are generally a bad idea.

20.8.16 DataTypes

HDFStore will map an object dtype to the PyTables underlying dtype. This means the following types are known to work:

- **floating**: float64, float32, float16 (using np.nan to represent invalid values)
- **integer**: int64, int32, int8, uint64, uint32, uint8
- **bool**
- **datetime64[ns]** (using NaT to represent invalid values)
- **object**: strings (using np.nan to represent invalid values)

Currently, unicode and datetime columns (represented with a dtype of object), WILL FAIL. In addition, even though a column may look like a datetime64[ns], if it contains np.nan, this WILL FAIL. You can try to convert datetimelike columns to proper datetime64[ns] columns, that possibly contain NaT to represent invalid values. (Some of these issues have been addressed and these conversion may not be necessary in future versions of pandas)

```python
In [352]: import datetime

In [353]: df = DataFrame(dict(datelike=Series([datetime.datetime(2001, 1, 1),
                                          ....:
                                          datetime.datetime(2001, 1, 2), np.nan])))

In [354]: df
Out[354]:
       datelike
0  2001-01-01
1  2001-01-02
2    NaT

In [355]: df.dtypes
Out[355]:
       datelike     datetime64[ns]
dtype: object

# to convert
In [356]: df['datelike'] = Series(df['datelike'].values, dtype='M8[ns]')

In [357]: df
Out[357]:
       datelike
0  2001-01-01
1  2001-01-02
2    NaT

In [358]: df.dtypes
Out[358]:
       datelike     datetime64[ns]
dtype: object
```
20.8.17 String Columns

min_itemsize

The underlying implementation of HDFStore uses a fixed column width (itemsize) for string columns. A string column itemsize is calculated as the maximum of the length of data (for that column) that is passed to the HDFStore, in the first append. Subsequent appends, may introduce a string for a column larger than the column can hold, an Exception will be raised (otherwise you could have a silent truncation of these columns, leading to loss of information). In the future we may relax this and allow a user-specified truncation to occur.

Pass `min_itemsize` on the first table creation to a-priori specify the minimum length of a particular string column. `min_itemsize` can be an integer, or a dict mapping a column name to an integer. You can pass values as a key to allow all indexables or data columns to have this min_itemsize.

Starting in 0.11.0, passing a `min_itemsize` dict will cause all passed columns to be created as data columns automatically.

Note: If you are not passing any data columns, then the min_itemsize will be the maximum of the length of any string passed

```python
In [359]: dfs = DataFrame(dict(A = 'foo', B = 'bar'),index=list(range(5)))

In [360]: dfs
Out[360]:
   A  B
0  foo  bar
1  foo  bar
2  foo  bar
3  foo  bar
4  foo  bar

# A and B have a size of 30
In [361]: store.append('dfs', dfs, min_itemsize = 30)

In [362]: store.get_storer('dfs').table
Out[362]:
/dfs/table (Table(5,)) ''
   description := {
     "index": Int64Col(shape=(), dflt=0, pos=0),
     "values_block_0": StringCol(itemsize=30, shape=(2,), dflt='', pos=1)}
   byteorder := 'little'
   chunkshape := (963,)
   autoindex := True
   colindexes := {
     "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

# A is created as a data_column with a size of 30
# B size is calculated
In [363]: store.append('dfs2', dfs, min_itemsize = { 'A' : 30 })

In [364]: store.get_storer('dfs2').table
Out[364]:
/dfs2/table (Table(5,)) ''
   description := {
     "index": Int64Col(shape=(), dflt=0, pos=0),
     "values_block_0": StringCol(itemsize=3, shape=(1,), dflt='', pos=1),
     "A": StringCol(itemsize=30, shape=(), dflt='', pos=2)}
   byteorder := 'little'
```
chunkshape := (1598,)
autoindex := True
colindexes := {
 "A": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False
}
nan_rep

String columns will serialize a np.nan (a missing value) with the nan_rep string representation. This defaults to the string value nan. You could inadvertently turn an actual nan value into a missing value.

In [365]: dfss = DataFrame(dict(A = ['foo','bar','nan']))

In [366]: dfss
Out[366]:
 A
0 foo
1 bar
2 nan

In [367]: store.append('dfss', dfss)

In [368]: store.select('dfss')
Out[368]:
 A
0 foo
1 bar
2 NaN

here you need to specify a different nan rep
In [369]: store.append('dfss2', dfss, nan_rep='__nan__')

In [370]: store.select('dfss2')
Out[370]:
 A
0 foo
1 bar
2 nan

20.8.18 External Compatibility

HDFStore write table format objects in specific formats suitable for producing loss-less roundtrips to pandas objects. For external compatibility, HDFStore can read native PyTables format tables. It is possible to write an HDFStore object that can easily be imported into R using the rhdf5 library. Create a table format store like this:

In [371]: store_export = HDFStore('export.h5')

In [372]: store_export.append('df_dc', df_dc, data_columns=df_dc.columns)

In [373]: store_export
Out[373]:
<class 'pandas.io.pytables.HDFStore'>
File path: export.h5
/df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[A,B,C,string,string2])
20.8.19 Backwards Compatibility

0.10.1 of HDFStore can read tables created in a prior version of pandas, however query terms using the prior (undocumented) methodology are unsupported. HDFStore will issue a warning if you try to use a legacy-format file. You must read in the entire file and write it out using the new format, using the method `copy` to take advantage of the updates. The group attribute `pandas_version` contains the version information. `copy` takes a number of options, please see the docstring.

```python
# a legacy store
In [374]: legacy_store = HDFStore(legacy_file_path,'r')

In [375]: legacy_store
Out[375]:
<class 'pandas.io.pytables.HDFStore'>
File path: /home/joris/scipy/pandas/doc/source/_static/legacy_0.10.h5
/a
series (shape->[30])
/b
frame (shape->[30,4])
/df1mixed
frame_table [0.10.0] (typ->appendable,nrows->30,ncols->11,indexers->[index]
/plmixed
wide_table [0.10.0] (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis]
/p4dmixed
ndim_table [0.10.0] (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis]
/foo/bar
wide (shape->[3,30,4])

# copy (and return the new handle)
In [376]: new_store = legacy_store.copy('store_new.h5')

In [377]: new_store
Out[377]:
<class 'pandas.io.pytables.HDFStore'>
File path: store_new.h5
/a
series (shape->[30])
/b
frame (shape->[30,4])
/df1mixed
frame_table (typ->appendable,nrows->30,ncols->11,indexers->[index]
/plmixed
wide_table (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis]
/p4dmixed
wide_table (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis]
/foo/bar
wide (shape->[3,30,4])

In [378]: new_store.close()
```

20.8.20 Performance

- Tables come with a writing performance penalty as compared to regular stores. The benefit is the ability to append/delete and query (potentially very large amounts of data). Write times are generally longer as compared with regular stores. Query times can be quite fast, especially on an indexed axis.

- You can pass `chunksize=<int>` to `append`, specifying the write chunksize (default is 50000). This will significantly lower your memory usage on writing.

- You can pass `expectedrows=<int>` to the first `append`, to set the TOTAL number of expected rows that PyTables will expected. This will optimize read/write performance.

- Duplicate rows can be written to tables, but are filtered out in selection (with the last items being selected; thus a table is unique on major, minor pairs)

- A `PerformanceWarning` will be raised if you are attempting to store types that will be pickled by PyTables (rather than stored as endemic types). See Here for more information and some solutions.
20.8.21 Experimental

HDFStore supports Panel4D storage.

In [379]: p4d = Panel4D({'l1' : wp })

In [380]: p4d
Out[380]:
<class 'pandas.core.panel.Panel4D'>
Dimensions: 1 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: l1 to l1
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

In [381]: store.append('p4d', p4d)

In [382]: store
Out[382]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df1_mt frame_table (typ->appendable,nrows->7,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->7,ncols->5,indexers->[index])
/df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
/dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D])
/dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index])
/dfs2 frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A])
/dfss frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index])
/dfss2 frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index])
/dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C])
/wp wide_table (typ->appendable,nrows->8,ncols->2,indexers->[items,major_axis,minor_axis])
/foo/bar/bah frame (shape->[8,3])

These, by default, index the three axes items, major_axis, minor_axis. On an AppendableTable it is possible to setup with the first append a different indexing scheme, depending on how you want to store your data. Pass the axes keyword with a list of dimensions (currently must by exactly 1 less than the total dimensions of the object). This cannot be changed after table creation.

In [383]: store.append('p4d2', p4d, axes=['labels', 'major_axis', 'minor_axis'])

In [384]: store
Out[384]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df1_mt frame_table (typ->appendable,nrows->7,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->7,ncols->5,indexers->[index])
/df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
/dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D])
/dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index])
/dfs2 frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A])
/dfss frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index])
/dfss2 frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index])
/dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C])
/wp wide_table (typ->appendable,nrows->8,ncols->2,indexers->[items,major_axis,minor_axis])
/foo/bar/bah frame (shape->[8,3])
20.9 SQL Queries

The pandas.io.sql module provides a collection of query wrappers to both facilitate data retrieval and to reduce dependency on DB-specific API. Database abstraction is provided by SQLAlchemy if installed, in addition you will need a driver library for your database. New in version 0.14.0. If SQLAlchemy is not installed, a fallback is only provided for sqlite (and for mysql for backwards compatibility, but this is deprecated and will be removed in a future version). This mode requires a Python database adapter which respect the Python DB-API.

See also some cookbook examples for some advanced strategies.

The key functions are:

- `read_sql_table` (table_name, con[, index_col, ...]) Read SQL database table into a DataFrame.
- `read_sql_query` (sql, con[, index_col, ...]) Read SQL query into a DataFrame.
- `read_sql` (sql, con[, index_col, ...]) Read SQL query or database table into a DataFrame.
- `DataFrame.to_sql` (name, con[, flavor, ...]) Write records stored in a DataFrame to a SQL database.

20.9.1 pandas.read_sql_table

pandas.read_sql_table(table_name, con[, index_col=None, coerce_float=True, parse_dates=None, columns=None])

Read SQL database table into a DataFrame.

Given a table name and an SQLAlchemy engine, returns a DataFrame. This function does not support DBAPI connections.

Parameters

- **table_name**: string
 Name of SQL table in database
- **con**: SQLAlchemy engine
 Sqlite DBAPI connection mode not supported
- **index_col**: string, optional

20.9. SQL Queries 597
Column to set as index

coerce_float: boolean, default True

Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision.

parse_dates: list or dict

- List of column names to parse as dates
- Dict of `column_name: format string` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of `{column_name: arg dict}`, where the arg dict corresponds to the keyword arguments of `pandas.to_datetime()` Especially useful with databases without native Datetime support, such as SQLite

columns: list

List of column names to select from sql table

Returns DataFrame

See Also

`read_sql_query` Read SQL query into a DataFrame.

`read_sql`

20.9.2 pandas.read_sql_query

pandas.read_sql_query(*sql*, *con*, *index_col=None*, *coerce_float=True*, *params=None*, *parse_dates=None*)

Read SQL query into a DataFrame.

Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used.

Parameters

- **sql**: string

 SQL query to be executed

- **con**: SQLAlchemy engine or sqlite3 DBAPI2 connection

 Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

- **index_col**: string, optional

 Column name to use as index for the returned DataFrame object.

- **coerce_float**: boolean, default True

 Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

- **params**: list, tuple or dict, optional

 List of parameters to pass to execute method.

- **parse_dates**: list or dict

 - List of column names to parse as dates
• Dict of `{column_name: format string}` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps

• Dict of `{column_name: arg dict}`, where the arg dict corresponds to the keyword arguments of `pandas.to_datetime()` Especially useful with databases without native Datetime support, such as SQLite

Returns DataFrame

See Also:

read_sql_table Read SQL database table into a DataFrame

read_sql

20.9.3 pandas.read_sql

`pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None)`

Read SQL query or database table into a DataFrame.

Parameters

`sql` : string

SQL query to be executed or database table name.

`con` : SQLAlchemy engine or DBAPI2 connection (legacy mode)

Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

`index_col` : string, optional

column name to use as index for the returned DataFrame object.

`coerce_float` : boolean, default True

Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

`params` : list, tuple or dict, optional

List of parameters to pass to execute method.

`parse_dates` : list or dict

• List of column names to parse as dates

• Dict of `{column_name: format string}` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps

• Dict of `{column_name: arg dict}`, where the arg dict corresponds to the keyword arguments of `pandas.to_datetime()` Especially useful with databases without native Datetime support, such as SQLite

`columns` : list

List of column names to select from sql table (only used when reading a table).

Returns DataFrame

See Also:
pandas: powerful Python data analysis toolkit, Release 0.14.1

read_sql_table Read SQL database table into a DataFrame

read_sql_query Read SQL query into a DataFrame

Notes

This function is a convenience wrapper around **read_sql_table** and **read_sql_query** (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query).

20.9.4 **pandas.DataFrame.to_sql**

DataFrame.to_sql(name, con, flavor='sqlite', if_exists='fail', index=True, index_label=None)

Write records stored in a DataFrame to a SQL database.

Parameters

- **name**: string
 Name of SQL table

- **con**: SQLAlchemy engine or DBAPI2 connection (legacy mode)
 Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

- **flavor**: {'sqlite', 'mysql'}, default 'sqlite'
 The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

- **if_exists**: {'fail', 'replace', 'append'}, default 'fail'
 - fail: If table exists, do nothing.
 - replace: If table exists, drop it, recreate it, and insert data.
 - append: If table exists, insert data. Create if does not exist.

- **index**: boolean, default True
 Write DataFrame index as a column.

- **index_label**: string or sequence, default None
 Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

Note: The function **read_sql()** is a convenience wrapper around **read_sql_table()** and **read_sql_query()** (and for backward compatibility) and will delegate to specific function depending on the provided input (database table name or sql query).

In the following example, we use the SQLite SQL database engine. You can use a temporary SQLite database where data are stored in “memory”.

To connect with SQLAlchemy you use the **create_engine()** function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For more information on **create_engine()** and the URI formatting, see the examples below and the SQLAlchemy documentation.
In [386]: from sqlalchemy import create_engine

Create your connection.
In [387]: engine = create_engine('sqlite:///memory:_literals

20.9.5 Writing DataFrames

Assuming the following data is in a DataFrame `data`, we can insert it into the database using `to_sql()`.

<table>
<thead>
<tr>
<th>id</th>
<th>Date</th>
<th>Col_1</th>
<th>Col_2</th>
<th>Col_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2012-10-18</td>
<td>X</td>
<td>25.7</td>
<td>True</td>
</tr>
<tr>
<td>42</td>
<td>2012-10-19</td>
<td>Y</td>
<td>-12.4</td>
<td>False</td>
</tr>
<tr>
<td>63</td>
<td>2012-10-20</td>
<td>Z</td>
<td>5.73</td>
<td>True</td>
</tr>
</tbody>
</table>

In [388]: data.to_sql('data', engine)

Note: Due to the limited support for timedelta's in the different database flavors, columns with type `timedelta64` will be written as integer values as nanoseconds to the database and a warning will be raised.

20.9.6 Reading Tables

`read_sql_table()` will read a database table given the table name and optionally a subset of columns to read.

Note: In order to use `read_sql_table()`, you must have the SQLAlchemy optional dependency installed.

In [389]: pd.read_sql_table('data', engine)

Out[389]:
 index id Date Col_1 Col_2 Col_3
0 0 2010-10-18 X 27.50 True
1 1 2010-10-19 Y -12.50 False
2 2 2010-10-20 Z 5.73 True

You can also specify the name of the column as the DataFrame index, and specify a subset of columns to be read.

In [390]: pd.read_sql_table('data', engine, index_col='id')

Out[390]:
 id Date Col_1 Col_2 Col_3
26 0 2010-10-18 X 27.50 True
42 1 2010-10-19 Y -12.50 False
63 2 2010-10-20 Z 5.73 True

In [391]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2'])

Out[391]:
 Col_1 Col_2
0 X 27.50
1 Y -12.50
2 Z 5.73

And you can explicitly force columns to be parsed as dates:

In [392]: pd.read_sql_table('data', engine, parse_dates=['Date'])

Out[392]:

20.9. SQL Queries
pandas: powerful Python data analysis toolkit, Release 0.14.1

If needed you can explicitly specify a format string, or a dict of arguments to pass to `pandas.to_datetime()`:

```
pd.read_sql_table('data', engine, parse_dates={'Date': '%Y-%m-%d'})
pd.read_sql_table('data', engine, parse_dates={'Date': {'format': '%Y-%m-%d %H:%M:%S'}})
```

You can check if a table exists using `has_table()`

20.9.7 Querying

You can query using raw SQL in the `read_sql_query()` function. In this case you must use the SQL variant appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language constructs, which are database-agnostic.

```
In [393]: pd.read_sql_query('SELECT * FROM data', engine)
Out[393]:
   index  id  Date    Col_1  Col_2  Col_3
0      0  26 2010-10-18    X     27.5  True
1      1  42 2010-10-19    Y    -12.5 False
2      2  63 2010-10-20    Z      5.73 True
```

Of course, you can specify a more “complex” query.

```
In [394]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;", engine)
Out[394]:
    id  Col_1  Col_2
0   42    Y    -12.5
```

You can also run a plain query without creating a dataframe with `execute()`. This is useful for queries that don’t return values, such as INSERT. This is functionally equivalent to calling `execute()` on the SQLAlchemy engine or db connection object. Again, you must use the SQL syntax variant appropriate for your database.

```
from pandas.io import sql
sql.execute('SELECT * FROM table_name', engine)
sql.execute('INSERT INTO table_name VALUES(?, ?, ?)', engine, params=('id', 1, 12.2, True))
```

20.9.8 Engine connection examples

To connect with SQLAlchemy you use the `create_engine()` function to create an engine object from database URI. You only need to create the engine once per database you are connecting to.

```
from sqlalchemy import create_engine
engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')
engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')
engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')
engine = create_engine('mssql+pyodbc://mydsn')
```

sqlite://[/nohostname]/<path>
where <path> is relative:
engine = create_engine('sqlite:///foo.db')

or absolute, starting with a slash:
engine = create_engine('sqlite:///absolute/path/to/foo.db')

For more information see the examples the SQLAlchemy documentation

20.9.9 Sqlite fallback

The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which respect the Python DB-API.

You can create connections like so:

```python
import sqlite3
con = sqlite3.connect(':memory:)

And then issue the following queries:

data.to_sql('data', cnx)
pd.read_sql_query("SELECT * FROM data", con)
```

20.10 Google BigQuery (Experimental)

New in version 0.13.0. The pandas.io.gbq module provides a wrapper for Google’s BigQuery analytics web service to simplify retrieving results from BigQuery tables using SQL-like queries. Result sets are parsed into a pandas DataFrame with a shape and data types derived from the source table. Additionally, DataFrames can be appended to existing BigQuery tables if the destination table is the same shape as the DataFrame.

For specifics on the service itself, see [here](#)

As an example, suppose you want to load all data from an existing BigQuery table: `test_dataset.test_table` into a DataFrame using the `read_gbq()` function.

```python
# Insert your BigQuery Project ID Here
# Can be found in the Google web console
projectid = "xxxxxxxx"

data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table', project_id = projectid)
```

You will then be authenticated to the specified BigQuery account via Google’s Oauth2 mechanism. In general, this is as simple as following the prompts in a browser window which will be opened for you. Should the browser not be available, or fail to launch, a code will be provided to complete the process manually. Additional information on the authentication mechanism can be found [here](#)

You can define which column from BigQuery to use as an index in the destination DataFrame as well as a preferred column order as follows:

```python
data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table',
index_col='index_column_name',
col_order=['col1', 'col2', 'col3'], project_id = projectid)
```

Finally, you can append data to a BigQuery table from a pandas DataFrame using the `to_gbq()` function. This function uses the Google streaming API which requires that your destination table exists in BigQuery. Given the BigQuery table already exists, your DataFrame should match the destination table in column order, structure, and data types. DataFrame indexes are not supported. By default, rows are streamed to BigQuery in chunks of 10,000 rows,
but you can pass other chuck values via the chunksize argument. You can also see the progress of your post via the verbose flag which defaults to True. The http response code of Google BigQuery can be successful (200) even if the append failed. For this reason, if there is a failure to append to the table, the complete error response from BigQuery is returned which can be quite long given it provides a status for each row. You may want to start with smaller chunks to test that the size and types of your dataframe match your destination table to make debugging simpler.

```python
df = pandas.DataFrame({'string_col_name': ['hello'],
                      'integer_col_name': [1],
                      'boolean_col_name': [True]})
df.to_gbq('my_dataset.my_table', project_id = projectid)
```

The BigQuery SQL query language has some oddities, see here

While BigQuery uses SQL-like syntax, it has some important differences from traditional databases both in functionality, API limitations (size and quantity of queries or uploads), and how Google charges for use of the service. You should refer to Google documentation often as the service seems to be changing and evolving. BigQuery is best for analyzing large sets of data quickly, but it is not a direct replacement for a transactional database.

You can access the management console to determine project id’s by:

```
<https://code.google.com/apis/console/b/0/?noredirect>
```

Warning: To use this module, you will need a valid BigQuery account. See <https://cloud.google.com/products/big-query> for details on the service.

20.11 STATA Format

New in version 0.12.0.

20.11.1 Writing to STATA format

The method `to_stata()` will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata 12).

```
In [395]: df = DataFrame(randn(10, 2), columns=list('AB'))
In [396]: df.to_stata('stata.dta')
```

20.11.2 Reading from STATA format

The top-level function `read_stata` will read a dta format file and return a DataFrame: The class `StataReader` will read the header of the given dta file at initialization. Its method `data()` will read the observations, converting them to a DataFrame which is returned:

```
In [397]: pd.read_stata('stata.dta')
Out[397]:
    index  A       B
   ---  ------  ------
0 0 0.811031 -0.356817
1 1 1.047085  0.664705
2 2 -0.086919  0.416905
3 3 -0.764381 -0.287229
4 4 -0.089351 -1.035115
5 5  0.489131 -0.253340
```

604 Chapter 20. IO Tools (Text, CSV, HDF5, ...)
Currently the index is retrieved as a column on read back.

The parameter convert_categories indicates whether value labels should be read and used to create a Categorical variable from them. Value labels can also be retrieved by the function variable_labels, which requires data to be called before (see pandas.io.stata.StataReader).

The StataReader supports .dta Formats 104, 105, 108, 113-115 and 117. Alternatively, the function read_stata() can be used.

20.12 Performance Considerations

This is an informal comparison of various IO methods, using pandas 0.13.1.

In [3]: df = DataFrame(randn(1000000,2),columns=list('AB'))
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 2 columns):
A 1000000 non-null values
B 1000000 non-null values
dtypes: float64(2)

Writing

In [14]: %timeit test_sql_write(df)
1 loops, best of 3: 6.24 s per loop

In [15]: %timeit test_hdf_fixed_write(df)
1 loops, best of 3: 237 ms per loop

In [26]: %timeit test_hdf_fixed_write_compress(df)
1 loops, best of 3: 245 ms per loop

In [16]: %timeit test_hdf_table_write(df)
1 loops, best of 3: 901 ms per loop

In [27]: %timeit test_hdf_table_write_compress(df)
1 loops, best of 3: 952 ms per loop

In [17]: %timeit test_csv_write(df)
1 loops, best of 3: 3.44 s per loop

Reading

In [18]: %timeit test_sql_read()
1 loops, best of 3: 766 ms per loop

In [19]: %timeit test_hdf_fixed_read()
10 loops, best of 3: 19.1 ms per loop

In [28]: %timeit test_hdf_fixed_read_compress()
10 loops, best of 3: 36.3 ms per loop
In [20]: %timeit test_hdf_table_read()
 10 loops, best of 3: 39 ms per loop

In [29]: %timeit test_hdf_table_read_compress()
 10 loops, best of 3: 60.6 ms per loop

In [22]: %timeit test_csv_read()
 1 loops, best of 3: 620 ms per loop

Space on disk (in bytes)

<table>
<thead>
<tr>
<th>File Path</th>
<th>Size (in bytes)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>test.sql</td>
<td>25843712</td>
<td>Apr 8 14:11</td>
</tr>
<tr>
<td>test_fixed.hdf</td>
<td>24007368</td>
<td>Apr 8 14:11</td>
</tr>
<tr>
<td>test_fixed_compress.hdf</td>
<td>15580682</td>
<td>Apr 8 14:11</td>
</tr>
<tr>
<td>test_table.hdf</td>
<td>24458444</td>
<td>Apr 8 14:11</td>
</tr>
<tr>
<td>test_table_compress.hdf</td>
<td>16797283</td>
<td>Apr 8 14:11</td>
</tr>
<tr>
<td>test.csv</td>
<td>46152810</td>
<td>Apr 8 14:11</td>
</tr>
</tbody>
</table>

And here’s the code

```python
import sqlite3
import os
from pandas.io import sql

df = DataFrame(randn(1000000,2),columns=list('AB'))

def test_sql_write(df):
    if os.path.exists('test.sql'):
        os.remove('test.sql')
    sql_db = sqlite3.connect('test.sql')
    sql.write_frame(df, name='test_table', con=sql_db)
    sql_db.close()

def test_sql_read():
    sql_db = sqlite3.connect('test.sql')
    sql.read_frame("select * from test_table", sql_db)
    sql_db.close()

def test_hdf_fixed_write(df):
    df.to_hdf('test_fixed.hdf','test',mode='w')

def test_hdf_fixed_read():
    pd.read_hdf('test_fixed.hdf','test')

def test_hdf_fixed_write_compress(df):
    df.to_hdf('test_fixed_compress.hdf','test',mode='w',complib='blosc')

def test_hdf_fixed_read_compress():
    pd.read_hdf('test_fixed_compress.hdf','test')

def test_hdf_table_write(df):
    df.to_hdf('test_table.hdf','test',mode='w',format='table')

def test_hdf_table_read():
    pd.read_hdf('test_table.hdf','test')

def test_hdf_table_write_compress(df):
    df.to_hdf('test_table_compress.hdf','test',mode='w',complib='blosc',format='table')
```

606 Chapter 20. IO Tools (Text, CSV, HDF5, ...)
def test_hdf_table_read_compress():
 pd.read_hdf('test_table_compress.hdf','test')

def test_csv_write(df):
 df.to_csv('test.csv',mode='w')

def test_csv_read():
 pd.read_csv('test.csv',index_col=0)
Functions from `pandas.io.data` extract data from various Internet sources into a DataFrame. Currently the following sources are supported:

- Yahoo! Finance
- Google Finance
- St. Louis FED (FRED)
- Kenneth French’s data library
- World Bank

It should be noted, that various sources support different kinds of data, so not all sources implement the same methods and the data elements returned might also differ.

21.1 Yahoo! Finance

```python
In [1]: import pandas.io.data as web

In [2]: import datetime

In [3]: start = datetime.datetime(2010, 1, 1)

In [4]: end = datetime.datetime(2013, 1, 27)

In [5]: f = web.DataReader("F", 'yahoo', start, end)

In [6]: f.ix['2010-01-04']
```

```
Out[6]:
Name: 2010-01-04 00:00:00, dtype: float64
Open       10.17
High       10.28
Low        10.05
Close      10.28
Volume    60855800.00
Adj Close  9.68
```

21.2 Yahoo! Finance Options

Experimental
The Options class allows the download of options data from Yahoo! Finance.

The `get_all_data` method downloads and caches option data for all expiry months and provides a formatted DataFrame with a hierarchical index, so it's easy to get to the specific option you want.

```python
In [7]: from pandas.io.data import Options

In [8]: aapl = Options('aapl', 'yahoo')

In [9]: data = aapl.get_all_data()

In [10]: data.iloc[0:5, 0:5]
```

<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Type</th>
<th>Symbol</th>
<th>Last</th>
<th>Chg</th>
<th>Bid</th>
<th>Ask</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.86</td>
<td>2015-01-17</td>
<td>call</td>
<td>AAPL150117C00027860</td>
<td>63.06</td>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>34</td>
</tr>
<tr>
<td>28.57</td>
<td>2015-01-17</td>
<td>call</td>
<td>AAPL150117C00028570</td>
<td>61.63</td>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>0</td>
</tr>
<tr>
<td>29.29</td>
<td>2015-01-17</td>
<td>call</td>
<td>AAPL150117C00029290</td>
<td>61.02</td>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>0</td>
</tr>
</tbody>
</table>

#Show the $100 strike puts at all expiry dates:

```python
In [11]: data.loc[(100, slice(None), 'put'),:].iloc[0:5, 0:5]
```

<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Type</th>
<th>Symbol</th>
<th>Last</th>
<th>Chg</th>
<th>Bid</th>
<th>Ask</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2014-07-11</td>
<td>put</td>
<td>AAPL140711P00100000</td>
<td>4.90</td>
<td>0.30</td>
<td>NaN</td>
<td>NaN</td>
<td>106</td>
</tr>
<tr>
<td>100</td>
<td>2014-07-19</td>
<td>put</td>
<td>AAPL140719P00100000</td>
<td>5.00</td>
<td>0.30</td>
<td>NaN</td>
<td>NaN</td>
<td>742</td>
</tr>
<tr>
<td>100</td>
<td>2014-07-25</td>
<td>put</td>
<td>AAPL140725P00100000</td>
<td>6.02</td>
<td>0.79</td>
<td>NaN</td>
<td>NaN</td>
<td>9</td>
</tr>
<tr>
<td>100</td>
<td>2014-08-01</td>
<td>put</td>
<td>AAPL140801P00100000</td>
<td>5.84</td>
<td>0.20</td>
<td>NaN</td>
<td>NaN</td>
<td>65</td>
</tr>
</tbody>
</table>

#Show the volume traded of $100 strike puts at all expiry dates:

```python
In [12]: data.loc[(100, slice(None), 'put'), 'Vol'].head()
```

<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Type</th>
<th>Symbol</th>
<th>Last</th>
<th>Chg</th>
<th>Bid</th>
<th>Ask</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2014-07-11</td>
<td>put</td>
<td>AAPL140711P00100000</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2014-07-19</td>
<td>put</td>
<td>AAPL140719P00100000</td>
<td>742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2014-07-25</td>
<td>put</td>
<td>AAPL140725P00100000</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>2014-08-01</td>
<td>put</td>
<td>AAPL140801P00100000</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name: Vol, dtypes: int64

If you don’t want to download all the data, more specific requests can be made.

```python
In [13]: import datetime

In [14]: expiry = datetime.date(2016, 1, 1)

In [15]: data = aapl.get_call_data(expiry=expiry)

In [16]: data.iloc[0:5, 0:5]
```

<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Type</th>
<th>Symbol</th>
<th>Last</th>
<th>Chg</th>
<th>Bid</th>
<th>Ask</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.29</td>
<td>2016-01-15</td>
<td>call</td>
<td>AAPL160115C00034290</td>
<td>62.00</td>
<td>0.00</td>
<td>NaN</td>
<td>NaN</td>
<td>5</td>
</tr>
<tr>
<td>35.71</td>
<td>2016-01-15</td>
<td>call</td>
<td>AAPL160115C00035710</td>
<td>398.00</td>
<td>0.00</td>
<td>NaN</td>
<td>NaN</td>
<td>2</td>
</tr>
<tr>
<td>37.14</td>
<td>2016-01-15</td>
<td>call</td>
<td>AAPL160115C00037140</td>
<td>47.54</td>
<td>0.00</td>
<td>NaN</td>
<td>NaN</td>
<td>0</td>
</tr>
<tr>
<td>38.57</td>
<td>2016-01-15</td>
<td>call</td>
<td>AAPL160115C00038570</td>
<td>45.82</td>
<td>0.00</td>
<td>NaN</td>
<td>NaN</td>
<td>0</td>
</tr>
</tbody>
</table>
40.00 2016-01-15 call AAPL160115C00040000 54.75 −0.65 NaN NaN 2

Note that if you call get_all_data first, this second call will happen much faster, as the data is cached.

21.3 Google Finance

```python
In [17]: import pandas.io.data as web
In [18]: import datetime
In [19]: start = datetime.datetime(2010, 1, 1)
In [20]: end = datetime.datetime(2013, 1, 27)
In [21]: f=web.DataReader("F", 'google', start, end)
In [22]: f.ix['2010-01-04']
```

```
Out[22]:
Open 10.17
High 10.28
Low  10.05
Close 10.28
Volume 60855796
Name: 2010-01-04 00:00:00, dtype: object
```

21.4 FRED

```python
In [23]: import pandas.io.data as web
In [24]: import datetime
In [25]: start = datetime.datetime(2010, 1, 1)
In [26]: end = datetime.datetime(2013, 1, 27)
In [27]: gdp=web.DataReader("GDP", "fred", start, end)
In [28]: gdp.ix['2013-01-01']
```

```
Out[28]:
GDP 16535.3
Name: 2013-01-01 00:00:00, dtype: float64
```

```
# Multiple series:
In [29]: inflation = web.DataReader(["CPIAUCSL", "CPILFESL"], "fred", start, end)
In [30]: inflation.head()
```

```
Out[30]:
DATE        CPIAUCSL  CPILFESL
2010-01-01   217.466  220.543
2010-02-01   217.251  220.662
2010-03-01   217.305  220.753
2010-04-01   217.376  220.817
2010-05-01   217.299  221.026
```
21.5 Fama/French

Dataset names are listed at Fama/French Data Library.

In [31]: import pandas.io.data as web

In [32]: ip=web.DataReader("5_Industry_Portfolios", "famafrench")

In [33]: ip[4].ix[192607]
Out[33]:
1 Cnsmr 5.43
2 Manuf 2.73
3 HiTec 1.83
4 Hlth 1.64
5 Other 2.15
Name: 192607, dtype: float64

21.6 World Bank

pandas users can easily access thousands of panel data series from the World Bank’s World Development Indicators by using the wb I/O functions.

For example, if you wanted to compare the Gross Domestic Products per capita in constant dollars in North America, you would use the search function:

In [1]: from pandas.io import wb

In [2]: wb.search('gdp.*capita.*const').iloc[:,:2]
Out[2]:
 id name
3242 GDPPCKD GDP per Capita, constant US$, millions
5143 NY.GDP.PCAP.KD GDP per capita (constant 2005 US$)
5145 NY.GDP.PCAP.KN GDP per capita (constant LCU)
5147 NY.GDP.PCAP.PP.KD GDP per capita, PPP (constant 2005 international...

Then you would use the download function to acquire the data from the World Bank’s servers:

In [3]: dat = wb.download(indicator='NY.GDP.PCAP.KD', country=['US', 'CA', 'MX'], start=2005, end=2008)

In [4]: print(dat)

NY.GDP.PCAP.KD

<table>
<thead>
<tr>
<th>country</th>
<th>year</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>2008</td>
<td>36005.5004978584</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>36182.9138439757</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>35785.9698172849</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>35087.8925933298</td>
</tr>
<tr>
<td>Mexico</td>
<td>2008</td>
<td>8113.10219480083</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>8119.21298908649</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>7961.96818458178</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>7666.69796097264</td>
</tr>
<tr>
<td>United States</td>
<td>2008</td>
<td>43069.5819857208</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>43635.5852068142</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>43228.111471707</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>42516.3934699993</td>
</tr>
</tbody>
</table>

The resulting dataset is a properly formatted DataFrame with a hierarchical index, so it is easy to apply .groupby transformations to it:
In [6]: dat[‘NY.GDP.PCAP.KD’].groupby(level=0).mean()
Out[6]:
country
Canada 35765.569188
Mexico 7965.245332
United States 43112.417952
dtype: float64

Now imagine you want to compare GDP to the share of people with cellphone contracts around the world.

In [7]: wb.search(‘cell.*%’).iloc[:,:2]
Out[7]:
id name
3990 IT.CEL.SETS.FE.ZS Mobile cellular telephone users, female (% of ... 3991 IT.CEL.SETS.MA.ZS Mobile cellular telephone users, male (% of po... 4027 IT.MOB.COV.ZS Population coverage of mobile cellular telepho...

Notice that this second search was much faster than the first one because pandas now has a cached list of available data series.

In [13]: ind = [‘NY.GDP.PCAP.KD’, ‘IT.MOB.COV.ZS’]
In [14]: dat = wb.download(indicator=ind, country=’all’, start=2011, end=2011).dropna()
In [15]: dat.columns = [‘gdp’, ‘cellphone’]
In [16]: print(dat.tail())
gdp cellphone
country year
Swaziland 2011 2413.952853 94.9
Tunisia 2011 3687.340170 100.0
Uganda 2011 405.332501 100.0
Zambia 2011 767.911290 62.0
Zimbabwe 2011 419.236086 72.4

Finally, we use the statsmodels package to assess the relationship between our two variables using ordinary least squares regression. Unsurprisingly, populations in rich countries tend to use cellphones at a higher rate:

In [17]: import numpy as np
In [18]: import statsmodels.formula.api as smf
In [19]: mod = smf.ols(“cellphone ~ np.log(gdp)”, dat).fit()
In [20]: print(mod.summary())

OLS Regression Results
==
Dep. Variable: cellphone R-squared: 0.297
Model: OLS Adj. R-squared: 0.274
Method: Least Squares F-statistic: 13.08
Date: Thu, 25 Jul 2013 Prob (F-statistic): 0.00105
Time: 15:24:42 Log-Likelihood: -139.16
No. Observations: 33 AIC: 282.3
Df Residuals: 31 BIC: 285.3
Df Model: 1
==
coef std err t P>|t| [95.0% Conf. Int.]
--
Intercept 16.5110 19.071 0.866 0.393 -22.384 55.406
np.log(gdp) 9.9333 2.747 3.616 0.001 4.331 15.535

==
Omnibus: 36.054 Durbin-Watson: 2.071
Prob(Omnibus): 0.000 Jarque-Bera (JB): 119.133
Skew: -2.314 Prob(JB): 1.35e-26
Kurtosis: 11.077 Cond. No. 45.8
ENHANCING PERFORMANCE

22.1 Cython (Writing C extensions for pandas)

For many use cases writing pandas in pure python and numpy is sufficient. In some computationally heavy applications however, it can be possible to achieve sizeable speed-ups by offloading work to cython. This tutorial assumes you have refactored as much as possible in python, for example trying to remove for loops and making use of numpy vectorization, it’s always worth optimising in python first.

This tutorial walks through a “typical” process of cythonizing a slow computation. We use an example from the cython documentation but in the context of pandas. Our final cythonized solution is around 100 times faster than the pure python.

22.1.1 Pure python

We have a DataFrame to which we want to apply a function row-wise.

```
In [1]: df = DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'})
```

```
In [2]: df
Out[2]:
      N      a      b      x
0   585  0.469112 -0.218470  x
1   841 -0.282863 -0.061645  x
2   251 -1.509059 -0.723780  x
3   972 -1.135632  0.551225  x
4   181  1.212112 -0.497767  x
5   458 -0.173215  0.837519  x
6   159  0.119209  1.103245  x
         ...        ...       ...  ...
993  190  0.131892  0.290162  x
994  931  0.342097  0.215341  x
995  374 -1.512743  0.874737  x
996  246  0.933753  1.120790  x
997  157 -0.308013  0.198768  x
998  977 -0.079915  1.757555  x
999  770 -1.010589 -1.115680  x

[1000 rows x 4 columns]
```

Here’s the function in pure python:
In [3]: def f(x):
 ...: return x * (x - 1)
 ...

In [4]: def integrate_f(a, b, N):
 ...: s = 0
 ...: dx = (b - a) / N
 ...: for i in range(N):
 ...: s += f(a + i * dx)
 ...: return s * dx
 ...

We achieve our result by by using apply (row-wise):

In [5]: %timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
1 loops, best of 3: 272 ms per loop

But clearly this isn’t fast enough for us. Let’s take a look and see where the time is spent during this operation (limited to the most time consuming four calls) using the prun ipython magic function:

In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
595723 function calls in 0.512 seconds

Ordered by: internal time
List reduced from 96 to 4 due to restriction <4>

ncalls tottime percall cumtime percall filename:lineno(function)
1000 0.294 0.000 0.461 0.000 <ipython-input-4-91e33489f136>:1(integrate_f)
552423 0.161 0.000 0.161 0.000 <ipython-input-3-bc41a25943f6>:1(f)
3000 0.006 0.000 0.030 0.000 index.py:1183(get_value)
3000 0.006 0.000 0.041 0.000 series.py:482(__getitem__)\

By far the majority of time is spend inside either integrate_f or f, hence we’ll concentrate our efforts cythonizing these two functions.

Note: In python 2 replacing the range with its generator counterpart (xrange) would mean the range line would vanish. In python 3 range is already a generator.

22.1.2 Plain cython

First we’re going to need to import the cython magic function to ipython:

In [7]: %load_ext cythonmagic

Now, let’s simply copy our functions over to cython as is (the suffix is here to distinguish between function versions):

In [8]: %%cython

...: def f_plain(x):
...: return x * (x - 1)
...: def integrate_f_plain(a, b, N):
...: s = 0
...: dx = (b - a) / N
...: for i in range(N):
...: s += f_plain(a + i * dx)
...: return s * dx
...:
Note: If you’re having trouble pasting the above into your ipython, you may need to be using bleeding edge ipython for paste to play well with cell magics.

In [9]: %timeit df.apply(lambda x: integrate_f_plain(x[‘a’], x[‘b’], x[‘N’]), axis=1)
10 loops, best of 3: 179 ms per loop

Already this has shaved a third off, not too bad for a simple copy and paste.

22.1.3 Adding type

We get another huge improvement simply by providing type information:

In [10]: %cython
 : cdef double f_typed(double x) except[?]-2:
 : return x * (x - 1)
 : cpdef double integrate_f_typed(double a, double b, int N):
 : cdef int i
 : cdef double s, dx
 : s = 0
 : dx = (b - a) / N
 : for i in range(N):
 : s += f_typed(a + i * dx)
 : return s * dx

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x[‘a’], x[‘b’], x[‘N’]), axis=1)
10 loops, best of 3: 28 ms per loop

Now, we’re talking! It’s now over ten times faster than the original python implementation, and we haven’t really modified the code. Let’s have another look at what’s eating up time:

In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x[‘a’], x[‘b’], x[‘N’]), axis=1)
42300 function calls in 0.065 seconds

Ordered by: internal time
List reduced from 94 to 4 due to restriction <4>

ncalls tottime percall cumtime percall filename:lineno(function)
3000 0.009 0.000 0.037 0.000 index.py:1183(get_value)
3000 0.008 0.000 0.051 0.000 series.py:482(__getitem__)
6000 0.008 0.000 0.023 0.000 {pandas.lib.values_from_object}
3000 0.005 0.000 0.005 0.000 {method ‘get_value’ of ‘pandas.index.IndexEngine’ objects}

22.1.4 Using ndarray

It’s calling series... a lot! It’s creating a Series from each row, and get-ting from both the index and the series (three times for each row). Function calls are expensive in python, so maybe we could minimise these by cythonizing the apply part.

Note: We are now passing ndarrays into the cython function, fortunately cython plays very nicely with numpy.
In [13]: %%cython
....: cimport numpy as np
....: import numpy as np
....: cdef double f_typed(double x) except -2:
....: return x * (x - 1)
....: cpdef double integrate_f_typed(double a, double b, int N):
....: cdef int i
....: cdef double s, dx
....: s = 0
....: dx = (b - a) / N
....: for i in range(N):
....: s += f_typed(a + i * dx)
....: return s * dx
....: cpdef np.ndarray[double] apply_integrate_f(np.ndarray col_a, np.ndarray col_b, np.ndarray col_N):
....: assert (col_a.dtype == np.float and col_b.dtype == np.float and col_N.dtype == np.int)
....: cdef Py_ssize_t i, n = len(col_N)
....: assert (len(col_a) == len(col_b) == n)
....: cdef np.ndarray[double] res = np.empty(n)
....: for i in range(len(col_a)):
....: res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
....: return res

The implementation is simple, it creates an array of zeros and loops over the rows, applying our `integrate_f_typed`, and putting this in the zeros array.

Warning: In 0.13.0 since `Series` has internally been refactored to no longer sub-class `ndarray` but instead subclass `NDFrame`, you can **not pass** a `Series` directly as a `ndarray` typed parameter to a cython function. Instead pass the actual `ndarray` using the `.values` attribute of the `Series`. Prior to 0.13.0

```
apply_integrate_f(df['a'], df['b'], df['N'])
```

Use `.values` to get the underlying `ndarray`

```
apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
```

Note: Loops like this would be extremely slow in python, but in Cython looping over numpy arrays is fast.

In [14]: %timeit apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
100 loops, best of 3: 1.92 ms per loop

We’ve gotten another big improvement. Let’s check again where the time is spent:

In [15]: %prun -l 4 apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
39 function calls in 0.002 seconds

Ordered by: internal time
List reduced from 15 to 4 due to restriction <4>

```
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
1      0.002    0.002    0.002    0.002    _cython_magic_0aac91c9b7155f68351ac54feef9d9e6a.apply_integrate_f
3      0.000    0.000    0.000    0.000    frame.py:1655(__getitem__)<module>)
1      0.000    0.000    0.002    0.002    <string>:1(<module>)
3      0.000    0.000    0.000    0.000    index.py:698(__contains__)<module>)
```
As one might expect, the majority of the time is now spent in `apply_integrate_f`, so if we wanted to make anymore efficiencies we must continue to concentrate our efforts here.

22.1.5 More advanced techniques

There is still scope for improvement, here's an example of using some more advanced cython techniques:

```python
In [16]: %%cython
   ....: cimport cython
   ....: cimport numpy as np
   ....: import numpy as np
   ....: cdef double f_typed(double x) except -2:
   ....:     return x * (x - 1)
   ....: cpdef double integrate_f_typed(double a, double b, int N):
   ....:     cdef int i
   ....:     cdef double s, dx
   ....:     s = 0
   ....:     dx = (b - a) / N
   ....:     for i in range(N):
   ....:         s += f_typed(a + i * dx)
   ....:     return s * dx
   ....: @cython.boundscheck(False)
   ....: @cython.wraparound(False)
   ....:     cdef Py_ssize_t i, n = len(col_N)
   ....:     assert len(col_a) == len(col_b) == n
   ....:     cdef np.ndarray[double] res = np.empty(n)
   ....:     for i in range(n):
   ....:         res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
   ....:     return res

In [17]: %timeit apply_integrate_f_wrap(df['a'].values, df['b'].values, df['N'].values)
1000 loops, best of 3: 1.62 ms per loop
```

Even faster, with the caveat that a bug in our cython code (an off-by-one error, for example) might cause a segfault because memory access isn’t checked.

22.1.6 Further topics

- Loading C modules into cython.

Read more in the cython docs.

22.2 Expression Evaluation via `eval()` (Experimental)

New in version 0.13. The top-level function `pandas.eval()` implements expression evaluation of `Series` and `DataFrame` objects.

Note: To benefit from using `eval()` you need to install `numexpr`. See the recommended dependencies section for more details.
The point of using `eval()` for expression evaluation rather than plain Python is two-fold: 1) large `DataFrame` objects are evaluated more efficiently and 2) large arithmetic and boolean expressions are evaluated all at once by the underlying engine (by default `numexpr` is used for evaluation).

Note: You should not use `eval()` for simple expressions or for expressions involving small DataFrames. In fact, `eval()` is many orders of magnitude slower for smaller expressions/objects than plain ol’ Python. A good rule of thumb is to only use `eval()` when you have a DataFrame with more than 10,000 rows.

`eval()` supports all arithmetic expressions supported by the engine in addition to some extensions available only in pandas.

Note: The larger the frame and the larger the expression the more speedup you will see from using `eval()`.

22.2.1 Supported Syntax

These operations are supported by `pandas.eval()`:

- Arithmetic operations except for the left shift (<<) and right shift (>>) operators, e.g., `df + 2 * pi / s ** 4 % 42 - the_golden_ratio`
- Comparison operations, including chained comparisons, e.g., `2 < df < df2`
- Boolean operations, e.g., `df < df2 and df3 < df4 or not df Bool`
- `list` and `tuple` literals, e.g., `[1, 2]` or `(1, 2)`
- Attribute access, e.g., `df.a`
- Subscript expressions, e.g., `df[0]`
- Simple variable evaluation, e.g., `pd.eval('df')` (this is not very useful)

This Python syntax is not allowed:

- Expressions
 - Function calls
 - `is/is not` operations
 - `if` expressions
 - `lambda` expressions
 - `list/set/dict` comprehensions
 - Literal `dict` and `set` expressions
 - `yield` expressions
 - Generator expressions
 - Boolean expressions consisting of only scalar values
- Statements
 - Neither `simple` nor `compound` statements are allowed. This includes things like `for`, `while`, and `if`.

620 Chapter 22. Enhancing Performance
22.2.2 eval() Examples

`pandas.eval()` works well with expressions containing large arrays.

First let’s create a few decent-sized arrays to play with:

```python
In [18]: import pandas as pd
In [19]: from pandas import DataFrame, Series
In [20]: from numpy.random import randn
In [21]: import numpy as np
In [22]: nrows, ncols = 20000, 100
In [23]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols)) for _ in range(4)]
```

Now let’s compare adding them together using plain ol’ Python versus `eval()`:

```python
In [24]: %timeit df1 + df2 + df3 + df4
10 loops, best of 3: 19.7 ms per loop
In [25]: %timeit pd.eval('df1 + df2 + df3 + df4')
100 loops, best of 3: 14.5 ms per loop
```

Now let’s do the same thing but with comparisons:

```python
In [26]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
10 loops, best of 3: 71.1 ms per loop
In [27]: %timeit pd.eval('(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)')
10 loops, best of 3: 28.5 ms per loop
```

eval() also works with unaligned pandas objects:

```python
In [28]: s = Series(randn(50))
In [29]: %timeit df1 + df2 + df3 + df4 + s
10 loops, best of 3: 84 ms per loop
In [30]: %timeit pd.eval('df1 + df2 + df3 + df4 + s')
10 loops, best of 3: 64.2 ms per loop
```

Note: Operations such as

```python
1 and 2  # would parse to 1 & 2, but should evaluate to 2
3 or 4   # would parse to 3 | 4, but should evaluate to 3
~1       # this is okay, but slower when using eval
```

should be performed in Python. An exception will be raised if you try to perform any boolean/bitwise operations with scalar operands that are not of type `bool` or `np.bool_`. Again, you should perform these kinds of operations in plain Python.
22.2.3 The DataFrame.eval method (Experimental)

New in version 0.13. In addition to the top level `pandas.eval()` function you can also evaluate an expression in the “context” of a `DataFrame`.

```
In [31]: df = DataFrame(randn(5, 2), columns=['a', 'b'])
In [32]: df.eval('a + b')
Out[32]:
   0   1
0 -0.246747
1  0.867786
2 -1.626063
3 -1.134978
4 -1.027798
```

Any expression that is a valid `pandas.eval()` expression is also a valid `DataFrame.eval()` expression, with the added benefit that you don’t have to prefix the name of the `DataFrame` to the column(s) you’re interested in evaluating.

In addition, you can perform assignment of columns within an expression. This allows for formulaic evaluation. Only a single assignment is permitted. The assignment target can be a new column name or an existing column name, and it must be a valid Python identifier.

```
In [33]: df = DataFrame(dict(a=range(5), b=range(5, 10)))
In [34]: df.eval('c = a + b')
In [35]: df.eval('d = a + b + c')
In [36]: df.eval('a = 1')
```

In the equivalent in standard Python would be

```
In [38]: df = DataFrame(dict(a=range(5), b=range(5, 10)))
In [39]: df['c'] = df.a + df.b
In [40]: df['d'] = df.a + df.b + df.c
In [41]: df['a'] = 1
```

In

```
Out[42]:
   a   b   c   d
0  1   5   5  10
1  1   6   7  14
2  1   7   9  18
3  1   8  11  22
4  1   9  13  26
```
22.2.4 Local Variables

In pandas version 0.14 the local variable API has changed. In pandas 0.13.x, you could refer to local variables the same way you would in standard Python. For example,

```python
df = DataFrame(randn(5, 2), columns=[‘a’, ‘b’])
newcol = randn(len(df))
df.eval(‘b + newcol’)
```

```
UndefinedVariableError: name ‘newcol’ is not defined
```

As you can see from the exception generated, this syntax is no longer allowed. You must explicitly reference any local variable that you want to use in an expression by placing the `@` character in front of the name. For example,

```python
In [43]: df = DataFrame(randn(5, 2), columns=list(‘ab’))
In [44]: newcol = randn(len(df))
In [45]: df.eval(‘b + @newcol’)
```

```
Out[45]:
0   -0.173926
1    2.493083
2    0.881381
3   -0.691045
4   1.334703
dtype: float64
```

```python
In [46]: df.query(‘b < @newcol’)
```

```
Out[46]:
      a      b
0  0.863987 -0.115998
2 -2.621419 -1.297879
```

If you don’t prefix the local variable with `@`, pandas will raise an exception telling you the variable is undefined.

When using DataFrame.eval() and DataFrame.query(), this allows you to have a local variable and a DataFrame column with the same name in an expression.

```python
In [47]: a = randn()
In [48]: df.query(‘a < @a’)
```

```
Out[48]:
      a      b
0  0.863987 -0.115998
```

```python
In [49]: df.loc[a < df.a]  # same as the previous expression
```

```
Out[49]:
      a      b
0  0.863987 -0.115998
```

With pandas.eval() you cannot use the `@` prefix at all, because it isn’t defined in that context. pandas will let you know this if you try to use `@` in a top-level call to pandas.eval(). For example,

```python
In [50]: a, b = 1, 2
In [51]: pd.eval(‘@a + b’)
```

```
SyntaxError: The ‘@’ prefix is not allowed in top-level eval calls, please refer to your variables by name without the ‘@’ prefix
```

22.2. Expression Evaluation via eval() (Experimental) 623
In this case, you should simply refer to the variables like you would in standard Python.

```
In [52]: pd.eval('a + b')
Out[52]: 3
```

22.2.5 pandas.eval() Parsers

There are two different parsers and and two different engines you can use as the backend.

The default ‘pandas’ parser allows a more intuitive syntax for expressing query-like operations (comparisons, conjunctions and disjunctions). In particular, the precedence of the & and | operators is made equal to the precedence of the corresponding boolean operations and and or.

For example, the above conjunction can be written without parentheses. Alternatively, you can use the ‘python’ parser to enforce strict Python semantics.

```
In [53]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'
In [54]: x = pd.eval(expr, parser='python')
In [55]: expr_no_parens = 'df1 > 0 & df2 > 0 & df3 > 0 & df4 > 0'
In [56]: y = pd.eval(expr_no_parens, parser='pandas')
In [57]: np.all(x == y)
Out[57]: True
```

The same expression can be “anded” together with the word and as well:

```
In [58]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'
In [59]: x = pd.eval(expr, parser='python')
In [60]: expr_with_ands = 'df1 > 0 and df2 > 0 and df3 > 0 and df4 > 0'
In [61]: y = pd.eval(expr_with_ands, parser='pandas')
In [62]: np.all(x == y)
Out[62]: True
```

The and and or operators here have the same precedence that they would in vanilla Python.

22.2.6 pandas.eval() Backends

There’s also the option to make eval() operate identical to plain ol’ Python.

Note: Using the ‘python’ engine is generally *not* useful, except for testing other evaluation engines against it. You will achieve no performance benefits using eval() with engine=’python’ and in fact may incur a performance hit.

You can see this by using pandas.eval() with the ‘python’ engine. It is a bit slower (not by much) than evaluating the same expression in Python.

```
In [63]: %timeit df1 + df2 + df3 + df4
100 loops, best of 3: 22.5 ms per loop
```
In [64]: %timeit pd.eval('df1 + df2 + df3 + df4', engine='python')
10 loops, best of 3: 25.5 ms per loop

22.2.7 `pandas.eval()` Performance

`eval()` is intended to speed up certain kinds of operations. In particular, those operations involving complex expressions with large `DataFrame/Series` objects should see a significant performance benefit. Here is a plot showing the running time of `pandas.eval()` as function of the size of the frame involved in the computation. The two lines are two different engines.

Note: Operations with smallish objects (around 15k-20k rows) are faster using plain Python:

This plot was created using a `DataFrame` with 3 columns each containing floating point values generated using `numpy.random.randn()`.
22.2.8 Technical Minutia Regarding Expression Evaluation

Expressions that would result in an object dtype or involve datetime operations (because of NaT) must be evaluated in Python space. The main reason for this behavior is to maintain backwards compatibility with versions of numpy < 1.7. In those versions of numpy a call to ndarray.astype(str) will truncate any strings that are more than 60 characters in length. Second, we can’t pass object arrays to numexpr thus string comparisons must be evaluated in Python space.

The upshot is that this only applies to object-dtype’d expressions. So, if you have an expression—for example

In [65]: df = DataFrame({'strings': np.repeat(list('cba'), 3),
 'nums': np.repeat(range(3), 3)})

In [66]: df
Out[66]:
 nums strings
 0 0 c
 1 0 c
 2 0 c
 3 1 b
 4 1 b
 5 1 b
 6 2 a
 7 2 a
 8 2 a

In [67]: df.query('strings == "a" and nums == 1')
Out[67]:
Empty DataFrame
Columns: [nums, strings]
Index: []

the numeric part of the comparison (nums == 1) will be evaluated by numexpr.

In general, DataFrame.query() / pandas.eval() will evaluate the subexpressions that can be evaluated by numexpr and those that must be evaluated in Python space transparently to the user. This is done by inferring the result type of an expression from its arguments and operators.
SPARSE DATA STRUCTURES

We have implemented “sparse” versions of Series, DataFrame, and Panel. These are not sparse in the typical “mostly 0”. You can view these objects as being “compressed” where any data matching a specific value (NaN/missing by default, though any value can be chosen) is omitted. A special SparseIndex object tracks where data has been “sparsified”. This will make much more sense in an example. All of the standard pandas data structures have a to_sparse method:

```
In [1]: ts = Series(randn(10))
In [2]: ts[2:-2] = np.nan
In [3]: sts = ts.to_sparse()
```

```
Out[3]:
0  0.469112
1 -0.282863
2  NaN
3  NaN
4  NaN
5  NaN
6  NaN
7  NaN
8 -0.861849
9 -2.104569
dtype: float64
BlockIndex
Block locations: array([0, 8])
Block lengths: array([2, 2])
```

The to_sparse method takes a kind argument (for the sparse index, see below) and a fill_value. So if we had a mostly zero Series, we could convert it to sparse with fill_value=0:

```
In [4]: ts.fillna(0).to_sparse(fill_value=0)
```

```
Out[4]:
0  0.469112
1 -0.282863
2  0.000000
3  0.000000
4  0.000000
5  0.000000
6  0.000000
7  0.000000
8 -0.861849
9 -2.104569
```
The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame:

```
In [6]: df = DataFrame(randn(10000, 4))
In [7]: df.ix[:9998] = np.nan
In [8]: sdf = df.to_sparse()
```

```
In [9]: sdf
Out[9]:
       0  1  2  3
0     NaN NaN NaN NaN
1     NaN NaN NaN NaN
2     NaN NaN NaN NaN
3     NaN NaN NaN NaN
4     NaN NaN NaN NaN
5     NaN NaN NaN NaN
6     NaN NaN NaN NaN
...   ... ... ... ...
9993  NaN NaN NaN NaN
9994  NaN NaN NaN NaN
9995  NaN NaN NaN NaN
9996  NaN NaN NaN NaN
9997  NaN NaN NaN NaN
9998  NaN NaN NaN NaN
9999  0.280249 -1.648493 1.490865 -0.890819
[10000 rows x 4 columns]
```

```
In [10]: sdf.density
Out[10]: 0.0001
```

As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly identical to their dense counterparts.

Any sparse object can be converted back to the standard dense form by calling `to_dense`:

```
In [11]: sts.to_dense()
Out[11]:
       0  1  2  3
0    0.469112 NaN NaN NaN
1 -0.282863 NaN NaN NaN
2     NaN NaN NaN NaN
3     NaN NaN NaN NaN
4     NaN NaN NaN NaN
5     NaN NaN NaN NaN
6     NaN NaN NaN NaN
7     NaN NaN NaN NaN
8 -0.861849 NaN NaN NaN
9 -2.104569 NaN NaN NaN
dtype: float64
```
23.1 SparseArray

SparseArray is the base layer for all of the sparse indexed data structures. It is a 1-dimensional ndarray-like object storing only values distinct from the fill_value:

In [12]: arr = np.random.randn(10)
In [14]: sparr = SparseArray(arr)

In [15]: sparr
Out[15]:
[-1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.145297113733, nan, 0.606027190513, 1.33421134013]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9])

Like the indexed objects (SparseSeries, SparseDataFrame, SparsePanel), a SparseArray can be converted back to a regular ndarray by calling to_dense:

In [16]: sparr.to_dense()
Out[16]:
array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,
nan, 0.606, 1.3342])

23.2 SparseList

SparseList is a list-like data structure for managing a dynamic collection of SparseArrays. To create one, simply call the SparseList constructor with a fill_value (defaulting to NaN):

In [17]: spl = SparseList()

In [18]: spl
Out[18]: <pandas.sparse.list.SparseList object at 0xa2a87e6c>

The two important methods are append and to_array. append can accept scalar values or any 1-dimensional sequence:

In [19]: spl.append(np.array([1., nan, nan, 2., 3.]))
In [20]: spl.append(5)
In [21]: spl.append(sparr)

In [22]: spl
Out[22]: <pandas.sparse.list.SparseList object at 0xa2a87e6c>
[1.0, nan, nan, 2.0, 3.0]
Fill: nan
IntIndex
Indices: array([0, 3, 4])

[5.0]
Fill: nan
IntIndex
As you can see, all of the contents are stored internally as a list of memory-efficient SparseArray objects. Once you’ve accumulated all of the data, you can call `to_array` to get a single SparseArray with all the data:

```
In [23]: spl.to_array()
Out[23]:
[1.0, nan, nan, 2.0, 3.0, 5.0, -1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.145297113733, nan, 0.606027190513, 1.33421134013]
```

\section*{23.3 SparseIndex objects}

Two kinds of SparseIndex are implemented, block and integer. We recommend using block as it’s more memory efficient. The integer format keeps an array of all of the locations where the data are not equal to the fill value. The block format tracks only the locations and sizes of blocks of data.
24.1 Using If/Truth Statements with pandas

pandas follows the numpy convention of raising an error when you try to convert something to a bool. This happens in a if or when using the boolean operations, and, or, or not. It is not clear what the result of

>>> if Series([False, True, False]):
 ...

should be. Should it be True because it’s not zero-length? False because there are False values? It is unclear, so instead, pandas raises a ValueError:

>>> if pd.Series([False, True, False]):
 print("I was true")
Traceback
...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().

If you see that, you need to explicitly choose what you want to do with it (e.g., use any(), all() or empty). or, you might want to compare if the pandas object is None

>>> if pd.Series([False, True, False]) is not None:
 print("I was not None")
>>> I was not None

or return if any value is True.

>>> if pd.Series([False, True, False]).any():
 print("I am any")
>>> I am any

To evaluate single-element pandas objects in a boolean context, use the method .bool():

In [1]: Series([True]).bool()
Out[1]: True

In [2]: Series([False]).bool()
Out[2]: False

In [3]: DataFrame([[True]]).bool()
Out[3]: True

In [4]: DataFrame([[False]]).bool()
Out[4]: False
24.1.1 Bitwise boolean

Bitwise boolean operators like == and != will return a boolean Series, which is almost always what you want anyways.

```python
>>> s = pd.Series(range(5))
>>> s == 4
0    False
1    False
2    False
3    False
4     True
dtype: bool
```

See boolean comparisons for more examples.

24.1.2 Using the in operator

Using the Python in operator on a Series tests for membership in the index, not membership among the values.

If this behavior is surprising, keep in mind that using in on a Python dictionary tests keys, not values, and Series are dict-like. To test for membership in the values, use the method isin():

For DataFrames, likewise, in applies to the column axis, testing for membership in the list of column names.

24.2 NaN, Integer NA values and NA type promotions

24.2.1 Choice of NA representation

For lack of NA (missing) support from the ground up in NumPy and Python in general, we were given the difficult choice between either

- A masked array solution: an array of data and an array of boolean values indicating whether a value
- Using a special sentinel value, bit pattern, or set of sentinel values to denote NA across the dtypes

For many reasons we chose the latter. After years of production use it has proven, at least in my opinion, to be the best decision given the state of affairs in NumPy and Python in general. The special value NaN (Not-A-Number) is used everywhere as the NA value, and there are API functions isnull and notnull which can be used across the dtypes to detect NA values.

However, it comes with it a couple of trade-offs which I most certainly have not ignored.

24.2.2 Support for integer NA

In the absence of high performance NA support being built into NumPy from the ground up, the primary casualty is the ability to represent NAs in integer arrays. For example:

```python
In [5]: s = Series([1, 2, 3, 4, 5], index=list('abcde'))
```

```text
In [6]: s
Out[6]:
a  1
b  2
c  3
```
This trade-off is made largely for memory and performance reasons, and also so that the resulting Series continues to be “numeric”. One possibility is to use dtype=object arrays instead.

24.2.3 NA type promotions

When introducing NAs into an existing Series or DataFrame via reindex or some other means, boolean and integer types will be promoted to a different dtype in order to store the NAs. These are summarized by this table:

<table>
<thead>
<tr>
<th>Typeclass</th>
<th>Promotion dtype for storing NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>floating</td>
<td>no change</td>
</tr>
<tr>
<td>object</td>
<td>no change</td>
</tr>
<tr>
<td>integer</td>
<td>cast to float64</td>
</tr>
<tr>
<td>boolean</td>
<td>cast to object</td>
</tr>
</tbody>
</table>

While this may seem like a heavy trade-off, in practice I have found very few cases where this is an issue in practice. Some explanation for the motivation here in the next section.

24.2.4 Why not make NumPy like R?

Many people have suggested that NumPy should simply emulate the NA support present in the more domain-specific statistical programming language R. Part of the reason is the NumPy type hierarchy:

<table>
<thead>
<tr>
<th>Typeclass</th>
<th>Dtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>numpy.floating</td>
<td>float16, float32, float64, float128</td>
</tr>
<tr>
<td>numpy.integer</td>
<td>int8, int16, int32, int64</td>
</tr>
<tr>
<td>numpy.unsignedinteger</td>
<td>uint8, uint16, uint32, uint64</td>
</tr>
<tr>
<td>numpy.object_</td>
<td>object_</td>
</tr>
<tr>
<td>numpy.bool_</td>
<td>bool_</td>
</tr>
<tr>
<td>numpy.character</td>
<td>string_, unicode_</td>
</tr>
</tbody>
</table>

The R language, by contrast, only has a handful of built-in data types: integer, numeric (floating-point), character, and boolean. NA types are implemented by reserving special bit patterns for each type to be used as the missing value. While doing this with the full NumPy type hierarchy would be possible, it would be a more substantial trade-off (especially for the 8- and 16-bit data types) and implementation undertaking.
An alternate approach is that of using masked arrays. A masked array is an array of data with an associated boolean mask denoting whether each value should be considered NA or not. I am personally not in love with this approach as I feel that overall it places a fairly heavy burden on the user and the library implementer. Additionally, it exacts a fairly high performance cost when working with numerical data compared with the simple approach of using NaN. Thus, I have chosen the Pythonic “practicality beats purity” approach and traded integer NA capability for a much simpler approach of using a special value in float and object arrays to denote NA, and promoting integer arrays to floating when NAs must be introduced.

24.3 Integer indexing

Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the standard tools like .ix. The following code will generate exceptions:

```python
s = Series(range(5))
s[-1]
df = DataFrame(np.random.randn(5, 4))
df
df.ix[-2:]
```

This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the API change was made to stop “falling back” on position-based indexing).

24.4 Label-based slicing conventions

24.4.1 Non-monotonic indexes require exact matches

24.4.2 Endpoints are inclusive

Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the “successor” or next element after a particular label in an index. For example, consider the following Series:

```python
s = Series(randn(6), index=list('abcdef'))
s
```

Suppose we wished to slice from c to e, using integers this would be

```python
s[2:5]
```
However, if you only had \(c \) and \(e \), determining the next element in the index can be somewhat complicated. For example, the following does not work:

\[s.ix['c':'e'+1] \]

A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the design decision to make label-based slicing include both endpoints:

\[\text{In [14]: } s.ix['c':'e'] \]

\[\text{Out[14]:} \]

\begin{verbatim}
c 0.162565
d -0.067785
e -1.260006
dtype: float64
\end{verbatim}

This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect label-based slicing to behave exactly in the way that standard Python integer slicing works.

24.5 Miscellaneous indexing gotchas

24.5.1 Reindex versus ix gotchas

Many users will find themselves using the \(ix \) indexing capabilities as a concise means of selecting data from a pandas object:

\[\text{In [15]: } df = \text{DataFrame(randn(6, 4), columns=['one', 'two', 'three', 'four'], index=list('abcdef'))} \]

\[\text{In [16]: } df \]

\[\text{Out[16]:} \]

\begin{verbatim}
one two three four
a -2.006481 0.301016 0.059117 1.138469
b -2.400634 -0.280853 0.025653 -1.386071
c 0.863937 0.252462 1.500571 1.053202
d -2.338595 -0.374279 -2.359958 -1.157886
e -0.551865 1.592673 1.559318 1.562443
f 0.763264 0.162027 -0.902704 1.106010
\end{verbatim}

\[\text{In [17]: } df.ix[['b', 'c', 'e']] \]

\[\text{Out[17]:} \]

\begin{verbatim}
one two three four
b -2.400634 -0.280853 0.025653 -1.386071
c 0.863937 0.252462 1.500571 1.053202
e -0.551865 1.592673 1.559318 1.562443
\end{verbatim}

This is, of course, completely equivalent in this case to using the \texttt{reindex} method:

\[\text{In [18]: } df.reindex(['b', 'c', 'e']) \]

\[\text{Out[18]:} \]

\begin{verbatim}
one two three four
b -2.400634 -0.280853 0.025653 -1.386071
c 0.863937 0.252462 1.500571 1.053202
e -0.551865 1.592673 1.559318 1.562443
\end{verbatim}
Some might conclude that `ix` and `reindex` are 100% equivalent based on this. This is indeed true except in the case of integer indexing. For example, the above operation could alternately have been expressed as:

```
In [19]: df.ix[[1, 2, 4]]
Out[19]:
   one    two    three    four
b -2.400634 -0.280853  0.025653  1.386071
c  0.863937  0.252462  1.500571  1.053202
e  0.551865  1.592673  1.559318  1.562443
```

If you pass `[1, 2, 4]` to `reindex` you will get another thing entirely:

```
In [20]: df.reindex([1, 2, 4])
Out[20]:
   one    two    three    four
1  NaN     NaN     NaN     NaN
2  NaN     NaN     NaN     NaN
4  NaN     NaN     NaN     NaN
```

So it’s important to remember that `reindex` is strict label indexing only. This can lead to some potentially surprising results in pathological cases where an index contains, say, both integers and strings:

```
In [21]: s = Series([1, 2, 3], index=['a', 0, 1])
```

```
In [22]: s
Out[22]:
   a    1
  0    2
  1    3
dtype: int64
```

```
In [23]: s.ix[[0, 1]]
Out[23]:
   0    2
  1    3
dtype: int64
```

```
In [24]: s.reindex([0, 1])
Out[24]:
   0    2
  1    3
dtype: int64
```

Because the index in this case does not contain solely integers, `ix` falls back on integer indexing. By contrast, `reindex` only looks for the values passed in the index, thus finding the integers 0 and 1. While it would be possible to insert some logic to check whether a passed sequence is all contained in the index, that logic would exact a very high cost in large data sets.

24.5.2 Reindex potentially changes underlying Series dtype

The use of `reindex_like` can potentially change the dtype of a `Series`.

```
series = pandas.Series([1, 2, 3])
x = pandas.Series([True])
x.dtype
x = pandas.Series([True]).reindex_like(series)
x.dtype
```

Chapter 24. Caveats and Gotchas
This is because `reindex_like` silently inserts NaNs and the dtype changes accordingly. This can cause some issues when using numpy ufuncs such as `numpy.logical_and`.

See the this old issue for a more detailed discussion.

24.6 Timestamp limitations

24.6.1 Minimum and maximum timestamps

Since pandas represents timestamps in nanosecond resolution, the timespan that can be represented using a 64-bit integer is limited to approximately 584 years:

In [25]: begin = Timestamp.min

In [26]: begin
Out[26]: Timestamp('1677-09-22 00:12:43.145225')

In [27]: end = Timestamp.max

In [28]: end

If you need to represent time series data outside the nanosecond timespan, use PeriodIndex:

In [29]: span = period_range('1215-01-01', '1381-01-01', freq='D')

In [30]: span
Out[30]: <class 'pandas.tseries.period.PeriodIndex'>
[1215-01-01, ..., 1381-01-01]
Length: 60632, Freq: D

24.7 Parsing Dates from Text Files

When parsing multiple text file columns into a single date column, the new date column is prepended to the data and then `index_col` specification is indexed off of the new set of columns rather than the original ones:

In [31]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900

In [32]: date_spec = {’nominal’: [1, 2], ’actual’: [1, 3]}

In [33]: df = read_csv(’tmp.csv’, header=None,
 : parse_dates=date_spec,
 : keep_date_col=True,
 : index_col=0)

index_col=0 refers to the combined column "nominal" and not the original
first column of 'KORD' strings

```python
In [34]: df
Out[34]:
   actual  0  1  2  3
nominal
1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 19990127 19:00:00 18:56:00
1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 19990127 20:00:00 19:56:00
1999-01-27 21:00:00 1999-01-27 20:56:00 KORD 19990127 21:00:00 20:56:00
1999-01-27 21:00:00 1999-01-27 21:18:00 KORD 19990127 21:00:00 21:18:00
1999-01-27 22:00:00 1999-01-27 21:56:00 KORD 19990127 22:00:00 21:56:00
1999-01-27 23:00:00 1999-01-27 22:56:00 KORD 19990127 23:00:00 22:56:00
```

24.8 Differences with NumPy

For Series and DataFrame objects, `var` normalizes by $N-1$ to produce unbiased estimates of the sample variance, while NumPy's `var` normalizes by N, which measures the variance of the sample. Note that `cov` normalizes by $N-1$ in both pandas and NumPy.

24.9 Thread-safety

As of pandas 0.11, pandas is not 100% thread safe. The known issues relate to the `DataFrame.copy` method. If you are doing a lot of copying of DataFrame objects shared among threads, we recommend holding locks inside the threads where the data copying occurs.

See [this link](#) for more information.

24.10 HTML Table Parsing

There are some versioning issues surrounding the libraries that are used to parse HTML tables in the top-level pandas `io` function `read_html`.

Issues with lxml

- **Benefits**
 - lxml is very fast
 - lxml requires Cython to install correctly.
- **Drawbacks**
 - lxml does not make any guarantees about the results of its parse unless it is given strictly valid markup.
 - In light of the above, we have chosen to allow you, the user, to use the lxml backend, but this backend will use html5lib if lxml fails to parse
It is therefore *highly recommended* that you install both BeautifulSoup4 and html5lib, so that you will still get a valid result (provided everything else is valid) even if lxml fails.

Issues with BeautifulSoup4 using lxml as a backend

- The above issues hold here as well since BeautifulSoup4 is essentially just a wrapper around a parser backend.

Issues with BeautifulSoup4 using html5lib as a backend

- **Benefits**
 - html5lib is far more lenient than lxml and consequently deals with *real-life markup* in a much saner way rather than just, e.g., dropping an element without notifying you.
 - html5lib *generates valid HTML5 markup from invalid markup automatically*. This is extremely important for parsing HTML tables, since it guarantees a valid document. However, that does NOT mean that it is “correct”, since the process of fixing markup does not have a single definition.
 - html5lib is pure Python and requires no additional build steps beyond its own installation.
- **Drawbacks**
 - The biggest drawback to using html5lib is that it is slow as molasses. However consider the fact that many tables on the web are not big enough for the parsing algorithm runtime to matter. It is more likely that the bottleneck will be in the process of reading the raw text from the url over the web, i.e., IO (input-output). For very large tables, this might not be true.

Issues with using Anaconda

- Anaconda ships with lxml version 3.2.0; the following workaround for Anaconda was successfully used to deal with the versioning issues surrounding lxml and BeautifulSoup4.

Note: Unless you have both:

- A strong restriction on the upper bound of the runtime of some code that incorporates `read_html()`
- Complete knowledge that the HTML you will be parsing will be 100% valid at all times

then you should install html5lib and things will work swimmingly without you having to muck around with `conda`. If you want the best of both worlds then install both html5lib and lxml. If you do install lxml then you need to perform the following commands to ensure that lxml will work correctly:

```bash
# remove the included version
conda remove lxml

# install the latest version of lxml
pip install 'git+git://github.com/lxml/lxml.git'

# install the latest version of beautifulsoup4
pip install 'bzr+lp:beautifulsoup'
```

Note that you need `bzr` and `git` installed to perform the last two operations.

24.11 Byte-Ordering Issues

Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. A common symptom of this issue is an error like
Traceback
...'

```
ValueError: Big-endian buffer not supported on little-endian compiler
```

To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to `Series/DataFrame/Panel` constructors using something similar to the following:

```
In [35]: x = np.array(list(range(10)), '>i4')  # big endian
In [36]: newx = x.byteswap().newbyteorder()  # force native byteorder
In [37]: s = Series(newx)
```

See the NumPy documentation on byte order for more details.
CHAPTER TWENTYFIVE

RPY2 / R INTERFACE

Note: This is all highly experimental. I would like to get more people involved with building a nice RPy2 interface for pandas.

If your computer has R and rpy2 (> 2.2) installed (which will be left to the reader), you will be able to leverage the below functionality. On Windows, doing this is quite an ordeal at the moment, but users on Unix-like systems should find it quite easy. rpy2 evolves in time, and is currently reaching its release 2.3, while the current interface is designed for the 2.2.x series. We recommend to use 2.2.x over other series unless you are prepared to fix parts of the code, yet the rpy2-2.3.0 introduces improvements such as a better R-Python bridge memory management layer so it might be a good idea to bite the bullet and submit patches for the few minor differences that need to be fixed.

```
# if installing for the first time
hg clone http://bitbucket.org/lgautier/rpy2

cd rpy2
hg pull
hg update version_2.2.x
sudo python setup.py install
```

Note: To use R packages with this interface, you will need to install them inside R yourself. At the moment it cannot install them for you.

Once you have done installed R and rpy2, you should be able to import `pandas.rpy.common` without a hitch.

25.1 Transferring R data sets into Python

The **load_data** function retrieves an R data set and converts it to the appropriate pandas object (most likely a DataFrame):

```
In [1]: import pandas.rpy.common as com

In [2]: infert = com.load_data('infert')

In [3]: infert.head()
```

```
Out[3]:
<table>
<thead>
<tr>
<th>education</th>
<th>age</th>
<th>parity</th>
<th>induced</th>
<th>case</th>
<th>spontaneous</th>
<th>stratum</th>
<th>pooled.stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5yrs</td>
<td>26</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0-5yrs</td>
<td>42</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0-5yrs</td>
<td>39</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
```
25.2 Converting DataFrames into R objects

New in version 0.8. Starting from pandas 0.8, there is experimental support to convert DataFrames into the equivalent R object (that is, `data.frame`):

```
In [4]: from pandas import DataFrame

In [5]: df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C':[7,8,9]},
   ...:      index=['one', 'two', 'three'])
   ...:

In [6]: r_dataframe = com.convert_to_r_dataframe(df)

In [7]: print(type(r_dataframe))
<class 'rpy2.robjects.vectors.DataFrame'>

In [8]: print(r_dataframe)
      A  B  C
one  1  4  7
two  2  5  8
three 3  6  9
```

The DataFrame’s index is stored as the `rownames` attribute of the data.frame instance.

You can also use `convert_to_r_matrix` to obtain a `Matrix` instance, but bear in mind that it will only work with homogeneously-typed DataFrames (as R matrices bear no information on the data type):

```
In [9]: r_matrix = com.convert_to_r_matrix(df)

In [10]: print(type(r_matrix))
<class 'rpy2.robjects.vectors.Matrix'>

In [11]: print(r_matrix)
      A  B  C
one  1  4  7
two  2  5  8
three 3  6  9
```

25.3 Calling R functions with pandas objects

25.4 High-level interface to R estimators
PANDAS ECOSYSTEM

Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. This is encouraging because it means pandas is not only helping users to handle their data tasks but also that it provides a better starting point for developers to build powerful and more focused data tools. The creation of libraries that complement pandas’ functionality also allows pandas development to remain focused around it’s original requirements.

This is an in-exhaustive list of projects that build on pandas in order to provide tools in the PyData space.

We’d like to make it easier for users to find these project, if you know of other substantial projects that you feel should be on this list, please let us know.

26.1 Statistics and Machine Learning

26.1.1 Statsmodels

Statsmodels is the prominent python “statistics and econometrics library” and it has a long-standing special relationship with pandas. Statsmodels provides powerful statistics, econometrics, analysis and modeling functionality that is out of pandas’ scope. Statsmodels leverages pandas objects as the underlying data container for computation.

26.1.2 sklearn-pandas

Use pandas DataFrames in your scikit-learn ML pipeline.

26.2 Visualization

26.2.1 Vincent

The Vincent project leverages Vega (that in turn, leverages d3) to create plots. It has great support for pandas data objects.

26.2.2 yhat/ggplot

Hadley Wickham’s ggplot2 is a foundational exploratory visualization package for the R language. Based on “The Grammer of Graphics” it provides a powerful, declarative and extremely general way to generate bespoke plots of any kind of data. It’s really quite incredible. Various implementations to other languages are available, but a faithful
implementation for python users has long been missing. Although still young (as of Jan-2014), the yhat/ggplot project has been progressing quickly in that direction.

26.2.3 Seaborn

Although pandas has quite a bit of “just plot it” functionality built-in, visualization and in particular statistical graphics is a vast field with a long tradition and lots of ground to cover. The Seaborn project builds on top of pandas and matplotlib to provide easy plotting of data which extends to more advanced types of plots then those offered by pandas.

26.2.4 Bokeh

Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients.

26.3 Domain Specific

26.3.1 Geopandas

Geopandas extends pandas data objects to include geographic information which support geometric operations. If your work entails maps and geographical coordinates, and you love pandas, you should take a close look at Geopandas.
COMPARISON WITH R / R LIBRARIES

Since pandas aims to provide a lot of the data manipulation and analysis functionality that people use R for, this page was started to provide a more detailed look at the R language and its many third party libraries as they relate to pandas. In comparisons with R and CRAN libraries, we care about the following things:

- **Functionality / flexibility**: what can/cannot be done with each tool
- **Performance**: how fast are operations. Hard numbers/benchmarks are preferable
- **Ease-of-use**: Is one tool easier/harder to use (you may have to be the judge of this, given side-by-side code comparisons)

This page is also here to offer a bit of a translation guide for users of these R packages.

27.1 Base R

27.1.1 Slicing with R’s `c`

R makes it easy to access data.frame columns by name

```r
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
```

or by integer location

```r
df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]
```

Selecting multiple columns by name in pandas is straightforward

```
In [1]: df = DataFrame(np.random.randn(10, 3), columns=list('abc'))
```

```
In [2]: df[['a', 'c']]
Out[2]:
    a       c
0 -0.010277  1.754450
1 -1.979042  0.026731
2 -0.171905 -0.668032
3  0.156823 -0.287102
4 -0.654693  2.486931
5  0.314941 -0.209642
6 -0.482069  0.713264
7  1.524014 -0.483850
8  1.615149  0.673194
```
9 1.512817 -0.017685

In [3]: df.loc[:, ['a', 'c']]
Out[3]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.010277</td>
<td>1.754450</td>
</tr>
<tr>
<td>1</td>
<td>-1.979042</td>
<td>0.026731</td>
</tr>
<tr>
<td>2</td>
<td>-0.171905</td>
<td>-0.668032</td>
</tr>
<tr>
<td>3</td>
<td>0.156823</td>
<td>-0.287102</td>
</tr>
<tr>
<td>4</td>
<td>-0.654693</td>
<td>2.486931</td>
</tr>
<tr>
<td>5</td>
<td>0.314941</td>
<td>-0.209642</td>
</tr>
<tr>
<td>6</td>
<td>-0.482069</td>
<td>0.713264</td>
</tr>
<tr>
<td>7</td>
<td>1.524014</td>
<td>-0.483850</td>
</tr>
<tr>
<td>8</td>
<td>1.615149</td>
<td>0.673194</td>
</tr>
<tr>
<td>9</td>
<td>1.512817</td>
<td>-0.017685</td>
</tr>
</tbody>
</table>

Selecting multiple noncontiguous columns by integer location can be achieved with a combination of the `iloc` indexer attribute and `numpy.r_`.

In [4]: named = list('abcdefg')
In [5]: n = 30
In [6]: columns = named + np.arange(len(named), n).tolist()
In [7]: df = DataFrame(np.random.randn(n, n), columns=columns)
In [8]: df.iloc[:, np.r_[10, 24:30]]
Out[8]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.182877</td>
<td>1.556201</td>
<td>-1.717420</td>
<td>-3.017047</td>
<td>1.201081</td>
<td>0.980077</td>
<td>-0.026234</td>
</tr>
<tr>
<td>1</td>
<td>-1.679855</td>
<td>-0.912033</td>
<td>0.895000</td>
<td>0.759727</td>
<td>1.053398</td>
<td>-0.854995</td>
<td>0.514409</td>
</tr>
<tr>
<td>2</td>
<td>-0.242666</td>
<td>-0.153091</td>
<td>0.571129</td>
<td>1.049663</td>
<td>-0.200188</td>
<td>0.169303</td>
<td>0.127031</td>
</tr>
<tr>
<td>3</td>
<td>0.442832</td>
<td>-1.344020</td>
<td>-0.497400</td>
<td>-1.255580</td>
<td>-0.000235</td>
<td>2.493078</td>
<td>-1.483518</td>
</tr>
<tr>
<td>4</td>
<td>0.939187</td>
<td>-2.739487</td>
<td>-0.573693</td>
<td>-1.233017</td>
<td>-0.803782</td>
<td>-1.527202</td>
<td>0.680366</td>
</tr>
<tr>
<td>5</td>
<td>0.398306</td>
<td>-1.886066</td>
<td>-0.488051</td>
<td>1.022238</td>
<td>-1.097735</td>
<td>0.182293</td>
<td>0.166052</td>
</tr>
<tr>
<td>6</td>
<td>-1.621497</td>
<td>-1.229428</td>
<td>0.340857</td>
<td>-0.240188</td>
<td>-0.640714</td>
<td>-0.620492</td>
<td>1.395629</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>23</td>
<td>0.251470</td>
<td>-0.137568</td>
<td>-0.556620</td>
<td>-1.226969</td>
<td>-0.459633</td>
<td>-0.733977</td>
<td>-1.221608</td>
</tr>
<tr>
<td>24</td>
<td>-0.468504</td>
<td>-0.656569</td>
<td>1.187661</td>
<td>0.714776</td>
<td>-0.459475</td>
<td>-2.880218</td>
<td>0.629157</td>
</tr>
<tr>
<td>25</td>
<td>0.782185</td>
<td>0.026271</td>
<td>-0.671403</td>
<td>0.185990</td>
<td>1.271593</td>
<td>-0.722660</td>
<td>1.232652</td>
</tr>
</tbody>
</table>
27.1.2 aggregate

In R you may want to split data into subsets and compute the mean for each. Using a data.frame called df and splitting it into groups by1 and by2:

```r
df <- data.frame(
  v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
  v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
  by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
  by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
```

The `groupby()` method is similar to base R `aggregate` function.

```python
In [9]: from pandas import DataFrame

In [10]: df = DataFrame(
    ....:     
    ....:     'v1': [1,3,5,7,8,3,5,np.nan,4,5,7,9],
    ....:     'v2': [11,33,55,77,88,33,55,NA,44,55,77,99],
    ....:     'by1': ["red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12],
    ....:     'by2': ["wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA]
    ....:     ))

In [11]: g = df.groupby(\['by1','by2'\])

In [12]: g[\['v1','v2'\]].mean()
Out[12]:
    by1  by2
    v1  v2
    1  95  5  55
    99  5  55
```

27.1. Base R
For more details and examples see the **groupby documentation**.

27.1.3 **match** / `%in%`

A common way to select data in R is using `%in%` which is defined using the function `match`. The operator `%in%` is used to return a logical vector indicating if there is a match or not:

```r
s <- 0:4
s %in% c(2,4)
```

The `isin()` method is similar to R `%in%` operator:

```python
In [13]: s = pd.Series(np.arange(5),dtype=np.float32)
In [14]: s.isin([2, 4])
Out[14]:
0    False
1    False
2     True
3    False
4     True
dtype: bool
```

The `match` function returns a vector of the positions of matches of its first argument in its second:

```r
s <- 0:4
match(s, c(2,4))
```

The `apply()` method can be used to replicate this:

```python
In [15]: s = pd.Series(np.arange(5),dtype=np.float32)
In [16]: pd.Series(pd.match(s,[2,4],np.nan))
Out[16]:
0    NaN
1    NaN
2     0
3    NaN
4     1
dtype: float64
```

For more details and examples see the **reshaping documentation**.

27.1.4 **tapply**

tapply is similar to aggregate, but data can be in a ragged array, since the subclass sizes are possibly irregular. Using a data.frame called `baseball`, and retrieving information based on the array `team`:
baseball <-
data.frame(team = gl(5, 5,
 labels = paste("Team", LETTERS[1:5]),
 player = sample(letters, 25),
 batting.average = runif(25, .200, .400))

tapply(baseball$batting.average, baseball.example$team,
 max)

In pandas we may use `pivot_table()` method to handle this:

In [17]: import random

In [18]: import string

In [19]: baseball = DataFrame({
....: 'team': ["team \%d" % (x+1) for x in range(5)]*5,
....: 'player': random.sample(list(string.ascii_lowercase),25),
....: 'batting avg': np.random.uniform(.200, .400, 25)
....: })

In [20]: baseball.pivot_table(values='batting avg', columns='team', aggfunc=np.max)
Out[20]:
 team
team 1 0.382841
team 2 0.395048
team 3 0.387240
team 4 0.383183
team 5 0.364851
Name: batting avg, dtype: float64

For more details and examples see the reshaping documentation.

27.1.5 subset

New in version 0.13. The `query()` method is similar to the base R `subset` function. In R you might want to get the rows of a `data.frame` where one column’s values are less than another column’s values:

```r
df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
df[df$a <= df$b,] # note the comma
```

In pandas, there are a few ways to perform subsetting. You can use `query()` or pass an expression as if it were an index/slice as well as standard boolean indexing:

In [21]: df = DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})

In [22]: df.query('a <= b')
Out[22]:
 a b
0 -0.869907 0.118969
1 -1.243405 1.059719
2 -2.103633 -0.585222
3 -0.160015 0.476629
4 -1.361355 1.317180
8 -0.945780 -0.571590
9 -0.761339 -0.073684
In [23]: df[df.a <= df.b]
Out[23]:
 a b
0 -0.869907 0.118969
1 -1.243405 1.059719
2 -2.103633 -0.585222
3 -0.160015 0.476629
4 -1.361355 1.317180
8 -0.945780 -0.571590
9 -0.761339 -0.073684

In [24]: df.loc[df.a <= df.b]
Out[24]:
 a b
0 -0.869907 0.118969
1 -1.243405 1.059719
2 -2.103633 -0.585222
3 -0.160015 0.476629
4 -1.361355 1.317180
8 -0.945780 -0.571590
9 -0.761339 -0.073684

For more details and examples see the query documentation.

27.1.6 with

New in version 0.13. An expression using a data.frame called \texttt{df} in R with the columns \texttt{a} and \texttt{b} would be evaluated using \texttt{with} like so:

\begin{verbatim}
df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b # same as the previous expression
\end{verbatim}

In pandas the equivalent expression, using the \texttt{eval()} method, would be:

In [25]: df = DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [26]: df.eval('a + b')
Out[26]:
 0 -0.251791
 1 -0.061720
 2 -1.395907
 3 -0.095439
 4 0.277944
 5 -0.445539
 6 1.199896
 7 -0.524619
 8 -0.657901
 9 2.069409
dtype: float64

df.a + df.b # same as the previous expression
Out[27]:
 0 -0.251791
 1 -0.061720
 2 -1.395907
 3 -0.095439
In certain cases eval() will be much faster than evaluation in pure Python. For more details and examples see the eval documentation.

27.2 zoo

27.3 xts

27.4 plyr

plyr is an R library for the split-apply-combine strategy for data analysis. The functions revolve around three data structures in R, a for arrays, l for lists, and d for data.frame. The table below shows how these data structures could be mapped in Python.

<table>
<thead>
<tr>
<th>R</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>list</td>
</tr>
<tr>
<td>lists</td>
<td>dictionary or list of objects</td>
</tr>
<tr>
<td>data.frame</td>
<td>dataframe</td>
</tr>
</tbody>
</table>

27.4.1 ddply

An expression using a data.frame called df in R where you want to summarize x by month:

```r
require(plyr)
df <- data.frame(
  x = runif(120, 1, 168),
  y = runif(120, 7, 334),
  z = runif(120, 1.7, 20.7),
  month = rep(c(5,6,7,8),30),
  week = sample(1:4, 120, TRUE)
)

ddply(df, .(month, week), summarize,
  mean = round(mean(x), 2),
  sd = round(sd(x), 2))
```

In pandas the equivalent expression, using the groupby() method, would be:

```python
In [28]: df = DataFrame({
                ....:     'x': np.random.uniform(1., 168., 120),
                ....:     'y': np.random.uniform(7., 334., 120),
                ....:     'z': np.random.uniform(1.7, 20.7, 120),
                ....:     'month': [5,6,7,8]*30,
                ....:     'week': np.random.randint(1,4, 120)
                ....: })
```

27.2. zoo
In [29]: grouped = df.groupby(['month','week'])

In [30]: print grouped['x'].agg([np.mean, np.std])

<table>
<thead>
<tr>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>month</td>
<td>week</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>85.764198</td>
</tr>
<tr>
<td>3</td>
<td>89.386008</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>91.100447</td>
</tr>
<tr>
<td>3</td>
<td>76.136174</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>92.955649</td>
</tr>
<tr>
<td>3</td>
<td>83.708346</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>72.545882</td>
</tr>
<tr>
<td>3</td>
<td>71.868187</td>
</tr>
</tbody>
</table>

For more details and examples see the groupby documentation.

27.5 reshape / reshape2

27.5.1 melt.array

An expression using a 3 dimensional array called \texttt{a} in R where you want to melt it into a data.frame:

\begin{verbatim}
a <- array(c(1:23, NA, c(2, 3, 4)), c(2, 3, 4))
data.frame(melt(a))
\end{verbatim}

In Python, since \texttt{a} is a list, you can simply use list comprehension.

In [31]: a = np.array(list(range(1,24))+[np.NAN]).reshape(2,3,4)

In [32]: DataFrame([tuple(list(x)+[val]) for x, val in np.ndenumerate(a)])

Out[32]:
 0 1 2 3
 0 0 0 0 1
 1 0 0 1 2
 2 0 0 2 3
 3 0 0 3 4
 4 0 1 0 5
 5 0 1 1 6
 6 0 1 2 7

 17 1 1 1 18
 18 1 1 2 19
 19 1 1 3 20
 20 1 2 0 21
 21 1 2 1 22
 22 1 2 2 23
 23 1 2 3 NaN

[24 rows x 4 columns]
27.5.2 melt.list

An expression using a list called a in R where you want to melt it into a data.frame:

```r
a <- as.list(c(1:4, NA))
data.frame(melt(a))
```

In Python, this list would be a list of tuples, so `DataFrame()` method would convert it to a dataframe as required.

```python
In [33]: a = list(enumerate(list(range(1,5))+[np.NAN]))
In [34]: DataFrame(a)
```

```
Out[34]:
     0 1
  0  0 1
  1  1 2
  2  2 3
  3  3 4
  4  4 NaN
```

For more details and examples see the Into to Data Structures documentation.

27.5.3 melt.data.frame

An expression using a data.frame called cheese in R where you want to reshape the data.frame:

```r
cheese <- data.frame(
    first = c('John', 'Mary'),
    last = c('Doe', 'Bo'),
    height = c(5.5, 6.0),
    weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))
```

In Python, the `melt()` method is the R equivalent:

```python
In [35]: cheese = DataFrame({'first' : ['John', 'Mary'], ....: 'last' : ['Doe', 'Bo'], ....: 'height' : [5.5, 6.0], ....: 'weight' : [130, 150]})
In [36]: pd.melt(cheese, id_vars=['first', 'last'])
```

```
  first last  variable value
0  John Doe   height  5.5
1  Mary Bo   height  6.0
2  John Doe   weight 130.0
3  Mary Bo   weight 150.0
```

```python
In [37]: cheese.set_index(['first', 'last']).stack() # alternative way
```

```
  first  last  value
  John Doe height  5.5
                 weight 130.0
  Mary Bo  height  6.0
             weight 150.0
```

dtype: float64

27.5. reshape / reshape2 653
pandas: powerful Python data analysis toolkit, Release 0.14.1

For more details and examples see the reshaping documentation.

27.5.4 cast

In R acast is an expression using a data.frame called df in R to cast into a higher dimensional array:

```r
df <- data.frame(
    x = runif(12, 1, 168),
    y = runif(12, 7, 334),
    z = runif(12, 1.7, 20.7),
    month = rep(c(5,6,7),4),
    week = rep(c(1,2), 6)
)
mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)
```

In Python the best way is to make use of `pivot_table`:

```python
In [38]: df = DataFrame({
    ....:     'x': np.random.uniform(1., 168., 12),
    ....:     'y': np.random.uniform(7., 334., 12),
    ....:     'z': np.random.uniform(1.7, 20.7, 12),
    ....:     'month': [5,6,7]*4,
    ....:     'week': [1,2]*6
    ....: })
    ....:
In [39]: mdf = pd.melt(df, id_vars=['month', 'week'])
In [40]: pd.pivot_table(mdf, values='value', index=['variable','week'],
    ....:     columns=['month'], aggfunc=np.mean)
Out[40]:

<table>
<thead>
<tr>
<th>variable</th>
<th>week</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>58.488427</td>
<td>32.594687</td>
<td>149.838258</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>88.972028</td>
<td>109.131941</td>
<td>59.435615</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>34.774928</td>
<td>173.914293</td>
<td>167.835338</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>126.265859</td>
<td>70.692387</td>
<td>123.789140</td>
</tr>
<tr>
<td>z</td>
<td>1</td>
<td>8.408572</td>
<td>3.194041</td>
<td>9.885935</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>18.922270</td>
<td>9.083850</td>
<td>7.874963</td>
</tr>
</tbody>
</table>
```

Similarly for `dcast` which uses a data.frame called df in R to aggregate information based on Animal and FeedType:

```r
df <- data.frame(
    Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
    'Animal2', 'Animal3'),
    FeedType = c('A', 'B', 'A', 'B', 'B', 'A'),
    Amount = c(10, 7, 4, 2, 5, 6, 2)
)
dcast(df, Animal ~ FeedType, sum, fill=NaN)
```

Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))

Python can approach this in two different ways. Firstly, similar to above using `pivot_table`:
In [41]: df = DataFrame({
 ...: 'Animal': ['Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
 ...: 'Animal2', 'Animal3'],
 ...: 'FeedType': ['A', 'B', 'A', 'A', 'B', 'B', 'A'],
 ...: 'Amount': [10, 7, 4, 2, 5, 6, 2],
 ...: })

In [42]: df.pivot_table(values='Amount', index='Animal', columns='FeedType', aggfunc='sum')
Out[42]:

<table>
<thead>
<tr>
<th>FeedType</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal1</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Animal2</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Animal3</td>
<td>6</td>
<td>NaN</td>
</tr>
</tbody>
</table>

The second approach is to use the `groupby()` method:

In [43]: df.groupby(['Animal', 'FeedType'])['Amount'].sum()
Out[43]:

<table>
<thead>
<tr>
<th>Animal</th>
<th>FeedType</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal1</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>Animal2</td>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>13</td>
</tr>
<tr>
<td>Animal3</td>
<td>A</td>
<td>6</td>
</tr>
</tbody>
</table>

Name: Amount, dtype: int64

For more details and examples see the [reshaping documentation](#) or the [groupby documentation](#).
COMPARISON WITH SQL

Since many potential pandas users have some familiarity with SQL, this page is meant to provide some examples of how various SQL operations would be performed using pandas.

If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the library.

As is customary, we import pandas and numpy as follows:

```python
In [1]: import pandas as pd
In [2]: import numpy as np
```

Most of the examples will utilize the `tips` dataset found within pandas tests. We’ll read the data into a DataFrame called `tips` and assume we have a database table of the same name and structure.

```python
In [3]: url = 'https://raw.github.com/pydata/pandas/master/pandas/tests/data/tips.csv'
In [4]: tips = pd.read_csv(url)
In [5]: tips.head()
```

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>21.01</td>
<td>3.50</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>23.68</td>
<td>3.31</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>24.59</td>
<td>3.61</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
</tbody>
</table>

28.1 SELECT

In SQL, selection is done using a comma-separated list of columns you’d like to select (or a `*` to select all columns):

```
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
```

With pandas, column selection is done by passing a list of column names to your DataFrame:

```python
In [6]: tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
Out[6]:
    total_bill  tip smoker     time
0    16.99    1.01   Female  Dinner
1    10.34    1.66    Male  Dinner
```
Calling the DataFrame without the list of column names would display all columns (akin to SQL’s `*`).

28.2 WHERE

Filtering in SQL is done via a WHERE clause.

```sql
SELECT *
FROM tips
WHERE time = 'Dinner'
LIMIT 5;
```

DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.

```python
In [7]: tips[tips['time'] == 'Dinner'].head(5)
Out[7]:
   total_bill  tip     sex   smoker day  time size
0    16.99    1.01 Female No    Sun Dinner 2
1    10.34    1.66   Male  No    Sun Dinner 3
2    21.01    3.50   Male  No    Sun Dinner 3
3    23.68    3.31   Male  No    Sun Dinner 2
4    24.59    3.61 Female No    Sun Dinner 4
```

The above statement is simply passing a `Series` of True/False objects to the DataFrame, returning all rows with True.

```python
In [8]: is_dinner = tips['time'] == 'Dinner'
In [9]: is_dinner.value_counts()
Out[9]:
   True    176
   False     68
   dtype: int64
In [10]: tips[is_dinner].head(5)
Out[10]:
   total_bill  tip     sex   smoker day  time size
0    16.99    1.01 Female No    Sun Dinner 2
1    10.34    1.66   Male  No    Sun Dinner 3
2    21.01    3.50   Male  No    Sun Dinner 3
3    23.68    3.31   Male  No    Sun Dinner 2
4    24.59    3.61 Female No    Sun Dinner 4
```

Just like SQL’s OR and AND, multiple conditions can be passed to a DataFrame using | (OR) and & (AND).

```python
-- tips of more than $5.00 at Dinner meals
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
```

```python
# tips of more than $5.00 at Dinner meals
In [11]: tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]
Out[11]:
   total_bill  tip     sex   smoker day  time size
0    16.99    1.01 Female No    Sun Dinner 2
1    10.34    1.66   Male  No    Sun Dinner 3
2    21.01    3.50   Male  No    Sun Dinner 3
3    23.68    3.31   Male  No    Sun Dinner 2
4    24.59    3.61 Female No    Sun Dinner 4
```
23 39.42 7.58 Male No Sat Dinner 4
44 30.40 5.60 Male No Sun Dinner 4
47 32.40 6.00 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
59 48.27 6.73 Male No Sat Dinner 4
116 29.93 5.07 Male No Sun Dinner 4
155 29.85 5.14 Female No Sun Dinner 5
170 50.81 10.00 Male Yes Sat Dinner 3
172 7.25 5.15 Male Yes Sun Dinner 2
183 23.17 6.50 Male Yes Sun Dinner 4
211 25.89 5.16 Male Yes Sat Dinner 4
212 48.33 9.00 Male No Sat Dinner 4
214 28.17 6.50 Male Yes Sun Dinner 4
239 29.03 5.92 Male No Sat Dinner 3

-- tips by parties of at least 5 diners OR bill total was more than $45
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;

tips by parties of at least 5 diners OR bill total was more than $45
In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]
Out[12]:
 total_bill tip sex smoker day time size
58 48.27 6.73 Male No Sat Dinner 4
125 29.80 4.20 Female No Thur Lunch 6
141 34.30 6.70 Male No Thur Lunch 6
142 41.19 5.00 Male No Thur Lunch 5
143 27.05 5.00 Female No Thur Lunch 6
155 29.85 5.14 Female No Sun Dinner 5
156 48.17 5.00 Male No Sun Dinner 6
170 50.81 10.00 Male Yes Sat Dinner 3
182 45.35 3.50 Male Yes Sun Dinner 3
185 20.69 5.00 Male No Sun Dinner 5
187 30.46 2.00 Male Yes Sun Dinner 5
212 48.33 9.00 Male No Sat Dinner 4
216 28.15 3.00 Male Yes Sat Dinner 5

NULL checking is done using the `notnull()` and `isnull()` methods.

In [13]: frame = pd.DataFrame({'col1': ['A', 'B', np.NaN, 'C', 'D'], ...
 'col2': ['F', np.NaN, 'G', 'H', 'I']})

In [14]: frame
Out[14]:
 col1 col2
0 A F
1 B NaN
2 NaN G
3 C H
4 D I

Assume we have a table of the same structure as our DataFrame above. We can see only the records where `col2` IS NULL with the following query:

SELECT *
FROM frame
WHERE col2 IS NULL;

In [15]: frame[frame['col2'].isnull()]
Out[15]:
 col1 col2
0 B NaN

Getting items where col1 IS NOT NULL can be done with notnull().

SELECT *
FROM frame
WHERE col1 IS NOT NULL;

In [16]: frame[frame['col1'].notnull()]
Out[16]:
 col1 col2
0 A F
1 B NaN
3 C H
4 D I

28.3 GROUP BY

In pandas, SQL's GROUP BY operations performed using the similarly named groupby() method. groupby() typically refers to a process where we’d like to split a dataset into groups, apply some function (typically aggregation), and then combine the groups together.

A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a query getting us the number of tips left by sex:

```
SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female  87
Male    157
*/
```

The pandas equivalent would be:

```
In [17]: tips.groupby('sex').size()
Out[17]:
   sex
Female  87
Male    157
dtype: int64
```

Notice that in the pandas code we used size() and not count(). This is because count() applies the function to each column, returning the number of not null records within each.

```
In [18]: tips.groupby('sex').count()
Out[18]:
     total_bill  tip  smoker  day  time  size
sex
Female       87    87     87     87     87     87
Male         157   157   157   157   157   157
```
Alternatively, we could have applied the `count()` method to an individual column:

```python
In [19]: tips.groupby('sex')['total_bill'].count()
Out[19]:
sex
Female  87
Male    157
Name: total_bill, dtype: int64
```

Multiple functions can also be applied at once. For instance, say we’d like to see how tip amount differs by day of the week - `agg()` allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to specific columns.

```sql
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
*/
```

```python
In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size})
Out[20]:
tip  day
day
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
```

Grouping by more than one column is done by passing a list of columns to the `groupby()` method.

```sql
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
No Fri  4  2.812500
      Sat 45  3.102889
      Sun 57  3.167895
      Thur 45  2.673778
Yes Fri 15  2.714000
       Sat 42  2.875476
        Sun 19  3.516842
        Thur 17  3.030000
*/
```

```python
In [21]: tips.groupby(['smoker', 'day']).agg({'tip': [np.size, np.mean]})
Out[21]:
tip
size  mean
smoker day
No Fri  4  2.812500
      Sat 45  3.102889
      Sun 57  3.167895
      Thur 45  2.673778
Yes Fri 15  2.714000
       Sat 42  2.875476
```
28.4 JOIN

JOINs can be performed with `join()` or `merge()`. By default, `join()` will join the DataFrames on their indices. Each method has parameters allowing you to specify the type of join to perform (LEFT, RIGHT, INNER, FULL) or the columns to join on (column names or indices).

```
In [22]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
                        'value': np.random.randn(4))

In [23]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
                        'value': np.random.randn(4))
```

Assume we have two database tables of the same name and structure as our DataFrames. Now let’s go over the various types of JOINs.

28.4.1 INNER JOIN

```
SELECT *
FROM df1
INNER JOIN df2
  ON df1.key = df2.key;
```

```
# merge performs an INNER JOIN by default
In [24]: pd.merge(df1, df2, on='key')
Out[24]:
    key  value_x  value_y
0   B  0.651628 -1.952985
1   D -1.545154 -0.768355
2   D -1.545154 -0.692498
```

`merge()` also offers parameters for cases when you’d like to join one DataFrame’s column with another DataFrame’s index.

```
In [25]: indexed_df2 = df2.set_index('key')

In [26]: pd.merge(df1, indexed_df2, left_on='key', right_index=True)
Out[26]:
    key  value_x  value_y
0   B  0.651628 -1.952985
1   D -1.545154 -0.768355
2   D -1.545154 -0.692498
```

28.4.2 LEFT OUTER JOIN

```
-- show all records from df1
SELECT *
FROM df1
```
LEFT OUTER JOIN

```python
df1
    ON df1.key = df2.key;
```

show all records from df1
```
In [27]: pd.merge(df1, df2, on='key', how='left')
Out[27]:
   key  value_x  value_y
0  A  -0.511774  NaN
1  B   0.651628 -1.952985
2  C  -0.530157   NaN
3  D  -1.545154  -0.768355
4  D  -1.545154  -0.692498
```

28.4.3 RIGHT JOIN

-- show all records from df2
```
SELECT *
FROM df1
RIGHT OUTER JOIN df2
    ON df1.key = df2.key;
```

show all records from df2
```
In [28]: pd.merge(df1, df2, on='key', how='right')
Out[28]:
   key  value_x  value_y
0  B   0.651628 -1.952985
1  D  -1.545154  -0.768355
2  D  -1.545154  -0.692498
3  E   NaN  -0.378437
```

28.4.4 FULL JOIN

pandas also allows for **FULL JOINs**, which display both sides of the dataset, whether or not the joined columns find a match. As of writing, FULL JOINs are not supported in all RDBMS (MySQL).

-- show all records from both tables
```
SELECT *
FROM df1
FULL OUTER JOIN df2
    ON df1.key = df2.key;
```

show all records from both frames
```
In [29]: pd.merge(df1, df2, on='key', how='outer')
Out[29]:
   key  value_x  value_y
0  A  -0.511774  NaN
1  B   0.651628 -1.952985
2  C  -0.530157   NaN
3  D  -1.545154  -0.768355
4  D  -1.545154  -0.692498
5  E   NaN  -0.378437
```
28.5 UNION

UNION ALL can be performed using `concat()`.

```python
In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
                           'rank': range(1, 4)})
In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
                           'rank': [1, 4, 5]})
```

```sql
SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
```

```sql
/*
      city  rank
    Chicago 1
  San Francisco  2
New York City  3
    Chicago 1
      Boston  4
Los Angeles  5
*/
```

```python
In [32]: pd.concat([df1, df2]).drop_duplicates()
```

```python
Out[32]:
   city     rank
0  Chicago     1
1  San Francisco  2
2    New York City  3
0  Chicago     1
1      Boston     4
2    Los Angeles  5
```

SQL’s UNION is similar to UNION ALL, however UNION will remove duplicate rows.

```sql
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
```

```sql
-- notice that there is only one Chicago record this time
/*
      city  rank
    Chicago 1
  San Francisco  2
New York City  3
      Boston  4
Los Angeles  5
*/
```

In pandas, you can use `concat()` in conjunction with `drop_duplicates()`.

```python
In [33]: pd.concat([df1, df2]).drop_duplicates()
```

```python
Out[33]:
   city     rank
0  Chicago     1
1  San Francisco  2
2    New York City  3
0  Chicago     1
1      Boston     4
2    Los Angeles  5
```
0 Chicago 1
1 San Francisco 2
2 New York City 3
1 Boston 4
2 Los Angeles 5

28.6 UPDATE

28.7 DELETE

29.1 Input/Output

29.1.1 Pickling

```python
read_pickle(path)  # Load pickled pandas object (or any other pickled object) from the specified file path
```

pandas.read_pickle

Load pickled pandas object (or any other pickled object) from the specified file path

Warning: Loading pickled data received from untrusted sources can be unsafe. See: http://docs.python.org/2.7/library/pickle.html

Parameters

- **path** : string
 - File path

Returns

- **unpickled** : type of object stored in file

29.1.2 Flat File

```python
read_table(filepath_or_buffer[, sep, ...])  # Read general delimited file into DataFrame
read_csv(filepath_or_buffer[, sep, dialect, ...])  # Read CSV (comma-separated) file into DataFrame
read_fwf(filepath_or_buffer[, colspecs, widths])  # Read a table of fixed-width formatted lines into DataFrame
```

Read general delimited file into DataFrame

Read CSV (comma-separated) file into DataFrame

Read a table of fixed-width formatted lines into DataFrame
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.read_table

pandas.read_table(filepath_or_buffer, sep='\t', dialect=None, compression=None, doublequote=True, escapechar=None, quotechar='', quoting=0, skipinitialspace=False, lineterminator=None, header='infer', index_col=None, names=None, prefix=None, skiprows=None, skipfooter=None, skip_footer=0, na_values=None, na_values=None, true_values=None, false_values=None, delimiter=None, converters=None, dtype=None, usecols=None, engine=None, delim_whitespace=False, as_recarray=False, na_filter=True, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, warn_bad_lines=True, error_bad_lines=True, keep_default_na=False, thousands=None, comment=None, decimal='\.', encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_cols=False, infer_datetime_format=False)

Read general delimited file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters

- filepath_or_buffer : string or file handle / StringIO. The string could be
 a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
 expected. For instance, a local file could be file:///localhost/path/to/table.csv

- sep : string, default t (tab-stop)
 Delimiter to use. Regular expressions are accepted.

- engine : {'c', 'python'}
 Parser engine to use. The C engine is faster while the python engine is currently more
 feature-complete.

- lineterminator : string (length 1), default None
 Character to break file into lines. Only valid with C parser

- quotechar : string (length 1)
 The character used to denote the start and end of a quoted item. Quoted items can
 include the delimiter and it will be ignored.

- quoting : int or csv.QUOTE_* instance, default None
 Control field quoting behavior per csv.QUOTE_* constants. Use one of
 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
 QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

- skipinitialspace : boolean, default False
 Skip spaces after delimiter

- escapechar : string (length 1), default None
 One-character string used to escape delimiter when quoting is QUOTE_NONE.

- dtype : Type name or dict of column -> type
 Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with
 engine='python')

- compression : {'gzip', 'bz2', None}, default None
 For on-the-fly decompression of on-disk data
dialect : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

header : int row number(s) to use as the column names, and the start of the

data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to
be able to replace existing names. The header can be a list of integers that specify row
locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not
specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter
ignores commented lines, so header=0 denotes the first line of data rather than the first
line of the file.

skiprows : list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex
is used. If you have a malformed file with delimiters at the end of each line, you might
consider index_col=False to force pandas to _not_ use the first column as the index (row
names)

names : array-like

List of column names to use. If file contains no header row, then you should explicitly
pass header=None

prefix : string or None (default)

Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ...

na_values : list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

true_values : list

Values to consider as True

false_values : list

Values to consider as False

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are over-
ridden, otherwise they’re appended to

parse_dates : boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path
exists for iso8601-formatted dates.

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original
columns.

date_parser : function
Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

dayfirst : boolean, default False

DD/MM format dates, international and European format

thousands : str, default None

Thousands separator

comment : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Also, fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing ‘#empty

1,2,3

a,b,c' with `header=0` will

result in ‘1,2,3’ being treated as the header.

decimal : str, default ‘.’

Character to recognize as decimal point. E.g. use ‘,’ for European data

nrows : int, default None

Number of rows of file to read. Useful for reading pieces of large files

iterator : boolean, default False

Return TextFileReader object

chunksize : int, default None

Return TextFileReader object for iteration

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c')

converters : dict. optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

delimiter : string, default None

Alternative argument name for sep. Regular expressions are accepted.

encoding : string, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’)

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

na_filter : boolean, default True
Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file.

usecols: array-like

Return a subset of the columns. Results in much faster parsing time and lower memory usage.

mangle_dupe_cols: boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’

tupleize_cols: boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines: boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

warn_bad_lines: boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

infer_datetime_format: boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

Returns result : DataFrame or TextParser

pandas.read_csv

`pandas.read_csv(filepath_or_buffer, sep=',', dialect=None, compression=None, doublequote=True, escapechar=None, quoting=0, skipinitialspace=False, lineterminator=None, header='infer', index_col=None, names=None, prefix=None, skiprows=None, skipfooter=None, skip_footer=0, na_values=None, false_values=None, true_values=None, converters=None, dtype=None, usecols=None, engine=None, delimiterspace=False, as_recarray=False, na_filter=True, compact_ints=False, use_unsigned=False, lang=tokenizer.lang, low_memory=True, buffer_lines=None, warn_bad_lines=True, error_bad_lines=True, keep_default_na=True, thousands=None, comment=None, decimal='.', parse_dates=False, keep_date_col=False, dayfirst=False, date_parser=None, memory_map=False, nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_cols=False, infer_datetime_format=False)`

Read CSV (comma-separated) file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters

filepath_or_buffer: string or file handle / StringIO. The string could be

a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file:///localhost/path/to/table.csv

sep: string, default ','
Delimiter to use. If sep is None, will try to automatically determine this. Regular expressions are accepted.

engine : {'c', 'python'}

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

lineterminator : string (length 1), default None

Character to break file into lines. Only valid with C parser

quotechar : string (length 1)

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default None

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

skipinitialspace : boolean, default False

Skip spaces after delimiter

escapechar : string (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

dtype : Type name or dict of column -> type

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python')

compression : {'gzip', 'bz2', None}, default None

For on-the-fly decompression of on-disk data

dialect : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

header : int row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines, so header=0 denotes the first line of data rather than the first line of the file.

skiprows : list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

names : array-like
List of column names to use. If file contains no header row, then you should explicitly pass header=None

prefix: string or None (default)

Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ...

na_values: list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

true_values: list

Values to consider as True

false_values: list

Values to consider as False

keep_default_na: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they are appended to

parse_dates: boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. ‘foo’ : [1, 3] -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates.

keep_date_col: boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser: function

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

dayfirst: boolean, default False

DD/MM format dates, international and European format

thousands: str, default None

Thousands separator

comment: str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Also, fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing ‘#empty 1,2,3 a,b,c’ with ‘header=0’ will result in ‘1,2,3’ being treated as the header.

decimal: str, default ‘.’

Character to recognize as decimal point. E.g. use ‘,’ for European data

nrows: int, default None
Number of rows of file to read. Useful for reading pieces of large files

iterator : boolean, default False

Return TextFileReader object

chunksize : int, default None

Return TextFileReader object for iteration

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c')

converters : dict, optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

delimiter : string, default None

Alternative argument name for sep. Regular expressions are accepted.

encoding : string, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’)

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

na_filter : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

usecols : array-like

Return a subset of the columns. Results in much faster parsing time and lower memory usage.

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser)

infer_datetime_format : boolean, default False
If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

Returns result : DataFrame or TextParser

pandas.read_fwf

```python
pandas.read_fwf(filepath_or_buffer, colspecs='infer', widths=None, **kwds)
```

Read a table of fixed-width formatted lines into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters filepath_or_buffer : string or file handle / StringIO. The string could be

- a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file:///localhost/path/to/table.csv

- colspecs : list of pairs (int, int) or ‘infer’. optional

 A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to)). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data (default=’infer’).

- widths : list of ints. optional

 A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

- lineterminator : string (length 1), default None

 Character to break file into lines. Only valid with C parser

- quotechar : string (length 1)

 The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

- quoting : int or csv.QUOTE_* instance, default None

 Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

- skipinitialspace : boolean, default False

 Skip spaces after delimiter

- escapechar : string (length 1), default None

 One-character string used to escape delimiter when quoting is QUOTE_NONE.

- dtype : Type name or dict of column -> type

 Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine=‘python’)

- compression : {'gzip', 'bz2', None}, default None

 For on-the-fly decompression of on-disk data

- dialect : string or csv.Dialect instance, default None

 If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details
header : int row number(s) to use as the column names, and the start of the
data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to
be able to replace existing names. The header can be a list of integers that specify row
locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not
specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter
ignores commented lines, so header=0 denotes the first line of data rather than the first
line of the file.

skiprows : list-like or integer
Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

index_col : int or sequence or False, default None
Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex
is used. If you have a malformed file with delimiters at the end of each line, you might
consider index_col=False to force pandas to _not_ use the first column as the index (row
names)

names : array-like
List of column names to use. If file contains no header row, then you should explicitly
pass header=None

prefix : string or None (default)
Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ...

na_values : list-like or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA
values

true_values : list
Values to consider as True

false_values : list
Values to consider as False

keep_default_na : bool, default True
If na_values are specified and keep_default_na is False the default NaN values are over-
ridden, otherwise they’re appended to

parse_dates : boolean, list of ints or names, list of lists, or dict
If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path
exists for iso8601-formatted dates.

keep_date_col : boolean, default False
If True and parse_dates specifies combining multiple columns then keep the original
columns.

date_parser : function
Function to use for converting a sequence of string columns to an array of datetime
instances. The default uses dateutil.parser.parser to do the conversion.

dayfirst : boolean, default False
pandas: powerful Python data analysis toolkit, Release 0.14.1

DD/MM format dates, international and European format

thousands: str, default None

Thousands separator

comment: str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Also, fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if comment='#', parsing `#empty 1,2,3` with `header=0` will result in `'1,2,3'` being treated as the header.

decimal: str, default `.`

Character to recognize as decimal point. E.g. use `;` for European data

nrows: int, default None

Number of rows of file to read. Useful for reading pieces of large files

iterator: boolean, default False

Return TextFileReader object

chunksize: int, default None

Return TextFileReader object for iteration

skipfooter: int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

converters: dict, optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

verbose: boolean, default False

Indicate number of NA values placed in non-numeric columns

delimiter: string, default None

Alternative argument name for sep. Regular expressions are accepted.

encoding: string, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’)

squeeze: boolean, default False

If the parsed data only contains one column then return a Series

na_filter: boolean, default True

Detect missing value markers (empty strings and the value of `na_values`). In data without any NAs, passing `na_filter=False` can improve the performance of reading a large file

usecols: array-like
Return a subset of the columns. Results in much faster parsing time and lower memory usage.

mangle_dupe_cols: boolean, default True

Duplicate columns will be specified as ‘X.0’...'X.N’, rather than ‘X’...'X’

tupleize_cols: boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines: boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

warn_bad_lines: boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

infer_datetime_format: boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

Returns result: DataFrame or TextParser

Also, ‘delimiter’ is used to specify the filler character of the fields if it is not spaces (e.g., ‘~’).

29.1.3 Clipboard

`read_clipboard(**kwargs)` Read text from clipboard and pass to read_table.

pandas.read_clipboard

`pandas.read_clipboard(**kwargs)`

Read text from clipboard and pass to read_table. See read_table for the full argument list

If unspecified, `sep` defaults to ‘s+’

Returns parsed: DataFrame

29.1.4 Excel

`read_excel(io[, sheetname])` Read an Excel table into a pandas DataFrame

`ExcelFile.parse([sheetname, header, ...])` Read an Excel table into DataFrame

pandas.read_excel

`pandas.read_excel(io, sheetname=0, **kwds)`

Read an Excel table into a pandas DataFrame
Parameters

- **io**: string, file-like object, or xlrd workbook.

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx

- **sheetname**: string or int, default 0

 Name of Excel sheet or the page number of the sheet

- **header**: int, default 0

 Row to use for the column labels of the parsed DataFrame

- **skiprows**: list-like

 Rows to skip at the beginning (0-indexed)

- **skip footer**: int, default 0

 Rows at the end to skip (0-indexed)

- **index_col**: int, default None

 Column to use as the row labels of the DataFrame. Pass None if there is no such column

- **parse_cols**: int or list, default None

 - If None then parse all columns,
 - If int then indicates last column to be parsed
 - If list of ints then indicates list of column numbers to be parsed
 - If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

- **na_values**: list-like, default None

 List of additional strings to recognize as NA/Nan

- **keep_default_na**: bool, default True

 If na_values are specified and keep-default_na is False the default NaN values are over-ridden, otherwise they're appended to

- **verbose**: boolean, default False

 Indicate number of NA values placed in non-numeric columns

- **engine**: string, default None

 If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd

- **convert_float**: boolean, default True

 Convert integral floats to int (i.e., 1.0 → 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally

- **has_index_names**: boolean, default False

 True if the cols defined in index_col have an index name and are not in the header. Index name will be placed on a separate line below the header.

Returns**

- **parsed**: DataFrame

 DataFrame from the passed in Excel file
ExcelFile.parse(sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, chunksize=None, convert_float=True, has_index_names=False, **kwds)

Read an Excel table into DataFrame

Parameters

- **sheetname**: string or integer

 Name of Excel sheet or the page number of the sheet

- **header**: int, default 0

 Row to use for the column labels of the parsed DataFrame

- **skiprows**: list-like

 Rows to skip at the beginning (0-indexed)

- **skip_footer**: int, default 0

 Rows at the end to skip (0-indexed)

- **index_col**: int, default None

 Column to use as the row labels of the DataFrame. Pass None if there is no such column

- **parse_cols**: int or list, default None

 - If None then parse all columns

 - If int then indicates last column to be parsed

 - If list of ints then indicates list of column numbers to be parsed

 - If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

- **parse_dates**: boolean, default False

 Parse date Excel values,

- **date_parser**: function default None

 Date parsing function

- **na_values**: list-like, default None

 List of additional strings to recognize as NA/NaN

- **thousands**: str, default None

 Thousands separator

- **chunksize**: int, default None

 Size of file chunk to read for lazy evaluation.

- **convert_float**: boolean, default True

 Convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally.

- **has_index_names**: boolean, default False

 True if the cols defined in index_col have an index name and are not in the header

Returns **parsed**: DataFrame

DataFrame parsed from the Excel file
29.1.5 JSON

```
read_json([path_or_buf, orient, typ, dtype, ...])  Convert a JSON string to pandas object
```

pandas.read_json

```
pandas.read_json (path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, 
convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, 
date_unit=None)
```

Convert a JSON string to pandas object

Parameters

filepath_or_buffer : a valid JSON string or file-like

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be `file://localhost/path/to/table.json`

orient

- **Series**
 - default is ‘index’
 - allowed values are: {‘split’, ‘records’, ‘index’}
 - The Series index must be unique for orient ‘index’.
- **DataFrame**
 - default is ‘columns’
 - allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’}
 - The DataFrame index must be unique for orients ‘index’ and ‘columns’.
 - The DataFrame columns must be unique for orients ‘index’, ‘columns’, and ‘records’.
- The format of the JSON string
 - split : dict like {index -> [index], columns -> [columns], data -> [values]}
 - records : list like [{column -> value}, ... , {column -> value}]
 - index : dict like {index -> {column -> value}}
 - columns : dict like {column -> {index -> value}}
 - values : just the values array

typ : type of object to recover (series or frame), default ‘frame’

dtype : boolean or dict, default True

If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data.

convert_axes : boolean, default True

Try to convert the axes to the proper dtypes.

convert_dates : boolean, default True

List of columns to parse for dates; If True, then try to parse datelike columns default is True
keep_default_dates : boolean, default True.

If parsing dates, then parse the default datelike columns

numpy : boolean, default False

Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.

precise_float : boolean, default False.

Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality

date_unit : string, default None

The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of 's', 'ms', 'us' or 'ns' to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.

Returns

result : Series or DataFrame

29.1.6 HTML

read_html(io[, match, flavor, header, ...]) Read HTML tables into a list of DataFrame objects.

pandas.read_html

```
pandas.read_html(io, match='.', +, flavor=None, header=None, index_col=None, skiprows=None, infer_types=None, attrs=None, parse_dates=False, tupleize_cols=False, thousands=' ', encoding=None)
```

Read HTML tables into a list of DataFrame objects.

Parameters

io : str or file-like

A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts the http, ftp and file url protocols. If you have a URL that starts with 'https' you might try removing the 's'.

match : str or compiled regular expression, optional

The set of tables containing text matching this regex or string will be returned. Unless the HTML is extremely simple you will probably need to pass a non-empty string here. Defaults to '.+' (match any non-empty string). The default value will return all tables contained on a page. This value is converted to a regular expression so that there is consistent behavior between Beautiful Soup and lxml.

flavor : str or None, container of strings

The parsing engine to use. 'bs4' and 'html5lib' are synonymous with each other, they are both there for backwards compatibility. The default of None tries to use lxml to parse and if that fails it falls back on bs4 + html5lib.

header : int or list-like or None, optional

The row (or list of rows for a MultiIndex) to use to make the columns headers.

index_col : int or list-like or None, optional

The column (or list of columns) to use to create the index.
skiprows: int or list-like or slice or None, optional

0-based. Number of rows to skip after parsing the column integer. If a sequence of integers or a slice is given, will skip the rows indexed by that sequence. Note that a single element sequence means ‘skip the nth row’ whereas an integer means ‘skip n rows’.

infer_types: bool, optional

This option is deprecated in 0.13, an will have no effect in 0.14. It defaults to True.

attrs: dict or None, optional

This is a dictionary of attributes that you can pass to use to identify the table in the HTML. These are not checked for validity before being passed to lxml or BeautifulSoup. However, these attributes must be valid HTML table attributes to work correctly. For example,

```python
attrs = {'id': 'table'}
```

is a valid attribute dictionary because the ‘id’ HTML tag attribute is a valid HTML attribute for any HTML tag as per this document.

```python
attrs = {'asdf': 'table'}
```

is not a valid attribute dictionary because ‘asdf’ is not a valid HTML attribute even if it is a valid XML attribute. Valid HTML 4.01 table attributes can be found here. A working draft of the HTML 5 spec can be found here. It contains the latest information on table attributes for the modern web.

parse_dates: bool, optional

See read_csv() for more details. In 0.13, this parameter can sometimes interact strangely with infer_types. If you get a large number of NaT values in your results, consider passing infer_types=False and manually converting types afterwards.

tupleize_cols: bool, optional

If False try to parse multiple header rows into a MultiIndex, otherwise return raw tuples. Defaults to False.

thousands: str, optional

Separator to use to parse thousands. Defaults to ‘,’.

encoding: str or None, optional

The encoding used to decode the web page. Defaults to None. ‘None‘ preserves the previous encoding behavior, which depends on the underlying parser library (e.g., the parser library will try to use the encoding provided by the document).

Returns dfs: list of DataFrames

See Also:
pandas.io.parsers.read_csv

Notes

Before using this function you should read the gotchas about the HTML parsing libraries.
Expect to do some cleanup after you call this function. For example, you might need to manually assign column names if the column names are converted to NaN when you pass the header=0 argument. We try to assume as little as possible about the structure of the table and push the idiosyncrasies of the HTML contained in the table to the user.

This function searches for `<table>` elements and only for `<tr>` and `<th>` rows and `<td>` elements within each `<tr>` or `<th>` element in the table. `<td>` stands for “table data”.

Similar to `read_csv()` the header argument is applied after `skiprows` is applied.

This function will *always* return a list of `DataFrame` or it will fail, e.g., it will *not* return an empty list.

Examples

See the `read_html documentation in the IO section of the docs` for some examples of reading in HTML tables.

29.1.7 HDFStore: PyTables (HDF5)

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read_hdf(path_or_buf, key, **kwargs)</code></td>
<td>read from the store, close it if we opened it</td>
</tr>
<tr>
<td><code>HDFStore.put(key, value[, format, append])</code></td>
<td>Store object in HDFStore</td>
</tr>
<tr>
<td><code>HDFStore.append(key, value[, format, ...])</code></td>
<td>Append to Table in file. Node must already exist and be Table</td>
</tr>
<tr>
<td><code>HDFStore.get(key)</code></td>
<td>Retrieve pandas object stored in file</td>
</tr>
<tr>
<td><code>HDFStore.select(key[, where, start, stop, ...])</code></td>
<td>Retrieve pandas object stored in file, optionally based on where criteria</td>
</tr>
</tbody>
</table>

pandas.read_hdf

`pandas.read_hdf(path_or_buf, key, **kwargs)`

read from the store, close it if we opened it

Retrieve pandas object stored in file, optionally based on where criteria

Parameters

- **path_or_buf**: path (string), or buffer to read from
 - `key` : group identifier in the store
 - `where` : list of Term (or convertible) objects, optional
 - `start` : optional, integer (defaults to None), row number to start
 - `stop` : optional, integer (defaults to None), row number to stop
 - `columns` : optional, a list of columns that if not None, will limit the return columns
 - `iterator` : optional, boolean, return an iterator, default `False`
 - `chunksize` : optional, nrows to include in iteration, return an iterator
 - `auto_close` : optional, boolean, should automatically close the store when finished, default is `False`

Returns

The selected object
pandas.HDFStore.put

HDFStore.put (key, value, format=None, append=False, **kwargs)
Store object in HDFStore

Parameters

key : object
value : {Series, DataFrame, Panel}
format : ‘fixed(f)’|‘table(t)’, default is ‘fixed’
 fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
 table(t) [Table format] Write as a PyTables Table structure which may perform worse
 but allow more flexible operations like searching / selecting subsets of the data
append : boolean, default False
 This will force Table format, append the input data to the existing.
encoding : default None, provide an encoding for strings
dropna : boolean, default True, do not write an ALL nan row to
 the store settable by the option ‘io.hdf.dropna_table’

pandas.HDFStore.append

HDFStore.append (key, value, format=None, append=True, columns=None, dropna=None, **kwargs)
Append to Table in file. Node must already exist and be Table format.

Parameters

key : object
value : {Series, DataFrame, Panel, Panel4D}
format: ‘table’ is the default
 table(t) [table format] Write as a PyTables Table structure which may perform worse
 but allow more flexible operations like searching / selecting subsets of the data
append : boolean, default True, append the input data to the
 existing
data_columns : list of columns to create as data columns, or True to
 use all columns
min_itemsize : dict of columns that specify minimum string sizes
nan_rep : string to use as string nan represenation
chunksize : size to chunk the writing
expectedrows : expected TOTAL row size of this table
encoding : default None, provide an encoding for strings
dropna : boolean, default True, do not write an ALL nan row to
 the store settable by the option ‘io.hdf.dropna_table’

Notes

—–
Does *not* check if data being appended overlaps with existing

29.1. Input/Output
data in the table, so be careful

pandas.HDFStore.get

HDFStore.get(key)
Retrieve pandas object stored in file

Parameters
- **key**: object

Returns
- **obj**: type of object stored in file

pandas.HDFStore.select

HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False, **kwargs)
Retrieve pandas object stored in file, optionally based on where criteria

Parameters
- **key**: object
 - **where**: list of Term (or convertable) objects, optional
 - **start**: integer (defaults to None), row number to start selection
 - **stop**: integer (defaults to None), row number to stop selection
 - **columns**: a list of columns that if not None, will limit the return
 - **columns**
 - **iterator**: boolean, return an iterator, default False
 - **chunksize**: nrows to include in iteration, return an iterator
 - **auto_close**: boolean, should automatically close the store when finished, default is False

Returns
- The selected object

29.1.8 SQL

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>read_sql_table</td>
<td>Read SQL database table into a DataFrame.</td>
</tr>
<tr>
<td>read_sql_query</td>
<td>Read SQL query into a DataFrame.</td>
</tr>
<tr>
<td>read_sql</td>
<td>Read SQL query or database table into a DataFrame.</td>
</tr>
</tbody>
</table>

pandas.read_sql_table

pandas.read_sql_table(table_name, con[, index_col, ...])
Read SQL database table into a DataFrame.

Given a table name and an SQLAlchemy engine, returns a DataFrame. This function does not support DBAPI connections.

Parameters
- **table_name**: string
 - Name of SQL table in database
- **con**: SQLAlchemy engine
Sqlite DBAPI connection mode not supported

index_col: string, optional
Column to set as index

coerce_float: boolean, default True
Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision.

parse_dates: list or dict
- List of column names to parse as dates
- Dict of `{column_name: format string}` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of `{column_name: arg dict}`, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

columns: list
List of column names to select from sql table

Returns DataFrame

See Also:

read_sql_query Read SQL query into a DataFrame.

read_sql

pandas.read_sql_query

pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None)

Read SQL query into a DataFrame.

Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default integer index will be used.

Parameters

sql: string
SQL query to be executed

con: SQLAlchemy engine or sqlite3 DBAPI2 connection
Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

index_col: string, optional
Column name to use as index for the returned DataFrame object.

coerce_float: boolean, default True
Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

params: list, tuple or dict, optional
List of parameters to pass to execute method.
parse_dates : list or dict

- List of column names to parse as dates
- Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

Returns DataFrame

See Also:

read_sql_table Read SQL database table into a DataFrame

read_sql

pandas.read_sql

pandas.read_sql(sql, con=None, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None)

Read SQL query or database table into a DataFrame.

Parameters sql : string

SQL query to be executed or database table name.

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)

Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

index_col : string, optional
column name to use as index for the returned DataFrame object.

coerce_float : boolean, default True

Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

params : list, tuple or dict, optional

List of parameters to pass to execute method.

parse_dates : list or dict

- List of column names to parse as dates
- Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

columns : list

List of column names to select from sql table (only used when reading a table).
Returns
DataFrame

See Also:

- `read_sql_table`
 Read SQL database table into a DataFrame
- `read_sql_query`
 Read SQL query into a DataFrame

Notes

This function is a convenience wrapper around `read_sql_table` and `read_sql_query` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query).

29.1.9 Google BigQuery

- `read_gbq(query[, project_id, index_col, ...])`
 Load data from Google BigQuery.
- `to_gbq(dataframe, destination_table[, ...])`
 Write a DataFrame to a Google BigQuery table.

pandas.io.gbq.read_gbq

`pandas.io.gbq.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False)`
Load data from Google BigQuery.

THIS IS AN EXPERIMENTAL LIBRARY

The main method a user calls to execute a Query in Google BigQuery and read results into a pandas DataFrame using the v2 Google API client for Python. Documentation for the API is available at https://developers.google.com/api-client-library/python/. Authentication to the Google BigQuery service is via OAuth 2.0 using the product name ‘pandas GBQ’.

Parameters

- **query** : str
 SQL-Like Query to return data values
- **project_id** : str
 Google BigQuery Account project ID.
- **index_col** : str (optional)
 Name of result column to use for index in results DataFrame
- **col_order** : list(str) (optional)
 List of BigQuery column names in the desired order for results DataFrame
- **reauth** : boolean (default False)
 Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

Returns

- **df** : DataFrame
 DataFrame representing results of query
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.io.gbq.to_gbq

```python
pandas.io.gbq.to_gbq(dataframe, destination_table, project_id=None, chunksize=10000, verbose=True, reauth=False)
```

Write a DataFrame to a Google BigQuery table.

THIS IS AN EXPERIMENTAL LIBRARY

If the table exists, the dataframe will be written to the table using the defined table schema and column types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks data into a default chunk size of 10,000. Failures return the complete error response which can be quite long depending on the size of the insert. There are several important limitations of the Google streaming API which are detailed at: https://developers.google.com/bigquery/streaming-data-into-bigquery.

Parameters

- **dataframe**: DataFrame
 - DataFrame to be written
- **destination_table**: string
 - Name of table to be written, in the form ‘dataset.tablename’
- **project_id**: str
 - Google BigQuery Account project ID.
- **chunksize**: int (default 10000)
 - Number of rows to be inserted in each chunk from the dataframe.
- **verbose**: boolean (default True)
 - Show percentage complete
- **reauth**: boolean (default False)
 - Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

29.1.10 STATA

```python
read_stata(filepath_or_buffer[,...])  # Read Stata file into DataFrame
```

pandas.read_stata

```python
pandas.read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encoding=None, index=None)
```

Read Stata file into DataFrame

Parameters

- **filepath_or_buffer**: string or file-like object
 - Path to .dta file or object implementing a binary read() functions
- **convert_dates**: boolean, defaults to True
 - Convert date variables to DataFrame time values
- **convert_categoricals**: boolean, defaults to True
 - Read value labels and convert columns to Categorical/Factor variables
- **encoding**: string, None or encoding
 - String or None or encoding for encoding
Encoding used to parse the files. Note that Stata doesn’t support unicode. None defaults to cp1252.

index: identifier of index column

identifier of column that should be used as index of the DataFrame

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StataReader.data()</td>
<td>Reads observations from Stata file, converting them into a dataframe</td>
</tr>
<tr>
<td>StataReader.data_label()</td>
<td>Returns data label of Stata file</td>
</tr>
<tr>
<td>StataReader.value_labels()</td>
<td>Returns a dict, associating each variable name a dict, associating</td>
</tr>
<tr>
<td>StataReader.variable_labels()</td>
<td>Returns variable labels as a dict, associating each variable name</td>
</tr>
<tr>
<td>StataWriter.write_file()</td>
<td></td>
</tr>
</tbody>
</table>

pandas.io.stata.StataReader.data

```python
StataReader.data(convert_dates=True, convert_categoricals=True, index=None)
```

Reads observations from Stata file, converting them into a dataframe

Parameters

- `convert_dates`: boolean, defaults to True

 Convert date variables to DataFrame time values

- `convert_categoricals`: boolean, defaults to True

 Read value labels and convert columns to Categorical/Factor variables

- `index`: identifier of index column

 identifier of column that should be used as index of the DataFrame

Returns

- `y`: DataFrame instance

pandas.io.stata.StataReader.data_label

```python
StataReader.data_label()
```

Returns data label of Stata file

pandas.io.stata.StataReader.value_labels

```python
StataReader.variable_labels()
```

Returns a dict, associating each variable name with a dict, associating each value its corresponding label

pandas.io.stata.StataReader.variable_labels

```python
StataReader.value_labels()
```

Returns variable labels as a dict, associating each variable name with corresponding label

pandas.io.stata.StataWriter.write_file

```python
StataWriter.write_file()
```
29.2 General functions

29.2.1 Data manipulations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>melt</td>
<td>“Unpivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.</td>
</tr>
<tr>
<td>pivot</td>
<td>Produce ‘pivot’ table based on 3 columns of this DataFrame.</td>
</tr>
<tr>
<td>pivot_table</td>
<td>Create a spreadsheet-style pivot table as a DataFrame. The levels in the</td>
</tr>
<tr>
<td>crosstab</td>
<td>Compute a simple cross-tabulation of two (or more) factors.</td>
</tr>
<tr>
<td>cut</td>
<td>Return indices of half-open bins to which each value of x belongs.</td>
</tr>
<tr>
<td>qcut</td>
<td>Quantile-based discretization function.</td>
</tr>
<tr>
<td>merge</td>
<td>Merge DataFrame objects by performing a database-style join operation by</td>
</tr>
<tr>
<td>concat</td>
<td>Concatenate pandas objects along a particular axis with optional set logic along the other axes.</td>
</tr>
<tr>
<td>get_dummies</td>
<td>Convert categorical variable into dummy/indicator variables</td>
</tr>
<tr>
<td>factorize</td>
<td>Encode input values as an enumerated type or categorical variable</td>
</tr>
</tbody>
</table>

pandas.melt

`pandas.melt(frame[, id_vars, value_vars, var_name, ...])`

“Unpivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Parameters

- `frame` : DataFrame
 - `id_vars` : tuple, list, or ndarray, optional
 - Column(s) to use as identifier variables.
 - `value_vars` : tuple, list, or ndarray, optional
 - Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`.
 - `var_name` : scalar
 - Name to use for the ‘variable’ column. If None it uses `frame.columns.name` or ‘variable’.
 - `value_name` : scalar, default ‘value’
 - Name to use for the ‘value’ column.
 - `col_level` : int or string, optional
 - If columns are a MultiIndex then use this level to melt.

See Also:

- `pivot_table`, `DataFrame.pivot`

Examples

```python
>>> import pandas as pd
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
...                     'B': {0: 1, 1: 3, 2: 5},
...                     'C': {0: 2, 1: 4, 2: 6}})
```
>>> df
 A B C
0 a 1 2
1 b 3 4
2 c 5 6

>>> pd.melt(df, id_vars=['A'], value_vars=['B'])
 A variable value
0 a B 1
1 b B 3
2 c B 5

>>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C'])
 A variable value
0 a B 1
1 b B 3
2 c B 5
3 a C 2
4 b C 4
5 c C 6

The names of ‘variable’ and ‘value’ columns can be customized:

>>> pd.melt(df, id_vars=['A'], value_vars=['B'],
 var_name='myVarname', value_name='myValname')
 A myVarname myValname
0 a B 1
1 b B 3
2 c B 5

If you have multi-index columns:

>>> df.columns = [list('ABC'), list('DEF')]

>>> df
 A B C D E F
0 a 1 2 0 1 2
1 b 3 4 0 1 2
2 c 5 6 0 1 2

>>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B'])
 A variable value
0 a B 1
1 b B 3
2 c B 5

>>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')])
 (A, D) variable_0 variable_1 value
0 a B E 1
1 b B E 3
2 c B E 5

pandas.pivot

pandas.pivot(index, columns, values)

Produce ‘pivot’ table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values.
Parameters

index : ndarray

Labels to use to make new frame’s index

columns : ndarray

Labels to use to make new frame’s columns

values : ndarray

Values to use for populating new frame’s values

Returns DataFrame

Notes

Obviously, all 3 of the input arguments must have the same length

pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.pivot_table

*pandas.pivot_table(*args, **kwargs)*

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame

Parameters

data : DataFrame

values : column to aggregate, optional

index : a column, Grouper, array which has the same length as data, or list of them.

Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.

columns : a column, Grouper, array which has the same length as data, or list of them.

Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.

aggfunc : function, default numpy.mean, or list of functions

If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)

fill_value : scalar, default None

Value to replace missing values with

margins : boolean, default False

Add all row / columns (e.g. for subtotal / grand totals)

dropna : boolean, default True

Do not include columns whose entries are all NaN

rows : kwarg only alias of index [deprecated]

cols : kwarg only alias of columns [deprecated]

Returns **table** : DataFrame
Examples

```python
>>> df
    A   B     C   D
 0  foo one small  1
 1  foo one large  2
 2  foo one large  2
 3  foo two small  3
 4  foo two small  3
 5  bar one large  4
 6  bar one small  5
 7  bar two small  6
 8  bar two large  7

>>> table = pivot_table(df, values='D', index=['A', 'B'],
                      columns=['C'], aggfunc=np.sum)
>>> table
   C
  A   B
  foo small large
    one  1  4
    two  6  NaN
  bar small large
    one  5  4
    two  6  7
```

pandas.crosstab

`pandas.crosstab(*args, **kwargs)`

Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed

Parameters

- `index` : array-like, Series, or list of arrays/Series
 Values to group by in the rows
- `columns` : array-like, Series, or list of arrays/Series
 Values to group by in the columns
- `values` : array-like, optional
 Array of values to aggregate according to the factors
- `aggfunc` : function, optional
 If no values array is passed, computes a frequency table
- `rownames` : sequence, default None
 If passed, must match number of row arrays passed
- `colnames` : sequence, default None
 If passed, must match number of column arrays passed
- `margins` : boolean, default False
 Add row/column margins (subtotals)
- `dropna` : boolean, default True
 Do not include columns whose entries are all NaN

29.2. General functions
rows : kwarg only alias of index [deprecated]
cols : kwarg only alias of columns [deprecated]

Returns crosstab : DataFrame

Notes

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified

Examples

```python
>>> a
>>> b
array([‘one’, ‘one’, ‘one’, ‘two’, ‘one’, ‘one’,
       ‘one’, ‘two’, ‘two’, ‘one’], dtype=object)
>>> c

>>> crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
   b    
   c      
   dull   dull   shiny   dull   shiny
   one    1  1  2  2  0
   two    1  2  1  2  2
```

pandas.cut

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

Return indices of half-open bins to which each value of x belongs.

Parameters x : array-like

Input array to be binned. It has to be 1-dimensional.

bins : int or sequence of scalars

If bins is an int, it defines the number of equal-width bins in the range of x. However, in this case, the range of x is extended by .1% on each side to include the min or max values of x. If bins is a sequence it defines the bin edges allowing for non-uniform bin width. No extension of the range of x is done in this case.

right : bool, optional

Indicates whether the bins include the rightmost edge or not. If right == True (the default), then the bins [1,2,3,4] indicate (1,2], (2,3], (3,4].

labels : array or boolean, default None

Labels to use for bin edges, or False to return integer bin labels

retrbins : bool, optional

Whether to return the bins or not. Can be useful if bins is given as a scalar.
precision : int

The precision at which to store and display the bins labels

include_lowest : bool

Whether the first interval should be left-inclusive or not.

Returns out : Categorical or array of integers if labels is False

bins : ndarray of floats

Returned only if retbins is True.

Notes

The cut function can be useful for going from a continuous variable to a categorical variable. For example, cut could convert ages to groups of age ranges.

Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Categorical object

Examples

```python
>>> cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
(array([[0.191, 3.367], [0.191, 3.367], [0.191, 3.367], [3.367, 6.533],
        [6.533, 9.7]], dtype=object), array([ 0.1905 , 3.36666667, 6.53333333, 9.7 ]))
```

```python
>>> cut(np.ones(5), 4, labels=False)
anarray([2, 2, 2, 2, 2])
```

pandas.qcut

pandas.qcut (x, q, labels=None, retbins=False, precision=3)

Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point.

Parameters x : ndarray or Series

q : integer or array of quantiles

Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles

labels : array or boolean, default None

Labels to use for bin edges, or False to return integer bin labels

retbins : bool, optional

Whether to return the bins or not. Can be useful if bins is given as a scalar.

precision : int

The precision at which to store and display the bins labels

Returns cat : Categorical
Notes

Out of bounds values will be NA in the resulting Categorical object

pandas.merge

```python
pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True)
```

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters

- **left**: DataFrame
- **right**: DataFrame
- **how**: {'left', 'right', 'outer', 'inner'}, default 'inner'
 - left: use only keys from left frame (SQL: left outer join)
 - right: use only keys from right frame (SQL: right outer join)
 - outer: use union of keys from both frames (SQL: full outer join)
 - inner: use intersection of keys from both frames (SQL: inner join)
- **on**: label or list
 Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.
- **left_on**: label or list, or array-like
 Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns
- **right_on**: label or list, or array-like
 Field names to join on in right DataFrame or vector/list of vectors per left_on docs
- **left_index**: boolean, default False
 Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels
- **right_index**: boolean, default False
 Use the index from the right DataFrame as the join key. Same caveats as left_index
- **sort**: boolean, default False
 Sort the join keys lexicographically in the result DataFrame
- **suffixes**: 2-length sequence (tuple, list, ...)
 Suffix to apply to overlapping column names in the left and right side, respectively
- **copy**: boolean, default True
 If False, do not copy data unnecessarily

Returns

- **merged**: DataFrame
Examples

```python
>>> A
  lkey value
  0 foo 1
  1 bar 2
  2 baz 3
  3 foo 4

>>> B
  rkey value
  0 foo 5
  1 bar 6
  2 qux 7

>>> merge(A, B, left_on='lkey', right_on='rkey', how='outer')
  lkey value_x  rkey value_y
  0 foo   1  foo   5
  1 foo   4  foo   5
  2 bar   2  bar   6
  3 bar   2  bar   8
  4 baz   3  NaN  NaN
  5 NaN   NaN  qux   7
```

pandas.concat

The `pandas.concat` function can be used to concatenate pandas objects along a particular axis with optional set logic along the other axes. It can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.

Parameters

- `objs`: list or dict of Series, DataFrame, or Panel objects
 - If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case an Exception will be raised.

- `axis`: {0, 1, ...}, default 0
 - The axis to concatenate along

- `join`: {'inner', 'outer'}, default 'outer'
 - How to handle indexes on other axis(es)

- `join_axes`: list of Index objects
 - Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic

- `verify_integrity`: boolean, default False
 - Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation

- `keys`: sequence, default None
 - If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level

- `levels`: list of sequences, default None
 - Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys

- `names`: list, default None
ignore_index : boolean, default False

If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the the index values on the other axes are still respected in the join.

Returns concatenated : type of objects

Notes

The keys, levels, and names arguments are all optional

pandas.get_dummies

pandas.get_dummies(data, prefix=None, prefix_sep='__', dummy_na=False)

Convert categorical variable into dummy/indicator variables

Parameters data : array-like or Series

prefix : string, default None

String to append DataFrame column names

prefix_sep : string, default '__'

If appending prefix, separator/delimiter to use

dummy_na : bool, default False

Add a column to indicate NaNs, if False NaNs are ignored.

Returns dummies : DataFrame

Examples

>>> import pandas as pd
>>> s = pd.Series(list('abca'))

>>> get_dummies(s)
a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0

>>> sl = ['a', 'b', np.nan]

>>> get_dummies(sl)
a b
0 1 0
1 0 1
2 0 0
>>> get_dummies(s1, dummy_na=True)
 a b NaN
0 1 0 0
1 0 1 0
2 0 0 1

See also Series.str.get_dummies.

pandas.factorize

```
pandas.factorize(values, sort=False, order=None, na_sentinel=-1)
```

Encode input values as an enumerated type or categorical variable

Parameters
- **values**: ndarray (1-d)

 Sequence

 sort : boolean, default False

 Sort by values

 order : deprecated

 na_sentinel : int, default -1

 Value to mark “not found”

Returns
- **labels**: the indexer to the original array

 uniques : ndarray (1-d) or Index

 the unique values. Index is returned when passed values is Index or Series

 note: an array of Periods will ignore sort as it returns an always sorted PeriodIndex

29.2.2 Top-level missing data

- **isnull**

 Detect missing values (NaN in numeric arrays, None/NaN in object arrays)

- **notnull**

 Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

pandas.isnull

```
pandas.isnull(obj)
```

Detect missing values (NaN in numeric arrays, None/NaN in object arrays)

Parameters
- **arr**: ndarray or object value

 Object to check for null-ness

Returns
- **isnull**: array-like of bool or bool

 Array or bool indicating whether an object is null or if an array is given which of the element is null.

See Also:

- pandas.notnull boolean inverse of pandas.isnull

29.2. General functions
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas

pandas.notnull

pandas.notnull(obj)
Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

Parameters arr : ndarray or object value
Object to check for not-null-ness

Returns isnulled : array-like of bool or bool
Array or bool indicating whether an object is not null or if an array is given which of the element is not null.

See Also:
pandas.isnull boolean inverse of pandas.notnull

29.2.3 Top-level dealing with datetimes

to_datetime(arg[, errors, dayfirst, utc, ...]) Convert argument to datetime
to_timedelta(arg[, box, unit]) Convert argument to timedelta
date_range([start, end, periods, freq, tz, ...]) Return a fixed frequency datetime index, with day (calendar) as the default
bdate_range([start, end, periods, freq, tz, ...]) Return a fixed frequency datetime index, with business day as the default
period_range([start, end, periods, freq, name]) Return a fixed frequency datetime index, with day (calendar) as the default

pandas.to_datetime

pandas.to_datetime(arg, errors='ignore', dayfirst=False, utc=None, box=True, format=None, coerce=False, unit='ns', infer_datetime_format=False)
Convert argument to datetime

Parameters arg : string, datetime, array of strings (with possible NAs)
errors : {'ignore', 'raise'}, default 'ignore'
Errors are ignored by default (values left untouched)
dayfirst : boolean, default False
If True parses dates with the day first, eg 20/01/2005 Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug).
utc : boolean, default None
Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well)
box : boolean, default True
If True returns a DatetimeIndex, if False returns ndarray of values
format : string, default None
strftime to parse time, eg “%d/%m/%Y”
coerce : force errors to NaT (False by default)
unit : unit of the arg (D,s,ms,us,ns) denote the unit in epoch
(e.g. a unix timestamp), which is an integer/float number
infer_datetime_format: boolean, default False

If no format is given, try to infer the format based on the first datetime string. Provides a large speed-up in many cases.

Returns ret: datetime if parsing succeeded

Examples

Take separate series and convert to datetime

```python
>>> import pandas as pd
>>> i = pd.date_range('20000101', periods=100)
>>> df = pd.DataFrame(dict(year=i.year, month=i.month, day=i.day))
>>> pd.to_datetime(df.year*10000 + df.month*100 + df.day, format='%Y%m%d')
```

Or from strings

```python
>>> df = df.astype(str)
>>> pd.to_datetime(df.day + df.month + df.year, format='%d%m%Y')
```

pandas.to_timedelta

pandas.to_timedelta(arg, box=True, unit='ns')

Convert argument to timedelta

Parameters arg: string, timedelta, array of strings (with possible NAs)

box: boolean, default True

If True returns a Series of the results, if False returns ndarray of values

unit: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number

Returns ret: timedelta64/arrays of timedelta64 if parsing succeeded

pandas.date_range

pandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None)

Return a fixed frequency datetime index, with day (calendar) as the default frequency

Parameters start: string or datetime-like, default None

Left bound for generating dates

end: string or datetime-like, default None

Right bound for generating dates

periods: integer or None, default None

If None, must specify start and end

freq: string or DateOffset, default ‘D’ (calendar daily)

Frequency strings can have multiples, e.g. ‘5H’

tz: string or None

Time zone name for returning localized DatetimeIndex, for example
Asia/Hong Kong

normalize : bool, default False

Normalize start/end dates to midnight before generating date range

name : str, default None

Name of the resulting index

closed : string or None, default None

Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

Returns rng : DatetimeIndex

Notes

2 of start, end, or periods must be specified

pandas.bdate_range

pandas.bdate_range (start=None, end=None, periods=None, freq='B', tz=None, normalize=True, name=None, closed=None)

Return a fixed frequency datetime index, with business day as the default frequency

Parameters start : string or datetime-like, default None

Left bound for generating dates

dend : string or datetime-like, default None

Right bound for generating dates

periods : integer or None, default None

If None, must specify start and end

freq : string or DateOffset, default ‘B’ (business daily)

Frequency strings can have multiples, e.g. ‘5H’

tz : string or None

Time zone name for returning localized DatetimeIndex, for example Asia/Beijing

normalize : bool, default False

Normalize start/end dates to midnight before generating date range

name : str, default None

Name for the resulting index

closed : string or None, default None

Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

Returns rng : DatetimeIndex
Notes

2 of start, end, or periods must be specified

pandas.period_range

pandas.period_range (start=None, end=None, periods=None, freq='D', name=None)

Return a fixed frequency datetime index, with day (calendar) as the default frequency

Parameters
- start :
- end :
- periods : int, default None
 Number of periods in the index
- freq : str/DateOffset, default ‘D’
 Frequency alias
- name : str, default None
 Name for the resulting PeriodIndex

Returns
prng : PeriodIndex

29.2.4 Top-level evaluation

eval(expr[, parser, engine, truediv, ...])
Evaluate a Python expression as a string using various backends.

pandas.eval

pandas.eval (expr, parser='pandas', engine='numexpr', truediv=True, local_dict=None, global_dict=None, resolvers=(), level=0, target=None)

Evaluate a Python expression as a string using various backends.

The following arithmetic operations are supported: +, -, *, /, **, %, // (python engine only) along with the following boolean operations: | (or), & (and), and ~ (not). Additionally, the 'pandas' parser allows the use of and, or, and not with the same semantics as the corresponding bitwise operators. Series and DataFrame objects are supported and behave as they would with plain of' Python evaluation.

Parameters
- expr : str or unicode
 The expression to evaluate. This string cannot contain any Python statements, only Python expressions.
- parser : string, default 'pandas', {'pandas', 'python'}
 The parser to use to construct the syntax tree from the expression. The default of 'pandas' parses code slightly different than standard Python. Alternatively, you can parse an expression using the 'python' parser to retain strict Python semantics. See the enhancing performance documentation for more details.
- engine : string, default 'numexpr', {'python', 'numexpr'}
 The engine used to evaluate the expression. Supported engines are
• ‘numexpr’: This default engine evaluates pandas objects using numexpr for large speed ups in complex expressions with large frames.

• ‘python’: Performs operations as if you had eval’d in top level python. This engine is generally not that useful.

More backends may be available in the future.

```python
truediv : bool, optional
    Whether to use true division, like in Python >= 3
local_dict : dict or None, optional
    A dictionary of local variables, taken from locals() by default.
global_dict : dict or None, optional
    A dictionary of global variables, taken from globals() by default.
resolvers : list of dict-like or None, optional
    A list of objects implementing the __getitem__ special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the query() method to inject the index and columns variables that refer to their respective DataFrame instance attributes.
level : int, optional
    The number of prior stack frames to traverse and add to the current scope. Most users will not need to change this parameter.
target : a target object for assignment, optional, default is None
    essentially this is a passed in resolver

Returns
    ndarray, numeric scalar, DataFrame, Series
```

See Also:
pandas.DataFrame.query, pandas.DataFrame.eval

Notes

The dtype of any objects involved in an arithmetic % operation are recursively cast to float64.

See the enhancing performance documentation for more details.

29.2.5 Standard moving window functions

```
rolling_count(arg, window[, freq, center, how])      Rolling count of number of non-NaN observations inside provided window.
rolling_sum(arg, window[, min_periods, ...])        Moving sum.
rolling_mean(arg, window[, min_periods, ...])       Moving mean.
rolling_median(arg, window[, min_periods, ...])     O(N log(window)) implementation using skip list
rolling_var(arg, window[, min_periods, ...])        Numerically stable implementation using Welford’s method.
rolling_std(arg, window[, min_periods, ...])        Unbiased moving standard deviation.
rolling_min(arg, window[, min_periods, ...])        Moving min of 1d array of dtype=float64 along axis=0 ignoring NaNs.
rolling_max(arg, window[, min_periods, ...])        Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs.
rolling_corr(arg1[, arg2, window, ...])            Moving sample correlation.
```

Continued on next
Table 29.16 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rolling_corr_pairwise(df1[, df2, window, ...])</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>rolling_cov(arg1[, arg2, window, ...])</code></td>
<td>Unbiased moving covariance.</td>
</tr>
<tr>
<td><code>rolling_skew(arg, window[, min_periods, ...])</code></td>
<td>Unbiased moving skewness.</td>
</tr>
<tr>
<td><code>rolling_kurt(arg, window[, min_periods, ...])</code></td>
<td>Unbiased moving kurtosis.</td>
</tr>
<tr>
<td><code>rolling_apply(arg, window, func[, ...])</code></td>
<td>Generic moving function application.</td>
</tr>
<tr>
<td><code>rolling_quantile(arg, window, quantile[, ...])</code></td>
<td>Moving quantile.</td>
</tr>
<tr>
<td><code>rolling_window(arg[, window, win_type, ...])</code></td>
<td>Applies a moving window of type <code>win_type</code> and size <code>window</code> on the data.</td>
</tr>
</tbody>
</table>

pandas.rolling_count

`pandas.rolling_count(arg, window, freq=None, center=False, how=None)`

Rolling count of number of non-NaN observations inside provided window.

Parameters
- `arg`: DataFrame or numpy ndarray-like
- `window`: int
 Size of the moving window. This is the number of observations used for calculating the statistic.
- `freq`: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- `center`: boolean, default False
 Whether the label should correspond with center of window
- `how`: string, default ‘mean’
 Method for down- or re-sampling

Returns
- `rolling_count`: type of caller

Notes

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the mean).

pandas.rolling_sum

`pandas.rolling_sum(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)`

Moving sum.

Parameters
- `arg`: Series, DataFrame
- `window`: int
 Size of the moving window. This is the number of observations used for calculating the statistic.
- `min_periods`: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Set the labels at the center of the window.

how : string, default ‘None’

Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.rolling_mean

pandas.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)

Moving mean.

Parameters arg : Series, DataFrame

window : int

Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Set the labels at the center of the window.

how : string, default ‘None’

Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).
pandas.rolling_median

pandas.rolling_median *(arg, window, min_periods=None, freq=None, center=False, how='median', **kwargs)*

O(N log(window)) implementation using skip list

Moving median.

Parameters
- **arg**: Series, DataFrame
 - **window**: int
 - Size of the moving window. This is the number of observations used for calculating the statistic.
 - **min_periods**: int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
 - **freq**: string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
 - **center**: boolean, default False
 - Set the labels at the center of the window.
 - **how**: string, default ‘median’
 - Method for down- or re-sampling

Returns
- **y**: type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of **resample()** (i.e. using the mean).

pandas.rolling_var

pandas.rolling_var *(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)*

Numerically stable implementation using Welford’s method.

Unbiased moving variance.

Parameters
- **arg**: Series, DataFrame
 - **window**: int
 - Size of the moving window. This is the number of observations used for calculating the statistic.
 - **min_periods**: int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
freq: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center: boolean, default False

Set the labels at the center of the window.

how: string, default ‘None’

Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.rolling_std

pandas.rolling_std(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)

Unbiased moving standard deviation.

Parameters

arg: Series, DataFrame

window: int

Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center: boolean, default False

Set the labels at the center of the window.

how: string, default ‘None’

Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.
The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.rolling_min

```python
pandas.rolling_min(arg, window, min_periods=None, freq=None, center=False, how='min', **kwargs)
```

Moving min of 1d array of dtype=float64 along axis=0 ignoring NaNs. Moving minimum.

Parameters

- **arg**: Series, DataFrame
 - `window`: int
 Size of the moving window. This is the number of observations used for calculating the statistic.
 - `min_periods`: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
 - `freq`: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
 - `center`: boolean, default False
 Set the labels at the center of the window.
 - `how`: string, default ‘min’
 Method for down- or re-sampling

Returns

- **y**: type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.rolling_max

```python
pandas.rolling_max(arg, window, min_periods=None, freq=None, center=False, how='max', **kwargs)
```

Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs. Moving maximum.

Parameters

- **arg**: Series, DataFrame
 - `window`: int
 Size of the moving window. This is the number of observations used for calculating the statistic.
 - `min_periods`: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a fre-
 quency string or DateOffset object.

center : boolean, default False
 Set the labels at the center of the window.

how : string, default ‘max’
 Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by
setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is
done with the default parameters of resample() (i.e. using the mean).

pandas.rolling_corr

pandas.rolling_corr (arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None)
 Moving sample correlation.

Parameters arg1 : Series, DataFrame, or ndarray

arg2 : Series, DataFrame, or ndarray, optional
 if not supplied then will default to arg1 and produce pairwise output

window : int
 Size of the moving window. This is the number of observations used for calculating the
 statistic.

min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise result
 is NA).

freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a fre-
 quency string or DateOffset object.

center : boolean, default False
 Set the labels at the center of the window.

how : string, default ‘None’
 Method for down- or re-sampling

pairwise : bool, default False
 If False then only matching columns between arg1 and arg2 will be used and the output
 will be a DataFrame. If True then all pairwise combinations will be calculated and the
 output will be a Panel in the case of DataFrame inputs. In the case of missing elements,
 only complete pairwise observations will be used.
Returns
\(y \) : type depends on inputs
- DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
- DataFrame / Series -> Computes result for each column
- Series / Series -> Series

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting \(\text{center}=\text{True} \).

The \(\text{freq} \) keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of \(\text{resample()} \) (i.e. using the \(\text{mean} \)).

pandas.rolling_corr_pairwise

```python
pandas.rolling_corr_pairwise(df1, df2=None, window=None, min_periods=None, freq=None, center=False)
```

Deprecated. Use `rolling_corr(..., pairwise=True)` instead.

Pairwise moving sample correlation

Parameters

- **df1**: DataFrame
- **df2**: DataFrame
- **window**: int
 Size of the moving window. This is the number of observations used for calculating the statistic.
- **min_periods**: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **center**: boolean, default False
 Set the labels at the center of the window.
- **how**: string, default ‘None’
 Method for down- or re-sampling

Returns
\(y \) : Panel whose items are \(df1.index \) values

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting \(\text{center}=\text{True} \).

The \(\text{freq} \) keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of \(\text{resample()} \) (i.e. using the \(\text{mean} \)).
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.rolling_cov

```python
pandas.rolling_cov(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None)
```

Unbiased moving covariance.

Parameters

- **arg1**: Series, DataFrame, or ndarray
- **arg2**: Series, DataFrame, or ndarray, optional
 - if not supplied then will default to arg1 and produce pairwise output
- **window**: int
 - Size of the moving window. This is the number of observations used for calculating the statistic.
- **min_periods**: int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **center**: boolean, default False
 - Set the labels at the center of the window.
- **how**: string, default ‘None’
 - Method for down- or re-sampling
- **pairwise**: bool, default False
 - If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns

- **y**: type depends on inputs
 - DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
 - DataFrame / Series -> Computes result for each column
 - Series / Series -> Series

Notes

- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

- The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.rolling_skew

```python
pandas.rolling_skew(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
```

Unbiased moving skewness.
Parameters

arg : Series, DataFrame

window : int
 Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
 Set the labels at the center of the window.

how : string, default ‘None’
 Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.rolling_kurt

pandas.rolling_kurt(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)

Unbiased moving kurtosis.

Parameters arg : Series, DataFrame

window : int
 Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
 Set the labels at the center of the window.

how : string, default ‘None’
Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.rolling_apply

pandas.rolling_apply (arg, window, func, min_periods=None, freq=None, center=False, args=(), kwars={})
Generic moving function application.

Parameters arg : Series, DataFrame

window : int

Size of the moving window. This is the number of observations used for calculating the statistic.

func : function

Must produce a single value from an ndarray input

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Whether the label should correspond with center of window

args : tuple

Passed on to func

kwars : dict

Passed on to func

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).
pandas.rolling_quantile

pandas.rolling_quantile *(arg, window, quantile, min_periods=None, freq=None, center=False)*
Moving quantile.

Parameters

- **arg**: Series, DataFrame
- **window**: int
 Size of the moving window. This is the number of observations used for calculating the statistic.
- **quantile**: float
 0 <= quantile <= 1
- **min_periods**: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **center**: boolean, default False
 Whether the label should correspond with center of window

Returns

- **y**: type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the mean).

pandas.rolling_window

pandas.rolling_window *(arg, window=None, win_type=None, min_periods=None, freq=None, center=False, mean=True, axis=0, how=None, **kwargs)*
Applies a moving window of type `window_type` and size `window` on the data.

Parameters

- **arg**: Series, DataFrame
- **window**: int or ndarray
 Weighting window specification. If the window is an integer, then it is treated as the window length and `win_type` is required
- **win_type**: str, default None
 Window type (see Notes)
- **min_periods**: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
 Whether the label should correspond with center of window

mean : boolean, default True
 If True computes weighted mean, else weighted sum

axis : {0, 1}, default 0

how : string, default ‘mean’
 Method for down- or re-sampling

Returns y : type of input argument

Notes

The recognized window types are:

• boxcar
• triang
• blackman
• hamming
• bartlett
• parzen
• bohman
• blackmanharris
• nuttall
• barthann
• kaiser (needs beta)
• gaussian (needs std)
• general_gaussian (needs power, width)
• slepian (needs width).

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

29.2.6 Standard expanding window functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expanding_count</td>
<td>Expanding count of number of non-NaN observations.</td>
</tr>
<tr>
<td>expanding_sum</td>
<td>Expanding sum.</td>
</tr>
<tr>
<td>expanding_mean</td>
<td>Expanding mean.</td>
</tr>
</tbody>
</table>
Table 29.17 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expanding_median</td>
<td>O(N log(window)) implementation using skip list</td>
</tr>
<tr>
<td>expanding_var</td>
<td>Numerically stable implementation using Welford’s method.</td>
</tr>
<tr>
<td>expanding_std</td>
<td>Unbiased expanding standard deviation.</td>
</tr>
<tr>
<td>expanding_min</td>
<td>Moving min of 1d array of dtype=’float64’ along axis=0 ignoring NaNs.</td>
</tr>
<tr>
<td>expanding_max</td>
<td>Moving max of 1d array of dtype=’float64’ along axis=0 ignoring NaNs.</td>
</tr>
<tr>
<td>expanding_corr</td>
<td>Expanding sample correlation.</td>
</tr>
<tr>
<td>expanding_corr_pairwise</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>expanding_cov</td>
<td>Unbiased expanding covariance.</td>
</tr>
<tr>
<td>expanding_skew</td>
<td>Unbiased expanding skewness.</td>
</tr>
<tr>
<td>expanding_kurt</td>
<td>Unbiased expanding kurtosis.</td>
</tr>
<tr>
<td>expanding_apply</td>
<td>Generic expanding function application.</td>
</tr>
<tr>
<td>expanding_quantile</td>
<td>Expanding quantile.</td>
</tr>
</tbody>
</table>

pandas.expanding_count

// function definition

```
pandas.expanding_count(arg, freq=None, center=False)
```

Expanding count of number of non-NaN observations.

Parameters

- **arg**: DataFrame or numpy ndarray-like
- **freq**: string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **center**: boolean, default False
 - Whether the label should correspond with center of window.

Returns

- **expanding_count**: type of caller

Notes

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the mean).

pandas.expanding_sum

// function definition

```
pandas.expanding_sum(arg, min_periods=1, freq=None, center=False, **kwargs)
```

Expanding sum.

Parameters

- **arg**: Series, DataFrame
- **min_periods**: int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns

- **y**: type of input argument
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.expanding_mean

```python
pandas.expanding_mean(arg, min_periods=1, freq=None, center=False, **kwargs)
```

Expanding mean.

Parameters
- `arg`: Series, DataFrame
- `min_periods`: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns
- `y`: type of input argument

pandas.expanding_median

```python
pandas.expanding_median(arg, min_periods=1, freq=None, center=False, **kwargs)
```

O(N log(window)) implementation using skip list

Expanding median.

Parameters
- `arg`: Series, DataFrame
- `min_periods`: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns
- `y`: type of input argument

pandas.expanding_var

```python
pandas.expanding_var(arg, min_periods=1, freq=None, center=False, **kwargs)
```

Numerically stable implementation using Welford’s method.

Unbiased expanding variance.

Parameters
- `arg`: Series, DataFrame
- `min_periods`: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns
- `y`: type of input argument
pandas.expanding_std

pandas.expanding_std(arg, min_periods=1, freq=None, center=False, **kwargs)
Unbiased expanding standard deviation.

Parameters arg : Series, DataFrame
 min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise result
 is NA).
 freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a fre-
 quency string or DateOffset object.

Returns y : type of input argument

pandas.expanding_min

pandas.expanding_min(arg, min_periods=1, freq=None, center=False, **kwargs)
Moving min of 1d array of dtype=float64 along axis=0 ignoring NaNs. Expanding minimum.

Parameters arg : Series, DataFrame
 min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise result
 is NA).
 freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a fre-
 quency string or DateOffset object.

Returns y : type of input argument

pandas.expanding_max

pandas.expanding_max(arg, min_periods=1, freq=None, center=False, **kwargs)
Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs. Expanding maximum.

Parameters arg : Series, DataFrame
 min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise result
 is NA).
 freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a fre-
 quency string or DateOffset object.

Returns y : type of input argument
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.expanding_corr

```python
pandas.expanding_corr(arg1, arg2=None, min_periods=1, freq=None, center=False, pairwise=None)
```
Expanding sample correlation.

Parameters
- **arg1**: Series, DataFrame, or ndarray
- **arg2**: Series, DataFrame, or ndarray, optional
 - if not supplied then will default to arg1 and produce pairwise output
- **min_periods**: int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **pairwise**: bool, default False
 - If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns
- **y**: type depends on inputs
 - DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
 - DataFrame / Series -> Computes result for each column
 - Series / Series -> Series

pandas.expanding_corr_pairwise

```python
pandas.expanding_corr_pairwise(df1, df2=None, min_periods=1, freq=None, center=False)
```
Deprecated. Use expanding_corr(..., pairwise=True) instead.

Pairwise expanding sample correlation

Parameters
- **df1**: DataFrame
- **df2**: DataFrame
- **min_periods**: int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns
- **y**: Panel whose items are df1.index values

pandas.expanding_c cov

```python
pandas.expanding_c cov(arg1, arg2=None, min_periods=1, freq=None, center=False, pairwise=None)
```
Unbiased expanding covariance.
Parameters \texttt{arg1} : Series, DataFrame, or ndarray

\texttt{arg2} : Series, DataFrame, or ndarray, optional

if not supplied then will default to \texttt{arg1} and produce pairwise output

\texttt{min_periods} : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

\texttt{freq} : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

\texttt{pairwise} : bool, default False

If False then only matching columns between \texttt{arg1} and \texttt{arg2} will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns \texttt{y} : type depends on inputs

DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
DataFrame / Series -> Computes result for each column Series / Series -> Series

\texttt{pandas.expanding_skew}

\texttt{pandas.expanding_skew} (\texttt{arg}, \texttt{min_periods=1}, \texttt{freq=None}, \texttt{center=False}, \texttt{**kwargs})

Unbiased expanding skewness.

Parameters \texttt{arg} : Series, DataFrame

\texttt{min_periods} : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

\texttt{freq} : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns \texttt{y} : type of input argument

\texttt{pandas.expanding_kurt}

\texttt{pandas.expanding_kurt} (\texttt{arg}, \texttt{min_periods=1}, \texttt{freq=None}, \texttt{center=False}, \texttt{**kwargs})

Unbiased expanding kurtosis.

Parameters \texttt{arg} : Series, DataFrame

\texttt{min_periods} : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

\texttt{freq} : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
pandas: powerful Python data analysis toolkit, Release 0.14.1

Returns
\(y \) : type of input argument

pandas.expanding_apply

```python
pandas.expanding_apply(arg, func, min_periods=1, freq=None, center=False, args=(), kwargs={})
```

Generic expanding function application.

Parameters

- **arg** : Series, DataFrame
- **func** : function
 - Must produce a single value from an ndarray input
- **min_periods** : int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq** : string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **center** : boolean, default False
 - Whether the label should correspond with center of window.
- **args** : tuple
 - Passed on to func
- **kwargs** : dict
 - Passed on to func

Returns
\(y \) : type of input argument

Notes

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.expanding_quantile

```python
pandas.expanding_quantile(arg, quantile, min_periods=1, freq=None, center=False)
```

Expanding quantile.

Parameters

- **arg** : Series, DataFrame
- **quantile** : float
 - \(0 \leq \text{quantile} \leq 1 \)
- **min_periods** : int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq** : string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
center : boolean, default False
 Whether the label should correspond with center of window.

Returns y : type of input argument

Notes

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is
done with the default parameters of resample() (i.e. using the mean).

29.2.7 Exponentially-weighted moving window functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ewma</code></td>
<td>Exponentially-weighted moving average</td>
</tr>
<tr>
<td><code>ewmstd</code></td>
<td>Exponentially-weighted moving std</td>
</tr>
<tr>
<td><code>ewmvar</code></td>
<td>Exponentially-weighted moving variance</td>
</tr>
<tr>
<td><code>ewmcorr</code></td>
<td>Exponentially-weighted moving correlation</td>
</tr>
<tr>
<td><code>ewmcov</code></td>
<td>Exponentially-weighted moving covariance</td>
</tr>
</tbody>
</table>

pandas.ewma

pandas.ewma (arg, com=None, span=None, halflife=None, min_periods=0, freq=None, adjust=True, how=None)
Exponentially-weighted moving average

Parameters arg : Series, DataFrame

com : float, optional
 Center of mass: $\alpha = 1/(1 + com)$.

span : float, optional
 Specify decay in terms of span, $\alpha = 2/(span + 1)$

halflife : float, optional
 Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/halflife)$

min_periods : int, default 0
 Number of observations in sample to require (only affects beginning)

freq : None or string alias / date offset object, default=None
 Frequency to conform to before computing statistic

adjust : boolean, default True
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’
 Method for down- or re-sampling

Returns y : type of input argument
Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter \(s \), we have that the decay parameter \(\alpha \) is related to the span as \(\alpha = 2/(s + 1) = 1/(1 + c) \)

where \(c \) is the center of mass. Given a span, the associated center of mass is \(c = (s - 1)/2 \)

So a “20-day EWMA” would have center 9.5.

pandas.ewmstd

```
pandas.ewmstd(arg, com=None, span=None, halflife=None, min_periods=0, bias=False)
```

Exponentially-weighted moving std

Parameters

- **arg**: Series, DataFrame
- **com** : float, optional
 Center of mass: \(\alpha = 1/(1 + com) \),
- **span** : float, optional
 Specify decay in terms of span, \(\alpha = 2/(span + 1) \)
- **halflife** : float, optional
 Specify decay in terms of halflife, \(\alpha = 1 - \exp(\log(0.5)/halflife) \)
- **min_periods** : int, default 0
 Number of observations in sample to require (only affects beginning)
- **freq** : None or string alias / date offset object, default=None
 Frequency to conform to before computing statistic
- **adjust** : boolean, default True
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)
- **how** : string, default ‘mean’
 Method for down- or re-sampling
- **bias** : boolean, default False
 Use a standard estimation bias correction

Returns

- **y** : type of input argument
pandas.ewmvar

pandas.ewmvar (arg, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, how=None)

Exponentially-weighted moving variance

Parameters arg : Series, DataFrame

com : float, optional
Center of mass: \(\alpha = 1/(1 + com) \).

span : float, optional
Specify decay in terms of span, \(\alpha = 2/(span + 1) \).

halflife : float, optional
Specify decay in terms of halflife, \(\alpha = 1 - \exp(log(0.5)/halflife) \).

min_periods : int, default 0
Number of observations in sample to require (only affects beginning).

freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic.

adjust : boolean, default True
Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average).

how : string, default 'mean'
Method for down- or re-sampling.

bias : boolean, default False
Use a standard estimation bias correction.

Returns y : type of input argument

Notes

Either center of mass or span must be specified.

EWMA is sometimes specified using a “span” parameter \(s \), we have that the decay parameter \(\alpha \) is related to the span as \(\alpha = 2/(s + 1) = 1/(1 + c) \)

where \(c \) is the center of mass. Given a span, the associated center of mass is \(c = (s - 1)/2 \)

So a “20-day EWMA” would have center 9.5.

pandas.ewmcorr

pandas.ewmcorr (arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, pairwise=None, how=None)

Exponentially-weighted moving correlation

Parameters arg1 : Series, DataFrame, or ndarray

arg2 : Series, DataFrame, or ndarray, optional

if not supplied then will default to arg1 and produce pairwise output

29.2. General functions
com : float, optional
 Center of mass: $\alpha = 1/(1 + \text{com})$.

span : float, optional
 Specify decay in terms of span, $\alpha = 2/(\text{span} + 1)$

halflife : float, optional
 Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/\text{halflife})$

min_periods : int, default 0
 Number of observations in sample to require (only affects beginning)

cfreq : None or string alias / date offset object, default=None
 Frequency to conform to before computing statistic

adjust : boolean, default True
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’
 Method for down- or re-sampling

pairwise : bool, default False
 If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter α is related to the span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where c is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.

pandas.ewmcov

pandas.ewmcov (arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, pairwise=None, how=None)
Exponentially-weighted moving covariance

Parameters arg1 : Series, DataFrame, or ndarray
 arg2 : Series, DataFrame, or ndarray, optional
 if not supplied then will default to arg1 and produce pairwise output

com : float, optional
 Center of mass: $\alpha = 1/(1 + \text{com})$,
span : float, optional
 Specify decay in terms of span, \(\alpha = 2/(span + 1) \)

halflife : float, optional
 Specify decay in terms of halflife, \(\alpha = 1 - \exp(\log(0.5)/\text{halflife}) \)

min_periods : int, default 0
 Number of observations in sample to require (only affects beginning)

freq : None or string alias / date offset object, default=None
 Frequency to conform to before computing statistic

adjust : boolean, default True
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’
 Method for down- or re-sampling

pairwise : bool, default False
 If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter \(s \), we have that the decay parameter \(\alpha \) is related to the span as \(\alpha = 2/(s + 1) = 1/(1 + c) \)

where \(c \) is the center of mass. Given a span, the associated center of mass is \(c = (s - 1)/2 \)

So a “20-day EWMA” would have center 9.5.

29.3 Series

29.3.1 Constructor

```
Series([data, index, dtype, name, copy, ...])  One-dimensional ndarray with axis labels (including time series).
```

```
pandas.Series
class pandas.Series (data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)
    One-dimensional ndarray with axis labels (including time series).
```

Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).
Operations between Series (+, -, /, *) align values based on their associated index values—they need not be the same length. The result index will be the sorted union of the two indexes.

Parameters

- **data**: array-like, dict, or scalar value
 - Contains data stored in Series

- **index**: array-like or Index (1d)
 - Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to np.arange(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.

- **dtype**: numpy.dtype or None
 - If None, dtype will be inferred

- **copy**: boolean, default False
 - Copy input data

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>support for compatibility</td>
</tr>
<tr>
<td>at</td>
<td></td>
</tr>
<tr>
<td>axes</td>
<td></td>
</tr>
<tr>
<td>base</td>
<td></td>
</tr>
<tr>
<td>blocks</td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
<tr>
<td>dtype</td>
<td></td>
</tr>
<tr>
<td>dtypes</td>
<td>for compat</td>
</tr>
<tr>
<td>empty</td>
<td>True if NDFrame is entirely empty [no items]</td>
</tr>
<tr>
<td>flags</td>
<td></td>
</tr>
<tr>
<td>ftype</td>
<td></td>
</tr>
<tr>
<td>ftypes</td>
<td>for compat</td>
</tr>
<tr>
<td>iat</td>
<td></td>
</tr>
<tr>
<td>iloc</td>
<td></td>
</tr>
<tr>
<td>imag</td>
<td></td>
</tr>
<tr>
<td>is_time_series</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>loc</td>
<td></td>
</tr>
<tr>
<td>ndim</td>
<td></td>
</tr>
<tr>
<td>real</td>
<td></td>
</tr>
<tr>
<td>shape</td>
<td></td>
</tr>
<tr>
<td>size</td>
<td></td>
</tr>
<tr>
<td>strides</td>
<td></td>
</tr>
<tr>
<td>values</td>
<td>Return Series as ndarray</td>
</tr>
</tbody>
</table>

pandas.Series.T

Series.T

 - support for compatibility
pandas.Series.at

Series.at

pandas.Series.axes

Series.axes

pandas.Series.base

Series.base

pandas.Series.blocks

Series.blocks
 Internal property, property synonym for as_blocks()

pandas.Series.data

Series.data

pandas.Series.dtype

Series.dtype

pandas.Series.dtypes

Series.dtypes
 for compat

pandas.Series.empty

Series.empty
 True if DataFrame is entirely empty [no items]

pandas.Series.flags

Series.flags

pandas.Series.ftype

Series.ftype
pandas.Series.ftypes

Series.ftypes
 for compat

pandas.Series.iat

Series.iat

pandas.Series.iloc

Series.iloc

pandas.Series.imag

Series.imag

pandas.Series.is_time_series

Series.is_time_series

pandas.Series.ix

Series.ix

pandas.Series.loc

Series.loc

pandas.Series.ndim

Series.ndim

pandas.Series.real

Series.real

pandas.Series.shape

Series.shape

pandas.Series.size

Series.size
pandas.Series.strides

Series.strides

pandas.Series.values

Series.values
Return Series as ndarray

Returns arr : numpy.ndarray

Methods

abs() Return an object with absolute value taken.
add(other[, level, fill_value, axis]) Binary operator add with support to substitute a fill_value for missing data
add_prefix(prefix) Concatenate prefix string with panel items names.
add_suffix(suffix) Concatenate suffix string with panel items names
align(other[, join, axis, level, copy, ...]) Align two object on their axes with the
all([axis, out]) Returns True if all elements evaluate to True.
any([axis, out]) Returns True if any of the elements of a evaluate to True.
append(to_append[, verify_integrity]) Concatenate two or more Series. The indexes must not overlap
apply(func[, convert_dtype, args]) Invoke function on values of Series. Can be ufunc (a NumPy function
argmax([axis, out, skipna]) Index of first occurrence of maximum of values.
argmin([axis, out, skipna]) Index of first occurrence of minimum of values.
argsort([axis, kind, order]) Overrides ndarray.argsort.
as_blocks() Convert the frame to a dict of dtype -> Constructor Types that each has
as_matrix([columns]) Convert the frame to its Numpy-array representation.
asfreq(freq[, method, how, normalize]) Convert all TimeSeries inside to specified frequency using DateOffset
asof(where) Return last good (non-NaN) value in TimeSeries if value is NaN for
astype(dtype[, copy, raise_on_error]) Cast object to input numpy.dtype
at_time(time[, asof]) Select values at particular time of day (e.g.
autocorr() Lag-1 autocorrelation
between(left, right[, inclusive]) Return boolean Series equivalent to left <= series <= right. NA values
between_time(start_time, end_time[, ...]) Select values between particular times of the day (e.g., 9:00-9:30 AM)
bfill([axis, inplace, limit, downcast]) Synonym for NDFrame.fillna(method='bfill')
bool() Return the bool of a single element PandasObject
clip([lower, upper, out]) Trim values at input threshold(s)
clip_lower(threshold) Return copy of the input with values below given value truncated
clip_upper(threshold) Return copy of input with values above given value truncated
combine(other, func[, fill_value]) Perform elementwise binary operation on two Series using given function
combine_first(other) Combine Series values, choosing the calling Series’s values
compound([axis, skipna, level]) Return the compound percentage of the values for the requested axis
compress(condition[, axis, out])
consolidate([inplace]) Compute NDFrame with “consolidated” internals (data of each dtype
convert_objects([convert_dates, ...]) Attempt to infer better dtype for object columns
copy([deep]) Make a copy of this object
corr(other[, method, min_periods]) Compute correlation with other Series, excluding missing values
Table 29.21 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count([level])</code></td>
<td>Return number of non-NA/null observations in the Series</td>
</tr>
<tr>
<td><code>cov(other[, min_periods])</code></td>
<td>Compute covariance with Series, excluding missing values</td>
</tr>
<tr>
<td><code>cummax([axis, dtype, out, skipna])</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin([axis, dtype, out, skipna])</code></td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td><code>cumprod([axis, dtype, out, skipna])</code></td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td><code>cumsum([axis, dtype, out, skipna])</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>describe([percentile_width, percentiles])</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>diff([periods])</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>div(other[, level, fill_value, axis])</code></td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>divide(other[, level, fill_value, axis])</code></td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>dot(other)</code></td>
<td>Matrix multiplication with DataFrame or inner-product with Series</td>
</tr>
<tr>
<td><code>drop(labels[, axis, level, inplace])</code></td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td><code>drop_duplicates([take_last, inplace])</code></td>
<td>Return Series with duplicate values removed</td>
</tr>
<tr>
<td><code>dropna([axis, inplace])</code></td>
<td>Return Series without null values</td>
</tr>
<tr>
<td><code>duplicated([take_last])</code></td>
<td>Return boolean Series denoting duplicate values</td>
</tr>
<tr>
<td><code>eq(other)</code></td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the</td>
</tr>
<tr>
<td><code>factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>ffill([axis, inplace, limit, downcast])</code></td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td><code>fillna([value, method, axis, inplace, ...])</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter([items, like, regex, axis])</code></td>
<td>Restrict the info axis to set of items or wildcard</td>
</tr>
<tr>
<td><code>first(offset)</code></td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td><code>first_valid_index()</code></td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td><code>floordiv(other[, level, fill_value, axis])</code></td>
<td>Binary operator floordiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>from_array(arr[, index, name, copy, fastpath])</code></td>
<td>Read delimited file into Series</td>
</tr>
<tr>
<td><code>from_csv(path[, sep, parse_dates, header, ...])</code></td>
<td>Get item from object for given key (DataFrame column, Panel slice,</td>
</tr>
<tr>
<td><code>get(key[, default])</code></td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td><code>get_dtypes_counts()</code></td>
<td>Return the counts of ftypes in this object</td>
</tr>
<tr>
<td><code>get_ftype_counts()</code></td>
<td>Quickly retrieve single value at passed index label</td>
</tr>
<tr>
<td><code>get_values(label[, takeable])</code></td>
<td>same as values (but handles sparseness conversions); is a view</td>
</tr>
<tr>
<td><code>groupby(by, axis, level, as_index, sort, ...)</code></td>
<td>Group series using mapper (dict or key function, apply given function</td>
</tr>
<tr>
<td><code>gt(other)</code></td>
<td>Get item from object for given key (DataFrame column, Panel slice,</td>
</tr>
<tr>
<td><code>head([n])</code></td>
<td>Return the i-th value or values in the Series by location</td>
</tr>
<tr>
<td><code>irow(i[, axis])</code></td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td><code>iget(i[, axis])</code></td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td><code>interpolate([axis, limit, inplace, ...])</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean Series showing whether each element</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Lazily iterate over (index, value) tuples</td>
</tr>
<tr>
<td><code>iterkv(*args, **kwargs)</code></td>
<td>Get item by location</td>
</tr>
<tr>
<td><code>kurt([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>kurtosis([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
</tbody>
</table>

Continued on
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>last()</td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td>last_valid_index()</td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td>le(other)</td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td>load(path)</td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td>lt(other)</td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td>mad(axis, skipna, level)</td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td>map(argl, na_action)</td>
<td>Map values of Series using input correspondence (which can be</td>
</tr>
<tr>
<td>mask(cond)</td>
<td>Returns copy whose values are replaced with nan if the</td>
</tr>
<tr>
<td>max(axis, skipna, level, numeric_only)</td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td>mean(axis, skipna, level, numeric_only)</td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td>median(axis, skipna, level, numeric_only)</td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td>min(axis, skipna, level, numeric_only)</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td>mod(other, level, fill_value, axis)</td>
<td>Binary operator mod with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>mode()</td>
<td>Returns the mode(s) of the dataset.</td>
</tr>
<tr>
<td>mul(other, level, fill_value, axis)</td>
<td>Binary operator mul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>multiply(other, level, fill_value, axis)</td>
<td>Binary operator mul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>ne(other)</td>
<td>Return the largest n elements.</td>
</tr>
<tr>
<td>nonzero()</td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td>nsmallest(In, take_last)</td>
<td>Return the smallest n elements.</td>
</tr>
<tr>
<td>nunique([dropna])</td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td>order([na_last, ascending, kind, ...])</td>
<td>Sorts Series object, by value, maintaining index-value link.</td>
</tr>
<tr>
<td>pct_change([periods, fill_method, limit, freq])</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td>plot(series, label, kind, use_index, rot, ...)</td>
<td>Plot the input series with the index on the x-axis using matplotlib</td>
</tr>
<tr>
<td>pop(item)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td>pow(other, level, fill_value, axis)</td>
<td>Binary operator pow with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>prod([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>product([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>ptp([axis, out])</td>
<td>Return the largest n elements.</td>
</tr>
<tr>
<td>put(*args, **kwargs)</td>
<td>Return value at the given quantile, a la numpy.percentile.</td>
</tr>
<tr>
<td>quantile([q])</td>
<td>Compute data ranks (1 through n).</td>
</tr>
<tr>
<td>raddiv(other, level, fill_value, axis)</td>
<td>Binary operator raddiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rank([method, na_option, ascending, pct])</td>
<td>Compute data ranks (1 through n).</td>
</tr>
<tr>
<td>ravel(order)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td>rdiv(other, level, fill_value, axis)</td>
<td>Binary operator rdiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>reindex([index])</td>
<td>Conform Series to new index with optional filling logic, placing</td>
</tr>
<tr>
<td>reindex_axis(labels, axis)</td>
<td>for compatibility with higher dims</td>
</tr>
<tr>
<td>reindex_like(other, method, copy, limit)</td>
<td>return an object with matching indices to myself</td>
</tr>
<tr>
<td>rename()</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>rename_axis(mapper, axis, copy, inplace)</td>
<td>Alter index and/or columns using input function or functions.</td>
</tr>
<tr>
<td>reorder_levels(order)</td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td>repeat(reps)</td>
<td>See ndarray.repeat</td>
</tr>
<tr>
<td>replace([to_replace, value, inplace, limit, ...])</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td>resample([rule, how, axis, fill_method, ...])</td>
<td>Convenience method for frequency conversion and resampling of regular time-series</td>
</tr>
<tr>
<td>reset_index([level, drop, name, inplace])</td>
<td>Analogous to the pandas.DataFrame.reset_index() function, see</td>
</tr>
<tr>
<td>reshape(*args, **kwargs)</td>
<td>See numpy.ndarray.reshape</td>
</tr>
<tr>
<td>rfloordiv(other, level, fill_value, axis)</td>
<td>Binary operator rfloordiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rmod(other, level, fill_value, axis)</td>
<td>Binary operator rmod with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rmul(other, level, fill_value, axis)</td>
<td>Binary operator rmul with support to substitute a fill_value for missing data</td>
</tr>
</tbody>
</table>
Table 29.21 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>round()</code></td>
<td>Return a with each element rounded to the given number of decimals.</td>
</tr>
<tr>
<td><code>rpow(other[, level, fill_value, axis])</code></td>
<td>Binary operator rpow with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>rsub(other[, level, fill_value, axis])</code></td>
<td>Binary operator rsub with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>rtruediv(other[, level, fill_value, axis])</code></td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>save(path)</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>select(crit[, axis])</code></td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>sem([axis, skipna, level, ddof])</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>set_axis(axis, labels)</code></td>
<td>Public version of axis assignment</td>
</tr>
<tr>
<td><code>set_value(label, value[, takeable])</code></td>
<td>Quickly set single value at passed label.</td>
</tr>
<tr>
<td><code>shift([periods, freq, axis])</code></td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td><code>skew([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>slice_shift([periods, axis])</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort([axis, ascending, kind, na_position, ...])</code></td>
<td>Sort values and index labels by value.</td>
</tr>
<tr>
<td><code>sort_index([ascending])</code></td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>sortlevel([level, ascending, sort_remaining])</code></td>
<td>Sort Series with MultiIndex by chosen level. Data will be squeeze length 1 dimensions</td>
</tr>
<tr>
<td><code>std([axis, skipna, level, ddof])</code></td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>subtract(other[, level, fill_value, axis])</code></td>
<td>Binary operator sub with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>swapaxes(axis1, axis2[, copy])</code></td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>swaplevel(i, j[, copy])</code></td>
<td>Swap levels i and j in a MultiIndex</td>
</tr>
<tr>
<td><code>tail([n])</code></td>
<td>Swap levels i and j in a MultiIndex</td>
</tr>
<tr>
<td><code>take(indices[, axis, convert, is_copy])</code></td>
<td>Analogous to ndarray.take, return Series corresponding to requested</td>
</tr>
<tr>
<td><code>to_csv(path[, index, sep, na_rep, ...])</code></td>
<td>Write Series to a comma-separated values (csv) file</td>
</tr>
<tr>
<td><code>to_dense()</code></td>
<td>Convert Series to {label -> value} dict</td>
</tr>
<tr>
<td><code>to_frame([name])</code></td>
<td>Convert Series to DataFrame</td>
</tr>
<tr>
<td><code>to_hdf(path_or_buf, key, **kwargs)</code></td>
<td>Activate the HDFStore</td>
</tr>
<tr>
<td><code>to_json([path_or_buf, orient, date_format, ...])</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_msgpack([path_or_buf])</code></td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_period([freq, copy])</code></td>
<td>Convert TimeSeries from DatetimeIndex to PeriodIndex with desired</td>
</tr>
<tr>
<td><code>to_pickle(path)</code></td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_sparse([kind, fill_value])</code></td>
<td>Convert Series to SparseSeries</td>
</tr>
<tr>
<td><code>to_sql(name, con[, flavor, if_exists, ...])</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_string([buf, na_rep, float_format, ...])</code></td>
<td>Render a string representation of the Series</td>
</tr>
<tr>
<td><code>to_timestamp([freq, how, copy])</code></td>
<td>Cast to datetimeindex of timestamps, at <code>beginning</code> of period</td>
</tr>
<tr>
<td><code>tolist()</code></td>
<td>Convert Series to a nested list</td>
</tr>
<tr>
<td><code>transpose()</code></td>
<td>Support for compatibility</td>
</tr>
<tr>
<td><code>truediv(other[, level, fill_value, axis])</code></td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>truncate([before, after, axis, copy])</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
<tr>
<td><code>ts_shift([periods, freq, axis])</code></td>
<td>Shift the time index, using the index’s frequency if available</td>
</tr>
<tr>
<td><code>tz_convert(tz[, axis, copy])</code></td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td><code>tz_localize(tz[, axis, copy, infer_dst])</code></td>
<td>Localize tz-naive TimeSeries to target time zone</td>
</tr>
<tr>
<td><code>unique()</code></td>
<td>Return array of unique values in the object.</td>
</tr>
<tr>
<td><code>unstack([level])</code></td>
<td>Unstack, a.k.a.</td>
</tr>
<tr>
<td><code>update(other)</code></td>
<td>Modify Series in place using non-NA values from passed</td>
</tr>
<tr>
<td><code>valid([inplace])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

Continued on
Table 29.21 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td>view</td>
<td></td>
</tr>
<tr>
<td>where</td>
<td>Return an object of same shape as self and whose corresponding</td>
</tr>
<tr>
<td>xs</td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
</tbody>
</table>

pandas.Series.abs

Series.abs()

Return an object with absolute value taken. Only applicable to objects that are all numeric

Returns abs: type of caller

pandas.Series.add

Series.add(other, level=None, fill_value=None, axis=0)

Binary operator add with support to substitute a fill_value for missing data in one of the inputs

Parameters other: Series or scalar value

fill_value: None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result: Series

pandas.Series.add_prefix

Series.add_prefix(prefix)

Concatenate prefix string with panel items names.

Parameters prefix: string

Returns with_prefix: type of caller

pandas.Series.add_suffix

Series.add_suffix(suffix)

Concatenate suffix string with panel items names

Parameters suffix: string

Returns with_suffix: type of caller

pandas.Series.align

Series.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)

Align two object on their axes with the specified join method for each axis Index
pandas: powerful Python data analysis toolkit, Release 0.14.1

Parameters

other : DataFrame or Series

join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’

axis : allowed axis of the other object, default None
 - Align on index (0), columns (1), or both (None)

level : int or level name, default None
 - Broadcast across a level, matching Index values on the passed MultiIndex level

copy : boolean, default True
 - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.

fill_value : scalar, default np.NaN
 - Value to use for missing values. Defaults to NaN, but can be any “compatible” value

method : str, default None

limit : int, default None

fill_axis : {0, 1}, default 0
 - Filling axis, method and limit

Returns

(left, right) : (type of input, type of other)

Aligned objects

pandas.Series.all

Series.all(\textit{axis}=None, \textit{out}=None)

Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See Also:

numpy.all equivalent function

pandas.Series.any

Series.any(\textit{axis}=None, \textit{out}=None)

Returns True if any of the elements of \textit{a} evaluate to True.

Refer to numpy.any for full documentation.

See Also:

numpy.any equivalent function

pandas.Series.append

Series.append(\textit{to_append}, verify_integrity=False)

Concatenate two or more Series. The indexes must not overlap
Parameters `to_append` : Series or list/tuple of Series

verify_integrity : boolean, default False

If True, raise Exception on creating index with duplicates

Returns appended : Series

pandas.Series.apply

`Series.apply(func, convert_dtype=True, args=(), **kwds)`

Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values

Parameters `func` : function

convert_dtype : boolean, default True

Try to find better dtype for elementwise function results. If False, leave as dtype=object

args : tuple

Positional arguments to pass to function in addition to the value

Additional keyword arguments will be passed as keywords to the function

Returns y : Series or DataFrame if func returns a Series

See Also:

`Series.map` For element-wise operations

pandas.Series.argmax

`Series.argmax(axis=None, out=None, skipna=True)`

Index of first occurrence of maximum of values.

Parameters `skipna` : boolean, default True

Exclude NA/null values

Returns idxmax : Index of maximum of values

See Also:

`DataFrame.idxmax`

Notes

This method is the Series version of `ndarray.argmax`.

pandas.Series.argmin

`Series.argmin(axis=None, out=None, skipna=True)`

Index of first occurrence of minimum of values.

Parameters `skipna` : boolean, default True

Exclude NA/null values
Returns `idxmin`: Index of minimum of values

See Also:

`DataFrame.idxmin`

Notes

This method is the Series version of `ndarray.argmin`.

`pandas.Series.argsort`

`Series.argsort(axis=0, kind='quicksort', order=None)`

Overrides `ndarray.argsort`. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values.

Parameters:
- `axis`: int (can only be zero)
- `kind`: {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort'
 - Choice of sorting algorithm. See `np.sort` for more information. ‘mergesort’ is the only stable algorithm
- `order`: ignored

Returns `argsorted`: Series, with -1 indicated where nan values are present

`pandas.Series.as_blocks`

`Series.as_blocks()`

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. are presented in sorted order unless a specific list of columns is provided.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in `as_matrix`)

Parameters:
- `columns`: array-like
 - Specific column order

Returns `values`: a list of Object

`pandas.Series.as_matrix`

`Series.as_matrix(columns=None)`

Convert the frame to its Numpy-array representation.

Parameters:
- `columns`: list, optional, default: `None`
 - If None, return all columns, otherwise, returns specified columns.

Returns `values`: ndarray

- If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.

See Also:

`pandas.DataFrame.values`
Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

This method is provided for backwards compatibility. Generally, it is recommended to use `.values`.

pandas.Series.asfreq

Series.asfreq(freq, method=None, how=None, normalize=False)

Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

Parameters
- **freq**: DateOffset object, or string
- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}

 Method to use for filling holes in reindexed Series: pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill

- **how**: {'start', 'end'}, default end

 For PeriodIndex only, see PeriodIndex.asfreq

- **normalize**: bool, default False

 Whether to reset output index to midnight

Returns
- **converted**: type of caller

pandas.Series.asof

Series.asof(where)

Return last good (non-NaN) value in TimeSeries if value is NaN for requested date.

If there is no good value, NaN is returned.

Parameters
- **where**: date or array of dates

Returns
- **value** or NaN

Notes

Dates are assumed to be sorted

pandas.Series.astype

Series.astype(dtype, copy=True, raise_on_error=True)

Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)
Parameters

dtype: numpy.dtype or Python type
raise_on_error: raise on invalid input

Returns
casted: type of caller

pandas.Series.at_time

Series.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM)

Parameters
time: datetime.time or string

Returns
values_at_time: type of caller

pandas.Series.autocorr

Series.autocorr()
Lag-1 autocorrelation

Returns
autocorr: float

pandas.Series.between

Series.between(left, right, inclusive=True)
Return boolean Series equivalent to left <= series <= right. NA values will be treated as False

Parameters
left: scalar
Right boundary

Returns
is_between: Series

pandas.Series.between_time

Series.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM)

Parameters
start_time: datetime.time or string
end_time: datetime.time or string
include_start: boolean, default True
include_end: boolean, default True

Returns
values_between_time: type of caller

pandas.Series.bfill

Series.bfill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')
pandas.Series.bool

Series.bool()

Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean.

pandas.Series.clip

Series.clip(lower=None, upper=None, out=None)

Trim values at input threshold(s).

Parameters:
- lower : float, default None
- upper : float, default None

Returns:
- clipped : Series

pandas.Series.clip_lower

Series.clip_lower(threshold)

Return copy of the input with values below given value truncated.

Returns:
- clipped : same type as input

See Also:
- clip

pandas.Series.clip_upper

Series.clip_upper(threshold)

Return copy of input with values above given value truncated.

Returns:
- clipped : same type as input

See Also:
- clip

pandas.Series.combine

Series.combine(other, func, fill_value=nan)

Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other.

Parameters:
- other : Series or scalar value
- func : function
- fill_value : scalar value

Returns:
- result : Series
pandas.Series.combine_first

Series.combine_first(other)
 Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two
 indexes
 Parameters other : Series
 Returns y : Series

pandas.Series.compound

Series.compound(axis=None, skipna=None, level=None, **kwargs)
 Return the compound percentage of the values for the requested axis
 Parameters axis : {index (0)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
 a scalar
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use
 only numeric data
 Returns compounded : scalar or Series (if level specified)

pandas.Series.compress

Series.compress(condition, axis=0, out=None, **kwargs)

pandas.Series.consolidate

Series.consolidate(inplace=False)
 Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).
 Mainly an internal API function, but available here to the savvy user
 Parameters inplace : boolean, default False
 If False return new object, otherwise modify existing object
 Returns consolidated : type of caller

pandas.Series.convert_objects

Series.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
 Attempt to infer better dtype for object columns
 Parameters convert_dates : if True, attempt to soft convert dates, if ‘coerce’,
 force conversion (and non-convertibles get NaN)
convert_numeric : if True attempt to coerce to numbers (including strings), non-convertibles get NaN

convert_timedeltas : if True, attempt to soft convert timedeltas, if `coerce`, force conversion (and non-convertibles get NaT)

copy : Boolean, if True, return copy even if no copy is necessary
(e.g. no conversion was done), default is True. It is meant for internal use, not to be confused with inplace kw.

Returns converted : asm as input object

pandas.Series.copy

Series.copy (deep=True)
Make a copy of this object

Parameters deep : boolean, default True
Make a deep copy, i.e. also copy data

Returns copy : type of caller

pandas.Series.corr

Series.corr (other, method='pearson', min_periods=None)
Compute correlation with other Series, excluding missing values

Parameters other : Series
method : {'pearson', 'kendall', 'spearman'}
• pearson : standard correlation coefficient
• kendall : Kendall Tau correlation coefficient
• spearman : Spearman rank correlation

min_periods : int, optional
Minimum number of observations needed to have a valid result

Returns correlation : float

pandas.Series.count

Series.count (level=None)
Return number of non-NA/null observations in the Series

Parameters level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series

Returns nobs : int or Series (if level specified)
pandas.Series.cov

Series.cov(other, min_periods=None)
 Compute covariance with Series, excluding missing values

 Parameters
 other : Series
 min_periods : int, optional
 Minimum number of observations needed to have a valid result

 Returns
 covariance : float
 Normalized by N-1 (unbiased estimator).

pandas.Series.cummax

Series.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs)
 Return cumulative max over requested axis.

 Parameters
 axis : {index (0)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

 Returns
 max : scalar

pandas.Series.cummin

Series.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs)
 Return cumulative min over requested axis.

 Parameters
 axis : {index (0)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

 Returns
 min : scalar

pandas.Series.cumprod

Series.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)
 Return cumulative prod over requested axis.

 Parameters
 axis : {index (0)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

 Returns
 prod : scalar
pandas.Series.cumsum

The **Series.cumsum** function calculates the cumulative sum of values in a Series. It accepts the following parameters:

- **axis**: The axis along which the cumulative sum is computed. By default, it's the index (0).
- **skipna**: A boolean indicating whether to exclude NA/null values. If True (default), NA values are excluded. If an entire row/column is NA, the result will be NA.

The function returns the cumulative sum over the requested axis as a scalar.

pandas.Series.describe

The **Series.describe** function generates various summary statistics for a Series, excluding NaN values. It accepts the following parameters:

- **percentile_width**: A float that is deprecated. The width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75.
- **percentiles**: An array-like object specifying the percentiles to include in the output. By default, it's [0.25, 0.5, 0.75], returning the 25th, 50th, and 75th percentiles.

The function returns a summary of the Series as an NDFrame, which includes count, mean, std, min, max, and lower, 50, and upper percentiles for numeric dtypes. For object dtypes (e.g., timestamps or strings), it includes count, unique, most common, and frequency of the most common. Timestamps also include the first and last items. If multiple values have the highest count, the **count** and **most common** pair will be arbitrarily chosen from among those with the highest count.

pandas.Series.diff

The **Series.diff** function calculates the first discrete difference of the object. It accepts the following parameter:

- **periods**: An integer indicating the period to shift for forming the difference. Default is 1.

The function returns the difference as a Series.

pandas.Series.div

The **Series.div** function performs division and supports substituting a fill_value for missing data in one of the inputs.
Parameters

- **other**: Series or scalar value

 - **fill_value**: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - **level**: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: Series

pandas.Series.divide

```
Series.divide(other, level=None, fill_value=None, axis=0)
```
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters

- **other**: Series or scalar value

 - **fill_value**: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - **level**: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: Series

pandas.Series.dot

```
Series.dot(other)
```
Matrix multiplication with DataFrame or inner-product with Series objects

Parameters

- **other**: Series or DataFrame

Returns

- **dot_product**: scalar or Series

pandas.Series.drop

```
Series.drop(labels, axis=0, level=None, inplace=False, **kwargs)
```
Return new object with labels in requested axis removed

Parameters

- **labels**: single label or list-like
 - **axis**: int or axis name
 - **level**: int or level name, default None
 For MultiIndex
 - **inplace**: bool, default False
 If True, do operation inplace and return None.

Returns

- **dropped**: type of caller
pandas.Series.drop_duplicates

Series.drop_duplicates(take_last=False, inplace=False)
Return Series with duplicate values removed

Parameters take_last : boolean, default False
Take the last observed index in a group. Default first

inplace : boolean, default False
If True, performs operation inplace and returns None.

Returns deduplicated : Series

pandas.Series.dropna

Series.dropna(axis=0, inplace=False, **kwargs)
Return Series without null values

Returns valid : Series

inplace : boolean, default False
Do operation in place.

pandas.Series.duplicated

Series.duplicated(take_last=False)
Return boolean Series denoting duplicate values

Parameters take_last : boolean, default False
Take the last observed index in a group. Default first

Returns duplicated : Series

pandas.Series.eq

Series.eq(other)

pandas.Series.equals

Series.equals(other)
Determine if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Series.factorize

Series.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False
Sort by values
na_sentinel: int, default -1

Value to mark “not found”

Returns
labels : the indexer to the original array
uniques : the unique Index

pandas.Series.ffill

Series.ffill (axis=0, inplace=False, limit=None, downcast=None)

Synonym for NDFrame.fillna(method=‘ffill’)

pandas.Series.fillna

Series.fillna (value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)

Fill NA/NaN values using the specified method

Parameters

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

value : scalar, dict, or Series

Value to use to fill holes (e.g. 0), alternately a dict/Series of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series will not be filled). This value cannot be a list.

axis : {0, 1}, default 0

• 0: fill column-by-column
• 1: fill row-by-row

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None

Maximum size gap to forward or backward fill

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : same type as caller

See Also:
reindex, asfreq

pandas.Series.filter

Series.filter (items=None, like=None, regex=None, axis=None)

Restrict the info axis to set of items or wildcard

Parameters
items : list-like
List of info axis to restrict to (must not all be present)

like : string
 Keep info axis where “arg in col == True”
regex : string (regular expression)
 Keep info axis with re.search(regex, col) == True
axis : int or None
 The axis to filter on. By default this is the info axis. The “info axis” is the axis that is
 used when indexing with[]. For example, df = DataFrame({'a': [1, 2, 3, 4]}); df['a']. So, the DataFrame columns are the info axis.

Notes

Arguments are mutually exclusive, but this is not checked for

pandas.Series.first

Series.first (offset)
Convenience method for subsetting initial periods of time series data based on a date offset

Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

ts.last('10D') -> First 10 days

pandas.Series.first_valid_index

Series.first_valid_index()
Return label for first non-NA/null value

pandas.Series.floordiv

Series.floordiv (other, level=None, fill_value=None, axis=0)
Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters other: Series or scalar value
 fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series
pandas.Series.from_array

Classmethod `Series.from_array` *(arr, index=None, name=None, copy=False, fastpath=False)*

pandas.Series.from_csv

Classmethod `Series.from_csv` *(path, sep=',', parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False)*

Read delimited file into Series

Parameters
- **path** : string file path or file handle / StringIO
- **sep** : string, default ‘,’
 - Field delimiter
- **parse_dates** : boolean, default True
 - Parse dates. Different default from read_table
- **header** : int, default 0
 - Row to use at header (skip prior rows)
- **index_col** : int or sequence, default 0
 - Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table
- **encoding** : string, optional
 - a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
- **infer_datetime_format** : boolean, default False
 - If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

Returns
- **y** : Series

pandas.Series.ge

Series.ge *(other)*

pandas.Series.get

Series.get *(key, default=None)*

Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found

Parameters
- **key** : object

Returns
- **value** : type of items contained in object
pandas.Series.get_dtypes_counts

Series.get_dtypes_counts()
Return the counts of dtypes in this object

pandas.Series.get_ftypes_counts

Series.get_ftypes_counts()
Return the counts of ftypes in this object

pandas.Series.get_value

Series.get_value(label, takeable=False)
Quickly retrieve single value at passed index label

Parameters

index : label

takeable : interpret the index as indexers, default False

Returns

value : scalar value

pandas.Series.get_values

Series.get_values()
same as values (but handles sparseness conversions); is a view

pandas.Series.groupby

Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns

Parameters

by : mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups

axis : int, default 0

level : int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels

as_index : boolean, default True
For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

sort : boolean, default True
Sort group keys. Get better performance by turning this off

group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces
squeeze : boolean, default False
 reduce the dimensionality of the return type if possible, otherwise return a consistent type

Returns GroupBy object

Examples

DataFrame result >>> data.groupby(func, axis=0).mean()
DataFrame result >>> data.groupby(['col1', 'col2'])['col3'].mean()
DataFrame with hierarchical index >>> data.groupby(['col1', 'col2']).mean()

pandas.Series.gt

Series.gt(other)

pandas.Series.head

Series.head(n=5)
 Returns first n rows

pandas.Series.hist

Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds)
 Draw histogram of the input series using matplotlib

Parameters by : object, optional
 If passed, then used to form histograms for separate groups
ax : matplotlib axis object
 If not passed, uses gca()
grid : boolean, default True
 Whether to show axis grid lines
xlabelsize : int, default None
 If specified changes the x-axis label size
xrot : float, default None
 rotation of x axis labels
ylabelsize : int, default None
 If specified changes the y-axis label size
yrot : float, default None
 rotation of y axis labels
figsize : tuple, default None
figure size in inches by default

bins: integer, default 10

Number of histogram bins to be used

kwds: keywords

To be passed to the actual plotting function

Notes

See matplotlib documentation online for more on this

pandas.Series.idxmax

```python
Series.idxmax (axis=None, out=None, skipna=True)
```

Index of first occurrence of maximum of values.

Parameters

- **skipna**: boolean, default True

 Exclude NA/null values

Returns

- **idxmax**: Index of maximum of values

See Also:

- `DataFrame.idxmax`

Notes

This method is the Series version of `ndarray.argmax`.

pandas.Series.idxmin

```python
Series.idxmin (axis=None, out=None, skipna=True)
```

Index of first occurrence of minimum of values.

Parameters

- **skipna**: boolean, default True

 Exclude NA/null values

Returns

- **idxmin**: Index of minimum of values

See Also:

- `DataFrame.idxmin`

Notes

This method is the Series version of `ndarray.argmin`.
pandas.Series.iget

Series.iget \((i, axis=0)\)

Return the i-th value or values in the Series by location

Parameters
- \(i\) : int, slice, or sequence of integers

Returns
- value : scalar (int) or Series (slice, sequence)

pandas.Series.iget_value

Series.iget_value \((i, axis=0)\)

Return the i-th value or values in the Series by location

Parameters
- \(i\) : int, slice, or sequence of integers

Returns
- value : scalar (int) or Series (slice, sequence)

pandas.Series.interpolate

Series.interpolate \((method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)\)

Interpolate values according to different methods.

Parameters
- method : {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial', 'spline', 'pwlinear', 'piecewise_polynomial', 'pchip'}
 - 'linear': ignore the index and treat the values as equally spaced. default
 - 'time': interpolation works on daily and higher resolution data to interpolate given length of interval
 - 'index', 'values': use the actual numerical values of the index
 - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial' is passed to scipy.interpolate.interp1d with the order given both 'polynomial' and 'spline' require that you also specify and order (int) e.g. \(\text{df.interpolate(method='polynomial', order=4)}\)
 - 'krogh', 'piecewise_polynomial', 'spline', and 'pchip' are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior:

- axis : {0, 1}, default 0
 - 0: fill column-by-column
 - 1: fill row-by-row

- limit : int, default None.
 - Maximum number of consecutive NaNs to fill.

- inplace : bool, default False
 - Update the NDFrame in place if possible.
downcast : optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

Returns Series or DataFrame of same shape interpolated at the NaNs

See Also:
reindex, replace, fillna

Examples

Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 2 2 3 3 dtype: float64

pandas.Series.irow

Series.irow(i, axis=0)

Return the i-th value or values in the Series by location

Parameters i : int, slice, or sequence of integers

Returns value : scalar (int) or Series (slice, sequence)

pandas.Series.isin

Series.isin(values)

Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.

Parameters values : list-like

The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element.

Returns isin : Series (bool dtype)

Raises TypeError

• If values is a string

See Also:
pandas.DataFrame.isin

Examples

>>> s = pd.Series(list('abc'))
>>> s.isin(['a', 'c', 'e'])
0 True
1 False
2 True
dtype: bool

Passing a single string as s.isin('a') will raise an error. Use a list of one element instead:
>> s.isin(['a'])
0 True
1 False
2 False
dtype: bool

pandas.Series.isnull

Series.isnull()
Return a boolean same-sized object indicating if the values are null

See Also:

* notnull boolean inverse of isnull

pandas.Series.item

Series.item()

pandas.Series.iteritems

Series.iteritems()
Lazily iterate over (index, value) tuples

pandas.Series.iterkv

Series.iterkv(*args, **kwargs)
iteritems alias used to get around 2to3. Deprecated

pandas.Series.keys

Series.keys()
Alias for index

pandas.Series.kurt

Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters

- **axis** : {index (0)}
 - skipna : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - level : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
 - numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
kurt : scalar or Series (if level specified)

pandas.Series.kurtosis

Series.kurtosis (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters

axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
kurt : scalar or Series (if level specified)

pandas.Series.last

Series.last (offset)
Convenience method for subsetting final periods of time series data based on a date offset

Parameters

offset : string, DateOffset, dateutil.relativedelta

Returns
subset : type of caller

Examples

ts.last(‘5M’) -> Last 5 months

pandas.Series.last_valid_index

Series.last_valid_index ()
Return label for last non-NA/null value

pandas.Series.le

Series.le (other)

pandas.Series.load

Series.load (path)
Deprecated. Use read_pickle instead.
pandas.Series.lt

Series.lt(other)

pandas.Series.mad

Series.mad(axis=None, skipna=None, level=None, **kwargs)
Return the mean absolute deviation of the values for the requested axis

Parameters
axis : {index (0)}

skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
 a scalar

numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use
 only numeric data

Returns
mad : scalar or Series (if level specified)

pandas.Series.map

Series.map(arg, na_action=None)
Map values of Series using input correspondence (which can be a dict, Series, or function)

Parameters
arg : function, dict, or Series

na_action : {None, ‘ignore’}
 If ‘ignore’, propagate NA values

Returns
y : Series
 same index as caller

Examples

>>> x
 one 1
 two 2
 three 3

>>> y
 1 foo
 2 bar
 3 baz

>>> x.map(y)
 one foo
 two bar
 three baz
pandas.Series.mask

Series.mask(cond)
 Returns copy whose values are replaced with nan if the inverted condition is True

Parameters cond : boolean DataFrame or array

Returns wh: same as input

pandas.Series.max

Series.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters axis : {index (0)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns max : scalar or Series (if level specified)

pandas.Series.mean

Series.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 Return the mean of the values for the requested axis

Parameters axis : {index (0)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns mean : scalar or Series (if level specified)
pandas.Series.median

`Series.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the median of the values for the requested axis

Parameters
axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
median : scalar or Series (if level specified)

pandas.Series.min

`Series.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the minimum of the values in the object. If you want the index of the minimum, use `idxmin`. This is the equivalent of the `numpy.ndarray` method `argmin`.

Parameters
axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
min : scalar or Series (if level specified)

pandas.Series.mod

`Series.mod(other, level=None, fill_value=None, axis=0)`

Binary operator mod with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level
pandas.Series.mode

Series.mode()

Returns the mode(s) of the dataset.
Empty if nothing occurs at least 2 times. Always returns Series even if only one value.

- **Parameters**
 - `sort` : bool, default True
 If True, will lexicographically sort values, if False skips sorting. Result ordering when `sort=False` is not defined.

- **Returns**
 - `modes` : Series (sorted)

pandas.Series.mul

Series.mul(other, level=None, fill_value=None, axis=0)

Binary operator mul with support to substitute a fill_value for missing data in one of the inputs.

- **Parameters**
 - `other` : Series or scalar value
 - `fill_value` : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.
 - `level` : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
 - `result` : Series

pandas.Series.multiply

Series.multiply(other, level=None, fill_value=None, axis=0)

Binary operator mul with support to substitute a fill_value for missing data in one of the inputs.

- **Parameters**
 - `other` : Series or scalar value
 - `fill_value` : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.
 - `level` : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
 - `result` : Series

pandas.Series.ne

Series.ne(other)
pandas.Series.nlargest

Series.nlargest(n=5, take_last=False)
Return the largest n elements.

Parameters n : int
Return this many descending sorted values

take_last : bool
Where there are duplicate values, take the last duplicate

Returns top n : Series
The n largest values in the Series, in sorted order

See Also:
Series.nsmallest

Notes
Faster than .order(ascending=False).head(n) for small n relative to the size of the Series object.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(1e6))
>>> s.nlargest(10) # only sorts up to the N requested

pandas.Series.nonzero

Series.nonzero()
numpy like, returns same as nonzero

pandas.Series.notnull

Series.notnull()
Return a boolean same-sized object indicating if the values are not null

See Also:

isnull boolean inverse of notnull

pandas.Series.nsmallest

Series.nsmallest(n=5, take_last=False)
Return the smallest n elements.

Parameters n : int
Return this many ascending sorted values

```python
take_last : bool
```

Where there are duplicate values, take the last duplicate

Returns
bottom_n : Series

The n smallest values in the Series, in sorted order

See Also:

`Series.nlargest`

Notes

Faster than `.order().head(n)` for small n relative to the size of the Series object.

Examples

```python
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(1e6))
>>> s.nsmallest(10)  # only sorts up to the N requested
```

pandas.Series.nunique

`Series.nunique(dropna=True)`

Return number of unique elements in the object.

Excludes NA values by default.

Parameters
dropna : boolean, default True

Don’t include NaN in the count.

Returns
nunique : int

pandas.Series.order

`Series.order(na_last=None, ascending=True, kind='quicksort', na_position='last', inplace=False)`

Sorts Series object, by value, maintaining index-value link. This will return a new Series by default. Series.sort is the equivalent but as an inplace method.

Parameters
na_last : boolean (optional, default=True) (DEPRECATED; use na_position)

Put NaN’s at beginning or end

ascending : boolean, default True

Sort ascending. Passing False sorts descending

kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’

Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm

na_position : {‘first’, ‘last’} (optional, default=’last’)

29.3. Series 765
‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

inplace : boolean, default False

Do operation in place.

Returns :

y : Series

See Also:

Series.sort

Series.pct_change

Series.pct_change *(periods=1, fill_method='pad', limit=None, freq=None, **kwds)*

Percent change over given number of periods.

Parameters

periods : int, default 1

Periods to shift for forming percent change

fill_method : str, default ‘pad’

How to handle NAs before computing percent changes

limit : int, default None

The number of consecutive NAs to fill before stopping

freq : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

Returns :

chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.Series.plot

Series.plot *(series, label=None, kind='line', use_index=True, rot=None, xticks=None, yticks=None, xlim=None, ylim=None, ax=None, style=None, grid=None, legend=False, logx=False, logy=False, secondary_y=False, **kwds)*

Plot the input series with the index on the x-axis using matplotlib

Parameters

label : label argument to provide to plot

- line : line plot
- bar : vertical bar plot
- barh : horizontal bar plot
- kde/density : Kernel Density Estimation plot
- area : area plot

use_index : boolean, default True

Plot index as axis tick labels

rot : int, default None

Rotation for tick labels
xticks : sequence
 Values to use for the xticks
yticks : sequence
 Values to use for the yticks
xlim : 2-tuple/list
ylim : 2-tuple/list
ax : matplotlib axis object
 If not passed, uses gca()
style : string, default matplotlib default
 matplotlib line style to use
grid : matplotlib grid
legend: matplotlib legend
logx : boolean, default False
 Use log scaling on x axis
logy : boolean, default False
 Use log scaling on y axis
loglog : boolean, default False
 Use log scaling on both x and y axes
secondary_y : boolean or sequence of ints, default False
 If True then y-axis will be on the right
figsize : a tuple (width, height) in inches
position : float
 Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
table : boolean, Series or DataFrame, default False
 If True, draw a table using the data in the Series and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.
kwds : keywords
 Options to pass to matplotlib plotting method

Notes

See matplotlib documentation online for more on this subject

pandas.Series.pop

Series.pop(item)
 Return item and drop from frame. Raise KeyError if not found.
pandas.Series.pow

Series.pow(other, level=None, fill_value=None, axis=0)
Binary operator pow with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series or scalar value

fill_value: None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: Series

pandas.Series.prod

Series.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters
axis: {index (0)}

skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only: boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
prod: scalar or Series (if level specified)

pandas.Series.product

Series.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters
axis: {index (0)}

skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only: boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
prod: scalar or Series (if level specified)
pandas.Series.ptp

Series.ptp(axis=None, out=None)

pandas.Series.put

Series.put(*args, **kwargs)

pandas.Series.quantile

Series.quantile(q=0.5)
Return value at the given quantile, a la numpy.percentile.

Parameters q : float or array-like, default 0.5 (50% quantile)
0 <= q <= 1, the quantile(s) to compute

Returns quantile : float or Series
if q is an array, a Series will be returned where the index is q and the values are the quantiles.

Examples

```python
>>> s = Series([1, 2, 3, 4])
>>> s.quantile(.5)
2.5
>>> s.quantile([.25, .5, .75])
0.25  1.75
0.50  2.50
0.75  3.25
dtype: float64
```

pandas.Series.radd

Series.radd(other, level=None, fill_value=None, axis=0)
Binary operator radd with support to substitute a fill_value for missing data in one of the inputs

Parameters other: Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series
pandas.Series.rank

Series.rank(*method='average', na_option='keep', ascending=True, pct=False*)

- **Parameters**
 - *method*: {'average', 'min', 'max', 'first', 'dense'}
 - average: average rank of group
 - min: lowest rank in group
 - max: highest rank in group
 - first: ranks assigned in order they appear in the array
 - dense: like ‘min’, but rank always increases by 1 between groups
 - *na_option*: {'keep'}
 - keep: leave NA values where they are
 - *ascending*: boolean, default True
 - False for ranks by high (1) to low (N)
 - *pct*: boolean, default False
 - Computes percentage rank of data

- **Returns**
 - *ranks*: Series

pandas.Series.ravel

Series.ravel(*order='C'*)

pandas.Series.rdiv

Series.rdiv(*other, level=None, fill_value=None, axis=0*)

- **Parameters**
 - *other*: Series or scalar value
 - *fill_value*: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - *level*: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
 - *result*: Series

pandas.Series.reindex

Series.reindex(*index=None, **kwargs*)

- **Parameters**
 - *index*: None
 - *copy=False*

- **Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False**
Parameters

- **index**: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **method**: {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None
 Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **copy**: boolean, default True
 Return a new object, even if the passed indexes are the same
- **level**: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
- **fill_value**: scalar, default np.NaN
 Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- **limit**: int, default None
 Maximum size gap to forward or backward fill

Returns **reindexed**: Series

Examples

```python
>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])
```

pandas.Series.reindex_axis

Series.reindex_axis(labels, axis=0, **kwargs)
for compatibility with higher dims

pandas.Series.reindex_like

Series.reindex_like(other, method=None, copy=True, limit=None)
return an object with matching indicies to myself

Parameters

- **other**: Object
 - **method**: string or None
 - **copy**: boolean, default True
 - **limit**: int, default None
 Maximum size gap to forward or backward fill

Returns **reindexed**: same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)
pandas.Series.rename

Series.rename(index=None, **kwargs)

Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters:
- **index**: dict-like or function, optional
 Transformation to apply to that axis values
- **copy**: boolean, default True
 Also copy underlying data
- **inplace**: boolean, default False
 Whether to return a new Series. If True then value of copy is ignored.

Returns:
- **renamed**: Series (new object)

pandas.Series.rename_axis

Series.rename_axis(mapper, axis=0, copy=True, inplace=False)

Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters:
- **mapper**: dict-like or function, optional
- **axis**: int or string, default 0
- **copy**: boolean, default True
 Also copy underlying data
- **inplace**: boolean, default False

Returns:
- **renamed**: type of caller

pandas.Series.reorder_levels

Series.reorder_levels(order)

Rearrange index levels using input order. May not drop or duplicate levels

Parameters:
- **order**: list of int representing new level order.
 (reference level by number or key)
- **axis**: where to reorder levels

Returns:
- **type of caller**: (new object)

pandas.Series.repeat

Series.repeat(reps)

See ndarray.repeat
pandas.Series.replace

Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in `to_replace` with `value`.

Parameters

- **to_replace**: str, regex, list, dict, Series, numeric, or None
 - str or regex:
 - str: string exactly matching to_replace will be replaced with value
 - regex: regexes matching to_replace will be replaced with value
 - list of str, regex, or numeric:
 - First, if to_replace and value are both lists, they must be the same length.
 - Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
 - str and regex rules apply as above.
 - dict:
 - Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column 'a' for the value 'b' and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
 - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
 - None:
 - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

- **value**: scalar, dict, list, str, regex, default None
 Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

- **inplace**: boolean, default False
 If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

- **limit**: int, default None
 Maximum size gap to forward or backward fill

- **regex**: bool or same types as to_replace, default False
 Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.
method : string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when *to_replace* is a list.

Returns filled : NDFrame

Raises AssertionError

* If *regex* is not a bool and *to_replace* is not None.

TypeError

* If *to_replace* is a dict and *value* is not a list, dict, ndarray, or Series

* If *to_replace* is None and *regex* is not compilable into a regular expression or is a list, dict, ndarray, or Series.

ValueError

* If *to_replace* and *value* are lists or ndarrays, but they are not the same length.

See Also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

* Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same.

* Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.

* This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.Series.resample

$pandas.Series.resample$ *(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, offset=None, limit=None, base=0)*

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters

* **rule** : string

 the offset string or object representing target conversion

* **how** : string

 method for down- or re-sampling, default to ‘mean’ for downsampling

* **axis** : int, optional, default 0

* **fill_method** : string, default None

 fill_method for upsampling

* **closed** : {'right', 'left'}

 Which side of bin interval is closed

* **label** : {'right', 'left'}
Which bin edge label to label bucket with

- **convention**: \{'start', 'end', 's', 'e'\}
- **kind**: “period”/“timestamp”
- **loffset**: timedelta
 Adjust the resampled time labels
- **limit**: int, default None
 Maximum size gap to when reindexing with fill_method
- **base**: int, default 0
 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.Series.reset_index

Series.reset_index(level=None, drop=False, name=None, inplace=False)

Analogous to the pandas.DataFrame.reset_index() function, see docstring there.

- **Parameters**
 - **level**: int, str, tuple, or list, default None
 Only remove the given levels from the index. Removes all levels by default
 - **drop**: boolean, default False
 Do not try to insert index into dataframe columns
 - **name**: object, default None
 The name of the column corresponding to the Series values
 - **inplace**: boolean, default False
 Modify the Series in place (do not create a new object)

- **Returns**
 - **resetted**: DataFrame, or Series if drop == True

pandas.Series.reshape

Series.reshape(*args, **kwargs)

See numpy.ndarray.reshape

pandas.Series.rfloordiv

Series.rfloordiv(other, level=None, fill_value=None, axis=0)

Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs

- **Parameters**
 - **other**: Series or scalar value
 - **fill_value**: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - **level**: int or name

29.3. Series
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.rmod

Series \(\text{rmod} \) (other, level=None, fill_value=None, axis=0)
Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.rmul

Series \(\text{rmul} \) (other, level=None, fill_value=None, axis=0)
Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.round

Series \(\text{round} \) (decimals=0, out=None)
Return a with each element rounded to the given number of decimals.
Refer to \textit{numpy.around} for full documentation.

See Also:

\textit{numpy.around} equivalent function

pandas.Series.rpow

Series \(\text{rpow} \) (other, level=None, fill_value=None, axis=0)
Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : Series

pandas.Series.rsub

Series.rsub (other, level=None, fill_value=None, axis=0)

Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : Series

pandas.Series.rtruediv

Series.rtruediv (other, level=None, fill_value=None, axis=0)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : Series

pandas.Series.save

Series.save (path)

Deprecated. Use to_pickle instead

pandas.Series.select

Series.select (crit, axis=0)

Return data corresponding to axis labels matching criteria

Parameters
crit : function

To be called on each index (label). Should return True or False
pandas.Series.sem

Series.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters:
- axis : {index (0)}
- skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns:
- standarderror : scalar or Series (if level specified)

pandas.Series.set_axis

Series.set_axis(axis, labels)
public version of axis assignment

pandas.Series.set_value

Series.set_value(label, value, takeable=False)
Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index

Parameters:
- label : object
 Partial indexing with MultiIndex not allowed
- value : object
 Scalar value
- takeable : interpret the index as indexers, default False

Returns:
- series : Series
 If label is contained, will be reference to calling Series, otherwise a new object

pandas.Series.shift

Series.shift(periods=1, freq=None, axis=0, **kwds)
Shift index by desired number of periods with an optional time freq
Parameters

periods : int
Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, optional
Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes.

Returns shifted : same type as caller

Notes
If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

pandas.Series.skew

Series.skew (axis=0, skipna=True, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns skew : scalar or Series (if level specified)

pandas.Series.slice_shift

Series.slice_shift (periods=1, axis=0, **kwds)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters periods : int
Number of periods to move, can be positive or negative

Returns shifted : same type as caller

Notes
While the slice_shift is faster than shift, you may pay for it later during alignment.
pandas.Series.sort

Series.sort (axis=0, ascending=True, kind='quicksort', na_position='last', inplace=True)
Sort values and index labels by value. This is an inplace sort by default. Series.order is the equivalent but returns a new Series.

Parameters
axis : int (can only be zero)
ascending : boolean, default True
Sort ascending. Passing False sorts descending
kind : {'mergesort', 'quicksort', 'heapsort'}, default ‘quicksort’
Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm
na_position : {'first', 'last'} (optional, default='last')
‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end
inplace : boolean, default True
Do operation in place.

See Also:
Series.order

pandas.Series.sort_index

Series.sort_index (ascending=True)
Sort object by labels (along an axis)

Parameters ascending : boolean or list, default True
Sort ascending vs. descending. Specify list for multiple sort orders

Returns sorted_obj : Series

Examples

>>> result1 = s.sort_index(ascending=False)
>>> result2 = s.sort_index(ascending=[1, 0])

pandas.Series.sortlevel

Series.sortlevel (level=0, ascending=True, sort_remaining=True)
Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

Parameters level : int or level name, default None
ascending : bool, default True

Returns sorted : Series
pandas.Series.squeeze

Series.squeeze()

squeeze length 1 dimensions

pandas.Series.std

Series.std(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns stdev : scalar or Series (if level specified)

pandas.Series.sub

Series.sub(other, level=None, fill_value=None, axis=0)

Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters

other: Series or scalar value

fill_value : None or float scalar, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.subtract

Series.subtract(other, level=None, fill_value=None, axis=0)

Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters

other: Series or scalar value

fill_value : None or float scalar, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.sum

Series.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the sum of the values for the requested axis

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns sum : scalar or Series (if level specified)

pandas.Series.swapaxes

Series.swapaxes(axis1, axis2, copy=True)

Interchange axes and swap values axes appropriately

Returns y : same as input

pandas.Series.swaplevel

Series.swaplevel(i, j, copy=True)

Swap levels i and j in a MultiIndex

Parameters i, j : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.

Returns swapped : Series

pandas.Series.tail

Series.tail(n=5)

Returns last n rows
pandas.Series.take

`Series.take(indices, axis=0, convert=True, is_copy=False)`

Analogous to ndarray.take, return Series corresponding to requested indices

- **Parameters**
 - *indices*: list / array of ints
 - *convert*: translate negative to positive indices (default)

- **Returns**
 - *taken*: Series

pandas.Series.to_clipboard

`Series.to_clipboard(excel=None, sep=None, **kwargs)`

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

- **Parameters**
 - *excel*: boolean, defaults to True
 - if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard
 - *sep*: optional, defaults to tab
 - other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none

pandas.Series.to_csv

`Series.to_csv(path, index=True, sep=',', na_rep='', float_format=None, header=False, index_label=None, mode='w', nanRep=None, encoding=None, date_format=None)`

Write Series to a comma-separated values (csv) file

- **Parameters**
 - *path*: string file path or file handle / StringIO
 - *na_rep*: string, default ‘’
 - Missing data representation
 - *float_format*: string, default None
 - Format string for floating point numbers
 - *header*: boolean, default False
 - Write out series name
 - *index*: boolean, default True
 - Write row names (index)
 - *index_label*: string or sequence, default None
Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

mode: Python write mode, default ‘w’
sep: character, default ‘,”’

Field delimiter for the output file.

encoding: string, optional

A string representing the encoding to use if the contents are non-ascii, for python versions prior to 3

date_format: string, default None

Format string for datetime objects.

pandas.Series.to_dense

Series.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

pandas.Series.to_dict

Series.to_dict()
Convert Series to {label -> value} dict

Returns** value_dict : dict**

pandas.Series.to_frame

Series.to_frame(name=None)
Convert Series to DataFrame

Parameters** name : object, default None**
The passed name should substitute for the series name (if it has one).

Returns** data_frame : DataFrame**

pandas.Series.to_hdf

Series.to_hdf(path_or_buf, key, **kwargs)
activate the HDFStore

Parameters** path_or_buf : the path (string) or buffer to put the store**

key : string

Identifier for the group in the store

mode: optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’

‘r’ Read-only; no data can be modified.

‘w’ Write: a new file is created (an existing file with the same name would be deleted).
Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

It is similar to ‘a’, but the file must already exist.

format: ‘fixed(f)|table(t)’, default is ‘fixed’

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False

For Table formats, append the input data to the existing

complevel : int, 1-9, default 0

If a complib is specified compression will be applied where possible

complib : {'zlib', 'bzip2', 'lz4', 'blosc', None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum

pandas.Series.to_json

Series.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters path_or_buf : the path or buffer to write the result string

if this is None, return a StringIO of the converted string

orient : string

• Series
 – default is ‘index’
 – allowed values are: {'split','records','index’}

• DataFrame
 – default is ‘columns’
 – allowed values are: {'split','records','index’,'columns','values’}

• The format of the JSON string
 – split : dict like {index -> [index], columns -> [columns], data -> [values]}
 – records : list like [[column -> value}, ... , {column -> value}]
 – index : dict like {index -> {column -> value}}
 – columns : dict like {column -> {index -> value}}
values : just the values array

date_format : {'epoch’, ‘iso’}
 Type of date conversion. epoch = epoch milliseconds, iso’ = ISO8601, default is epoch.

double_precision : The number of decimal places to use when encoding
 floating point values, default 10.

force_ascii : force encoded string to be ASCII, default True.

date_unit : string, default ‘ms’ (milliseconds)
 The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

default_handler : callable, default None
 Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

Returns same type as input object with filtered info axis

pandas.Series.to_msgpack

Series.to_msgpack(path_or_buf=None, **kwargs)
 msgpack (serialize) object to input file path
 THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters path : string File path, buffer-like, or None
 if None, return generated string

append : boolean whether to append to an existing msgpack
 (default is False)

compress : type of compressor (zlib or blosc), default to None (no compression)

pandas.Series.to_period

Series.to_period(freq=None, copy=True)
 Convert TimeSeries from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)

Parameters freq : string, default

Returns ts : TimeSeries with PeriodIndex

pandas.Series.to_pickle

Series.to_pickle(path)
 Pickle (serialize) object to input file path
Parameters path : string
File path

pandas.Series.to_sparse

Series.to_sparse(kind='block', fill_value=None)
Convert Series to SparseSeries
Parameters kind : {'block', 'integer'}
fill_value : float, defaults to NaN (missing)
Returns sp : SparseSeries

pandas.Series.to_sql

Series.to_sql(name, con, flavor='sqlite', if_exists='fail', index=True, index_label=None)
Write records stored in a DataFrame to a SQL database.
Parameters name : string
Name of SQL table
con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
flavor : {'sqlite', 'mysql'}, default ‘sqlite’
The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.
if_exists : {'fail', 'replace', 'append'}, default ‘fail’
 • fail: If table exists, do nothing.
 • replace: If table exists, drop it, recreate it, and insert data.
 • append: If table exists, insert data. Create if does not exist.
index : boolean, default True
Write DataFrame index as a column.
index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

pandas.Series.to_string

Series.to_string(buf=None, na_rep='NaN', float_format=None, length=False, dtype=False, name=False)
Render a string representation of the Series
Parameters buf : StringIO-like, optional
buffer to write to

na_rep: string, optional
 string representation of NaN to use, default ‘NaN’

float_format: one-parameter function, optional
 formatter function to apply to columns’ elements if they are floats default None

length: boolean, default False
 Add the Series length

dtype: boolean, default False
 Add the Series dtype

name: boolean, default False
 Add the Series name (which may be None)

Returns

formatted: string (if not buffer passed)

pandas.Series.to_timestamp

`Series.to_timestamp(freq=None, how='start', copy=True)`
 Cast to datetimeindex of timestamps, at **beginning** of period

Parameters

freq: string, default frequency of PeriodIndex
 Desired frequency

how: {'s', 'e', 'start', 'end'}
 Convention for converting period to timestamp; start of period vs. end

Returns

ts: TimeSeries with DatetimeIndex

pandas.Series.tolist

`Series.tolist()`
 Convert Series to a nested list

pandas.Series.transpose

`Series.transpose()`
 support for compatiblity

pandas.Series.truediv

`Series.truediv(other, level=None, fill_value=None, axis=0)`
 Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters

other: Series or scalar value

fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.truncate

Series.truncate (before=None, after=None, axis=None, copy=True)

Truncates a sorted NDFrame before and/or after some particular dates.

Parameters before : date

Truncate before date

after : date

Truncate after date

axis : the truncation axis, defaults to the stat axis

copy : boolean, default is True,

return a copy of the truncated section

Returns truncated : type of caller

pandas.Series.tshift

Series.tshift (periods=1, freq=None, axis=0, **kwds)

Shift the time index, using the index’s frequency if available

Parameters periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, default None

Increment to use from datetools module or time rule (e.g. ‘EOM’)

axis : int or basestring

Corresponds to the axis that contains the Index

Returns shifted : NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown

pandas.Series.tz_convert

Series.tz_convert (tz, axis=0, copy=True)

Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters tz : string or pytz.timezone object

copy : boolean, default True
Also make a copy of the underlying data

pandas.Series.tz_localize

Series.tz_localize(tz, axis=0, copy=True, infer_dst=False)
Localize tz-naive TimeSeries to target time zone

Parameters
- **tz**: string or pytz.timezone object
- **copy**: boolean, default True

 Also make a copy of the underlying data
- **infer_dst**: boolean, default False

 Attempt to infer fall dst-transition times based on order

pandas.Series.unique

Series.unique()
Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values.

Returns
- **uniques**: ndarray

pandas.Series.unstack

Series.unstack(level=-1)
Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame

Parameters
- **level**: int, string, or list of these, default last level

 Level(s) to unstack, can pass level name

Returns
- **unstacked**: DataFrame

Examples

```python
>>> s
one   a  1.
one   b  2.
two  a  3.
two  b  4.

>>> s.unstack(level=-1)
a  b
one  1.  2.
two  3.  4.

>>> s.unstack(level=0)
one two
   a  1.  2.
b  3.  4.
```
pandas.Series.update

`Series.update(other)`

Modify Series in place using non-NA values from passed Series. Aligns on index

Parameters
- `other` : Series

pandas.Series.valid

`Series.valid(inplace=False, **kwargs)`

pandas.Series.value_counts

`Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)`

Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters
- `normalize` : boolean, default False
 - If True then the object returned will contain the relative frequencies of the unique values.
- `sort` : boolean, default True
 - Sort by values
- `ascending` : boolean, default False
 - Sort in ascending order
- `bins` : integer, optional
 - Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data
- `dropna` : boolean, default True
 - Don’t include counts of NaN.

Returns
- `counts` : Series

pandas.Series.var

`Series.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)`

Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument.

Parameters
- `axis` : {index (0)}
- `skipna` : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
numeric_only: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
variance: scalar or Series (if level specified)

pandas.Series.view

```python
Series.view(dtype=None)
```

pandas.Series.where

```python
Series.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
```

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters
cond: boolean NDFrame or array

other: scalar or NDFrame

inplace: boolean, default False

Whether to perform the operation in place on the data

axis: alignment axis if needed, default None

level: alignment level if needed, default None

try_cast: boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error: boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Returns
wh: same type as caller

pandas.Series.xs

```python
Series.xs(key, axis=0, level=None, copy=None, drop_level=True)
```

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

Parameters
key: object

Some label contained in the index, or partially in a MultiIndex

axis: int, default 0

Axis to retrieve cross-section on

level: object, defaults to first n levels (n=1 or len(key))

In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.

copy: boolean [deprecated]

Whether to make a copy of the data
drop_level: boolean, default True

If False, returns object with same levels as self.

Returns
xs: Series or DataFrame

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers

Examples

```python
>>> df
   A  B  C
a  4  5  2
b  4  0  9
c  9  7  3
>>> df.xs('a')
   A  B  C
   4  5  2
Name: a
>>> df.xs('C', axis=1)
   a  b  c
   2  9  3
Name: C
```

```python
>>> df
   A  B  C  D
first second third
bar  one  1  4  1  8  9
    two  1  7  5  5  0
baz  one  1  6  6  8  0
    three 2  5  3  5  3
>>> df.xs(('baz', 'three'))
   A  B  C  D
third
   2  5  3  5  3
>>> df.xs('one', level=1)
   A  B  C  D
first third
   1  4  1  8  9
baz  1  6  6  8  0
>>> df.xs(('baz', 2), level=[0, 'third'])
   A  B  C  D
second
   3  5  3
   3
   3
```

29.3.2 Attributes and underlying data

Axes
pandas: powerful Python data analysis toolkit, Release 0.14.1

- **index**: axis labels

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.values</code></td>
<td>Return Series as ndarray</td>
</tr>
<tr>
<td><code>Series.dtype</code></td>
<td></td>
</tr>
<tr>
<td><code>Series.ftype</code></td>
<td></td>
</tr>
</tbody>
</table>

pandas.Series.values

`Series.values`
Return Series as ndarray

 Returns `arr`: numpy.ndarray

pandas.Series.dtype

`Series.dtype`

pandas.Series.ftype

`Series.ftype`

29.3.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.astype()</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>Series.copy()</code></td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td><code>Series.isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td><code>Series.notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null ..</td>
</tr>
</tbody>
</table>

pandas.Series.astype

`Series.astype`(dtype[, copy, raise_on_error])

Cast object to input numpy.dtype

 Returns `casted`: type of caller

pandas.Series.copy

`Series.copy`(deep=True)

Make a copy of this object

 Parameters `deep`: boolean, default True

 Make a deep copy, i.e. also copy data

 Returns `copy`: type of caller

Chapter 29. API Reference
pandas.Series.isnull

Series.isnull()
Return a boolean same-sized object indicating if the values are null

See Also:

notnull boolean inverse of isnull

pandas.Series.notnull

Series.notnull()
Return a boolean same-sized object indicating if the values are not null

See Also:

isnull boolean inverse of notnull

29.3.4 Indexing, iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.get(key[, default])</td>
<td>Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found</td>
</tr>
<tr>
<td>Series.at</td>
<td></td>
</tr>
<tr>
<td>Series.iat</td>
<td></td>
</tr>
<tr>
<td>Series.ix</td>
<td></td>
</tr>
<tr>
<td>Series.loc</td>
<td></td>
</tr>
<tr>
<td>Series.iloc</td>
<td></td>
</tr>
<tr>
<td>Series.iter</td>
<td>Lazily iterate over (index, value) tuples</td>
</tr>
<tr>
<td>Series.iteritems</td>
<td></td>
</tr>
</tbody>
</table>

pandas.Series.get

Series.get(key[, default=\texttt{None}])
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found

Parameters
key : object

Returns
value : type of items contained in object

pandas.Series.at

Series.at

pandas.Series.iat

Series.iat

pandas.Series.ix

Series.ix
pandas.Series.loc

Series.loc

pandas.Series.iloc

Series.iloc

pandas.Series.__iter__

Series.__iter__()

pandas.Series.iteritems

Series.iteritems()

Lazily iterate over (index, value) tuples

For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation.

29.3.5 Binary operator functions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.add</td>
<td>Binary operator add with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series.sub</td>
<td>Binary operator sub with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series.mul</td>
<td>Binary operator mul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series.div</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series.truediv</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series.floordiv</td>
<td>Binary operator floordiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series.mod</td>
<td>Binary operator mod with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series.pow</td>
<td>Binary operator pow with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series.radd</td>
<td>Binary operator radd with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series$rsub</td>
<td>Binary operator rsub with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series$rmul</td>
<td>Binary operator rmul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series$rdiv</td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series$rtruediv</td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series$rtrfloordiv</td>
<td>Binary operator rfloordiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series$rmul</td>
<td>Binary operator rmod with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series$rpow</td>
<td>Binary operator rpow with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>Series$combine</td>
<td>Perform elementwise binary operation on two Series using given function</td>
</tr>
<tr>
<td>Series$combine_first</td>
<td>Combine Series binary operation on two Series using given function</td>
</tr>
<tr>
<td>Series$round</td>
<td>Return a with each element rounded to the given number of decimals.</td>
</tr>
<tr>
<td>Series.lt</td>
<td></td>
</tr>
<tr>
<td>Series.gt</td>
<td></td>
</tr>
<tr>
<td>Series.le</td>
<td></td>
</tr>
<tr>
<td>Series.ge</td>
<td></td>
</tr>
<tr>
<td>Series.ne</td>
<td></td>
</tr>
<tr>
<td>Series.eq</td>
<td></td>
</tr>
</tbody>
</table>
pandas.Series.add

`Series.add(other, level=None, fill_value=None, axis=0)`
Binary operator add with support to substitute a fill_value for missing data in one of the inputs

Parameters

- `other`: Series or scalar value
 - `fill_value`: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - `level`: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

`result`: Series

pandas.Series.sub

`Series.sub(other, level=None, fill_value=None, axis=0)`
Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters

- `other`: Series or scalar value
 - `fill_value`: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - `level`: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

`result`: Series

pandas.Series.mul

`Series.mul(other, level=None, fill_value=None, axis=0)`
Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

Parameters

- `other`: Series or scalar value
 - `fill_value`: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - `level`: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

`result`: Series

pandas.Series.div

`Series.div(other, level=None, fill_value=None, axis=0)`
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters

- `other`: Series or scalar value
 - `fill_value`: None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.truediv

Series.truediv(other, level=None, fill_value=None, axis=0)

Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.floordiv

Series.floordiv(other, level=None, fill_value=None, axis=0)

Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.mod

Series.mod(other, level=None, fill_value=None, axis=0)

Binary operator mod with support to substitute a fill_value for missing data in one of the inputs

Parameters other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series
pandas.Series.pow

Series.pow(other, level=None, fill_value=None, axis=0)
Binary operator pow with support to substitute a fill_value for missing data in one of the inputs

Parameters

- other: Series or scalar value
 - fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- result: Series

pandas.Series.radd

Series.radd(other, level=None, fill_value=None, axis=0)
Binary operator radd with support to substitute a fill_value for missing data in one of the inputs

Parameters

- other: Series or scalar value
 - fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- result: Series

pandas.Series.rsub

Series.rsub(other, level=None, fill_value=None, axis=0)
Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs

Parameters

- other: Series or scalar value
 - fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- result: Series

pandas.Series.rmul

Series.rmul(other, level=None, fill_value=None, axis=0)
Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs

Parameters

- other: Series or scalar value
 - fill_value: None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns \[result\] : Series

pandas.Series.rdiv

Series.rdiv(other, level=None, fill_value=None, axis=0)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns \[result\] : Series

pandas.Series.rtruediv

Series.rtruediv(other, level=None, fill_value=None, axis=0)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns \[result\] : Series

pandas.Series.rfloordiv

Series.rfloordiv(other, level=None, fill_value=None, axis=0)

Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns \[result\] : Series
pandas.Series.rmod

Series.rmod(other, level=None, fill_value=None, axis=0)
Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs

Parameters
 other: Series or scalar value
 fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
 result: Series

pandas.Series.rpow

Series.rpow(other, level=None, fill_value=None, axis=0)
Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs

Parameters
 other: Series or scalar value
 fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
 result: Series

pandas.Series.combine

Series.combine(other, func, fill_value=nан)
Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other

Parameters
 other: Series or scalar value
 func: function
 fill_value: scalar value

Returns
 result: Series

pandas.Series.combine_first

Series.combine_first(other)
Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two indexes

Parameters
 other: Series

Returns
 y: Series
pandas.Series.round

`Series.round(decimals=0, out=None)`

Return a with each element rounded to the given number of decimals.

Refer to `numpy.around` for full documentation.

See Also:

`numpy.around` equivalent function

pandas.Series.lt

`Series.lt(other)`

pandas.Series.gt

`Series.gt(other)`

pandas.Series.le

`Series.le(other)`

pandas.Series.ge

`Series.ge(other)`

pandas.Series.ne

`Series.ne(other)`

pandas.Series.eq

`Series.eq(other)`

29.3.6 Function application, GroupBy

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.apply(func[, convert_dtype, args])</code></td>
<td>Invoke function on values of Series. Can be ufunc (a NumPy function</td>
</tr>
<tr>
<td><code>Series.map(arg[, na_action])</code></td>
<td>Map values of Series using input correspondence (which can be</td>
</tr>
<tr>
<td><code>Series.groupby([by, axis, level, as_index, ...])</code></td>
<td>Group series using mapper (dict or key function, apply given function</td>
</tr>
</tbody>
</table>

pandas.Series.apply

`Series.apply(func, convert_dtype=True, args=(), **kwds)`

Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values.

Parameters

- `func`: function
convert_dtype : boolean, default True

Try to find better dtype for elementwise function results. If False, leave as dtype=object

args : tuple

Positional arguments to pass to function in addition to the value

Additional keyword arguments will be passed as keywords to the function

Returns y : Series or DataFrame if func returns a Series

See Also:

Series.map For element-wise operations

pandas.Series.map

Series.map(arg, na_action=None)

Map values of Series using input correspondence (which can be a dict, Series, or function)

Parameters arg : function, dict, or Series

na_action : {None, ‘ignore’}

If ‘ignore’, propagate NA values

Returns y : Series

same index as caller

Examples

```python
>>> x
one 1
two 2
three 3

>>> y
1 foo
2 bar
3 baz

>>> x.map(y)
one  foo
two  bar
three baz
```

pandas.Series.groupby

Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns

Parameters by : mapping function / list of functions, dict, Series, or tuple /
list of column names. Called on each element of the object index to determine the
groups. If a dict or Series is passed, the Series or dict VALUES will be used to
determine the groups

```
axis : int, default 0
```

```
level : int, level name, or sequence of such, default None
```

If the axis is a MultiIndex (hierarchical), group by a particular level or levels

```
as_index : boolean, default True
```

For aggregated output, return object with group labels as the index. Only relevant
for DataFrame input. as_index=False is effectively “SQL-style” grouped output

```
sort : boolean, default True
```

Sort group keys. Get better performance by turning this off

```
group_keys : boolean, default True
```

When calling apply, add group keys to index to identify pieces

```
squeeze : boolean, default False
```

reduce the dimensionality of the return type if possible, otherwise return a consistent
type

Returns

GroupBy object

Examples

```
# DataFrame result >>> data.groupby(func, axis=0).mean()

# DataFrame result >>> data.groupby([‘col1’, ‘col2’])[‘col3’].mean()

# DataFrame with hierarchical index >>> data.groupby([‘col1’, ‘col2’]).mean()
```

29.3.7 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.abs()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td>Series.all()</td>
<td>Returns True if all elements evaluate to True.</td>
</tr>
<tr>
<td>Series.any()</td>
<td>Returns True if any of the elements of a evaluate to True.</td>
</tr>
<tr>
<td>Series.autocorr()</td>
<td>Lag-1 autocorrelation</td>
</tr>
<tr>
<td>Series.between()</td>
<td>Return boolean Series equivalent to left <= series <= right. NA values</td>
</tr>
<tr>
<td>Series.clip()</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td>Series.clip_lower()</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td>Series.clip_upper()</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td>Series.corr()</td>
<td>Compute correlation with other Series, excluding missing values</td>
</tr>
<tr>
<td>Series.count()</td>
<td>Return number of non-NA/null observations in the Series</td>
</tr>
<tr>
<td>Series.cov()</td>
<td>Compute covariance with Series, excluding missing values</td>
</tr>
<tr>
<td>Series.cummax()</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td>Series.cummin()</td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td>Series.cumprod()</td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td>Series.cumsum()</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>Series.describe()</td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td>Series.diff()</td>
<td>1st discrete difference of object</td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.27 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.factorize</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>Series.kurt</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>Series.max</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>Series.mean</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.median</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.min</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>Series.mode</code></td>
<td>Returns the mode(s) of the dataset.</td>
</tr>
<tr>
<td><code>Series.pct_change</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>Series.prod</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.rank</code></td>
<td>Compute data ranks (1 through n).</td>
</tr>
<tr>
<td><code>Series.sem</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>Series.skew</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>Series.std</code></td>
<td>Return unbiased standard deviation over requested axis</td>
</tr>
<tr>
<td><code>Series.sum</code></td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.var</code></td>
<td>Return unbiased variance over requested axis</td>
</tr>
<tr>
<td><code>Series.unique</code></td>
<td>Return array of unique values in the object</td>
</tr>
<tr>
<td><code>Series.nunique</code></td>
<td>Return number of unique elements in the object</td>
</tr>
<tr>
<td><code>Series.value_counts</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

pandas.Series.abs

```
Series.abs()  
```

Return an object with absolute value taken. Only applicable to objects that are all numeric.

Returns abs: type of caller

pandas.Series.all

```
Series.all(axis=None, out=None)  
```

Returns True if all elements evaluate to True.

Refer to `numpy.all` for full documentation.

See Also:

- `numpy.all` equivalent function

pandas.Series.any

```
Series.any(axis=None, out=None)  
```

Returns True if any of the elements of `a` evaluate to True.

Refer to `numpy.any` for full documentation.

See Also:

- `numpy.any` equivalent function
pandas.Series.autocorr

Series.autocorr()
Lag-1 autocorrelation

Returns autocorr : float

pandas.Series.between

Series.between(left, right, inclusive=True)
Return boolean Series equivalent to left <= series <= right. NA values will be treated as False

Parameters
left : scalar
Left boundary
right : scalar
Right boundary

Returns is_between : Series

pandas.Series.clip

Series.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters
lower : float, default None
upper : float, default None

Returns clipped : Series

pandas.Series.clip_lower

Series.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns clipped : same type as input

See Also:
clip

pandas.Series.clip_upper

Series.clip_upper(threshold)
Return copy of input with values above given value truncated

Returns clipped : same type as input

See Also:
clip
pandas.Series.corr

Series.corr(other, method='pearson', min_periods=None)

Compute correlation with other Series, excluding missing values

Parameters
- **other**: Series
- **method**: {'pearson', 'kendall', 'spearman'}
 - pearson: standard correlation coefficient
 - kendall: Kendall Tau correlation coefficient
 - spearman: Spearman rank correlation
- **min_periods**: int, optional
 Minimum number of observations needed to have a valid result

Returns
- **correlation**: float

pandas.Series.count

Series.count(level=None)

Return number of non-NA/null observations in the Series

Parameters
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series

Returns
- **nobs**: int or Series (if level specified)

pandas.Series.cov

Series.cov(other, min_periods=None)

Compute covariance with Series, excluding missing values

Parameters
- **other**: Series
- **min_periods**: int, optional
 Minimum number of observations needed to have a valid result

Returns
- **covariance**: float

Normalized by N-1 (unbiased estimator).

pandas.Series.cummax

Series.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs)

Return cumulative max over requested axis.

Parameters
- **axis**: {index (0)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- **max**: scalar
pandas.Series.cummin

Series.cummin (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative min over requested axis.

Parameters
axis : {index (0)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
min : scalar

pandas.Series.cumprod

Series.cumprod (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative prod over requested axis.

Parameters
axis : {index (0)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
prod : scalar

pandas.Series.cumsum

Series.cumsum (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative sum over requested axis.

Parameters
axis : {index (0)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
sum : scalar

pandas.Series.describe

Series.describe (percentile_width=None, percentiles=None)
Generate various summary statistics, excluding NaN values.

Parameters
percentile_width : float, deprecated

The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

percentiles : array-like, optional

The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

Returns
summary: NDFrame of summary statistics
Notes

For numeric dtypes the index includes: count, mean, std, min, max, and lower, 50, and upper percentiles.
If self is of object dtypes (e.g. timestamps or strings), the output will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

pandas.Series.diff

`Series.diff(periods=1)`
1st discrete difference of object

Parameters

- **periods**: int, default 1
 Periods to shift for forming difference

Returns

- **diffed**: Series

pandas.Series.factorize

`Series.factorize(sort=False, na_sentinel=-1)`
Encode the object as an enumerated type or categorical variable

Parameters

- **sort**: boolean, default False
 Sort by values
- **na_sentinel**: int, default -1
 Value to mark “not found”

Returns

- **labels**: the indexer to the original array
- **uniques**: the unique Index

pandas.Series.kurt

`Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters

- **axis**: {index (0)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **kurt**: scalar or Series (if level specified)
pandas.Series.mad

Series.mad (axis=None, skipna=None, level=None, **kwargs)

Return the mean absolute deviation of the values for the requested axis

Parameters
- **axis**: {index (0)}
 - skipna: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - level: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
 - numeric_only: boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- mad: scalar or Series (if level specified)

pandas.Series.max

Series.max (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters
- **axis**: {index (0)}
 - skipna: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - level: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
 - numeric_only: boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- max: scalar or Series (if level specified)

pandas.Series.mean

Series.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the mean of the values for the requested axis

Parameters
- **axis**: {index (0)}
 - skipna: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - level: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then
use only numeric data

Returns mean : scalar or Series (if level specified)

pandas.Series.median

Series.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the median of the values for the requested axis

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then
use only numeric data

Returns median : scalar or Series (if level specified)

pandas.Series.min

Series.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use
idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then
use only numeric data

Returns min : scalar or Series (if level specified)

pandas.Series.mode

Series.mode()

Returns the mode(s) of the dataset.

Empty if nothing occurs at least 2 times. Always returns Series even if only one value.

Parameters sort : bool, default True
If True, will lexicographically sort values, if False skips sorting. Result ordering when sort=False is not defined.

Returns modes : Series (sorted)

pandas.Series.pct_change

Series.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwds)

Percent change over given number of periods.

Parameters periods : int, default 1

- Periods to shift for forming percent change

fill_method : str, default 'pad'

- How to handle NAs before computing percent changes

limit : int, default None

- The number of consecutive NAs to fill before stopping

freq : DateOffset, timedelta, or offset alias string, optional

- Increment to use from time series API (e.g. ‘M’ or BDay())

Returns chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.Series.prod

Series.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis.

Parameters axis : {index (0)}

skipna : boolean, default True

- Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

- If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

- Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns prod : scalar or Series (if level specified)
pandas.Series.quantile

Series.quantile(q=0.5)
Return value at the given quantile, a la numpy.percentile.

Parameters q : float or array-like, default 0.5 (50% quantile)
0 <= q <= 1, the quantile(s) to compute

Returns quantile : float or Series
if q is an array, a Series will be returned where the index is q and the values are the quantiles.

Examples

```python
g% s = Series([1, 2, 3, 4])
g% s.quantile(.5)  
2.5
```  
```python
g% s.quantile([.25, .5, .75])
   0.25  1.75
   0.50  2.50
   0.75  3.25
dtype: float64
```

pandas.Series.rank

Series.rank(method='average', na_option='keep', ascending=True, pct=False)
Compute data ranks (1 through n). Equal values are assigned a rank that is the average of the ranks of those values

Parameters method : {'average', 'min', 'max', 'first', 'dense'}
 • average: average rank of group
 • min: lowest rank in group
 • max: highest rank in group
 • first: ranks assigned in order they appear in the array
 • dense: like 'min', but rank always increases by 1 between groups

na_option : {'keep'}
 keep: leave NA values where they are

ascending : boolean, default True
 False for ranks by high (1) to low (N)

pct : boolean, default False
 Computes percentage rank of data

Returns ranks : Series
pandas.Series.sem

Series.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns standarderror : scalar or Series (if level specified)

pandas.Series.skew

Series.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased skew over requested axis Normalized by N-1

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns skew : scalar or Series (if level specified)

pandas.Series.std

Series.std(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
stdev : scalar or Series (if level specified)

pandas.Series.sum

Series.sum

```python
Series.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the sum of the values for the requested axis

Parameters

- **axis** : {index (0)}
 - boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **level** : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
 - **numeric_only** : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
sum : scalar or Series (if level specified)

pandas.Series.var

Series.var

```python
Series.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)
```

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

- **axis** : {index (0)}
 - boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **level** : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
 - **numeric_only** : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
variance : scalar or Series (if level specified)
pandas.Series.unique

Series.\texttt{unique()}
Return array of unique values in the object. Significantly faster than \texttt{numpy.unique}. Includes NA values.
\textbf{Returns} \texttt{uniques} : \texttt{ndarray}

pandas.Series.nunique

Series.\texttt{nunique}(\texttt{dropna}={\texttt{True}})
Return number of unique elements in the object.
Excludes NA values by default.
\textbf{Parameters} \texttt{dropna} : boolean, default \texttt{True}
Don’t include NaN in the count.
\textbf{Returns} \texttt{nunique} : int

pandas.Series.value_counts

Series.\texttt{value_counts}(\texttt{normalize}={\texttt{False}}, \texttt{sort}={\texttt{True}}, \texttt{ascending}={\texttt{False}}, \texttt{bins}={\texttt{None}}, \texttt{dropna}={\texttt{True}})
Returns object containing counts of unique values.
The resulting object will be in descending order so that the first element is the most frequently-occurring element.
Excludes NA values by default.
\textbf{Parameters} \texttt{normalize} : boolean, default \texttt{False}
If True then the object returned will contain the relative frequencies of the unique values.
\texttt{sort} : boolean, default \texttt{True}
Sort by values
\texttt{ascending} : boolean, default \texttt{False}
Sort in ascending order
\texttt{bins} : integer, optional
Rather than count values, group them into half-open bins, a convenience for \texttt{pd.cut}, only works with numeric data
\texttt{dropna} : boolean, default \texttt{True}
Don’t include counts of NaN.
\textbf{Returns} \texttt{counts} : Series

29.3.8 Reindexing / Selection / Label manipulation

Series.align(other[, join, axis, level, ...])	Align two object on their axes with the
Series.drop(labels[, axis, level, inplace])	Return new object with labels in requested axis removed
Series.equals(other)	Determines if two \texttt{NDFrame} objects contain the same elements. \texttt{NaNs in}
Series.first(offset)	Convenience method for subsetting initial periods of time series data

Continued on next page
Table 29.28 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.head(n)</td>
<td>Returns first n rows</td>
</tr>
<tr>
<td>Series.idxmax([axis, out, skipna])</td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td>Series.idxmin([axis, out, skipna])</td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td>Series.isin(values)</td>
<td>Return a boolean Series showing whether each element</td>
</tr>
<tr>
<td>Series.last(offset)</td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td>Series.reindex([index])</td>
<td>Conform Series to new index with optional filling logic, placing</td>
</tr>
<tr>
<td>Series.reindex_like(other[, method, copy, limit])</td>
<td>return an object with matching indices to myself</td>
</tr>
<tr>
<td>Series.rename([index])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>Series.reset_index([level, drop, name, inplace])</td>
<td>Analogous to the pandas.DataFrame.reset_index() function, see</td>
</tr>
<tr>
<td>Series.select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>Series.take(indices[, axis, convert, is_copy])</td>
<td>Analogous to ndarray.take, return Series corresponding to requested</td>
</tr>
<tr>
<td>Series.tail([n])</td>
<td>Returns last n rows</td>
</tr>
<tr>
<td>Series.truncate([before, after, axis, copy])</td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
</tbody>
</table>

pandas.Series.align

Series.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)

Align two object on their axes with the specified join method for each axis Index

Parameters

- **other**: DataFrame or Series
- **join**: {'outer', 'inner', 'left', 'right'}, default 'outer'
- **axis**: allowed axis of the other object, default None
 - Align on index (0), columns (1), or both (None)
- **level**: int or level name, default None
 - Broadcast across a level, matching Index values on the passed MultiIndex level
- **copy**: boolean, default True
 - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
- **fill_value**: scalar, default np.NaN
 - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- **method**: str, default None
- **limit**: int, default None
- **fill_axis**: {0, 1}, default 0
 - Filling axis, method and limit

Returns

(left, right) : (type of input, type of other)

Aligned objects

pandas.Series.drop

Series.drop(labels, axis=0, level=None, inplace=False, **kwargs)

Return new object with labels in requested axis removed
Parameters

- **labels**: single label or list-like
- **axis**: int or axis name
- **level**: int or level name, default None
 - For MultiIndex
- **inplace**: bool, default False
 - If True, do operation inplace and return None.

Returns

- **dropped**: type of caller

pandas.Series.equals

```python
Series.equals(other)
```

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Series.first

```python
Series.first(offset)
```

Convenience method for subsetting initial periods of time series data based on a date offset

- **Parameters**
 - **offset**: string, DateOffset, dateutil.relativedelta

- **Returns**
 - **subset**: type of caller

Examples

`ts.last('10D')` -> First 10 days

pandas.Series.head

```python
Series.head(n=5)
```

Returns first n rows

pandas.Series.idxmax

```python
Series.idxmax(axis=None, out=None, skipna=True)
```

Index of first occurrence of maximum of values.

- **Parameters**
 - **skipna**: boolean, default True
 - Exclude NA/null values

- **Returns**
 - **idxmax**: Index of maximum of values

See Also

- `DataFrame.idxmax`

Notes

This method is the Series version of `ndarray.argmax`.

818 Chapter 29. API Reference
pandas.Series.idxmin

Series.idxmin(\texttt{axis=}\texttt{None, out=}\texttt{None, skipna=\texttt{True}})

Index of first occurrence of minimum of values.

Parameters
- **skipna** : boolean, default True

 Exclude NA/null values

Returns
- **idxmin** : Index of minimum of values

See Also
- DataFrame.idxmin

Notes

This method is the Series version of \texttt{ndarray.argmin}.

pandas.Series.isin

Series.isin(\texttt{values})

Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.

Parameters
- **values** : list-like

 The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element.

Returns
- **isin** : Series (bool dtype)

Raises
- TypeError

 • If \texttt{values} is a string

See Also
- pandas.DataFrame.isin

Examples

```python
>>> s = pd.Series(list('abc'))
>>> s.isin(['a', 'c', 'e'])
0   True
1  False
2   True
dtype: bool
```

Passing a single string as \texttt{s.isin('a')} will raise an error. Use a list of one element instead:

```python
>>> s.isin(['a'])
0   True
1  False
2  False
dtype: bool
```
pandas.Series.last

`Series.last(offset)`
Convenience method for subsetting final periods of time series data based on a date offset

- **Parameters**
 - `offset`: string, DateOffset, dateutil.relativedelta

- **Returns**
 - `subset`: type of caller

Examples

ts.last('5M') -> Last 5 months

pandas.Series.reindex

`Series.reindex(index=None, **kwargs)`
Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and `copy=False`

- **Parameters**
 - `index`: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

 - `method`: {'backfill', 'bfill', 'pad', 'ffill', None}, default None

 - Method to use for filling holes in reindexed DataFrame
 - pad / ffill: propagate last valid observation forward to next valid
 - backfill / bfill: use NEXT valid observation to fill gap

 - `copy`: boolean, default True

 - Return a new object, even if the passed indexes are the same

 - `level`: int or name

 - Broadcast across a level, matching Index values on the passed MultiIndex level

 - `fill_value`: scalar, default np.NaN

 - Value to use for missing values. Defaults to NaN, but can be any “compatible” value

 - `limit`: int, default None

 - Maximum size gap to forward or backward fill

- **Returns**
 - `reindexed`: Series

Examples

```python
>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])
```

pandas.Series.reindex_like

`Series.reindex_like(other, method=None, copy=True, limit=None)`
return an object with matching indicies to myself
Parameters

other : Object

method : string or None

copy : boolean, default True

limit : int, default None

Maximum size gap to forward or backward fill

Returns

reindexed : same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Series.rename

Series rename (index=None, **kwargs)

Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters

index : dict-like or function, optional

Transformation to apply to that axis values

copy : boolean, default True

Also copy underlying data

inplace : boolean, default False

Whether to return a new Series. If True then value of copy is ignored.

Returns

renamed : Series (new object)

pandas.Series.reset_index

Series reset_index (level=None, drop=False, name=None, inplace=False)

Analogous to the pandas.DataFrame.reset_index() function, see docstring there.

Parameters

level : int, str, tuple, or list, default None

Only remove the given levels from the index. Removes all levels by default

drop : boolean, default False

Do not try to insert index into dataframe columns

name : object, default None

The name of the column corresponding to the Series values

inplace : boolean, default False

Modify the Series in place (do not create a new object)

Returns

resetted : DataFrame, or Series if drop == True
pandas.Series.select

Series.select(crit, axis=0)
Return data corresponding to axis labels matching criteria

Parameters:
crit: function
To be called on each index (label). Should return True or False
axis: int

Returns:
selection: type of caller

pandas.Series.take

Series.take(indices, axis=0, convert=True, is_copy=False)
Analogous to ndarray.take, return Series corresponding to requested indices

Parameters:
indices: list / array of ints
convert: translate negative to positive indices (default)

Returns:
taken: Series

pandas.Series.tail

Series.tail(n=5)
Returns last n rows

pandas.Series.truncate

Series.truncate(before=None, after=None, axis=None, copy=True)
Truncates a sorted NDFrame before and/or after some particular dates.

Parameters:
before: date
Truncate before date
after: date
Truncate after date
axis: the truncation axis, defaults to the stat axis
copy: boolean, default is True,
return a copy of the truncated section

Returns:
truncated: type of caller

29.3.9 Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dropna(axis, inplace)</td>
<td>Return Series without null values</td>
</tr>
<tr>
<td>Series.fillna(value, method, axis, ...)</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>Series.interpolate(method, axis, limit, ...)</td>
<td>Interpolate values according to different methods.</td>
</tr>
</tbody>
</table>
pandas.Series.dropna

Series.dropna(axis=0, inplace=False, **kwargs)

Return Series without null values

Returns valid : Series

inplace : boolean, default False

Do operation in place.

pandas.Series.fillna

Series.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)

Fill NA/NaN values using the specified method

Parameters method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

value : scalar, dict, or Series

Value to use to fill holes (e.g. 0), alternately a dict/Series of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series will not be filled). This value cannot be a list.

axis : {0, 1}, default 0

• 0: fill column-by-column

• 1: fill row-by-row

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None

Maximum size gap to forward or backward fill

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : same type as caller

See Also:

reindex, asfreq

pandas.Series.interpolate

Series.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)

Interpolate values according to different methods.

• ‘linear’: ignore the index and treat the values as equally spaced. default
• ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval
• ‘index’, ‘values’: use the actual numerical values of the index
• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’ require that you also specify order (int) e.g. df.interpolate(method='polynomial', order=4)
• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior:
http://docs.scipy.org/doc/scipy/reference/interpolate.html

axis : {0, 1}, default 0
• 0: fill column-by-column
• 1: fill row-by-row
limit : int, default None.
Maximum number of consecutive NaNs to fill.

 inplace : bool, default False
Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None
Downcast dtypes if possible.

Returns Series or DataFrame of same shape interpolated at the NaNs

See Also:
reindex, replace, fillna

Examples

Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64

29.3.10 Reshaping, sorting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.argsort(axis, kind, order)</td>
<td>Overrides ndarray.argsort.</td>
</tr>
<tr>
<td>Series.order([na_last, ascending, kind, ...])</td>
<td>Sorts Series object, by value, maintaining index-value link.</td>
</tr>
<tr>
<td>Series.reorder_levels(order)</td>
<td>Rearranges index levels using input order.</td>
</tr>
<tr>
<td>Series.sort(axis, ascending, kind, ...)</td>
<td>Sort values and index labels by value.</td>
</tr>
<tr>
<td>Series.sort_index(ascending)</td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td>Series.sortlevel([level, ascending, ...])</td>
<td>Sort Series with MultiIndex by chosen level. Data will be</td>
</tr>
<tr>
<td>Series.swaplevel(i, j, copy)</td>
<td>Swap levels i and j in a MultiIndex</td>
</tr>
</tbody>
</table>
Table 29.30 – continued from previous page

| pandas.Series.unstack(level) | Unstack, a.k.a. |

pandas.Series.argsort

Series.argsort (axis=0, kind=’quicksort’, order=None)

Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values.

Parameters

- **axis**: int (can only be zero)
- **kind**: {'mergesort', 'quicksort', 'heapsort'}, default ‘quicksort’
 Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm.
- **order**: ignored

Returns

- **argsorted**: Series, with -1 indicated where nan values are present

pandas.Series.order

Series.order (na_last=None, ascending=True, kind=’quicksort’, na_position=’last’, inplace=False)

Sorts Series object, by value, maintaining index-value link. This will return a new Series by default. Series.sort is the equivalent but as an inplace method.

Parameters

- **na_last**: boolean (optional, default=True) (DEPRECATED; use na_position)
 Put NaN’s at beginning or end.
- **ascending**: boolean, default True
 Sort ascending. Passing False sorts descending.
- **kind**: {'mergesort', 'quicksort', 'heapsort'}, default ‘quicksort’
 Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm.
- **na_position**: {'first', 'last'} (optional, default=’last’)
 ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end.
- **inplace**: boolean, default False
 Do operation in place.

Returns

- **y**: Series

See Also

- Series.sort

pandas.Series.reorder_levels

Series.reorder_levels(order)

Rearranges index levels using input order. May not drop or duplicate levels.

Parameters

- **order**: list of int representing new level order.
 (reference level by number or key)
pandas.Series.sort

Series.sort \((axis=0, ascending=True, kind='quicksort', na_position='last', inplace=True)\)

Sort values and index labels by value. This is an in-place sort by default. Series.order is the equivalent but returns a new Series.

- **Parameters**
 - **axis**: int (can only be zero)
 - **ascending**: boolean, default True
 - Sort ascending. Passing False sorts descending
 - **kind**: {'mergesort', 'quicksort', 'heapsort'}, default ‘quicksort’
 - Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm
 - **na_position**: {'first', 'last'} (optional, default='last')
 - ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end
 - **inplace**: boolean, default True
 - Do operation in place.

- **See Also:**
 - Series.order

pandas.Series.sort_index

Series.sort_index \((ascending=True)\)

Sort object by labels (along an axis)

- **Parameters**
 - **ascending**: boolean or list, default True
 - Sort ascending vs. descending. Specify list for multiple sort orders

- **Returns**
 - **sorted_obj**: Series

Examples

```
>>> result1 = s.sort_index(ascending=False)
>>> result2 = s.sort_index(ascending=[1, 0])
```

pandas.Series.sortlevel

Series.sortlevel \((level=0, ascending=True, sort_remaining=True)\)

Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

- **Parameters**
 - **level**: int or level name, default None
 - **ascending**: bool, default True

- **Returns**
 - **sorted**: Series
pandas.Series.swaplevel

Series.swaplevel(i, j, copy=True)
Swap levels i and j in a MultiIndex

Parameters i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.

Returns swapped : Series

pandas.Series.unstack

Series.unstack(level=-1)
Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame

Parameters level : int, string, or list of these, default last level
Level(s) to unstack, can pass level name

Returns unstacked : DataFrame

Examples

>>> s
one a 1.
one b 2.
two a 3.
two b 4.

>>> s.unstack(level=-1)
a b
one 1. 2.
two 3. 4.

>>> s.unstack(level=0)
one two
a 1. 2.
b 3. 4.

29.3.11 Combining / joining / merging

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.append</td>
<td>Concatenate two or more Series. The indexes must not overlap</td>
</tr>
<tr>
<td>Series.replace</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td>Series.update</td>
<td>Modify Series in place using non-NA values from passed</td>
</tr>
</tbody>
</table>

pandas.Series.append

Series.append(to_append[, verify_integrity])
Concatenate two or more Series. The indexes must not overlap

Parameters to_append : Series or list/tuple of Series
verify_integrity : boolean, default False
If True, raise Exception on creating index with duplicates

Returns appended : Series

pandas.Series.replace

`Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)`

Replace values given in 'to_replace' with 'value'.

Parameters

- **to_replace** : str, regex, list, dict, Series, numeric, or None
 - str or regex:
 - str: string exactly matching `to_replace` will be replaced with `value`
 - regex: regexs matching `to_replace` will be replaced with `value`
 - list of str, regex, or numeric:
 - First, if `to_replace` and `value` are both lists, they must be the same length.
 - Second, if `regex=True` then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for `value` since there are only a few possible substitution regexes you can use.
 - str and regex rules apply as above.
 - dict:
 - Nested dictionaries, e.g., `{‘a’: {‘b’: nan}}`, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
 - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
 - None:
 - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

- **value** : scalar, dict, list, str, regex, default None

 Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

- **inplace** : boolean, default False

 If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

- **limit** : int, default None

 Maximum size gap to forward or backward fill

- **regex** : bool or same types as `to_replace`, default False
Whether to interpret `to_replace` and/or `value` as regular expressions. If this is `True` then `to_replace` must be a string. Otherwise, `to_replace` must be `None` because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

```
method : string, optional, {'pad', 'ffill', 'bfill'}
```

The method to use when for replacement, when `to_replace` is a list.

```
Returns filled : NDFrame
```

```
Raises AssertionError
• If `regex` is not a `bool` and `to_replace` is not `None`.

TypeError
• If `to_replace` is a `dict` and `value` is not a list, dict, ndarray, or Series
• If `to_replace` is `None` and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series

ValueError
• If `to_replace` and `value` are lists or ndarrays, but they are not the same length.

See Also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

• Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

### pandas.Series.update

```
Series.update(other)
```

Modify Series in place using non-NA values from passed Series. Aligns on index

```
Parameters other : Series
```

### 29.3.12 Time series-related

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.asfreq(freq[, method, how, normalize])</td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td>Series.asof(where)</td>
<td>Return last good (non-NaN) value in TimeSeries if value is NaN for</td>
</tr>
<tr>
<td>Series.shift([periods, freq, axis])</td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td>Series.first_valid_index()</td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td>Series.last_valid_index()</td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td>Series.resample(rule[, how, axis, ...])</td>
<td>Convenience method for frequency conversion and resampling of regular time series</td>
</tr>
</tbody>
</table>

---

29.3. Series 829
Table 29.32 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.tz_convert(tz[, axis, copy])</code></td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td><code>Series.tz_localize(tz[, axis, copy, infer_dst])</code></td>
<td>Localize tz-naive TimeSeries to target time zone</td>
</tr>
</tbody>
</table>

**pandas.Series.asfreq**

`Series.asfreq(freq=None, method=None, how=None, normalize=False)`  
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

**Parameters**
- `freq` : DateOffset object, or string  
- `method` : {'backfill', 'bfill', 'pad', 'ffill', None}  
- `how` : {'start', 'end'}, default end  
- `normalize` : bool, default False  

**Returns**
- `converted` : type of caller

**Notes**

Dates are assumed to be sorted

**pandas.Series.asof**

`Series.asof(where)`  
Return last good (non-NaN) value in TimeSeries if value is NaN for requested date.

If there is no good value, NaN is returned.

**Parameters**
- `where` : date or array of dates

**Returns**
- value or NaN

**pandas.Series.shift**

`Series.shift(periods=1, freq=None, axis=0, **kwds)`  
Shift index by desired number of periods with an optional time freq

**Parameters**
- `periods` : int  
- `freq` : DateOffset, timedelta, or time rule string, optional  

**Returns**
- `shifted` : same type as caller
Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

**pandas.Series.first_valid_index**

*Series.first_valid_index()*  
Return label for first non-NA/null value

**pandas.Series.last_valid_index**

*Series.last_valid_index()*  
Return label for last non-NA/null value

**pandas.Series.resample**

*Series.resample*(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)  
Convenience method for frequency conversion and resampling of regular time-series data.

**Parameters**

- **rule**: string  
  the offset string or object representing target conversion
- **how**: string  
  method for down- or re-sampling, default to ‘mean’ for downsampling
- **axis**: int, optional, default 0
- **fill_method**: string, default None  
  fill_method for upsampling
- **closed**: {'right', 'left'}  
  Which side of bin interval is closed
- **label**: {'right', 'left'}  
  Which bin edge label to label bucket with
- **convention**: {'start', 'end', 's', 'e'}
- **kind**: “period”/”timestamp”
- **loffset**: timedelta  
  Adjust the resampled time labels
- **limit**: int, default None  
  Maximum size gap to when reindexing with fill_method
- **base**: int, default 0  
  For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals.  
  For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0
pandas.Series.tz_convert

Series.tz_convert (tz, axis=0, copy=True)
Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters
- tz : string or pytz.timezone object
- copy : boolean, default True
  Also make a copy of the underlying data

pandas.Series.tz_localize

Series.tz_localize (tz, axis=0, copy=True, infer_dst=False)
Localize tz-naive TimeSeries to target time zone

Parameters
- tz : string or pytz.timezone object
- copy : boolean, default True
  Also make a copy of the underlying data
- infer_dst : boolean, default False
  Attempt to infer fall dst-transition times based on order

29.3.13 String handling

Series.str can be used to access the values of the series as strings and apply several methods to it. Due to implementation details the methods show up here as methods of the StringMethods class.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StringMethods.cat([others, sep, na_rep])</td>
<td>Concatenate arrays of strings with given separator</td>
</tr>
<tr>
<td>StringMethods.center(width)</td>
<td>“Center” strings, filling left and right side with additional whitespace</td>
</tr>
<tr>
<td>StringMethods.contains(pat[, case, flags, ...])</td>
<td>Check whether given pattern is contained in each string in the array</td>
</tr>
<tr>
<td>StringMethods.count(pat[, flags])</td>
<td>Count occurrences of pattern in each string</td>
</tr>
<tr>
<td>StringMethods.decode(encoding[, errors])</td>
<td>Decode character string to unicode using indicated encoding</td>
</tr>
<tr>
<td>StringMethods.encode(encoding[, errors])</td>
<td>Encode character string to some other encoding using indicated encoding</td>
</tr>
<tr>
<td>StringMethods.endswith(pat[, na])</td>
<td>Return boolean array indicating whether each string ends with passed</td>
</tr>
<tr>
<td>StringMethods.extract(pat[, flags])</td>
<td>Find groups in each string using passed regular expression</td>
</tr>
<tr>
<td>StringMethods.findall(pat[, flags])</td>
<td>Find all occurrences of pattern or regular expression</td>
</tr>
<tr>
<td>StringMethods.get(i)</td>
<td>Extract element from lists, tuples, or strings in each element in the array</td>
</tr>
<tr>
<td>StringMethods.join(sep)</td>
<td>Join lists contained as elements in array, a la str.join</td>
</tr>
<tr>
<td>StringMethods.lower()</td>
<td>Convert strings in array to lowercase</td>
</tr>
<tr>
<td>StringMethods.len()</td>
<td>Compute length of each string in array.</td>
</tr>
<tr>
<td>StringMethods.lowercase()</td>
<td>Convert strings in array to lowercase</td>
</tr>
<tr>
<td>StringMethods.lstrip([to_strip])</td>
<td>Strip whitespace (including newlines) from left side of each string in the</td>
</tr>
<tr>
<td>StringMethods.match(pat[, case, flags, na, ...])</td>
<td>Deprecated: Find groups in each string using passed regular expression.</td>
</tr>
<tr>
<td>StringMethods.pad(width[, side])</td>
<td>Pad strings with whitespace</td>
</tr>
<tr>
<td>StringMethods.repeat(repeats)</td>
<td>Duplicate each string in the array by indicated number of times</td>
</tr>
<tr>
<td>StringMethods.replace(pat, repl[, n, case, ...])</td>
<td>Replace</td>
</tr>
<tr>
<td>StringMethods.rstrip([to_strip])</td>
<td>Strip whitespace (including newlines) from right side of each string in the</td>
</tr>
<tr>
<td>StringMethods.slice([start, stop, step])</td>
<td>Slice substrings from each element in array</td>
</tr>
<tr>
<td>StringMethods.slice_replace([i, j])</td>
<td>Slice substrings from each element in array</td>
</tr>
<tr>
<td>StringMethods.split([pat, n])</td>
<td>Split each string (a la re.split) in array by given pattern, propagating NA</td>
</tr>
<tr>
<td>StringMethods.startwith(pat[, na])</td>
<td>Return boolean array indicating whether each string starts with passed</td>
</tr>
</tbody>
</table>

Continued on next page
StringMethods.strip(to_strip)
Strip whitespace (including newlines) from each string in the array

StringMethods.title()
Convert strings to titlecased version

StringMethods.upper()
Convert strings in array to uppercase

StringMethods.get_dummies([sep])
Split each string by sep and return a frame of dummy/indicator variables.

pandas.core.strings.StringMethods.cat

StringMethods.cat(others=None, sep=None, na_rep=None)
Concatenate arrays of strings with given separator

Parameters
arr : list or array-like

others : list or array, or list of arrays
sep : string or None, default None
na_rep : string or None, default None
If None, an NA in any array will propagate

Returns
cat : array

pandas.core.strings.StringMethods.center

StringMethods.center(width)
“Center” strings, filling left and right side with additional whitespace

Parameters
width : int
Minimum width of resulting string; additional characters will be filled with spaces

Returns
centered : array

pandas.core.strings.StringMethods.contains

StringMethods.contains(pat, case=True, flags=0, na=nan, regex=True)
Check whether given pattern is contained in each string in the array

Parameters
pat : string
Character sequence or regular expression

case : boolean, default True
If True, case sensitive

flags : int, default 0 (no flags)
re module flags, e.g. re.IGNORECASE

na : default NaN, fill value for missing values.

regex : bool, default True
If True use re.search, otherwise use Python in operator

Returns
Series of boolean values

See Also:
match analogous, but stricter, relying on re.match instead of re.search

**pandas.core.strings.StringMethods.count**

StringMethods.count(pat, flags=0, **kwargs)
Count occurrences of pattern in each string

- **Parameters**
  - arr: list or array-like
  - pat: string, valid regular expression
  - flags: int, default 0 (no flags)
    - re module flags, e.g. re.IGNORECASE

- **Returns**
  - counts: arrays

**pandas.core.strings.StringMethods.decode**

StringMethods.decode(encoding, errors='strict')
Decode character string to unicode using indicated encoding

- **Parameters**
  - encoding: string
  - errors: string

- **Returns**
  - decoded: array

**pandas.core.strings.StringMethods.encode**

StringMethods.encode(encoding, errors='strict')
Encode character string to some other encoding using indicated encoding

- **Parameters**
  - encoding: string
  - errors: string

- **Returns**
  - encoded: array

**pandas.core.strings.StringMethods.endswith**

StringMethods.endswith(pat, na=nan)
Return boolean array indicating whether each string ends with passed pattern

- **Parameters**
  - pat: string
    - Character sequence
  - na: bool, default NaN

- **Returns**
  - endswith: array (boolean)

**pandas.core.strings.StringMethods.extract**

StringMethods.extract(pat, flags=0, **kwargs)
Find groups in each string using passed regular expression

- **Parameters**
  - pat: string
Pattern or regular expression

**flags**: int, default 0 (no flags)

re module flags, e.g. re.IGNORECASE

**Returns** extracted groups**: Series (one group) or DataFrame (multiple groups)

Note that dtype of the result is always object, even when no match is found and the result is a Series or DataFrame containing only NaN values.

**Examples**

A pattern with one group will return a Series. Non-matches will be NaN.

```python
>>> Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)')
0 1
1 2
2 NaN
dtype: object
```

A pattern with more than one group will return a DataFrame.

```python
>>> Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)')
 0 1
0 a 1
1 b 2
2 NaN NaN
```

A pattern may contain optional groups.

```python
>>> Series(['a1', 'b2', 'c3']).str.extract('([ab])?\d')
 0
0 a
1 b
2 NaN
```

Named groups will become column names in the result.

```python
>>> Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)')
 letter digit
0 a 1
1 b 2
2 NaN NaN
```

**pandas.core.strings.StringMethods.findall**

StringMethods. **findall** *(pat, flags=0, **kwargs)*

Find all occurrences of pattern or regular expression

**Parameters** pat : string

Pattern or regular expression

flags : int, default 0 (no flags)

re module flags, e.g. re.IGNORECASE

**Returns** matches : array
pandas.core.strings.StringMethods.get

StringMethods.get(i)
Extract element from lists, tuples, or strings in each element in the array

Parameters
   i : int
       Integer index (location)

Returns
   items : array

pandas.core.strings.StringMethods.join

StringMethods.join(sep)
Join lists contained as elements in array, a la str.join

Parameters
   sep : string
       Delimiter

Returns
   joined : array

pandas.core.strings.StringMethods.len

StringMethods.len()
Compute length of each string in array.

Returns
   lengths : array

pandas.core.strings.StringMethods.lower

StringMethods.lower()
Convert strings in array to lowercase

Returns
   lowercase : array

pandas.core.strings.StringMethods.lstrip

StringMethods.lstrip(to_strip=None)
Strip whitespace (including newlines) from left side of each string in the array

Parameters
   to_strip : str or unicode

Returns
   stripped : array

pandas.core.strings.StringMethods.match

StringMethods.match(pat, case=True, flags=0, na=nan, as_indexer=False)
Deprecated: Find groups in each string using passed regular expression. If as_indexer=True, determine if each string matches a regular expression.

Parameters
   pat : string
       Character sequence or regular expression
   case : boolean, default True

Chapter 29. API Reference
If True, case sensitive

flags : int, default 0 (no flags)
        re module flags, e.g. re.IGNORECASE

na : default NaN, fill value for missing values.

as_indexer : False, by default, gives deprecated behavior better achieved
             using str_extract. True return boolean indexer.

Returns  Series of boolean values
          if as_indexer=True
          Series of tuples
          if as_indexer=False, default but deprecated

See Also:

contains analogous, but less strict, relying on re.search instead of re.match
extract now preferred to the deprecated usage of match (as_indexer=False)

Notes

To extract matched groups, which is the deprecated behavior of match, use str.extract.

pandas.core.strings.StringMethods.pad

StringMethods.pad(width, side='left')

Pad strings with whitespace

Parameters  arr : list or array-like
              width : int
                     Minimum width of resulting string; additional characters will be filled with spaces
              side : {'left', 'right', 'both'}, default 'left'

Returns  padded : array

pandas.core.strings.StringMethods.repeat

StringMethods.repeat(repeats)

Duplicate each string in the array by indicated number of times

Parameters  repeats : int or array
                      Same value for all (int) or different value per (array)

Returns  repeated : array
pandas.core.strings.StringMethods.replace

StringMethods.replace(pat, repl=-1, case=True, flags=0)
Replace

Parameters
- **pat**: string
  Character sequence or regular expression
- **repl**: string
  Replacement sequence
- **n**: int, default -1 (all)
  Number of replacements to make from start
- **case**: boolean, default True
  If True, case sensitive
- **flags**: int, default 0 (no flags)
  re module flags, e.g. re.IGNORECASE

Returns** replaced**: array

pandas.core.strings.StringMethods.rstrip

StringMethods.rstrip(to_strip=None)
Strip whitespace (including newlines) from right side of each string in the array

Parameters** to_strip**: str or unicode

Returns stripped**: array

pandas.core.strings.StringMethods.slice

StringMethods.slice(start=None, stop=None, step=1)
Slice substrings from each element in array

Parameters
- **start**: int or None
- **stop**: int or None

Returns sliced**: array

pandas.core.strings.StringMethods.slice_replace

StringMethods.slice_replace(i=None, j=None)
Slice substrings from each element in array

Parameters
- **start**: int or None
- **stop**: int or None

Returns sliced : array
**pandas.core.strings.StringMethods.split**

StringMethods.split *(pat=None, n=-1)*

Split each string (a la re.split) in array by given pattern, propagating NA values

- **Parameters**
  - `pat`: string, default None
    - String or regular expression to split on. If None, splits on whitespace
  - `n`: int, default None (all)

- **Returns**
  - `split`: array

**Notes**

Both 0 and -1 will be interpreted as return all splits

**pandas.core.strings.StringMethods.startswith**

StringMethods.startswith *(pat, na=nan)*

Return boolean array indicating whether each string starts with passed pattern

- **Parameters**
  - `pat`: string
    - Character sequence
  - `na`: bool, default NaN

- **Returns**
  - `startswith`: array (boolean)

**pandas.core.strings.StringMethods.strip**

StringMethods.strip *(to_strip=None)*

Strip whitespace (including newlines) from each string in the array

- **Parameters**
  - `to_strip`: str or unicode

- **Returns**
  - `stripped`: array

**pandas.core.strings.StringMethods.title**

StringMethods.title()

Convert strings to titlecased version

- **Returns**
  - `titled`: array

**pandas.core.strings.StringMethods.upper**

StringMethods.upper()

Convert strings in array to uppercase

- **Returns**
  - `uppercase`: array
pandas.core.strings.StringMethods.get_dummies

StringMethods.get_dummies(sep='|')
Split each string by sep and return a frame of dummy/indicator variables.

Examples

```python
>>> Series(['a|b', 'a', 'a|c']).str.get_dummies()
d	 a b c
0 0 1 1
1 1 0 0
2 1 0 1
```

```python
>>> pd.Series(['a|b', np.nan, 'a|c']).str.get_dummies()
d	 a b c
0 0 1 1
1 0 0 0
2 1 0 1
```

See also pd.get_dummies.

29.3.14 Plotting

Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds) Draw histogram of the input series using matplotlib

Series.plot(series[, label, kind, ...]) Plot the input series with the index on the x-axis using matplotlib

pandas.Series.hist

Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds)
Draw histogram of the input series using matplotlib

Parameters

- **by**: object, optional
  If passed, then used to form histograms for separate groups
- **ax**: matplotlib axis object
  If not passed, uses gca()
- **grid**: boolean, default True
  Whether to show axis grid lines
- **xlabelsize**: int, default None
  If specified changes the x-axis label size
- **xrot**: float, default None
  rotation of x axis labels
- **ylabelsize**: int, default None
  If specified changes the y-axis label size
- **yrot**: float, default None
  rotation of y axis labels
**figsize** : tuple, default None

Figure size in inches by default

**bins** : integer, default 10

Number of histogram bins to be used

**kwds** : keywords

To be passed to the actual plotting function

### Notes

See matplotlib documentation online for more on this

**pandas.Series.plot**

Series.plot (series, label=None, kind='line', use_index=True, rot=None, xticks=None, yticks=None, xlim=None, ylim=None, ax=None, style=None, grid=None, legend=False, logx=False, logy=None, secondary_y=False, **kwds)

Plot the input series with the index on the x-axis using matplotlib

**Parameters**

**label** : label argument to provide to plot

**kind** : {'line', 'bar', 'barh', 'kde', 'density', 'area'}

- line : line plot
- bar : vertical bar plot
- barh : horizontal bar plot
- kde : Kernel Density Estimation plot
- density : area plot

**use_index** : boolean, default True

Plot index as axis tick labels

**rot** : int, default None

Rotation for tick labels

**xticks** : sequence

Values to use for the xticks

**yticks** : sequence

Values to use for the yticks

**xlim** : 2-tuple/list

**ylim** : 2-tuple/list

**ax** : matplotlib axis object

If not passed, uses gca()

**style** : string, default matplotlib default

- matplotlib line style to use

**grid** : matplotlib grid

**legend** : matplotlib legend

**logx** : boolean, default False

Use log scaling on x axis
**log**, boolean, default False

Use log scaling on y axis

**loglog**, boolean, default False

Use log scaling on both x and y axes

**secondary_y**, boolean or sequence of ints, default False

If True then y-axis will be on the right

**figsize**, a tuple (width, height) in inches

**position**, float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

**table**, boolean, Series or DataFrame, default False

If True, draw a table using the data in the Series and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table.

**kwds**, keywords

Options to pass to matplotlib plotting method

### Notes

See matplotlib documentation online for more on this subject

## 29.3.15 Serialization / IO / Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.from_csv</code></td>
<td>Read delimited file into Series</td>
</tr>
<tr>
<td><code>Series.to_pickle</code></td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td><code>Series.to_csv</code></td>
<td>Write Series to a comma-separated values (csv) file</td>
</tr>
<tr>
<td><code>Series.to_dict</code></td>
<td>Convert Series to <code>{label -&gt; value}</code> dict</td>
</tr>
<tr>
<td><code>Series.to_frame</code></td>
<td>Convert Series to DataFrame</td>
</tr>
<tr>
<td><code>Series.to_hdf</code></td>
<td>activate the HDFStore</td>
</tr>
<tr>
<td><code>Series.to_sql</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>Series.to_msgpack</code></td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td><code>Series.to_json</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>Series.to_sparse</code></td>
<td>Convert Series to SparseSeries</td>
</tr>
<tr>
<td><code>Series.to_dense</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td><code>Series.to_string</code></td>
<td>Render a string representation of the Series</td>
</tr>
<tr>
<td><code>Series.to_clipboard</code></td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
</tbody>
</table>

### pandas.Series.from_csv

*classmethod*

```
Series.from_csv(path[, sep, parse_dates, ...])
```

Read delimited file into Series

**Parameters**

- **path** : string file path or file handle / StringIO
  - `sep`: string, default ‘,’
Field delimiter

**parse_dates**: boolean, default True

Parse dates. Different default from read_table

**header**: int, default 0

Row to use at header (skip prior rows)

**index_col**: int or sequence, default 0

Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table

**encoding**: string, optional

a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3

**infer_datetime_format**: boolean, default False

If True and **parse_dates** is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

**Returns**

**y**: Series

**pandas.Series.to_pickle**

Series. **to_pickle**(path)

Pickle (serialize) object to input file path

**Parameters**

**path**: string

File path

**pandas.Series.to_csv**

Series. **to_csv**(path, index=True, sep=’,’, na_rep=’’, float_format=None, header=False, index_label=None, mode=’w’, nanRep=None, encoding=None, date_format=None)

Write Series to a comma-separated values (csv) file

**Parameters**

**path**: string file path or file handle / StringIO

**na_rep**: string, default ‘’

Missing data representation

**float_format**: string, default None

Format string for floating point numbers

**header**: boolean, default False

Write out series name

**index**: boolean, default True

Write row names (index)

**index_label**: string or sequence, default None
Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

**mode**: Python write mode, default ‘w’

**sep**: character, default ‘,’

Field delimiter for the output file.

**encoding**: string, optional

A string representing the encoding to use if the contents are non-ascii, for python versions prior to 3

**date_format**: string, default None

Format string for datetime objects.

**pandas.Series.to_dict**

`Series.to_dict()`  
Convert Series to {label -> value} dict

Returns `value_dict`: dict

**pandas.Series.to_frame**

`Series.to_frame(name=None)`  
Convert Series to DataFrame

Parameters **name**: object, default None

The passed name should substitute for the series name (if it has one).

Returns `data_frame`: DataFrame

**pandas.Series.to_hdf**

`Series.to_hdf(path_or_buf, key, **kwargs)`  
activate the HDFStore

Parameters **path_or_buf**: the path (string) or buffer to put the store

**key**: string  
identifier for the group in the store

**mode**: optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’

‘r’ Read-only; no data can be modified.

‘w’ Write; a new file is created (an existing file with the same name would be deleted).

‘a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

‘r+’ It is similar to ‘a’, but the file must already exist.

**format**: ‘fixed(f)|table(t)’, default is ‘fixed’
fixed (f)  [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table (t)  [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False
For Table formats, append the input data to the existing

complevel : int, 1-9, default 0
If a complib is specified compression will be applied where possible

complib : {'zlib', 'bz2', 'lzma', 'blosc', None}, default None
If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False
If applying compression use the fletcher32 checksum

pandas.Series.to_sql

Series.to_sql(name, con, flavor='sqlite', if_exists='fail', index=True, index_label=None)
Write records stored in a DataFrame to a SQL database.

Parameters

name : string
Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

flavor : {'sqlite', 'mysql'}, default 'sqlite'
The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

if_exists : {'fail', 'replace', 'append'}, default ‘fail’
• fail: If table exists, do nothing.
• replace: If table exists, drop it, recreate it, and insert data.
• append: If table exists, insert data. Create if does not exist.

index : boolean, default True
Write DataFrame index as a column.

index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
pandas.Series.to_msgpack

Series.to_msgpack(path_or_buf=None, **kwargs)
msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters
- path : string
  File path, buffer-like, or None
  if None, return generated string
- append : boolean
  whether to append to an existing msgpack
  (default is False)
- compress : type of compressor (zlib or blosc), default to None (no compression)

pandas.Series.to_json

Series.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)
Convert the object to a JSON string.

Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters
- path_or_buf : the path or buffer to write the result string
  if this is None, return a StringIO of the converted string
- orient : string
  - Series
    - default is ‘index’
    - allowed values are: {'split','records','index’}
  - DataFrame
    - default is ‘columns’
    - allowed values are: {'split','records','index’,'columns’,'values’}
  - The format of the JSON string
    - split : dict like {index -> [index], columns -> [columns], data -> [values]}
    - records : list like [{column -> value}, ... , {column -> value}]
    - index : dict like {index -> {column -> value}}
    - columns : dict like {column -> {index -> value}}
    - values : just the values array
- date_format : {'epoch', ‘iso’}
  Type of date conversion. epoch = epoch milliseconds, iso’ = ISO8601, default is epoch.
- double_precision : The number of decimal places to use when encoding floating point values, default 10.
force_ascii : force encoded string to be ASCII, default True.

date_unit : string, default ‘ms’ (milliseconds)
   The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’,
   ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

default_handler : callable, default None
   Handler to call if object cannot otherwise be converted to a suitable format for JSON.
   Should receive a single argument which is the object to convert and return a serialisable object.

Returns  same type as input object with filtered info axis

**pandas.Series.to_sparse**

Series.to_sparse(kind='block', fill_value=None)
Convert Series to SparseSeries

Parameters  kind : {'block', 'integer'}
fill_value : float, defaults to NaN (missing)

Returns  sp : SparseSeries

**pandas.Series.to_dense**

Series.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

**pandas.Series.to_string**

Series.to_string(buf=None, na_rep='NaN', float_format=None, length=False, dtype=False, name=False)
Render a string representation of the Series

Parameters  buf : StringIO-like, optional
   buffer to write to
na_rep : string, optional
   string representation of NAN to use, default ‘NaN’
float_format : one-parameter function, optional
   formatter function to apply to columns’ elements if they are floats default None
length : boolean, default False
   Add the Series length
dtype : boolean, default False
   Add the Series dtype
name : boolean, default False
   Add the Series name (which may be None)

Returns  formatted : string (if not buffer passed)
**pandas.Series.to_clipboard**

Series.

Series.
See Also:

**DataFrame.from_records** constructor from tuples, also record arrays

**DataFrame.from_dict** from dicts of Series, arrays, or dicts

**DataFrame.from_csv** from CSV files

**DataFrame.from_items** from sequence of (key, value) pairs

**pandas.read_csv**, **pandas.read_table**, **pandas.read_clipboard**

Examples

```python
>>> d = {'col1': ts1, 'col2': ts2)
>>> df = DataFrame(data=d, index=index)
>>> df2 = DataFrame(np.random.randn(10, 5))
>>> df3 = DataFrame(np.random.randn(10, 5),
... columns=['a', 'b', 'c', 'd', 'e'])
```

Attributes

- `T` Transpose index and columns
- `at`
- `axes`
- `blocks` Internal property, property synonym for `as_blocks()`
- `dtypes` Return the dtypes in this object
- `empty` True if NDFrame is entirely empty [no items]
- `ftypes` Return the ftypes (indication of sparse/dense and dtype)
- `iat`
- `iloc`
- `ix`
- `loc`
- `ndim` Number of axes / array dimensions
- `shape`
- `values` Numpy representation of NDFrame

**pandas.DataFrame.T**

`DataFrame.T` Transpose index and columns

**pandas.DataFrame.at**

`DataFrame.at`

**pandas.DataFrame.axes**

`DataFrame.axes`
**pandas.DataFrame.blocks**

`DataFrame.blocks`  
Internal property, property synonym for `as_blocks()`

**pandas.DataFrame.dtypes**

`DataFrame.dtypes`  
Return the dtypes in this object

**pandas.DataFrame.empty**

`DataFrame.empty`  
True if NDFrame is entirely empty [no items]

**pandas.DataFrame.ftypes**

`DataFrame.ftypes`  
Return the ftypes (indication of sparse/dense and dtype) in this object.

**pandas.DataFrame.iat**

`DataFrame.iat`

**pandas.DataFrame.iloc**

`DataFrame.iloc`

**pandas.DataFrame.ix**

`DataFrame.ix`

**pandas.DataFrame.loc**

`DataFrame.loc`

**pandas.DataFrame.ndim**

`DataFrame.ndim`  
Number of axes / array dimensions

**pandas.DataFrame.shape**

`DataFrame.shape`
pandas.DataFrame.values

DataFrame.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td>add(other[, axis, level, fill_value])</td>
<td>Binary operator add with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names</td>
</tr>
<tr>
<td>align(other[, join, axis, level, copy, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>all([axis, bool_only, skipna, level])</td>
<td>Return whether all elements are True over requested axis.</td>
</tr>
<tr>
<td>any([axis, bool_only, skipna, level])</td>
<td>Return whether any element is True over requested axis.</td>
</tr>
<tr>
<td>append(other[, ignore_index, verify_integrity])</td>
<td>Append columns of other to end of this frame’s columns and index, returning a new object</td>
</tr>
<tr>
<td>apply(func[, axis, broadcast, raw, reduce, args])</td>
<td>Applies function along input axis of DataFrame.</td>
</tr>
<tr>
<td>applymap(func)</td>
<td>Apply a function to a DataFrame that is intended to operate</td>
</tr>
<tr>
<td>as_blocks()</td>
<td>Convert the frame to a dict of dtype -&gt; Constructor Types that each has</td>
</tr>
<tr>
<td>as_matrix([columns])</td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td>asfreq(freq[, method, how, normalize])</td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td>astype(dtype[, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>at_time(time[, asof])</td>
<td>Select values at particular time of day (e.g.)</td>
</tr>
<tr>
<td>between_time(start_time, end_time[, ...])</td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM)</td>
</tr>
<tr>
<td>bfill([axis, inplace, limit, downcast])</td>
<td>Synonym for NDFrame.fillna(method=’bfill’)</td>
</tr>
<tr>
<td>bool()</td>
<td>Return the bool of a single element PandasObject</td>
</tr>
<tr>
<td>boxplot([column, by, ax, fontsize, rot, ...])</td>
<td>Make a box plot from DataFrame column optionally grouped by some columns</td>
</tr>
<tr>
<td>clip([lower, upper, out])</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td>clip_lower(threshold)</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td>clip_upper(threshold)</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td>combine(other, func[, fill_value, overwrite])</td>
<td>Add two DataFrame objects and do not propagate NaN values, so if for a</td>
</tr>
<tr>
<td>combineAdd(other)</td>
<td>Add two DataFrame objects and do not propagate</td>
</tr>
<tr>
<td>combineMult(other)</td>
<td>Multiply two DataFrame objects and do not propagate NaValue, so if</td>
</tr>
<tr>
<td>combine_first(other)</td>
<td>Combine two DataFrame objects and default to non-null values in frame</td>
</tr>
<tr>
<td>compound([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td>consolidate([inplace])</td>
<td>Compute NDFrame with “consolidated” internals (data of each dtype)</td>
</tr>
<tr>
<td>convert_objects([convert_dates, ...])</td>
<td>Attempt to infer better dtype for object columns</td>
</tr>
<tr>
<td>copy([deep])</td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td>corr([method, min_periods])</td>
<td>Compute pairwise correlation of columns, excluding NA/Null values</td>
</tr>
<tr>
<td>corrwith(other[, axis, drop])</td>
<td>Compute pairwise correlation between rows or columns of two DataFrame</td>
</tr>
</tbody>
</table>
### Table 29.38 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count</code></td>
<td>Return Series with number of non-NA/null observations over requested axis.</td>
</tr>
<tr>
<td><code>cov</code></td>
<td>Compute pairwise covariance of columns, excluding NA/null values.</td>
</tr>
<tr>
<td><code>cummax</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin</code></td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td><code>cumprod</code></td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td><code>cumsum</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>delevel</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>describe</code></td>
<td>1st discrete difference of object</td>
</tr>
</tbody>
</table>
| `div`          | Binary operator truediv with support to substitute a fill_value for missing data in
|                | data.                                                                       |
| `divide`       | Binary operator truediv with support to substitute a fill_value for missing data in
|                | data.                                                                       |
| `dot`          | Matrix multiplication with DataFrame or Series objects.                      |
| `drop`         | Return new object with labels in requested axis removed.                    |
| `drop_duplicates` | Return DataFrame with duplicate rows removed, optionally only             |
| `dropna`       | Return object with labels on given axis omitted where alternately any      |
| `duplicated`   | Return boolean Series denoting duplicate rows, optionally only              |
| `eq`           | Wrapper for flexible comparison methods eq                                  |
| `equals`       | Determines if two NDFrame objects contain the same elements. NaNs in the    |
| `eval`         | Evaluate an expression in the context of the calling DataFrame.             |
| `ffill`        | Synonym for NDFrame.fillna(method='ffill')                                  |
| `fillna`       | Fill NA/NaN values using the specified method                               |
| `filter`       | Restrict the info axis to set of items or wildcard                         |
| `first`        | Convenience method for subsetting initial periods of time series data       |
| `first_valid_index` | Return label for first non-NA/null value                                   |
| `floordiv`     | Binary operator floordiv with support to substitute a fill_value for missing data in
|                | data.                                                                       |
| `from_csv`     | Read delimited file into DataFrame.                                         |
| `from_dict`    | Construct DataFrame from dict of array-like or dicts.                       |
| `from_items`   | Convert (key, value) pairs to DataFrame. The keys will be the axis          |
| `from_records` | Convert structured or record ndarray to DataFrame                           |
| `ge`           | Wrapper for flexible comparison methods ge                                  |
| `get`          | Get item from object for given key (DataFrame column, Panel slice,         |
|                | Series, Axis)                                                               |
| `get_dtypes`   | Return the counts of dtypes in this object                                  |
| `get_ftypes`   | Return the counts of ftypes in this object                                  |
| `get_value`    | Quickly retrieve single value at passed column and index                    |
| `get_values`   | same as values (but handles sparseness conversions)                        |
| `groupby`      | Group series using mapper (dict or key function, apply given function      |
| `gt`           | Wrapper for flexible comparison methods gt                                  |
| `head`         | Returns first n rows                                                        |
| `hist`         | Draw histogram of the DataFrame’s series using matplotlib / pylab.          |
| `icol`         |                                                                                                        |
| `idxmax`       | Return index of first occurrence of maximum over requested axis.           |
| `idxmin`       | Return index of first occurrence of minimum over requested axis.           |
| `iget_value`   |                                                                                                        |
| `info`         | Concise summary of a DataFrame.                                             |
| `insert`       | Insert column into DataFrame at specified location.                         |
| `interpolate`  | Interpolate values according to different methods.                          |
| `irow`         |                                                                                                        |
| `isin`         | Return boolean DataFrame showing whether each element in the               |
|                | series is in the set.                                                       |
| `isnull`       | Return a boolean same-sized object indicating if the values are null        |
| `iteritems`    | Iterator over (column, series) pairs                                         |

Continued on next page
Table 29.38 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterkv(*args, **kwargs)</td>
<td>itertuples alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td>iterrows()</td>
<td>Iterate over rows of DataFrame as (index, Series) pairs.</td>
</tr>
<tr>
<td>itertuples([index])</td>
<td>Iterate over rows of DataFrame as tuples, with index value</td>
</tr>
<tr>
<td>join(other[, on, how, lsuffix, rsuffix, sort])</td>
<td>Join columns with other DataFrame either on index or on a key</td>
</tr>
<tr>
<td>keys()</td>
<td>Get the ‘info axis’ (see Indexing for more)</td>
</tr>
<tr>
<td>kurt(axis, skipna, level, numeric_only)</td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td>kurtosis(axis, skipna, level, numeric_only)</td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td>last(offset)</td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td>last_valid_index()</td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td>le(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods le</td>
</tr>
<tr>
<td>load(path)</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>lookup(row_labels, col_labels)</td>
<td>Label-based “fancy indexing” function for DataFrame.</td>
</tr>
<tr>
<td>lt(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods lt</td>
</tr>
<tr>
<td>mad(axis, skipna, level)</td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td>mask(cond)</td>
<td>Returns copy whose values are replaced with nan if the</td>
</tr>
<tr>
<td>max(axis, skipna, level, numeric_only)</td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td>mean(axis, skipna, level, numeric_only)</td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td>median(axis, skipna, level, numeric_only)</td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td>merge(right[, how, on, left_on, right_on, ...])</td>
<td>Merge DataFrame objects by performing a database-style join operation by</td>
</tr>
<tr>
<td>min(axis, skipna, level, numeric_only)</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td>mod(other[, axis, level, fill_value])</td>
<td>Binary operator mod with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>mode(axis, numeric_only)</td>
<td>Gets the mode of each element along the axis selected.</td>
</tr>
<tr>
<td>multiply(other[, axis, level, fill_value])</td>
<td>Binary operator mul with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>ne(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods ne</td>
</tr>
<tr>
<td>notnull()</td>
<td>Return a boolean same-sized object indicating if the values are not null</td>
</tr>
<tr>
<td>pct_change(periods, fill_method, limit, freq)</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td>pivot(index, columns, values)</td>
<td>Reshape data (produce a “pivot” table) based on column values.</td>
</tr>
<tr>
<td>pivot_table(*args, **kwargs)</td>
<td>Create a spreadsheet-style pivot table as a DataFrame. The levels in the</td>
</tr>
<tr>
<td>plot([frame, x, y, subplots, sharex, ...])</td>
<td>Make line, bar, or scatter plots of DataFrame series with the index on the x-axis</td>
</tr>
<tr>
<td>pop(item)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td>pow(other[, axis, level, fill_value])</td>
<td>Binary operator pow with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>prod(axis, skipna, level, numeric_only)</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>product(axis, skipna, level, numeric_only)</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>quantile(q, axis, numeric_only)</td>
<td>Return values at the given quantile over requested axis, a la numpy.percentile.</td>
</tr>
<tr>
<td>query(expr, **kwargs)</td>
<td>Query the columns of a frame with a boolean expression.</td>
</tr>
<tr>
<td>radd(other[, axis, level, fill_value])</td>
<td>Binary operator radd with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>rank([axis, numeric_only, method, ...])</td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td>rdiv(other[, axis, level, fill_value])</td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>reindex(index, columns)</td>
<td>Conform DataFrame to new index with optional filling logic, placing</td>
</tr>
<tr>
<td>reindex_axis(labels[, axis, method, level, ...])</td>
<td>Conform input object to new index with optional filling logic,</td>
</tr>
<tr>
<td>reindex_like(other[, method, copy, limit])</td>
<td>return an object with matching indicies to myself</td>
</tr>
<tr>
<td>rename([index, columns])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>rename_axis([mapper[, axis, copy, inplace]])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td>reorder_levels(order[, axis])</td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td>replace(to_replace, value, inplace, limit, ...)</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td>resample(rule[, how, axis, fill_method, ...])</td>
<td>Convenience method for frequency conversion and resampling of regular time-series</td>
</tr>
<tr>
<td>reset_index([level, drop, inplace, ...])</td>
<td>For DataFrame with multi-level index, return new DataFrame with</td>
</tr>
<tr>
<td>rfloordiv(other[, axis, level, fill_value])</td>
<td>Binary operator rfloordiv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>rmod(other[, axis, level, fill_value])</td>
<td>Binary operator rmod with support to substitute a fill_value for missing data in</td>
</tr>
</tbody>
</table>

Continued on
Table 29.38 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rmul()</code></td>
<td>Binary operator rmul with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td><code>rpow()</code></td>
<td>Binary operator rpow with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td><code>rsub()</code></td>
<td>Binary operator rsub with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td><code>rtruediv()</code></td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td><code>save()</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>select()</code></td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>select_dtypes()</code></td>
<td>Return a subset of a DataFrame including/excluding columns based on</td>
</tr>
<tr>
<td><code>sem()</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>set_axis()</code></td>
<td>public version of axis assignment</td>
</tr>
<tr>
<td><code>set_index()</code></td>
<td>Set the DataFrame index (row labels) using one or more existing</td>
</tr>
<tr>
<td><code>set_value()</code></td>
<td>Put single value at passed column and index</td>
</tr>
<tr>
<td><code>shift()</code></td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td><code>skew()</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>slice_shift()</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort()</code></td>
<td>Sort DataFrame either by labels (along either axis) or by the values in</td>
</tr>
<tr>
<td><code>sort_index()</code></td>
<td>Sort DataFrame either by labels (along either axis) or by the values in</td>
</tr>
<tr>
<td><code>sortlevel()</code></td>
<td>Sort multilevel index by chosen axis and primary level.</td>
</tr>
<tr>
<td><code>squeeze()</code></td>
<td>squeeze length 1 dimensions</td>
</tr>
<tr>
<td><code>stack()</code></td>
<td>Pivot a level of the (possibly hierarchical) column labels, returning a</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>sub()</code></td>
<td>Binary operator sub with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td><code>subtract()</code></td>
<td>Binary operator sub with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td><code>sum()</code></td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td><code>swapaxes()</code></td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>swaplevel()</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td><code>tail()</code></td>
<td>Returns last n rows</td>
</tr>
<tr>
<td><code>take()</code></td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><code>to_clipboard()</code></td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
<tr>
<td><code>to_csv()</code></td>
<td>Write DataFrame to a comma-separated values (csv) file</td>
</tr>
<tr>
<td><code>to_dense()</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td><code>to_dict()</code></td>
<td>Convert DataFrame to dictionary.</td>
</tr>
<tr>
<td><code>to_excel()</code></td>
<td>Write DataFrame to a excel sheet</td>
</tr>
<tr>
<td><code>to_gbq()</code></td>
<td>Write a DataFrame to a Google BigQuery table.</td>
</tr>
<tr>
<td><code>to_html()</code></td>
<td>Render a DataFrame as an HTML table.</td>
</tr>
<tr>
<td><code>to_json()</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_latex()</code></td>
<td>Render a DataFrame to a tabular environment table. You can splice</td>
</tr>
<tr>
<td><code>to_msgpack()</code></td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_panel()</code></td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_period()</code></td>
<td>Convert DataFrame from DatetimeIndex to PeriodIndex with desired</td>
</tr>
<tr>
<td><code>to_pickle()</code></td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_records()</code></td>
<td>Convert DataFrame to record array. Index will be put in the</td>
</tr>
<tr>
<td><code>to_sparse()</code></td>
<td>Convert to SparseDataFrame</td>
</tr>
<tr>
<td><code>to_sql()</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_string()</code></td>
<td>Render a DataFrame to a console-friendly tabular output.</td>
</tr>
<tr>
<td><code>to_timestamp()</code></td>
<td>Cast to DatetimeIndex of timestamps, at beginning of period</td>
</tr>
<tr>
<td><code>transpose()</code></td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td><code>truediv()</code></td>
<td>Binary operator truediv with support to substitute a fill_value for missing data in</td>
</tr>
</tbody>
</table>
Table 29.38 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>truncate([before, after, axis, copy])</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
<tr>
<td><code>tshift([periods, freq, axis])</code></td>
<td>Shift the time index, using the index’s frequency if available</td>
</tr>
<tr>
<td><code>tz_convert([tz[, axis, copy]])</code></td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td><code>tz_localize([tz[, axis, copy, infer_dst]])</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
<tr>
<td><code>unstack([level])</code></td>
<td>Pivot a level of the (necessarily hierarchical) index labels, returning</td>
</tr>
<tr>
<td><code>update(other[, join, overwrite, ...])</code></td>
<td>Modify DataFrame in place using non-NA values from passed</td>
</tr>
<tr>
<td><code>var([axis, skipna, level, ddof])</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td><code>where(cond[, other, inplace, axis, level, ...])</code></td>
<td>Return an object of same shape as self and whose corresponding</td>
</tr>
<tr>
<td><code>xs(key[, axis, level, copy, drop_level])</code></td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
</tbody>
</table>

**`pandas.DataFrame.abs`**

DataFrame.\textbf{abs}()

Return an object with absolute value taken. Only applicable to objects that are all numeric

\textbf{Returns} abs: type of caller

**`pandas.DataFrame.add`**

DataFrame.\textbf{add}(other, axis='columns', level=None, fill_value=None)

Binary operator add with support to substitute a fill_value for missing data in one of the inputs

\textbf{Parameters} other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

\textbf{Returns} result : DataFrame

**Notes**

Mismatched indices will be unioned together

**`pandas.DataFrame.add_prefix`**

DataFrame.\textbf{add_prefix}(prefix)

Concatenate prefix string with panel items names.

\textbf{Parameters} prefix : string

\textbf{Returns} with_prefix : type of caller
**pandas.DataFrame.add_suffix**

```python
DataFrame.add_suffix(suffix)
```

Concatenate suffix string with panel items names

- **Parameters**
  - `suffix`: string

- **Returns**
  - `with_suffix`: type of caller

**pandas.DataFrame.align**

```python
DataFrame.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)
```

Align two object on their axes with the specified join method for each axis

- **Parameters**
  - `other`: DataFrame or Series
  - `join`: {'outer', 'inner', 'left', 'right'}, default 'outer'
  - `axis`: allowed axis of the other object, default None
    - Align on index (0), columns (1), or both (None)
  - `level`: int or level name, default None
    - Broadcast across a level, matching Index values on the passed MultiIndex level
  - `copy`: boolean, default True
    - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
  - `fill_value`: scalar, default np.NaN
    - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
  - `method`: str, default None
  - `limit`: int, default None
  - `fill_axis`: {0, 1}, default 0
    - Filling axis, method and limit

- **Returns**
  - `(left, right)`: (type of input, type of other)
    - Aligned objects

**pandas.DataFrame.all**

```python
DataFrame.all(axis=None, bool_only=None, skipna=True, level=None, **kwargs)
```

Return whether all elements are True over requested axis. %(na_action)s

- **Parameters**
  - `axis`: {0, 1}
    - 0 for row-wise, 1 for column-wise
  - `skipna`: boolean, default True
    - Exclude NA/null values. If an entire row/column is NA, the result will be NA
  - `level`: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

\textbf{bool\_only} : boolean, default None

Only include boolean data.

\textbf{Returns} any : Series (or DataFrame if level specified)

\textbf{pandas.DataFrame.any}

\textbf{DataFrame.any} (axis=None, bool\_only=None, skipna=True, level=None, **kwargs)

Return whether any element is True over requested axis. \%(na\_action)s

\textbf{Parameters}

axis : \{0, 1\}

0 for row-wise, 1 for column-wise

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

bool\_only : boolean, default None

Only include boolean data.

\textbf{Returns} any : Series (or DataFrame if level specified)

\textbf{pandas.DataFrame.append}

\textbf{DataFrame.append} (other, ignore\_index=False, verify\_integrity=False)

Append columns of other to end of this frame’s columns and index, returning a new object. Columns not in this frame are added as new columns.

\textbf{Parameters}

other : DataFrame or list of Series/dict-like objects

ignore\_index : boolean, default False

If True do not use the index labels. Useful for gluing together record arrays

verify\_integrity : boolean, default False

If True, raise ValueError on creating index with duplicates

\textbf{Returns} appended : DataFrame

\textbf{Notes}

If a list of dict is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged
DataFrame.apply

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)
Applies function along input axis of DataFrame.

Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty.

Parameters

func : function
Function to apply to each column/row

axis : {0, 1}
- 0 : apply function to each column
- 1 : apply function to each row

broadcast : boolean, default False
For aggregation functions, return object of same size with values propagated

reduce : boolean or None, default None
Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned.

raw : boolean, default False
If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance

args : tuple
Positional arguments to pass to function in addition to the array/series

Additional keyword arguments will be passed as keywords to the function

Returns

applied : Series or DataFrame

See Also:

DataFrame.applymap For elementwise operations

Notes

In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.

Examples
```python
>>> df.apply(numpy.sqrt) # returns DataFrame
>>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0)
>>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)
```

**pandas.DataFrame.applymap**

DataFrame.applymap(func)

Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame

**Parameters**

- **func**: function

  Python function, returns a single value from a single value

**Returns**

- **applied**: DataFrame

**See Also:**

DataFrame.apply For operations on rows/columns

**pandas.DataFrame.as_blocks**

Dataframe.as_blocks()

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. are presented in sorted order unless a specific list of columns is provided.

**NOTE:** the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

**Parameters**

- **columns**: array-like

  Specific column order

**Returns**

- **values**: a list of Object

**pandas.DataFrame.as_matrix**

Dataframe.as_matrix(columns=None)

Convert the frame to its Numpy-array representation.

**Parameters**

- **columns**: list, optional, default=None

  If None, return all columns, otherwise, returns specified columns.

**Returns**

- **values**: ndarray

  If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.

**See Also:**

pandas.DataFrame.values
Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

This method is provided for backwards compatibility. Generally, it is recommended to use `.values`.

**pandas.DataFrame.asfreq**

DataFrame.asfreq(freq, method=None, how=None, normalize=False)

Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

**Parameters**
- freq : DateOffset object, or string
- method : {'backfill', 'bfill', 'pad', 'ffill', None}
  Method to use for filling holes in reindexed Series pad / fill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method
- how : {'start', 'end'}, default end
  For PeriodIndex only, see PeriodIndex.asfreq
- normalize : bool, default False
  Whether to reset output index to midnight

**Returns**
- converted : type of caller

**pandas.DataFrame.astype**

DataFrame.astype(dtype, copy=True, raise_on_error=True)

Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

**Parameters**
- dtype : numpy.dtype or Python type
- raise_on_error : raise on invalid input

**Returns**
- casted : type of caller

**pandas.DataFrame.at_time**

DataFrame.at_time(time, asof=False)

Select values at particular time of day (e.g. 9:30AM)

**Parameters**
- time : datetime.time or string

**Returns**
- values_at_time : type of caller
pandas.DataFrame.between_time

DataFrame.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM)

Parameters
- **start_time**: datetime.time or string
- **end_time**: datetime.time or string
- **include_start**: boolean, default True
- **include_end**: boolean, default True

Returns **values_between_time**: type of caller

pandas.DataFrame.bfill

DataFrame.bfill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.DataFrame.bool

DataFrame.bool()
Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False
Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

pandas.DataFrame.boxplot

DataFrame.boxplot(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds)
Make a box plot from DataFrame column optionally grouped by some columns or other inputs

Parameters
- **data**: the pandas object holding the data
- **column**: column name or list of names, or vector
  Can be any valid input to groupby
- **by**: string or sequence
  Column in the DataFrame to group by
- **ax**: Matplotlib axes object, optional
- **fontsize**: int or string
- **rot**: label rotation angle
- **figsize**: A tuple (width, height) in inches
- **grid**: Setting this to True will show the grid
- **layout**: tuple (optional)
  (rows, columns) for the layout of the plot
- **return_type**: {'axes', 'dict', 'both'}, default 'dict'

29.4. DataFrame 861
The kind of object to return. ‘dict’ returns a dictionary whose values are the
matplotlib Lines of the boxplot; ‘axes’ returns the matplotlib axes the boxplot is
drawn on; ‘both’ returns a namedtuple with the axes and dict.

When grouping with by, a dict mapping columns to return_type is returned.

kwds : other plotting keyword arguments to be passed to matplotlib boxplot
function

Returns  lines : dict

ax : matplotlib Axes
(ax, lines): namedtuple

Notes

Use return_type=’dict’ when you want to tweak the appearance of the lines after plotting. In this
case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.

pandas.DataFrame.clip

DataFrame.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters  lower : float, default None

upper : float, default None

Returns  clipped : Series

pandas.DataFrame.clip_lower

DataFrame.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns  clipped : same type as input

See Also:
clip

pandas.DataFrame.clip_upper

DataFrame.clip_upper(threshold)
Return copy of input with values above given value truncated

Returns  clipped : same type as input

See Also:
clip
pandas.DataFrame.combine

**DataFrame.combine** *(other, func, fill_value=None, overwrite=True)*

Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

- **Parameters**
  - *other* : DataFrame
  - *func* : function
  - *fill_value* : scalar value
  - *overwrite* : boolean, default True
    - If True then overwrite values for common keys in the calling frame

- **Returns**
  - *result* : DataFrame

pandas.DataFrame.combineAdd

**DataFrame.combineAdd** *(other)*

Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

- **Parameters**
  - *other* : DataFrame

- **Returns**
  - DataFrame

pandas.DataFrame.combineMult

**DataFrame.combineMult** *(other)*

Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

- **Parameters**
  - *other* : DataFrame

- **Returns**
  - DataFrame

pandas.DataFrame.combine_first

**DataFrame.combine_first** *(other)*

Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns

- **Parameters**
  - *other* : DataFrame

- **Returns**
  - *combined* : DataFrame

**Examples**

a’s values prioritized, use values from b to fill holes:

```python
>>> a.combine_first(b)
```
DataFrame.compound

DataFrame.compound (axis=None, skipna=None, level=None, **kwargs)
Return the compound percentage of the values for the requested axis

Parameters
axis : {index (0), columns (1)}
skipna : boolean, default True
   Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
   If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
   into a Series
numeric_only : boolean, default None
   Include only float, int, boolean data. If None, will attempt to use everything, then
   use only numeric data

Returns compounded : Series or DataFrame (if level specified)

DataFrame.consolidate

DataFrame.consolidate (inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndar-
ray). Mainly an internal API function, but available here to the savvy user

Parameters inplace : boolean, default False
   If False return new object, otherwise modify existing object

Returns consolidated : type of caller

DataFrame.convert_objects

DataFrame.convert_objects (convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
Attempt to infer better dtype for object columns

Parameters convert_dates : if True, attempt to soft convert dates, if ‘coerce’,
   force conversion (and non-convertibles get NaT)
convert_numeric : if True attempt to coerce to numbers (including
   strings), non-convertibles get NaN
convert_timedeltas : if True, attempt to soft convert timedeltas, if ‘coerce’,
   force conversion (and non-convertibles get NaT)
copy : Boolean, if True, return copy even if no copy is necessary
   (e.g. no conversion was done), default is True. It is meant for internal use, not to
   be confused with inplace kw.

Returns converted : asm as input object
pandas.DataFrame.copy

DataFrame.copy(deep=True)
Make a copy of this object

Parameters  deep : boolean, default True
    Make a deep copy, i.e. also copy data

Returns  copy : type of caller

pandas.DataFrame.corr

DataFrame.corr(method='pearson', min_periods=1)
Compute pairwise correlation of columns, excluding NA/null values

Parameters  method : {‘pearson’, ‘kendall’, ‘spearman’}
    • pearson : standard correlation coefficient
    • kendall : Kendall Tau correlation coefficient
    • spearman : Spearman rank correlation

    min_periods : int, optional
        Minimum number of observations required per pair of columns to have a valid
        result. Currently only available for pearson and spearman correlation

Returns  y : DataFrame

pandas.DataFrame.corrwith

DataFrame.corrwith(other, axis=0, drop=False)
Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters  other : DataFrame
    axis : {0, 1}
        0 to compute column-wise, 1 for row-wise
    drop : boolean, default False
        Drop missing indices from result, default returns union of all

Returns  correls : Series

pandas.DataFrame.count

DataFrame.count(axis=0, level=None, numeric_only=False)
Return Series with number of non-NA/null observations over requested axis. Works with non-floating
point data as well (detects NaN and None)

Parameters  axis : {0, 1}
    0 for row-wise, 1 for column-wise

    level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

**numeric_only** : boolean, default False
Include only float, int, boolean data

**Returns** count : Series (or DataFrame if level specified)

**pandas.DataFrame.cov**

```
DataFrame.cov (min_periods=None)
```
Compute pairwise covariance of columns, excluding NA/null values

**Parameters** min_periods : int, optional
Minimum number of observations required per pair of columns to have a valid
result.

**Returns** y : DataFrame

**Notes**
y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1
(unbiased estimator).

**pandas.DataFrame.cummax**

```
DataFrame.cummax (axis=None, dtype=None, out=None, skipna=True, **kwargs)
```
Return cumulative max over requested axis.

**Parameters** axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns** max : Series

**pandas.DataFrame.cummin**

```
DataFrame.cummin (axis=None, dtype=None, out=None, skipna=True, **kwargs)
```
Return cumulative min over requested axis.

**Parameters** axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns** min : Series
pandas.DataFrame.cumprod

DataFrame.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative prod over requested axis.

Parameters
axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
prod : Series

pandas.DataFrame.cumsum

DataFrame.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative sum over requested axis.

Parameters
axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
sum : Series

pandas.DataFrame.delevel

DataFrame.delevel(*args, **kwargs)

pandas.DataFrame.describe

DataFrame.describe(percentile_width=None, percentiles=None)
Generate various summary statistics, excluding NaN values.

Parameters
percentile_width : float, deprecated
The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75
percentiles : array-like, optional
The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

Returns
summary: NDFrame of summary statistics

Notes
For numeric dtypes the index includes: count, mean, std, min, max, and lower, 50, and upper percentiles.
If self is of object dtypes (e.g. timestamps or strings), the output will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.
**pandas.DataFrame.diff**

```python
DataFrame.diff(periods=1)
1st discrete difference of object

Parameters periods : int, default 1
 Periods to shift for forming difference

Returns diffed : DataFrame
```

**pandas.DataFrame.div**

```python
DataFrame.div(other, axis='columns', level=None, fill_value=None)
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant
 axis : {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
 fill_value : None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame
```

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.divide**

```python
DataFrame.divide(other, axis='columns', level=None, fill_value=None)
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant
 axis : {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
 fill_value : None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame
```
Notes

Mismatched indices will be unioned together

pandas.DataFrame.dot

DataFrame\.dot (other)
Matrix multiplication with DataFrame or Series objects

Parameters other : DataFrame or Series

Returns dot_product : DataFrame or Series

pandas.DataFrame.drop

DataFrame\.drop (labels, axis=0, level=None, inplace=False, **kwargs)
Return new object with labels in requested axis removed

Parameters labels : single label or list-like
axis : int or axis name
level : int or level name, default None

For MultiIndex
inplace : bool, default False
   If True, do operation inplace and return None.

Returns dropped : type of caller

pandas.DataFrame.drop_duplicates

DataFrame\.drop_duplicates (*args, **kwargs)
Return DataFrame with duplicate rows removed, optionally only considering certain columns

Parameters subset : column label or sequence of labels, optional
   Only consider certain columns for identifying duplicates, by default use all of the columns

take_last : boolean, default False
   Take the last observed row in a row. Defaults to the first row

inplace : boolean, default False
   Whether to drop duplicates in place or to return a copy

cols : kwargs only argument of subset [deprecated]

Returns deduplicated : DataFrame
pandas.DataFrame.dropna

**DataFrame**.dropna \((axis=0, how='any', thresh=None, subset=None, inplace=False)\)

Return object with labels on given axis omitted where alternately any or all of the data are missing

**Parameters**

- **axis**: \{0, 1\}, or tuple/list thereof
  - Pass tuple or list to drop on multiple axes

- **how**: \{'any', 'all'\}
  - any: if any NA values are present, drop that label
  - all: if all values are NA, drop that label

- **thresh**: int, default None
  - int value: require that many non-NA values

- **subset**: array-like
  - Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include

- **inplace**: boolean, default False
  - If True, do operation inplace and return None.

**Returns**

- **dropped**: DataFrame

pandas.DataFrame.duplicated

**DataFrame**.duplicated (*args, **kwargs*)

Return boolean Series denoting duplicate rows, optionally only considering certain columns

**Parameters**

- **subset**: column label or sequence of labels, optional
  - Only consider certain columns for identifying duplicates, by default use all of the columns

- **take_last**: boolean, default False
  - Take the last observed row in a row. Defaults to the first row

- **cols**: kwargs only argument of subset [deprecated]

**Returns**

- **duplicated**: Series

pandas.DataFrame.eq

**DataFrame**.eq \((other, axis='columns', level=None)\)

Wrapper for flexible comparison methods eq

pandas.DataFrame.equals

**DataFrame**.equals \((other)\)

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.
**pandas.DataFrame.eval**

Dataframe.eval(expr, **kwargs)
Evaluate an expression in the context of the calling DataFrame instance.

**Parameters**
- **expr**: string
  The expression string to evaluate.
- **kwargs**: dict
  See the documentation for eval() for complete details on the keyword arguments accepted by query().

**Returns**
- **ret**: ndarray, scalar, or pandas object

**See Also:**
pandas.DataFrame.query, pandas.eval

**Notes**
For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval.

**Examples**

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.eval('a + b')
>>> df.eval('c = a + b')
```

**pandas.DataFrame.ffill**

Dataframe.ffill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='ffill')

**pandas.DataFrame.fillna**

Dataframe.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)
Fill NA/NaN values using the specified method

**Parameters**
- **method** : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
  Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **value** : scalar, dict, or Series
  Value to use to fill holes (e.g. 0), alternately a dict/Series of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series will not be filled). This value cannot be a list.
axis : {0, 1}, default 0
   • 0: fill column-by-column
   • 1: fill row-by-row
inplace : boolean, default False
   If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).
limit : int, default None
   Maximum size gap to forward or backward fill
downcast : dict, default is None
   a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns  filled : same type as caller

See Also:
reindex, asfreq

pandas.DataFrame.filter

DataFrame.filter(items=None, like=None, regex=None, axis=None)
Restrict the info axis to set of items or wildcard

Parameters  items : list-like
   List of info axis to restrict to (must not all be present)
like : string
   Keep info axis where “arg in col == True”
regex : string (regular expression)
   Keep info axis with re.search(regex, col) == True
axis : int or None
   The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with []. For example, df = DataFrame({'a': [1, 2, 3, 4]}); df['a']. So, the DataFrame columns are the info axis.

Notes
Arguments are mutually exclusive, but this is not checked for

pandas.DataFrame.first

DataFrame.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset

Parameters  offset : string, DateOffset, dateutil.relativedelta

Returns  subset : type of caller
Examples

ts.last(‘10D’) -> First 10 days

**pandas.DataFrame.first_valid_index**

DataFrame.first_valid_index()  
Return label for first non-NA/null value

**pandas.DataFrame.floordiv**

DataFrame.floordiv(other, axis=’columns’, level=None, fill_value=None)  
Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
other : Series, DataFrame, or constant  
axis : {0, 1, ‘index’, ‘columns’}  
  For Series input, axis to match Series index on  
fill_value : None or float value, default None  
  Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing  
level : int or name  
  Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
result : DataFrame

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.from_csv**

Dataframe.from_csv(path, header=0, sep=‘’, index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)  
Read delimited file into DataFrame

**Parameters**  
path : string file path or file handle / StringIO  
header : int, default 0  
  Row to use at header (skip prior rows)  
sep : string, default ‘‘  
  Field delimiter  
index_col : int or sequence, default 0  
  Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table  
parse_dates : boolean, default True
Parse dates. Different default from read_table

tupleize_cols : boolean, default False

write multi_index columns as a list of tuples (if True) or new (expanded format) if False

infer_datetime_format: boolean, default False

If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

Returns y : DataFrame

Notes

Preferable to use read_table for most general purposes but from_csv makes for an easy roundtrip to and from file, especially with a DataFrame of time series data

pandas.DataFrame.from_dict

classmethod DataFrame.from_dict(data, orient='columns', dtype=None)

Construct DataFrame from dict of array-like or dicts

Parameters data : dict

{field : array-like} or {field : dict}

orient : {'columns', 'index'}, default 'columns'

The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’.

Returns DataFrame

pandas.DataFrame.from_items

classmethod DataFrame.from_items(items, columns=None, orient='columns')

Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series.

Parameters items : sequence of (key, value) pairs

Values should be arrays or Series.

columns : sequence of column labels, optional

Must be passed if orient='index'.

orient : {'columns', 'index'}, default 'columns'

The “orientation” of the data. If the keys of the input correspond to column labels, pass ‘columns’ (default). Otherwise if the keys correspond to the index, pass ‘index’.

Returns frame : DataFrame
pandas.DataFrame.from_records

classmethod DataFrame.from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)

Convert structured or record ndarray to DataFrame

Parameters
data : ndarray (structured dtype), list of tuples, dict, or DataFrame
index : string, list of fields, array-like
Field of array to use as the index, alternately a specific set of input labels to use
exclude : sequence, default None
Columns or fields to exclude
columns : sequence, default None
Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns)
coerce_float : boolean, default False
Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

Returns
df : DataFrame

pandas.DataFrame.ge

DataFrame.ge(other, axis='columns', level=None)

Wrapper for flexible comparison methods ge

pandas.DataFrame.get

DataFrame.get(key, default=None)

Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found

Parameters
key : object

Returns
value : type of items contained in object

pandas.DataFrame.get_dtype_counts

DataFrame.get_dtype_counts()

Return the counts of dtypes in this object

pandas.DataFrame.get_ftype_counts

DataFrame.get_ftype_counts()

Return the counts of ftypes in this object
pandas: powerful Python data analysis toolkit, Release 0.14.1

**pandas.DataFrame.get_value**

`DataFrame.get_value(index, col, takeable=False)`  
Quickly retrieve single value at passed column and index  

**Parameters**  
- `index`: row label  
- `col`: column label  
- `takeable`: interpret the index/col as indexers, default False  

**Returns**  
- `value`: scalar value

**pandas.DataFrame.get_values**

`DataFrame.get_values()`  
same as values (but handles sparseness conversions)

**pandas.DataFrame.groupby**

`DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)`  
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns  

**Parameters**  
- `by`: mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups  
- `axis`: int, default 0  
- `level`: int, level name, or sequence of such, default None  
  - If the axis is a MultiIndex (hierarchical), group by a particular level or levels  
- `as_index`: boolean, default True  
  - For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output  
- `sort`: boolean, default True  
  - Sort group keys. Get better performance by turning this off  
- `group_keys`: boolean, default True  
  - When calling apply, add group keys to index to identify pieces  
- `squeeze`: boolean, default False  
  - reduce the dimensionality of the return type if possible, otherwise return a consistent type  

**Returns**  
- `GroupBy` object
**Examples**

```python
DataFrame result >>> data.groupby(func, axis=0).mean()
DataFrame result >>> data.groupby([’col1’, ’col2’])[’col3’].mean()
DataFrame with hierarchical index >>> data.groupby([’col1’, ’col2’]).mean()
```

```python
pandas.DataFrame.gt
```

DataFrame.g (other, axis=’columns’, level=None)

Wrapper for flexible comparison methods gt

```python
pandas.DataFrame.head
```

DataFrame.head(n=5)

Returns first n rows

```python
pandas.DataFrame.hist
```

DataFrame.hist(data, column=None, by=None, grid=True, xlabels=’None’, xrot=’None’, ylabels=’None’, yrot=’None’, ax=’None’, sharex=False, sharey=False, figsize=’None’, layout=’None’, bins=’10’, **kwds)

Draw histogram of the DataFrame’s series using matplotlib / pylab.

**Parameters**

- **data**: DataFrame

  - **column**: string or sequence
    - If passed, will be used to limit data to a subset of columns
  - **by**: object, optional
    - If passed, then used to form histograms for separate groups
  - **grid**: boolean, default True
    - Whether to show axis grid lines
  - **xlabels**: int, default None
    - If specified changes the x-axis label size
  - **xrot**: float, default None
    - rotation of x axis labels
  - **ylabels**: int, default None
    - If specified changes the y-axis label size
  - **yrot**: float, default None
    - rotation of y axis labels
  - **ax**: matplotlib axes object, default None
  - **sharex**: bool, if True, the X axis will be shared amongst all subplots.
  - **sharey**: bool, if True, the Y axis will be shared amongst all subplots.
  - **figsize**: tuple

The size of the figure to create in inches by default

layout: (optional) a tuple (rows, columns) for the layout of the histograms

bins: integer, default 10
- Number of histogram bins to be used

kwds : other plotting keyword arguments
- To be passed to hist function

pandas.DataFrame.iloc

DataFrame.iloc(i)

pandas.DataFrame.idxmax

DataFrame.idxmax(axis=0, skipna=True)
- Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

Parameters
- axis : {0, 1}
- 0 for row-wise, 1 for column-wise

skipna : boolean, default True
- Exclude NA/null values. If an entire row/column is NA, the result will be first index.

Returns
- idxmax : Series

See Also:
- Series.idxmax

Notes
- This method is the DataFrame version of ndarray.argmax.

pandas.DataFrame.idxmin

DataFrame.idxmin(axis=0, skipna=True)
- Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters
- axis : {0, 1}
- 0 for row-wise, 1 for column-wise

skipna : boolean, default True
- Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- idxmin : Series

See Also:
- Series.idxmin
Notes

This method is the DataFrame version of `ndarray.argmin`.

**pandas.DataFrame.iget_value**

```
DataFrame.iget_value(i, j)
```

**pandas.DataFrame.info**

```
DataFrame.info(verbose=None, buf=None, max_cols=None)
```

Concise summary of a DataFrame.

**Parameters**

- `verbose`: {None, True, False}, optional
  - Whether to print the full summary. None follows the `display.max_info_columns` setting. True or False overrides the `display.max_info_columns` setting.
- `buf`: writable buffer, defaults to `sys.stdout`
- `max_cols`: int, default None
  - Determines whether full summary or short summary is printed. None follows the `display.max_info_columns` setting.

**pandas.DataFrame.insert**

```
DataFrame.insert(loc, column, value, allow_duplicates=False)
```

Insert column into DataFrame at specified location.

If `allow_duplicates` is False, raises Exception if column is already contained in the DataFrame.

**Parameters**

- `loc`: int
  - Must have 0 <= loc <= len(columns)
- `column`: object
- `value`: int, Series, or array-like

**pandas.DataFrame.interpolate**

```
DataFrame.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)
```

Interpolate values according to different methods.

**Parameters**

- `method`: {'linear', 'time', 'index', 'values', 'nearest', 'zero',
  'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline'
  'piecewise_polynomial', 'pchip'}

  - ‘linear’: ignore the index and treat the values as equally spaced. default
  - ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval
  - ‘index’, ‘values’: use the actual numerical values of the index
is passed to `scipy.interpolate.interp1d` with the order given both ‘polynomial’ and ‘spline’ require that you also specify and order (int) e.g. `df.interpolate(method='polynomial', order=4)`

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior: http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

axis : {0, 1}, default 0
• 0: fill column-by-column
• 1: fill row-by-row

limit : int, default None.
Maximum number of consecutive NaNs to fill.

inplace : bool, default False
Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None
Downcast dtypes if possible.

Returns Series or DataFrame of same shape interpolated at the NaNs

See Also: reindex, replace, fillna

Examples

# Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64

pandas.DataFrame.irow

DataFrame.irow(i, copy=False)

pandas.DataFrame.isin

DataFrame.isin(values)
Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

Parameters values : iterable, Series, DataFrame or dictionary

The result will only be true at a location if all the labels match. If `values` is a Series, that’s the index. If `values` is a dictionary, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match.

Returns DataFrame of booleans
Examples

When values is a list:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> df.isin([1, 3, 12, 'a'])
 A B
0 True True
1 False False
2 True False
```

When values is a dict:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
>>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})
 A B
0 True False # Note that B didn't match the 1 here.
1 False True
2 True True
```

When values is a Series or DataFrame:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
>>> df.isin(other)
 A B
0 True False # Column A in 'other' has a 3, but not at index 1.
1 False False # Column A in 'other' has a 3, but not at index 1.
2 True True
```

`pandas.DataFrame.isnull`

`DataFrame.isnull()`
Return a boolean same-sized object indicating if the values are null

See Also:

`notnull` boolean inverse of isnull

`pandas.DataFrame.iteritems`

`DataFrame.iteritems()`  
Iterator over (column, series) pairs

`pandas.DataFrame.iterkv`

`DataFrame.iterkv(*args, **kwargs)`  
iternames alias used to get around 2to3. Deprecated

`pandas.DataFrame.iterrows`

`DataFrame.iterrows()`  
Iterate over rows of DataFrame as (index, Series) pairs.
**Returns**  

`it : generator`  

A generator that iterates over the rows of the frame.

**Notes**

- `iterrows` does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

```python  
>>> df = DataFrame([[1, 1.0]], columns=['x', 'y'])
>>> row = next(df.iterrows())[1]
>>> print(row['x'].dtype)
float64
>>> print(df['x'].dtype)
int64
```

---

**pandas.DataFrame.itertuples**

`DataFrame.itertuples(index=True)`

Iterate over rows of DataFrame as tuples, with index value as first element of the tuple.

**pandas.DataFrame.join**

`DataFrame.join(other=None, on=None, how='left', lsuffix='', rsuffix='', sort=False)`

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

**Parameters**

- **other**: DataFrame, Series with name field set, or list of DataFrame
  
  Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame

- **on**: column name, tuple/list of column names, or array-like
  
  Column(s) to use for joining, otherwise join on index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

- **how**: `{'left', 'right', 'outer', 'inner'}`
  
  How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise
  
  - left: use calling frame’s index
  - right: use input frame’s index
  - outer: form union of indexes
  - inner: use intersection of indexes

- **lsuffix**: string
  
  Suffix to use from left frame’s overlapping columns

- **rsuffix**: string
  
  Suffix to use from right frame’s overlapping columns
Suffix to use from right frame’s overlapping columns

`sort` : boolean, default False

Order result DataFrame lexicographically by the join key. If False, preserves the
index order of the calling (left) DataFrame

**Returns**

`joined` : DataFrame

**Notes**

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

```python
pandas.DataFrame.keys
```

DataFrame.keys()

Get the ‘info axis’ (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.

```python
pandas.DataFrame.kurt
```

DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis Normalized by N-1

**Parameters**

`axis` : {index (0), columns (1)}

`skipna` : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

`level` : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series

`numeric_only` : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then
use only numeric data

**Returns**

`kurt` : Series or DataFrame (if level specified)

```python
pandas.DataFrame.kurtosis
```

DataFrame.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis Normalized by N-1

**Parameters**

`axis` : {index (0), columns (1)}

`skipna` : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

`level` : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series
**numeric_only**: boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**Series or DataFrame (if level specified)**

**pandas.DataFrame.last**

DataFrame.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset

**Parameters**

**offset**: string, DateOffset, dateutil.relativedelta

**Returns**

**Subset**: type of caller

**Examples**

ts.last('5M') -> Last 5 months

**pandas.DataFrame.last_valid_index**

DataFrame.last_valid_index()
Return label for last non-NA/null value

**pandas.DataFrame.le**

DataFrame.le(other, axis='columns', level=None)
Wrapper for flexible comparison methods le

**pandas.DataFrame.load**

DataFrame.load(path)
Deprecated. Use read_pickle instead.

**pandas.DataFrame.lookup**

DataFrame.lookup(row_labels, col_labels)
Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair.

**Parameters**

**row_labels**: sequence
The row labels to use for lookup

**col_labels**: sequence
The column labels to use for lookup
Notes

Akin to:

```python
result = []
for row, col in zip(row_labels, col_labels):
 result.append(df.get_value(row, col))
```

Examples

values [ndarray] The found values

```python
pandas.DataFrame.lt
```

DataFrame\.lt (other, axis='columns', level=None)
Wrapper for flexible comparison methods lt

```python
pandas.DataFrame.mad
```

DataFrame\.mad (axis=None, skipna=None, level=None, **kwargs)
Return the mean absolute deviation of the values for the requested axis

Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns **mad**: Series or DataFrame (if level specified)

```python
pandas.DataFrame.mask
```

DataFrame\.mask (cond)
Returns copy whose values are replaced with nan if the inverted condition is True

Parameters **cond**: boolean NDFrame or array

Returns **wh**: same as input

```python
pandas.DataFrame.max
```

DataFrame\.max (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.
Parameters  
**axis** : {index (0), columns (1)}
- **skipna** : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only** : boolean, default None
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns  
**max** : Series or DataFrame (if level specified)

```
pandas.DataFrame.mean
```

DataFrame.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters  
**axis** : {index (0), columns (1)}
- **skipna** : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only** : boolean, default None
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns  
**mean** : Series or DataFrame (if level specified)

```
pandas.DataFrame.median
```

DataFrame.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters  
**axis** : {index (0), columns (1)}
- **skipna** : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only** : boolean, default None
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns  
**median** : Series or DataFrame (if level specified)
DataFrame.merge

`DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True)`

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

**Parameters**

- `right` : DataFrame
  - `how` : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’
    - left: use only keys from left frame (SQL: left outer join)
    - right: use only keys from right frame (SQL: right outer join)
    - outer: use union of keys from both frames (SQL: full outer join)
    - inner: use intersection of keys from both frames (SQL: inner join)
  - `on` : label or list
    - Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.
  - `left_on` : label or list, or array-like
    - Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns.
  - `right_on` : label or list, or array-like
    - Field names to join on in right DataFrame or vector/list of vectors per left_on docs.
  - `left_index` : boolean, default False
    - Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels.
  - `right_index` : boolean, default False
    - Use the index from the right DataFrame as the join key. Same caveats as left_index.
  - `sort` : boolean, default False
    - Sort the join keys lexicographically in the result DataFrame.
  - `suffixes` : 2-length sequence (tuple, list, ...)
    - Suffix to apply to overlapping column names in the left and right side, respectively.
  - `copy` : boolean, default True
    - If False, do not copy data unnecessarily.

**Returns**

- `merged` : DataFrame
Examples

```python
>>> A
lkey value
0 foo 1
1 bar 2
2 baz 3
3 foo 4

>>> B
rkey value
0 foo 5
1 bar 6
2 qux 7

>>> merge(A, B, left_on='lkey', right_on='rkey', how='outer')
lkey value_x rkey value_y
0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7
```

### pandas.DataFrame.min

`DataFrame.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the minimum of the values in the object. If you want the index of the minimum, use `idxmin`. This is the equivalent of the `numpy.ndarray` method `argmin`.

**Parameters**
- **axis** : {index (0), columns (1)}
- **skipna** : boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only** : boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **min** : Series or DataFrame (if level specified)

### pandas.DataFrame.mod

`DataFrame.mod(other, axis='columns', level=None, fill_value=None)`

Binary operator mod with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other** : Series, DataFrame, or constant
  - **axis** : {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value** : None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - **level** : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
result : DataFrame

**Notes**

Mismatched indices will be unioned together

### pandas.DataFrame.mode

DataFrame.mode(axis=0, numeric_only=False)

Gets the mode of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan.

**Parameters**  
axis : {0, 1, ‘index’, ‘columns’} (default 0)

- 0/‘index’ : get mode of each column
- 1/‘columns’ : get mode of each row

numeric_only : boolean, default False

if True, only apply to numeric columns

**Returns**  
modes : DataFrame (sorted)

### pandas.DataFrame.mul

DataFrame.mul(other, axis=‘columns’, level=None, fill_value=None)

Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
result : DataFrame

**Notes**

Mismatched indices will be unioned together
pandas.DataFrame.multiply

DataFrame.multiply(other, axis='columns', level=None, fill_value=None)
  Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

Parameters
  other : Series, DataFrame, or constant
    axis : {0, 1, ‘index’, ‘columns’}
      For Series input, axis to match Series index on
    fill_value : None or float value, default None
      Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
    level : int or name
      Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
  result : DataFrame

Notes
  Mismatched indices will be unioned together

pandas.DataFrame.ne

DataFrame.ne(other, axis='columns', level=None)
  Wrapper for flexible comparison methods ne

pandas.DataFrame.notnull

DataFrame.notnull()
  Return a boolean same-sized object indicating if the values are not null

See Also:

isnull boolean inverse of notnull

pandas.DataFrame.pct_change

DataFrame.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwds)
  Percent change over given number of periods.

Parameters
  periods : int, default 1
    Periods to shift for forming percent change
  fill_method : str, default ‘pad’
    How to handle NAs before computing percent changes
  limit : int, default None
    The number of consecutive NAs to fill before stopping
  freq : DateOffset, timedelta, or offset alias string, optional
Increment to use from time series API (e.g. ‘M’ or BDay())

**Returns**  
`chg : NDFrame`

**Notes**

By default, the percentage change is calculated along the stat axis: 0, or `Index`, for `DataFrame` and 1, or `minor` for `Panel`. You can change this with the `axis` keyword argument.

### pandas.DataFrame.pivot

`DataFrame.pivot(index=None, columns=None, values=None)`  
Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns to form axes and return either `DataFrame` or `Panel`, depending on whether you request a single value column (`DataFrame`) or all columns (`Panel`).

**Parameters**

- **index : string or object**  
  Column name to use to make new frame’s index
- **columns : string or object**  
  Column name to use to make new frame’s columns
- **values : string or object, optional**  
  Column name to use for populating new frame’s values

**Returns**  
`pivoted : DataFrame`

If no values column specified, will have hierarchically indexed columns.

**Notes**

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods.

**Examples**

```python
>>> df
 foo bar baz
0 one A 1
1 one B 2
2 one C 3
3 two A 4
4 two B 5
5 two C 6

>>> df.pivot('foo', 'bar', 'baz')
 A B C
one 1 2 3
two 4 5 6
```
>>> df.pivot('foo', 'bar')['baz']
     A  B  C
one 1  2  3
two 4  5  6

pandas.DataFrame.pivot_table

DataFrame.pivot_table(*args, **kwargs)

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame

Parameters

data : DataFrame
values : column to aggregate, optional
index : a column, Grouper, array which has the same length as data, or list of them.
    Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
columns : a column, Grouper, array which has the same length as data, or list of them.
    Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
aggfunc : function, default numpy.mean, or list of functions
    If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)
fill_value : scalar, default None
    Value to replace missing values with
margins : boolean, default False
    Add all row / columns (e.g. for subtotal / grand totals)
dropna : boolean, default True
    Do not include columns whose entries are all NaN
rows : kwarg only alias of index [deprecated]
cols : kwarg only alias of columns [deprecated]

Returns
table : DataFrame

Examples

>>> df
     A  B  C  D
 0 foo one small 1
 1 foo one large 2
 2 foo one large 2
 3 foo two small 3
 4 foo two small 3
 5 bar one large 4
 6 bar one small 5
7 bar two small 6
8 bar two large 7

```python
>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
 small large
foo one 1 4
 two 6 NaN
bar one 5 4
 two 6 7
```

**pandas.DataFrame.plot**

`DataFrame.plot(frame=None, x=None, y=None, subplots=False, sharex=True, sharey=False, use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, style=None, title=None, xlim=None, ylim=None, logx=False, logy=False, xticks=None, yticks=None, kind='line', sort_columns=False, fontsize=None, secondary_y=False, **kwds)`

Make line, bar, or scatter plots of DataFrame series with the index on the x-axis using matplotlib / pylab.

**Parameters**

- **frame**: DataFrame
  - x : label or position, default None
  - y : label or position, default None
    - Allows plotting of one column versus another
  - yerr : DataFrame (with matching labels), Series, list-type (tuple, list, ndarray), or str of column name containing y error values
  - xerr : similar functionality as yerr, but for x error values
  - subplots : boolean, default False
    - Make separate subplots for each time series
  - sharex : boolean, default True
    - In case subplots=True, share x axis
  - sharey : boolean, default False
    - In case subplots=True, share y axis
  - use_index : boolean, default True
    - Use index as ticks for x axis
  - stacked : boolean, default False
    - If True, create stacked bar plot. Only valid for DataFrame input
  - sort_columns : boolean, default False
    - Sort column names to determine plot ordering
  - title : string
    - Title to use for the plot
  - grid : boolean, default None (matlab style default)
Axis grid lines

**legend**: False/True/’reverse’
Place legend on axis subplots

**ax**: matplotlib axis object, default None

**style**: list or dict
matplotlib line style per column

- line : line plot
- bar : vertical bar plot
- barh : horizontal bar plot
- kde/density : Kernel Density Estimation plot
- area : area plot
- scatter : scatter plot
- hexbin : hexbin plot

**logx**: boolean, default False
Use log scaling on x axis

**logy**: boolean, default False
Use log scaling on y axis

**loglog**: boolean, default False
Use log scaling on both x and y axes

**xticks**: sequence
Values to use for the xticks

**yticks**: sequence
Values to use for the yticks

**xlim**: 2-tuple/list

**ylim**: 2-tuple/list

**rot**: int, default None
Rotation for ticks

**secondary_y**: boolean or sequence, default False
Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis

**mark_right**: boolean, default True
When using a secondary_y axis, should the legend label the axis of the various columns automatically

**colormap**: str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name from matplotlib.

**position**: float
Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

**table**: boolean, Series or DataFrame, default False
If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.

**kwds**: keywords
Options to pass to matplotlib plotting method

**Returns**: `ax_or_axes` : matplotlib.AxesSubplot or list of them

**Notes**

If `kind` = ‘hexbin’, you can control the size of the bins with the ‘gridsize’ argument. By default, a histogram of the counts around each \((x, y)\) point is computed. You can specify alternative aggregations by passing values to the \(C\) and `reduce_C_function` arguments. \(C\) specifies the value at each \((x, y)\) point and `reduce_C_function` is a function of one argument that reduces all the values in a bin to a single number (e.g. `mean`, `max`, `sum`, `std`).

**pandas.DataFrame.pop**

DataFrame . pop (item)

Return item and drop from frame. Raise KeyError if not found.

**pandas.DataFrame.pow**

DataFrame . pow (other, axis=’columns’, level=None, fill_value=None)

Binary operator pow with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}  
For Series input, axis to match Series index on

fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

result : DataFrame

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.prod**

DataFrame . prod (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis
pandas: powerful Python data analysis toolkit, Release 0.14.1

**pandas.DataFrame.product**

*DataFrame.product*(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis

**Parameters**
- **axis**: {0, 1}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **prod**: Series or DataFrame (if level specified)

**pandas.DataFrame.quantile**

*DataFrame.quantile*(q=0.5, axis=0, numeric_only=True)

Return values at the given quantile over requested axis, a la numpy.percentile.

**Parameters**
- **q**: float or array-like, default 0.5 (50% quantile)
  - 0 <= q <= 1, the quantile(s) to compute
- **axis**: {0, 1}
  - 0 for row-wise, 1 for column-wise

**Returns**
- **quantiles**: Series or DataFrame
  - If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.
Examples

```python
>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
 columns=['a', 'b'])
>>> df.quantile(.1)
a 1.3
b 3.7
dtype: float64
>>> df.quantile([.1, .5])
 a b
0.1 1.3 3.7
0.5 2.5 55.0
```

**pandas.DataFrame.query**

`DataFrame.query(expr, **kwargs)`

Query the columns of a frame with a boolean expression. New in version 0.13.

**Parameters**

`expr` : string

The query string to evaluate. You can refer to variables in the environment by prefixing them with an ‘@’ character like @a + b.

`kwargs` : dict

See the documentation for `pandas.eval()` for complete details on the keyword arguments accepted by `DataFrame.query()`.

**Returns**

`q` : DataFrame

**See Also:**

`pandas.eval`, `DataFrame.eval`

**Notes**

The result of the evaluation of this expression is first passed to `DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to `DataFrame.__getitem__()`.

This method uses the top-level `pandas.eval()` function to evaluate the passed query.

The `query()` method uses a slightly modified Python syntax by default. For example, the & and | (bitwise) operators have the precedence of their boolean cousins, and and or. This is syntactically valid Python, however the semantics are different.

You can change the semantics of the expression by passing the keyword argument `parser='python'`. This enforces the same semantics as evaluation in Python space. Likewise, you can pass `engine='python'` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using `numexpr` as the engine.

The `DataFrame.index` and `DataFrame.columns` attributes of the `DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier `index` is used for the frame index; you can also use the name of the index to identify it in a query.

For further details and examples see the `query` documentation in `indexing`. 
pandas: powerful Python data analysis toolkit, Release 0.14.1

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame

>>> df = DataFrame(randn(10, 2), columns=list('ab'))

>>> df.query('a > b')

same result as the previous expression
```

pandas.DataFrame.radd

DataFrame.radd(\texttt{other, axis=}'columns', level=None, fill_value=None)

Binary operator radd with support to substitute a \texttt{fill_value} for missing data in one of the inputs

- **Parameters**
  - other: Series, DataFrame, or constant
  - axis: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - fill_value: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - level: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
  - result: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rank

DataFrame.rank(\texttt{axis=0, numeric_only=None, method=}'average', na_option=’keep’, ascending=True, pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

- **Parameters**
  - axis: {0, 1}, default 0
    - Ranks over columns (0) or rows (1)
  - numeric_only: boolean, default None
    - Include only float, int, boolean data
    - average: average rank of group
    - min: lowest rank in group
    - max: highest rank in group
    - first: ranks assigned in order they appear in the array
    - dense: like ‘min’, but rank always increases by 1 between groups
**na_option**: {'keep', 'top', 'bottom'}

- keep: leave NA values where they are
- top: smallest rank if ascending
- bottom: smallest rank if descending

**ascending**: boolean, default True

- False for ranks by high (1) to low (N)

**pct**: boolean, default False

- Computes percentage rank of data

**Returns**  
**ranks**: DataFrame

---

**pandas.DataFrame.rdiv**

DataFrame.rdiv(other, axis='columns', level=None, fill_value=None)

- Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
**other**: Series, DataFrame, or constant

- **axis**: {0, 1, ‘index’, ‘columns’}  
  - For Series input, axis to match Series index on

- **fill_value**: None or float value, default None
  - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

- **level**: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
**result**: DataFrame

**Notes**

- Mismatched indices will be unioned together

---

**pandas.DataFrame.reindex**

DataFrame.reindex(index=None, columns=None, **kwargs)

- Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

**Parameters**  
**index, columns**: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
  - Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

---
copy : boolean, default True
  Return a new object, even if the passed indexes are the same
level : int or name
  Broadcast across a level, matching Index values on the passed MultiIndex level
fill_value : scalar, default np.NaN
  Value to use for missing values. Defaults to NaN, but can be any “compatible” value
limit : int, default None
  Maximum size gap to forward or backward fill

Returns  reindexed : DataFrame

Examples

>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])

pandas.DataFrame.reindex_axis

DataFrame.reindex_axis (labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)
Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters  labels : array-like
  New labels / index to conform to. Preferably an Index object to avoid duplicating data
axis : {0,1,'index','columns'}
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
  Method to use for filling holes in reindexed object. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
copy : boolean, default True
  Return a new object, even if the passed indexes are the same
level : int or name
  Broadcast across a level, matching Index values on the passed MultiIndex level
limit : int, default None
  Maximum size gap to forward or backward fill

Returns  reindexed : DataFrame

See Also:
  reindex, reindex_like
Examples

```python
df.reindex_axis(['A', 'B', 'C'], axis=1)
```

**pandas.DataFrame.reindex_like**

`DataFrame.reindex_like(other, method=None, copy=True, limit=None)`

return an object with matching indicies to myself

**Parameters**

- `other` : Object
  - `method` : string or None
  - `copy` : boolean, default True
  - `limit` : int, default None
    - Maximum size gap to forward or backward fill

**Returns**

- `reindexed` : same as input

**Notes**

Like calling `s.reindex(index=other.index, columns=other.columns, method=...)`

**pandas.DataFrame.rename**

`DataFrame.rename(index=None, columns=None, **kwargs)`

 Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters**

- `index, columns` : dict-like or function, optional
  - Transformation to apply to that axis values

- `copy` : boolean, default True
  - Also copy underlying data

- `inplace` : boolean, default False
  - Whether to return a new DataFrame. If True then value of copy is ignored.

**Returns**

- `renamed` : DataFrame (new object)

**pandas.DataFrame.rename_axis**

`DataFrame.rename_axis(mapper, axis=0, copy=True, inplace=False)`

 Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters**

- `mapper` : dict-like or function, optional
  - function / dict values must be unique (1-to-1).

- `axis` : int or string, default 0

- `copy` : boolean, default True
  - Also copy underlying data
inplace : boolean, default False

Returns renamed : type of caller

pandas.DataFrame.reorder_levels

DataFrame.reorder_levels(order, axis=0)
Rearrange index levels using input order. May not drop or duplicate levels

Parameters order : list of int or list of str
List representing new level order. Reference level by number (position) or by key (label).

axis : int
Where to reorder levels.

Returns type of caller (new object)

pandas.DataFrame.replace

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
Replace values given in ‘to_replace’ with ‘value’.

Parameters to_replace : str, regex, list, dict, Series, numeric, or None

• str or regex:
  – str: string exactly matching to_replace will be replaced with value
  – regex: regexs matching to_replace will be replaced with value

• list of str, regex, or numeric:
  – First, if to_replace and value are both lists, they must be the same length.
  – Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
  – str and regex rules apply as above.

• dict:
  – Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
  – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

• None:
  – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.
See the examples section for examples of each of these.

**value**: scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g., 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

**inplace**: boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g., a column form a DataFrame). Returns the caller if this is True.

**limit**: int, default None

Maximum size gap to forward or backward fill

**regex**: bool or same types as `to_replace`, default False

Whether to interpret `to_replace` and/or `value` as regular expressions. If this is True then `to_replace` must be a string. Otherwise, `to_replace` must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

**method**: string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when `to_replace` is a list.

**Returns**

Filled: NDFrame

**Raises**

AssertionError

- If regex is not a bool and `to_replace` is not None.

TypeError

- If `to_replace` is a dict and `value` is not a list, dict, ndarray, or Series
- If `to_replace` is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series.

ValueError

- If `to_replace` and `value` are lists or ndarrays, but they are not the same length.

**See Also**

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

**Notes**

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.
- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
- This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.
pandas.DataFrame.resample

DataFrame.resample(rule=None, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters  

- **rule**: string
  
  the offset string or object representing target conversion

- **how**: string
  
  method for down- or re-sampling, default to 'mean' for downsampling

- **axis**: int, optional, default 0

- **fill_method**: string, default None

  fill_method for upsampling

- **closed**: {'right', 'left'}

  Which side of bin interval is closed

- **label**: {'right', 'left'}

  Which bin edge label to label bucket with

- **convention**: {'start', 'end', 's', 'e'}

- **kind**: “period”/”timestamp”

- **loffset**: timedelta

  Adjust the resampled time labels

- **limit**: int, default None

  Maximum size gap to when reindexing with fill_method

- **base**: int, default 0

  For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.DataFrame.reset_index

DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')

For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used.

Parameters  

- **level**: int, str, tuple, or list, default None

  Only remove the given levels from the index. Removes all levels by default

- **drop**: boolean, default False

  Do not try to insert index into dataframe columns. This resets the index to the default integer index.

- **inplace**: boolean, default False
Modify the DataFrame in place (do not create a new object)

`col_level` : int or str, default 0

If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.

`col_fill` : object, default ‘’

If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.

Returns  `resetted` : DataFrame

---

**pandas.DataFrame.rfloordiv**

DataFrame.rfloordiv(  
`other`,  
`axis=’columns’`,  
`level=None`,  
`fill_value=None`
)

Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

`other` : Series, DataFrame, or constant

`axis` : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

`fill_value` : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

`level` : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  `result` : DataFrame

**Notes**

Mismatched indices will be unioned together

---

**pandas.DataFrame.rmod**

DataFrame.rmod(  
`other`,  
`axis=’columns’`,  
`level=None`,  
`fill_value=None`
)

Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

`other` : Series, DataFrame, or constant

`axis` : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

`fill_value` : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

`level` : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  `result` : DataFrame
Notes

Mismatched indices will be unioned together

`pandas.DataFrame.rmul`

DataFrame.

rmul (other, axis='columns', level=None, fill_value=None)

Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs

Parameters  
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  
result : DataFrame

Notes

Mismatched indices will be unioned together

`pandas.DataFrame.rpow`

DataFrame.

rpow (other, axis='columns', level=None, fill_value=None)

Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs

Parameters  
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  
result : DataFrame

Notes

Mismatched indices will be unioned together
**pandas.DataFrame.rsub**

Dataframe. **rsub**(other, axis='columns', level=None, fill_value=None)

Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

other : Series, DataFrame, or constant

- **axis** : {0, 1, ‘index’, ‘columns’}
  - For Series input, axis to match Series index on
- **fill_value** : None or float value, default None
  - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level** : int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

result : DataFrame

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.rtruediv**

Dataframe. **rtruediv**(other, axis='columns', level=None, fill_value=None)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

other : Series, DataFrame, or constant

- **axis** : {0, 1, ‘index’, ‘columns’}
  - For Series input, axis to match Series index on
- **fill_value** : None or float value, default None
  - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level** : int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

result : DataFrame

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.save**

Dataframe. **save**(path)

Deprecated. Use to_pickle instead
pandas.DataFrame.select

DataFrame.select (crit, axis=0)
Return data corresponding to axis labels matching criteria

Parameters  
crit : function
To be called on each index (label). Should return True or False
axis : int

Returns  
selection : type of caller

pandas.DataFrame.select_dtypes

DataFrame.select_dtypes (include=None, exclude=None)
Return a subset of a DataFrame including/excluding columns based on their dtype.

Parameters  
include, exclude : list-like
A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these.

Returns  
subset : DataFrame
The subset of the frame including the dtypes in include and excluding the dtypes in exclude.

Raises  
ValueError
• If both of include and exclude are empty
• If include and exclude have overlapping elements
• If any kind of string dtype is passed in.

TypeError
• If either of include or exclude is not a sequence

Notes
• To select all numeric types use the numpy dtype numpy.number
• To select strings you must use the object dtype, but note that this will return all object dtype columns
• See the numpy dtype hierarchy

Examples

>>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'),
...                    'b': [True, False] * 3,
...                    'c': [1.0, 2.0] * 3})
>>> df
   a    b     c
0  0.3962  True  1
1  0.1459  False  2
2  0.2623  True  1

```python
>>> df.select_dtypes(include=['float64'])
 c
0 1
1 2
2 1
3 2
4 1
5 2
```

```python
>>> df.select_dtypes(exclude=['floating'])
 b
0 True
1 False
2 True
3 False
4 True
5 False
```

**pandas.DataFrame.sem**

DataFrame.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard error of the mean over requested axis. Normalized by \( N-1 \) by default. This can be changed using the \( \text{ddof} \) argument

- **Parameters**
  - **axis**: {index (0), columns (1)}
  - **skipna**: boolean, default True
    - Exclude NA/null values. If an entire row/column is NA, the result will be NA
  - **level**: int or level name, default None
    - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
  - **numeric_only**: boolean, default None
    - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

- **Returns**
  - **standarderror**: Series or DataFrame (if level specified)

**pandas.DataFrame.set_axis**

DataFrame.set_axis(axis, labels)

public version of axis assignment

**pandas.DataFrame.set_index**

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object.

- **Parameters**
  - **keys**: column label or list of column labels / arrays
  - **drop**: boolean, default True
Delete columns to be used as the new index

**append**: boolean, default False
Whether to append columns to existing index

**inplace**: boolean, default False
Modify the DataFrame in place (do not create a new object)

**verify_integrity**: boolean, default False
Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method

**Returns**: DataFrame

**Examples**

```python
generated_df = df.set_index(['A', 'B'])
generated_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
generated_df3 = df.set_index([[0, 1, 2, 0, 1, 2]])
```

**pandas.DataFrame.set_value**

`DataFrame.set_value(index, col, value, takeable=False)`
Put single value at passed column and index

**Parameters**

**index**: row label

**col**: column label

**value**: scalar value

**takeable**: interpret the index/col as indexers, default False

**Returns**: DataFrame
If label pair is contained, will be reference to calling DataFrame, otherwise a new object

**pandas.DataFrame.shift**

`DataFrame.shift(periods=1, freq=None, axis=0, **kwds)`
Shift index by desired number of periods with an optional time freq

**Parameters**

**periods**: int
Number of periods to move, can be positive or negative

**freq**: DateOffset, timedelta, or time rule string, optional
Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes.

**Returns**: shifted
same type as caller
Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

pandas.DataFrame.skew

DataFrame.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters

axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

skew : Series or DataFrame (if level specified)

pandas.DataFrame.slice_shift

DataFrame.slice_shift(periods=1, axis=0, **kwds)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters

periods : int
Number of periods to move, can be positive or negative

Returns

shifted : same type as caller

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.DataFrame.sort

DataFrame.sort(columns=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Sort DataFrame either by labels (along either axis) or by the values in column(s)

Parameters

columns : object
Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index.

ascending : boolean or list, default True
Sort ascending vs. descending. Specify list for multiple sort orders
axis : {0, 1}
Sort index/rows versus columns

inplace : boolean, default False
Sort the DataFrame without creating a new instance

kind : {'quicksort', 'mergesort', 'heapsort'}, optional
This option is only applied when sorting on a single column or label.

na_position : {'first', 'last'} (optional, default='last')
‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

Returns sorted : DataFrame

Examples

```python
defined_sort = df.sort(['A', 'B'], ascending=[1, 0])
```

pandas.DataFrame.sort_index

DataFrame.sort_index (axis=0, by=None, ascending=True, inplace=False, kind='quicksort', na_position='last')
Sort DataFrame either by labels (along either axis) or by the values in a column

Parameters

axis : {0, 1}
Sort index/rows versus columns

by : object
Column name(s) in frame. Accepts a column name or a list for a nested sort. A
tuple will be interpreted as the levels of a multi-index.

ascending : boolean or list, default True
Sort ascending vs. descending. Specify list for multiple sort orders

inplace : boolean, default False
Sort the DataFrame without creating a new instance

na_position : {'first', 'last'} (optional, default='last')
‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

kind : {'quicksort', 'mergesort', 'heapsort'}, optional
This option is only applied when sorting on a single column or label.

Returns sorted : DataFrame

Examples

```python
defined_sorted_index = df.sort_index(by=['A', 'B'], ascending=[True, False])
```
pandas.DataFrame.sortlevel

DataFrame.sortlevel (level=0, axis=0, ascending=True, inplace=False, sort_remaining=True)
Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the
chosen level followed by the other levels (in order)

Parameters
level : int
axis : {0, 1}
ascending : boolean, default True
inplace : boolean, default False
Sort the DataFrame without creating a new instance
sort_remaining : boolean, default True
Sort by the other levels too.

Returns
sorted : DataFrame

pandas.DataFrame.squeeze

DataFrame.squeeze()
squeeze length 1 dimensions

pandas.DataFrame.stack

DataFrame.stack (level=-1, dropna=True)
Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of
an object with a single level of column labels) having a hierarchical index with a new inner-most level of
row labels.

Parameters
level : int, string, or list of these, default last level
Level(s) to stack, can pass level name
dropna : boolean, default True
Whether to drop rows in the resulting Frame/Series with no valid values

Returns
stacked : DataFrame or Series

Examples

>>> s
    a  b
one 1.2
two 3.4

>>> s.stack()
    a  b
one a 1
     b 2
two a 3
      b 4
pandas.DataFrame.std

DataFrame.std (axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Series
numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then
use only numeric data

Returns stdev : Series or DataFrame (if level specified)

pandas.DataFrame.sub

DataFrame.sub (other, axis='columns', level=None, fill_value=None)

Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on
fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing,
the result will be missing
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.subtract

DataFrame.subtract (other, axis='columns', level=None, fill_value=None)

Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on
**fill_value**: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing.

**level**: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level.

**Returns**: `result` : DataFrame

**Notes**

Mismatched indices will be unioned together.

**pandas.DataFrame.sum**

DataFrame.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the sum of the values for the requested axis.

**Parameters**

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
  
  Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- **level**: int or level name, default None
  
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- **numeric_only**: boolean, default None
  
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data.

**Returns**

- **sum** : Series or DataFrame (if level specified)

**pandas.DataFrame.swapaxes**

DataFrame.swapaxes(axis1, axis2, copy=True)

Interchange axes and swap values axes appropriately.

**Returns**

- **y** : same as input

**pandas.DataFrame.swaplevel**

DataFrame.swaplevel(i, j, axis=0)

Swap levels i and j in a MultiIndex on a particular axis.

**Parameters**

- **i, j**: int, string (can be mixed)
  
  Level of index to be swapped. Can pass level name as string.

**Returns**

- **swapped** : type of caller (new object)
pandas.DataFrame.tail

DataFrame.tail(n=5)
Returns last n rows

pandas.DataFrame.take

DataFrame.take(indices, axis=0, convert=True, is_copy=True)
Analogous to ndarray.take

Parameters  indices : list / array of ints
axis : int, default 0
convert : translate neg to pos indices (default)
is_copy : mark the returned frame as a copy

Returns  taken : type of caller

pandas.DataFrame.to_clipboard

DataFrame.to_clipboard(excel=None, sep=None, **kwargs)
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters  excel : boolean, defaults to True
if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard
sep : optional, defaults to tab
other keywords are passed to to_csv

Notes

Requirements for your platform

• Linux: xclip, or xsel (with gtk or PyQt4 modules)
• Windows: none
• OS X: none

pandas.DataFrame.to_csv

DataFrame.to_csv(*args, **kwargs)
Write DataFrame to a comma-separated values (csv) file

Parameters  path_or_buf : string or file handle, default None
File path or object, if None is provided the result is returned as a string.
sep : character, default ","
Field delimiter for the output file.
**na_rep** : string, default ‘’

Missing data representation

**float_format** : string, default None

Format string for floating point numbers

**columns** : sequence, optional

Columns to write

**header** : boolean or list of string, default True

Write out column names. If a list of string is given it is assumed to be aliases for the column names

**index** : boolean, default True

Write row names (index)

**index_label** : string or sequence, or False, default None

Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R

**nanRep** : None

deprecated, use na_rep

**mode** : str

Python write mode, default ‘w’

**encoding** : string, optional

A string representing the encoding to use if the contents are non-ascii, for python versions prior to 3

**line_terminator** : string, default ‘n’

The newline character or character sequence to use in the output file

**quoting** : optional constant from csv module

defaults to csv.QUOTE_MINIMAL

**quotechar** : string (length 1), default ‘’

character used to quote fields

**doublequote** : boolean, default True

Control quoting of quotechar inside a field

**escapechar** : string (length 1), default None

character used to escape sep and quotechar when appropriate

**chunksize** : int or None

rows to write at a time

**tupleize_cols** : boolean, default False

write multi_index columns as a list of tuples (if True) or new (expanded format) if False
**date_format**: string, default None
Format string for datetime objects

**cols**: kwarg only alias of columns [deprecated]

### pandas.DataFrame.to_dense

```
DataFrame.to_dense()
```
Return dense representation of NDFrame (as opposed to sparse)

### pandas.DataFrame.to_dict

```
DataFrame.to_dict(outtype='dict')
```
Convert DataFrame to dictionary.

**Parameters**

- **outtype**: str {'dict', 'list', 'series', 'records'}
  Determines the type of the values of the dictionary. The default `dict` is a nested dictionary `{column -> {index -> value}}. list returns {column -> list(values)}. series returns {column -> Series(values)}. records returns [{columns -> value}]. Abbreviations are allowed.

**Returns**

- **result**: dict like {column -> {index -> value}}

### pandas.DataFrame.to_excel

```
DataFrame.to_excel(*args, **kwargs)
```
Write DataFrame to a excel sheet

**Parameters**

- **excel_writer**: string or ExcelWriter object
  File path or existing ExcelWriter
- **sheet_name**: string, default ‘Sheet1’
  Name of sheet which will contain DataFrame
- **na_rep**: string, default ‘’
  Missing data representation
- **float_format**: string, default None
  Format string for floating point numbers
- **columns**: sequence, optional
  Columns to write
- **header**: boolean or list of string, default True
  Write out column names. If a list of string is given it is assumed to be aliases for the column names
- **index**: boolean, default True
  Write row names (index)
- **index_label**: string or sequence, default None
Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

**startrow :**
upper left cell row to dump data frame

**startcol :**
upper left cell column to dump data frame

**engine** : string, default None
write engine to use - you can also set this via the options io.excel.xlsx.writer, io.excel.xls.writer, and io.excel.xlsm.writer.

**merge_cells** : boolean, default True
Write MultiIndex and Hierarchical Rows as merged cells.

**encoding** : string, default None
encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively.

**cols** : kwarg only alias of columns [deprecated]

**inf_rep** : string, default ‘inf’
Representation for infinity (there is no native representation for infinity in Excel)

**Notes**

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook:

```python
>>> writer = ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()
```

**pandas.DataFrame.to_gbq**

```
DataFrame.to_gbq(destination_table, project_id=None, chunksize=10000, verbose=True, reauth=False)
```
Write a DataFrame to a Google BigQuery table.

THIS IS AN EXPERIMENTAL LIBRARY

If the table exists, the dataframe will be written to the table using the defined table schema and column types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks data into a default chunk size of 10,000. Failures return the complete error response which can be quite long depending on the size of the insert. There are several important limitations of the Google streaming API which are detailed at: https://developers.google.com/bigquery/streaming-data-into-bigquery.

**Parameters**

- **dataframe** : DataFrame
  DataFrame to be written

- **destination_table** : string
Name of table to be written, in the form ‘dataset.tablename’

**project_id** : str
  Google BigQuery Account project ID.

**chunksize** : int (default 10000)
  Number of rows to be inserted in each chunk from the dataframe.

**verbose** : boolean (default True)
  Show percentage complete

**reauth** : boolean (default False)
  Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

### pandas.DataFrame.to_hdf

Dataframe.to_hdf(path_or_buf, key, **kwargs)
activate the HDFStore

**Parameters**

**path_or_buf** : the path (string) or buffer to put the store

  **key** : string
    identifier for the group in the store

  **mode** : optional, {'a', 'w', 'r', 'r+'}, default ‘a’
    ’r’  Read-only; no data can be modified.
    ’w’  Write; a new file is created (an existing file with the same name would be deleted).
    ’a’  Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
    ’r+’ It is similar to ‘a’, but the file must already exist.

  **format** : ‘fixed(f)’|table(t)’, default is ‘fixed’
    fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
    table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

  **append** : boolean, default False
    For Table formats, append the input data to the existing

  **complevel** : int, 1-9, default 0
    If a complib is specified compression will be applied where possible

  **complib** : {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None
    If complevel is > 0 apply compression to objects written in the store wherever possible

  **fletcher32** : bool, default False
    If applying compression use the fletcher32 checksum
pandas.DataFrame.to_html

DataFrame.to_html(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False)

Render a DataFrame as an HTML table.

to_html-specific options:

bold_rows [boolean, default True] Make the row labels bold in the output

classes [str or list or tuple, default None] CSS class(es) to apply to the resulting html table

escape [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.

max_rows [int, optional] Maximum number of rows to show before truncating. If None, show all.

max_cols [int, optional] Maximum number of columns to show before truncating. If None, show all.

Parameters

frame : DataFrame

object to render

buf : StringIO-like, optional

buffer to write to

columns : sequence, optional

the subset of columns to write; default None writes all columns

col_space : int, optional

the minimum width of each column

header : bool, optional

whether to print column labels, default True

index : bool, optional

whether to print index (row) labels, default True

na_rep : string, optional

string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

sparsify : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

justify : {‘left’, ‘right’}, default None
Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

**index_names** : bool, optional

Prints the names of the indexes, default True

**force_unicode** : bool, default False

Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

**Returns**  
**formatted** : string (or unicode, depending on data and options)

**pandas.DataFrame.to_json**

```
DataFrame.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)
```

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

**Parameters**  
**path_or_buf** : the path or buffer to write the result string

if this is None, return a StringIO of the converted string

**orient** : string

• Series
  – default is ‘index’
  – allowed values are: {'split','records','index'}

• DataFrame
  – default is ‘columns’
  – allowed values are: {'split','records','index','columns','values'}

• The format of the JSON string
  – split : dict like {index -> [index], columns -> [columns], data -> [values]}
  – records : list like [{column -> value}, ... , {column -> value}]
  – index : dict like {index -> {column -> value}}
  – columns : dict like {column -> {index -> value}}
  – values : just the values array

**date_format** : {'epoch', 'iso'}

Type of date conversion. *epoch* = epoch milliseconds, *iso* = ISO8601, default is epoch.

**double_precision** : The number of decimal places to use when encoding floating point values, default 10.

**force_ascii** : force encoded string to be ASCII, default True.

**date_unit** : string, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

**default_handler** : callable, default None

Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

**Returns** same type as input object with filtered info axis

---

**pandas.DataFrame.to_latex**

```
DataFrame.to_latex(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=True, longtable=False, escape=True)
```

Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}.

**to_latex-specific options:**

- **bold_rows** [boolean, default True] Make the row labels bold in the output
- **longtable** [boolean, default False] Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble.
- **escape** [boolean, default True] When set to False prevents from escaping latex special characters in column names.

**Parameters**

- **frame** : DataFrame
  
  object to render

- **buf** : StringIO-like, optional
  
  buffer to write to

- **columns** : sequence, optional
  
  the subset of columns to write; default None writes all columns

- **col_space** : int, optional
  
  the minimum width of each column

- **header** : bool, optional
  
  whether to print column labels, default True

- **index** : bool, optional
  
  whether to print index (row) labels, default True

- **na_rep** : string, optional
  
  string representation of NAN to use, default ‘NaN’

- **formatters** : list or dict of one-parameter functions, optional
  
  formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.
**float_format**: one-parameter function, optional

Formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

**sparsify**: bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

**justify**: {‘left’, ‘right’}, default None

Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

**index_names**: bool, optional

Prints the names of the indexes, default True

**force_unicode**: bool, default False

Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

**Returns**  

formatted: string (or unicode, depending on data and options)

---

**pandas.DataFrame.to_msgpack**

DataFrame.to_msgpack(path_or_buf=None, **kwargs)

msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

**Parameters**  

path : string File path, buffer-like, or None

if None, return generated string

append : boolean whether to append to an existing msgpack

(default is False)

compress : type of compressor (zlib or blosc), default to None (no compression)

---

**pandas.DataFrame.to_panel**

DataFrame.to_panel()

Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.

Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later

**Returns**  

panel : Panel

---

**pandas.DataFrame.to_period**

DataFrame.to_period(freq=None, axis=0, copy=True)

Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)
**Parameters**  
*freq*: string, default

- *axis*: {0, 1}, default 0  
  The axis to convert (the index by default)

- *copy*: boolean, default True
  
  If False then underlying input data is not copied

**Returns**  
*ts*: TimeSeries with PeriodIndex

---

**pandas.DataFrame.to_pickle**

*pandas.DataFrame.to_pickle*(path)

- Pickle (serialize) object to input file path

**Parameters**  
*path*: string

- File path

---

**pandas.DataFrame.to_records**

*pandas.DataFrame.to_records*(index=True, convert_datetime64=True)

- Convert DataFrame to record array. Index will be put in the ‘index’ field of the record array if requested

**Parameters**  
*index*: boolean, default True

- Include index in resulting record array, stored in ‘index’ field

- *convert_datetime64*: boolean, default True

  Whether to convert the index to datetime.datetime if it is a DatetimeIndex

**Returns**  
*y*: recarray

---

**pandas.DataFrame.to_sparse**

*pandas.DataFrame.to_sparse*(fill_value=None, kind='block')

- Convert to SparseDataFrame

**Parameters**  
*fill_value*: float, default NaN

- *kind*: {'block', 'integer'}

**Returns**  
*y*: SparseDataFrame

---

**pandas.DataFrame.to_sql**

*pandas.DataFrame.to_sql*(name, con, flavor='sqlite', if_exists='fail', index=True, index_label=None)

- Write records stored in a DataFrame to a SQL database.

**Parameters**  
*name*: string

- Name of SQL table

- *con*: SQLAlchemy engine or DBAPI2 connection (legacy mode)

  Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
flavor : {'sqlite', 'mysql'}, default 'sqlite'
The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is
deprecated and will be removed in future versions, but it will be further supported
through SQLAlchemy engines.

if_exists : {'fail', 'replace’, ‘append’}, default ‘fail’
• fail: If table exists, do nothing.
• replace: If table exists, drop it, recreate it, and insert data.
• append: If table exists, insert data. Create if does not exist.

index : boolean, default True
Write DataFrame index as a column.

index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and index is True,
then the index names are used. A sequence should be given if the DataFrame uses
MultiIndex.

pandas.DataFrame.to_stata

DataFrame.to_stata(fname, convert_dates=None, write_index=True, encoding='latin-1', byte-
order=None, time_stamp=None, data_label=None)
A class for writing Stata binary dta files from array-like objects

Parameters fname : file path or buffer
Where to save the dta file.

convert_dates : dict
Dictionary mapping column of datetime types to the stata internal format that you
can be either a number or a name.

encoding : str
Default is latin-1. Note that Stata does not support unicode.

byteorder : str
Can be “>”, “<”, “little”, or “big”. The default is None which uses sys.byteorder

Examples

```python
>>> writer = StataWriter('./data_file.dta', data)
>>> writer.write_file()
```
Or with dates

```python
>>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'})
>>> writer.write_file()
```
pandas.DataFrame.to_string

DataFrame.to_string(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False)

Render a DataFrame to a console-friendly tabular output.

Parameters frame : DataFrame
    object to render

buf : StringIO-like, optional
    buffer to write to

columns : sequence, optional
    the subset of columns to write; default None writes all columns

col_space : int, optional
    the minimum width of each column

header : bool, optional
    whether to print column labels, default True

index : bool, optional
    whether to print index (row) labels, default True

na_rep : string, optional
    string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional
    formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional
    formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

sparsify : bool, optional
    Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

justify : {'left', 'right'}, default None
    Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

index_names : bool, optional
    Prints the names of the indexes, default True

force_unicode : bool, default False
    Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.
pandas: powerful Python data analysis toolkit, Release 0.14.1

**Returns**  formatted: string (or unicode, depending on data and options)

**pandas.DataFrame.to_timestamp**

DataFrame.to_timestamp(freq=None, how='start', axis=0, copy=True)

Cast to DatetimeIndex of timestamps, at beginning of period

**Parameters**  freq: string, default frequency of PeriodIndex

Desired frequency

how: {'s', 'e', 'start', 'end'}

Convention for converting period to timestamp; start of period vs. end

axis: {0, 1} default 0

The axis to convert (the index by default)

copy: boolean, default True

If false then underlying input data is not copied

**Returns**  df: DataFrame with DatetimeIndex

**pandas.DataFrame.to_wide**

DataFrame.to_wide(*args, **kwargs)

**pandas.DataFrame.transpose**

DataFrame.transpose()

Transpose index and columns

**pandas.DataFrame.truediv**

DataFrame.truediv(other, axis='columns', level=None, fill_value=None)

Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  other: Series, DataFrame, or constant

axis: {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  result: DataFrame
Notes

Mismatched indices will be unioned together

pandas.DataFrame.truncate

DataFrame.truncate(before=None, after=None, axis=None, copy=True)

Truncates a sorted NDFrame before and/or after some particular dates.

Parameters

- **before**: date
  - Truncate before date
- **after**: date
  - Truncate after date
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
  - return a copy of the truncated section

Returns

- **truncated**: type of caller

pandas.DataFrame.tshift

DataFrame.tshift(periods=1, freq=None, axis=0, **kwds)

Shift the time index, using the index’s frequency if available

Parameters

- **periods**: int
  - Number of periods to move, can be positive or negative
- **freq**: DateOffset, timedelta, or time rule string, default None
  - Increment to use from datetools module or time rule (e.g. ‘EOM’)
- **axis**: int or basestring
  - Corresponds to the axis that contains the Index

Returns

- **shifted**: NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown

pandas.DataFrame.tz_convert

DataFrame.tz_convert(tz, axis=0, copy=True)

Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters

- **tz**: string or pytz.timezone object
- **copy**: boolean, default True
  - Also make a copy of the underlying data
pandas.DataFrame.tz_localize

DataFrame.tz_localize(tz, axis=0, copy=True, infer_dst=False)
Localize tz-naive TimeSeries to target time zone

Parameters
tz : string or pytz.timezone object
    copy : boolean, default True
        Also make a copy of the underlying data
    infer_dst : boolean, default False
        Attempt to infer fall dst-transition times based on order

pandas.DataFrame.unstack

DataFrame.unstack(level=-1)
Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of
column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex,
the output will be a Series (the analogue of stack when the columns are not a MultiIndex)

Parameters
level : int, string, or list of these, default -1 (last level)
    Returns
unstacked : DataFrame or Series

See Also:
DataFrame.pivot  Pivot a table based on column values.
DataFrame.stack  Pivot a level of the column labels (inverse operation from unstack).

Examples

>>> index = pd.MultiIndex.from_tuples([(‘one’, ‘a’), (‘one’, ‘b’),
... (‘two’, ‘a’), (‘two’, ‘b’)])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
one  a 1
    b 2
two  a 3
    b 4
dtype: float64

>>> s.unstack(level=-1)
    a  b
one 1 2
two 3 4

>>> s.unstack(level=0)
    one  two
    a 1 3
    b 2 4
>>> df = s.unstack(level=0)
>>> df.unstack()
<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a 1</td>
<td>a 2</td>
</tr>
<tr>
<td></td>
<td>b 3</td>
<td>b 4</td>
</tr>
</tbody>
</table>

\**pandas.DataFrame.update**

DataFrame.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)

Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices

- **Parameters**
  - **other**: DataFrame, or object coercible into a DataFrame
  - **join**: {'left', 'right', 'outer', 'inner'}, default 'left'
  - **overwrite**: boolean, default True
    - If True then overwrite values for common keys in the calling frame
  - **filter_func**: callable(1d-array) -> 1d-array<boolean>, default None
    - Can choose to replace values other than NA. Return True for values that should be updated
  - **raise_conflict**: boolean
    - If True, will raise an error if the DataFrame and other both contain data in the same place.

\**pandas.DataFrame.var**

DataFrame.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument

- **Parameters**
  - **axis**: {index (0), columns (1)}
  - **skipna**: boolean, default True
    - Exclude NA/null values. If an entire row/column is NA, the result will be NA
  - **level**: int or level name, default None
    - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
  - **numeric_only**: boolean, default None
    - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

- **Returns**
  - **variance**: Series or DataFrame (if level specified)
**pandas.DataFrame.where**

DataFrame.\texttt{where}(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

**Parameters**
- \texttt{cond} : boolean NDFrame or array
- \texttt{other} : scalar or NDFrame
- \texttt{inplace} : boolean, default False
  - Whether to perform the operation in place on the data
- \texttt{axis} : alignment axis if needed, default None
- \texttt{level} : alignment level if needed, default None
- \texttt{try_cast} : boolean, default False
  - try to cast the result back to the input type (if possible),
- \texttt{raise_on_error} : boolean, default True
  - Whether to raise on invalid data types (e.g. trying to where on strings)

**Returns**
- \texttt{wh} : same type as caller

**pandas.DataFrame.xs**

DataFrame.\texttt{xs}(key, axis=0, level=None, copy=None, drop_level=True)

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

**Parameters**
- \texttt{key} : object
  - Some label contained in the index, or partially in a MultiIndex
- \texttt{axis} : int, default 0
  - Axis to retrieve cross-section on
- \texttt{level} : object, defaults to first n levels (n=1 or len(key))
  - In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.
- \texttt{copy} : boolean [deprecated]
  - Whether to make a copy of the data
- \texttt{drop_level} : boolean, default True
  - If False, returns object with same levels as self.

**Returns**
- \texttt{xs} : Series or DataFrame

**Notes**

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers
Examples

```python
>>> df
 A B C
a 4 5 2
b 4 0 9
c 9 7 3
>>> df.xs('a')
 A B C
Name: a
 4 5 2
>>> df.xs('C', axis=1)
 a 2
 b 9
 c 3
Name: C
```

```python
>>> df
 A B C D
 first second third
bar one 1 4 1 8 9
two 7 5 5 0
baz one 1 6 6 8 0
t hree 2 5 3 5 3
>>> df.xs(('baz', 'three'))
 A B C D
 third
 2 5 3 5 3
>>> df.xs('one', level=1)
 A B C D
 first third
bar 1 4 1 8 9
baz 1 6 6 8 0
>>> df.xs(('baz', 2), level=[0, 'third'])
 A B C D
 second
three 5 3 5 3
```

29.4.2 Attributes and underlying data

Axes

- **index**: row labels
- **columns**: column labels

- `DataFrame.as_matrix([columns])`: Convert the frame to its Numpy-array representation.
- `DataFrame.dtypes`: Return the dtypes in this object
- `DataFrame.itypes`: Return the ftypes (indication of sparse/dense and dtype)
- `DataFrame.get_dtypes()`: Return the counts of dtypes in this object
- `DataFrame.get_ftypes()`: Return the counts of ftypes in this object
- `DataFrame.select_dtypes([include, exclude])`: Return a subset of a DataFrame including/excluding columns based on the dtypes
- `DataFrame.values`: Numpy representation of NDFrame

Continued on next page
pandas: powerful Python data analysis toolkit, Release 0.14.1

Table 29.39 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.ndim</td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td>DataFrame.shape</td>
<td></td>
</tr>
</tbody>
</table>

**pandas.DataFrame.as_matrix**

DataFrame.as_matrix(columns=None)
Convert the frame to its Numpy-array representation.

**Parameters**
- columns: list, optional, default: None
  - If None, return all columns, otherwise, returns specified columns.

**Returns**
- values : ndarray
  - If the caller is heterogeneous and contains booleans or objects, the result will be of
dtype=object. See Notes.

**See Also:**
pandas.DataFrame.values

**Notes**

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting): that is to say if the dtypes (even
of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not
dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype
will be upcast to int32.

This method is provided for backwards compatibility. Generally, it is recommended to use `values`.

**pandas.DataFrame.dtypes**

DataFrame.dtypes
Return the dtypes in this object

**pandas.DataFrame.ftypes**

DataFrame.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.

**pandas.DataFrame.get_dtype_counts**

DataFrame.get_dtype_counts()
Return the counts of dtypes in this object

**pandas.DataFrame.get_ftype_counts**

DataFrame.get_ftype_counts()
Return the counts of ftypes in this object
DataFrame.select_dtypes

DataFrame.select_dtypes(include=None, exclude=None)
Return a subset of a DataFrame including/excluding columns based on their dtype.

Parameters include, exclude : list-like
A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these.

Returns subset : DataFrame
The subset of the frame including the dtypes in include and excluding the dtypes in exclude.

Raises ValueError
• If both of include and exclude are empty
• If include and exclude have overlapping elements
• If any kind of string dtype is passed in.

TypeError
• If either of include or exclude is not a sequence

Notes
• To select all numeric types use the numpy dtype numpy.number
• To select strings you must use the object dtype, but note that this will return all object dtype columns
• See the numpy dtype hierarchy

Examples

>>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'),
...                    'b': [True, False] * 3,
...                    'c': [1.0, 2.0] * 3})
>>> df
   a       b  c
0 0.3962  True  1
1 0.1459  False  2
2 0.2623  True  1
3 0.0764  False  2
4 -0.9703  True  1
5 -1.2094  False  2
>>> df.select_dtypes(include=['float64'])
   c
0  1
1  2
2  1
3  2
4  1
5  2
>>> df.select_dtypes(exclude=['floating'])
   b
0  True
1  False
2  True
3  False
4  True
5  False

**pandas.DataFrame.values**

**DataFrame.values**
Numpy representation of NDFrame

**Notes**

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

**pandas.DataFrame.axes**

**DataFrame.axes**

**pandas.DataFrame.ndim**

**DataFrame.ndim**
Number of axes / array dimensions

**pandas.DataFrame.shape**

**DataFrame.shape**

**29.4.3 Conversion**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.astype()</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>DataFrame.convert_objects()</td>
<td>Attempt to infer better dtype for object columns</td>
</tr>
<tr>
<td>DataFrame.copy()</td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td>DataFrame.isnull()</td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td>DataFrame.notnull()</td>
<td>Return a boolean same-sized object indicating if the values are not null ..</td>
</tr>
</tbody>
</table>

**pandas.DataFrame.astype**

**DataFrame.astype(dtype[, copy, raise_on_error])**
Cast object to input numpy.dtype
Return a copy when copy = True (be really careful with this!)

**Parameters**
- **dtype**: numpy.dtype or Python type
- **raise_on_error**: raise on invalid input
Returns  

casted: type of caller

**pandas.DataFrame.convert_objects**

DataFrame.**convert_objects**(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)

Attempt to infer better dtype for object columns

**Parameters**

- **convert_dates**: if True, attempt to soft convert dates, if ‘coerce’, force conversion (and non-convertibles get NaT)
- **convert_numeric**: if True attempt to coerce to numbers (including strings), non-convertibles get NaN
- **convert_timedeltas**: if True, attempt to soft convert timedeltas, if ‘coerce’, force conversion (and non-convertibles get NaT)
- **copy**: Boolean, if True, return copy even if no copy is necessary (e.g. no conversion was done), default is True. It is meant for internal use, not to be confused with *inplace* kw.

Returns  

casted: asm as input object

**pandas.DataFrame.copy**

DataFrame.**copy**(deep=True)

Make a copy of this object

**Parameters**

- **deep**: boolean, default True

  Make a deep copy, i.e. also copy data

Returns  

copy: type of caller

**pandas.DataFrame.isnull**

DataFrame.**isnull**( )

Return a boolean same-sized object indicating if the values are null

See Also:

- **notnull**  boolean inverse of isnull

**pandas.DataFrame.notnull**

DataFrame.**notnull**( )

Return a boolean same-sized object indicating if the values are not null

See Also:

- **isnull**  boolean inverse of notnull
29.4.4 Indexing, iteration
pandas: powerful Python data analysis toolkit, Release 0.14.1

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.head([n])</td>
<td>Returns first n rows</td>
</tr>
<tr>
<td>DataFrame.at</td>
<td></td>
</tr>
<tr>
<td>DataFrame.iat</td>
<td></td>
</tr>
<tr>
<td>DataFrame.ix</td>
<td></td>
</tr>
<tr>
<td>DataFrame.loc</td>
<td></td>
</tr>
<tr>
<td>DataFrame.iloc</td>
<td></td>
</tr>
<tr>
<td>DataFrame.insert(loc, column, value[, ...])</td>
<td>Insert column into DataFrame at specified location.</td>
</tr>
<tr>
<td>DataFrame.<strong>iter</strong>()</td>
<td>Iterate over index axis</td>
</tr>
<tr>
<td>DataFrame.iteritems()</td>
<td>Iterator over (column, series) pairs</td>
</tr>
<tr>
<td>DataFrame.iterrows()</td>
<td>Iterate over rows of DataFrame as (index, Series) pairs.</td>
</tr>
<tr>
<td>DataFrame.iterrows([index])</td>
<td>Iterate over rows of DataFrame as tuples, with index value.</td>
</tr>
<tr>
<td>DataFrame.lookup(row_labels, col_labels)</td>
<td>Label-based “fancy indexing” function for DataFrame.</td>
</tr>
<tr>
<td>DataFrame.pop(item)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td>DataFrame.tail([n])</td>
<td>Returns last n rows</td>
</tr>
<tr>
<td>DataFrame.xs(key[, axis, level, copy, ...])</td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
<tr>
<td>DataFrame.isin(values)</td>
<td>Return boolean DataFrame showing whether each element in the</td>
</tr>
<tr>
<td>DataFrame.query(expr, **kwargs)</td>
<td>Query the columns of a frame with a boolean expression.</td>
</tr>
</tbody>
</table>

**pandas.DataFrame.head**

DataFrame.head(n=5)
Returns first n rows

**pandas.DataFrame.at**

DataFrame.at

**pandas.DataFrame.iat**

DataFrame.iat

**pandas.DataFrame.ix**

DataFrame.ix

**pandas.DataFrame.loc**

DataFrame.loc

**pandas.DataFrame.iloc**

DataFrame.iloc

**pandas.DataFrame.insert**

DataFrame.insert(loc, column, value, allow_duplicates=False)
Insert column into DataFrame at specified location.

29.4. DataFrame
If `allow_duplicates` is False, raises Exception if column is already contained in the DataFrame.

**Parameters**
- `loc` : int
  - Must have $0 \leq loc \leq \text{len}($columns$)$
- `column` : object
- `value` : int, Series, or array-like

**pandas.DataFrame.__iter__**

DataFrame.__iter__()
Iterate over info row axis

**pandas.DataFrame.iteritems**

DataFrame.iteritems()
Iterator over (column, series) pairs

**pandas.DataFrame.iterrows**

DataFrame.iterrows()
Iterate over rows of DataFrame as (index, Series) pairs.

**Returns**
- `it` : generator
  - A generator that iterates over the rows of the frame.

**Notes**

- `iterrows` does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

  ```python
 >>> df = DataFrame([\[1, 1.0\]], columns=[‘x’, ‘y’])
 >>> row = next(df.iterrows())[1]
 >>> print(row[‘x’].dtype)
 float64
 >>> print(df[‘x’].dtype)
 int64
  ```

**pandas.DataFrame.itertuples**

DataFrame.itertuples(index=True)
Iterate over rows of DataFrame as tuples, with index value as first element of the tuple

**pandas.DataFrame.lookup**

DataFrame.lookup(row_labels, col_labels)
Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair.

**Parameters**
- `row_labels` : sequence
The row labels to use for lookup

```python
col_labels : sequence
```
The column labels to use for lookup

**Notes**

Akin to:

```python
result = []
for row, col in zip(row_labels, col_labels):
 result.append(df.get_value(row, col))
```

**Examples**

```python
values [ndarray] The found values
```

**pandas.DataFrame.pop**

DataFrame.pop(item)

Return item and drop from frame. Raise KeyError if not found.

**pandas.DataFrame.tail**

DataFrame.tail(n=5)

Returns last n rows

**pandas.DataFrame.xs**

DataFrame.xs(key, axis=0, level=None, copy=None, drop_level=True)

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

**Parameters**

- `key` : object
  Some label contained in the index, or partially in a MultiIndex
- `axis` : int, default 0
  Axis to retrieve cross-section on
- `level` : object, defaults to first n levels (n=1 or len(key))
  In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.
- `copy` : boolean [deprecated]
  Whether to make a copy of the data
- `drop_level` : boolean, default True
  If False, returns object with same levels as self.

**Returns**

- `xs` : Series or DataFrame
Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see *MultiIndex Slicers*

Examples

```python
>>> df
 A B C
a 4 5 2
b 4 0 9
c 9 7 3
>>> df.xs('a')
 B C
a 5 2
Name: a
>>> df.xs('C', axis=1)
 a
 b
 c
Name: C
>>> df
 A B C D
first second third
bar one 1 4 1 8 9
two 1 7 5 5 0
baz one 1 6 6 8 0
two 2 5 3 5 3
>>> df.xs(('baz', 'three'))
 A B C D
third
 2 5 3 5 3
>>> df.xs(('one', level=1))
 A B C D
first third
bar 1 4 1 8 9
baz 1 6 6 8 0
>>> df.xs(('baz', 2), level=[0, 'third'])
 A B C D
second
three 5 3 5 3
```

**pandas.DataFrame.isin**

DataFrame.isin(values)

Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

**Parameters**  
values : iterable, Series, DataFrame or dictionary

The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dictionary, the keys must be the column names, which
must match. If values is a DataFrame, then both the index and column labels must match.

**Returns** DataFrame of booleans

**Examples**

When values is a list:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> df.isin([1, 3, 12, 'a'])
 A B
0 True True
1 False False
2 True False
```

When values is a dict:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
>>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})
 A B
0 True False # Note that B didn't match the 1 here.
1 False True
2 True True
```

When values is a Series or DataFrame:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
>>> df.isin(other)
 A B
0 True False # Column A in 'other' has a 3, but not at index 1.
1 False False
2 True True
```

**pandas.DataFrame.query**

`pandas.DataFrame.query(expr, **kwargs)`

Query the columns of a frame with a boolean expression. New in version 0.13.

**Parameters**

- `expr`: string
  
The query string to evaluate. You can refer to variables in the environment by prefixing them with an `@` character like `@a + b`.

- `kwargs`: dict
  
  See the documentation for `pandas.eval()` for complete details on the keyword arguments accepted by `DataFrame.query()`.

**Returns**

- `q`: DataFrame

**See Also:**

- `pandas.eval`, `DataFrame.eval`
Notes

The result of the evaluation of this expression is first passed to DataFrame.loc and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to DataFrame.__getitem__().

This method uses the top-level pandas.eval() function to evaluate the passed query.

The query() method uses a slightly modified Python syntax by default. For example, the & and | (bitwise) operators have the precedence of their boolean cousins, and or. This is syntactically valid Python, however the semantics are different.

You can change the semantics of the expression by passing the keyword argument parser='python'. This enforces the same semantics as evaluation in Python space. Likewise, you can pass engine='python' to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using numexpr as the engine.

The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier index is used for the frame index; you can also use the name of the index to identify it in a query.

For further details and examples see the query documentation in indexing.

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame

>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.query('a > b')
```

# same result as the previous expression

For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation.

29.4.5 Binary operator functions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.add</td>
<td>Binary operator add with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.sub</td>
<td>Binary operator sub with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.mul</td>
<td>Binary operator mul with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.div</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.truediv</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.floordiv</td>
<td>Binary operator floordiv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.mod</td>
<td>Binary operator mod with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.pow</td>
<td>Binary operator pow with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.radd</td>
<td>Binary operator radd with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.rsub</td>
<td>Binary operator rsub with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.rmul</td>
<td>Binary operator rmul with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.rdiv</td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.rfloordiv</td>
<td>Binary operator rfloordiv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.rmod</td>
<td>Binary operator rmod with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.rpow</td>
<td>Binary operator rpow with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>DataFrame.lt</td>
<td>Wrapper for flexible comparison methods lt</td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.42 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.gt</td>
<td>Wrapper for flexible comparison methods gt</td>
</tr>
<tr>
<td>DataFrame.le</td>
<td>Wrapper for flexible comparison methods le</td>
</tr>
<tr>
<td>DataFrame.ge</td>
<td>Wrapper for flexible comparison methods ge</td>
</tr>
<tr>
<td>DataFrame.ne</td>
<td>Wrapper for flexible comparison methods ne</td>
</tr>
<tr>
<td>DataFrame.eq</td>
<td>Wrapper for flexible comparison methods eq</td>
</tr>
<tr>
<td>DataFrame.combine</td>
<td>Add two DataFrame objects and do not propagate NaN values, so if for a combination is required, the result will be missing.</td>
</tr>
<tr>
<td>DataFrame.combineAdd</td>
<td>Add two DataFrame objects and do not propagate NaN values, so if for a combination is required, the result will be missing.</td>
</tr>
<tr>
<td>DataFrame.combine_first</td>
<td>Combine two DataFrame objects and default to non-null values in frame.</td>
</tr>
<tr>
<td>DataFrame.combineMult</td>
<td>Multiply two DataFrame objects and do not propagate NaN values, so if for a combination is required, the result will be missing.</td>
</tr>
</tbody>
</table>

**pandas.DataFrame.add**

DataFrame.add(other, axis=’columns’, level=None, fill_value=None)

Binary operator add with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
  - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
  - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

result : DataFrame

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.sub**

DataFrame.sub(other, axis=’columns’, level=None, fill_value=None)

Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
  - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
  - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

result : DataFrame
Notes

Mismatched indices will be unioned together

pandas.DataFrame.mul

DataFrame.mul(other, axis='columns', level=None, fill_value=None)

- Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

- Parameters
  - **other**: Series, DataFrame, or constant
  - **axis**: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

- Returns
  - **result**: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.div

DataFrame.div(other, axis='columns', level=None, fill_value=None)

- Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

- Parameters
  - **other**: Series, DataFrame, or constant
  - **axis**: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

- Returns
  - **result**: DataFrame

Notes

Mismatched indices will be unioned together
pandas.DataFrame.truediv

DataFrame.truediv(other, axis='columns', level=None, fill_value=None)
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on

fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.floordiv

DataFrame.floordiv(other, axis='columns', level=None, fill_value=None)
Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on

fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.mod

DataFrame.mod(other, axis='columns', level=None, fill_value=None)
Binary operator mod with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on

**fill_value**: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

**level**: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

**result**: DataFrame

**Notes**

Mismatched indices will be unioned together

### pandas.DataFrame.pow

DataFrame.\( \texttt{pow} \) (other, axis='columns', level=None, fill_value=None)

Binary operator pow with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

**other**: Series, DataFrame, or constant

**axis**: \{0, 1, ‘index’, ‘columns’\}

For Series input, axis to match Series index on

**fill_value**: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

**level**: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

**result**: DataFrame

**Notes**

Mismatched indices will be unioned together

### pandas.DataFrame.radd

DataFrame.\( \texttt{radd} \) (other, axis='columns', level=None, fill_value=None)

Binary operator radd with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

**other**: Series, DataFrame, or constant

**axis**: \{0, 1, ‘index’, ‘columns’\}

For Series input, axis to match Series index on

**fill_value**: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

**level**: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

**result**: DataFrame
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  result : DataFrame

Notes

Mismatched indices will be unioned together

**pandas.DataFrame.rsub**

DataFrame.rsub(
other, axis=’columns’, level=None, fill_value=None)

Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs

Parameters  other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  result : DataFrame

Notes

Mismatched indices will be unioned together

**pandas.DataFrame.rmul**

DataFrame.rmul(
other, axis=’columns’, level=None, fill_value=None)

Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs

Parameters  other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  result : DataFrame
Notes

Mismatched indices will be unioned together

pandas.DataFrame.rdiv

DataFrame.rdiv(other, axis='columns', level=None, fill_value=None)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series, DataFrame, or constant
axis: {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value: None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rtruediv

DataFrame.rtruediv(other, axis='columns', level=None, fill_value=None)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series, DataFrame, or constant
axis: {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value: None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: DataFrame

Notes

Mismatched indices will be unioned together
pandas.DataFrame.rfloordiv

DataFrame.rfloordiv(other, axis='columns', level=None, fill_value=None)

Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
   For Series input, axis to match Series index on
fill_value : None or float value, default None
   Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
   Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.rmod

DataFrame.rmod(other, axis='columns', level=None, fill_value=None)

Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
   For Series input, axis to match Series index on
fill_value : None or float value, default None
   Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
   Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.rpow

DataFrame.rpow(other, axis='columns', level=None, fill_value=None)

Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

**fill_value**: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

**level**: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
**result**: DataFrame

**Notes**

Mismatched indices will be unioned together

```python
pandas.DataFrame.lt
```

```python
DataFrame.lt(other, axis='columns', level=None)
```

Wrapper for flexible comparison methods lt

```python
pandas.DataFrame.gt
```

```python
DataFrame.gt(other, axis='columns', level=None)
```

Wrapper for flexible comparison methods gt

```python
pandas.DataFrame.le
```

```python
DataFrame.le(other, axis='columns', level=None)
```

Wrapper for flexible comparison methods le

```python
pandas.DataFrame.ge
```

```python
DataFrame.ge(other, axis='columns', level=None)
```

Wrapper for flexible comparison methods ge

```python
pandas.DataFrame.ne
```

```python
DataFrame.ne(other, axis='columns', level=None)
```

Wrapper for flexible comparison methods ne

```python
pandas.DataFrame.eq
```

```python
DataFrame.eq(other, axis='columns', level=None)
```

Wrapper for flexible comparison methods eq
**pandas.DataFrame.combine**

Dataframe.combine (other, func, fill_value=None, overwrite=True)

Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

**Parameters**
- other : DataFrame
- func : function
- fill_value : scalar value
- overwrite : boolean, default True

If True then overwrite values for common keys in the calling frame

**Returns**
- result : DataFrame

**pandas.DataFrame.combineAdd**

Dataframe.combineAdd (other)

Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

**Parameters**
- other : DataFrame

**Returns**
- Dataframe

**pandas.DataFrame.combine_first**

Dataframe.combine_first (other)

Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns

**Parameters**
- other : DataFrame

**Returns**
- combined : Dataframe

**Examples**

a’s values prioritized, use values from b to fill holes:

```python
>>> a.combine_first(b)
```

**pandas.DataFrame.combineMult**

Dataframe.combineMult (other)

Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

**Parameters**
- other : DataFrame

**Returns**
- Dataframe

### 29.4.6 Function application, GroupBy
DataFrame.apply(func[, axis, broadcast, ...])  Applies function along input axis of DataFrame.

DataFrame.applymap(func)  Apply a function to a DataFrame that is intended to operate

DataFrame.groupby([by, axis, level, ...])  Group series using mapper (dict or key function, apply given function

pandas.DataFrame.apply

DataFrame.apply (func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)
Applies function along input axis of DataFrame.

Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns
(axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame
is empty.

Parameters  
func : function  
Function to apply to each column/row

axis : {0, 1}
• 0 : apply function to each column
• 1 : apply function to each row

broadcast : boolean, default False
For aggregation functions, return object of same size with values propagated

reduce : boolean or None, default None
Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce
to determine whether the result should be a Series or a DataFrame. If reduce is None
(the default), apply’s return value will be guessed by calling func an empty Series
(note: while guessing, exceptions raised by func will be ignored). If reduce is True
a Series will always be returned, and if False a DataFrame will always be returned.

raw : boolean, default False
If False, convert each row or column into a Series. If raw=True the passed function
will receive ndarray objects instead. If you are just applying a NumPy reduction
function this will achieve much better performance

args : tuple
Positional arguments to pass to function in addition to the array/series

Additional keyword arguments will be passed as keywords to the function

Returns  
applied : Series or DataFrame

See Also:

DataFrame.applymap  For elementwise operations

Notes

In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast
or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice
for the first column/row.
Examples

```python
>>> df.apply(numpy.sqrt) # returns DataFrame
>>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0)
>>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)
```

**pandas.DataFrame.applymap**

DataFrame.applymap(func)

Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame

**Parameters**

- `func`: function

  Python function, returns a single value from a single value

**Returns**

- `applied`: DataFrame

**See Also:**

DataFrame.apply For operations on rows/columns

**pandas.DataFrame.groupby**

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns

**Parameters**

- `by`: mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups

  - `axis`: int, default 0

  - `level`: int, level name, or sequence of such, default None

    If the axis is a MultiIndex (hierarchical), group by a particular level or levels

  - `as_index`: boolean, default True

    For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

  - `sort`: boolean, default True

    Sort group keys. Get better performance by turning this off

  - `group_keys`: boolean, default True

    When calling apply, add group keys to index to identify pieces

  - `squeeze`: boolean, default False

    reduce the dimensionality of the return type if possible, otherwise return a consistent type

**Returns**

- `GroupBy object`
pandas: powerful Python data analysis toolkit, Release 0.14.1

Examples

# DataFrame result >>> data.groupby(func, axis=0).mean()
# DataFrame result >>> data.groupby([‘col1’, ‘col2’])[‘col3’].mean()
# DataFrame with hierarchical index >>> data.groupby([‘col1’, ‘col2’]).mean()

29.4.7 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>DataFrame.abs</strong>()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td><strong>DataFrame.all</strong>([axis, bool_only, skipna, level])</td>
<td>Return whether all elements are True over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.any</strong>([axis, bool_only, skipna, level])</td>
<td>Return whether any element is True over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.clip</strong>([lower, upper, out])</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td><strong>DataFrame.clip_lower</strong>([threshold])</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td><strong>DataFrame.clip_upper</strong>([threshold])</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td><strong>DataFrame.corr</strong>([method, min_periods])</td>
<td>Compute pairwise correlation of columns, excluding NA/null values</td>
</tr>
<tr>
<td><strong>DataFrame.corrwith</strong>(other[, axis, drop])</td>
<td>Compute pairwise correlation between rows or columns of two DataFrame</td>
</tr>
<tr>
<td><strong>DataFrame.count</strong>([axis, level, numeric_only])</td>
<td>Return Series with number of non-NA/null observations over requested</td>
</tr>
<tr>
<td><strong>DataFrame.cov</strong>([min_periods])</td>
<td>Compute pairwise covariance of columns, excluding NA/null values</td>
</tr>
<tr>
<td><strong>DataFrame.cummax</strong>([axis, dtype, out, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.cummin</strong>([axis, dtype, out, skipna])</td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.cumprod</strong>([axis, dtype, out, skipna])</td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.cumsum</strong>([axis, dtype, out, skipna])</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.describe</strong>([percentile_width, ...])</td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><strong>DataFrame.diff</strong>([periods])</td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><strong>DataFrame.eval</strong>(expr, **kwargs)</td>
<td>Evaluate an expression in the context of the calling DataFrame</td>
</tr>
<tr>
<td><strong>DataFrame.kurt</strong>([axis, skipna, level, ...])</td>
<td>Return unbiased kurtosis over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.max</strong>([axis, skipna, level, ...])</td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><strong>DataFrame.mean</strong>([axis, skipna, level, ...])</td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><strong>DataFrame.median</strong>([axis, skipna, level, ...])</td>
<td>Return the median of the values for the requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.min</strong>([axis, skipna, level, ...])</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><strong>DataFrame.mode</strong>([axis, numeric_only])</td>
<td>Gets the mode of each element along the axis selected.</td>
</tr>
<tr>
<td><strong>DataFrame.pct_change</strong>([periods, fill_method, ...])</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><strong>DataFrame.prod</strong>([axis, skipna, level, ...])</td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.quantile</strong>([q, axis, numeric_only])</td>
<td>Return values at the given quantile over requested axis, a la numpy.percent</td>
</tr>
<tr>
<td><strong>DataFrame.rank</strong>([axis, numeric_only, method, ...])</td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><strong>DataFrame.sem</strong>([axis, skipna, level, ddof])</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.skew</strong>([axis, skipna, level, ...])</td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.sum</strong>([axis, skipna, level, ...])</td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.std</strong>([axis, skipna, level, ddof])</td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td><strong>DataFrame.var</strong>([axis, skipna, level, ddof])</td>
<td>Return unbiased variance over requested axis.</td>
</tr>
</tbody>
</table>

pandas.DataFrame.abs

DataFrame.abs()  

Return an object with absolute value taken. Only applicable to objects that are all numeric

    Returns  abs: type of caller
pandas.DataFrame.all

Dataframe.all(axis=None, bool_only=None, skipna=True, level=None, **kwargs)
Return whether all elements are True over requested axis. %(na_action)s

Parameters
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame
bool_only : boolean, default None
Only include boolean data.

Returns
any : Series (or DataFrame if level specified)

pandas.DataFrame.any

Dataframe.any(axis=None, bool_only=None, skipna=True, level=None, **kwargs)
Return whether any element is True over requested axis. %(na_action)s

Parameters
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame
bool_only : boolean, default None
Only include boolean data.

Returns
any : Series (or DataFrame if level specified)

pandas.DataFrame.clip

Dataframe.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters
lower : float, default None
upper : float, default None

Returns
clipped : Series
pandas.DataFrame.clip_lower

DataFrame.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns clipped : same type as input

See Also:
clip

pandas.DataFrame.clip_upper

DataFrame.clip_upper(threshold)
Return copy of input with values above given value truncated

Returns clipped : same type as input

See Also:
clip

pandas.DataFrame.corr

DataFrame.corr(method='pearson', min_periods=1)
Compute pairwise correlation of columns, excluding NA/null values

Parameters method : {'pearson', 'kendall', 'spearman'}

• pearson : standard correlation coefficient
• kendall : Kendall Tau correlation coefficient
• spearman : Spearman rank correlation

min_periods : int, optional
Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation

Returns y : DataFrame

pandas.DataFrame.corrwith

DataFrame.corrwith(other, axis=0, drop=False)
Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters other : DataFrame

axis : {0, 1}
0 to compute column-wise, 1 for row-wise

drop : boolean, default False
Drop missing indices from result, default returns union of all

Returns corrs : Series
**pandas.DataFrame.count**

```python
DataFrame.count(axis=0, level=None, numeric_only=False)
```

Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None)

- **Parameters**
  - `axis` : {0, 1}
    - 0 for row-wise, 1 for column-wise
  - `level` : int or level name, default None
    - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
  - `numeric_only` : boolean, default False
    - Include only float, int, boolean data

- **Returns**
  - `count` : Series (or DataFrame if level specified)

**pandas.DataFrame.cov**

```python
DataFrame.cov(min_periods=None)
```

Compute pairwise covariance of columns, excluding NA/null values

- **Parameters**
  - `min_periods` : int, optional
    - Minimum number of observations required per pair of columns to have a valid result.

- **Returns**
  - `y` : DataFrame

**Notes**

`y` contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator).

**pandas.DataFrame.cummax**

```python
DataFrame.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs)
```

Return cumulative max over requested axis.

- **Parameters**
  - `axis` : {index (0), columns (1)}
  - `skipna` : boolean, default True
    - Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **Returns**
  - `max` : Series

**pandas.DataFrame.cummin**

```python
DataFrame.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs)
```

Return cumulative min over requested axis.

- **Parameters**
  - `axis` : {index (0), columns (1)}
  - `skipna` : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**  
`min` : Series

### pandas.DataFrame.cumprod

**pandas.DataFrame.cumprod**  
`DataFrame.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)`  
Return cumulative prod over requested axis.

**Parameters**  
`axis` : {index (0), columns (1)}

`skipna` : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**  
`prod` : Series

### pandas.DataFrame.cumsum

**pandas.DataFrame.cumsum**  
`DataFrame.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs)`  
Return cumulative sum over requested axis.

**Parameters**  
`axis` : {index (0), columns (1)}

`skipna` : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**  
`sum` : Series

### pandas.DataFrame.describe

**pandas.DataFrame.describe**  
`DataFrame.describe(percentile_width=None, percentiles=None)`  
Generate various summary statistics, excluding NaN values.

**Parameters**  
`percentile_width` : float, deprecated

The `percentile_width` argument will be removed in a future version. Use `percentiles` instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

`percentiles` : array-like, optional

The percentiles to include in the output. Should all be in the interval [0, 1]. By default `percentiles` is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

**Returns**  
`summary` : NDFrame of summary statistics

**Notes**

For numeric dtypes the index includes: count, mean, std, min, max, and lower, 50, and upper percentiles.

If self is of object dtypes (e.g. timestamps or strings), the output will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.

If multiple values have the highest count, then the `count` and `most common` pair will be arbitrarily chosen from among those with the highest count.
pandas.DataFrame.diff

DataFrame.diff(periods=1)
1st discrete difference of object

**Parameters**
- periods: int, default 1
  Periods to shift for forming difference

**Returns**
diffed: DataFrame

pandas.DataFrame.eval

DataFrame.eval(expr, **kwargs)
Evaluate an expression in the context of the calling DataFrame instance.

**Parameters**
- expr: string
  The expression string to evaluate.
- kwargs: dict
  See the documentation for eval() for complete details on the keyword arguments accepted by query().

**Returns**
ret: ndarray, scalar, or pandas object

**See Also**
pandas.DataFrame.query, pandas.eval

**Notes**
For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval.

**Examples**

``` python
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.eval('a + b')
>>> df.eval('c = a + b')
```

pandas.DataFrame.kurt

DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

**Parameters**
- axis: {index (0), columns (1)}
- skipna: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- level: int or level name, default None
  ```
```
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

**numeric_only** : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**kurt** : Series or DataFrame (if level specified)

### pandas.DataFrame.mad

**DataFrame.mad**(axis=None, skipna=None, level=None, **kwargs)
Return the mean absolute deviation of the values for the requested axis

**Parameters**

**axis** : {index (0), columns (1)}

**skipna** : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level** : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

**numeric_only** : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**mad** : Series or DataFrame (if level specified)

### pandas.DataFrame.max

**DataFrame.max**(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

**Parameters**

**axis** : {index (0), columns (1)}

**skipna** : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level** : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

**numeric_only** : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**max** : Series or DataFrame (if level specified)
pandas.DataFrame.mean

DataFrame.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the mean of the values for the requested axis

Parameters
axis : {index (0), columns (1)}

skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a Series

numeric_only : boolean, default None
    Include only float, int, boolean data. If None, will attempt to use everything, then
    use only numeric data

Returns
mean : Series or DataFrame (if level specified)

pandas.DataFrame.median

DataFrame.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the median of the values for the requested axis

Parameters
axis : {index (0), columns (1)}

skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a Series

numeric_only : boolean, default None
    Include only float, int, boolean data. If None, will attempt to use everything, then
    use only numeric data

Returns
median : Series or DataFrame (if level specified)

pandas.DataFrame.min

DataFrame.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use
idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters
axis : {index (0), columns (1)}

skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a Series
numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns min : Series or DataFrame (if level specified)

pandas.DataFrame.mode

DataFrame.mode (axis=0, numeric_only=False)

Gets the mode of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan.

Parameters axis : {0, 1, ‘index’, ‘columns’} (default 0)

• 0/’index’ : get mode of each column
• 1/’columns’ : get mode of each row

numeric_only : boolean, default False

if True, only apply to numeric columns

Returns modes : DataFrame (sorted)

pandas.DataFrame.pct_change

DataFrame.pct_change (periods=1, fill_method='pad', limit=None, freq=None, **kwds)

Percent change over given number of periods.

Parameters periods : int, default 1

Periods to shift for forming percent change

fill_method : str, default ‘pad’

How to handle NAs before computing percent changes

limit : int, default None

The number of consecutive NAs to fill before stopping

freq : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

Returns chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.DataFrame.prod

DataFrame.prod (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis
pandas: powerful Python data analysis toolkit, Release 0.14.1

Parameters  

axis : {index (0), columns (1)}

skipna : boolean, default True
     Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
     If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None
     Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns  prod : Series or DataFrame (if level specified)

pandas.DataFrame.quantile

DataFrame.quantile(q=0.5, axis=0, numeric_only=True)
     Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters  q : float or array-like, default 0.5 (50% quantile)
     0 <= q <= 1, the quantile(s) to compute

axis : {0, 1}
     0 for row-wise, 1 for column-wise

Returns  quantiles : Series or DataFrame
     If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Examples

>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
                  columns=['a', 'b'])
>>> df.quantile(.1)
a   1.3
b   3.7
dtype: float64
>>> df.quantile([.1, .5])
     a     b
0.1  1.3  3.7
0.5  2.5 55.0

pandas.DataFrame.rank

DataFrame.rank(axis=0, numeric_only=None, method='average', na_option='keep', ascending=True, pct=False)
     Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

Parameters  axis : {0, 1}, default 0
     Ranks over columns (0) or rows (1)
numeric_only : boolean, default None
Include only float, int, boolean data

method : {'average', 'min', 'max', 'first', 'dense'}
- average: average rank of group
- min: lowest rank in group
- max: highest rank in group
- first: ranks assigned in order they appear in the array
- dense: like ‘min’, but rank always increases by 1 between groups

na_option : {'keep', 'top', 'bottom'}
- keep: leave NA values where they are
- top: smallest rank if ascending
- bottom: smallest rank if descending

ascending : boolean, default True
False for ranks by high (1) to low (N)

pct : boolean, default False
Computes percentage rank of data

Returns ranks : DataFrame

pandas.DataFrame.sem

DataFrame.sem( axis=None, skipna=None, level=None, ddof=1, **kwargs )
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns standarderror : Series or DataFrame (if level specified)

pandas.DataFrame.skew

DataFrame.skew( axis=None, skipna=None, level=None, numeric_only=None, **kwargs )
Return unbiased skew over requested axis Normalized by N-1
Parameters

axis : \{index (0), columns (1)\}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns skew : Series or DataFrame (if level specified)

pandas.DataFrame.sum

DataFrame.sum(\texttt{axis=\texttt{None}, \texttt{skipna=\texttt{None}, \texttt{level=\texttt{None}, \texttt{numeric-only=\texttt{None}, \texttt{kwargs}}}})

Return the sum of the values for the requested axis

Parameters axis : \{index (0), columns (1)\}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns sum : Series or DataFrame (if level specified)

pandas.DataFrame.std

DataFrame.std(\texttt{axis=\texttt{None}, \texttt{skipna=\texttt{None}, \texttt{level=\texttt{None}, \texttt{ddof=1, \texttt{kwargs}}}})

Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the \texttt{ddof} argument

Parameters axis : \{index (0), columns (1)\}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data
pandas: powerful Python data analysis toolkit, Release 0.14.1

Returns stdev: Series or DataFrame (if level specified)

pandas.DataFrame.var

DataFrame.var (axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis: {index (0), columns (1)}
skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only: boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns variance: Series or DataFrame (if level specified)

29.4.8 Reindexing / Selection / Label manipulation

DataFrame.add_prefix(prefix) Concatenate prefix string with panel items names.
DataFrame.add_suffix(suffix) Concatenate suffix string with panel items names
DataFrame.align(other[, join, axis, level, ...]) Align two object on their axes with the
DataFrame.drop(labels[, axis, level, inplace]) Return new object with labels in requested axis removed
DataFrame.drop_duplicate(*args, **kwargs) Return DataFrame with duplicate rows removed, optionally only
DataFrame.duplicated(*args, **kwargs) Return boolean Series denoting duplicate rows, optionally only
DataFrame.equals(other) Determines if two NDFrame objects contain the same elements. NaNs in the
DataFrame.filter([items, like, regex, axis]) Restrict the info axis to set of items or wildcard
DataFrame.first(offset) Convenience method for subsetting initial periods of time series data
DataFrame.head([n]) Returns first n rows
DataFrame.idxmax([axis, skipna]) Return index of first occurrence of maximum over requested axis.
DataFrame.idxmin([axis, skipna]) Return index of first occurrence of minimum over requested axis.
DataFrame.last(offset) Convenience method for subsetting final periods of time series data
DataFrame.reindex([index, columns]) Conform DataFrame to new index with optional filling logic, placing
DataFrame.reindex_axis(labels[, axis, ...]) Conform input object to new index with optional filling logic.
DataFrame.reindex_like(other[, method, ...]) return an object with matching indicies to myself
DataFrame.rename([index, columns]) Alter axes input function or functions.
DataFrame.reset_index([level, drop, ...]) For DataFrame with multi-level index, return new DataFrame with
DataFrame.select(crit[, axis]) Return data corresponding to axis labels matching criteria
DataFrame.set_index(keys[, drop, append, ...]) Set the DataFrame index (row labels) using one or more existing
DataFrame.tail([n]) Returns last n rows
DataFrame.take(indices[, axis, convert, is_copy]) Analogous to ndarray.take
DataFrame.truncate([before, after, axis, copy]) Truncates a sorted NDFrame before and/or after some particular
DataFrame.add_prefix

**DataFrame.add_prefix(prefix)**

Concatenate prefix string with panel items names.

- **Parameters**
  - `prefix`: string
  - **Returns**
  - `with_prefix`: type of caller

DataFrame.add_suffix

**DataFrame.add_suffix(suffix)**

Concatenate suffix string with panel items names.

- **Parameters**
  - `suffix`: string
  - **Returns**
  - `with_suffix`: type of caller

DataFrame.align

**DataFrame.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)**

Align two object on their axes with the specified join method for each axis Index

- **Parameters**
  - `other`: DataFrame or Series
  - `join`: {'outer', 'inner', 'left', 'right'}, default 'outer'
  - `axis`: allowed axis of the other object, default None
    - Align on index (0), columns (1), or both (None)
  - `level`: int or level name, default None
    - Broadcast across a level, matching Index values on the passed MultiIndex level
  - `copy`: boolean, default True
    - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
  - `fill_value`: scalar, default np.NaN
    - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
  - `method`: str, default None
  - `limit`: int, default None
  - `fill_axis`: {0, 1}, default 0
    - Filling axis, method and limit
  - **Returns**
  - `left`, `right`: (type of input, type of other)
    - Aligned objects

DataFrame.drop

**DataFrame.drop(labels, axis=0, level=None, inplace=False, **kwargs)**

Return new object with labels in requested axis removed
Parameters  
labels : single label or list-like  
axis : int or axis name  
level : int or level name, default None  
For MultiIndex :  
inplace : bool, default False  
If True, do operation inplace and return None.

Returns  
dropped : type of caller

pandas.DataFrame.drop_duplicates

DataFrame.drop_duplicates(*args, **kwargs)  
Return DataFrame with duplicate rows removed, optionally only considering certain columns  
Parameters  
subset : column label or sequence of labels, optional  
Only consider certain columns for identifying duplicates, by default use all of the columns  
take_last : boolean, default False  
Take the last observed row in a row. Defaults to the first row  
inplace : boolean, default False  
Whether to drop duplicates in place or to return a copy  
cols : kwargs only argument of subset [deprecated]

Returns  
deduplicated : DataFrame

pandas.DataFrame.duplicated

DataFrame.duplicated(*args, **kwargs)  
Return boolean Series denoting duplicate rows, optionally only considering certain columns  
Parameters  
subset : column label or sequence of labels, optional  
Only consider certain columns for identifying duplicates, by default use all of the columns  
take_last : boolean, default False  
Take the last observed row in a row. Defaults to the first row  
cols : kwargs only argument of subset [deprecated]

Returns  
duplicated : Series

pandas.DataFrame.equals

DataFrame.equals(other)  
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.
pandas.DataFrame.filter

DataFrame.filter(items=None, like=None, regex=None, axis=None)

Restrict the info axis to set of items or wildcard

**Parameters**

- **items**: list-like
  
  List of info axis to restrict to (must not all be present)

- **like**: string
  
  Keep info axis where “arg in col == True”

- **regex**: string (regular expression)
  
  Keep info axis with re.search(regex, col) == True

- **axis**: int or None
  
  The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with[]. For example, df = DataFrame({'a': [1, 2, 3, 4]}); df['a']. So, the DataFrame columns are the info axis.

**Notes**

Arguments are mutually exclusive, but this is not checked for

pandas.DataFrame.first

DataFrame.first(offset)

Convenience method for subsetting initial periods of time series data based on a date offset

**Parameters**

- **offset**: string, DateOffset, dateutil.relativedelta

**Returns**

- **subset**: type of caller

**Examples**

ts.last('10D') -> First 10 days

pandas.DataFrame.head

DataFrame.head(n=5)

Returns first n rows

pandas.DataFrame.idxmax

DataFrame.idxmax(axis=0, skipna=True)

Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

**Parameters**

- **axis**: {0, 1}
  
  0 for row-wise, 1 for column-wise

- **skipna**: boolean, default True
  
  Exclude NA/null values. If an entire row/column is NA, the result will be first index.
pandas: powerful Python data analysis toolkit, Release 0.14.1

Returns  **idxmax** : Series

See Also:

- **Series.idxmax**

Notes

This method is the DataFrame version of **ndarray.argmax**.

**pandas.DataFrame.idxmin**

DataFrame. **idxmin**(*axis=0, skipna=True*)

Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters  **axis** : {0, 1}

- 0 for row-wise, 1 for column-wise

- **skipna** : boolean, default True

  Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns  **idxmin** : Series

See Also:

- **Series.idxmin**

Notes

This method is the DataFrame version of **ndarray.argmin**.

**pandas.DataFrame.last**

DataFrame. **last**(*offset*)

Convenience method for subsetting final periods of time series data based on a date offset

Parameters  **offset** : string, DateOffset, dateutil.relativedelta

Returns  **subset** : type of caller

Examples

```
ts.last('5M') -> Last 5 months
```

**pandas.DataFrame.reindex**

DataFrame. **reindex**(*index=None, columns=None, **kwargs*)

Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters  **index, columns** : array-like, optional (can be specified in order, or as
keywords) New labels / index to conform to. Preferably an Index object to avoid
duplicating data

method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None

Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last
valid observation forward to next valid backfill / bfill: use NEXT valid observation
to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None

Maximum size gap to forward or backward fill

Returns reindexed : DataFrame

Examples

```python
>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])
```

pandas.DataFrame.reindex_axis

DataFrame.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=np.nan)

Conform input object to new index with optional filling logic, placing NA/Nan in locations having no value
in the previous index. A new object is produced unless the new index is equivalent to the current one and

Parameters labels : array-like

New labels / index to conform to. Preferably an Index object to avoid duplicating
data

axis : {0,1,'index','columns'}

method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None

Method to use for filling holes in reindexed object. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

limit : int, default None

Maximum size gap to forward or backward fill
Returns reindexed : DataFrame

See Also:
reindex, reindex_like

Examples

```python
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```

pandas.DataFrame.reindex_like

DataFrame.reindex_like(other, method=None, copy=True, limit=None)
return an object with matching indices to myself

Parameters

- **other**: Object
- **method**: string or None
- **copy**: boolean, default True
- **limit**: int, default None

Returns reindexed : same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.DataFrame.rename

DataFrame.rename(index=None, columns=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a
dict / Series will be left as-is.

Parameters

- **index, columns**: dict-like or function, optional
- **copy**: boolean, default True
- **inplace**: boolean, default False

Returns renamed : DataFrame (new object)

pandas.DataFrame.reset_index

DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')
For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under
the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name
will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used.
Parameters

**level** : int, str, tuple, or list, default None

Only remove the given levels from the index. Removes all levels by default

**drop** : boolean, default False

Do not try to insert index into dataframe columns. This resets the index to the default integer index.

**inplace** : boolean, default False

Modify the DataFrame in place (do not create a new object)

**col_level** : int or str, default 0

If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.

**col_fill** : object, default ''

If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.

Returns

**resetted** : DataFrame

**pandas.DataFrame.select**

Dataframe.select (**crit**, **axis=0**)  
Return data corresponding to axis labels matching criteria

Parameters

**crit** : function

To be called on each index (label). Should return True or False

**axis** : int

Returns

**selection** : type of caller

**pandas.DataFrame.set_index**

Dataframe.set_index (**keys**, **drop=True, append=False, inplace=False, verify_integrity=False**)  
Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object.

Parameters

**keys** : column label or list of column labels / arrays

**drop** : boolean, default True

Delete columns to be used as the new index

**append** : boolean, default False

Whether to append columns to existing index

**inplace** : boolean, default False

Modify the DataFrame in place (do not create a new object)

**verify_integrity** : boolean, default False

Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method

Returns

**dataframe** : DataFrame
Examples

```python
>>> indexed_df = df.set_index(['A', 'B'])
>>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
>>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]])
```

**pandas.DataFrame.tail**

DataFrame.tail(n=5)
Returns last n rows

**pandas.DataFrame.take**

DataFrame.take(indices, axis=0, convert=True, is_copy=True)
Analogous to ndarray.take

Parameters
- `indices`: list / array of ints
- `axis`: int, default 0
- `convert`: translate neg to pos indices (default)
- `is_copy`: mark the returned frame as a copy

Returns
- `taken`: type of caller

**pandas.DataFrame.truncate**

DataFrame.truncate(before=None, after=None, axis=None, copy=True)
Truncates a sorted NDFrame before and/or after some particular dates.

Parameters
- `before`: date
  Truncate before date
- `after`: date
  Truncate after date
- `axis`: the truncation axis, defaults to the stat axis
- `copy`: boolean, default is True,
  return a copy of the truncated section

Returns
- `truncated`: type of caller

### 29.4.9 Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.dropna()</td>
<td>Return object with labels on given axis omitted where alternately any</td>
</tr>
<tr>
<td>DataFrame.fillna()</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>DataFrame.replace()</td>
<td>Replace values given in 'to_replace' with 'value'.</td>
</tr>
</tbody>
</table>
**pandas.DataFrame.dropna**

DataFrame.dropna (**axis=0, how=’any’, thresh=None, subset=None, inplace=False**)  
Return object with labels on given axis omitted where alternately any or all of the data are missing

**Parameters**

- **axis**: {0, 1}, or tuple/list thereof  
  Pass tuple or list to drop on multiple axes

- **how**: {'any', 'all'}  
  - **any**: if any NA values are present, drop that label  
  - **all**: if all values are NA, drop that label

- **thresh**: int, default None  
  int value : require that many non-NA values

- **subset**: array-like  
  Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include

- **inplace**: boolean, default False  
  If True, do operation inplace and return None.

**Returns**

- **dropped**: DataFrame

**pandas.DataFrame.fillna**

DataFrame.fillna (**value=None, method=None, axis=0, inplace=False, limit=None, downcast=None**)  
Fill NA/NaN values using the specified method

**Parameters**

- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None  
  Method to use for filling holes in reindexed Series  
  pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

- **value**: scalar, dict, or Series  
  Value to use to fill holes (e.g. 0), alternately a dict/Series of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series will not be filled). This value cannot be a list.

- **axis**: {0, 1}, default 0  
  - 0: fill column-by-column  
  - 1: fill row-by-row

- **inplace**: boolean, default False  
  If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

- **limit**: int, default None  
  Maximum size gap to forward or backward fill

- **downcast**: dict, default is None  
  a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)
Returns  filled : same type as caller

See Also:
reindex, asfreq

def pandas.DataFrame.replace

```py
DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
```

Replace values given in ‘to_replace’ with ‘value’.

**Parameters**

to_replace : str, regex, list, dict, Series, numeric, or None

- str or regex:
  - str: string exactly matching to_replace will be replaced with value
  - regex: regexes matching to_replace will be replaced with value

- list of str, regex, or numeric:
  - First, if to_replace and value are both lists, they must be the same length.
  - Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
  - str and regex rules apply as above.

- dict:
  - Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
  - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

- None:
  - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill

regex : bool or same types as to_replace, default False
Whether to interpret `to_replace` and/or `value` as regular expressions. If this is `True` then `to_replace` must be a string. Otherwise, `to_replace` must be `None` because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

**method** : string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when `to_replace` is a list.

**Returns**  
`filled` : NDFrame

**Raises**  
AssertionError
- If `regex` is not a `bool` and `to_replace` is not `None`.

TypeError
- If `to_replace` is a `dict` and `value` is not a `list`, `dict`, `ndarray`, or `Series`
- If `to_replace` is `None` and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series.

ValueError
- If `to_replace` and `value` are `list`s or `ndarray`s, but they are not the same length.

**See Also:**  
NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

**Notes**

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.
- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
- This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

### 29.4.10 Reshaping, sorting, transposing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.delevel(*args, **kwargs)</code></td>
<td>Reshape data (produce a “pivot” table) based on column values.</td>
</tr>
<tr>
<td><code>DataFrame.pivot([index, columns, values])</code></td>
<td>Reshape data (produce a “pivot” table) based on column values.</td>
</tr>
<tr>
<td><code>DataFrame.reorder_levels(order[, axis])</code></td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>DataFrame.sort([columns, axis, ascending, ...])</code></td>
<td>Sort DataFrame either by labels (along either axis) or by the values in.</td>
</tr>
<tr>
<td><code>DataFrame.sort_index([axis, by, ascending, ...])</code></td>
<td>Sort DataFrame either by labels (along either axis) or by the values in.</td>
</tr>
<tr>
<td><code>DataFrame.sortlevel([level, axis, ...])</code></td>
<td>Sort multilevel index by chosen axis and primary level.</td>
</tr>
<tr>
<td><code>DataFrame.swaplevel(i, j[, axis])</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td><code>DataFrame.stack([level, dropna])</code></td>
<td>Pivot a level of the (possibly hierarchical) column labels, returning a</td>
</tr>
<tr>
<td><code>DataFrame.unstack([level])</code></td>
<td>Pivot a level of the (necessarily hierarchical) index labels, returning</td>
</tr>
<tr>
<td><code>DataFrame.T</code></td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td><code>DataFrame.to_panel()</code></td>
<td>Transpose long (stacked) format (DataFrame) into wide (3D, Panel)</td>
</tr>
<tr>
<td><code>DataFrame.transpose()</code></td>
<td>Transpose index and columns</td>
</tr>
</tbody>
</table>
pandas.DataFrame.delevel

DataFrame.delevel(*args, **kwargs)

pandas.DataFrame.pivot

DataFrame.pivot(index=None, columns=None, values=None)

Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns
to form axes and return either DataFrame or Panel, depending on whether you request a single value column
(DataFrame) or all columns (Panel)

Parameters
- **index**: string or object
  - Column name to use to make new frame’s index
- **columns**: string or object
  - Column name to use to make new frame’s columns
- **values**: string or object, optional
  - Column name to use for populating new frame’s values

Returns
- **pivoted**: DataFrame
  - If no values column specified, will have hierarchically indexed columns

Notes

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods

Examples

```python
>>> df
 foo bar baz
0 one A 1.
1 one B 2.
2 one C 3.
3 two A 4.
4 two B 5.
5 two C 6.

>>> df.pivot('foo', 'bar', 'baz')
 A B C
one 1 2 3
two 4 5 6

>>> df.pivot('foo', 'bar')['baz']
 A B C
one 1 2 3
two 4 5 6
```

pandas.DataFrame.reorder_levels

DataFrame.reorder_levels(order, axis=0)

Rearrange index levels using input order. May not drop or duplicate levels
**Parameters**

- **order**: list of int or list of str
  
  List representing new level order. Reference level by number (position) or by key (label).

- **axis**: int
  
  Where to reorder levels.

**Returns**

- type of caller (new object)

---

### pandas.DataFrame.sort

DataFrame.sort(columns=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')

Sort DataFrame either by labels (along either axis) or by the values in column(s)

**Parameters**

- **columns**: object
  
  Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index.

- **ascending**: boolean or list, default True
  
  Sort ascending vs. descending. Specify list for multiple sort orders

- **axis**: {0, 1}
  
  Sort index/rows versus columns

- **inplace**: boolean, default False
  
  Sort the DataFrame without creating a new instance

- **kind**: {'quicksort', 'mergesort', 'heapsort'}, optional
  
  This option is only applied when sorting on a single column or label.

- **na_position**: {'first', 'last'} (optional, default='last')

  `first` puts NaNs at the beginning `last` puts NaNs at the end

**Returns**

- sorted: DataFrame

---

**Examples**

```python
>>> result = df.sort(['A', 'B'], ascending=[1, 0])
```

---

### pandas.DataFrame.sort_index

DataFrame.sort_index(axis=0, by=None, ascending=True, inplace=False, kind='quicksort', na_position='last')

Sort DataFrame either by labels (along either axis) or by the values in a column

**Parameters**

- **axis**: {0, 1}

  Sort index/rows versus columns

- **by**: object

  Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index.
**ascending** : boolean or list, default True
  Sort ascending vs. descending. Specify list for multiple sort orders

**inplace** : boolean, default False
  Sort the DataFrame without creating a new instance

**na_position** : {'first', 'last'} (optional, default='last')
  ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

**kind** : {'quicksort', 'mergesort', 'heapsort'}, optional
  This option is only applied when sorting on a single column or label.

**Returns** sorted : DataFrame

**Examples**

```python
>>> result = df.sort_index(by=['A', 'B'], ascending=[True, False])
```

**pandas.DataFrame.sortlevel**

**DataFrame.sortlevel**(level=0, axis=0, ascending=True, inplace=False, sort_remaining=True)
  Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

**Parameters**
  - **level** : int
  - **axis** : {0, 1}
  - **ascending** : boolean, default True
  - **inplace** : boolean, default False
    Sort the DataFrame without creating a new instance
  - **sort_remaining** : boolean, default True
    Sort by the other levels too.

**Returns** sorted : DataFrame

**pandas.DataFrame.swaplevel**

**DataFrame.swaplevel**(i, j, axis=0)
  Swap levels i and j in a MultiIndex on a particular axis

**Parameters**
  - **i, j** : int, string (can be mixed)
    Level of index to be swapped. Can pass level name as string.

**Returns** swapped : type of caller (new object)
pandas.DataFrame.stack

DataFrame.stack (level=-1, dropna=True)

Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.

Parameters
- **level**: int, string, or list of these, default last level
  - Level(s) to stack, can pass level name
- **dropna**: boolean, default True
  - Whether to drop rows in the resulting Frame/Series with no valid values

Returns
- **stacked**: DataFrame or Series

Examples

```python
>>> s
 a b
one 1. 2.
two 3. 4.

>>> s.stack()
 one a 1
 b 2
 two a 3
 b 4
```

pandas.DataFrame.unstack

DataFrame.unstack (level=-1)

Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex).

Parameters
- **level**: int, string, or list of these, default -1 (last level)
  - Level(s) of index to unstack, can pass level name

Returns
- **unstacked**: DataFrame or Series

See Also:
- **DataFrame.pivot**  Pivot a table based on column values.
- **DataFrame.stack**  Pivot a level of the column labels (inverse operation from unstack).

Examples

```python
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
 ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
 one a 1
 b 2
```
two  a  3  
b  4  
dtype: float64

>>> s.unstack(level=-1)
 a   b
one  1   2
two  3   4

>>> s.unstack(level=0)

 a   b
one  1   3
two  2   4

>>> df = s.unstack(level=0)

one a  1.
b  3.
two a  2.
b  4.

pandas.DataFrame.T

DataFrame.T
Transpose index and columns

pandas.DataFrame.to_panel

DataFrame.to_panel()
Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.
Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later

Returns  panel: Panel

pandas.DataFrame.transpose

DataFrame.transpose()
Transpose index and columns

29.4.11 Combining / joining / merging

DataFrame.append(other[, ignore_index, ...])  Append columns of other to end of this frame's columns and index, returning a
DataFrame.join(other[, on, how, lsuffix, ...])  Join columns with other DataFrame either on index or on a key
DataFrame.merge(right[, how, on, left_on, ...])  Merge DataFrame objects by performing a database-style join operation by
DataFrame.update(other[, join, overwrite, ...])  Modify DataFrame in place using non-NA values from passed

pandas.DataFrame.append

DataFrame.append(other, ignore_index=False, verify_integrity=False)
Append columns of other to end of this frame’s columns and index, returning a new object. Columns not in this frame are added as new columns.
**Parameters**

- **other**: DataFrame or list of Series/dict-like objects

  - **ignore_index**: boolean, default False
    - If True do not use the index labels. Useful for gluing together record arrays
  
  - **verify_integrity**: boolean, default False
    - If True, raise ValueError on creating index with duplicates

**Returns**

- **appended**: DataFrame

**Notes**

If a list of dict is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged

### Pandas.DataFrame.join

DataFrame.join(other=None, on=None, how='left', lsuffix='', rsuffix='', sort=False)

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

**Parameters**

- **other**: DataFrame, Series with name field set, or list of DataFrame

  - Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame

  - **on**: column name, tuple/list of column names, or array-like
    - Column(s) to use for joining, otherwise join on index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

  - **how**: {'left', 'right', 'outer', 'inner'}
    - How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise
      - left: use calling frame’s index
      - right: use input frame’s index
      - outer: form union of indexes
      - inner: use intersection of indexes

  - **lsuffix**: string
    - Suffix to use from left frame’s overlapping columns

  - **rsuffix**: string
    - Suffix to use from right frame’s overlapping columns

  - **sort**: boolean, default False
    - Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame

**Returns**

- **joined**: DataFrame
Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

pandas.DataFrame.merge

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters

right : DataFrame

how : {'left', 'right', 'outer', 'inner'}, default 'inner'

- left: use only keys from left frame (SQL: left outer join)
- right: use only keys from right frame (SQL: right outer join)
- outer: use union of keys from both frames (SQL: full outer join)
- inner: use intersection of keys from both frames (SQL: inner join)

on : label or list

Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.

left_on : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns

right_on : label or list, or array-like

Field names to join on in right DataFrame or vector/list of vectors per left_on docs

left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index

sort : boolean, default False

Sort the join keys lexicographically in the result DataFrame

suffixes : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively

copy : boolean, default True

If False, do not copy data unnecessarily

Returns

merged : DataFrame
Examples

```python
>>> A
 lkey value rkey value
 0 foo 1
 1 bar 2
 2 baz 3
 3 foo 4

>>> B
 lkey value rkey value
 0 foo 5
 1 bar 6
 2 qux 7
 3 bar 8

>>> merge(A, B, left_on='lkey', right_on='rkey', how='outer')
 lkey value_x rkey value_y
 0 foo 1 foo 5
 1 foo 4 foo 5
 2 bar 2 bar 6
 3 bar 2 bar 8
 4 baz 3 NaN NaN
 5 NaN NaN qux 7
```

**pandas.DataFrame.update**

 DataFrame.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)
Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices

**Parameters**
- **other**: DataFrame, or object coercible into a DataFrame
- **join**: {'left', 'right', 'outer', 'inner'}, default 'left'
- **overwrite**: boolean, default True
  - If True then overwrite values for common keys in the calling frame
- **filter_func**: callable(1d-array) -> 1d-array<boolean>, default None
  - Can choose to replace values other than NA. Return True for values that should be updated
- **raise_conflict**: boolean
  - If True, will raise an error if the DataFrame and other both contain data in the same place.

**29.4.12 Time series-related**

- **DataFrame.asfreq**(freq[, method, how, normalize]) Convert all TimeSeries inside to specified frequency using DateOffset
- **DataFrame.shift**(periods, freq, axis) Shift index by desired number of periods with an optional time freq
- **DataFrame.first_valid_index**() Return label for first non-NA/null value
- **DataFrame.last_valid_index**() Return label for last non-NA/null value
- **DataFrame.resample**(rule[, how, axis, ...]) Convenience method for frequency conversion and resampling of regular time-series data.
- **DataFrame.to_period**(freq, axis, copy) Convert DataFrame from DatetimeIndex to PeriodIndex with desired freq
- **DataFrame.to_timestamp**(freq, how, axis, copy) Cast to DatetimeIndex of timestamps, at beginning of period
- **DataFrame.tz_convert**(tz[, axis, copy]) Convert the axis to target time zone.
- **DataFrame.tz_localize**(tz[, axis, copy, ...]) Localize tz-naive TimeSeries to target time zone
**pandas.DataFrame.asfreq**

Dataframe.asfreq(freq=method=None, how=None, normalize=False)

Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

**Parameters**
- freq : DateOffset object, or string
- method : {'backfill', 'bfill', 'pad', ‘ffill’, None}
- how : {'start', 'end'}, default end
- normalize : bool, default False

**Returns**
- converted : type of caller

**Notes**

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

**pandas.DataFrame.shift**

Dataframe.shift(periods=1, freq=None, axis=0, **kwds)

Shift index by desired number of periods with an optional time freq

**Parameters**
- periods : int
- freq : DateOffset, timedelta, or time rule string, optional

**Returns**
- shifted : same type as caller

**Notes**

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

**pandas.DataFrame.first_valid_index**

Dataframe.first_valid_index()

Return label for first non-NA/null value

**pandas.DataFrame.last_valid_index**

Dataframe.last_valid_index()

Return label for last non-NA/null value
pandas.DataFrame.resample

DataFrame.resample(rule=rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)

Convenience method for frequency conversion and resampling of regular time-series data.

**Parameters**

- **rule**: string
  
  The offset string or object representing target conversion

- **how**: string
  
  Method for down- or re-sampling, default to ‘mean’ for downsampling

- **axis**: int, optional, default 0

- **fill_method**: string, default None
  
  Fill method for upsampling

- **closed**: {'right', 'left'}
  
  Which side of bin interval is closed

- **label**: {'right', 'left'}
  
  Which bin edge label to label bucket with

- **convention**: {'start', 'end', 's', 'e'}

- **kind**: “period”/“timestamp”

- **loffset**: timedelta
  
  Adjust the resampled time labels

- **limit**: int, default None
  
  Maximum size gap to when reindexing with fill_method

- **base**: int, default 0

  For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.DataFrame.to_period

DataFrame.to_period(freq=None, axis=0, copy=True)

Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)

**Parameters**

- **freq**: string, default

  The axis to convert (the index by default)

- **axis**: {0, 1}, default 0

  If False then underlying input data is not copied

**Returns**

- **ts**: TimeSeries with PeriodIndex
pandas.DataFrame.to_timestamp

DataFrame.to_timestamp(freq=None, how='start', axis=0, copy=True)
Cast to DatetimeIndex of timestamps, at beginning of period

Parameters
freq : string, default frequency of PeriodIndex
    Desired frequency
how : {'s', 'e', 'start', 'end'}
    Convention for converting period to timestamp; start of period vs. end
axis : {0, 1} default 0
    The axis to convert (the index by default)
copy : boolean, default True
    If false then underlying input data is not copied

Returns
df : DataFrame with DatetimeIndex

pandas.DataFrame.tz_convert

DataFrame.tz_convert(tz, axis=0, copy=True)
Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters
tz : string or pytz.timezone object
    Also make a copy of the underlying data

copy : boolean, default True
    Also make a copy of the underlying data

pandas.DataFrame.tz_localize

DataFrame.tz_localize(tz, axis=0, copy=True, infer_dst=False)
Localize tz-naive TimeSeries to target time zone

Parameters
tz : string or pytz.timezone object
    Also make a copy of the underlying data

copy : boolean, default True
    Also make a copy of the underlying data
infer_dst : boolean, default False
    Attempt to infer fall dst-transition times based on order

29.4.13 Plotting

DataFrame.boxplot([column, by, ax, ...])
Make a box plot from DataFrame column optionally grouped by some columns or

DataFrame.hist(data[, column, by, grid, ...])
Draw histogram of the DataFrame’s series using matplotlib / pylab.

DataFrame.plot([frame, x, y, subplots, ...])
Make line, bar, or scatter plots of DataFrame series with the index on the x-axis
pandas.DataFrame.boxplot

DataFrame.boxplot(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds)

Make a box plot from DataFrame column optionally grouped by some columns or other inputs

**Parameters**

- `data` : the pandas object holding the data
  - `column` : column name or list of names, or vector
    - Can be any valid input to groupby
  - `by` : string or sequence
    - Column in the DataFrame to group by
  - `ax` : Matplotlib axes object, optional
  - `fontsize` : int or string
  - `rot` : label rotation angle
  - `figsize` : A tuple (width, height) in inches
  - `grid` : Setting this to True will show the grid
  - `layout` : tuple (optional)
    - (rows, columns) for the layout of the plot
  - `return_type` : {'axes', 'dict', 'both'}, default 'dict'
    - The kind of object to return. 'dict' returns a dictionary whose values are the matplotlib Lines of the boxplot; 'axes' returns the matplotlib axes the boxplot is drawn on; 'both' returns a namedtuple with the axes and dict.
    - When grouping with `by`, a dict mapping columns to `return_type` is returned.
  - `kwds` : other plotting keyword arguments to be passed to matplotlib boxplot

**Returns**

- `lines` : dict
  - `ax` : matplotlib Axes

**Notes**

Use `return_type='dict'` when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.

pandas.DataFrame.hist

DataFrame.hist(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds)

Draw histogram of the DataFrame’s series using matplotlib / pylab.

**Parameters**

- `data` : DataFrame
  - `column` : string or sequence
If passed, will be used to limit data to a subset of columns
by : object, optional
    If passed, then used to form histograms for separate groups
grid : boolean, default True
    Whether to show axis grid lines
xlabelsize : int, default None
    If specified changes the x-axis label size
xrot : float, default None
    Rotation of x axis labels
ylabelsize : int, default None
    If specified changes the y-axis label size
yrot : float, default None
    Rotation of y axis labels
ax : matplotlib axes object, default None
sharex : bool, if True, the X axis will be shared amongst all subplots.
sharey : bool, if True, the Y axis will be shared amongst all subplots.
figsize : tuple
    The size of the figure to create in inches by default
layout: (optional) a tuple (rows, columns) for the layout of the histograms
bins: integer, default 10
    Number of histogram bins to be used
kwds : other plotting keyword arguments
    To be passed to hist function

pandas.DataFrame.plot

DataFrame.plot(frame=None, x=None, y=None, subplots=False, sharex=True, sharey=False,
use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, style=None,
title=None, xlim=None, ylim=None, logx=False, logy=False, xticks=None, yticks=None,
kind='line', sort_columns=False, fontsize=None, secondary_y=False,
**kwds)

Make line, bar, or scatter plots of DataFrame series with the index on the x-axis using matplotlib / pylab.

Parameters
frame : DataFrame
    x : label or position, default None
    y : label or position, default None
    Allows plotting of one column versus another
yerr : DataFrame (with matching labels), Series, list-type (tuple, list,
        ndarray), or str of column name containing y error values
**xerr**: similar functionality as yerr, but for x error values

**subplots**: boolean, default False

Make separate subplots for each time series

**sharex**: boolean, default True

In case subplots=True, share x axis

**sharey**: boolean, default False

In case subplots=True, share y axis

**use_index**: boolean, default True

Use index as ticks for x axis

**stacked**: boolean, default False

If True, create stacked bar plot. Only valid for DataFrame input

**sort_columns**: boolean, default False

Sort column names to determine plot ordering

**title**: string

Title to use for the plot

**grid**: boolean, default None (matlab style default)

Axis grid lines

**legend**: False/True/'reverse'

Place legend on axis subplots

**ax**: matplotlib axis object, default None

**style**: list or dict

matplotlib line style per column

**kind**: {'line', 'bar', 'barh', 'kde', 'density', 'area', 'scatter', 'hexbin'}

line : line plot bar : vertical bar plot barh : horizontal bar plot kde/density : Kernel Density Estimation plot area : area plot scatter : scatter plot hexbin : hexbin plot

**logx**: boolean, default False

Use log scaling on x axis

**logy**: boolean, default False

Use log scaling on y axis

**loglog**: boolean, default False

Use log scaling on both x and y axes

**xticks**: sequence

Values to use for the xticks

**yticks**: sequence

Values to use for the yticks
xlim : 2-tuple/list
ylim : 2-tuple/list
rot : int, default None
    Rotation for ticks
secondary_y : boolean or sequence, default False
    Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on
    secondary y-axis
mark_right: boolean, default True
    When using a secondary_y axis, should the legend label the axis of the various
colormap : str or matplotlib colormap object, default None
    Colormap to select colors from. If string, load colormap with that name from mat-
    position : float
    Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1
    table : boolean, Series or DataFrame, default False
    If True, draw a table using the data in the DataFrame and the data will be transposed
to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed
data to draw a table.
kwds : keywords
    Options to pass to matplotlib plotting method

Returns  ax_or_axes : matplotlib.AxesSubplot or list of them

Notes

If kind='hexbin', you can control the size of the bins with the ‘gridsize argument. By default, a histogram of
the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to
the C and reduce_C_function arguments. C specifies the value at each (x, y) point and reduce_C_function is a
function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std).

29.4.14 Serialization / IO / Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.from_csv(path[, header, sep, ...])</td>
<td>Read delimited file into DataFrame</td>
</tr>
<tr>
<td>DataFrame.from_dict(data[, orient, dtype])</td>
<td>Construct DataFrame from dict of array-like or dicts</td>
</tr>
<tr>
<td>DataFrame.from_items(items[, columns, orient])</td>
<td>Convert (key, value) pairs to DataFrame. The keys will be the axis</td>
</tr>
<tr>
<td>DataFrame.from_records(data[, index, ...])</td>
<td>Convert structured or record ndarray to DataFrame</td>
</tr>
<tr>
<td>DataFrame.info([verbose, buf, max_cols])</td>
<td>Concise summary of a DataFrame.</td>
</tr>
<tr>
<td>DataFrame.to_pickle(path)</td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td>DataFrame.to_csv(*args, **kwargs)</td>
<td>Write DataFrame to a comma-separated values (csv) file</td>
</tr>
<tr>
<td>DataFrame.to_hdf(path_or_buf, key, **kwargs)</td>
<td>activate the HDFStore</td>
</tr>
<tr>
<td>DataFrame.to_sql(name, con[, flavor, ...])</td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.51 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.to_dict([&quot;outtype&quot;])</td>
<td>Convert DataFrame to dictionary.</td>
</tr>
<tr>
<td>DataFrame.to_excel(*args, **kwargs)</td>
<td>Write DataFrame to an excel sheet.</td>
</tr>
<tr>
<td>DataFrame.to_json([path_or_buf, orient, ...])</td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td>DataFrame.to_html([buf, columns, col_space, ...])</td>
<td>Render a DataFrame as an HTML table.</td>
</tr>
<tr>
<td>DataFrame.to_latex([buf, columns, ...])</td>
<td>Render a DataFrame to a tabular environment table. You can splice.</td>
</tr>
<tr>
<td>DataFrame.to_stata(frame[, convert_dates, ...])</td>
<td>A class for writing Stata binary dta files from array-like objects.</td>
</tr>
<tr>
<td>DataFrame.to_msgpack([path_or_buf])</td>
<td>msgpack (serialize) object to input file path.</td>
</tr>
<tr>
<td>DataFrame.to_gbq(destination_table[, ...])</td>
<td>Write a DataFrame to a Google BigQuery table.</td>
</tr>
<tr>
<td>DataFrame.to_records([index, convert_datetime64])</td>
<td>Convert DataFrame to record array. Index will be put in the.</td>
</tr>
<tr>
<td>DataFrame.to_sparse([fill_value, kind])</td>
<td>Convert to SparseDataFrame.</td>
</tr>
<tr>
<td>DataFrame.to_dense()</td>
<td>Return dense representation of NDFrame (as opposed to sparse).</td>
</tr>
<tr>
<td>DataFrame.to_string([buf, columns, ...])</td>
<td>Render a DataFrame to a console-friendly tabular output.</td>
</tr>
<tr>
<td>DataFrame.to_clipboard([excel, sep])</td>
<td>Attempt to write text representation of object to the system clipboard.</td>
</tr>
</tbody>
</table>

**pandas.DataFrame.from_csv**

**class method** DataFrame.from_csv(path, header=0, sep=', ', index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)

Read delimited file into DataFrame.

**Parameters**
- **path**: string file path or file handle / StringIO
- **header**: int, default 0
  - Row to use at header (skip prior rows)
- **sep**: string, default ‘,’
  - Field delimiter
- **index_col**: int or sequence, default 0
  - Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table.
- **parse_dates**: boolean, default True
  - Parse dates. Different default from read_table.
- **tupleize_cols**: boolean, default False
  - Write multi_index columns as a list of tuples (if True) or new (expanded format) if False.
- **infer_datetime_format**: boolean, default False
  - If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

**Returns**
- **y**: DataFrame

**Notes**

Preferable to use read_table for most general purposes but from_csv makes for an easy roundtrip to and from file, especially with a DataFrame of time series data.
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.DataFrame.from_dict

classmethod DataFrame.from_dict(data, orient='columns', dtype=None)

Construct DataFrame from dict of array-like or dicts

Parameters
data : dict
   {field : array-like} or {field : dict}
orient : {'columns', 'index'}, default 'columns'
   The "orientation" of the data. If the keys of the passed dict should be the columns of
   the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be
   rows, pass 'index'.

Returns DataFrame

pandas.DataFrame.from_items

classmethod DataFrame.from_items(items, columns=None, orient='columns')

Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on
the specified orientation). The values should be arrays or Series.

Parameters
items : sequence of (key, value) pairs
   Values should be arrays or Series.
columns : sequence of column labels, optional
   Must be passed if orient='index'.
orient : {'columns', 'index'}, default 'columns'
   The "orientation" of the data. If the keys of the input correspond to column labels,
   pass 'columns' (default). Otherwise if the keys correspond to the index, pass 'index'.

Returns frame : DataFrame

pandas.DataFrame.from_records

classmethod DataFrame.from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)

Convert structured or record ndarray to DataFrame

Parameters
data : ndarray (structured dtype), list of tuples, dict, or DataFrame
index : string, list of fields, array-like
   Field of array to use as the index, alternately a specific set of input labels to use
exclude : sequence, default None
   Columns or fields to exclude
columns : sequence, default None
   Column names to use. If the passed data do not have names associated with them,
   this argument provides names for the columns. Otherwise this argument indicates
   the order of the columns in the result (any names not found in the data will become
   all-NA columns)
coerce_float : boolean, default False
Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

Returns df : DataFrame

**pandas.DataFrame.info**

DataFrame.info (verbose=None, buf=None, max_cols=None)
Concise summary of a DataFrame.

**Parameters**
verbose : {None, True, False}, optional
Whether to print the full summary. None follows the display.max_info_columns setting. True or False overrides the display.max_info_columns setting.

buf : writable buffer, defaults to sys.stdout

max_cols : int, default None
Determines whether full summary or short summary is printed. None follows the display.max_info_columns setting.

**pandas.DataFrame.to_pickle**

DataFrame.to_pickle (path)
Pickle (serialize) object to input file path

**Parameters**
path : string
File path

**pandas.DataFrame.to_csv**

DataFrame.to_csv (*args, **kwargs)
Write DataFrame to a comma-separated values (csv) file

**Parameters**
path_or_buf : string or file handle, default None
File path or object, if None is provided the result is returned as a string.

sep : character, default ","
Field delimiter for the output file.

na_rep : string, default "'
Missing data representation

float_format : string, default None
Format string for floating point numbers

columns : sequence, optional
Columns to write

header : boolean or list of string, default True
Write out column names. If a list of string is given it is assumed to be aliases for the column names

index : boolean, default True
Write row names (index)

**index_label**: string or sequence, or False, default None

Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R

**nanRep**: None

deprecated, use na_rep

**mode**: str

Python write mode, default ‘w’

**encoding**: string, optional

A string representing the encoding to use if the contents are non-ascii, for python versions prior to 3

**line_terminator**: string, default ‘\n’

The newline character or character sequence to use in the output file

**quoting**: optional constant from csv module

defaults to csv.QUOTE_MINIMAL

**quotechar**: string (length 1), default ‘”’

Character used to quote fields

**doublequote**: boolean, default True

Control quoting of quotechar inside a field

**escapechar**: string (length 1), default None

Character used to escape sep and quotechar when appropriate

**chunksize**: int or None

Rows to write at a time

**tupleize_cols**: boolean, default False

Write multi_index columns as a list of tuples (if True) or new (expanded format) if False

**date_format**: string, default None

Format string for datetime objects

**cols**: kwarg only alias of columns [deprecated]

---

**pandas.DataFrame.to_hdf**

DataFrames to HDF

**DataFrame.to_hdf**(path_or_buf, key, **kwargs)

activate the HDFStore

**Parameters**

**path_or_buf**: the path (string) or buffer to put the store

**key**: string

Identifier for the group in the store
**mode**: optional, {'a', 'w', 'r', 'r+'}, default 'a'

- 'r' Read-only; no data can be modified.
- 'w' Write; a new file is created (an existing file with the same name would be deleted).
- 'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
- 'r+' It is similar to 'a', but the file must already exist.

**format**: 'fixed(f)|table(t)', default is 'fixed'

- **fixed(f)** [Fixed format] Fast writing/reading. Not-appendable, nor searchable
- **table(t)** [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

**append**: boolean, default False

For Table formats, append the input data to the existing

**complevel**: int, 1-9, default 0

If a complib is specified compression will be applied where possible

**complib**: {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

**fletcher32**: bool, default False

If applying compression use the fletcher32 checksum

---

**pandas.DataFrame.to_sql**

**DataFrame.to_sql**(name, con, flavor='sqlite', if_exists='fail', index=True, index_label=None)

Write records stored in a DataFrame to a SQL database.

**Parameters**

**name**: string

Name of SQL table

**con**: SQLAlchemy engine or DBAPI2 connection (legacy mode)

Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

**flavor**: {'sqlite', 'mysql'}, default 'sqlite'

The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

**if_exists**: {'fail', 'replace', 'append'}, default ‘fail’

- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.

**index**: boolean, default True
Write DataFrame index as a column.

**index_label** : string or sequence, default None

Column label for index column(s). If None is given (default) and *index* is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

### pandas.DataFrame.to_dict

DataFrame.**to_dict** (*outtype*='dict')

Convert DataFrame to dictionary.

**Parameters**

* outtype : str {'dict', 'list', 'series', 'records'}

Determines the type of the values of the dictionary. The default *dict* is a nested dictionary {column -> {index -> value}}. *list* returns {column -> list(values)}. *series* returns {column -> Series(values)}. *records* returns [{columns -> value}]. Abbreviations are allowed.

**Returns**

* result : dict like {column -> {index -> value}}

### pandas.DataFrame.to_excel

DataFrame.**to_excel** (*args*, **kwargs)

Write DataFrame to a excel sheet

**Parameters**

* excel_writer : string or ExcelWriter object

  File path or existing ExcelWriter

* sheet_name : string, default ‘Sheet1’

  Name of sheet which will contain DataFrame

* na_rep : string, default ‘’

  Missing data representation

* float_format : string, default None

  Format string for floating point numbers

* columns : sequence, optional

  Columns to write

* header : boolean or list of string, default True

  Write out column names. If a list of string is given it is assumed to be aliases for the column names

* index : boolean, default True

  Write row names (index)

* index_label : string or sequence, default None

  Column label for index column(s) if desired. If None is given, and *header* and *index* are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
upper left cell row to dump data frame

startcol :

upper left cell column to dump data frame

gine : string, default None

write engine to use - you can also set this via the options
io.excel.xlsx.writer,  io.excel.xls.writer, and
io.excel.xlsm.writer.

merge_cells : boolean, default True

Write MultiIndex and Hierarchical Rows as merged cells.

encoding: string, default None

encoding of the resulting excel file. Only necessary for xlwt, other writers support
unicode natively.

cols : kwarg only alias of columns [deprecated]

inf_rep : string, default 'inf'

Representation for infinity (there is no native representation for infinity in Excel)

Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be
used to save different DataFrames to one workbook:

```python
>>> writer = ExcelWriter(‘output.xlsx’)
>>> df1.to_excel(writer,’Sheet1’)
>>> df2.to_excel(writer,’Sheet2’)
>>> writer.save()
```

pandas.DataFrame.to_json

**DataFrame.to_json** *(path_or_buf=None, orient=None, date_format='epoch', double_precision=10,
force_ascii=True, date_unit='ms', default_handler=None)*

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters **path_or_buf** : the path or buffer to write the result string

if this is None, return a StringIO of the converted string

**orient** : string

• Series
  
  – default is ‘index’
  
  – allowed values are: {'split', 'records', 'index'}

• DataFrame
  
  – default is ‘columns’
  
  – allowed values are: {'split', 'records', 'index', 'columns', 'values'}

• The format of the JSON string
- `split`: dict like {index: [index], columns: [columns], data: [values]}
- `records`: list like [{column: value}, ..., {column: value}]
- `index`: dict like {index: {column: value}}
- `columns`: dict like {column: {index: value}}
- `values`: just the values array

**date_format**: `{’epoch’, ‘iso’}`

Type of date conversion. `epoch` = epoch milliseconds, `iso` = ISO8601, default is `epoch`.

**double_precision**: The number of decimal places to use when encoding floating point values, default 10.

**force_ascii**: force encoded string to be ASCII, default True.

**date_unit**: string, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

**default_handler**: callable, default None

Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serializable object.

**Returns**
same type as input object with filtered info axis

**pandas.DataFrame.to_html**

DataFrame.to_html(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False)

Render a DataFrame as an HTML table.

to_html-specific options:

- **bold_rows** [boolean, default True] Make the row labels bold in the output
- **classes** [str or list or tuple, default None] CSS class(es) to apply to the resulting html table
- **escape** [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.
- **max_rows** [int, optional] Maximum number of rows to show before truncating. If None, show all.
- **max_cols** [int, optional] Maximum number of columns to show before truncating. If None, show all.

**Parameters**

- **frame**: DataFrame
  object to render
- **buf**: StringIO-like, optional
  buffer to write to
- **columns**: sequence, optional
  the subset of columns to write; default None writes all columns
**col_space** : int, optional

the minimum width of each column

**header** : bool, optional

whether to print column labels, default True

**index** : bool, optional

whether to print index (row) labels, default True

**na_rep** : string, optional

string representation of NaN to use, default ‘NaN’

**formatters** : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

**float_format** : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

**sparsify** : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

**justify** : {‘left’, ‘right’}, default None

Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

**index_names** : bool, optional

Prints the names of the indexes, default True

**force_unicode** : bool, default False

Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

Returns **formatted** : string (or unicode, depending on data and options)

**pandas.DataFrame.to_latex**

Dataframe.to_latex(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=True, longtable=False, escape=True)

Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}.

to_latex-specific options:

**bold_rows** [boolean, default True] Make the row labels bold in the output

**longtable** [boolean, default False] Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble.

**escape** [boolean, default True] When set to False prevents from escaping LaTeX special characters in column names.
Parameters

frame : DataFrame

object to render

buf : StringIO-like, optional

buffer to write to

columns : sequence, optional

the subset of columns to write; default None writes all columns

col_space : int, optional

the minimum width of each column

header : bool, optional

whether to print column labels, default True

index : bool, optional

whether to print index (row) labels, default True

na_rep : string, optional

string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default None.
The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats, default None.
The result of this function must be a unicode string.

sparsify : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

justify : {'left', 'right'}, default None

Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

index_names : bool, optional

Prints the names of the indexes, default True

force_unicode : bool, default False

Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

Returns

formatted : string (or unicode, depending on data and options)

pandas.DataFrame.to_stata

DataFrame.to_stata (fname, convert_dates=None, write_index=True, encoding='latin-1', byte-order=None, time_stamp=None, data_label=None)

A class for writing Stata binary dta files from array-like objects

Parameters

fname : file path or buffer
Where to save the dta file.

**convert_dates**: dict

Dictionary mapping column of datetime types to the stata internal format that you want to use for the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either a number or a name.

**encoding**: str

Default is latin-1. Note that Stata does not support unicode.

**byteorder**: str

Can be “>”, “<”, “little”, or “big”. The default is None which uses `sys.byteorder`

**Examples**

```python
>>> writer = StataWriter('./data_file.dta', data)
>>> writer.write_file()
```

Or with dates

```python
>>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'})
>>> writer.write_file()
```

---

**pandas.DataFrame.to_msgpack**

DataFrame.to_msgpack(*path_or_buf=None, **kwargs*)

msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

**Parameters**

- **path**: string File path, buffer-like, or None
  
  if None, return generated string

- **append**: boolean whether to append to an existing msgpack
  
  (default is False)

- **compress**: type of compressor (zlib or blosc), default to None (no compression)

---

**pandas.DataFrame.to_gbq**

DataFrame.to_gbq(*destination_table, project_id=None, chunksize=10000, verbose=True, reauth=False*)

Write a DataFrame to a Google BigQuery table.

THIS IS AN EXPERIMENTAL LIBRARY

If the table exists, the dataframe will be written to the table using the defined table schema and column types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks data into a default chunk size of 10,000. Failures return the complete error response which can be quite long depending on the size of the insert. There are several important limitations of the Google streaming API which are detailed at: https://developers.google.com/bigquery/streaming-data-into-bigquery.

**Parameters**

- **dataframe**: DataFrame
  
  DataFrame to be written
destination_table : string
    Name of table to be written, in the form ‘dataset.tablename’

project_id : str
    Google BigQuery Account project ID.

chunksize : int (default 10000)
    Number of rows to be inserted in each chunk from the dataframe.

verbose : boolean (default True)
    Show percentage complete

reauth : boolean (default False)
    Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts
    are used.

pandas.DataFrame.to_records

DataFrame.to_records(index=True, convert_datetime64=True)
    Convert DataFrame to record array. Index will be put in the ‘index’ field of the record array if requested

Parameters
    index : boolean, default True
        Include index in resulting record array, stored in ‘index’ field

convert_datetime64 : boolean, default True
        Whether to convert the index to datetime.datetime if it is a DatetimeIndex

Returns
    y : recarray

pandas.DataFrame.to_sparse

DataFrame.to_sparse(fill_value=None, kind='block')
    Convert to SparseDataFrame

Parameters
    fill_value : float, default NaN
        kind : {'block', 'integer'}

Returns
    y : SparseDataFrame

pandas.DataFrame.to_dense

DataFrame.to_dense()
    Return dense representation of NDFrame (as opposed to sparse)

pandas.DataFrame.to_string

DataFrame.to_string(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justfy=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False)
    Render a DataFrame to a console-friendly tabular output.
**Parameters**

- **frame**: DataFrame
  - object to render
- **buf**: StringIO-like, optional
  - buffer to write to
- **columns**: sequence, optional
  - the subset of columns to write; default None writes all columns
- **col_space**: int, optional
  - the minimum width of each column
- **header**: bool, optional
  - whether to print column labels, default True
- **index**: bool, optional
  - whether to print index (row) labels, default True
- **na_rep**: string, optional
  - string representation of NaN to use, default ‘NaN’
- **formatters**: list or dict of one-parameter functions, optional
  - formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.
- **float_format**: one-parameter function, optional
  - formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.
- **sparsify**: bool, optional
  - Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True
- **justify**: {'left', 'right'}, default None
  - Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.
- **index_names**: bool, optional
  - Prints the names of the indexes, default True
- **force_unicode**: bool, default False
  - Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

**Returns**

- **formatted**: string (or unicode, depending on data and options)

### pandas.DataFrame.to_clipboard

DataFrame.to_clipboard(excel=None, sep=None, **kwargs)

Attempt to write text representation of object to the system clipboard. This can be pasted into Excel, for example.

**Parameters**

- **excel**: boolean, defaults to True
if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard

sep : optional, defaults to tab

other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none

29.5 Panel

29.5.1 Constructor

Panel([data, items, major_axis, minor_axis, ...]) Represents wide format panel data, stored as 3-dimensional array

pandas.Panel

class pandas.Panel (data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)

Represents wide format panel data, stored as 3-dimensional array

Parameters
data : ndarray (items x major x minor), or dict of DataFrames
items : Index or array-like
  axis=0
major_axis : Index or array-like
  axis=1
minor_axis : Index or array-like
  axis=2
dtype : dtype, default None
  Data type to force, otherwise infer
copy : boolean, default False
  Copy data from inputs. Only affects DataFrame / 2d ndarray input

Attributes

at
axes index(es) of the NDFrame
Continued on next page
Table 29.53 – continued from previous page

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blocks</td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td>dtypes</td>
<td>Return the dtypes in this object</td>
</tr>
<tr>
<td>empty</td>
<td>True if NDFrame is entirely empty [no items]</td>
</tr>
<tr>
<td>ftypes</td>
<td>Return the ftypes (indication of sparse/dense and dtype)</td>
</tr>
<tr>
<td>iat</td>
<td></td>
</tr>
<tr>
<td>iloc</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>loc</td>
<td></td>
</tr>
<tr>
<td>ndim</td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td>shape</td>
<td>Tuple of axis dimensions</td>
</tr>
<tr>
<td>values</td>
<td>Numpy representation of NDFrame</td>
</tr>
</tbody>
</table>

**pandas.Panel.at**

Panel.at

**pandas.Panel.axes**

Panel.axes

Index(es) of the NDFrame

**pandas.Panel.blocks**

Panel.blocks

Internal property, property synonym for as_blocks()

**pandas.Panel.dtypes**

Panel.dtypes

Return the dtypes in this object

**pandas.Panel.empty**

Panel.empty

True if NDFrame is entirely empty [no items]

**pandas.Panel.ftypes**

Panel.ftypes

Return the ftypes (indication of sparse/dense and dtype) in this object.

**pandas.Panel.iat**

Panel.iat
pandas.Panel.iloc

Panel.iloc

pandas.Panel.ix

Panel.ix

pandas.Panel.loc

Panel.loc

pandas.Panel.ndim

Panel.ndim
  Number of axes / array dimensions

pandas.Panel.shape

Panel.shape
  tuple of axis dimensions

pandas.Panel.values

Panel.values
  Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

Methods

abs()
  Return an object with absolute value taken.

add(other[, axis])
  Wrapper method for add

add_prefix(prefix)
  Concatenate prefix string with panel items names.

add_suffix(suffix)
  Concatenate suffix string with panel items names

align(other[, join, axis, level, copy, ...])
  Align two object on their axes with the

apply(func[, axis])
  Applies function along input axis of the Panel
### Table 29.54 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>as_blocks()</code></td>
<td>Convert the frame to a dict of dtype -&gt; Constructor Types that each has</td>
</tr>
<tr>
<td><code>as_matrix()</code></td>
<td></td>
</tr>
<tr>
<td><code>asfreq()</code></td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td><code>astype()</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>at_time()</code></td>
<td>Select values at particular time of day (e.g. 9:00-9:30 AM)</td>
</tr>
<tr>
<td><code>between_time()</code></td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM)</td>
</tr>
<tr>
<td><code>bfill()</code></td>
<td>Synonym for NDFrame.fillna(method='bfill')</td>
</tr>
<tr>
<td><code>bool()</code></td>
<td>Return the bool of a single element PandasObject</td>
</tr>
<tr>
<td><code>clip()</code></td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td><code>clip_lower()</code></td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td><code>clip_upper()</code></td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td><code>compound()</code></td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td><code>conform()</code></td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
<tr>
<td><code>consolidate()</code></td>
<td>Compute NDFrame with &quot;consolidated&quot; internals (data of each dtype)</td>
</tr>
<tr>
<td><code>convert_objects()</code></td>
<td>Attempt to infer better dtype for object columns</td>
</tr>
<tr>
<td><code>copy()</code></td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td><code>cummax()</code></td>
<td>Return cumulative max over requested axis</td>
</tr>
<tr>
<td><code>cummin()</code></td>
<td>Return cumulative min over requested axis</td>
</tr>
<tr>
<td><code>cumprod()</code></td>
<td>Return cumulative prod over requested axis</td>
</tr>
<tr>
<td><code>cumsum()</code></td>
<td>Return cumulative sum over requested axis</td>
</tr>
<tr>
<td><code>describe()</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>div()</code></td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td><code>divide()</code></td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td><code>drop()</code></td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td><code>dropna()</code></td>
<td>Drop 2D from panel, holding passed axis constant</td>
</tr>
<tr>
<td><code>eq()</code></td>
<td>Wrapper for comparison method eq</td>
</tr>
<tr>
<td><code>equals()</code></td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the</td>
</tr>
<tr>
<td><code>ffill()</code></td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td><code>fillna()</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter()</code></td>
<td>Restrict the info axis to set of items or wildcard</td>
</tr>
<tr>
<td><code>first()</code></td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td><code>floordiv()</code></td>
<td>Wrapper method for floordiv</td>
</tr>
<tr>
<td><code>fromDict()</code></td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td><code>from_dict()</code></td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td><code>ge()</code></td>
<td>Wrapper for comparison method ge</td>
</tr>
<tr>
<td><code>get()</code></td>
<td>Get item from object for given key (DataFrame column, Panel slice,</td>
</tr>
<tr>
<td><code>get_dtype_counts()</code></td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td><code>get_ftype_counts()</code></td>
<td>Return the counts of ftypes in this object</td>
</tr>
<tr>
<td><code>get_value()</code></td>
<td>Quickly retrieve single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>same as values (but handles sparseness conversions)</td>
</tr>
<tr>
<td><code>groupby()</code></td>
<td>Group data on given axis, returning GroupBy object</td>
</tr>
<tr>
<td><code>gt()</code></td>
<td>Wrapper for comparison method gt</td>
</tr>
<tr>
<td><code>head()</code></td>
<td></td>
</tr>
<tr>
<td><code>interpolate()</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Iterate over (label, values) on info axis</td>
</tr>
<tr>
<td><code>iterkv()</code></td>
<td>iteritems alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td><code>join()</code></td>
<td>Join items with other Panel either on major and minor axes column</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td>Get the 'info axis' (see Indexing for more)</td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.54 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>kurt()</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>kurtosis()</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>last()</code></td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td><code>le()</code></td>
<td>Wrapper for comparison method ≤</td>
</tr>
<tr>
<td><code>load()</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>lt()</code></td>
<td>Wrapper for comparison method lt</td>
</tr>
<tr>
<td><code>mad()</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>major_xs()</code></td>
<td>Return slice of panel along major axis</td>
</tr>
<tr>
<td><code>mask()</code></td>
<td>Returns copy whose values are replaced with nan if the</td>
</tr>
<tr>
<td><code>max()</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean()</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>median()</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>min()</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>minor_xs()</code></td>
<td>Return slice of panel along minor axis</td>
</tr>
<tr>
<td><code>mod()</code></td>
<td>Wrapper method for mod</td>
</tr>
<tr>
<td><code>mul()</code></td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td><code>multiply()</code></td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td><code>ne()</code></td>
<td>Wrapper for comparison method ≠</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null</td>
</tr>
<tr>
<td><code>pct_change()</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pop()</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow()</code></td>
<td>Wrapper method for pow</td>
</tr>
<tr>
<td><code>prod()</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>product()</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>radd()</code></td>
<td>Wrapper method for radd</td>
</tr>
<tr>
<td><code>rdiv()</code></td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td><code>reindex()</code></td>
<td>Conform Panel to new index with optional filling logic, placing</td>
</tr>
<tr>
<td><code>reindex_axis()</code></td>
<td>Conform input object to new index with optional filling logic,</td>
</tr>
<tr>
<td><code>rename()</code></td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>rename_axis()</code></td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>replace()</code></td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td><code>resample()</code></td>
<td>Convenience method for frequency conversion and resampling of regular time-se</td>
</tr>
<tr>
<td><code>rfloordiv()</code></td>
<td>Wrapper method for rfloordiv</td>
</tr>
<tr>
<td><code>rmod()</code></td>
<td>Wrapper method for rmod</td>
</tr>
<tr>
<td><code>rmul()</code></td>
<td>Wrapper method for rmul</td>
</tr>
<tr>
<td><code>rpow()</code></td>
<td>Wrapper method for rpow</td>
</tr>
<tr>
<td><code>rsub()</code></td>
<td>Wrapper method for rsub</td>
</tr>
<tr>
<td><code>rtruediv()</code></td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td><code>save()</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>select()</code></td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>sem()</code></td>
<td>Return unbiased standard error of the mean over requested axis</td>
</tr>
<tr>
<td><code>set_axis()</code></td>
<td>public version of axis assignment</td>
</tr>
<tr>
<td><code>set_value()</code></td>
<td>Quickly set single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>shift()</code></td>
<td>Shift major or minor axis by specified number of leads/lags.</td>
</tr>
<tr>
<td><code>skew()</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>slice_shift()</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort_index()</code></td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>squeeze()</code></td>
<td>squeeze length 1 dimensions</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.54 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sub(other[, axis])</td>
<td>Wrapper method for sub</td>
</tr>
<tr>
<td>subtract(other[, axis])</td>
<td>Wrapper method for sub</td>
</tr>
<tr>
<td>sum(axes, skipna, level, numeric_only)</td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td>swapaxes(axis1, axis2[, copy])</td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td>swaplevel(i, j[, axis])</td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td>tail(n)</td>
<td></td>
</tr>
<tr>
<td>take(indices[, axis, convert, is_copy])</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>toLong(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>to_clipboard([excel, sep])</td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
<tr>
<td>to_dense()</td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td>to_excel(path[, na_rep, engine])</td>
<td>Write each DataFrame in Panel to a separate excel sheet</td>
</tr>
<tr>
<td>to_frame([filter_observations])</td>
<td>Transform wide format into long (stacked) format as DataFrame whose</td>
</tr>
<tr>
<td>to_hdf(path_or_buf, key, **kwargs)</td>
<td>activate the HDFStore</td>
</tr>
<tr>
<td>to_json([path_or_buf, orient, date_format, ...])</td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td>to_long(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>to_msgpack([path_or_buf])</td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td>to_pickle(path)</td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td>to_spar(se([fill_value, kind)])</td>
<td>Convert to SparsePanel</td>
</tr>
<tr>
<td>to_sql(name, con[, flavor, if_exists, ...])</td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td>transpose(*args, **kwargs)</td>
<td>Permute the dimensions of the Panel</td>
</tr>
<tr>
<td>truediv(other[, axis])</td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td>truncate([before, after, axis, copy])</td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
<tr>
<td>tz_convert(tz[, axis, copy])</td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td>tz_localize(tz[, axis, copy, infer_dst])</td>
<td>Localize tz-naive TimeSeries to target time zone</td>
</tr>
<tr>
<td>update(other[, join, overwrite, ...])</td>
<td>Modify Panel in place using non-NA values from passed</td>
</tr>
<tr>
<td>var([axis, skipna, level, ddof])</td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td>where(cond[, other, inplace, axis, level, ...])</td>
<td>Return an object of same shape as self and whose corresponding</td>
</tr>
<tr>
<td>xs(key[, axis, copy])</td>
<td>Return slice of panel along selected axis</td>
</tr>
</tbody>
</table>

**pandas.Panel.abs**

Panel.abs()

Return an object with absolute value taken. Only applicable to objects that are all numeric

Returns

abs: type of caller

**pandas.Panel.add**

Panel.add(other[, axis=0])

Wrapper method for add

Parameters

other : DataFrame or Panel

axis : [items, major_axis, minor_axis]

Axis to broadcast over

Returns

Panel
pandas.Panel.add_prefix

Panel.add_prefix(prefix)
Concatenate prefix string with panel items names.

Parameters
prefix : string

Returns
with_prefix : type of caller

pandas.Panel.add_suffix

Panel.add_suffix(suffix)
Concatenate suffix string with panel items names

Parameters
suffix : string

Returns
with_suffix : type of caller

pandas.Panel.align

Panel.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)
Align two object on their axes with the specified join method for each axis Index

Parameters
other : DataFrame or Series

join : {'outer', 'inner', 'left', 'right'}, default 'outer'
axis : allowed axis of the other object, default None
    Align on index (0), columns (1), or both (None)
level : int or level name, default None
    Broadcast across a level, matching Index values on the passed MultiIndex level
copy : boolean, default True
    Always returns new objects. If copy=False and no reindexing is required then
    original objects are returned.
fill_value : scalar, default np.NaN
    Value to use for missing values. Defaults to NaN, but can be any “compatible”
    value
method : str, default None
limit : int, default None
    Filling axis, method and limit

Returns
(left, right) : (type of input, type of other)
    Aligned objects
pandas.Panel.apply

Panel.apply(func, axis='major', **kwargs)
Applies function along input axis of the Panel

Parameters
- func : function
  Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/minor_axis will be passed a Series
- axis : {'major', 'minor', 'items'}

Additional keyword arguments will be passed as keywords to the function

Returns
- result : Pandas Object

Examples

>>> p.apply(numpy.sqrt)  # returns a Panel
>>> p.apply(lambda x: x.sum(), axis=0)  # equiv to p.sum(0)
>>> p.apply(lambda x: x.sum(), axis=1)  # equiv to p.sum(1)
>>> p.apply(lambda x: x.sum(), axis=2)  # equiv to p.sum(2)

pandas.Panel.as_blocks

Panel.as_blocks()
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. are presented in sorted order unless a specific list of columns is provided.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters
- columns : array-like
  Specific column order

Returns
- values : a list of Object

pandas.Panel.as_matrix

Panel.as_matrix()

pandas.Panel.asfreq

Panel.asfreq(freq, method=None, how=None, normalize=False)
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

Parameters
- freq : DateOffset object, or string
- method : {'backfill', 'bfill', 'pad', 'ffill', None}
  Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method
how : {'start', 'end'}, default end
   For PeriodIndex only, see PeriodIndex.asfreq
normalize : bool, default False
   Whether to reset output index to midnight

Returns converted : type of caller

pandas.Panel.astype

Panel.astype(dtype, copy=True, raise_on_error=True)
   Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)
Parameters dtype : numpy.dtype or Python type
   raise_on_error : raise on invalid input

Returns casted : type of caller

pandas.Panel.at_time

Panel.at_time(time, asof=False)
   Select values at particular time of day (e.g. 9:30AM)
Parameters time : datetime.time or string

Returns values_at_time : type of caller

pandas.Panel.between_time

Panel.between_time(start_time, end_time, include_start=True, include_end=True)
   Select values between particular times of the day (e.g., 9:00-9:30 AM)
Parameters start_time : datetime.time or string
   end_time : datetime.time or string
   include_start : boolean, default True
   include_end : boolean, default True

Returns values_between_time : type of caller

pandas.Panel.bfill

Panel.bfill(axis=0, inplace=False, limit=None, downcast=None)
   Synonym for NDFrame.fillna(method='bfill')

pandas.Panel.bool

Panel.bool()
   Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False
   Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean
pandas.Panel.clip

Panel.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters

- **lower**: float, default None
- **upper**: float, default None

Returns

- **clipped**: Series

pandas.Panel.clip_lower

Panel.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns

- **clipped**: same type as input

See Also:

- clip

pandas.Panel.clip_upper

Panel.clip_upper(threshold)
Return copy of input with values above given value truncated

Returns

- **clipped**: same type as input

See Also:

- clip

pandas.Panel.compound

Panel.compound(axis=None, skipna=None, level=None, **kwargs)
Return the compound percentage of the values for the requested axis

Parameters

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **compounded**: DataFrame or Panel (if level specified)
pandas.Panel.conform

Panel.conform(frame, axis='items')  
Conform input DataFrame to align with chosen axis pair.

Parameters frame : DataFrame
axis : {'items', 'major', 'minor'}

Axis the input corresponds to. E.g., if axis='major', then the frame’s columns would be items, and the index would be values of the minor axis

Returns DataFrame

pandas.Panel.consolidate

Panel.consolidate(inplace=False)  
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user

Parameters inplace : boolean, default False

If False return new object, otherwise modify existing object

Returns consolidated : type of caller

pandas.Panel.convert_objects

Panel.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)  
Attempt to infer better dtype for object columns

Parameters convert_dates : if True, attempt to soft convert dates, if ‘coerce’, force conversion (and non-convertibles get NaN)
convert_numeric : if True attempt to coerce to numbers (including strings), non-convertibles get NaN
convert_timedeltas : if True, attempt to soft convert timedeltas, if ‘coerce’, force conversion (and non-convertibles get NaN)
copy : Boolean, if True, return copy even if no copy is necessary (e.g. no conversion was done), default is True. It is meant for internal use, not to be confused with inplace kw.

Returns converted : asm as input object

pandas.Panel.copy

Panel.copy(deep=True)  
Make a copy of this object

Parameters deep : boolean, default True

Make a deep copy, i.e. also copy data

Returns copy : type of caller
pandas.Panel.count

Panel.count(axis='major')
Return number of observations over requested axis.

Parameters  axis : {'items', 'major', 'minor'} or {0, 1, 2}
Returns  count : DataFrame

pandas.Panel.cummax

Panel.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative max over requested axis.

Parameters  axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
Returns  max : DataFrame

pandas.Panel.cummin

Panel.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative min over requested axis.

Parameters  axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
Returns  min : DataFrame

pandas.Panel.cumprod

Panel.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative prod over requested axis.

Parameters  axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
Returns  prod : DataFrame

pandas.Panel.cumsum

Panel.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative sum over requested axis.

Parameters  axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
**pandas: powerful Python data analysis toolkit, Release 0.14.1**

**Returns**  
sum : DataFrame

**pandas.Panel.describe**

Panel.describe(percentile_width=None, percentiles=None)  
Generate various summary statistics, excluding NaN values.

**Parameters**  
percentile_width : float, deprecated  
The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

percentiles : array-like, optional  
The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

**Returns**  
summary: NDFrame of summary statistics

**Notes**

For numeric dtypes the index includes: count, mean, std, min, max, and lower, 50, and upper percentiles.  
If self is of object dtypes (e.g. timestamps or strings), the output will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.  
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

**pandas.Panel.div**

Panel.div(other, axis=0)  
Wrapper method for truediv

**Parameters**  
other : DataFrame or Panel  
axis : {items, major_axis, minor_axis}

**Returns**  
Panel

**pandas.Panel.divide**

Panel.divide(other, axis=0)  
Wrapper method for truediv

**Parameters**  
other : DataFrame or Panel  
axis : {items, major_axis, minor_axis}

**Returns**  
Panel
## 29.5. Panel

**pandas.Panel.drop**

Panel.drop(labels, axis=0, level=None, inplace=False, **kwargs)

Return new object with labels in requested axis removed

**Parameters**

- **labels**: single label or list-like
- **axis**: int or axis name
- **level**: int or level name, default None
  
  For MultiIndex

- **inplace**: bool, default False
  
  If True, do operation inplace and return None.

**Returns**

- **dropped**: type of caller

**pandas.Panel.dropna**

Panel.dropna(axis=0, how='any', inplace=False, **kwargs)

Drop 2D from panel, holding passed axis constant

**Parameters**

- **axis**: int, default 0
  
  Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data

- **how**: {'all', 'any'}, default 'any'
  
  ‘any’: one or more values are NA in the DataFrame along the axis. For ‘all’ they all must be.

- **inplace**: bool, default False
  
  If True, do operation inplace and return None.

**Returns**

- **dropped**: Panel

**pandas.Panel.eq**

Panel.eq(other)

Wrapper for comparison method eq

**pandas.Panel.equals**

Panel.equals(other)

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

**pandas.Panel.ffill**

Panel.ffill(axis=0, inplace=False, limit=None, downcast=None)

Synonym for NDFrame.fillna(method='ffill')
pandas.Panel.fillna

Panel.fillna (value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)

Fill NA/NaN values using the specified method

**Parameters**

- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
  
  Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

- **value**: scalar, dict, or Series
  
  Value to use to fill holes (e.g. 0), alternately a dict/Series of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series will not be filled). This value cannot be a list.

- **axis**: {0, 1}, default 0
  
  - 0: fill column-by-column
  - 1: fill row-by-row

- **inplace**: boolean, default False
  
  If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

- **limit**: int, default None
  
  Maximum size gap to forward or backward fill

- **downcast**: dict, default is None
  
  a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

**Returns**

- **filled**: same type as caller

**See Also**

reindex, asfreq

pandas.Panel.filter

Panel.filter (items=None, like=None, regex=None, axis=None)

Restrict the info axis to set of items or wildcard

**Parameters**

- **items**: list-like
  
  List of info axis to restrict to (must not all be present)

- **like**: string
  
  Keep info axis where “arg in col == True”

- **regex**: string (regular expression)
  
  Keep info axis with re.search(regex, col) == True

- **axis**: int or None
The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with `[]`. For example, `df = DataFrame({'a': [1, 2, 3, 4]})`; `df['a']`. So, the DataFrame columns are the info axis.

**Notes**

Arguments are mutually exclusive, but this is not checked for

**pandas.Panel.first**

Panel.first (offset)

Convenience method for subsetting initial periods of time series data based on a date offset

**Parameters** offset : string, DateOffset, dateutil.relativedelta

**Returns** subset : type of caller

**Examples**

ts.last('10D') -> First 10 days

**pandas.Panel.floordiv**

Panel.floordiv (other, axis=0)

Wrapper method for floordiv

**Parameters** other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

**Returns** Panel

**pandas.Panel.fromDict**

classmethod Panel.fromDict (data, intersect=False, orient='items', dtype=None)

Construct Panel from dict of DataFrame objects

**Parameters** data : dict

{field : DataFrame}

intersect : boolean

Intersect indexes of input DataFrames

orient : ['items', 'minor'], default 'items'

The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-type data you should do), instead pass ‘minor’

**Returns** Panel
**pandas.Panel.from_dict**

```
classmethod Panel.from_dict(data, intersect=False, orient='items', dtype=None)
```

Construct Panel from dict of DataFrame objects

**Parameters**
- **data**: dict
  - {field: DataFrame}
- **intersect**: boolean
  - Intersect indexes of input DataFrames
- **orient**: {'items', 'minor'}, default 'items'
  - The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’

**Returns**
- Panel

**pandas.Panel.ge**

```
Panel.ge(other)
```

Wrapper for comparison method ge

**pandas.Panel.get**

```
Panel.get(key, default=None)
```

Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found

**Parameters**
- **key**: object

**Returns**
- **value**: type of items contained in object

**pandas.Panel.get_dtype_counts**

```
Panel.get_dtype_counts()
```

Return the counts of dtypes in this object

**pandas.Panel.get_ftype_counts**

```
Panel.get_ftype_counts()
```

Return the counts of ftypes in this object

**pandas.Panel.get_value**

```
Panel.get_value(*args, **kwargs)
```

Quickly retrieve single value at (item, major, minor) location
Parameters

**item** : item label (panel item)
- **major** : major axis label (panel item row)
- **minor** : minor axis label (panel item column)
- **takeable** : interpret the passed labels as indexers, default False

Returns

**value** : scalar value

**pandas.Panel.get_values**

Panel.get_values()

same as values (but handles sparseness conversions)

**pandas.Panel.groupby**

Panel.groupby(function, axis='major')

Group data on given axis, returning GroupBy object

Parameters

**function** : callable
- Mapping function for chosen access
- **axis** : {'major', 'minor', 'items'}, default 'major'

Returns

**grouped** : PanelGroupBy

**pandas.Panel.gt**

Panel.gt(other)

Wrapper for comparison method gt

**pandas.Panel.head**

Panel.head(n=5)

**pandas.Panel.interpolate**

Panel.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)

Interpolate values according to different methods.

Parameters

**method** : {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline', 'piecewise_polynomial', 'pchip'}

- 'linear': ignore the index and treat the values as equally spaced. default
- 'time': interpolation works on daily and higher resolution data to interpolate given length of interval
- 'index', 'values': use the actual numerical values of the index
  is passed to scipy.interpolate.interp1d with the order given both ‘poly-
  nomial’ and ‘spline’ require that you also specify and order (int) e.g.
  df.interpolate(method='polynomial', order=4)
• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all
  wrappers around the scipy interpolation methods of similar
  names. See the scipy documentation for more on their behavior:
  http://docs.scipy.org/doc/scipy/reference/interpolate.html

axis : {0, 1}, default 0
  • 0: fill column-by-column
  • 1: fill row-by-row
limit : int, default None.
  Maximum number of consecutive NaNs to fill.
inplace : bool, default False
  Update the NDFrame in place if possible.
downcast : optional, ‘infer’ or None, defaults to None
  Downcast dtypes if possible.

Returns  Series or DataFrame of same shape interpolated at the NaNs

See Also:
reindex, replace,fillna

Examples

# Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64

pandas.Panel.isnull

Panel.isnull ()
  Return a boolean same-sized object indicating if the values are null

See Also:
notnull  boolean inverse of isnull

pandas.Panel.iteritems

Panel.iteritems ()
  Iterate over (label, values) on info axis
  This is index for Series, columns for DataFrame, major_axis for Panel, and so on.
pandas.Panel.iterkv

Panel.iterkv(*args, **kwargs)
iteritems alias used to get around 2to3. Deprecated

pandas.Panel.join

Panel.join(other, how='left', lsuffix='', rsuffix='')
Join items with other Panel either on major and minor axes column

Parameters
other : Panel or list of Panels
    Index should be similar to one of the columns in this one
how : {'left', 'right', 'outer', 'inner'}
    How to handle indexes of the two objects. Default: ‘left’ for joining on index,
    None otherwise * left: use calling frame’s index * right: use input frame’s index
    * outer: form union of indexes * inner: use intersection of indexes
lsuffix : string
    Suffix to use from left frame’s overlapping columns
rsuffix : string
    Suffix to use from right frame’s overlapping columns

Returns
joined : Panel

pandas.Panel.keys

Panel.keys()
Get the ‘info axis’ (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.Panel.kurt

Panel.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a DataFrame
numeric_only : boolean, default None
    Include only float, int, boolean data. If None, will attempt to use everything, then
    use only numeric data

Returns
kurt : DataFrame or Panel (if level specified)
pandas.Panel.kurtosis

Panel.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters
- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
  into a DataFrame
- **numeric_only**: boolean, default None
  Include only float, int, boolean data. If None, will attempt to use everything, then
  use only numeric data

Returns
- **kurt**: DataFrame or Panel (if level specified)

pandas.Panel.last

Panel.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset

Parameters
- **offset**: string, DateOffset, dateutil.relativedelta

Returns
- **subset**: type of caller

Examples

ts.last('5M') -> Last 5 months

pandas.Panel.le

Panel.le(other)
Wrapper for comparison method le

pandas.Panel.load

Panel.load(path)
Deprecated. Use read_pickle instead.

pandas.Panel.lt

Panel.lt(other)
Wrapper for comparison method lt
pandas.Panel.mad

Panel.mad (axis=None, skipna=None, level=None, **kwargs)
Return the mean absolute deviation of the values for the requested axis

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then
use only numeric data

Returns
mad : DataFrame or Panel (if level specified)

pandas.Panel.major_xs

Panel.major_xs (key, copy=None)
Return slice of panel along major axis

Parameters
key : object
Major axis label

Returns
y : DataFrame
index -> minor axis, columns -> items

Notes

major_xs is only for getting, not setting values.
MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs
functionality, see MultiIndex Slicers

pandas.Panel.mask

Panel.mask (cond)
Returns copy whose values are replaced with nan if the inverted condition is True

Parameters
cond : boolean NDFrame or array

Returns
wh: same as input
pandas: powerful Python data analysis toolkit, Release 0.14.1

**pandas.Panel.max**

`Panel.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the maximum of the values in the object. If you want the index of the maximum, use `idxmax`. This is the equivalent of the `numpy.ndarray` method `argmax`.

**Parameters**
- **axis**: items (0), major_axis (1), minor_axis (2)
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **max**: DataFrame or Panel (if level specified)

**pandas.Panel.mean**

`Panel.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the mean of the values for the requested axis

**Parameters**
- **axis**: items (0), major_axis (1), minor_axis (2)
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **mean**: DataFrame or Panel (if level specified)

**pandas.Panel.median**

`Panel.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the median of the values for the requested axis

**Parameters**
- **axis**: items (0), major_axis (1), minor_axis (2)
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
**numeric_only** : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
median : DataFrame or Panel (if level specified)

### pandas.Panel.min

**Panel.min** *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*
This method returns the minimum of the values in the object. If you want the index of the minimum, use **idxmin**. This is the equivalent of the numpy.ndarray method **argmin**.

**Parameters**  
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
min : DataFrame or Panel (if level specified)

### pandas.Panel.minor_xs

**Panel.minor_xs** *(key, copy=None)*
Return slice of panel along minor axis

**Parameters**  
key : object
Minor axis label

copy : boolean [deprecated]
Whether to make a copy of the data

**Returns**  
y : DataFrame
index -> major axis, columns -> items

**Notes**

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see *MultiIndex Slicers*
pandas.Panel.mod

Panel.mod(other, axis=0)
Wrapper method for mod

Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}
Axis to broadcast over

Returns Panel

pandas.Panel.mul

Panel.mul(other, axis=0)
Wrapper method for mul

Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}
Axis to broadcast over

Returns Panel

pandas.Panel.multiply

Panel.multiply(other, axis=0)
Wrapper method for mul

Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}
Axis to broadcast over

Returns Panel

pandas.Panel.ne

Panel.ne(other)
Wrapper for comparison method ne

pandas.Panel.notnull

Panel.notnull()
Return a boolean same-sized object indicating if the values are not null

See Also:

isnull boolean inverse of notnull
Panel.pct_change

Parameters:
- **periods**: int, default 1
  Periods to shift for forming percent change
- **fill_method**: str, default ‘pad’
  How to handle NAs before computing percent changes
- **limit**: int, default None
  The number of consecutive NAs to fill before stopping
- **freq**: DateOffset, timedelta, or offset alias string, optional
  Increment to use from time series API (e.g. ‘M’ or BDay())

Returns:
- **chg**: NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

Panel.pop

Return item and drop from frame. Raise KeyError if not found.

Panel.pow

Parameters:
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Axis to broadcast over

Returns:
- Panel

Panel.prod

Parameters:
- **axis**: {items (0), major_axis (1), minor_axis (2)}
  
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
  
- **level**: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

**numeric_only** : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
**prod** : DataFrame or Panel (if level specified)

### pandas.Panel.product

**Panel.product**  
**panel.product** *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Return the product of the values for the requested axis

**Parameters**  
**axis** : {items (0), major_axis (1), minor_axis (2)}

**skipna** : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level** : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

**numeric_only** : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
**prod** : DataFrame or Panel (if level specified)

### pandas.Panel.radd

**Panel.radd** *(other, axis=0)*

Wrapper method for radd

**Parameters**  
**other** : DataFrame or Panel

**axis** : {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**  
Panel

### pandas.Panel.rdiv

**Panel.rdiv** *(other, axis=0)*

Wrapper method for rtruediv

**Parameters**  
**other** : DataFrame or Panel

**axis** : {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**  
Panel
pandas.Panel.reindex

Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)
Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters  
items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True
Return a new object, even if the passed indexes are the same

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None
Maximum size gap to forward or backward fill

Returns  reindexed : Panel

Examples

>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])

pandas.Panel.reindex_axis

Panel.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)
Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters  labels : array-like
New labels / index to conform to. Preferably an Index object to avoid duplicating data

axis : {0,1,2,’items’,’major_axis’,’minor_axis’}

Method to use for filling holes in reindexed object. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

**copy**: boolean, default True
Return a new object, even if the passed indexes are the same

**level**: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

**limit**: int, default None
Maximum size gap to forward or backward fill

**Returns**: reindexed : Panel

**See Also**: reindex, reindex_like

**Examples**

```python
>>> df.reindex_axis([‘A’, ‘B’, ‘C’], axis=1)
```

**pandas.Panel.reindex_like**

Panel.reindex_like (other, method=None, copy=True, limit=None)
return an object with matching indices to myself

**Parameters**

**other**: Object

**method**: string or None

**copy**: boolean, default True

**limit**: int, default None
Maximum size gap to forward or backward fill

**Returns**: reindexed : same as input

**Notes**

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

**pandas.Panel.rename**

Panel.rename (items=None, major_axis=None, minor_axis=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters**

**items, major_axis, minor_axis**: dict-like or function, optional
Transformation to apply to that axis values

**copy**: boolean, default True
Also copy underlying data

*inplace*: boolean, default False

Whether to return a new Panel. If True then value of copy is ignored.

**Returns**

*renamed*: Panel (new object)

**pandas.Panel.rename_axis**

Panel.rename_axis *(mapper, axis=0, copy=True, inplace=False)*

Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters**

*mapper*: dict-like or function, optional

*axis*: int or string, default 0

*copy*: boolean, default True

Also copy underlying data

*inplace*: boolean, default False

**Returns**

*renamed*: type of caller

**pandas.Panel.replace**

Panel.replace *(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)*

Replace values given in ‘to_replace’ with ‘value’.

**Parameters**

*to_replace*: str, regex, list, dict, Series, numeric, or None

*• str or regex:
  – str: string exactly matching *to_replace* will be replaced with *value*
  – regex: regexs matching *to_replace* will be replaced with *value*

*• list of str, regex, or numeric:
  – First, if *to_replace* and *value* are both lists, they **must** be the same length.
  – Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter much for *value* since there are only a few possible substitution regexes you can use.
  – str and regex rules apply as above.

*• dict:
  – Nested dictionaries, e.g., ‘{‘a’: {‘b’: nan}}’, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) **cannot** be regular expressions.
  – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

*• None:*
This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

`value`: scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

`inplace`: boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

`limit`: int, default None

Maximum size gap to forward or backward fill

`regex`: bool or same types as `to_replace`, default False

Whether to interpret `to_replace` and/or `value` as regular expressions. If this is True then `to_replace` must be a string. Otherwise, `to_replace` must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

`method`: string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when `to_replace` is a list.

Returns `filled`: NDFrame

Raises

- AssertionError
  - If `regex` is not a bool and `to_replace` is not None.

- TypeError
  - If `to_replace` is a dict and `value` is not a list, dict, ndarray, or Series
  - If `to_replace` is None and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series.

- ValueError
  - If `to_replace` and `value` are lists or ndarrays, but they are not the same length.

See Also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.

- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

**pandas.Panel.resample**

Panel.resample(*rule*, *how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)

Convenience method for frequency conversion and resampling of regular time-series data.

**Parameters**

- **rule**: string
  - the offset string or object representing target conversion
- **how**: string
  - method for down- or re-sampling, default to ‘mean’ for downsampling
- **axis**: int, optional, default 0
- **fill_method**: string, default None
  - fill_method for upsampling
- **closed**: {'right', 'left'}
  - Which side of bin interval is closed
- **label**: {'right', 'left'}
  - Which bin edge label to label bucket with
- **convention**: {'start', 'end', 's', 'e'}
  - kind: “period”/”timestamp”
- **loffset**: timedelta
  - Adjust the resampled time labels
- **limit**: int, default None
  - Maximum size gap to when reindexing with fill_method
- **base**: int, default 0
  - For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

**pandas.Panel.rfloordiv**

Panel.rfloordiv(*other*, *axis=0*)

Wrapper method for rfloordiv

**Parameters**

- **other**: DataFrame or Panel
- **axis**: [items, major_axis, minor_axis]
  - Axis to broadcast over

**Returns**

Panel
pandas: powerful Python data analysis toolkit, Release 0.14.1

```
pandas.Panel.rmod

Panel.rmod(other, axis=0)
Wrapper method for rmod

Parameters
- other : DataFrame or Panel
- axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
- Panel

pandas.Panel.rmul

Panel.rmul(other, axis=0)
Wrapper method for rmul

Parameters
- other : DataFrame or Panel
- axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
- Panel

pandas.Panel.rpow

Panel.rpow(other, axis=0)
Wrapper method for rpow

Parameters
- other : DataFrame or Panel
- axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
- Panel

pandas.Panel.rsub

Panel.rsub(other, axis=0)
Wrapper method for rsub

Parameters
- other : DataFrame or Panel
- axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
- Panel

pandas.Panel.rtruediv

Panel.rtruediv(other, axis=0)
Wrapper method for rtruediv
```
**Parameters**

- `other` : DataFrame or Panel
- `axis` : {items, major_axis, minor_axis}

**Returns**

Panel

---

**pandas.Panel.save**

Panel.save(path)

Deprecated. Use to_pickle instead

---

**pandas.Panel.select**

Panel.select(crit, axis=0)

Return data corresponding to axis labels matching criteria

**Parameters**

- `crit` : function
  To be called on each index (label). Should return True or False
- `axis` : int

**Returns**

selection : type of caller

---

**pandas.Panel.sem**

Panel.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard error of the mean over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters**

- `axis` : {items (0), major_axis (1), minor_axis (2)}
- `skipna` : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- `numeric_only` : boolean, default None
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

standarderror : DataFrame or Panel (if level specified)

---

**pandas.Panel.set_axis**

Panel.set_axis(axis, labels)

public version of axis assignment
pandas.Panel.set_value

Panel.set_value(*args, **kwargs)
Quickly set single value at (item, major, minor) location

Parameters
- item : item label (panel item)
- major : major axis label (panel item row)
- minor : minor axis label (panel item column)
- value : scalar
- takeable : interpret the passed labels as indexers, default False

Returns
- panel : Panel
  If label combo is contained, will be reference to calling Panel, otherwise a new object

pandas.Panel.shift

Panel.shift(*args, **kwargs)
Shift major or minor axis by specified number of leads/lags. Drops periods right now compared with DataFrame.shift

Parameters
- lags : int
- axis : {'major', 'minor'}

Returns
- shifted : Panel

pandas.Panel.skew

Panel.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters
- axis : {items (0), major_axis (1), minor_axis (2)}
- skipna : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- level : int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- numeric_only : boolean, default None
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- skew : DataFrame or Panel (if level specified)

pandas.Panel.slice_shift

Panel.slice_shift(periods=1, axis=0, **kwds)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.
Parameters  

_periods_ : int  

Number of periods to move, can be positive or negative

Returns  

_shifted_ : same type as caller

Notes

While the _slice_shift_ is faster than _shift_, you may pay for it later during alignment.

### pandas.Panel.sort_index

Panel.sort_index (axis=0, ascending=True)  

Sort object by labels (along an axis)

Parameters  

_axis_ : {0, 1}  

Sort index/rows versus columns

_ascending_ : boolean, default True  

Sort ascending vs. descending

Returns  

_sorted_obj_ : type of caller

### pandas.Panel.squeeze

Panel.squeeze ()  

squeeze length 1 dimensions

### pandas.Panel.std

Panel.std (axis=None, skipna=None, level=None, ddof=1, **kwargs)  

Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters  

_axis_ : {items (0), major_axis (1), minor_axis (2)}

_skipna_ : boolean, default True  

Exclude NA/null values. If an entire row/column is NA, the result will be NA

_level_ : int or level name, default None  

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

_numeric_only_ : boolean, default None  

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns  

_stdev_ : DataFrame or Panel (if level specified)
pandas.Panel.sub

Panel.sub (other, axis=0)
Wrapper method for sub

Parameters  other : DataFrame or Panel
    axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns  Panel

pandas.Panel.subtract

Panel.subtract (other, axis=0)
Wrapper method for sub

Parameters  other : DataFrame or Panel
    axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns  Panel

pandas.Panel.sum

Panel.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the sum of the values for the requested axis

Parameters  axis : {items (0), major_axis (1), minor_axis (2)}
    skipna : boolean, default True
        Exclude NA/null values. If an entire row/column is NA, the result will be NA
    level : int or level name, default None
        If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
        into a DataFrame
    numeric_only : boolean, default None
        Include only float, int, boolean data. If None, will attempt to use everything, then
        use only numeric data

Returns  sum : DataFrame or Panel (if level specified)

pandas.Panel.swapaxes

Panel.swapaxes (axis1, axis2, copy=True)
Interchange axes and swap values axes appropriately

Returns  y : same as input
pandas.Panel.swaplevel

Panel.swaplevel(i, j, axis=0)
Swap levels i and j in a MultiIndex on a particular axis

Parameters  i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.

Returns swapped : type of caller (new object)

pandas.Panel.tail

Panel.tail(n=5)

pandas.Panel.take

Panel.take(indices, axis=0, convert=True, is_copy=True)
Analogous to ndarray.take

Parameters  indices : list / array of ints
axis : int, default 0
convert : translate neg to pos indices (default)
is_copy : mark the returned frame as a copy

Returns taken : type of caller

pandas.Panel.toLong

Panel.toLong(*args, **kwargs)

pandas.Panel.to_clipboard

Panel.to_clipboard(excel=None, sep=None, **kwargs)
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters  excel : boolean, defaults to True
if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard
sep : optional, defaults to tab
other keywords are passed to to_csv

Notes

Requirements for your platform
• Linux: xclip, or xsel (with gtk or PyQt4 modules)
• Windows: none
• OS X: none

**pandas.Panel.to_dense**

Panel.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

**pandas.Panel.to_excel**

Panel.to_excel(path, na_rep='', engine=None, **kwargs)
Write each DataFrame in Panel to a separate excel sheet

**Parameters**
- **path**: string or ExcelWriter object
  - File path or existing ExcelWriter
- **na_rep**: string, default ‘’
  - Missing data representation
- **engine**: string, default None
  - write engine to use - you can also set this via the options io.excel.xlsx.writer, io.excel.xls.writer, and io.excel.xlsm.writer.

**Other Parameters**
- **float_format**: string, default None
  - Format string for floating point numbers
- **cols**: sequence, optional
  - Columns to write
- **header**: boolean or list of string, default True
  - Write out column names. If a list of string is given it is assumed to be aliases for the column names
- **index**: boolean, default True
  - Write row names (index)
- **index_label**: string or sequence, default None
  - Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- **startrow**: upper left cell row to dump data frame
- **startcol**: upper left cell column to dump data frame

**Notes**

Keyword arguments (and na_rep) are passed to the to_excel method for each DataFrame written.
pandas.Panel.to_frame

Panel.to_frame(filter_observations=True)

Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes.

Parameters

filter_observations : boolean, default True
Drop (major, minor) pairs without a complete set of observations across all the items

Returns

y : DataFrame

pandas.Panel.to_hdf

Panel.to_hdf(path_or_buf, key, **kwargs)

activate the HDFStore

Parameters

path_or_buf : the path (string) or buffer to put the store
key : string
indentifier for the group in the store
mode : optional, {'a', 'w', 'r', 'r+'}, default 'a'
' r' Read-only; no data can be modified.
' w' Write; a new file is created (an existing file with the same name would be deleted).
' a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
' r+' It is similar to ' a', but the file must already exist.
format : 'fixed(f)|table(t)', default is 'fixed'
fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
append : boolean, default False
For Table formats, append the input data to the existing
complevel : int, 1-9, default 0
If a complib is specified compression will be applied where possible
complib : {'zlib', 'bzip2', 'lzma', 'blosc', None}, default None
If complevel is > 0 apply compression to objects written in the store wherever possible
fletcher32 : bool, default False
If applying compression use the fletcher32 checksum
pandas.Panel.to_json

`Panel.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)`

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

**Parameters**

**path_or_buf**: the path or buffer to write the result string

- if this is None, return a StringIO of the converted string

**orient**: string

- Series
  - default is ‘index’
  - allowed values are: {‘split’,’records’,’index’}

- DataFrame
  - default is ‘columns’
  - allowed values are: {‘split’,’records’,’index’,’columns’,’values’}

- The format of the JSON string
  - split : dict like {index -> [index], columns -> [columns], data -> [values]}
  - records : list like [{column -> value}, ... , {column -> value}]
  - index : dict like {index -> {column -> value}}
  - columns : dict like {column -> {index -> value}}
  - values : just the values array

**date_format**: {‘epoch’, ‘iso’}

- Type of date conversion. `epoch` = epoch milliseconds, `iso` = ISO8601, default is epoch.

**double_precision**: The number of decimal places to use when encoding

- floating point values, default 10.

**force_ascii**: force encoded string to be ASCII, default True.

**date_unit**: string, default ‘ms’ (milliseconds)

- The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

**default_handler**: callable, default None

- Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

**Returns**

- same type as input object with filtered info axis
pandas.Panel.to_long

Panel.to_long(*args, **kwargs)

pandas.Panel.to_msgpack

Panel.to_msgpack(path_or_buf=None, **kwargs)

msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters path : string

File path, buffer-like, or None

if None, return generated string

append : boolean

whether to append to an existing msgpack

(default is False)

compress : type of compressor (zlib or blosc), default to None (no compression)

pandas.Panel.to_pickle

Panel.to_pickle(path)

Pickle (serialize) object to input file path

Parameters path : string

File path

pandas.Panel.to_sparse

Panel.to_sparse(fill_value=None, kind='block')

Convert to SparsePanel

Parameters fill_value : float, default NaN

kind : {'block', 'integer'}

Returns y : SparseDataFrame

pandas.Panel.to_sql

Panel.to_sql(name, con, flavor='sqlite', if_exists='fail', index=True, index_label=None)

Write records stored in a DataFrame to a SQL database.

Parameters name : string

Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)

Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

flavor : {'sqlite', 'mysql'}, default ‘sqlite’
The flavor of SQL to use. Ignored when using SQLAlchemy engine. `mysql` is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

**if_exists**: {'fail', 'replace', 'append'}, default 'fail'
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.

**index**: boolean, default True
Write DataFrame index as a column.

**index_label**: string or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

**pandas.Panel.transpose**

Panel.transpose(*args, **kwargs)
Permute the dimensions of the Panel

**Parameters**
- **args**: three positional arguments: each oneof
  - {0,1,2,'items','major_axis','minor_axis'}
- **copy**: boolean, default False
  - Make a copy of the underlying data. Mixed-dtype data will always result in a copy

**Returns**
- **y**: same as input

**Examples**

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```

**pandas.Panel.truediv**

Panel.truediv(other, axis=0)
Wrapper method for truediv

**Parameters**
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**
- Panel
pandas.Panel.truncate

Panel.truncate(before=None, after=None, axis=None, copy=True)
Truncates a sorted DataFrame before and/or after some particular dates.

Parameters
- **before**: date
  - Truncate before date
- **after**: date
  - Truncate after date
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
  - return a copy of the truncated section

Returns
- **truncated**: type of caller

pandas.Panel.tshift

Panel.tshift(periods=1, freq=None, axis='major', **kwds)

pandas.Panel.tz_convert

Panel.tz_convert(tz, axis=0, copy=True)
Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters
- **tz**: string or pytz.timezone object
- **copy**: boolean, default True
  - Also make a copy of the underlying data

pandas.Panel.tz_localize

Panel.tz_localize(tz, axis=0, copy=True, infer_dst=False)
Localize tz-naive TimeSeries to target time zone

Parameters
- **tz**: string or pytz.timezone object
- **copy**: boolean, default True
  - Also make a copy of the underlying data
- **infer_dst**: boolean, default False
  - Attempt to infer fall dst-transition times based on order

pandas.Panel.update

Panel.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)
Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items
**Parameters**

- **other**: Panel, or object coercible to Panel
  - **join**: How to join individual DataFrames
    - {'left', 'right', 'outer', 'inner'}, default 'left'
  - **overwrite**: boolean, default True
    - If True then overwrite values for common keys in the calling panel
  - **filter_func**: callable(1d-array) -> 1d-array<boolean>, default None
    - Can choose to replace values other than NA. Return True for values that should be updated
  - **raise_conflict**: bool
    - If True, will raise an error if a DataFrame and other both contain data in the same place.

**pandas.Panel.var**

```python
Panel.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)
```

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters**

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

- **variance**: DataFrame or Panel (if level specified)

**pandas.Panel.where**

```python
Panel.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
```

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

**Parameters**

- **cond**: boolean NDFrame or array
- **other**: scalar or NDFrame
- **inplace**: boolean, default False
  - Whether to perform the operation in place on the data
- **axis**: alignment axis if needed, default None
- **level**: alignment level if needed, default None
try_cast : boolean, default False
try to cast the result back to the input type (if possible),
raise_on_error : boolean, default True
Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

pandas.Panel.xs

Panel.xs(key, axis=1, copy=None)
Return slice of panel along selected axis

Parameters key : object
Label
axis : {‘items’, ‘major’, ‘minor’}, default 1/’major’
copy : boolean [deprecated]
Whether to make a copy of the data

Returns y : ndim(self)-1

Notes
xs is only for getting, not setting values.
MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers

29.5.2 Attributes and underlying data

Axes
• items: axis 0; each item corresponds to a DataFrame contained inside
• major_axis: axis 1; the index (rows) of each of the DataFrames
• minor_axis: axis 2; the columns of each of the DataFrames

Panel.values	Numpy representation of NDFrame
Panel.axes	index(es) of the NDFrame
Panel.ndim	Number of axes / array dimensions
Panel.shape	tuple of axis dimensions
Panel.dtypes	Return the dtypes in this object
Panel.ftypes	Return the ftypes (indication of sparse/dense and dtype)
Panel.get_dtype_counts()	Return the counts of dtypes in this object
Panel.get_ftype_counts()	Return the counts of ftypes in this object

pandas.Panel.values

Panel.values
Numpy representation of NDFrame
Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

**pandas.Panel.axes**

Panel.axes
index(es) of the NDFrame

**pandas.Panel.ndim**

Panel.ndim
Number of axes / array dimensions

**pandas.Panel.shape**

Panel.shape
tuple of axis dimensions

**pandas.Panel.dtypes**

Panel.dtypes
Return the dtypes in this object

**pandas.Panel.ftypes**

Panel.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.

**pandas.Panel.get_dtype_counts**

Panel.get_dtype_counts()
Return the counts of dtypes in this object

**pandas.Panel.get_ftype_counts**

Panel.get_ftype_counts()
Return the counts of ftypes in this object
29.5.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.astype()</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>Panel.copy()</code></td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td><code>Panel.isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null</td>
</tr>
<tr>
<td><code>Panel.notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null</td>
</tr>
</tbody>
</table>

**pandas.Panel.astype**

`Panel.astype(dtype[, copy, raise_on_error])`  
Cast object to input numpy.dtype  
Return a copy when copy = True (be really careful with this!)

- **Parameters**  
  - `dtype`: numpy.dtype or Python type
  - `raise_on_error`: raise on invalid input

- **Returns**  
  - `casted`: type of caller

**pandas.Panel.copy**

`Panel.copy([deep])`  
Make a copy of this object

- **Parameters**  
  - `deep`: boolean, default True

- **Returns**  
  - `copy`: type of caller

**pandas.Panel.isnull**

`Panel.isnull()`  
Return a boolean same-sized object indicating if the values are null

- **See Also**  
  - `notnull` boolean inverse of isnull

**pandas.Panel.notnull**

`Panel.notnull()`  
Return a boolean same-sized object indicating if the values are not null

- **See Also**  
  - `isnull` boolean inverse of notnull

29.5.4 Getting and setting
pandas: powerful Python data analysis toolkit, Release 0.14.1

Panel.get_value(*args, **kwargs)

Quickly retrieve single value at (item, major, minor) location
Parameters:
- item: item label (panel item)
- major: major axis label (panel item row)
- minor: minor axis label (panel item column)
- takeable: interpret the passed labels as indexers, default False
Returns:
- value: scalar value

Panel.set_value(*args, **kwargs)

Quickly set single value at (item, major, minor) location
Parameters:
- item: item label (panel item)
- major: major axis label (panel item row)
- minor: minor axis label (panel item column)
- value: scalar
- takeable: interpret the passed labels as indexers, default False
Returns:
- panel: Panel
  If label combo is contained, will be reference to calling Panel, otherwise a new object

29.5.5 Indexing, iteration, slicing

Panel.at
Panel.iat
Panel.ix
Panel.loc
Panel.iloc
Panel.__iter__() Iterate over info axis
Panel.iteritems() Iterate over (label, values) on info axis
Panel.pop(item) Return item and drop from frame.
Panel.xs(key[, axis, copy]) Return slice of panel along selected axis
Panel.major_xs(key[, copy]) Return slice of panel along major axis
Panel.minor_xs(key[, copy]) Return slice of panel along minor axis

pandas.Panel.at
Panel.at
pandas.Panel.iat

Panel.iat

pandas.Panel.ix

Panel.ix

pandas.Panel.loc

Panel.loc

pandas.Panel.iloc

Panel.iloc

pandas.Panel.__iter__

Panel.__iter__()
   Iterate over info axis

pandas.Panel.iteritems

Panel.iteritems()
   Iterate over (label, values) on info axis
   This is index for Series, columns for DataFrame, major_axis for Panel, and so on.

pandas.Panel.pop

Panel.pop(item)
   Return item and drop from frame. Raise KeyError if not found.

pandas.Panel.xs

Panel.xs(key, axis=1, copy=None)
   Return slice of panel along selected axis

   Parameters
   key : object
      Label
   axis : {‘items’, ‘major’, ‘minor’}, default 1/‘major’
   copy : boolean [deprecated]
      Whether to make a copy of the data

   Returns
   y : ndim(self)-1
Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers

pandas.Panel.major_xs

Panel.major_xs(key, copy=None)

Return slice of panel along major axis

Parameters  key : object

Major axis label
copy : boolean [deprecated]

Whether to make a copy of the data

Returns  y : DataFrame

index -> minor axis, columns -> items

Notes

major_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs functionality, see MultiIndex Slicers

pandas.Panel.minor_xs

Panel.minor_xs(key, copy=None)

Return slice of panel along minor axis

Parameters  key : object

Minor axis label
copy : boolean [deprecated]

Whether to make a copy of the data

Returns  y : DataFrame

index -> major axis, columns -> items

Notes

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see MultiIndex Slicers

For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation.
29.5.6 Binary operator functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.add</td>
<td>Wrapper method for add</td>
</tr>
<tr>
<td>Panel.sub</td>
<td>Wrapper method for sub</td>
</tr>
<tr>
<td>Panel.mul</td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td>Panel.div</td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td>Panel.truediv</td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td>Panel.floordiv</td>
<td>Wrapper method for floordiv</td>
</tr>
<tr>
<td>Panel.mod</td>
<td>Wrapper method for mod</td>
</tr>
<tr>
<td>Panel.pow</td>
<td>Wrapper method for pow</td>
</tr>
<tr>
<td>Panel.radd</td>
<td>Wrapper method for radd</td>
</tr>
<tr>
<td>Panel.rsub</td>
<td>Wrapper method for rsub</td>
</tr>
<tr>
<td>Panel.rmul</td>
<td>Wrapper method for rmul</td>
</tr>
<tr>
<td>Panel.rdiv</td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td>Panel.rtruediv</td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td>Panel.rfloordiv</td>
<td>Wrapper method for rfloordiv</td>
</tr>
<tr>
<td>Panel.rmod</td>
<td>Wrapper method for rmod</td>
</tr>
<tr>
<td>Panel.rpow</td>
<td>Wrapper method for rpow</td>
</tr>
<tr>
<td>Panel.lt</td>
<td>Wrapper for comparison method lt</td>
</tr>
<tr>
<td>Panel.gt</td>
<td>Wrapper for comparison method gt</td>
</tr>
<tr>
<td>Panel.le</td>
<td>Wrapper for comparison method le</td>
</tr>
<tr>
<td>Panel.ge</td>
<td>Wrapper for comparison method ge</td>
</tr>
<tr>
<td>Panel.ne</td>
<td>Wrapper for comparison method ne</td>
</tr>
<tr>
<td>Panel.eq</td>
<td>Wrapper for comparison method eq</td>
</tr>
</tbody>
</table>

### pandas.Panel.add

```python
Panel.add(other[, axis=0])
```
Wrapper method for add

**Parameters**
- `other` : DataFrame or Panel
- `axis` : {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**
- Panel

### pandas.Panel.sub

```python
Panel.sub(other[, axis=0])
```
Wrapper method for sub

**Parameters**
- `other` : DataFrame or Panel
- `axis` : {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**
- Panel

### pandas.Panel.mul

```python
Panel.mul(other[, axis=0])
```
Wrapper method for mul
Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}  
Axis to broadcast over
Returns Panel

pandas.Panel.div

Panel.div(other, axis=0)
Wrapper method for truediv
Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}  
Axis to broadcast over
Returns Panel

pandas.Panel.truediv

Panel.truediv(other, axis=0)
Wrapper method for truediv
Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}  
Axis to broadcast over
Returns Panel

pandas.Panel.floordiv

Panel.floordiv(other, axis=0)
Wrapper method for floordiv
Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}  
Axis to broadcast over
Returns Panel

pandas.Panel.mod

Panel.mod(other, axis=0)
Wrapper method for mod
Parameters other : DataFrame or Panel
axis : {items, major_axis, minor_axis}  
Axis to broadcast over
Returns Panel
**pandas.Panel.pow**

Panel.pow *(other, axis=0)*

Wrapper method for pow

**Parameters**
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**  
Panel

**pandas.Panel.radd**

Panel.radd *(other, axis=0)*

Wrapper method for radd

**Parameters**
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**  
Panel

**pandas.Panel.rsub**

Panel.rsub *(other, axis=0)*

Wrapper method for rsub

**Parameters**
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**  
Panel

**pandas.Panel.rmul**

Panel.rmul *(other, axis=0)*

Wrapper method for rmul

**Parameters**
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**  
Panel

**pandas.Panel.rdiv**

Panel.rdiv *(other, axis=0)*

Wrapper method for rtruediv
Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.rtruediv

Panel.rtruediv(other, axis=0)

Wrapper method for rtruediv

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.rfloordiv

Panel.rfloordiv(other, axis=0)

Wrapper method for rfloordiv

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.rmod

Panel.rmod(other, axis=0)

Wrapper method for rmod

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.rpow

Panel.rpow(other, axis=0)

Wrapper method for rpow

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel
pandas.Panel.lt

Panel.lt (other)
Wrapper for comparison method lt

pandas.Panel.gt

Panel.gt (other)
Wrapper for comparison method gt

pandas.Panel.le

Panel.le (other)
Wrapper for comparison method le

pandas.Panel.ge

Panel.ge (other)
Wrapper for comparison method ge

pandas.Panel.ne

Panel.ne (other)
Wrapper for comparison method ne

pandas.Panel.eq

Panel.eq (other)
Wrapper for comparison method eq

29.5.7 Function application, GroupBy

Panel.apply(func[, axis])      Applies function along input axis of the Panel
Panel.groupby(function[, axis]) Group data on given axis, returning GroupBy object

pandas.Panel.apply

Panel.apply(func, axis='major', **kwargs)
Applies function along input axis of the Panel

Parameters

- func : function
  Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/minor_axis will be passed a Series
- axis : {‘major’, ‘minor’, ‘items’}

Additional keyword arguments will be passed as keywords to the function

Returns

- result : Pandas Object
Examples

```python
>>> p.apply(numpy.sqrt) # returns a Panel
>>> p.apply(lambda x: x.sum(), axis=0) # equiv to p.sum(0)
>>> p.apply(lambda x: x.sum(), axis=1) # equiv to p.sum(1)
>>> p.apply(lambda x: x.sum(), axis=2) # equiv to p.sum(2)
```

**pandas.Panel.groupby**

Panel **.groupby**(function, axis='major')

Group data on given axis, returning GroupBy object

**Parameters**
- **function**: callable
  - Mapping function for chosen access
- **axis**: {'major', 'minor', 'items'}, default 'major'

**Returns**
- **grouped**: PanelGroupBy

### 29.5.8 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.abs()</td>
<td>Return an object with absolute value taken. Only applicable to objects that are all numeric</td>
</tr>
<tr>
<td>Panel.clip([lower, upper, out])</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td>Panel.clip_lower(threshold)</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td>Panel.clip_upper(threshold)</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td>Panel.cummax([axis, dtype, out, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td>Panel.cummin([axis, dtype, out, skipna])</td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td>Panel.cumprod([axis, dtype, out, skipna])</td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td>Panel.cumsum([axis, dtype, out, skipna])</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>Panel.max([axis, skipna, level, numeric_only])</td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td>Panel.mean([axis, skipna, level, numeric_only])</td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td>Panel.median([axis, skipna, level, numeric_only])</td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td>Panel.min([axis, skipna, level, numeric_only])</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td>Panel.pct_change([periods, fill_method, ...])</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td>Panel.prod([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>Panel.sem([axis, skipna, level, ddof])</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td>Panel.skew([axis, skipna, level, numeric_only])</td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td>Panel.sum([axis, skipna, level, numeric_only])</td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td>Panel.std([axis, skipna, level, ddof])</td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td>Panel.var([axis, skipna, level, ddof])</td>
<td>Return unbiased variance over requested axis.</td>
</tr>
</tbody>
</table>

**pandas.Panel.abs**

Panel **.abs**()

Return an object with absolute value taken. Only applicable to objects that are all numeric

**Returns**
- abs: type of caller
pandas.Panel.clip

Panel.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters
lower : float, default None
upper : float, default None

Returns
clipped : Series

pandas.Panel.clip_lower

Panel.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns
clipped : same type as input

See Also:
clip

pandas.Panel.clip_upper

Panel.clip_upper(threshold)
Return copy of input with values above given value truncated

Returns
clipped : same type as input

See Also:
clip

pandas.Panel.count

Panel.count(axis='major')
Return number of observations over requested axis.

Parameters
axis : {'items', 'major', 'minor'} or {0, 1, 2}

Returns
count : DataFrame

pandas.Panel.cummax

Panel.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative max over requested axis.

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
max : DataFrame
pandas: powerful Python data analysis toolkit, Release 0.14.1

**pandas.Panel.cummin**

Panel.cummin (``axis=None, dtype=None, out=None, skipna=True, **kwargs``)
Return cumulative min over requested axis.

**Parameters**
- **axis** : [items (0), major_axis (1), minor_axis (2)]
- **skipna** : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**

- **min** : DataFrame

**pandas.Panel.cumprod**

Panel.cumprod (``axis=None, dtype=None, out=None, skipna=True, **kwargs``)
Return cumulative prod over requested axis.

**Parameters**
- **axis** : [items (0), major_axis (1), minor_axis (2)]
- **skipna** : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**

- **prod** : DataFrame

**pandas.Panel.cumsum**

Panel.cumsum (``axis=None, dtype=None, out=None, skipna=True, **kwargs``)
Return cumulative sum over requested axis.

**Parameters**
- **axis** : [items (0), major_axis (1), minor_axis (2)]
- **skipna** : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**

- **sum** : DataFrame

**pandas.Panel.max**

Panel.max (``axis=None, skipna=None, level=None, numeric_only=None, **kwargs``)
This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

**Parameters**
- **axis** : [items (0), major_axis (1), minor_axis (2)]
- **skipna** : boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only** : boolean, default None
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

- **max** : DataFrame or Panel (if level specified)
pandas.Panel.mean

Panel.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
   Return the mean of the values for the requested axis

   Parameters  axis : {items (0), major_axis (1), minor_axis (2)}
                  skipna : boolean, default True
                          Exclude NA/null values. If an entire row/column is NA, the result will be NA
                  level : int or level name, default None
                          If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
                          into a DataFrame
                  numeric_only : boolean, default None
                          Include only float, int, boolean data. If None, will attempt to use everything, then
                          use only numeric data

   Returns  mean : DataFrame or Panel (if level specified)

pandas.Panel.median

Panel.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
   Return the median of the values for the requested axis

   Parameters  axis : {items (0), major_axis (1), minor_axis (2)}
                  skipna : boolean, default True
                          Exclude NA/null values. If an entire row/column is NA, the result will be NA
                  level : int or level name, default None
                          If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
                          into a DataFrame
                  numeric_only : boolean, default None
                          Include only float, int, boolean data. If None, will attempt to use everything, then
                          use only numeric data

   Returns  median : DataFrame or Panel (if level specified)

pandas.Panel.min

Panel.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
   This method returns the minimum of the values in the object. If you want the index of the minimum, use
   idxmin. This is the equivalent of the numpy.ndarray method argmin.

   Parameters  axis : {items (0), major_axis (1), minor_axis (2)}
                  skipna : boolean, default True
                          Exclude NA/null values. If an entire row/column is NA, the result will be NA
                  level : int or level name, default None
                          If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
                          into a DataFrame
**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**min**: DataFrame or Panel (if level specified)

---

**pandas.Panel.pct_change**

```python
Panel.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwds)
```

Percent change over given number of periods.

**Parameters**

**periods**: int, default 1

Periods to shift for forming percent change

**fill_method**: str, default ‘pad’

How to handle NAs before computing percent changes

**limit**: int, default None

The number of consecutive NAs to fill before stopping

**freq**: DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

**Returns**

**chg**: NDFrame

---

**Notes**

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the `axis` keyword argument.

---

**pandas.Panel.prod**

```python
Panel.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the product of the values for the requested axis

**Parameters**

**axis**: {items (0), major_axis (1), minor_axis (2)}

**skipna**: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**prod**: DataFrame or Panel (if level specified)
pandas.Panel.sem

Panel.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard error of the mean over requested axis.

Parameters

axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

standarderror : DataFrame or Panel (if level specified)

pandas.Panel.skew

Panel.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters

axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

skew : DataFrame or Panel (if level specified)

pandas.Panel.sum

Panel.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the sum of the values for the requested axis

Parameters

axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns sum: DataFrame or Panel (if level specified)

pandas.Panel.std

Panel.std(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis: {items (0), major_axis (1), minor_axis (2)}

skipna: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns stdev: DataFrame or Panel (if level specified)

pandas.Panel.var

Panel.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis: {items (0), major_axis (1), minor_axis (2)}

skipna: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns variance: DataFrame or Panel (if level specified)

29.5.9 Reindexing / Selection / Label manipulation

Panel.add_prefix(prefix)

Concatenate prefix string with panel items names.
Table 29.62 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names</td>
</tr>
<tr>
<td>Panel.drop(labels[, axis, level, inplace])</td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td>Panel.equals(other)</td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the</td>
</tr>
<tr>
<td>Panel.filter([items, like, regex, axis])</td>
<td>Restrict the info axis to set of items or wildcard</td>
</tr>
<tr>
<td>Panel.first(offset)</td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td>Panel.last(offset)</td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td>Panel.reindex([items, major_axis, minor_axis])</td>
<td>Conform Panel to new index with optional filling logic, placing</td>
</tr>
<tr>
<td>Panel.reindex_axis(labels[, axis, method, ...])</td>
<td>Conform input object to new index with optional filling logic.</td>
</tr>
<tr>
<td>Panel.reindex_like([other[, method, copy, limit]])</td>
<td>return an object with matching indicies to myself</td>
</tr>
<tr>
<td>Panel.rename([items, major_axis, minor_axis])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>Panel.select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>Panel.take(indices[, axis, convert, is_copy])</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>Panel.truncate([before, after, axis, copy])</td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
</tbody>
</table>

**pandas.Panel.add_prefix**

**Panel.add_prefix**(prefix)

Concatenate prefix string with panel items names.

**Parameters**

- prefix : string

**Returns**

- with_prefix : type of caller

**pandas.Panel.add_suffix**

**Panel.add_suffix**(suffix)

Concatenate suffix string with panel items names.

**Parameters**

- suffix : string

**Returns**

- with_suffix : type of caller

**pandas.Panel.drop**

**Panel.drop**(labels, axis=0, level=None, inplace=False, **kwargs)

Return new object with labels in requested axis removed.

**Parameters**

- labels : single label or list-like
  - axis : int or axis name
  - level : int or level name, default None
    - For MultiIndex
  - inplace : bool, default False
    - If True, do operation inplace and return None.

**Returns**

- dropped : type of caller

**pandas.Panel.equals**

**Panel.equals**(other)

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.
pandas.Panel.filter

Panel.filter(items=None, like=None, regex=None, axis=None)
Restrict the info axis to set of items or wildcard

Parameters:
- **items**: list-like
  - List of info axis to restrict to (must not all be present)
- **like**: string
  - Keep info axis where “arg in col == True”
- **regex**: string (regular expression)
  - Keep info axis with re.search(regex, col) == True
- **axis**: int or None
  - The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with[]. For example, df = DataFrame({'a': [1, 2, 3, 4]}); df['a']. So, the DataFrame columns are the info axis.

Notes

Arguments are mutually exclusive, but this is not checked for

pandas.Panel.first

Panel.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset

Parameters:
- **offset**: string, DateOffset, dateutil.relativedelta

Returns:
- **subset**: type of caller

Examples

```
ts.last('10D') -> First 10 days
```

pandas.Panel.last

Panel.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset

Parameters:
- **offset**: string, DateOffset, dateutil.relativedelta

Returns:
- **subset**: type of caller

Examples

```
ts.last('5M') -> Last 5 months
```
pandas.Panel.reindex

**Panel.reindex** *(items=None, major_axis=None, minor_axis=None, **kwargs)*

Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

**Parameters**

- **items, major_axis, minor_axis** : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **method** : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
  
  Method to use for filling holes in reindexed DataFrame. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **copy** : boolean, default True
  
  Return a new object, even if the passed indexes are the same
- **level** : int or name
  
  Broadcast across a level, matching Index values on the passed MultiIndex level
- **fill_value** : scalar, default np.NaN
  
  Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- **limit** : int, default None
  
  Maximum size gap to forward or backward fill

**Returns**

- **reindexed** : Panel

**Examples**

```python
>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])
```

pandas.Panel.reindex_axis

**Panel.reindex_axis** *(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)*

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

**Parameters**

- **labels** : array-like
  
  New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **axis** : {0,1,2,'items','major_axis','minor_axis'}
  
  Method to use for filling holes in reindexed object. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **copy** : boolean, default True
Return a new object, even if the passed indexes are the same

**level**: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**limit**: int, default None

Maximum size gap to forward or backward fill

Returns **reindexed**: Panel

See Also:

reindex, reindex_like

Examples

```python
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```

### pandas.Panel.reindex_like

**Panel.reindex_like** *(other, method=None, copy=True, limit=None)*

return an object with matching indicies to myself

**Parameters**

other: Object

method: string or None

copy: boolean, default True

limit: int, default None

Maximum size gap to forward or backward fill

**Returns** reindexed: same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

### pandas.Panel.rename

**Panel.rename** *(items=None, major_axis=None, minor_axis=None, **kwargs)*

Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters**

items, major_axis, minor_axis: dict-like or function, optional

Transformation to apply to that axis values

copy: boolean, default True

Also copy underlying data

inplace: boolean, default False

Whether to return a new Panel. If True then value of copy is ignored.

**Returns** renamed: Panel (new object)
pandas.Panel.select

Panel.select (crit, axis=0)
Return data corresponding to axis labels matching criteria

Parameters  
crit : function
To be called on each index (label). Should return True or False
axis : int

Returns  
selection : type of caller

pandas.Panel.take

Panel.take (indices, axis=0, convert=True, is_copy=True)
Analogous to ndarray.take

Parameters  
indices : list / array of ints
axis : int, default 0
convert : translate neg to pos indices (default)
is_copy : mark the returned frame as a copy

Returns  
taken : type of caller

pandas.Panel.truncate

Panel.truncate (before=None, after=None, axis=None, copy=True)
Truncates a sorted NDFrame before and/or after some particular dates.

Parameters  
before : date
Truncate before date
after : date
Truncate after date
axis : the truncation axis, defaults to the stat axis
copy : boolean, default is True,
return a copy of the truncated section

Returns  
truncated : type of caller

29.5.10 Missing data handling

Panel.dropna([axis, how, inplace])  Drop 2D from panel, holding passed axis constant
Panel.fillna([value, method, axis, inplace, ...])  Fill NA/NaN values using the specified method

pandas.Panel.dropna

Panel.dropna (axis=0, how='any', inplace=False, **kwargs)
Drop 2D from panel, holding passed axis constant
**Parameters**

*axis*: int, default 0

Axis to hold constant. E.g. `axis=1` will drop major_axis entries having a certain amount of NA data

*how*: {'all', 'any'}, default 'any'

- 'all': one or more values are NA in the DataFrame along the axis. For 'all' they all must be.
- 'any': one or more values are NA in the DataFrame along the axis. For 'all' they all must be.

*inplace*: bool, default False

If True, do operation in place and return None.

**Returns**

*dropped*: Panel

---

**pandas.Panel.fillna**

`Panel.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)`

Fill NA/NaN values using the specified method

**Parameters**

*method*: {'backfill', 'bfill', 'pad', 'ffill', None}, default None

Method to use for filling holes in reindexed Series $pad$ / $ffill$: propagate last valid observation forward to next valid backfill / $bfill$: use NEXT valid observation to fill gap

*value*: scalar, dict, or Series

Value to use to fill holes (e.g. 0), alternately a dict/Series of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series will not be filled). This value cannot be a list.

*axis*: {0, 1}, default 0

- 0: fill column-by-column
- 1: fill row-by-row

*inplace*: boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

*limit*: int, default None

Maximum size gap to forward or backward fill

*downcast*: dict, default is None

A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

**Returns**

*filled*: same type as caller

See Also:

*reindex, asfreq*

---

**29.5.11 Reshaping, sorting, transposing**

`Panel.sort_index([axis, ascending])` Sort object by labels (along an axis)
Table 29.64 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.swaplevel(i, j[, axis])</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td><code>Panel.transpose(*args, **kwargs)</code></td>
<td>Permute the dimensions of the Panel</td>
</tr>
<tr>
<td><code>Panel.swapaxes(axis1, axis2[, copy])</code></td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>Panel.conform(frame[, axis])</code></td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
</tbody>
</table>

**pandas.Panel.sort_index**

`Panel.sort_index(axis=0, ascending=True)`

Sort object by labels (along an axis)

**Parameters**

- **axis**: {0, 1}
  
  Sort index/rows versus columns
  
  **ascending**: boolean, default True
  
  Sort ascending vs. descending

**Returns**

- **sorted_obj**: type of caller

**pandas.Panel.swaplevel**

`Panel.swaplevel(i, j, axis=0)`

Swap levels i and j in a MultiIndex on a particular axis

**Parameters**

- **i, j**: int, string (can be mixed)
  
  Level of index to be swapped. Can pass level name as string.

**Returns**

- **swapped**: type of caller (new object)

**pandas.Panel.transpose**

`Panel.transpose(*args, **kwargs)`

Permute the dimensions of the Panel

**Parameters**

- **args**: three positional arguments: each one of
  
  {0,1,2,'items','major_axis','minor_axis'}
  
  **copy**: boolean, default False
  
  Make a copy of the underlying data. Mixed-dtype data will always result in a copy

**Returns**

- **y**: same as input

**Examples**

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```
pandas.Panel.swapaxes

Panel.swapaxes(axis1, axis2, copy=True)

Interchange axes and swap values axes appropriately

Returns  
y: same as input

pandas.Panel.conform

Panel.conform(frame, axis='items')

Conform input DataFrame to align with chosen axis pair.

Parameters  
frame: DataFrame

axis: {'items', 'major', 'minor'}

Axis the input corresponds to. E.g., if axis='major', then the frame’s columns would
be items, and the index would be values of the minor axis

Returns  
DataFrame

29.5.12 Combining / joining / merging

Panel.join(other[, how, lsuffix, rsuffix])  
Join items with other Panel either on major and minor axes column

Panel.update(other[, join, overwrite, ...])  
Modify Panel in place using non-NA values from passed

pandas.Panel.join

Panel.join(other, how='left', lsuffix='', rsuffix='')

Join items with other Panel either on major and minor axes column

Parameters  
other: Panel or list of Panels

Index should be similar to one of the columns in this one

how: {'left', 'right', 'outer', 'inner'}

How to handle indexes of the two objects. Default: ‘left’ for joining on index, None
otherwise * left: use calling frame’s index * right: use input frame’s index * outer: form union of indexes * inner: use intersection of indexes

lsuffix: string

Suffix to use from left frame’s overlapping columns

rsuffix: string

Suffix to use from right frame’s overlapping columns

Returns  
joined: Panel

pandas.Panel.update

Panel.update(other=left', overwrite=True, filter_func=None, raise_conflict=False)

Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items
Parameters  other : Panel, or object coercible to Panel

    join : How to join individual DataFrames
           {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’
    overwrite : boolean, default True
           If True then overwrite values for common keys in the calling panel
    filter_func : callable(1d-array) -> 1d-array<boolean>, default None
           Can choose to replace values other than NA. Return True for values that should be
           updated
    raise_conflict : bool
           If True, will raise an error if a DataFrame and other both contain data in the same
           place.

29.5.13 Time series-related

Panel.asfreq(freq[, method, how, normalize])  Convert all TimeSeries inside to specified frequency using DateOffset
Panel.shift(*args, **kwargs)  Shift major or minor axis by specified number of leads/lags.
Panel.resample(rule[, how, axis, ...])  Convenience method for frequency conversion and resampling of regular time-series data.
Panel.tz_convert(tz[, axis, copy])  Convert the axis to target time zone.
Panel.tz_localize(tz[, axis, copy, infer_dst])  Localize tz-naive TimeSeries to target time zone

pandas.Panel.asfreq

Panel.asfreq(freq, method=None, how=None, normalize=False)  Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method
to pad/backfill missing values.

    Parameters  freq : DateOffset object, or string
           Method to use for filling holes in reindexed Series pad / ffill: propagate last valid
           observation forward to next valid backfill / bfill: use NEXT valid observation to fill
           method
    how : {‘start’, ‘end’}, default end
           For PeriodIndex only, see PeriodIndex.asfreq
    normalize : bool, default False
           Whether to reset output index to midnight

Returns  converted : type of caller

pandas.Panel.shift

Panel.shift(*args, **kwargs)

    Shift major or minor axis by specified number of leads/lags. Drops periods right now compared with
    DataFrame.shift
Parameters  

lags : int

axis : {'major', 'minor'}

Returns  shifted : Panel

pandas.Panel.resample

Panel.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters  rule : string

the offset string or object representing target conversion

how : string

method for down- or re-sampling, default to ‘mean’ for downsampling

axis : int, optional, default 0

fill_method : string, default None

fill_method for upsampling

closed : {'right', 'left'}

Which side of bin interval is closed

label : {'right', 'left'}

Which bin edge label to label bucket with

convention : {'start', 'end', 's', 'e'}

kind : “period”/“timestamp”

loffset : timedelta

Adjust the resampled time labels

limit : int, default None

Maximum size gap to when reindexing with fill_method

base : int, default 0

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.Panel.tz_convert

Panel.tz_convert(tz, axis=0, copy=True)

Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters  tz : string or pytz.timezone object

copy : boolean, default True

Also make a copy of the underlying data
pandas.Panel.tz_localize

Panel.tz_localize(tz, axis=0, copy=True, infer_dst=False)
  Localize tz-naive TimeSeries to target time zone

Parameters tz : string or pytz.timezone object
  copy : boolean, default True
    Also make a copy of the underlying data
  infer_dst : boolean, default False
    Attempt to infer fall dst-transition times based on order

29.5.14 Serialization / IO / Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.from_dict</td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td>Panel.to_pickle</td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td>Panel.to_excel</td>
<td>Write each DataFrame in Panel to a separate excel sheet</td>
</tr>
<tr>
<td>Panel.to_hdf</td>
<td>Activate the HDFStore</td>
</tr>
<tr>
<td>Panel.to_json</td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td>Panel.to_sparse</td>
<td>Convert to SparsePanel</td>
</tr>
<tr>
<td>Panel.to_frame</td>
<td>Transform wide format into long (stacked) format as DataFrame</td>
</tr>
<tr>
<td>Panel.to_clipboard</td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
</tbody>
</table>

pandas.Panel.from_dict

classmethod Panel.from_dict(data, intersect=False, orient='items', dtype=None)
  Construct Panel from dict of DataFrame objects

Parameters data : dict
  {field : DataFrame}

intersect : boolean
  Intersect indexes of input DataFrames

orient : {'items', 'minor'}, default 'items'
  The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’

Returns Panel

pandas.Panel.to_pickle

Panel.to_pickle(path)
  Pickle (serialize) object to input file path

Parameters path : string
  File path
pandas.Panel.to_excel

Panel.to_excel(path, na_rep='', engine=None, **kwargs)
Write each DataFrame in Panel to a separate excel sheet

Parameters  
**path** : string or ExcelWriter object
    File path or existing ExcelWriter
**na_rep** : string, default ''
    Missing data representation
**engine** : string, default None
    write engine to use - you can also set this via the options
    io.excel.xlsx.writer, io.excel.xls.writer, and
    io.excel.xlsm.writer.

Other Parameters  
**float_format** : string, default None
    Format string for floating point numbers
**cols** : sequence, optional
    Columns to write
**header** : boolean or list of string, default True
    Write out column names. If a list of string is given it is assumed to be aliases for the
    column names
**index** : boolean, default True
    Write row names (index)
**index_label** : string or sequence, default None
    Column label for index column(s) if desired. If None is given, and header and
    index are True, then the index names are used. A sequence should be given if the
    DataFrame uses MultiIndex.
**startrow** : upper left cell row to dump data frame
**startcol** : upper left cell column to dump data frame

Notes

Keyword arguments (and na_rep) are passed to the to_excel method for each DataFrame written.

pandas.Panel.to_hdf

Panel.to_hdf(path_or_buf, key, **kwargs)
activate the HDFStore

Parameters  
**path_or_buf** : the path (string) or buffer to put the store
**key** : string
    identifier for the group in the store
**mode** : optional, {'a', 'w', 'r', 'r+'}, default ‘a’
    ‘r’ Read-only; no data can be modified.
write: a new file is created (an existing file with the same name would be deleted).

append: an existing file is opened for reading and writing, and if the file does not exist it is created.

It is similar to ‘a’, but the file must already exist.

format: ‘fixed(f)table(t)’, default is ‘fixed’

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append: boolean, default False

For Table formats, append the input data to the existing

complevel: int, 1-9, default 0

If a complib is specified compression will be applied where possible

complib: {‘zlib’, ‘bzip2’, ‘lzma’, ‘blosc’, None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32: bool, default False

If applying compression use the fletcher32 checksum

pandas.Panel.to_json

Panel.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters

path_or_buf: the path or buffer to write the result string

if this is None, return a StringIO of the converted string

orient: string

• Series
  – default is ‘index’
  – allowed values are: {‘split’,’records’,’index’}

• DataFrame
  – default is ‘columns’
  – allowed values are: {‘split’,’records’,’index’,’columns’,’values’}

• The format of the JSON string
  – split : dict like {index -> [index], columns -> [columns], data -> [values]}
  – records : list like [{column -> value}, ... , {column -> value}]
  – index : dict like {index -> {column -> value}}
- columns : dict like {column -> {index -> value}}
- values : just the values array

date_format : {'epoch', 'iso'}
Type of date conversion. epoch = epoch milliseconds, iso’ = ISO8601, default is epoch.
double_precision : The number of decimal places to use when encoding
floating point values, default 10.
force_ascii : force encoded string to be ASCII, default True.
date_unit : string, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
default_handler : callable, default None
Handler to call if object cannot otherwise be converted to a suitable format for JSON.
Should receive a single argument which is the object to convert and return a serialisable object.

Returns same type as input object with filtered info axis

**pandas.Panel.to_sparse**

Panel.to_sparse(fill_value=None, kind='block')
Convert to SparsePanel

Parameters fill_value : float, default NaN
kind : {'block', 'integer'}

Returns y : SparseDataFrame

**pandas.Panel.to_frame**

Panel.to_frame(filter_observations=True)
Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose
index is a MultiIndex formed of the Panel’s major and minor axes.

Parameters filter_observations : boolean, default True

Drop (major, minor) pairs without a complete set of observations across all the items

Returns y : DataFrame

**pandas.Panel.to_clipboard**

Panel.to_clipboard(excel=None, sep=None, **kwargs)
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters excel : boolean, defaults to True

if True, use the provided separator, writing in a csv format for allowing easy pasting
into excel. If False, write a string representation of the object to the clipboard
sep : optional, defaults to tab

other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none

29.6 Panel4D

29.6.1 Constructor

Panel4D([data, labels, items, major_axis, ...]) Represents a 4 dimensional structured

pandas.Panel4D

class pandas.Panel4D (data=None, labels=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)

Represents a 4 dimensional structured

Parameters  data : ndarray (labels x items x major x minor), or dict of Panels
labels : Index or array-like
items : Index or array-like
major_axis : Index or array-like: axis=2
minor_axis : Index or array-like: axis=3
dtype : dtype, default None

Data type to force, otherwise infer

Copy data from inputs. Only affects DataFrame / 2d ndarray input

Attributes

<table>
<thead>
<tr>
<th>at</th>
<th>index(es) of the NDFrame</th>
</tr>
</thead>
<tbody>
<tr>
<td>axes</td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td>blocks</td>
<td>Return the dtypes in this object</td>
</tr>
<tr>
<td>empty</td>
<td>True if NDFrame is entirely empty [no items]</td>
</tr>
<tr>
<td>ftypes</td>
<td>Return the ftypes (indication of sparse/dense and dtype)</td>
</tr>
<tr>
<td>iat</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.69 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>.iat</td>
<td>Return the value at the given position.</td>
</tr>
<tr>
<td>.iloc</td>
<td>Return the value at the given position.</td>
</tr>
<tr>
<td>.ix</td>
<td>Return the value at the given position.</td>
</tr>
<tr>
<td>.loc</td>
<td>Return the value at the given position.</td>
</tr>
<tr>
<td>ndim</td>
<td>Number of axes / array dimensions.</td>
</tr>
<tr>
<td>shape</td>
<td>Tuple of axis dimensions.</td>
</tr>
<tr>
<td>values</td>
<td>Numpy representation of NDFrame.</td>
</tr>
</tbody>
</table>

Panel4D.at

Panel4D.at

Panel4D.axes

Panel4D.axes

Panel4D.blocks

Panel4D.blocks

Panel4D.dtypes

Panel4D.dtypes

Panel4D.empty

Panel4D.empty

Panel4D.ftypes

Panel4D.ftypes

Panel4D.iat

Panel4D.iat

Panel4D.iloc

Panel4D.iloc
pandas.Panel4D.ix

Panel4D.ix

pandas.Panel4D.loc

Panel4D.loc

pandas.Panel4D.ndim

Panel4D.ndim
Number of axes / array dimensions

pandas.Panel4D.shape

Panel4D.shape
tuple of axis dimensions

pandas.Panel4D.values

Panel4D.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting): that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

is_copy

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td>add(other[, axis])</td>
<td>Wrapper method for add</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names</td>
</tr>
<tr>
<td>align(other[, join, axis, level, copy,...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>apply(func[, axis])</td>
<td>Applies function along input axis of the Panel</td>
</tr>
<tr>
<td>as_blocks()</td>
<td>Convert the frame to a dict of dtype -&gt; Constructor Types that each has</td>
</tr>
<tr>
<td>as_matrix()</td>
<td></td>
</tr>
<tr>
<td>asfreq(freq[, method, how, normalize])</td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td>astype(dtype[, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>at_time(time[, asof])</td>
<td>Select values at particular time of day (e.g.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.70 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>between_time</code></td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM)</td>
</tr>
<tr>
<td><code>bfill</code></td>
<td>Synonym for NDFrame.fillna(method='bfill')</td>
</tr>
<tr>
<td><code>bool</code></td>
<td>Return the bool of a single element PandasObject</td>
</tr>
<tr>
<td><code>clip</code></td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td><code>clip_lower</code></td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td><code>clip_upper</code></td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td><code>compound</code></td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td><code>conform</code></td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
<tr>
<td><code>consolidate</code></td>
<td>Compute NDFrame with “consolidated” internals (data of each dtype)</td>
</tr>
<tr>
<td><code>convert_objects</code></td>
<td>Attempt to infer better dtype for object columns</td>
</tr>
<tr>
<td><code>copy</code></td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td><code>count</code></td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td><code>cummax</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin</code></td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td><code>cumprod</code></td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td><code>cumsum</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>describe</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>div</code></td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td><code>divide</code></td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td><code>drop</code></td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td><code>dropna</code></td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td><code>eq</code></td>
<td>Wrapper for comparison method eq</td>
</tr>
<tr>
<td><code>equals</code></td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the</td>
</tr>
<tr>
<td><code>ffill</code></td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td><code>fillna</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter</code></td>
<td>Same as values (but handles sparseness conversions)</td>
</tr>
<tr>
<td><code>first</code></td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td><code>floordiv</code></td>
<td>Wrapper method for floordiv</td>
</tr>
<tr>
<td><code>fromDict</code></td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td><code>from_dict</code></td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td><code>get</code></td>
<td>Wrapper for comparison method ge</td>
</tr>
<tr>
<td><code>get_dtypes_counts</code></td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td><code>get_ftypes_counts</code></td>
<td>Return the counts of ftypes in this object</td>
</tr>
<tr>
<td><code>get_value</code></td>
<td>Quickly retrieve single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>get_values</code></td>
<td>same as values (but handles sparseness conversions)</td>
</tr>
<tr>
<td><code>groupby</code></td>
<td>Wrapper for comparison method gt</td>
</tr>
<tr>
<td><code>gt</code></td>
<td>Wrapper for comparison method gt</td>
</tr>
<tr>
<td><code>head</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>isnull</code></td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td><code>iteritems</code></td>
<td>Iterate over (label, values) on info axis</td>
</tr>
<tr>
<td><code>iterkv</code></td>
<td>iteritems alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td><code>join</code></td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td><code>keys</code></td>
<td>Get the ‘info axis’ (see Indexing for more)</td>
</tr>
<tr>
<td><code>kurt</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>kurtosis</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>last</code></td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td><code>le</code></td>
<td>Wrapper for comparison method le</td>
</tr>
<tr>
<td><code>load</code></td>
<td>Deprecated.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.70 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>lt(other)</code></td>
<td>Wrapper for comparison method lt</td>
</tr>
<tr>
<td><code>mad([axis, skipna, level])</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>major_xs(key[, copy])</code></td>
<td>Return slice of panel along major axis</td>
</tr>
<tr>
<td><code>mask(cond)</code></td>
<td>Returns copy whose values are replaced with nan if the</td>
</tr>
<tr>
<td><code>max([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>median([axis, skipna, level, numeric_only])</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>min([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>minor_xs(key[, copy])</code></td>
<td>Return slice of panel along minor axis</td>
</tr>
<tr>
<td><code>mod(other[, axis])</code></td>
<td>Wrapper method for mod</td>
</tr>
<tr>
<td><code>mul(other[, axis])</code></td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td><code>multiply(other[, axis])</code></td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td><code>ne(other)</code></td>
<td>Wrapper for comparison method ne</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null</td>
</tr>
<tr>
<td><code>pct_change([periods, fill_method, limit, freq])</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pop(item)</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow(other[, axis])</code></td>
<td>Wrapper method for pow</td>
</tr>
<tr>
<td><code>prod([axis, skipna, level, numeric_only])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>product([axis, skipna, level, numeric_only])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>radd(other[, axis])</code></td>
<td>Wrapper method for radd</td>
</tr>
<tr>
<td><code>rdiv(other[, axis])</code></td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td><code>reindex(items[, major_axis, minor_axis])</code></td>
<td>Conform Panel to new index with optional filling logic, placing</td>
</tr>
<tr>
<td><code>reindex_axis(labels[, axis, method, level, ...])</code></td>
<td>Conform input object to new index with optional filling logic,</td>
</tr>
<tr>
<td><code>rename([items, major_axis, minor_axis])</code></td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>rename_axis(mapper[, axis, copy, inplace])</code></td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>replaced(to_replace, value, inplace, limit, ...)</code></td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td><code>resample(rule[, how, axis, fill_method, ...])</code></td>
<td>Convenience method for frequency conversion and resampling of regular time-se-</td>
</tr>
<tr>
<td><code>rffloordiv(other[, axis])</code></td>
<td>Wrapper method for rffloordiv</td>
</tr>
<tr>
<td><code>rmul(other[, axis])</code></td>
<td>Wrapper method for rmul</td>
</tr>
<tr>
<td><code>rpow(other[, axis])</code></td>
<td>Wrapper method for rpow</td>
</tr>
<tr>
<td><code>rsub(other[, axis])</code></td>
<td>Wrapper method for rsub</td>
</tr>
<tr>
<td><code>rtruediv(other[, axis])</code></td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td><code>save(path)</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>select(crit[, axis])</code></td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>sem([axis, skipna, level, ddof])</code></td>
<td>Return unbiased standard error of the mean over requested axis</td>
</tr>
<tr>
<td><code>set_axis(axis, labels)</code></td>
<td>public version of axis assignment</td>
</tr>
<tr>
<td><code>set_value(*args, **kwargs)</code></td>
<td>Quickly set single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>shift(*args, **kwargs)</code></td>
<td>Equivalent to shift without copying data.</td>
</tr>
<tr>
<td><code>slice_shift((periods, axis))</code></td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>sort_index((axis, ascending))</code></td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>squeeze()</code></td>
<td>squeeze length 1 dimensions</td>
</tr>
<tr>
<td><code>std([axis, skipna, level, ddof])</code></td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>sub(other[, axis])</code></td>
<td>Wrapper method for sub</td>
</tr>
<tr>
<td><code>subtract(other[, axis])</code></td>
<td>Wrapper method for sub</td>
</tr>
<tr>
<td><code>sum([axis, skipna, level, numeric_only])</code></td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td><code>swapaxes(ax1, ax2[, copy])</code></td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>swaplevel(i, j[, axis])</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
</tbody>
</table>
Table 29.70 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tail(n)</code></td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><code>take(indices[, axis, convert, is_copy])</code></td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
<tr>
<td><code>toLong()</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td><code>to_clipboard([excel, sep])</code></td>
<td>Activate the HDFStore</td>
</tr>
<tr>
<td><code>to_excel(*args, **kwargs)</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_dense()</code></td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_frame(*args, **kwargs)</code></td>
<td>Convert an object to a Tensor.</td>
</tr>
<tr>
<td><code>to_hdf(path_or_buf, key, **kwargs)</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_json([path_or_buf, orient, date_format, ...])</code></td>
<td>Permute the dimensions of the Panel</td>
</tr>
<tr>
<td><code>to_long(*args, **kwargs)</code></td>
<td>Truncate a sorted NDFrame before and/or after some particular</td>
</tr>
<tr>
<td><code>to_msgpack([path_or_buf])</code></td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td><code>to_pickle(path)</code></td>
<td>Localize tz-naive TimeSeries to target time zone</td>
</tr>
<tr>
<td><code>to_sql(name, con[, flavor, if_exists, ...])</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td><code>transpose(*args, **kwargs)</code></td>
<td>Returns an object of same shape as self and whose corresponding</td>
</tr>
<tr>
<td><code>tshift([periods, freq, axis])</code></td>
<td>Return slice of panel along selected axis</td>
</tr>
</tbody>
</table>

### pandas.Panel4D.abs

Return an object with absolute value taken. Only applicable to objects that are all numeric

**Returns**

abs: type of caller

### pandas.Panel4D.add

Wrap method for add

**Parameters**

- `other`: Panel or Panel4D
- `axis`: {labels, items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**

Panel4D

### pandas.Panel4D.add_prefix

Concatenate prefix string with panel items names.

**Parameters**

- `prefix`: string

**Returns**

with_prefix: type of caller
pandas.Panel4D.add_suffix

Panel4D.add_suffix(suffix)

Concatenate suffix string with panel items names

Parameters  suffix : string

Returns  with_suffix : type of caller

pandas.Panel4D.align

Panel4D.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)

Align two object on their axes with the specified join method for each axis Index

Parameters  other : DataFrame or Series

join : {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’

axis : allowed axis of the other object, default None

Align on index (0), columns (1), or both (None)

level : int or level name, default None

Broadcast across a level, matching Index values on the passed MultiIndex level

copy : boolean, default True

Always returns new objects. If copy=False and no reindexing is required then original objects are returned.

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

method : str, default None

limit : int, default None

fill_axis : {0, 1}, default 0

Filling axis, method and limit

Returns  (left, right) : (type of input, type of other)

Aligned objects

pandas.Panel4D.apply

Panel4D.apply(func, axis='major', **kwargs)

Applies function along input axis of the Panel

Parameters  func : function

Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/other_axis will be passed a Series

axis : {‘major’, ‘minor’, ‘items’}

Additional keyword arguments will be passed as keywords to the function
Returns  result : Pandas Object

Examples

```python
>>> p.apply(numpy.sqrt) # returns a Panel
>>> p.apply(lambda x: x.sum(), axis=0) # equiv to p.sum(0)
>>> p.apply(lambda x: x.sum(), axis=1) # equiv to p.sum(1)
>>> p.apply(lambda x: x.sum(), axis=2) # equiv to p.sum(2)
```

**pandas.Panel4D.as_blocks**

Panel4D.as_blocks()  
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.  
are presented in sorted order unless a specific list of columns is provided.  

**NOTE:** the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

**Parameters**  
```
columns : array-like
Specific column order
```

**Returns**  
```
values : a list of Object
```

**pandas.Panel4D.as_matrix**

Panel4D.as_matrix()

**pandas.Panel4D.asfreq**

Panel4D.asfreq(freq, method=None, how=None, normalize=False)  
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

**Parameters**  
```
freq : DateOffset object, or string
method : {'backfill', 'bfill', 'pad', 'ffill', None}
Method to use for filling holes in reindexed Series pad / fill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method
```

```
how : {'start', 'end'}, default end
For PeriodIndex only, see PeriodIndex.asfreq
```

```
normalize : bool, default False
Whether to reset output index to midnight
```

**Returns**  
```
converted : type of caller
```
pandas.Panel4D.astype

Panel4D.astype(dtype, copy=True, raise_on_error=True)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters
dtype : numpy.dtype or Python type
raise_on_error : raise on invalid input

Returns casted : type of caller

pandas.Panel4D.at_time

Panel4D.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM)

Parameters	time : datetime.time or string

Returns	values_at_time : type of caller

pandas.Panel4D.between_time

Panel4D.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM)

Parameters	start_time : datetime.time or string	end_time : datetime.time or string
include_start : boolean, default True
include_end : boolean, default True

Returns	values_between_time : type of caller

pandas.Panel4D.bfill

Panel4D.bfill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.Panel4D.bool

Panel4D.bool()
Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False
Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

pandas.Panel4D.clip

Panel4D.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters	lower : float, default None
type: float, default None
Returns clipped : Series

pandas.Panel4D.clip_lower

Panel4D.clip_lower (threshold)
Return copy of the input with values below given value truncated

Returns clipped : same type as input

See Also:
clip

pandas.Panel4D.clip_upper

Panel4D.clip_upper (threshold)
Return copy of input with values above given value truncated

Returns clipped : same type as input

See Also:
clip

pandas.Panel4D.compound

Panel4D.compound (axis=None, skipna=None, level=None, **kwargs)
Return the compound percentage of the values for the requested axis

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns compounded : Panel or Panel4D (if level specified)

pandas.Panel4D.conform

Panel4D.conform (frame, axis='items')
Conform input DataFrame to align with chosen axis pair.

Parameters frame : DataFrame
axis : {'items', 'major', 'minor'}
Axis the input corresponds to. E.g., if axis='major', then the frame's columns would be items, and the index would be values of the minor axis
pandas.Panel4D.consolidate

```
Panel4D.consolidate(inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user

Parameters inplace : boolean, default False
 If False return new object, otherwise modify existing object

Returns consolidated : type of caller
```

pandas.Panel4D.convert_objects

```
Panel4D.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
Attempt to infer better dtype for object columns

Parameters convert_dates : if True, attempt to soft convert dates, if ‘coerce’,
 force conversion (and non-convertibles get NaT)

convert_numeric : if True attempt to coerce to numbers (including
 strings), non-convertibles get NaN

convert_timedeltas : if True, attempt to soft convert timedeltas, if ‘coerce’,
 force conversion (and non-convertibles get NaT)

copy : Boolean, if True, return copy even if no copy is necessary
 (e.g. no conversion was done), default is True. It is meant for internal use, not to be confused with inplace kw.

Returns converted : asm as input object
```

pandas.Panel4D.copy

```
Panel4D.copy(deep=True)
Make a copy of this object

Parameters deep : boolean, default True
 Make a deep copy, i.e. also copy data

Returns copy : type of caller
```

pandas.Panel4D.count

```
Panel4D.count(axis='major')
Return number of observations over requested axis.

Parameters axis : {‘items’, ‘major’, ‘minor’} or {0, 1, 2}

Returns count : DataFrame
```
pandas.Panel4D.cummax

Panel4D.cummax (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative max over requested axis.

Parameters  axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns  max : Panel

pandas.Panel4D.cummin

Panel4D.cummin (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative min over requested axis.

Parameters  axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns  min : Panel

pandas.Panel4D.cumprod

Panel4D.cumprod (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative prod over requested axis.

Parameters  axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns  prod : Panel

pandas.Panel4D.cumsum

Panel4D.cumsum (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative sum over requested axis.

Parameters  axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns  sum : Panel

pandas.Panel4D.describe

Panel4D.describe (percentile_width=None, percentiles=None)
Generate various summary statistics, excluding NaN values.

Parameters  percentile_width : float, deprecated
The `percentile_width` argument will be removed in a future version. Use `percentiles` instead. Width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

**percentiles**: array-like, optional

The percentiles to include in the output. Should all be in the interval [0, 1]. By default `percentiles` is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

**Returns** summary: NDFrame of summary statistics

**Notes**

For numeric dtypes the index includes: count, mean, std, min, max, and lower, 50, and upper percentiles.

If self is of object dtypes (e.g. timestamps or strings), the output will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.

If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

**pandas.Panel4D.div**

```python
Panel4D.div(other, axis=0)
```

Wrapper method for truediv

**Parameters**

- **other**: Panel or Panel4D
- **axis**: {labels, items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns** Panel4D

**pandas.Panel4D.divide**

```python
Panel4D.divide(other, axis=0)
```

Wrapper method for truediv

**Parameters**

- **other**: Panel or Panel4D
- **axis**: {labels, items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns** Panel4D

**pandas.Panel4D.drop**

```python
Panel4D.drop(labels, axis=0, level=None, inplace=False, **kwargs)
```

Return new object with labels in requested axis removed

**Parameters**

- **labels**: single label or list-like
- **axis**: int or axis name
- **level**: int or level name, default None

For MultiIndex
inplace : bool, default False

If True, do operation inplace and return None.

Returns dropped : type of caller

```python
pandas.Panel4D.dropna
```  
Panel4D.dropna(*args, **kwargs)

```python
def pandas.Panel4D.eq
```  
Panel4D.eq(other)

Wrapper for comparison method eq

```python
def pandas.Panel4D.equals
```  
Panel4D.equals(other)

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

```python
def pandas.Panel4D.ffill
```  
Panel4D.ffill(axis=0, inplace=False, limit=None, downcast=None)

Synonym for NDFrame.fillna(method='ffill')

```python
def pandas.Panel4D.fillna
```  
Panel4D.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)

Fill NA/NaN values using the specified method

Parameters method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

value : scalar, dict, or Series

Value to use to fill holes (e.g. 0), alternately a dict/Series of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series will not be filled). This value cannot be a list.

axis : {0, 1}, default 0

- 0: fill column-by-column
- 1: fill row-by-row

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None
Maximum size gap to forward or backward fill

downcast : dict, default is None

... a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : same type as caller

See Also:
reindex, asfreq

pandas.Panel4D.filter

Panel4D.filter(*args, **kwargs)

pandas.Panel4D.first

Panel4D.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset

Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

ts.last(‘10D’) -> First 10 days

pandas.Panel4D.floordiv

Panel4D.floordiv(other, axis=0)
Wrapper method for floordiv

Parameters other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns Panel4D

pandas.Panel4D.fromDict

classmethod Panel4D.fromDict(data, intersect=False, orient=’items’, dtype=None)
Construct Panel from dict of DataFrame objects

Parameters data : dict

{ field : DataFrame }

intersect : boolean
Intersect indexes of input DataFrames

orient : {‘items’, ‘minor’}, default ‘items’
The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’

**Returns**  Panel

**pandas.Panel4D.from_dict**

`classmethod Panel4D.from_dict (data, intersect=False, orient='items', dtype=None)`

Construct Panel from dict of DataFrame objects

**Parameters**  data : dict

    {field : DataFrame}

    intersect : boolean

    Intersect indexes of input DataFrames

    orient : {'items', 'minor'}, default 'items'

     The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’

**Returns**  Panel

**pandas.Panel4D.ge**

`Panel4D.ge (other)`

Wrapper for comparison method ge

**pandas.Panel4D.get**

`Panel4D.get (key, default=None)`

Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found

**Parameters**  key : object

**Returns**  value : type of items contained in object

**pandas.Panel4D.get_dtype_counts**

`Panel4D.get_dtype_counts ()`

Return the counts of dtypes in this object

**pandas.Panel4D.get_ftype_counts**

`Panel4D.get_ftype_counts ()`

Return the counts of ftypes in this object
pandas.Panel4D.get_value

Panel4D.get_value(*args, **kwargs)
Quickly retrieve single value at (item, major, minor) location

Parameters:
- item : item label (panel item)
- major : major axis label (panel item row)
- minor : minor axis label (panel item column)
- takeable : interpret the passed labels as indexers, default False

Returns:
- value : scalar value

pandas.Panel4D.get_values

Panel4D.get_values()
same as values (but handles sparseness conversions)

pandas.Panel4D.groupby

Panel4D.groupby(*args, **kwargs)

pandas.Panel4D.gt

Panel4D.gt(other)
Wrapper for comparison method gt

pandas.Panel4D.head

Panel4D.head(n=5)

pandas.Panel4D.interpolate

Panel4D.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)
Interpolate values according to different methods.

Parameters:
- method : {'linear', 'time', 'index', 'values', 'nearest', 'zero',
  'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline'
  'piecewise_polynomial', 'pchip'}

- ‘linear’: ignore the index and treat the values as equally spaced. default
- ‘time’: interpolation works on daily and higher resolution data to interpolate
given length of interval
- ‘index’, ‘values’: use the actual numerical values of the index
  is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’
  require that you also specify and order (int) e.g. df.interpolate(method='polynomial', order=4)

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation
  methods of similar names. See the scipy documentation for more on their behavior:
  http://docs.scipy.org/doc/scipy/reference/interpolate.html

axis : {0, 1}, default 0
  • 0: fill column-by-column
  • 1: fill row-by-row

limit : int, default None.
  Maximum number of consecutive NaNs to fill.

inplace : bool, default False
  Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None
  Downcast dtypes if possible.

Returns  Series or DataFrame of same shape interpolated at the NaNs

See Also: reindex, replace,fillna

Examples

# Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 2 2 3 3 dtype: float64

pandas.Panel4D.isnull

Panel4D.isnull()
  Return a boolean same-sized object indicating if the values are null

See Also:

notnull  boolean inverse of isnull

pandas.Panel4D.iteritems

Panel4D.iteritems()
  Iterate over (label, values) on info axis
  This is index for Series, columns for DataFrame, major_axis for Panel, and so on.
pandas.Panel4D.iterkv

Panel4D.iterkv(*args, **kwargs)
iteritems alias used to get around 2to3. Deprecated

pandas.Panel4D.join

Panel4D.join(*args, **kwargs)

pandas.Panel4D.keys

Panel4D.keys()
Get the 'info axis' (see Indexing for more)
This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.Panel4D.kurt

Panel4D.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1
Parameters
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a Panel
numeric_only : boolean, default None
    Include only float, int, boolean data. If None, will attempt to use everything, then
    use only numeric data
Returns
kurt : Panel or Panel4D (if level specified)

pandas.Panel4D.kurtosis

Panel4D.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1
Parameters
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a Panel
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
`kurt` : Panel or Panel4D (if level specified)

### pandas.Panel4D.last

**Panel4D.last** *(offset)*

Convenience method for subsetting final periods of time series data based on a date offset

**Parameters**  
`offset` : string, DateOffset, dateutil.relativedelta

**Returns**  
`subset` : type of caller

**Examples**

```python
ts.last('5M') -> Last 5 months
```

### pandas.Panel4D.le

**Panel4D.le** *(other)*

Wrapper for comparison method le

### pandas.Panel4D.load

**Panel4D.load** *(path)*

Deprecated. Use read_pickle instead.

### pandas.Panel4D.lt

**Panel4D.lt** *(other)*

Wrapper for comparison method lt

### pandas.Panel4D.mad

**Panel4D.mad** *(axis=None, skipna=None, level=None, **kwargs)*

Return the mean absolute deviation of the values for the requested axis

**Parameters**  
`axis` : {labels (0), items (1), major_axis (2), minor_axis (3)}

`skipna` : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

`level` : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

`numeric_only` : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data
**pandas.Panel4D.major_xs**

`Panel4D.major_xs(key, copy=None)`

Return slice of panel along major axis

**Parameters**
- **key**: object
  - Major axis label
- **copy**: boolean [deprecated]
  - Whether to make a copy of the data

**Returns**
- **y**: DataFrame
  - index -> minor axis, columns -> items

**Notes**

- major_xs is only for getting, not setting values.
- MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs functionality, see MultiIndex Slicers

**pandas.Panel4D.mask**

`Panel4D.mask(cond)`

Returns copy whose values are replaced with nan if the inverted condition is True

**Parameters**
- **cond**: boolean NDFrame or array

**Returns**
- **wh**: same as input

**pandas.Panel4D.max**

`Panel4D.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

**Parameters**
- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **max**: Panel or Panel4D (if level specified)
**pandas.Panel4D.mean**

`Panel4D.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the mean of the values for the requested axis

**Parameters**

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

- **mean**: Panel or Panel4D (if level specified)

**pandas.Panel4D.median**

`Panel4D.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the median of the values for the requested axis

**Parameters**

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

- **median**: Panel or Panel4D (if level specified)

**pandas.Panel4D.min**

`Panel4D.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the minimum of the values in the object. If you want the index of the minimum, use `idxmin`. This is the equivalent of the `numpy.ndarray` method `argmin`.

**Parameters**

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns  min : Panel or Panel4D (if level specified)

pandas.Panel4D.minor_xs

Panel4D.minor_xs(key, copy=None)

Return slice of panel along minor axis

Parameters  key : object

Minor axis label

copy : boolean [deprecated]

Whether to make a copy of the data

Returns  y : DataFrame

index -> major axis, columns -> items

Notes

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see MultiIndex Slicers

pandas.Panel4D.mod

Panel4D.mod(other, axis=0)

Wrapper method for mod

Parameters  other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns  Panel4D

pandas.Panel4D.mul

Panel4D.mul(other, axis=0)

Wrapper method for mul

Parameters  other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns  Panel4D
**pandas.Panel4D.multiply**

`Panel4D.multiply(other, axis=0)`  
Wrapper method for mul

**Parameters**  
other : Panel or Panel4D  
axis : {labels, items, major_axis, minor_axis}

**Axis to broadcast over**

**Returns**  
Panel4D

**pandas.Panel4D.ne**

`Panel4D.ne(other)`  
Wrapper for comparison method ne

**pandas.Panel4D.notnull**

`Panel4D.notnull()`  
Return a boolean same-sized object indicating if the values are not null

**See Also:**

isnull boolean inverse of notnull

**pandas.Panel4D.pct_change**

`Panel4D.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwds)`  
Percent change over given number of periods.

**Parameters**  
periods : int, default 1  
Periods to shift for forming percent change  
fill_method : str, default ‘pad’  
How to handle NAs before computing percent changes  
limit : int, default None  
The number of consecutive NAs to fill before stopping  
freq : DateOffset, timedelta, or offset alias string, optional  
Increment to use from time series API (e.g. ‘M’ or BDay())

**Returns**  
chg : NDFrame

**Notes**

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.
**pandas.Panel4D.pop**

**Panel4D.pop(item)**

Return item and drop from frame. Raise KeyError if not found.

**pandas.Panel4D.pow**

**Panel4D.pow(other, axis=0)**

Wrapper method for pow

**Parameters**

- **other**: Panel or Panel4D
- **axis**: {labels, items, major_axis, minor_axis}

**Returns** Panel4D

**pandas.Panel4D.prod**

**Panel4D.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)**

Return the product of the values for the requested axis

**Parameters**

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns** prod: Panel or Panel4D (if level specified)

**pandas.Panel4D.product**

**Panel4D.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)**

Return the product of the values for the requested axis

**Parameters**

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns  prod : Panel or Panel4D (if level specified)

pandas.Panel4D.radd

Panel4D.radd(other, axis=0)
Wrapper method for radd

Parameters  other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns  Panel4D

pandas.Panel4D.rdiv

Panel4D.rdiv(other, axis=0)
Wrapper method for rtruediv

Parameters  other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns  Panel4D

pandas.Panel4D.reindex

Panel4D.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)
Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters  items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
copy : boolean, default True
Return a new object, even if the passed indexes are the same
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level
fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible”
value

**limit** : int, default None

Maximum size gap to forward or backward fill

**Returns**  
reindexed : Panel

**Examples**

```python
>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])
```

### Panel4D.reindex_axis

Panel4D.**reindex_axis**  
(labels, axis=0, method=None, level=None, copy=True, limit=None,
fill_value=nan)

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no
value in the previous index. A new object is produced unless the new index is equivalent to the current
one and copy=False

**Parameters**  
labels : array-like

New labels / index to conform to. Preferably an Index object to avoid duplicating
data

axis : {0,1,2,'items','major_axis','minor_axis'}

method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None

Method to use for filling holes in reindexed object. pad / ffill: propagate last valid
observation forward to next valid backfill / bfill: use NEXT valid observation to
fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

limit : int, default None

Maximum size gap to forward or backward fill

**Returns**  
reindexed : Panel

**See Also:**
reindex, reindex_like

**Examples**

```python
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```
pandas.Panel4D.reindex_like

Panel4D.reindex_like(other, method=None, copy=True, limit=None)
return an object with matching indicies to myself

Parameters
other : Object
method : string or None
copy : boolean, default True
limit : int, default None
Maximum size gap to forward or backward fill

Returns
reindexed : same as input

Notes
Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Panel4D.rename

Panel4D.rename(items=None, major_axis=None, minor_axis=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained
in a dict / Series will be left as-is.

Parameters
items, major_axis, minor_axis : dict-like or function, optional
Transformation to apply to that axis values

copy : boolean, default True
Also copy underlying data

inplace : boolean, default False
Whether to return a new Panel. If True then value of copy is ignored.

Returns
renamed : Panel (new object)

pandas.Panel4D.rename_axis

Panel4D.rename_axis(mapper, axis=0, copy=True, inplace=False)
Alter index and / or columns using input function or functions. Function / dict values must be unique
(1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters
mapper : dict-like or function, optional

axis : int or string, default 0

copy : boolean, default True
Also copy underlying data

inplace : boolean, default False

Returns
renamed : type of caller
pandas.Panel4D.replace

Panel4D.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
Replace values given in ‘to_replace’ with ‘value’.

Parameters
to_replace : str, regex, list, dict, Series, numeric, or None
  • str or regex:
    – str: string exactly matching to_replace will be replaced with value
    – regex: regex matching to_replace will be replaced with value
  • list of str, regex, or numeric:
    – First, if to_replace and value are both lists, they must be the same length.
    – Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
    – str and regex rules apply as above.
  • dict:
    – Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
    – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
  • None:
    – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None
Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False
If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None
Maximum size gap to forward or backward fill

regex : bool or same types as to_replace, default False
Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.
method : string, optional, {'pad', 'fill', 'bfill'}

The method to use when for replacement, when to_replace is a list.

Returns filled : NDFrame

Raises AssertionError

• If regex is not a bool and to_replace is not None.

TypeError

• If to_replace is a dict and value is not a list, dict, ndarray, or Series
• If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series.

ValueError

• If to_replace and value are lists or ndarrays, but they are not the same length.

See Also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.Panel4D.resample

Panel4D.resample (rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters rule : string

the offset string or object representing target conversion

how : string

method for down- or re-sampling, default to ‘mean’ for downsampling

axis : int, optional, default 0

fill_method : string, default None

fill_method for upsampling

closed : {'right', 'left'}

Which side of bin interval is closed

label : {'right', 'left'}
Which bin edge label to label bucket with

`convention` : {'start', 'end', 's', 'e'}
`kind` : "period"/"timestamp"

`loffset` : timedelta
Adjust the resampled time labels

`limit` : int, default None
Maximum size gap to when reindexing with fill_method

`base` : int, default 0
For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

**pandas.Panel4D.rfloordiv**

Panel4D.rfloordiv (other, axis=0)
Wrapper method for rfloordiv

Parameters
- `other` : Panel or Panel4D
- `axis` : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel4D

**pandas.Panel4D.rmod**

Panel4D.rmod (other, axis=0)
Wrapper method for rmod

Parameters
- `other` : Panel or Panel4D
- `axis` : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel4D

**pandas.Panel4D.rmul**

Panel4D.rmul (other, axis=0)
Wrapper method for rmul

Parameters
- `other` : Panel or Panel4D
- `axis` : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel4D
pandas.Panel4D.rpow

Panel4D.rpow(other, axis=0)
Wrapper method for rpow

Parameters
other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel4D

pandas.Panel4D.rsub

Panel4D.rsub(other, axis=0)
Wrapper method for rsub

Parameters
other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel4D

pandas.Panel4D.rtruediv

Panel4D.rtruediv(other, axis=0)
Wrapper method for rtruediv

Parameters
other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel4D

pandas.Panel4D.save

Panel4D.save(path)
Deprecated. Use to_pickle instead

pandas.Panel4D.select

Panel4D.select(crit, axis=0)
Return data corresponding to axis labels matching criteria

Parameters
crit : function

To be called on each index (label). Should return True or False

axis : int

Returns
selection : type of caller
pandas.Panel4D.sem

Panel4D.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters:
- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns:
- **standarderror**: Panel or Panel4D (if level specified)

pandas.Panel4D.set_axis

Panel4D.set_axis(axis, labels)
public version of axis assignment

pandas.Panel4D.set_value

Panel4D.set_value(*args, **kwargs)
Quickly set single value at (item, major, minor) location

Parameters:
- **item**: item label (panel item)
- **major**: major axis label (panel item row)
- **minor**: minor axis label (panel item column)
- **value**: scalar
- **takeable**: interpret the passed labels as indexers, default False

Returns:
- **panel**: Panel
  If label combo is contained, will be reference to calling Panel, otherwise a new object

pandas.Panel4D.shift

Panel4D.shift(*args, **kwargs)
pandas.Panel4D.skew

Panel4D.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Panel

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then
use only numeric data

Returns
skew : Panel or Panel4D (if level specified)

pandas.Panel4D.slice_shift

Panel4D.slice_shift(periods=1, axis=0, **kwds)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the
shifted axis will be smaller than the original.

Parameters
periods : int
Number of periods to move, can be positive or negative

Returns
shifted : same type as caller

Notes
While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.Panel4D.sort_index

Panel4D.sort_index(axis=0, ascending=True)
Sort object by labels (along an axis)

Parameters
axis : {0, 1}
Sort index/rows versus columns

ascending : boolean, default True
Sort ascending vs. descending

Returns
sorted_obj : type of caller

pandas.Panel4D.squeeze

Panel4D.squeeze()
squeeze length 1 dimensions
Pandas Panel4D std

Panel4D.std (axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
stdev : Panel or Panel4D (if level specified)

Pandas Panel4D sub

Panel4D.sub (other, axis=0)
Wrapper method for sub

Parameters
other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}

Returns
Panel4D

Pandas Panel4D subtract

Panel4D.subtract (other, axis=0)
Wrapper method for sub

Parameters
other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}

Returns
Panel4D

Pandas Panel4D sum

Panel4D.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the sum of the values for the requested axis

Parameters
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a Panel
numeric_only : boolean, default None
    Include only float, int, boolean data. If None, will attempt to use everything, then
    use only numeric data

Returns  sum : Panel or Panel4D (if level specified)

pandas.Panel4D.swapaxes

Panel4D.swapaxes (axis1, axis2, copy=True)
    Interchange axes and swap values axes appropriately

Returns  y : same as input

pandas.Panel4D.swaplevel

Panel4D.swaplevel (i, j, axis=0)
    Swap levels i and j in a MultiIndex on a particular axis

Parameters  i, j : int, string (can be mixed)
    Level of index to be swapped. Can pass level name as string.

Returns  swapped : type of caller (new object)

pandas.Panel4D.tail

Panel4D.tail (n=5)

pandas.Panel4D.take

Panel4D.take (indices, axis=0, convert=True, is_copy=True)
    Analogous to ndarray.take

Parameters  indices : list / array of ints
    axis : int, default 0
    convert : translate neg to pos indices (default)
    is_copy : mark the returned frame as a copy

Returns  taken : type of caller

pandas.Panel4D.toLong

Panel4D.toLong (*args, **kwargs)
pandas.Panel4D.to_clipboard

**Panel4D.to_clipboard(excel=None, sep=None, **kwargs)**

Attempt to write text representation of object to the system clipboard. This can be pasted into Excel, for example.

**Parameters**

- `excel`: boolean, defaults to True
  - if True, use the provided separator, writing in a csv format for allowing easy pasting into Excel. If False, write a string representation of the object to the clipboard
- `sep`: optional, defaults to tab
- `other keywords are passed to to_csv`

**Notes**

**Requirements for your platform**

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none

pandas.Panel4D.to_dense

**Panel4D.to_dense()**

Return dense representation of NDFrame (as opposed to sparse)

pandas.Panel4D.to_excel

**Panel4D.to_excel(*args, **kwargs)**

pandas.Panel4D.to_frame

**Panel4D.to_frame(*args, **kwargs)**

pandas.Panel4D.to_hdf

**Panel4D.to_hdf(path_or_buf, key, **kwargs)**

activate the HDFStore

**Parameters**

- `path_or_buf`: the path (string) or buffer to put the store
- `key`: string
  - identifier for the group in the store
- `mode`: optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’
  - ‘r’: Read-only; no data can be modified.
  - ‘w’: Write; a new file is created (an existing file with the same name would be deleted).
a Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

r+ It is similar to ‘a’, but the file must already exist.

format : ‘fixed(f)table(t)’, default is ‘fixed’

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False

For Table formats, append the input data to the existing

complevel : int, 1-9, default 0

If a complib is specified compression will be applied where possible

complib : {'zlib', 'bzip2', 'lz4', 'blosc', None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum

pandas.Panel4D.to_json

Panel4D.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters path_or_buf : the path or buffer to write the result string

if this is None, return a StringIO of the converted string

orient : string

• Series
  – default is ‘index’
  – allowed values are: {'split','records','index’}

• DataFrame
  – default is ‘columns’
  – allowed values are: {'split','records','index’,’columns’,’values’}

• The format of the JSON string
  – split : dict like {index -> [index], columns -> [columns], data -> [values]}
  – records : list like [[column -> value], ... , [column -> value]}
  – index : dict like {index -> {column -> value}}
  – columns : dict like {column -> {index -> value}}
values : just the values array

date_format : {'epoch', 'iso'}
Type of date conversion. epoch = epoch milliseconds, iso = ISO8601, default is epoch.

double_precision : The number of decimal places to use when encoding floating point values, default 10.

force_ascii : force encoded string to be ASCII, default True.

date_unit : string, default 'ms' (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively.

default_handler : callable, default None
Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

Returns same type as input object with filtered info axis

pandas.Panel4D.to_long

Panel4D.to_long(*args, **kwargs)

pandas.Panel4D.to_msgpack

Panel4D.to_msgpack(path_or_buf=None, **kwargs)
msgpack (serialize) object to input file path
THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters path : string File path, buffer-like, or None
    if None, return generated string
append : boolean whether to append to an existing msgpack
    (default is False)
compress : type of compressor (zlib or blosc), default to None (no compression)

pandas.Panel4D.to_pickle

Panel4D.to_pickle(path)
Pickle (serialize) object to input file path

Parameters path : string
    File path
pandas.Panel4D.to_sparse

Panel4D.to_sparse(*args, **kwargs)

pandas.Panel4D.to_sql

Panel4D.to_sql(name, con, flavor='sqlite', if_exists='fail', index=True, index_label=None)

Write records stored in a DataFrame to a SQL database.

Parameters

name : string
    Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
    Using SQLAlchemy makes it possible to use any DB supported by that library. If
    a DBAPI2 object, only sqlite3 is supported.

flavor : {'sqlite', 'mysql'}, default 'sqlite'
    The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is
    deprecated and will be removed in future versions, but it will be further supported
    through SQLAlchemy engines.

if_exists : {'fail', 'replace', 'append'}, default 'fail'
    • fail: If table exists, do nothing.
    • replace: If table exists, drop it, recreate it, and insert data.
    • append: If table exists, insert data. Create if does not exist.

index : boolean, default True
    Write DataFrame index as a column.

index_label : string or sequence, default None
    Column label for index column(s). If None is given (default) and
    index is True, then the index names are used. A sequence should be given if the DataFrame uses
    MultiIndex.

pandas.Panel4D.transpose

Panel4D.transpose(*args, **kwargs)

Permute the dimensions of the Panel

Parameters

args : three positional arguments: each one of
    {0,1,2,'items','major_axis','minor_axis'}

copy : boolean, default False
    Make a copy of the underlying data. Mixed-dtype data will always result in a copy

Returns

y : same as input
Examples

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```

**pandas.Panel4D.truediv**

Panel4D.truediv(other, axis=0)
Wrapper method for truediv

**Parameters**
- `other`: Panel or Panel4D
- `axis`: {labels, items, major_axis, minor_axis}

**Returns**
Panel4D

**pandas.Panel4D.truncate**

Panel4D.truncate(before=None, after=None, axis=None, copy=True)
Truncates a sorted NDFrame before and/or after some particular dates.

**Parameters**
- `before`: date
  Truncate before date
- `after`: date
  Truncate after date
- `axis`: the truncation axis, defaults to the stat axis
- `copy`: boolean, default is True,
  return a copy of the truncated section

**Returns**
`truncated`: type of caller

**pandas.Panel4D.tshift**

Panel4D.tshift(periods=1, freq=None, axis='major', **kwds)

**pandas.Panel4D.tz_convert**

Panel4D.tz_convert(tz, axis=0, copy=True)
Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

**Parameters**
- `tz`: string or pytz.timezone object
- `copy`: boolean, default True

Also make a copy of the underlying data
pandas.Panel4D.tz_localize

Panel4D.tz_localize(tz, axis=0, copy=True, infer_dst=False)
Localize tz-naive TimeSeries to target time zone

Parameters  
**tz** : string or pytz.timezone object
  - **copy** : boolean, default True
    Also make a copy of the underlying data
  - **infer_dst** : boolean, default False
    Attempt to infer fall dst-transition times based on order

pandas.Panel4D.update

Panel4D.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)
Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items

Parameters  
**other** : Panel, or object coercible to Panel
  - **join** : How to join individual DataFrames
    `{‘left’, ‘right’, ‘outer’, ‘inner’}`, default ‘left’
  - **overwrite** : boolean, default True
    If True then overwrite values for common keys in the calling panel
  - **filter_func** : callable(1d-array) -> 1d-array<boolean>, default None
    Can choose to replace values other than NA. Return True for values that should be updated
  - **raise_conflict** : bool
    If True, will raise an error if a DataFrame and other both contain data in the same place.

pandas.Panel4D.var

Panel4D.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters  
**axis** : {labels (0), items (1), major_axis (2), minor_axis (3)}
  - **skipna** : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
  - **level** : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
  - **numeric_only** : boolean, default None
    Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data
Returns  variance : Panel or Panel4D (if level specified)

pandas.Panel4D.where

Panel4D.where (cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters  cond : boolean NDFrame or array
  other : scalar or NDFrame
  inplace : boolean, default False
    Whether to perform the operation in place on the data
  axis : alignment axis if needed, default None
  level : alignment level if needed, default None
  try_cast : boolean, default False
    try to cast the result back to the input type (if possible),
  raise_on_error : boolean, default True
    Whether to raise on invalid data types (e.g. trying to where on strings)

Returns  wh : same type as caller

pandas.Panel4D.xs

Panel4D.xs (key, axis=1, copy=None)
Return slice of panel along selected axis

Parameters  key : object
  Label
  axis : {‘items’, ‘major’, ‘minor’}, default 1/’major’
  copy : boolean [deprecated]
    Whether to make a copy of the data

Returns  y : ndim(self)-1

Notes

xs is only for getting, not setting values.
MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers
### 29.6.2 Attributes and underlying data

#### Axes

- **labels**: axis 1; each label corresponds to a Panel contained inside
- **items**: axis 2; each item corresponds to a DataFrame contained inside
- **major_axis**: axis 3; the index (rows) of each of the DataFrames
- **minor_axis**: axis 4; the columns of each of the DataFrames

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel4D.values</td>
<td>Numpy representation of NDFrame</td>
</tr>
<tr>
<td>Panel4D.axes</td>
<td>Index(es) of the NDFrame</td>
</tr>
<tr>
<td>Panel4D.ndim</td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td>Panel4D.shape</td>
<td>Tuple of axis dimensions</td>
</tr>
<tr>
<td>Panel4D.dtypes</td>
<td>Return the dtypes in this object</td>
</tr>
<tr>
<td>Panel4D.ftypes</td>
<td>Return the ftypes (indication of sparse/dense and dtype)</td>
</tr>
<tr>
<td>Panel4D.get_dtype_counts()</td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td>Panel4D.get_ftype_counts()</td>
<td>Return the counts of ftypes in this object</td>
</tr>
</tbody>
</table>

#### pandas.Panel4D.values

**Panel4D.values**

Numpy representation of NDFrame

**Notes**

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

E.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

#### pandas.Panel4D.axes

**Panel4D.axes**

Index(es) of the NDFrame

#### pandas.Panel4D.ndim

**Panel4D.ndim**

Number of axes / array dimensions

#### pandas.Panel4D.shape

**Panel4D.shape**

tuple of axis dimensions
pandas.Panel4D.dtypes

Panel4D. dtypes
  Return the dtypes in this object

pandas.Panel4D.ftypes

Panel4D. ftypes
  Return the ftypes (indication of sparse/dense and dtype) in this object.

pandas.Panel4D.get_dtype_counts

Panel4D. get_dtype_counts()
  Return the counts of dtypes in this object

pandas.Panel4D.get_ftype_counts

Panel4D. get_ftype_counts()
  Return the counts of ftypes in this object

29.6.3 Conversion

Panel4D.astype(dtype[, copy, raise_on_error])	Cast object to input numpy.dtype
Panel4D.copy([deep])	Make a copy of this object
Panel4D.isnull()	Return a boolean same-sized object indicating if the values are null ..
Panel4D.notnull()	Return a boolean same-sized object indicating if the values are not null ..

pandas.Panel4D.astype

Panel4D. astype (dtype, copy=True, raise_on_error=True)
  Cast object to input numpy.dtype
  Return a copy when copy = True (be really careful with this!)

  Parameters  dtype : numpy.dtype or Python type
             raise_on_error : raise on invalid input

  Returns  casted : type of caller

pandas.Panel4D.copy

Panel4D. copy (deep=True)
  Make a copy of this object

  Parameters  deep : boolean, default True
                  Make a deep copy, i.e. also copy data

  Returns  copy : type of caller
pandas.Panel4D.isnull

Panel4D.isnull()

Return a boolean same-sized object indicating if the values are null

See Also:

notnull boolean inverse of isnull

pandas.Panel4D.notnull

Panel4D.notnull()

Return a boolean same-sized object indicating if the values are not null

See Also:

isnull boolean inverse of notnull

29.7 Index

Many of these methods or variants thereof are available on the objects that contain an index (Series/Dataframe) and those should most likely be used before calling these methods directly.

Index Immutable ndarray implementing an ordered, sliceable set.

29.7.1 pandas.Index

class pandas.Index

Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects

Parameters
data : array-like (1-dimensional)
dtype : NumPy dtype (default: object)
copy : bool
    Make a copy of input ndarray
name : object
    Name to be stored in the index
tupleize_cols : bool (default: True)
    When True, attempt to create a MultiIndex if possible

Notes

An Index instance can only contain hashable objects

Attributes
pandas: powerful Python data analysis toolkit, Release 0.14.1

<table>
<thead>
<tr>
<th>T</th>
<th>Same as self.transpose(), except that self is returned if self.ndim &lt; 2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>Base object if memory is from some other object.</td>
</tr>
<tr>
<td>ctypes</td>
<td>An object to simplify the interaction of the array with the ctypes module.</td>
</tr>
<tr>
<td>data</td>
<td>Python buffer object pointing to the start of the array’s data.</td>
</tr>
<tr>
<td>flags</td>
<td></td>
</tr>
<tr>
<td>flat</td>
<td>A 1-D iterator over the array.</td>
</tr>
<tr>
<td>imag</td>
<td>The imaginary part of the array.</td>
</tr>
<tr>
<td>is_monotonic</td>
<td></td>
</tr>
<tr>
<td>itemsize</td>
<td>Length of one array element in bytes.</td>
</tr>
<tr>
<td>names</td>
<td></td>
</tr>
<tr>
<td>nbytes</td>
<td>Total bytes consumed by the elements of the array.</td>
</tr>
<tr>
<td>ndim</td>
<td>Number of array dimensions.</td>
</tr>
<tr>
<td>nlevels</td>
<td></td>
</tr>
<tr>
<td>real</td>
<td>The real part of the array.</td>
</tr>
<tr>
<td>shape</td>
<td>Tuple of array dimensions.</td>
</tr>
<tr>
<td>size</td>
<td>Number of elements in the array.</td>
</tr>
<tr>
<td>strides</td>
<td>Tuple of bytes to step in each dimension when traversing an array.</td>
</tr>
<tr>
<td>values</td>
<td></td>
</tr>
</tbody>
</table>

**pandas.Index.T**

Index.T  
Same as self.transpose(), except that self is returned if self.ndim < 2.

### Examples

```python
>>> x = np.array([[1., 2.], [3., 4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1., 2., 3., 4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])
```

**pandas.Index.base**

Index.base  
Base object if memory is from some other object.

### Examples

The base of an array that owns its memory is None:

```python
>>> x = np.array([1, 2, 3, 4])
>>> x.base is None
True
```
Slicing creates a view, whose memory is shared with x:

```python
>>> y = x[2:]
>>> y.base is x
True
```

### pandas.Index.ctypes

An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return ctypes objects that can be used as arguments to a shared library.

**Parameters** None

**Returns** `c`: Python object

Possessing attributes data, shape, strides, etc.

**See Also:**

numpy.ctypeslib

**Notes**

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted undocumented public attributes, as well as documented private attributes):

- **data**: A pointer to the memory area of the array as a Python integer. This memory area may contain data that is not aligned, or not in correct byte-order. The memory area may not even be writable. The array flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as self._array_interface_['data'][0].

- **shape** (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding to dtype('p') on this platform. This base-type could be c_int, c_long, or c_longlong depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the shape of the underlying array.

- **strides** (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape attribute. This ctypes array contains the strides information from the underlying array. This strides information is important for showing how many bytes must be jumped to get to the next element in the array.

- **data_as(obj)**: Return the data pointer cast to a particular c-types object. For example, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

- **shape_as(obj)**: Return the shape tuple as an array of some other c-types type. For example: self.shape_as(ctypes.c_short).

- **strides_as(obj)**: Return the strides tuple as an array of some other c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For example, calling `(a+b).ctypes.data_as(ctypes.c_void_p)` returns a pointer to memory.
that is invalid because the array created as \((a+b)\) is deallocated before the next Python statement. You can avoid this problem using either \(c=a+b\) or \(ct=(a+b).\text{ctypes}\). In the latter case, \(ct\) will hold a reference to the array until \(ct\) is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as parameter attribute which will return an integer equal to the data attribute.

**Examples**

```python
>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
 c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
 c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>
```

**pandas.Index.data**

*Index.data*

Python buffer object pointing to the start of the array’s data.

**pandas.Index.flags**

*Index.flags*

**pandas.Index.flat**

*Index.flat*

A 1-D iterator over the array.

This is a `numpy.flatiter` instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator object.

**See Also:**

- `flatten`: Return a copy of the array collapsed into one dimension.
- `flatiter`
Examples

```python
>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>
```

An assignment example:

```python
>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])
```

**pandas.Index.imag**

Index.imag
The imaginary part of the array.

Examples

```python
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')
```

**pandas.Index.is_monotonic**

Index.is_monotonic

**pandas.Index.itemsize**

Index.itemsize
Length of one array element in bytes.
Examples

>>> x = np.array([1, 2, 3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1, 2, 3], dtype=np.complex128)
>>> x.itemsize
16

pandas.Index.names

Index.names

pandas.Index.nbytes

Index.nbytes
Total bytes consumed by the elements of the array.

Notes
Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

pandas.Index.ndim

Index.ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

pandas.Index.nlevels

Index.nlevels
pandas.Index.real

Index.real
The real part of the array.

See Also:

numpy.real equivalent function

Examples

```python
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')
```

pandas.Index.shape

Index.shape
Tuple of array dimensions.

Notes
May be used to “reshape” the array, as long as this would not require a change in the total number of elements

Examples

```python
>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
```

pandas.Index.size

Index.size
Number of elements in the array.

Equivalent to `np.prod(a.shape)`, i.e., the product of the array’s dimensions.
Examples

```python
>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
```

```python
>>> x.size
30
```

```python
>>> np.prod(x.shape)
30
```

**pandas.Index.strides**

Index. *strides*

Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element \((i[0], i[1], \ldots, i[n])\) in an array \(a\) is:

```python
offset = sum(np.array(i) * a.strides)
```

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

**See Also:**

numpy.lib.stride_tricks.as_strided

**Notes**

Imagine an array of 32-bit integers (each 4 bytes):

```python
x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)
```

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to the same position in the next row. As such, the strides for the array \(x\) will be \((20, 4)\).

**Examples**

```python
>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
```

```python
>>> y
array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]))
```

```python
>>> y.strides
(48, 16, 4)
```

```python
>>> y[1,1,1]
17
```

```python
>>> offset=sum(y.strides * np.array((1,1,1)))
```

```python
>>> offset/y.itemsize
17
```
>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

### pandas.Index.values

<table>
<thead>
<tr>
<th>asi8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dtype</td>
<td></td>
</tr>
<tr>
<td>inferred_type</td>
<td></td>
</tr>
<tr>
<td>is_all_dates</td>
<td></td>
</tr>
<tr>
<td>is_unique</td>
<td></td>
</tr>
<tr>
<td>name</td>
<td></td>
</tr>
</tbody>
</table>

### Methods

- **all([axis, out])**
  
  Returns True if all elements evaluate to True.

- **any([axis, out])**
  
  Returns True if any of the elements of a evaluate to True.

- **append(other)**
  
  Append a collection of Index options together.

- **argmax([axis, out])**
  
  Return indices of the maximum values along the given axis.

- **argmin([axis, out])**
  
  Return indices of the minimum values along the given axis of a.

- **argpartition(kth[, axis, kind, order])**
  
  Returns the indices that would partition this array.

- **argsort(*args, **kwargs)**
  
  See docstring for ndarray.argsort.

- **asof(label)**
  
  For a sorted index, return the most recent label up to and including the passed label.

- **asof_locs(where, mask)**
  
  where : array of timestamps

- **astype(dttype)**
  
  byteswap(inplace)

  Swap the bytes of the array elements.

- **choose(choices[, out, mode])**
  
  Use an index array to construct a new array from a set of choices.

- **clip(a_min, a_max[, out])**
  
  Return an array whose values are limited to [a_min, a_max].

- **compress(condition[, axis, out])**
  
  Return selected slices of this array along given axis.

- **conj()**
  
  Complex-conjugate all elements.

- **conjugate()**
  
  Return the complex conjugate, element-wise.

- **copy([names, name, dtype, deep])**
  
  Make a copy of this object.

- **cumprod([axis, dtype, out])**
  
  Return the cumulative product of the elements along the given axis.

- **cumsun([axis, dtype, out])**
  
  Return the cumulative sum of the elements along the given axis.

- **delete(loc)**
  
  Make new Index with passed location(-s) deleted.

- **diagonal([offset, axis1, axis2])**
  
  Return specified diagonals.

- **diff(other)**
  
  Compute sorted set difference of two Index objects.

- **dot(b[, out])**
  
  Dot product of two arrays.

- **drop(labels)**
  
  Make new Index with passed list of labels deleted.

- **dump(file)**
  
  Dump a pickle of the array to the specified file.

- **dumps()**
  
  Returns the pickle of the array as a string.

- **equals(other)**
  
  Determines if two Index objects contain the same elements.
Table 29.75 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>factorize</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>fill</code></td>
<td>This method will not function because object is immutable.</td>
</tr>
<tr>
<td><code>flatten</code></td>
<td>Return a copy of the array collapsed into one dimension.</td>
</tr>
<tr>
<td><code>format</code></td>
<td>Render a string representation of the Index</td>
</tr>
<tr>
<td><code>get_duplicates</code></td>
<td></td>
</tr>
<tr>
<td><code>get_indexer</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer_for</code></td>
<td>Guaranteed return of an indexer even when non-unique.</td>
</tr>
<tr>
<td><code>get_indexer_non_unique</code></td>
<td>Return an indexer suitable for taking from a non unique index</td>
</tr>
<tr>
<td><code>get_level_values</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>get_value</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_values</code></td>
<td></td>
</tr>
<tr>
<td><code>getfield</code></td>
<td>Returns a field of the given array as a certain type.</td>
</tr>
<tr>
<td><code>groupby</code></td>
<td></td>
</tr>
<tr>
<td><code>holdss_integer</code></td>
<td></td>
</tr>
<tr>
<td><code>identical</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>insert</code></td>
<td>Make new Index inserting new item at location. Follows</td>
</tr>
<tr>
<td><code>intersection</code></td>
<td>Form the intersection of two Index objects. Sortedness of the result is</td>
</tr>
<tr>
<td><code>is_()</code></td>
<td>More flexible, faster check like <code>is</code> but that works through views</td>
</tr>
<tr>
<td><code>is_float</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple</code></td>
<td></td>
</tr>
<tr>
<td><code>is_mixed</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible</code></td>
<td></td>
</tr>
<tr>
<td><code>isin</code></td>
<td>Copy boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td><code>item</code></td>
<td>Make new Index inserting new item at location. Follows</td>
</tr>
<tr>
<td><code>itemset</code></td>
<td>This method will not function because object is immutable.</td>
</tr>
<tr>
<td><code>join</code></td>
<td>Internal API method. Compute join_index and indexers to conform data</td>
</tr>
<tr>
<td><code>map</code></td>
<td></td>
</tr>
<tr>
<td><code>max</code></td>
<td>The maximum value of the object</td>
</tr>
<tr>
<td><code>mean</code></td>
<td>Returns the average of the array elements along given axis.</td>
</tr>
<tr>
<td><code>min</code></td>
<td>The minimum value of the object</td>
</tr>
<tr>
<td><code>newbyteorder</code></td>
<td>Return the array with the same data viewed with a different byte order.</td>
</tr>
<tr>
<td><code>nonzero</code></td>
<td>Return the indices of the elements that are non-zero.</td>
</tr>
<tr>
<td><code>nunique</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>order</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>partition</code></td>
<td>Rearranges the elements in the array in such a way that value of the element in k</td>
</tr>
<tr>
<td><code>prod</code></td>
<td>Return the product of the array elements over the given axis</td>
</tr>
<tr>
<td><code>ptp</code></td>
<td>Peak to peak (maximum - minimum) value along a given axis</td>
</tr>
<tr>
<td><code>put</code></td>
<td>This method will not function because object is immutable.</td>
</tr>
<tr>
<td><code>ravel</code></td>
<td>Return a flattened array.</td>
</tr>
<tr>
<td><code>reindex</code></td>
<td>For Index, simply returns the new index and the results of</td>
</tr>
<tr>
<td><code>rename</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>repeat</code></td>
<td>Repeat elements of an array.</td>
</tr>
<tr>
<td><code>reshape</code></td>
<td>Returns an array containing the same data with a new shape.</td>
</tr>
<tr>
<td><code>resize</code></td>
<td>Change shape and size of array in-place.</td>
</tr>
<tr>
<td><code>round</code></td>
<td>Return a with each element rounded to the given number of decimals.</td>
</tr>
<tr>
<td><code>searchsorted</code></td>
<td>Find indices where elements of v should be inserted in a to maintain order.</td>
</tr>
<tr>
<td><code>set_names</code></td>
<td>Set new names on index.</td>
</tr>
</tbody>
</table>
Table 29.75 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_value(arr, key, value)</td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td>setfield(val, dtype[, offset])</td>
<td>Put a value into a specified place in a field defined by a data-type.</td>
</tr>
<tr>
<td>setflags([write, align, uic])</td>
<td>Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.</td>
</tr>
<tr>
<td>shift([periods, freq])</td>
<td>Shift Index containing datetime objects by input number of periods and</td>
</tr>
<tr>
<td>slice_indexer([start, end, step])</td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td>slice_locs([start, end])</td>
<td>For an ordered Index, compute the slice locations for input labels</td>
</tr>
<tr>
<td>sort(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>squeeze(axis)</td>
<td>Remove single-dimensional entries from the shape of a.</td>
</tr>
<tr>
<td>std(axis, dtype, out, ddof)</td>
<td>Returns the standard deviation of the array elements along given axis.</td>
</tr>
<tr>
<td>sum(axis, dtype, out)</td>
<td>Return the sum of the array elements over the given axis.</td>
</tr>
<tr>
<td>summary(name)</td>
<td></td>
</tr>
<tr>
<td>swapaxes(axis1, axis2)</td>
<td>Return a view of the array with axis1 and axis2 interchanged.</td>
</tr>
<tr>
<td>sym_diff(other[, result_name])</td>
<td>Compute the sorted symmetric difference of two Index objects.</td>
</tr>
<tr>
<td>take(indexer[, axis])</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>to_datetime([dayfirst])</td>
<td>For an Index containing strings or datetime.datetime objects, attempt</td>
</tr>
<tr>
<td>to_native_types([slicer])</td>
<td>slice and dice then format</td>
</tr>
<tr>
<td>to_series([keep_tz])</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td>tofile(fid[, sep, format])</td>
<td>Write array to a file as text or binary (default).</td>
</tr>
<tr>
<td>tolist()</td>
<td>Overridden version of ndarray.tolist</td>
</tr>
<tr>
<td>tostring(order)</td>
<td>Construct a Python string containing the raw data bytes in the array.</td>
</tr>
<tr>
<td>trace(offset, axis1, axis2, dtype, out)</td>
<td>Return the sum along diagonals of the array.</td>
</tr>
<tr>
<td>transpose(axes)</td>
<td>Returns a view of the array with axes transposed.</td>
</tr>
<tr>
<td>union(other)</td>
<td>Form the union of two Index objects and sorts if possible</td>
</tr>
<tr>
<td>unique()</td>
<td>Return array of unique values in the object.</td>
</tr>
<tr>
<td>value_counts([normalize, sort, ascending, ...])</td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td>var(axis, dtype, out, ddof)</td>
<td>Returns the variance of the array elements, along given axis.</td>
</tr>
<tr>
<td>view(*args, **kwargs)</td>
<td></td>
</tr>
</tbody>
</table>

pandas.Index.all

Index.all (axis=None, out=None)

- Returns True if all elements evaluate to True.
- Refer to numpy.all for full documentation.

See Also:

- numpy.all equivalent function

pandas.Index.any

Index.any (axis=None, out=None)

- Returns True if any of the elements of a evaluate to True.
- Refer to numpy.any for full documentation.

See Also:

- numpy.any equivalent function
**pandas.Index.append**

`pandas.Index.append(other)`  
Append a collection of Index options together  

**Parameters**  
other : Index or list/tuple of indices  

**Returns**  
appended : Index

**pandas.Index.argmax**

`pandas.Index.argmax(axis=None, out=None)`  
Return indices of the maximum values along the given axis.  
Refer to `numpy.argmax` for full documentation.  

**See Also:**  

`numpy.argmax` equivalent function

**pandas.Index.argmin**

`pandas.Index.argmin(axis=None, out=None)`  
Return indices of the minimum values along the given axis of `a`.  
Refer to `numpy.argmin` for detailed documentation.  

**See Also:**  

`numpy.argmin` equivalent function

**pandas.Index.argpartition**

`pandas.Index.argpartition(kth, axis=-1, kind='quickselect', order=None)`  
Returns the indices that would partition this array.  
Refer to `numpy.argpartition` for full documentation. New in version 1.8.0.  

**See Also:**  

`numpy.argpartition` equivalent function

**pandas.Index.argsort**

`pandas.Index.argsort(*args, **kwargs)`  
See docstring for `ndarray.argsort`

**pandas.Index.asof**

`pandas.Index.asof(label)`  
For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found
**pandas.Index.asof_locs**

Index.asof_locs(where, mask)

where : array of timestamps mask : array of booleans where data is not NA

**pandas.Index.astype**

Index.astype(dtype)

**pandas.Index.byteswap**

Index.byteswap(inplace)

Swap the bytes of the array elements

- **Parameters**
  - inplace : bool, optional

    - If True, swap bytes in-place, default is False.

- **Returns**
  - out : ndarray

    - The byteswapped array. If inplace is True, this is a view to self.

**Examples**

```python
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']
```

Arrays of strings are not swapped

```python
>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')
```

**pandas.Index.choose**

Index.choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

**See Also:**

- numpy.choose equivalent function
pandas.Index.clip

Index.clip(a_min, a_max, out=None)
Return an array whose values are limited to [a_min, a_max].
Refer to numpy.clip for full documentation.
See Also:

numpy.clip equivalent function

pandas.Index.compress

Index.compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.
Refer to numpy.compress for full documentation.
See Also:

numpy.compress equivalent function

pandas.Index.conj

Index.conj()
Complex-conjugate all elements.
Refer to numpy.conjugate for full documentation.
See Also:

numpy.conjugate equivalent function

pandas.Index.conjugate

Index.conjugate()
Return the complex conjugate, element-wise.
Refer to numpy.conjugate for full documentation.
See Also:

numpy.conjugate equivalent function

pandas.Index.copy

Index.copy(names=None, name=None, dtype=None, deep=False)
Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters
name : string, optional
dtype : numpy dtype or pandas type

Returns
copy : Index
**Notes**

In most cases, there should be no functional difference from using `deep`, but if `deep` is passed it will attempt to deepcopy.

**pandas.Index.cumprod**

```python
Index.cumprod(axis=None, dtype=None, out=None)
```

Return the cumulative product of the elements along the given axis.

Refer to `numpy.cumprod` for full documentation.

**See Also:**

- `numpy.cumprod` equivalent function

**pandas.Index.cumsum**

```python
Index.cumsum(axis=None, dtype=None, out=None)
```

Return the cumulative sum of the elements along the given axis.

Refer to `numpy.cumsum` for full documentation.

**See Also:**

- `numpy.cumsum` equivalent function

**pandas.Index.delete**

```python
Index.delete(loc)
```

Make new Index with passed location(-s) deleted

**Returns**

- `new_index` : Index

**pandas.Index.diagonal**

```python
Index.diagonal(offset=0, axis1=0, axis2=1)
```

Return specified diagonals.

Refer to `numpy.diagonal()` for full documentation.

**See Also:**

- `numpy.diagonal` equivalent function

**pandas.Index.diff**

```python
Index.diff(other)
```

Compute sorted set difference of two Index objects

**Parameters**

- `other` : Index or array-like

**Returns**

- `diff` : Index
**Notes**

One can do either of these and achieve the same result

```python
>>> index - index2
>>> index.diff(index2)
```

**pandas.Index.dot**

`Index.dot(b, out=None)`  
Dot product of two arrays.  
Refer to `numpy.dot` for full documentation.  

**See Also:**  
`numpy.dot` equivalent function

**Examples**

```python
>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])
```

This array method can be conveniently chained:

```python
>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])
```

**pandas.Index.drop**

`Index.drop(labels)`  
Make new Index with passed list of labels deleted  

**Parameters**  
`labels`: array-like  

**Returns**  
`dropped`: Index

**pandas.Index.dump**

`Index.dump(file)`  
Dump a pickle of the array to the specified file. The array can be read back with `pickle.load` or `numpy.load`.  

**Parameters**  
`file`: str  
A string naming the dump file.
pandas.Index.dumps

Index.dumps()  
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters  None

pandas.Index.equals

Index.equals(other)  
Determines if two Index objects contain the same elements.

pandas.Index.factorize

Index.factorize(sort=False, na_sentinel=-1)  
Encode the object as an enumerated type or categorical variable

Parameters  sort : boolean, default False  
Sort by values

na_sentinel : int, default -1  
Value to mark "not found"

Returns  labels : the indexer to the original array

uniques : the unique Index

pandas.Index.fill

Index.fill(*args, **kwargs)  
This method will not function because object is immutable.

pandas.Index.flatten

Index.flatten(order='C')  
Return a copy of the array collapsed into one dimension.

Parameters  order : {‘C’, ‘F’, ‘A’}, optional  
Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the C/Fortran ordering from a. The default is ‘C’.

Returns  y : ndarray  
A copy of the input array, flattened to one dimension.

See Also:

ravel  Return a flattened array.

flat  A 1-D flat iterator over the array.
Examples

```python
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
```

**pandas.Index.format**

Index.format(name=False, formatter=None, **kwargs)

Render a string representation of the Index

**pandas.Index.get_duplicates**

Index.get_duplicates()

**pandas.Index.get_indexer**

Index.get_indexer(target, method=None, limit=None)

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. The mask determines whether labels are found or not in the current index

- **Parameters**
  - `target`: Index
  - `method`: {'pad', 'ffill', 'backfill', 'bfill'}
    - pad / ffill: propagate LAST valid observation forward to next valid backfill / bfill:
      use NEXT valid observation to fill gap
  - `limit`: None

- **Returns**
  - `indexer`: ndarray

**Notes**

This is a low-level method and probably should be used at your own risk

**Examples**

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

**pandas.Index.get_indexer_for**

Index.get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.Index.get_indexer_non_unique

Index.get_indexer_non_unique(target, **kwargs)
return an indexer suitable for taking from a non unique index return the labels in the same order as the
target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must
be an iterable

pandas.Index.get_level_values

Index.get_level_values(level)
Return vector of label values for requested level, equal to the length of the index

Parameters
level : int

Returns
values : ndarray

pandas.Index.get_loc

Index.get_loc(key)
Get integer location for requested label

Returns
loc : int if unique index, possibly slice or mask if not

pandas.Index.get_value

Index.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.Index.get_values

Index.get_values()

pandas.Index.getfield

Index.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype
fits in the array dtype: for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype : str or dtype
The data type of the view. The dtype size of the view can not be larger than that
of the array itself.

offset : int
Number of bytes to skip before beginning the element view.
Examples

```python
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])
```

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

```python
>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])
```

*pandas.Index.groupby*

Index.groupby *(to_groupby)*

*pandas.Index.holds_integer*

Index.holds_integer ()

*pandas.Index.identical*

Index.identical *(other)*

Similar to equals, but check that other comparable attributes are also equal

*pandas.Index.insert*

Index.insert *(loc, item)*

Make new Index inserting new item at location. Follows Python list.append semantics for negative values

Parameters

- loc : int
- item : object

Returns

- new_index : Index

*pandas.Index.intersection*

Index.intersection *(other)*

Form the intersection of two Index objects. Sortedness of the result is not guaranteed

Parameters

- other : Index or array-like

Returns

- intersection : Index
pandas.Index.is

Index.is_(other)
   More flexible, faster check like is but that works through views
   Note: this is not the same as Index.identical(), which checks that metadata is also the same.

   Parameters other : object
                        other object to compare against.

   Returns True if both have same underlying data, False otherwise : bool

pandas.Index.is_floating

Index.is_floating()

pandas.Index.is_integer

Index.is_integer()

pandas.Index.is_lexsorted_for_tuple

Index.is_lexsorted_for_tuple(tup)

pandas.Index.is_mixed

Index.is_mixed()

pandas.Index.is_numeric

Index.is_numeric()

pandas.Index.is_type_compatible

Index.is_type_compatible(typ)

pandas.Index.isin

Index.isin(values)
   Compute boolean array of whether each index value is found in the passed set of values

   Parameters values : set or sequence of values

   Returns is_contained : ndarray (boolean dtype)
pandas.Index.item

Index.item(*args)
Copy an element of an array to a standard Python scalar and return it.

Parameters *args : Arguments (variable number and type)

- none: in this case, the method only works for arrays with one element \((a.size == 1)\), which element is copied into a standard Python scalar object and returned.
- int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return.
- tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array.

Returns z : Standard Python scalar object
A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of \(a\) is longdouble or clongdouble, item() returns a scalar array object because there is no available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields are defined, in which case a tuple is returned.

item is very similar to \(a[args]\), except, instead of an array scalar, a standard Python scalar is returned. This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python’s optimized math.

Examples

```python
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3
```

pandas.Index.itemset

Index.itemset(*args, **kwargs)
This method will not function because object is immutable.

pandas.Index.join

Index.join(other, how='left', level=None, return_indexers=False)
Internal API method. Compute join_index and indexers to conform data structures to the new index.
Parameters

- **other**: Index
  - **how**: {'left', 'right', 'inner', 'outer'}
  - **level**: int or level name, default None
  - **return_indexers**: boolean, default False

Returns

join_index, (left_indexer, right_indexer)

---

**pandas.Index.map**

```python
Index.map(mapper)
```

**pandas.Index.max**

```python
Index.max()
```

The maximum value of the object

**pandas.Index.mean**

```python
Index.mean(axis=None, dtype=None, out=None)
```

Returns the average of the array elements along given axis.

Refer to `numpy.mean` for full documentation.

**See Also:**

- `numpy.mean` equivalent function

**pandas.Index.min**

```python
Index.min()
```

The minimum value of the object

**pandas.Index.newbyteorder**

```python
Index.newbyteorder(new_order='S')
```

Return the array with the same data viewed with a different byte order.

Equivalent to:

```python
arr.view(arr.dtype.newbyteorder(new_order))
```

Changes are also made in all fields and sub-arrays of the array data type.

**Parameters**

- **new_order**: string, optional

  Byte order to force; a value from the byte order specifications above. `new_order` codes can be any of:

  - `'S'` - swap dtype from current to opposite endian
  - `{'<', 'L'}` - little endian
  - `{'>', 'B'}` - big endian
  - `{'=', 'N'}` - native order
  - `{'|', 'I'}` - ignore (no change to byte order)
The default value (‘S’) results in swapping the current byte order. The code does a case-insensitive check on the first letter of `new_order` for the alternatives above. For example, any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

**Returns**  
`new_arr` : array

New array object with the dtype reflecting given change to the byte order.

---

**pandas.Index.nonzero**

Index.

- `nonzero()`
  
  Return the indices of the elements that are non-zero.

  Refer to `numpy.nonzero` for full documentation.

  **See Also:**

  - `numpy.nonzero`  equivalent function

---

**pandas.Index.nunique**

Index.

- `nunique(dropna=True)`
  
  Return number of unique elements in the object.

  Excludes NA values by default.

  **Parameters**  
  `dropna` : boolean, default True

  Don’t include NaN in the count.

  **Returns**  
  `nunique` : int

---

**pandas.Index.order**

Index.

- `order(return_indexer=False, ascending=True)`
  
  Return sorted copy of Index

---

**pandas.Index.partition**

Index.

- `partition(kth, axis=-1, kind='introselect', order=None)`
  
  Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined. New in version 1.8.0.

  **Parameters**  
  `kth` : int or sequence of ints

  Element index to partition by. The kth element value will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth it will partition all elements indexed by kth of them into their sorted position at once.

  `axis` : int, optional

  Axis along which to sort. Default is -1, which means sort along the last axis.

  `kind` : {‘introselect’}, optional
Selection algorithm. Default is ‘introselect’.

order : list, optional

When a is an array with fields defined, this argument specifies which fields to compare first, second, etc. Not all fields need be specified.

See Also:

numpy.partition Return a partitioned copy of an array.
argpartition Indirect partition.
sort Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

```python
>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
array([2, 1, 3, 4])
>>> a.partition((1, 3))
array([1, 2, 3, 4])
```

pandas.Index.prod

Index.prod(axis=\textit{None}, dtype=\textit{None}, out=\textit{None})

Return the product of the array elements over the given axis

See Also:

numpy.prod equivalent function

pandas.Index.ptp

Index.ptp(axis=\textit{None}, out=\textit{None})

Peak to peak (maximum - minimum) value along a given axis.

See Also:

numpy.ptp equivalent function

pandas.Index.put

Index.put(*\textit{args}, **\textit{kwargs})

This method will not function because object is immutable.
pandas.Index.ravel

Index.ravel(order)
Return a flattened array.
Refer to numpy.ravel for full documentation.
See Also:

numpy.ravel equivalent function
ndarray.flat a flat iterator on the array.

pandas.Index.reindex

Index.reindex(target, method=None, level=None, limit=None, copy_if_needed=False)
For Index, simply returns the new index and the results of get_indexer. Provided here to enable an interface that is amenable for subclasses of Index whose internals are different (like MultiIndex)

Returns (new_index, indexer, mask): tuple

pandas.Index.rename

Index.rename(name, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters name: str or list
name to set

inplace: bool
if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

pandas.Index.repeat

Index.repeat(repeats, axis=None)
Repeat elements of an array.
Refer to numpy.repeat for full documentation.
See Also:

numpy.repeat equivalent function

pandas.Index.reshape

Index.reshape(shape, order='C')
Returns an array containing the same data with a new shape.
Refer to numpy.reshape for full documentation.
See Also:

numpy.reshape equivalent function
pandas.Index.resize

`Index.resize(new_shape, refcheck=True)`
Change shape and size of array in-place.

**Parameters**
- `new_shape` : tuple of ints, or n ints
  Shape of resized array.
- `refcheck` : bool, optional
  If False, reference count will not be checked. Default is True.

**Returns** None

**Raises**
- `ValueError`
  If `a` does not own its own data or references or views to it exist, and the data memory must be changed.
- `SystemError`
  If the `order` keyword argument is specified. This behaviour is a bug in NumPy.

**See Also:**
- `resize` Return a new array with the specified shape.

**Notes**

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure that you have not shared the memory for this array with another Python object, then you may safely set `refcheck` to False.

**Examples**

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

```python
>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
```

```python
array([[0],
 [1]])
```

```python
>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
```

```python
array([[0],
 [2]])
```

Enlarging an array: as above, but missing entries are filled with zeros:
>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
       [3, 0, 0]])

Referencing an array prevents resizing...

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

**pandas.Index.round**

Index.round(decimals=0, out=None)

Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See Also:

numpy.around equivalent function

**pandas.Index.searchsorted**

Index.searchsorted(v, side='left', sorter=None)

Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See Also:

numpy.searchsorted equivalent function

**pandas.Index.set_names**

Index.set_names(names, inplace=False)

Set new names on index. Defaults to returning new index.

Parameters names : sequence

names to set

inplace : bool

if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.Index.set_value

Index.set_value(arr, key, value)

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing.

pandas.Index.setfield

Index.setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters

val : object

Value to be placed in field.

dtype : dtype object

Data-type of the field in which to place val.

offset : int, optional

The number of bytes into the field at which to place val.

Returns

None

See Also:

gffield

Examples

>>> x = np.eye(3)

>>> x.getfield(np.float64)

array([[ 1., 0., 0.],
       [ 0., 1., 0.],
       [ 0., 0., 1.]])

>>> x.setfield(3, np.int32)

>>> x.getfield(np.int32)

array([[3, 3, 3],
       [3, 3, 3],
       [3, 3, 3]])

>>> x

array([[ 1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
       [ 1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
       [ 1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])

>>> x.setfield(np.eye(3), np.int32)

>>> x

array([[ 1., 0., 0.],
       [ 0., 1., 0.],
       [ 0., 0., 1.]])

pandas.Index.setflags

Index.setflags(write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.
These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done without copying memory.)

**Parameters**

- **write**: bool, optional
  
  Describes whether or not a can be written to.

- **align**: bool, optional
  
  Describes whether or not a is aligned properly for its type.

- **uic**: bool, optional
  
  Describes whether or not a is a copy of another “base” array.

**Notes**

Array flags provide information about how the memory area used for the array is to be interpreted. There are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by .base). When this array is deallocated, the base array will be updated with the contents of this array.

All flags can be accessed using their first (upper case) letter as well as the full name.

**Examples**

```python
>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True
```
pandas: powerful Python data analysis toolkit, Release 0.14.1

**pandas.Index.shift**

`Index.shift(periods=1, freq=None)`  
Shift Index containing datetime objects by input number of periods and DateOffset  

**Returns**  
.shift: :class:`Index`

**pandas.Index.slice_indexer**

`Index.slice_indexer(start=None, end=None, step=None)`  
For an ordered Index, compute the slice indexer for input labels and step  

**Parameters**  
.start : label, default None  
If None, defaults to the beginning  
.end : label, default None  
If None, defaults to the end  
.step : int, default None  

**Returns**  
.indexer: :class:`ndarray` or slice

**Notes**

This function assumes that the data is sorted, so use at your own peril

**pandas.Index.slice_locs**

`Index.slice_locs(start=None, end=None)`  
For an ordered Index, compute the slice locations for input labels  

**Parameters**  
.start : label, default None  
If None, defaults to the beginning  
.end : label, default None  
If None, defaults to the end  

**Returns**  
.(start, end): (int, int)

**Notes**

This function assumes that the data is sorted, so use at your own peril

**pandas.Index.sort**

`Index.sort(*args, **kwargs)`
pandas.Index.squeeze

Index.squeeze (axis=None)
Remove single-dimensional entries from the shape of a.
Refer to numpy.squeeze for full documentation.
See Also:

numpy.squeeze equivalent function

pandas.Index.std

Index.std (axis=None, dtype=None, out=None, ddof=0)
Returns the standard deviation of the array elements along given axis.
Refer to numpy.std for full documentation.
See Also:

numpy.std equivalent function

pandas.Index.sum

Index.sum (axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis.
Refer to numpy.sum for full documentation.
See Also:

numpy.sum equivalent function

pandas.Index.summary

Index.summary (name=None)

pandas.Index.swapaxes

Index.swapaxes (axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See Also:

numpy.swapaxes equivalent function

pandas.Index.sym_diff

Index.sym_diff (other, result_name=None)
Compute the sorted symmetric difference of two Index objects.
Parameters

other : array-like

result_name : str

Returns

sym_diff : Index

Notes

sym_diff contains elements that appear in either \( \text{idx1} \) or \( \text{idx2} \) but not both. Equivalent to the Index created by \((\text{idx1} - \text{idx2}) + (\text{idx2} - \text{idx1})\) with duplicates dropped.

The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444.

Examples

>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.sym_diff(idx2)
Int64Index([1, 5], dtype='int64')

You can also use the ^ operator:

>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')

pandas.Index.take

Index.take(indexer, axis=0)

Analogous to ndarray.take

pandas.Index.to_datetime

Index.to_datetime(dayfirst=False)

For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

pandas.Index.to_native_types

Index.to_native_types(slicer=None, **kwargs)

slice and dice then format

pandas.Index.to_series

Index.to_series(keep_tz=False)

Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Parameters

keep_tz : optional, defaults False.

applies only to a DatetimeIndex

Returns

Series : dtype will be based on the type of the Index values.
pandas.Index.tofile

Index.tofile(fid, sep='', format='%s')
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can be recovered using the function fromfile().

**Parameters**

- **fid**: file or str
  - An open file object, or a string containing a filename.

- **sep**: str
  - Separator between array items for text output. If “” (empty), a binary file is written, equivalent to file.write(a.tostring()).

- **format**: str
  - Format string for text file output. Each entry in the array is formatted to text by first converting it to the closest Python type, and then using “format” % item.

**Notes**

This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size.

pandas.Index.tolist

Index.tolist()
- Overridden version of ndarray.tolist

pandas.Index.tostring

Index.tostring(order='C')
- Construct a Python string containing the raw data bytes in the array.

Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means ‘Fortran’ order.

**Parameters**

- **order**: {‘C’, ‘F’, None}, optional
  - Order of the data for multidimensional arrays: C, Fortran, or the same as for the original array.

**Returns**

- **s**: str
  - A Python string exhibiting a copy of a’s raw data.

**Examples**
>>> x = np.array([[0, 1], [2, 3]])
>>> x.tostring()
'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00\x00'
>>> x.tostring('C') == x.tostring()
True
>>> x.tostring('F')
'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00\x00'

**pandas.Index.trace**

Index.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)  
Return the sum along diagonals of the array.  
Refer to numpy.trace for full documentation.  
See Also:  

**numpy.trace** equivalent function

**pandas.Index.transpose**

Index.transpose(*axes)  
Returns a view of the array with axes transposed.  

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape = (i[0], i[1], ..., i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ..., i[1], i[0]).

**Parameters**  
axes : None, tuple of ints, or n ints  
- None or no argument: reverses the order of the axes.  
- tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.  
- n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alternative to the tuple form)

**Returns**  
out : ndarray  
View of a, with axes suitably permuted.

See Also:  

**ndarray.T** Array property returning the array transposed.

**Examples**

```python
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
a
array([[1, 3],
 [2, 4]])
```
>>> a.transpose((1, 0))
array([[1, 3],
      [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
      [2, 4]])

**pandas.Index.union**

`Index.union(other)`

Form the union of two Index objects and sorts if possible

**Parameters**

- `other`: Index or array-like

**Returns**

- `union`: Index

**pandas.Index.unique**

`Index.unique()`

Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values.

**Returns**

- `uniques`: ndarray

**pandas.Index.value_counts**

`Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)`

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

**Parameters**

- `normalize`: boolean, default False
  
  If True then the object returned will contain the relative frequencies of the unique values.

- `sort`: boolean, default True
  
  Sort by values

- `ascending`: boolean, default False
  
  Sort in ascending order

- `bins`: integer, optional
  
  Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

- `dropna`: boolean, default True
  
  Don’t include counts of NaN.

**Returns**

- `counts`: Series
pandas.Index.var

`Index.var(axis=None, dtype=None, out=None, ddof=0)`

Returns the variance of the array elements, along given axis.

Refer to `numpy.var` for full documentation.

See Also:

`numpy.var` equivalent function

pandas.Index.view

`Index.view(*args, **kwargs)`

29.7.2 Modifying and Computations

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.copy(names=None, name=None, dtype=None, deep=False)</code></td>
<td>Make a copy of this object. Name and dtype sets those attributes on the new object.</td>
</tr>
<tr>
<td><code>Index.delete(loc)</code></td>
<td>Make new Index with passed location(-s) deleted</td>
</tr>
<tr>
<td><code>Index.diff(other)</code></td>
<td>Compute sorted set difference of two Index objects</td>
</tr>
<tr>
<td><code>Index.sym_diff(other[, result_name])</code></td>
<td>Compute the sorted symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>Index.drop(labels)</code></td>
<td>Make new Index with passed list of labels deleted</td>
</tr>
<tr>
<td><code>Index.equals(other)</code></td>
<td>Determines if two Index objects contain the same elements.</td>
</tr>
<tr>
<td><code>Index.factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>Index.identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>Index.insert(loc, item)</code></td>
<td>Make new Index inserting new item at location. Follows</td>
</tr>
<tr>
<td><code>Index.order([return_indexer, ascending])</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>Index.reindex(target[, method, level, ...])</code></td>
<td>For Index, simply returns the new index and the results of</td>
</tr>
<tr>
<td><code>Index.repeat(repeats[, axis])</code></td>
<td>Repeat elements of an array.</td>
</tr>
<tr>
<td><code>Index.set_names(names[, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>Index.unique()</code></td>
<td>Return array of unique values in the object.</td>
</tr>
<tr>
<td><code>Index.nunique([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>Index.value_counts([normalize, sort, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

pandas.Index.copy

`Index.copy(names=None, name=None, dtype=None, deep=False)`

Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters
- `name` : string, optional
- `dtype` : numpy dtype or pandas type

Returns
- `copy` : Index

Notes

In most cases, there should be no functional difference from using `deep`, but if `deep` is passed it will attempt to deepcopy.
**pandas.Index.delete**

`Index.delete(loc)`

Make new Index with passed location(s) deleted

Returns `new_index`: Index

**pandas.Index.diff**

`Index.diff(other)`

Compute sorted set difference of two Index objects

Parameters `other`: Index or array-like

Returns `diff`: Index

**Notes**

One can do either of these and achieve the same result

```python
>>> index - index2
>>> index.diff(index2)
```

**pandas.Index.sym_diff**

`Index.sym_diff(other, result_name=None)`

Compute the sorted symmetric difference of two Index objects.

Parameters `other`: array-like

result_name: str

Returns `sym_diff`: Index

**Notes**

`sym_diff` contains elements that appear in either `idx1` or `idx2` but not both. Equivalent to the Index created by `(idx1 - idx2) + (idx2 - idx1)` with duplicates dropped.

The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444.

**Examples**

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.sym_diff(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the `^` operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```
pandas: powerful Python data analysis toolkit, Release 0.14.1

**pandas.Index.drop**

Index.drop(labels)

Make new Index with passed list of labels deleted

**Parameters**

labels : array-like

**Returns**

dropped : Index

**pandas.Index.equals**

Index.equals(other)

Determines if two Index objects contain the same elements.

**pandas.Index.factorize**

Index.factorize(sort=False, na_sentinel=-1)

Encode the object as an enumerated type or categorical variable

**Parameters**

sort : boolean, default False

Sort by values

na_sentinel : int, default -1

Value to mark “not found”

**Returns**

labels : the indexer to the original array

uniques : the unique Index

**pandas.Index.identical**

Index.identical(other)

Similar to equals, but check that other comparable attributes are also equal

**pandas.Index.insert**

Index.insert(loc, item)

Make new Index inserting new item at location. Follows Python list.append semantics for negative values

**Parameters**

loc : int

item : object

**Returns**

new_index : Index

**pandas.Index.order**

Index.order(return_indexer=False, ascending=True)

Return sorted copy of Index
**pandas.Index.reindex**

Index.reindex(target, method=None, level=None, limit=None, copy_if_needed=False)

For Index, simply returns the new index and the results of get_indexer. Provided here to enable an interface that is amenable for subclasses of Index whose internals are different (like MultiIndex)

Returns (new_index, indexer, mask) : tuple

**pandas.Index.repeat**

Index.repeat(repeats, axis=None)

Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See Also:

numpy.repeat equivalent function

**pandas.Index.set_names**

Index.set_names(names, inplace=False)

Set new names on index. Defaults to returning new index.

Parameters names : sequence

names to set

inplace : bool

if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

**pandas.Index.unique**

Index.unique()

Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values.

Returns uniques : ndarray

**pandas.Index.nunique**

Index.nunique(dropna=True)

Return number of unique elements in the object.

Excludes NA values by default.

Parameters dropna : boolean, default True

Don’t include NaN in the count.

Returns nunique : int
pandas.Index.value_counts

Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters  normalize : boolean, default False
  If True then the object returned will contain the relative frequencies of the unique values.
sort : boolean, default True
  Sort by values
ascending : boolean, default False
  Sort in ascending order
bins : integer, optional
  Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data
dropna : boolean, default True
  Don’t include counts of NaN.

Returns  counts : Series

29.7.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index.astype(dtype)</td>
<td>Overridden version of ndarray.astype</td>
</tr>
<tr>
<td>Index.tolist()</td>
<td>Overridden version of ndarray.tolist</td>
</tr>
<tr>
<td>Index.to_datetime([dayfirst])</td>
<td>For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex</td>
</tr>
<tr>
<td>Index.to_series([keep_tz])</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
</tbody>
</table>

pandas.Index.astype

Index.astype(dtype)

pandas.Index.tolist

Index.tolist()
  Overridden version of ndarray.tolist

pandas.Index.to_datetime

Index.to_datetime(dayfirst=False)
  For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex
pandas.Index.to_series

Index.to_series(keep_tz=False)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index.

Parameters  keep_tz : optional, defaults False.
  applies only to a DatetimeIndex

Returns  Series : dtype will be based on the type of the Index values.

29.7.4 Sorting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index.argsort</td>
<td>See docstring for ndarray.argsort</td>
</tr>
<tr>
<td>Index.order</td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td>Index.sort</td>
<td>*args, **kwargs</td>
</tr>
</tbody>
</table>

pandas.Index.argsort

Index.argsort(*args, **kwargs)
See docstring for ndarray.argsort

pandas.Index.order

Index.order(return_indexer=False, ascending=True)
Return sorted copy of Index

pandas.Index.sort

Index.sort(*args, **kwargs)

29.7.5 Time-specific operations

Index.shift([periods, freq])  Shift Index containing datetime objects by input number of periods and

pandas.Index.shift

Index.shift(periods=1, freq=None)
Shift Index containing datetime objects by input number of periods and DateOffset

Returns  shifted : Index

29.7.6 Combining / joining / merging

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index.append(other)</td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td>Index.intersection(other)</td>
<td>Form the intersection of two Index objects. Sortedness of the result is</td>
</tr>
</tbody>
</table>

Continued on next page
Table 29.80 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.join(other[, how, level, return_indexers])</code></td>
<td>Internal API method. Compute join_index and indexers to conform data</td>
</tr>
<tr>
<td><code>Index.union(other)</code></td>
<td>Form the union of two Index objects and sorts if possible</td>
</tr>
</tbody>
</table>

pandas.Index.append

`Index.append(other)`
Append a collection of Index options together

- **Parameters**
  - `other`: Index or list/tuple of indices
- **Returns**
  - `appended`: Index

pandas.Index.intersection

`Index.intersection(other)`
Form the intersection of two Index objects. Sortedness of the result is not guaranteed

- **Parameters**
  - `other`: Index or array-like
- **Returns**
  - `intersection`: Index

pandas.Index.join

`Index.join(other, how='left', level=None, return_indexers=False)`
Internal API method. Compute join_index and indexers to conform data structures to the new index.

- **Parameters**
  - `other`: Index
    - `how`: {'left', 'right', 'inner', 'outer'}
    - `level`: int or level name, default None
    - `return_indexers`: boolean, default False
- **Returns**
  - `join_index`, (left_indexer, right_indexer)

pandas.Index.union

`Index.union(other)`
Form the union of two Index objects and sorts if possible

- **Parameters**
  - `other`: Index or array-like
- **Returns**
  - `union`: Index

29.7.7 Selecting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.get_indexer(target[, method, limit])</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>Index.get_indexer_non_unique(target, **kwargs)</code></td>
<td>Return an indexer suitable for taking from a non unique index.</td>
</tr>
<tr>
<td><code>Index.get_level_values(level)</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>Index.get_loc(key)</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>Index.get_value(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>Index.isin(values)</code></td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
</tbody>
</table>
Table 29.81 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.slice_indexer</code>([start, end, step])</td>
<td>For an ordered Index, compute the slice indexer for input labels and step.</td>
</tr>
<tr>
<td><code>Index.slice_locs</code>([start, end])</td>
<td>For an ordered Index, compute the slice locations for input labels.</td>
</tr>
</tbody>
</table>

**pandas.Index.get_indexer**

`Index.get_indexer` *(target, method=None, limit=None)*

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to `ndarray.take` to align the current data to the new index. The mask determines whether labels are found or not in the current index.

- **Parameters**
  - `target`: Index
  - `method`: {'pad', 'ffill', 'backfill', 'bfill'}
    - pad / ffill: propagate LAST valid observation forward to next valid backfill
    - use NEXT valid observation to fill gap

- **Returns**
  - `indexer`: ndarray

**Notes**

This is a low-level method and probably should be used at your own risk

**Examples**

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

**pandas.Index.get_indexer_non_unique**

`Index.get_indexer_non_unique` *(target, **kwargs)*

Return an indexer suitable for taking from a non unique index. Return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable.

**pandas.Index.get_level_values**

`Index.get_level_values` *(level)*

Return vector of label values for requested level, equal to the length of the index.

- **Parameters**
  - `level`: int

- **Returns**
  - `values`: ndarray

**pandas.Index.get_loc**

`Index.get_loc` *(key)*

Get integer location for requested label.

- **Returns**
  - `loc`: int if unique index, possibly slice or mask if not
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.Index.get_value

Index.get_value(series, key)

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.Index.isin

Index.isin(values)

Compute boolean array of whether each index value is found in the passed set of values

Parameters values: set or sequence of values

Returns is_contained: ndarray (boolean dtype)

pandas.Index.slice_indexer

Index.slice_indexer(start=None, end=None, step=None)

For an ordered Index, compute the slice indexer for input labels and step

Parameters start: label, default None

If None, defaults to the beginning

end: label, default None

If None, defaults to the end

step: int, default None

Returns indexer: ndarray or slice

Notes

This function assumes that the data is sorted, so use at your own peril

pandas.Index.slice_locs

Index.slice_locs(start=None, end=None)

For an ordered Index, compute the slice locations for input labels

Parameters start: label, default None

If None, defaults to the beginning

end: label, default None

If None, defaults to the end

Returns (start, end): (int, int)

Notes

This function assumes that the data is sorted, so use at your own peril
29.7.8 Properties
29.8 DatetimeIndex

**class pandas.DatetimeIndex**

Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information.

**Parameters**

- **data**: array-like (1-dimensional), optional
  
  Optional datetime-like data to construct index with

- **copy**: bool
  
  Make a copy of input ndarray

- **freq**: string or pandas offset object, optional
  
  One of pandas date offset strings or corresponding objects

- **start**: starting value, datetime-like, optional
  
  If data is None, start is used as the start point in generating regular timestamp data.

- **periods**: int, optional, > 0
  
  Number of periods to generate, if generating index. Takes precedence over end argument

- **end**: end time, datetime-like, optional
  
  If periods is none, generated index will extend to first conforming time on or just past end argument

- **closed**: string or None, default None
  
  Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

- **name**: object
  
  Name to be stored in the index
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>T</code></td>
<td>Same as <code>self.transpose()</code>, except that <code>self</code> is returned if <code>self.ndim &lt; 2</code>.</td>
</tr>
<tr>
<td><code>as18</code></td>
<td></td>
</tr>
<tr>
<td><code>asobject</code></td>
<td></td>
</tr>
<tr>
<td><code>base</code></td>
<td>Base object if memory is from some other object.</td>
</tr>
<tr>
<td><code>ctypes</code></td>
<td>An object to simplify the interaction of the array with the ctypes module.</td>
</tr>
<tr>
<td><code>data</code></td>
<td>Python buffer object pointing to the start of the array’s data.</td>
</tr>
<tr>
<td><code>date</code></td>
<td>Returns numpy array of <code>datetime.date</code>.</td>
</tr>
<tr>
<td><code>day</code></td>
<td>The days of the datetime</td>
</tr>
<tr>
<td><code>dayofweek</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>dayofyear</code></td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td><code>dtype</code></td>
<td></td>
</tr>
<tr>
<td><code>flags</code></td>
<td></td>
</tr>
<tr>
<td><code>flat</code></td>
<td>A 1-D iterator over the array.</td>
</tr>
<tr>
<td><code>freq</code></td>
<td>return the frequency object if its set, otherwise None</td>
</tr>
<tr>
<td><code>freqstr</code></td>
<td>return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td><code>hour</code></td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td><code>imag</code></td>
<td>The imaginary part of the array.</td>
</tr>
<tr>
<td><code>inferred_type</code></td>
<td></td>
</tr>
<tr>
<td><code>is_all_dates</code></td>
<td></td>
</tr>
<tr>
<td><code>is_monotonic</code></td>
<td></td>
</tr>
<tr>
<td><code>is_month_end</code></td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td><code>is_month_start</code></td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td><code>is_quarter_end</code></td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td><code>is_quarter_start</code></td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td><code>is_year_end</code></td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>is_year_start</code></td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>Length of one array element in bytes.</td>
</tr>
<tr>
<td><code>microsecond</code></td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td><code>minute</code></td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td><code>month</code></td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td><code>names</code></td>
<td></td>
</tr>
<tr>
<td><code>nanosecond</code></td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>Total bytes consumed by the elements of the array.</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>Number of array dimensions.</td>
</tr>
<tr>
<td><code>nlevels</code></td>
<td></td>
</tr>
<tr>
<td><code>quarter</code></td>
<td>The quarter of the date</td>
</tr>
<tr>
<td><code>qyear</code></td>
<td>The real part of the array.</td>
</tr>
<tr>
<td><code>second</code></td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>Tuple of array dimensions.</td>
</tr>
<tr>
<td><code>size</code></td>
<td>Number of elements in the array.</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>Tuple of bytes to step in each dimension when traversing an array.</td>
</tr>
<tr>
<td><code>time</code></td>
<td>Returns numpy array of <code>datetime.time</code>.</td>
</tr>
<tr>
<td><code>tzinfo</code></td>
<td>Alias for <code>tz</code> attribute</td>
</tr>
<tr>
<td><code>values</code></td>
<td></td>
</tr>
<tr>
<td><code>week</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>weekday</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>weekofyear</code></td>
<td>The week ordinal of the year</td>
</tr>
</tbody>
</table>

Continued on next page
pandas: powerful Python data analysis toolkit, Release 0.14.1

Table 29.84 – continued from previous page

<table>
<thead>
<tr>
<th>year</th>
<th>The year of the datetime</th>
</tr>
</thead>
</table>

pandas.DatetimeIndex.T

DatetimeIndex.T
Same as self.transpose(), except that self is returned if self.ndim < 2.

Examples

```python
>>> x = np.array([[1., 2.], [3., 4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1., 2., 3., 4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])
```

pandas.DatetimeIndex.asi8

DatetimeIndex.asi8

pandas.DatetimeIndex.asobject

DatetimeIndex.asobject

pandas.DatetimeIndex.base

DatetimeIndex.base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

```python
>>> x = np.array([1, 2, 3, 4])
>>> x.base is None
True
```

Slicing creates a view, whose memory is shared with x:

```python
>>> y = x[2:]
>>> y.base is x
True
```
pandas.DatetimeIndex.ctypes

DatetimeIndex.ctypes

An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which themselves return ctypes objects that can be used as arguments to a shared library.

Parameters

None

Returns

c : Python object

Possessing attributes data, shape, strides, etc.

See Also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have omitted undocumented public attributes, as well as documented private attributes):

- data: A pointer to the memory area of the array as a Python integer. This memory area may contain data that is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the same as self._array_interface_['data'][0].

- shape (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corresponding to dtype('p') on this platform. This base-type could be c_int, c_long, or c_longlong depending on the platform. The c_intp type is defined accordingly in numpy.ctypeslib. The ctypes array contains the shape of the underlying array.

- strides (c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape attribute. This ctypes array contains the strides information from the underlying array. This strides information is important for showing how many bytes must be jumped to get to the next element in the array.

- data_as(obj): Return the data pointer cast to a particular c-types object. For example, calling self._as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.c_double)).

- shape_as(obj): Return the shape tuple as an array of some other c-types type. For example: self.shape_as(ctypes.c_short).

- strides_as(obj): Return the strides tuple as an array of some other c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary arrays or arrays constructed on the fly. For example, calling (a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory that is invalid because the array created as (a+b) is deallocated before the next Python statement. You can avoid this problem using either c=a+b or ct=(a+b).ctypes. In the latter case, ct will hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful, but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have the as parameter attribute which will return an integer equal to the data attribute.
Examples

```python
>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>
```

**pandas.DatetimeIndex.data**

DatetimeIndex. **data**

Python buffer object pointing to the start of the array’s data.

**pandas.DatetimeIndex.date**

DatetimeIndex. **date**

Returns numpy array of datetime.date. The date part of the Timestamps

**pandas.DatetimeIndex.day**

DatetimeIndex. **day**

The days of the datetime

**pandas.DatetimeIndex.dayofweek**

DatetimeIndex. **dayofweek**

The day of the week with Monday=0, Sunday=6

**pandas.DatetimeIndex.dayofyear**

DatetimeIndex. **dayofyear**

The ordinal day of the year

**pandas.DatetimeIndex.dtype**

DatetimeIndex. **dtype**
pandas.DatetimeIndex.flags

DatetimeIndex.**flags**

pandas.DatetimeIndex.flat

DatetimeIndex.**flat**

A 1-D iterator over the array.

This is a **numpy.flatiter** instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator object.

**See Also:**

- **flatten** Return a copy of the array collapsed into one dimension.

- **flatiter**

**Examples**

```python
>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>
```

An assignment example:

```python
>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])
```

pandas.DatetimeIndex.freq

DatetimeIndex.**freq**

return the frequency object if its set, otherwise None

pandas.DatetimeIndex.freqstr

DatetimeIndex.**freqstr**

return the frequency object as a string if its set, otherwise None
pandas.DatetimeIndex.hour

DatetimeIndex.hour
The hours of the datetime

pandas.DatetimeIndex.imag

DatetimeIndex.imag
The imaginary part of the array.

Examples

```python
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0., 0.70710678])
>>> x.imag.dtype
dtype('float64')
```

pandas.DatetimeIndex.inferred_type

DatetimeIndex.inferred_type

pandas.DatetimeIndex.is_all_dates

DatetimeIndex.is_all_dates

pandas.DatetimeIndex.is_monotonic

DatetimeIndex.is_monotonic

pandas.DatetimeIndex.is_month_end

DatetimeIndex.is_month_end
Logical indicating if last day of month (defined by frequency)

pandas.DatetimeIndex.is_month_start

DatetimeIndex.is_month_start
Logical indicating if first day of month (defined by frequency)

pandas.DatetimeIndex.is_quarter_end

DatetimeIndex.is_quarter_end
Logical indicating if last day of quarter (defined by frequency)
pandas.DatetimeIndex.is_quarter_start

DatetimeIndex.is_quarter_start
Logical indicating if first day of quarter (defined by frequency)

pandas.DatetimeIndex.is_year_end

DatetimeIndex.is_year_end
Logical indicating if last day of year (defined by frequency)

pandas.DatetimeIndex.is_year_start

DatetimeIndex.is_year_start
Logical indicating if first day of year (defined by frequency)

pandas.DatetimeIndex.itemsize

DatetimeIndex.itemsize
Length of one array element in bytes.

Examples

```python
>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16
```

pandas.DatetimeIndex.microsecond

DatetimeIndex.microsecond
The microseconds of the datetime

pandas.DatetimeIndex.minute

DatetimeIndex.minute
The minutes of the datetime

pandas.DatetimeIndex.month

DatetimeIndex.month
The month as January=1, December=12

pandas.DatetimeIndex.names

DatetimeIndex.names
pandas.DatetimeIndex.nanosecond

DatetimeIndex.nanosecond
The nanoseconds of the datetime

pandas.DatetimeIndex.nbytes

DatetimeIndex.nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

```python
>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480
```

pandas.DatetimeIndex.ndim

DatetimeIndex.ndim
Number of array dimensions.

Examples

```python
>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3
```

pandas.DatetimeIndex.nlevels

DatetimeIndex.nlevels

pandas.DatetimeIndex.quarter

DatetimeIndex.quarter
The quarter of the date

pandas.DatetimeIndex.qyear

DatetimeIndex.qyear
**pandas.DatetimeIndex.real**

DatetimeIndex.<code>real</code>

The real part of the array.

**See Also:**

numpy.<code>real</code> equivalent function

**Examples**

```python
>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')
```

**pandas.DatetimeIndex.second**

DatetimeIndex.<code>second</code>

The seconds of the datetime

**pandas.DatetimeIndex.shape**

DatetimeIndex.<code>shape</code>

Tuple of array dimensions.

**Notes**

May be used to “reshape” the array, as long as this would not require a change in the total number of elements

**Examples**

```python
>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
```
pandas.DatetimeIndex.size

DatetimeIndex.size
Number of elements in the array.
Equivalent to np.prod(a.shape), i.e., the product of the array's dimensions.

Examples

```python
>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30
```

pandas.DatetimeIndex.strides

DatetimeIndex.strides
Tuple of bytes to step in each dimension when traversing an array.
The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:
offset = sum(np.array(i) * a.strides)
A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.
See Also:
numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

```
x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)
```

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory). The strides of an array tell us how many bytes we have to skip in memory to move to the next position along a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5 values) to get to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

```python
>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
```
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

pandas.DatetimeIndex.time

DatetimeIndex.time
Returns numpy array of datetime.time. The time part of the Timestamps

pandas.DatetimeIndex.tzinfo

DatetimeIndex.tzinfo
Alias for tz attribute

pandas.DatetimeIndex.values

DatetimeIndex.values

pandas.DatetimeIndex.week

DatetimeIndex.week
The week ordinal of the year

pandas.DatetimeIndex.weekday

DatetimeIndex.weekday
The day of the week with Monday=0, Sunday=6

pandas.DatetimeIndex.weekofyear

DatetimeIndex.weekofyear
The week ordinal of the year
pandas.DatetimeIndex.year

The year of the datetime

<table>
<thead>
<tr>
<th>hasnans</th>
<th>inferred_freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>is_normalized</td>
<td>is_unique</td>
</tr>
<tr>
<td>name</td>
<td>offset</td>
</tr>
<tr>
<td>resolution</td>
<td>tz</td>
</tr>
</tbody>
</table>

Methods

- **all**([axis, out])
  Returns True if all elements evaluate to True.

- **any**([axis, out])
  Returns True if any of the elements of a evaluate to True.

- **append**(other)
  Append a collection of Index options together

- **argmax**([axis, out])
  Return indices of the maximum values along the given axis.

- **argmin**()
  Return indices of the minimum values along the given axis.

- **argpartition**(kth[, axis, kind, order])
  Returns the indices that would partition this array.

- **argsort**(*args, **kwargs)
  See docstring for ndarray.argsort

- **asof**(label)
  For a sorted index, return the most recent label up to and including the passed label.

- **asof_locs**(where, mask)
  where : array of timestamps

- **astype**(dtype)
  Swap the bytes of the array elements

- **choose**(choices[, out, mode])
  Use an index array to construct a new array from a set of choices.

- **clip**(a_min, a_max[, out])
  Return an array whose values are limited to [a_min, a_max].

- **compress**(condition[, axis, out])
  Return slices of this array along given axis.

- **conj**()
  Complex-conjugate all elements.

- **conjugate**()
  Return the complex conjugate, element-wise.

- **copy**(names, name, dtype, deep)
  Make a copy of this object.

- **cumprod**([axis, dtype, out])
  Return the cumulative product of the elements along the given axis.

- **cumsum**([axis, dtype, out])
  Return the cumulative sum of the elements along the given axis.

- **delete**(loc)
  Make new DatetimeIndex with passed location deleted

- **diagonal**([offset, axis1, axis2])
  Return specified diagonals.

- **diff**(other)
  Compute sorted set difference of two Index objects

- **dot**(b[, out])
  Dot product of two arrays.

- **drop**(labels)
  Make new Index with passed list of labels deleted

- **dump**(file)
  Dump a pickle of the array to the specified file.

- **dumps**()
  Returns the pickle of the array as a string.

- **equals**(other)
  Determines if two Index objects contain the same elements.

- **factorize**(sort, na_sentinel)
  Encode the object as an enumerated type or categorical variable

- **fill**(args, **kwargs)
  This method will not function because object is immutable.

- **flatten**(order)
  Return a copy of the array collapsed into one dimension.

- **format**(name, formatter)
  Render a string representation of the Index

- **get_duplicates**()

- **get_indexer**(target[, method, limit])
  Compute indexer and mask for new index given the current index.

- **get_indexer_for**(target, **kwargs)
  guaranteed return of an indexer even when non-unique
Table 29.85 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_indexer_non_unique</td>
<td>return an indexer suitable for taking from a non unique index</td>
</tr>
<tr>
<td>get_level_values</td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td>get_loc</td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td>get_value</td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td>get_value_maybe_box</td>
<td></td>
</tr>
<tr>
<td>get_values</td>
<td></td>
</tr>
<tr>
<td>getfield</td>
<td>Returns a field of the given array as a certain type.</td>
</tr>
<tr>
<td>groupby</td>
<td></td>
</tr>
<tr>
<td>holds_integer</td>
<td></td>
</tr>
<tr>
<td>identical</td>
<td></td>
</tr>
<tr>
<td>indexer_at_time</td>
<td>Select values at particular time of day (e.g., 9:00-9:30AM)</td>
</tr>
<tr>
<td>indexer_between_time</td>
<td>Select values between particular times of day (e.g., 9:00-9:30AM)</td>
</tr>
<tr>
<td>insert</td>
<td>Make new Index inserting new item at location</td>
</tr>
<tr>
<td>intersection</td>
<td>Specialized intersection for DatetimeIndex objects. May be much faster</td>
</tr>
<tr>
<td>is_</td>
<td></td>
</tr>
<tr>
<td>is_floating</td>
<td></td>
</tr>
<tr>
<td>is_integer</td>
<td></td>
</tr>
<tr>
<td>is_lexsorted_for_tuple</td>
<td></td>
</tr>
<tr>
<td>is_mixed</td>
<td></td>
</tr>
<tr>
<td>is_type_compatible</td>
<td></td>
</tr>
<tr>
<td>isin</td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td>item</td>
<td>Copy an element of an array to a standard Python scalar and return it.</td>
</tr>
<tr>
<td>itemset</td>
<td>This method will not function because object is immutable.</td>
</tr>
<tr>
<td>join</td>
<td>See Index.join</td>
</tr>
<tr>
<td>map</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>Overridden ndarray.max to return an object</td>
</tr>
<tr>
<td>mean</td>
<td>Returns the average of the array elements along given axis.</td>
</tr>
<tr>
<td>min</td>
<td>Overridden ndarray.min to return an object</td>
</tr>
<tr>
<td>nonzero</td>
<td>Return the indices of the elements that are non-zero.</td>
</tr>
<tr>
<td>normalize</td>
<td>Return DatetimeIndex with times to midnight. Length is unaltered</td>
</tr>
<tr>
<td>nunique</td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td>order</td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td>partition</td>
<td>Rearranges the elements in the array in such a way that value of the element</td>
</tr>
<tr>
<td>prod</td>
<td>Return the product of the array elements over the given axis</td>
</tr>
<tr>
<td>ptp</td>
<td>Peak to peak (maximum - minimum) value along a given axis.</td>
</tr>
<tr>
<td>put</td>
<td>This method will not function because object is immutable.</td>
</tr>
<tr>
<td>ravel</td>
<td>Return a flattened array.</td>
</tr>
<tr>
<td>reindex</td>
<td>For Index, simply returns the new index and the results of</td>
</tr>
<tr>
<td>rename</td>
<td>Set new names on index.</td>
</tr>
<tr>
<td>repeat</td>
<td>Analogous to ndarray.repeat</td>
</tr>
<tr>
<td>reshape</td>
<td>Returns an array containing the same data with a new shape.</td>
</tr>
<tr>
<td>resize</td>
<td>Change shape and size of array in-place.</td>
</tr>
<tr>
<td>round</td>
<td>Return a with each element rounded to the given number of decimals.</td>
</tr>
<tr>
<td>searchsorted</td>
<td>Set new names on index.</td>
</tr>
<tr>
<td>set_names</td>
<td>Set new names on index.</td>
</tr>
<tr>
<td>set_value</td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td>setfield</td>
<td>Put a value into a specified place in a field defined by a data-type.</td>
</tr>
<tr>
<td>setflags</td>
<td>Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively</td>
</tr>
</tbody>
</table>
Table 29.85 – continued from previous page

- **shift**(*n*, freq)  
  Specialized shift which produces a DatetimeIndex
- **slice_indexer**([start, end, step])  
  Index.slice_indexer, customized to handle time slicing
- **slice_locs**([start, end])  
  Index.slice_locs, customized to handle partial ISO-8601 string slicing
- **snap**(freq)  
  Snap time stamps to nearest occurring frequency
- **sort**(*args, **kwargs)  
  Remove single-dimensional entries from the shape of a.
- **std**(*axis, dtype, out, ddof)  
  Returns the standard deviation of the array elements along given axis.
- **sum**(*axis, dtype, out)  
  Return the sum of the array elements over the given axis.
- **summary**(name)  
  Analogous to ndarray.take
- **swapaxes**(axis1, axis2)  
  Return a view of the array with axis1 and axis2 interchanged.
- **sym_diff**(other[, result_name])  
  Compute the sorted symmetric difference of two Index objects.
- **take**(indices[, axis])  
  Analogous to ndarray.take
- **to_datetime**(dayfirst)  
  Convert DatetimeIndex to Float64Index of Julian Dates.
- **to_native_types**(slicer)  
  slice and dice then format
- **to_period**(freq)  
  Cast to PeriodIndex at a particular frequency
- **to_pydatetime**()  
  Return DatetimeIndex as object ndarray of datetime.datetime objects
- **to_series**(keep_tz)  
  Create a Series with both index and values equal to the index keys
- **tolist**()  
  See ndarry.tolist
- **to_string**(order)  
  Construct a Python string containing the raw data bytes in the array.
- **trace**(offset, axis1, axis2, dtype, out)  
  Return the sum along diagonals of the array.
- **transpose**(axes)  
  Returns a view of the array with axes transposed.
- **tz_convert**(tz)  
  Convert DatetimeIndex from one time zone to another (using pytz/dateutil)
- **tz_localize**(tz[, infer_dst])  
  Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil)
- **union**(other)  
  Specialized union for DatetimeIndex objects. If combine
- **union_many**(others)  
  A bit of a hack to accelerate unioning a collection of indexes
- **unique**()  
  Index.unique with handling for DatetimeIndex metadata
- **value_counts**(normalize, sort, ascending, ...)  
  Returns object containing counts of unique values.
- **var**(axis, dtype, out, ddof)  
  Returns the variance of the array elements, along given axis.
- **view**(*args, **kwargs)

### pandas.DatetimeIndex.all

DatetimesIndex.**all**(axis=None, out=None)  
Returns True if all elements evaluate to True.

Refer to *numpy.all* for full documentation.

**See Also:**

- **numpy.all** equivalent function

### pandas.DatetimeIndex.any

DatetimesIndex.**any**(axis=None, out=None)  
Returns True if any of the elements of a evaluate to True.

Refer to *numpy.any* for full documentation.

**See Also:**

- **numpy.any** equivalent function
**pandas.DatetimeIndex.append**

DatetimeIndex.append(other)
Append a collection of Index options together

- **Parameters**
  - other : Index or list/tuple of indices
- **Returns**
  - appended : Index

**pandas.DatetimeIndex.argmax**

DatetimeIndex.argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.
Refer to numpy.argmax for full documentation.

- **See Also**
  - numpy.argmax equivalent function

**pandas.DatetimeIndex.argmin**

DatetimeIndex.argmin()

**pandas.DatetimeIndex.argpartition**

DatetimeIndex.argpartition(kth, axis=-1, kind='quicksort', order=None)
Returns the indices that would partition this array.
Refer to numpy.argpartition for full documentation. New in version 1.8.0.

- **See Also**
  - numpy.argpartition equivalent function

**pandas.DatetimeIndex.argsort**

DatetimeIndex.argsort(*args, **kwargs)
See docstring for ndarray.argsort

**pandas.DatetimeIndex.asof**

DatetimeIndex.asof(label)
For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found

**pandas.DatetimeIndex.asof_locs**

DatetimeIndex.asof_locs(where, mask)
where : array of timestamps
mask : array of booleans where data is not NA
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.DatetimeIndex.astype

```
DatetimeIndex.astype(dtype)
```

pandas.DatetimeIndex.byteswap

```
DatetimeIndex.byteswap(inplace)
```

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place.

**Parameters**

- `inplace` : bool, optional
  
  If True, swap bytes in-place, default is False.

**Returns**

- `out` : ndarray
  
  The byteswapped array. If inplace is True, this is a view to self.

**Examples**

```
>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(True)
array([256, 1, 13090], dtype=int16)
```

Arrays of strings are not swapped

```
>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'], dtype='|S3')
```

pandas.DatetimeIndex.choose

```
DatetimeIndex.choose(choices, out=None, mode='raise')
```

Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

**See Also:**

- `numpy.choose` equivalent function

pandas.DatetimeIndex.clip

```
DatetimeIndex.clip(a_min, a_max, out=None)
```

Return an array whose values are limited to `[a_min, a_max]`.

Refer to numpy.clip for full documentation.

**See Also:**
**numpy.clip** equivalent function

**pandas.DatetimeIndex.compress**

DatetimIndex.compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See Also:

**numpy.compress** equivalent function

**pandas.DatetimeIndex.conj**

DatetimIndex.conj()

Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See Also:

**numpy.conjugate** equivalent function

**pandas.DatetimeIndex.conjugate**

DatetimIndex.conjugate()

Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See Also:

**numpy.conjugate** equivalent function

**pandas.DatetimeIndex.copy**

DatetimIndex.copy(names=None, name=None, dtype=None, deep=False)

Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters

- name : string, optional
- dtype : numpy dtype or pandas type

Returns

- copy : Index

Notes

In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.
pandas.DatetimeIndex.cumprod

DatetimeIndex.cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See Also:

numpy.cumprod equivalent function

pandas.DatetimeIndex.cumsum

DatetimeIndex.cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See Also:

numpy.cumsum equivalent function

pandas.DatetimeIndex.delete

DatetimeIndex.delete(loc)

Make new DatetimeIndex with passed location deleted

Returns

new_index: DatetimeIndex

loc: int, slice or array of ints  Indicate which sub-arrays to remove.

pandas.DatetimeIndex.diagonal

DatetimeIndex.diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals.

Refer to numpy.diagonal() for full documentation.

See Also:

numpy.diagonal equivalent function

pandas.DatetimeIndex.diff

DatetimeIndex.diff(other)

Compute sorted set difference of two Index objects

Parameters

other: Index or array-like

Returns
diff: Index
Notes

One can do either of these and achieve the same result

```python
>>> index - index2
>>> index.diff(index2)
```

**pandas.DatetimeIndex.dot**

```
DatetimeIndex.dot(b, out=None)
```

Dot product of two arrays.

Refer to `numpy.dot` for full documentation.

See Also:

- `numpy.dot` equivalent function

**Examples**

```python
>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])
```

This array method can be conveniently chained:

```python
>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])
```

**pandas.DatetimeIndex.drop**

```
DatetimeIndex.drop(labels)
```

Make new Index with passed list of labels deleted

Parameters

- `labels`: array-like

Returns

- `dropped`: Index

**pandas.DatetimeIndex.dump**

```
DatetimeIndex.dump(file)
```

Dump a pickle of the array to the specified file. The array can be read back with `pickle.load` or `numpy.load`.

Parameters

- `file`: str

A string naming the dump file.
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.DatetimeIndex.dumps

DatetimeIndex.dumps()  
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters None

pandas.DatetimeIndex.equals

DatetimeIndex.equals(other)  
Determines if two Index objects contain the same elements.

pandas.DatetimeIndex.factorize

DatetimeIndex.factorize(sort=False, na_sentinel=-1)  
Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False  
Sort by values

na_sentinel : int, default -1  
Value to mark "not found"

Returns labels : the indexer to the original array

uniques : the unique Index

pandas.DatetimeIndex.fill

DatetimeIndex.fill(*args, **kwargs)  
This method will not function because object is immutable.

pandas.DatetimeIndex.flatten

DatetimeIndex.flatten(order='C')  
Return a copy of the array collapsed into one dimension.

Parameters order : {‘C’, ‘F’, ‘A’}, optional  
Whether to flatten in C (row-major), Fortran (column-major) order, or preserve the C/Fortran ordering from a. The default is ‘C’.

Returns y : ndarray  
A copy of the input array, flattened to one dimension.

See Also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.
Examples

```python
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
```

```python
def pandas.DatetimeIndex.format
 DatetimeIndex.format (name=False, formatter=None, **kwars)
 Render a string representation of the Index
```

```python
def pandas.DatetimeIndex.get_duplicates
 DatetimeIndex.get_duplicates()
```

```python
def pandas.DatetimeIndex.get_indexer
 DatetimeIndex.get_indexer (target, method=None, limit=None)
 Compute indexer and mask for new index given the current index. The indexer should be then used as an
 input to ndarray.take to align the current data to the new index. The mask determines whether labels are
 found or not in the current index
 Parameters target: Index
 method: {'pad', 'ffill', 'backfill', 'bfill'}
 pad / ffill: propagate LAST valid observation forward to next valid backfill / bfill:
 use NEXT valid observation to fill gap
 Returns indexer: ndarray
```

Notes

This is a low-level method and probably should be used at your own risk

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

```python
def pandas.DatetimeIndex.get_indexer_for
 DatetimeIndex.get_indexer_for (target, **kwars)
 guaranteed return of an indexer even when non-unique
```
pandas.DatetimeIndex.get_indexer_non_unique

DatetimeIndex.get_indexer_non_unique(target, **kwargs)
return an indexer suitable for taking from a non unique index return the labels in the same order as the
target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must
be an iterable

pandas.DatetimeIndex.get_level_values

DatetimeIndex.get_level_values(level)
Return vector of label values for requested level, equal to the length of the index

Parameters  level : int

Returns  values : ndarray

pandas.DatetimeIndex.get_loc

DatetimeIndex.get_loc(key)
Get integer location for requested label

Returns  loc : int

pandas.DatetimeIndex.get_value

DatetimeIndex.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.DatetimeIndex.get_value_maybe_box

DatetimeIndex.get_value_maybe_box(series, key)

pandas.DatetimeIndex.get_values

DatetimeIndex.get_values()

pandas.DatetimeIndex.getfield

DatetimeIndex.getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtyper
fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view
with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters  dtype : str or dtype

The data type of the view. The dtype size of the view can not be larger than that
of the array itself.

offset : int

Number of bytes to skip before beginning the element view.
Examples

```python
>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
```  
By choosing an offset of 8 bytes we can select the complex part of the array for our view:

```python
>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])
```

**pandas.DatetimeIndex.groupby**

```python
DatetimeIndex.groupby(f)
```

**pandas.DatetimeIndex.holds_integer**

```python
DatetimeIndex.holds_integer()
```

**pandas.DatetimeIndex.identical**

```python
DatetimeIndex.identical(other)
```

Similar to equals, but check that other comparable attributes are also equal

**pandas.DatetimeIndex.indexer_at_time**

```python
DatetimeIndex.indexer_at_time(time, asof=False)
```

Select values at particular time of day (e.g. 9:30AM)

**Parameters**

- **time**: datetime.time or string
- **tz**: string or pytz.timezone or dateutil.tz.tzfile
  Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries

**Returns**

- **values_at_time**: TimeSeries

**pandas.DatetimeIndex.indexer_between_time**

```python
DatetimeIndex.indexer_between_time(start_time, end_time, include_start=True, include_end=True)
```

Select values between particular times of day (e.g., 9:00-9:30AM)

**Parameters**

- **start_time**: datetime.time or string
- **end_time**: datetime.time or string
- **include_start**: boolean, default True
include_end : boolean, default True

tz : string or pytz.timezone or dateutil.tz.tzfile, default None

Returns values_between_time : TimeSeries

pandas.DatetimeIndex.insert

DatetimeIndex.insert(loc, item)
Make new Index inserting new item at location

Parameters loc : int
    item : object

      if not either a Python datetime or a numpy integer-like, returned Index dtype will
      be object rather than datetime.

Returns new_index : Index

pandas.DatetimeIndex.intersection

DatetimeIndex.intersection(other)
Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection

Parameters other : DatetimeIndex or array-like

Returns y : Index or DatetimeIndex

pandas.DatetimeIndex.is

DatetimeIndex.is_(other)
More flexible, faster check like is but that works through views

Note: this is not the same as Index.identical(), which checks that metadata is also the same.

Parameters other : object

other object to compare against.

Returns True if both have same underlying data, False otherwise : bool

pandas.DatetimeIndex.is_floating

DatetimeIndex.is_floating()

pandas.DatetimeIndex.is_integer

DatetimeIndex.is_integer()

pandas.DatetimeIndex.is_lexsorted_for_tuple

DatetimeIndex.is_lexsorted_for_tuple(tup)
pandas.DatetimeIndex.is_mixed
DatetimeIndex.is_mixed()

pandas.DatetimeIndex.is_numeric
DatetimeIndex.is_numeric()

pandas.DatetimeIndex.is_type_compatible
DatetimeIndex.is_type_compatible(typ)

pandas.DatetimeIndex.isin
DatetimeIndex.isin(values)
   Compute boolean array of whether each index value is found in the passed set of values

   Parameters values : set or sequence of values
   Returns is_contained : ndarray (boolean dtype)

pandas.DatetimeIndex.item
DatetimeIndex.item(*args)
   Copy an element of an array to a standard Python scalar and return it.

   Parameters *args : Arguments (variable number and type)
      • none: in this case, the method only works for arrays with one element (a.size == 1),
         which element is copied into a standard Python scalar object and returned.
      • int_type: this argument is interpreted as a flat index into the array, specifying which
         element to copy and return.
      • tuple of int_types: functions as does a single int_type argument, except that the argu-
         ment is interpreted as an nd-index into the array.
   Returns z : Standard Python scalar object
      A copy of the specified element of the array as a suitable Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.
**Examples**

```python
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3
```

**pandas.DatetimeIndex.itemset**

`DatetimeIndex.itemset(*args, **kwargs)`

This method will not function because object is immutable.

**pandas.DatetimeIndex.join**

`DatetimeIndex.join(other, how='left', level=None, return_indexers=False)`

See `Index.join`

**pandas.DatetimeIndex.map**

`DatetimeIndex.map(f)`

**pandas.DatetimeIndex.max**

`DatetimeIndex.max(axis=None)`

Overridden `ndarray.max` to return an object

**pandas.DatetimeIndex.mean**

`DatetimeIndex.mean(axis=None, dtype=None, out=None)`

Returns the average of the array elements along given axis.

Refer to `numpy.mean` for full documentation.

See Also:

- `numpy.mean` equivalent function

**pandas.DatetimeIndex.min**

`DatetimeIndex.min(axis=None)`

Overridden `ndarray.min` to return an object
pandas.DatetimeIndex.newbyteorder

DatetimeIndex.newbyteorder(new_order='S')
    Return the array with the same data viewed with a different byte order.
    Equivalent to:
    
    arr.view(arr.dtype.newbyteorder(new_order))
    
    Changes are also made in all fields and sub-arrays of the array data type.
    
    Parameters new_order : string, optional
        Byte order to force; a value from the byte order specifications above. new_order
codes can be any of:

        * 'S' - swap dtype from current to opposite endian
        * {'<', 'L'} - little endian
        * {'>', 'B'} - big endian
        * {'=', 'N'} - native order
        * {'|', 'I'} - ignore (no change to byte order)

    The default value ('S') results in swapping the current byte order. The code does
a case-insensitive check on the first letter of new_order for the alternatives above.
For example, any of 'B' or 'b' or 'biggish' are valid to specify big-endian.
    
    Returns new_arr : array
        New array object with the dtype reflecting given change to the byte order.

pandas.DatetimeIndex.nonzero

DatetimeIndex.nonzero()
    Return the indices of the elements that are non-zero.
    Refer to numpy.nonzero for full documentation.
    
    See Also:
    
    numpy.nonzero equivalent function

pandas.DatetimeIndex.normalize

DatetimeIndex.normalize()
    Return DatetimeIndex with times to midnight. Length is unaltered
    
    Returns normalized : DatetimeIndex

pandas.DatetimeIndex.nunique

DatetimeIndex.nunique(dropna=True)
    Return number of unique elements in the object.
    Excludes NA values by default.
    
    Parameters dropna : boolean, default True
        Don’t include NaN in the count.
Returns `nunique` : int

**pandas.DatetimeIndex.order**

```
DatetimeIndex.order(return_indexer=False, ascending=True)
```

Return sorted copy of Index

**pandas.DatetimeIndex.partition**

```
DatetimeIndex.partition(kth, axis=-1, kind='introselect', order=None)
```

Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined. New in version 1.8.0.

**Parameters**

- `kth` : int or sequence of ints
  
  Element index to partition by. The kth element value will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order all elements in the partitions is undefined. If provided with a sequence of kth it will partition all elements indexed by kth of them into their sorted position at once.

- `axis` : int, optional
  
  Axis along which to sort. Default is -1, which means sort along the last axis.

- `kind` : {'introselect'}, optional
  
  Selection algorithm. Default is ‘introselect’.

- `order` : list, optional
  
  When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. Not all fields need be specified.

**See Also:**

- `numpy.partition` Return a partitioned copy of an array.
- `argpartition` Indirect partition.
- `sort` Full sort.

**Notes**

See `np.partition` for notes on the different algorithms.

**Examples**

```python
>>> a = np.array([3, 4, 2, 1])
>>> a.partition(a, 3)
>>> a
array([2, 1, 3, 4])
```
```python
>>> a.partition((1, 3))
array([1, 2, 3, 4])
```

**pandas.DatetimeIndex.prod**

```python
DatetimeIndex.prod(\naxis=None, dtype=None, out=None)\n```

Return the product of the array elements over the given axis.

Refer to `numpy.prod` for full documentation.

See Also:

- `numpy.prod` equivalent function

pandas.DatetimeIndex.ptp

```python
DatetimeIndex.ptp(\naxis=None, out=None)\n```

Peak to peak (maximum - minimum) value along a given axis.

Refer to `numpy.ptp` for full documentation.

See Also:

- `numpy.ptp` equivalent function

**pandas.DatetimeIndex.put**

```python
DatetimeIndex.put(*args, **kwargs)\n```

This method will not function because object is immutable.

pandas.DatetimeIndex.ravel

```python
DatetimeIndex.ravel(\[order\])\n```

Return a flattened array.

Refer to `numpy.ravel` for full documentation.

See Also:

- `numpy.ravel` equivalent function
  
- `ndarray.flat` a flat iterator on the array.

**pandas.DatetimeIndex.reindex**

```python
DatetimeIndex.reindex(\ntarget, method=None, level=None, limit=None, copy_if_needed=False)\n```

For Index, simply returns the new index and the results of get_indexer. Provided here to enable an interface that is amenable for subclasses of Index whose internals are different (like MultiIndex)

Returns `(new_index, indexer, mask) : tuple`
pandas.DatetimeIndex.rename

DatetimeIndex.rename(name, inplace=False)

Set new names on index. Defaults to returning new index.

Parameters
name : str or list
name to set
inplace : bool
if True, mutates in place

Returns
new index (of same type and class...etc) [if inplace, returns None]

pandas.DatetimeIndex.repeat

DatetimeIndex.repeat(repeats, axis=None)

Analogous to ndarray.repeat

pandas.DatetimeIndex.reshape

DatetimeIndex.reshape(shape, order='C')

Returns an array containing the same data with a new shape.
Refer to numpy.reshape for full documentation.
See Also:
numpy.reshape equivalent function

pandas.DatetimeIndex.resize

DatetimeIndex.resize(new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters
new_shape : tuple of ints, or n ints
Shape of resized array.
refcheck : bool, optional
If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError
If a does not own its own data or references or views to it exist, and the data
memory must be changed.

SystemError
If the order keyword argument is specified. This behaviour is a bug in NumPy.

See Also:

resize Return a new array with the specified shape.
Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure that you have not shared the memory for this array with another Python object, then you may safely set `refcheck` to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

```python
>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
array([[0],[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
array([[0], [2]])
```

Enlarging an array: as above, but missing entries are filled with zeros:

```python
>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3)  # new_shape parameter doesn’t have to be a tuple
>>> b
array([[0, 1, 2],
[3, 0, 0]])
```

Referencing an array prevents resizing...

```python
>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
  ...
ValueError: cannot resize an array that has been referenced ...

Unless `refcheck` is False:

```python
>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])
```

`pandas.DatetimeIndex.round`

`DatetimeIndex.round`(decimals=0, out=None)

Return a with each element rounded to the given number of decimals.
Refer to `numpy.around` for full documentation.

See Also:

`numpy.around` equivalent function

**pandas.DatetimeIndex.searchsorted**

`DatetimeIndex.searchsorted(key, side='left')`

**pandas.DatetimeIndex.set_names**

`DatetimeIndex.set_names(names, inplace=False)`

Set new names on index. Defaults to returning new index.

**Parameters**

- `names`: sequence
  - names to set
- `inplace`: bool
  - if True, mutates in place

**Returns**

new index (of same type and class...etc) [if inplace, returns None]

**pandas.DatetimeIndex.set_value**

`DatetimeIndex.set_value(arr, key, value)`

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

**pandas.DatetimeIndex.setfield**

`DatetimeIndex.setfield(val, dtype, offset=0)`

Put a value into a specified place in a field defined by a data-type.

Place `val` into `a`’s field defined by `dtype` and beginning `offset` bytes into the field.

**Parameters**

- `val`: object
  - Value to be placed in field.
- `dtype`: dtype object
  - Data-type of the field in which to place `val`.
- `offset`: int, optional
  - The number of bytes into the field at which to place `val`.

**Returns**

None

See Also:

gffield
Examples

```python
>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
```

`pandas.DatetimeIndex.setflags`

`DatetimeIndex.setflags(write=None, align=None, uic=None)`

Set array flags WRITEABLE, ALIGNED, and UPDATEIFCOPY, respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by `a` (see Notes below). The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The UPDATEIFCOPY flag can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done without copying memory.)

**Parameters**

- `write` : bool, optional
  Describes whether or not `a` can be written to.
- `align` : bool, optional
  Describes whether or not `a` is aligned properly for its type.
- `uic` : bool, optional
  Describes whether or not `a` is a copy of another “base” array.

**Notes**

Array flags provide information about how the memory area used for the array is to be interpreted. There are 6 Boolean flags in use, only three of which can be changed by the user: UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

UPDATEIFCOPY (U) this array is a copy of some other array (referenced by `.base`). When this array is deallocated, the base array will be updated with the contents of this array.
All flags can be accessed using their first (upper case) letter as well as the full name.

**Examples**

```python
>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set UPDATEIFCOPY flag to True
```

**pandas.DatetimeIndex.shift**

`DatetimeIndex.shift(n, freq=None)`  
Specialized shift which produces a DatetimeIndex

- **Parameters**
  - `n` : int  
    Periods to shift by
  - `freq` : DateOffset or timedelta-like, optional

- **Returns**
  - `shifted` : DatetimeIndex

**pandas.DatetimeIndex.slice_indexer**

`DatetimeIndex.slice_indexer(start=None, end=None, step=None)`  
Index.slice_indexer, customized to handle time slicing

**pandas.DatetimeIndex.slice_locs**

`DatetimeIndex.slice_locs(start=None, end=None)`  
Index.slice_locs, customized to handle partial ISO-8601 string slicing
pandas.DatetimeIndex.snap

DatetimeIndex.snap(freq='S')
Snap time stamps to nearest occurring frequency

pandas.DatetimeIndex.sort

DatetimeIndex.sort(*args, **kwargs)

pandas.DatetimeIndex.squeeze

DatetimeIndex.squeeze(axis=None)
Remove single-dimensional entries from the shape of a.
Refer to numpy.squeeze for full documentation.
See Also:

numpy.squeeze equivalent function

pandas.DatetimeIndex.std

DatetimeIndex.std(axis=None, dtype=None, out=None, ddof=0)
Returns the standard deviation of the array elements along given axis.
Refer to numpy.std for full documentation.
See Also:

numpy.std equivalent function

pandas.DatetimeIndex.sum

DatetimeIndex.sum(axis=None, dtype=None, out=None)
Return the sum of the array elements over the given axis.
Refer to numpy.sum for full documentation.
See Also:

numpy.sum equivalent function

pandas.DatetimeIndex.summary

DatetimeIndex.summary(name=None)

pandas.DatetimeIndex.swapaxes

DatetimeIndex.swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.
Refer to numpy.swapaxes for full documentation.
See Also:
pandas: powerful Python data analysis toolkit, Release 0.14.1

numpy.swapaxes equivalent function

pandas.DatetimeIndex.sym_diff

DatetimeIndex.sym_diff(other, result_name=None)
Compute the sorted symmetric difference of two Index objects.

Parameters
other : array-like
result_name : str

Returns
sym_diff : Index

Notes

sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index
created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped.

The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue
#6444.

Examples

>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.sym_diff(idx2)
Int64Index([1, 5], dtype='int64')

You can also use the ^ operator:

>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')

pandas.DatetimeIndex.take

DatetimeIndex.take(indices, axis=0)
Analogous to ndarray.take

pandas.DatetimeIndex.to_datetime

DatetimeIndex.to_datetime(dayfirst=False)

pandas.DatetimeIndex.to_julian_date

DatetimeIndex.to_julian_date()
Convert DatetimeIndex to Float64Index of Julian Dates. 0 Julian date is noon January 1, 4713 BC.
http://en.wikipedia.org/wiki/Julian_day

pandas.DatetimeIndex.to_native_types

DatetimeIndex.to_native_types(slicer=None, **kwargs)
slice and dice then format
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.DatetimeIndex.to_period
DatetimeIndex.to_period(freq=None)
Cast to PeriodIndex at a particular frequency
pandas.DatetimeIndex.to_pydatetime
DatetimeIndex.to_pydatetime()
Return DatetimeIndex as object ndarray of datetime.datetime objects
Returns datetimes : ndarray
pandas.DatetimeIndex.to_series
DatetimeIndex.to_series(keep_tz=False)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer
based on an index
Parameters keep_tz : optional, defaults False.
return the data keeping the timezone.
If keep_tz is True:
If the timezone is not set or is UTC, the resulting Series will have a datetime64[ns] dtype. Otherwise the Series will have an object dtype.
If keep_tz is False:
Series will have a datetime64[ns] dtype.
Returns Series
pandas.DatetimeIndex.tofile
DatetimeIndex.tofile(fid, sep=”“, format=”%s”)
Write array to a file as text or binary (default).
Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().
Parameters fid : file or str
An open file object, or a string containing a filename.
sep : str
Separator between array items for text output. If “” (empty), a binary file is
written, equivalent to file.write(a.tostring()).
format : str
Format string for text file output. Each entry in the array is formatted to text by
first converting it to the closest Python type, and then using “format” % item.

29.8. DatetimeIndex

1213


Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size.

pandas.DatetimeIndex.tolist

DatetimeIndex.tolist()
See ndarray.tolist

pandas.DatetimeIndex.tostring

DatetimeIndex.tostring(order='C')
Constructs a Python string showing a copy of the raw contents of data memory. The string can be produced in either ‘C’ or ‘Fortran’, or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means Fortran order.

Parameters: order : {‘C’, ‘F’, None}, optional
Order of the data for multidimensional arrays: C, Fortran, or the same as for the original array.

Returns: s : str
A Python string exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tostring()
'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'  
>>> x.tostring('C') == x.tostring()
True
>>> x.tostring('F')
'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

pandas.DatetimeIndex.trace

DatetimeIndex.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.
Refer to numpy.trace for full documentation.

See Also:

numpy.trace equivalent function
pandas.DatetimeIndex.transpose

DatetimeIndex.transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and row vectors, first cast the 1-D array into a matrix object.) For a 2-D array, this is the usual matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

Parameters axes : None, tuple of ints, or n ints
  * None or no argument: reverses the order of the axes.
  * tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s j-th axis.
  * n ints: same as an n-tuple of the same ints (this form is intended simply as a “convenience” alternative to the tuple form)

Returns out : ndarray
  View of a, with axes suitably permuted.

See Also:

ndarray.T Array property returning the array transposed.

Examples

```python
>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])
```

pandas.DatetimeIndex.tz_convert

DatetimeIndex.tz_convert(tz)
Convert DatetimeIndex from one time zone to another (using pytz/dateutil)

Returns normalized : DatetimeIndex

pandas.DatetimeIndex.tz_localize

DatetimeIndex.tz_localize(tz, infer_dst=False)
Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil)
Parameters  

**tz**: string or pytz.timezone or dateutil.tz.tzfile

Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries

**infer_dst**: boolean, default False

Attempt to infer fall dst-transition hours based on order

**Returns**  

localized : DatetimeIndex

### pandas.DatetimeIndex.union

**DatetimeIndex.union**(*other*)

Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union

**Parameters**  

**other**: DatetimeIndex or array-like

**Returns**  

y : Index or DatetimeIndex

### pandas.DatetimeIndex.union_many

**DatetimeIndex.union_many**(*others*)

A bit of a hack to accelerate unioning a collection of indexes

### pandas.DatetimeIndex.unique

**DatetimeIndex.unique**()

Index.unique with handling for DatetimeIndex metadata

**Returns**  

result : DatetimeIndex

### pandas.DatetimeIndex.value_counts

**DatetimeIndex.value_counts**(*normalize=False, sort=True, ascending=False, bins=None, dropna=True*)

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

**Parameters**  

**normalize**: boolean, default False

If True then the object returned will contain the relative frequencies of the unique values.

**sort**: boolean, default True

Sort by values

**ascending**: boolean, default False

Sort in ascending order

**bins**: integer, optional

Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data
**pandas.DatetimeIndex.var**

*Datet imeIndex.var(axis=None, dtype=None, out=None, ddof=0)*

Returns the variance of the array elements, along given axis.

Refer to *numpy.var* for full documentation.

**See Also:**

*numpy.var* equivalent function

**pandas.DatetimeIndex.view**

*Datet imeIndex.view(*args, **kwargs)*

### 29.8.2 Time/Date Components

<table>
<thead>
<tr>
<th>DatetimeIndex.year</th>
<th>The year of the datetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.month</td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td>DatetimeIndex.day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.hour</td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.date</td>
<td>Returns numpy array of datetime.date.</td>
</tr>
<tr>
<td>DatetimeIndex.time</td>
<td>Returns numpy array of datetime.time.</td>
</tr>
<tr>
<td>DatetimeIndex.dayofyear</td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td>DatetimeIndex.weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>DatetimeIndex.week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>DatetimeIndex.dayofweek</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>DatetimeIndex.weekday</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>DatetimeIndex.quarter</td>
<td>The quarter of the date</td>
</tr>
<tr>
<td>DatetimeIndex.tz</td>
<td></td>
</tr>
<tr>
<td>DatetimeIndex.freq</td>
<td>return the frequency object if its set, otherwise None</td>
</tr>
<tr>
<td>DatetimeIndex.freqstr</td>
<td>return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td>DatetimeIndex.is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.DatetimeIndex.year

DatetimeIndex.year
The year of the datetime

pandas.DatetimeIndex.month

DatetimeIndex.month
The month as January=1, December=12

pandas.DatetimeIndex.day

DatetimeIndex.day
The days of the datetime

pandas.DatetimeIndex.hour

DatetimeIndex.hour
The hours of the datetime

pandas.DatetimeIndex.minute

DatetimeIndex.minute
The minutes of the datetime

pandas.DatetimeIndex.second

DatetimeIndex.second
The seconds of the datetime

pandas.DatetimeIndex.microsecond

DatetimeIndex.microsecond
The microseconds of the datetime

pandas.DatetimeIndex.nanosecond

DatetimeIndex.nanosecond
The nanoseconds of the datetime

pandas.DatetimeIndex.date

DatetimeIndex.date
Returns numpy array of datetime.date. The date part of the Timestamps
**pandas.DatetimeIndex.time**

`DatetimeIndex.time`

Returns numpy array of datetime.time. The time part of the Timestamps

**pandas.DatetimeIndex.dayofyear**

`DatetimeIndex.dayofyear`

The ordinal day of the year

**pandas.DatetimeIndex.weekofyear**

`DatetimeIndex.weekofyear`

The week ordinal of the year

**pandas.DatetimeIndex.week**

`DatetimeIndex.week`

The week ordinal of the year

**pandas.DatetimeIndex.dayofweek**

`DatetimeIndex.dayofweek`

The day of the week with Monday=0, Sunday=6

**pandas.DatetimeIndex.weekday**

`DatetimeIndex.weekday`

The day of the week with Monday=0, Sunday=6

**pandas.DatetimeIndex.quarter**

`DatetimeIndex.quarter`

The quarter of the date

**pandas.DatetimeIndex.tz**

`DatetimeIndex.tz = None`

**pandas.DatetimeIndex.freq**

`DatetimeIndex.freq`

return the frequency object if its set, otherwise None

**pandas.DatetimeIndex.freqstr**

`DatetimeIndex.freqstr`

return the frequency object as a string if its set, otherwise None
pandas: powerful Python data analysis toolkit, Release 0.14.1

**pandas.DatetimeIndex.is_month_start**

```python
DatetimeIndex.is_month_start
```
Logical indicating if first day of month (defined by frequency)

**pandas.DatetimeIndex.is_month_end**

```python
DatetimeIndex.is_month_end
```
Logical indicating if last day of month (defined by frequency)

**pandas.DatetimeIndex.is_quarter_start**

```python
DatetimeIndex.is_quarter_start
```
Logical indicating if first day of quarter (defined by frequency)

**pandas.DatetimeIndex.is_quarter_end**

```python
DatetimeIndex.is_quarter_end
```
Logical indicating if last day of quarter (defined by frequency)

**pandas.DatetimeIndex.is_year_start**

```python
DatetimeIndex.is_year_start
```
Logical indicating if first day of year (defined by frequency)

**pandas.DatetimeIndex.is_year_end**

```python
DatetimeIndex.is_year_end
```
Logical indicating if last day of year (defined by frequency)

### 29.8.3 Selecting

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.indexer_at_time(time[, asof])</td>
<td>Select values at particular time of day (e.g. 9:30AM)</td>
</tr>
<tr>
<td>DatetimeIndex.indexer_between_time(...)</td>
<td>Select values between particular times of day (e.g., 9:00-9:30AM)</td>
</tr>
</tbody>
</table>

**pandas.DatetimeIndex.indexer_at_time**

```python
DatetimeIndex.indexer_at_time(time, asof=False)
```
Select values at particular time of day (e.g. 9:30AM)

**Parameters**

- **time**: datetime.time or string
- **tz**: string or pytz.timezone or dateutil.tz.tzfile

  Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries

**Returns**

- **values_at_time**: TimeSeries
pandas.DatetimeIndex.indexer_between_time

Datet imeIndex. indexer_between_time (start_time, end_time, include_start=True, include_end=True)
Select values between particular times of day (e.g., 9:00-9:30AM)

Parameters

- start_time : datetime.time or string
- end_time : datetime.time or string
- include_start : boolean, default True
- include_end : boolean, default True
- tz : string or pytz.timezone or dateutil.tz.tzfile, default None

Returns

- values_between_time : TimeSeries

29.8.4 Time-specific operations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.normalize()</td>
<td>Return DatetimeIndex with times to midnight. Length is unaltered</td>
</tr>
<tr>
<td>DatetimeIndex.snap([freq])</td>
<td>Snap time stamps to nearest occurring frequency</td>
</tr>
<tr>
<td>DatetimeIndex.tz_convert(tz)</td>
<td>Convert DatetimeIndex from one time zone to another (using pytz/dateutil)</td>
</tr>
<tr>
<td>DatetimeIndex.tz_localize(tz[, infer_dst])</td>
<td>Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil)</td>
</tr>
</tbody>
</table>

pandas.DatetimeIndex.normalize

Datet imeIndex.normalize()
Return DatetimeIndex with times to midnight. Length is unaltered

Returns

- normalized : DatetimeIndex

pandas.DatetimeIndex.snap

Datet imeIndex.snap(freq='S')
Snap time stamps to nearest occurring frequency

pandas.DatetimeIndex.tz_convert

Datet imeIndex.tz_convert(tz)
Convert DatetimeIndex from one time zone to another (using pytz/dateutil)

Returns

- normalized : DatetimeIndex

pandas.DatetimeIndex.tz_localize

Datet imeIndex.tz_localize(tz, infer_dst=False)
Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil)

Parameters

- tz : string or pytz.timezone or dateutil.tz.tzfile
  Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries
- infer_dst : boolean, default False
Attempt to infer fall dst-transition hours based on order

**Returns**  localized : DatetimeIndex

### 29.8.5 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.to_datetime([dayfirst])</td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td>DatetimeIndex.to_period([freq])</td>
<td>Return DatetimeIndex as object ndarray of datetime.datetime objects</td>
</tr>
<tr>
<td>DatetimeIndex.to_pydatetime()</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
</tbody>
</table>

**pandas.DatetimeIndex.to_datetime**

DatetimeIndex.to_datetime *(dayfirst=False)*

**pandas.DatetimeIndex.to_period**

DatetimeIndex.to_period *(freq=None)*  
Cast to PeriodIndex at a particular frequency

**pandas.DatetimeIndex.to_pydatetime**

DatetimeIndex.to_pydatetime()  
Return DatetimeIndex as object ndarray of datetime.datetime objects

**Returns**  datetimes : ndarray

**pandas.DatetimeIndex.to_series**

DatetimeIndex.to_series *(keep_tz=False)*  
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

**Parameters**  keep_tz : optional, defaults False.

return the data keeping the timezone.

If keep_tz is True:

If the timezone is not set or is UTC, the resulting Series will have a date-time64[ns] dtype. Otherwise the Series will have an object dtype.

If keep_tz is False:

Series will have a datetime64[ns] dtype.

**Returns**  Series

### 29.9 GroupBy

GroupBy objects are returned by groupby calls:  
*pandas.DataFrame.groupby(), pandas.Series.groupby()* etc.
29.9.1 Indexing, iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GroupBy.__iter__()</code></td>
<td>Groupby iterator</td>
</tr>
<tr>
<td><code>GroupBy.groups</code></td>
<td>dict {group name -&gt; group labels}</td>
</tr>
<tr>
<td><code>GroupBy.indices</code></td>
<td>dict {group name -&gt; group indices}</td>
</tr>
<tr>
<td><code>GroupBy.get_group(name[, obj])</code></td>
<td>Constructs NDFrame from group with provided name</td>
</tr>
</tbody>
</table>

**pandas.core.groupby.GroupBy.__iter__**

`GroupBy.__iter__()`

*Groupby iterator*

**Returns** Generator yielding sequence of (name, subsetted object) for each group

**pandas.core.groupby.GroupBy.groups**

`GroupBy.groups`

dict {group name -> group labels}

**pandas.core.groupby.GroupBy.indices**

`GroupBy.indices`

dict {group name -> group indices}

**pandas.core.groupby.GroupBy.get_group**

`GroupBy.get_group(name[, obj])`

Constructs NDFrame from group with provided name

**Parameters**

- **name**: object
  - the name of the group to get as a DataFrame
- **obj**: NDFrame, default None
  - the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used

**Returns**

- **group**: type of obj

**Grouper(key, level, freq, axis, sort)**

A Grouper allows the user to specify a groupby instruction for a target object

**pandas.Grouper**

**class pandas.Grouper(key=None, level=None, freq=None, axis=None, sort=False)**

A Grouper allows the user to specify a groupby instruction for a target object

This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object.

These are local specifications and will override ‘global’ settings, that is the parameters axis and level which are passed to the groupby itself.
Parameters

key : string, defaults to None
    groupby key, which selects the grouping column of the target
level : name/number, defaults to None
    the level for the target index
freq : string / frequency object, defaults to None
    This will groupby the specified frequency if the target selection (via key or level) is
    a datetime-like object
axis : number/name of the axis, defaults to None
sort : boolean, default to False
    whether to sort the resulting labels

additional kwargs to control time-like groupers (when freq is passed)
closed : closed end of interval; left or right
label : interval boundary to use for labeling; left or right
convention : {'start', 'end', 'e', 's'}
    If grouper is PeriodIndex

Returns
A specification for a groupby instruction

Examples

>>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A')
>>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date'
>>> df.groupby(Grouper(level='date',freq='60s',axis=1)) :
    specify a resample on the level 'date' on the columns axis with a frequency of 60s

Attributes

pandas.Grouper.ax

Grouper.ax

pandas.Grouper.groups

Grouper.groups

29.9.2 Function application

GroupBy.apply(func, *args, **kwargs)
Apply function and combine results together in an intelligent way.
Continued on next page
pandas: powerful Python data analysis toolkit, Release 0.14.1

Table 29.93 – continued from previous page

GroupBy.aggregate(func, *args, **kwargs)
GroupBy.transform(func, *args, **kwargs)

pandas.core.groupby.GroupBy.apply

GroupBy.apply(func, *args, **kwargs)

Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example:

- case 1: group DataFrame apply aggregation function \((f(chunk) \rightarrow \text{Series})\) yield DataFrame, with group axis having group labels
- case 2: group DataFrame apply transform function \((f(chunk) \rightarrow \text{DataFrame with same indexes})\) yield DataFrame with resulting chunks glued together
- case 3: group Series apply function with \(f(chunk) \rightarrow \text{DataFrame}\) yield DataFrame with result of chunks glued together

**Parameters**  
func : function

**Returns**  
applied : type depending on grouped object and function

See Also:
aggregate, transform

**Notes**

See online documentation for full exposition on how to use apply.

In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group.

pandas.core.groupby.GroupBy.aggregate

GroupBy.aggregate(func, *args, **kwargs)

pandas.core.groupby.GroupBy.GroupBy.transform

GroupBy.transform(func, *args, **kwargs)

29.9.3 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupBy.mean()</td>
<td>Compute mean of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.median()</td>
<td>Compute median of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.sem(ddof)</td>
<td>Compute standard error of the mean of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.std(ddof)</td>
<td>Compute standard deviation of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.var(ddof)</td>
<td>Compute variance of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.ohlc()</td>
<td>Compute sum of values, excluding missing values</td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.core.groupby.GroupBy.mean

GroupBy.mean()  
Compute mean of groups, excluding missing values  
For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.median

GroupBy.median()  
Compute median of groups, excluding missing values  
For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.sem

GroupBy.sem(ddof=1)  
Compute standard error of the mean of groups, excluding missing values  
For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.std

GroupBy.std(ddof=1)  
Compute standard deviation of groups, excluding missing values  
For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.var

GroupBy.var(ddof=1)  
Compute variance of groups, excluding missing values  
For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.ohlc

GroupBy.ohlc()  
Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex

29.10 General utility functions

29.10.1 Working with options

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>describe_option</td>
<td>Prints the description for one or more registered options.</td>
</tr>
<tr>
<td>reset_option</td>
<td>Reset one or more options to their default value.</td>
</tr>
<tr>
<td>get_option</td>
<td>Retrieves the value of the specified option.</td>
</tr>
<tr>
<td>set_option</td>
<td>Sets the value of the specified option.</td>
</tr>
<tr>
<td>option_context</td>
<td>Context manager to temporarily set options in the with statement context.</td>
</tr>
</tbody>
</table>
pandas.describe_option

**pandas.describe_option** (*pat, _print_desc=False*) = <pandas.core.config.CallableDynamicDoc object at 0xb571a28c>

Prints the description for one or more registered options.

Call with not arguments to get a listing for all registered options.

Available options:


- **io.excel.xls.[writer]**
- **io.excel.xlsm.[writer]**
- **io.excel.xlsx.[writer]**
- **io.hdf.[default_format, dropna_table]**
- **mode.[chained_assignment, sim_interactive, use_inf_as_null]**

**Parameters**

- **pat**: str
  Regexp pattern. All matching keys will have their description displayed.

- **_print_desc**: bool, default True
  If True (default) the description(s) will be printed to stdout. Otherwise, the description(s) will be returned as a unicode string (for testing).

**Returns**

None by default, the description(s) as a unicode string if _print_desc is False

**Notes**

The available options with its descriptions:

- **display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

- **display.colheader_justify** ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

- **display.column_space** No description available. [default: 12] [currently: 12]

- **display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

- **display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

- **display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

- **display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, **max_columns** is still respected, but the output will wrap-around across multiple “pages” if it’s width exceeds **display.width**. [default: True] [currently: True]
**display.float_format** [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See `core.format.EngFormatter` for an example. [default: None] [currently: None]

**display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use `display.max_rows` instead.)

**display.large_repr** ['truncate'/'info'] For DataFrames exceeding `max_rows/max_cols`, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from `df.info()` (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

**display.line_width** [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use `display.width` instead.)

**display.max_columns** [int] `max_rows` and `max_columns` are used in `_repr()` methods to decide if to_string() or info() is used to render an object to a string. In case python/IPython is running in a terminal this can be set to 0 and pandas will correctly auto-detect the width the terminal and swap to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. ‘None’ value means unlimited. [default: 20] [currently: 20]

**display.max_colwidth** [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. [default: 50] [currently: 50]

**display.max_info_columns** [int] `max_info_columns` is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

**display.max_info_rows** [int or None] `df.info()` will usually show null-counts for each column. For large frames this can be quite slow. `max_info_rows` and `max_info_cols` limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785]

**display.max_rows** [int] This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a summary repr. ‘None’ value means unlimited. [default: 60] [currently: 15]

**display.max_seq_items** [int or None] when pretty-printing a long sequence, no more then `max_seq_items` will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

**display.mpl_style** [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: default]

**display.multi_sparse** [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

**display.notebook_repr_html** [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

**display.pprint_nest_depth** [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

**display.precision** [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7]

**display.show_dimensions** [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

**display.width** [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython
qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]


**io.hdf.default_format** [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

**io.hdf.dropna_table** [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True]

**mode.chained_assignment** [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

**mode.sim_interactive** [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

**mode.use_inf_as_null** [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

---

**pandas.reset_option**

**pandas.reset_option**(pat) = <pandas.core.config.CallableDynamicDoc object at 0xb571a26c>

Reset one or more options to their default value.

Pass “all” as argument to reset all options.

Available options:


- **io.excel.xls.writer**

- **io.excel.xlsm.writer**

- **io.excel.xlsx.writer**

- **io.hdf.default_format**

- **io.hdf.dropna_table**

- **mode.chained_assignment**

- **mode.sim_interactive**

- **mode.use_inf_as_null**

**Parameters**

**pat** : str/regex

If specified only options matching prefix* will be reset. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.

**Returns** None
Notes

The available options with its descriptions:

**display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

**display.colheader_justify** ['left'|'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

**display.column_space** No description available. [default: 12] [currently: 12]

**display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

**display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

**display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

**display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if it’s width exceeds display.width. [default: True] [currently: True]

**display.float_format** [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None]

**display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)

**display.large_repr** ['truncate'|'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

**display.line_width** [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

**display.max_columns** [int] max_rows and max_columns are used in __repr__() methods to decide if to_string() or info() is used to render an object to a string. In case python/IPython is running in a terminal this can be set to 0 and pandas will correctly auto-detect the width the terminal and swap to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. ‘None’ value means unlimited. [default: 20] [currently: 20]

**display.max_colwidth** [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "...", placeholder is embedded in the output. [default: 50] [currently: 50]

**display.max_info_columns** [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

**display.max_info_rows** [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785]

**display.max_rows** [int] This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a summary repr. ‘None’ value means unlimited. [default: 60] [currently: 15]

**display.max_seq_items** [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string.
If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

**display.mpl_style** [bool] Setting this to 'default' will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: default]

**display.multi_sparse** [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

**display.notebook_repr_html** [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

**display.pprint_nest_depth** [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

**display.precision** [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7]

**display.show_dimensions** [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

**display.width** [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]


**io.hdf.default_format** [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

**io.hdf.dropna_table** [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True]

**mode.chained_assignment** [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

**mode.sim_interactive** [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

**mode.use_inf_as_null** [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

**pandas.get_option**

```
pandas.get_option(pat) = <pandas.core.config.CallableDynamicDoc object at 0xb571a22c>
```

Retrieves the value of the specified option.

Available options:

• display.chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width]
The available options with its descriptions:

**display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

**display.colheader_justify** ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

**display.column_space** No description available. [default: 12] [currently: 12]

**display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

**display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

**display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

**display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if it’s width exceeds display.width. [default: True] [currently: True]

**display.float_format** [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None]

**display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)

**display.large_repr** ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

**display.line_width** [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

**display.max_columns** [int] max_rows and max_columns are used in _repr__() methods to decide if to_string() or info() is used to render an object to a string. In case python/IPython is running in a terminal this can be set to 0 and pandas will correctly auto-detect the width the terminal and swap to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole,
or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. ‘None’ value means unlimited. [default: 20] [currently: 20]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a summary repr. ‘None’ value means unlimited. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: default]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]


io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True]
mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

pandas.set_option

pandas.set_option(pat, value) = <pandas.core.config.CallableDynamicDoc object at 0xb571a24c>
Sets the value of the specified option.

Available options:
- display.chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width
- io.excel.xls[writer]
- io.excel.xlsm[writer]
- io.excel.xlsx[writer]
- io.hdf[default_format, dropna_table]
- mode[chained_assignment, sim_interactive, use_inf_as_null]

Parameters pat : str
Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.

value :
new value of option.

Returns None

Raises OptionError if no such option exists

Notes

The available options with its descriptions:

display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

display.colheader_justify ['left'/'right'] Controls the justification of column headers. used by DataFrameFor-
matter. [default: right] [currently: right]

display.column_space No description available. [default: 12] [currently: 12]

display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]
display.encoding  [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

display.expand_frame_repr  [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if it’s width exceeds display.width. [default: True] [currently: True]

display.float_format  [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None]

display.height  [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)

display.large_repr  ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

display.line_width  [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

display.max_columns  [int] max_rows and max_columns are used in __repr__() methods to decide if to_string() or info() is used to render an object to a string. In case python/IPython is running in a terminal this can be set to 0 and pandas will correctly auto-detect the width the terminal and swap to a smaller format in case all columns would not fit vertically. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. ‘None’ value means unlimited. [default: 20] [currently: 20]

display.max_colwidth  [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns  [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows  [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785]

display.max_rows  [int] This sets the maximum number of rows pandas should output when printing out various output. For example, this value determines whether the repr() for a dataframe prints out fully or just a summary repr. ‘None’ value means unlimited. [default: 60] [currently: 15]

display.max_seq_items  [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.mpl_style  [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: default]

display.multi_sparse  [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html  [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth  [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precision  [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7]
display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]


io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

**pandas.option_context**

class pandas.option_context (*args)

Context manager to temporarily set options in the with statement context.

You need to invoke as option_context (pat, val, [(pat, val), ...]).

**Examples**

```python
>>> with option_context(‘display.max_rows’, 10, ‘display.max_columns’, 5):
...
```

**pandas.core.common.isnull**

pandas.core.common.isnull(obj)

Detect missing values (NaN in numeric arrays, None/NaN in object arrays)

**Parameters**

**arr**: ndarray or object value

Object to check for null-ness

**Returns**

**isnull** : array-like of bool or bool

Array or bool indicating whether an object is null or if an array is given which of the element is null.

**See Also**:
**pandas.notnull** boolean inverse of pandas.isnull

**pandas.core.common.notnull**

pandas.core.common.notnull(obj)

Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

**Parameters**

- **arr**: ndarray or object value
  
  Object to check for not-null-ness

**Returns**

- **isnull**: array-like of bool or bool
  
  Array or bool indicating whether an object is not null or if an array is given which of the element is not null.

**See Also:**

- **pandas.isnull** boolean inverse of pandas.notnull

**pandas.core.reshape.get_dummies**

pandas.core.reshape.get_dummies(data=None, prefix=None, prefix_sep='_', dummy_na=False)

Convert categorical variable into dummy/indicator variables

**Parameters**

- **data**: array-like or Series

  String to append DataFrame column names

- **prefix**: string, default None

- **prefix_sep**: string, default `_`

  If appending prefix, separator/delimiter to use

- **dummy_na**: bool, default False

  Add a column to indicate NaNs, if False NaNs are ignored.

**Returns**

- **dummies**: DataFrame

**Examples**

```python
>>> import pandas as pd
>>> s = pd.Series(list('abca'))

>>> get_dummies(s)
 a b c
0 0 1 0
1 1 0 0
2 0 0 1
3 1 0 0

>>> s1 = ['a', 'b', np.nan]

>>> get_dummies(s1)
 a b
0 0 1
```

29.10. General utility functions
1 0 1
2 0 0

```python
>>> get_dummies(s1, dummy_na=True)
a b NaN
0 1 0 0
1 0 1 0
2 0 0 1
```

See also `Series.str.get_dummies`.

**pandas.io.clipboard.read_clipboard**

Read text from clipboard and pass to `read_table`. See `read_table` for the full argument list

If unspecified, `sep` defaults to ‘s+’

Returns  parsed : DataFrame

**pandas.io.excel.ExcelFile.parse**

Read an Excel table into DataFrame

Parameters  **sheetname** : string or integer

Name of Excel sheet or the page number of the sheet

**header** : int, default 0

Row to use for the column labels of the parsed DataFrame

**skiprows** : list-like

Rows to skip at the beginning (0-indexed)

**skip_footer** : int, default 0

Rows at the end to skip (0-indexed)

**index_col** : int, default None

Column to use as the row labels of the DataFrame. Pass None if there is no such column

**parse_cols** : int or list, default None

• If None then parse all columns
• If int then indicates last column to be parsed
• If list of ints then indicates list of column numbers to be parsed
• If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

**parse_dates** : boolean, default False

Parse date Excel values,
**date_parser**: function default None

Date parsing function

**na_values**: list-like, default None

List of additional strings to recognize as NA/NaN

**thousands**: str, default None

Thousands separator

**chunksize**: int, default None

Size of file chunk to read for lazy evaluation.

**convert_float**: boolean, default True

Convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally.

**has_index_names**: boolean, default False

True if the cols defined in index_col have an index name and are not in the header

**Returns**

**parsed**: DataFrame

DataFrame parsed from the Excel file

---

**pandas.io.excel.read_excel**

*pandas.io.excel.read_excel*(io, sheetname=0, **kwds)

Read an Excel table into a pandas DataFrame

**Parameters**

**io**: string, file-like object, or xlrd workbook.

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx

**sheetname**: string or int, default 0

Name of Excel sheet or the page number of the sheet

**header**: int, default 0

Row to use for the column labels of the parsed DataFrame

**skiprows**: list-like

Rows to skip at the beginning (0-indexed)

**skip_footer**: int, default 0

Rows at the end to skip (0-indexed)

**index_col**: int, default None

Column to use as the row labels of the DataFrame. Pass None if there is no such column

**parse_cols**: int or list, default None

- If None then parse all columns,
- If int then indicates last column to be parsed
- If list of ints then indicates list of column numbers to be parsed

---

29.10. General utility functions
If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

na_values : list-like, default None

List of additional strings to recognize as NA/NaN

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

engine: string, default None

If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd

convert_float : boolean, default True

convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally

has_index_names : boolean, default False

True if the cols defined in index_col have an index name and are not in the header. Index name will be placed on a separate line below the header.

Returns parsed : DataFrame

DataFrame from the passed in Excel file

pandas.io.html.read_html

pandas.io.html.read_html(io, match='.+', flavor=None, header=None, index_col=None, skiprows=None, infer_types=None, attrs=None, parse_dates=False, tupleize_cols=False, thousands='.', encoding=None)

Read HTML tables into a list of DataFrame objects.

Parameters io : str or file-like

A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts the http, ftp and file url protocols. If you have a URL that starts with ‘https’ you might try removing the ‘s’.

match : str or compiled regular expression, optional

The set of tables containing text matching this regex or string will be returned. Unless the HTML is extremely simple you will probably need to pass a non-empty string here. Defaults to ‘.+’ (match any non-empty string). The default value will return all tables contained on a page. This value is converted to a regular expression so that there is consistent behavior between Beautiful Soup and lxml.

flavor : str or None, container of strings

The parsing engine to use. ‘bs4’ and ‘html5lib’ are synonymous with each other, they are both there for backwards compatibility. The default of None tries to use lxml to parse and if that fails it falls back on bs4 + html5lib.

header : int or list-like or None, optional
The row (or list of rows for a `MultiIndex`) to use to make the columns headers.

**index_col**: int or list-like or None, optional

The column (or list of columns) to use to create the index.

**skiprows**: int or list-like or slice or None, optional

0-based. Number of rows to skip after parsing the column integer. If a sequence of integers or a slice is given, will skip the rows indexed by that sequence. Note that a single element sequence means ‘skip the nth row’ whereas an integer means ‘skip n rows’.

**infer_types**: bool, optional

This option is deprecated in 0.13, an will have no effect in 0.14. It defaults to True.

**attrs**: dict or None, optional

This is a dictionary of attributes that you can pass to use to identify the table in the HTML. These are not checked for validity before being passed to lxml or Beautiful Soup. However, these attributes must be valid HTML table attributes to work correctly. For example,

```python
attrs = {'id': 'table'}
```

is a valid attribute dictionary because the ‘id’ HTML tag attribute is a valid HTML attribute for any HTML tag as per this document.

```python
attrs = {'asdf': 'table'}
```

is *not* a valid attribute dictionary because ‘asdf’ is not a valid HTML attribute even if it is a valid XML attribute. Valid HTML 4.01 table attributes can be found [here](#). A working draft of the HTML 5 spec can be found [here](#). It contains the latest information on table attributes for the modern web.

**parse_dates**: bool, optional

See `read_csv()` for more details. In 0.13, this parameter can sometimes interact strangely with `infer_types`. If you get a large number of NaT values in your results, consider passing `infer_types=False` and manually converting types afterwards.

**tupleize_cols**: bool, optional

If False try to parse multiple header rows into a `MultiIndex`, otherwise return raw tuples. Defaults to False.

**thousands**: str, optional

Separator to use to parse thousands. Defaults to ','. 

**encoding**: str or None, optional

The encoding used to decode the web page. Defaults to None. ‘None‘ preserves the previous encoding behavior, which depends on the underlying parser library (e.g., the parser library will try to use the encoding provided by the document).

**Returns**

`dfs`: list of DataFrames

**See Also**:

pandas.io.parsers.read_csv

29.10. General utility functions
Notes

Before using this function you should read the gotchas about the HTML parsing libraries.

Expect to do some cleanup after you call this function. For example, you might need to manually assign column names if the column names are converted to NaN when you pass the header=0 argument. We try to assume as little as possible about the structure of the table and push the idiosyncrasies of the HTML contained in the table to the user.

This function searches for `<table>` elements and only for `<tr>` and `<th>` rows and `<td>` elements within each `<tr>` or `<th>` element in the table. `<td>` stands for “table data”.

Similar to `read_csv()` the header argument is applied after skiprows is applied.

This function will always return a list of DataFrame or it will fail, e.g., it will not return an empty list.

Examples

See the read_html documentation in the IO section of the docs for some examples of reading in HTML tables.

```

table = read_html('http://example.com/table.html', header=False)
```

pandas.io.json.read_json

Convert a JSON string to pandas object

**Parameters**

- filepath_or_buffer: a valid JSON string or file-like
  
  The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be `file://localhost/path/to/table.json`

  - orient
    
    - default is ‘index’
    - allowed values are: {‘split’,’records’,’index’}
    - The Series index must be unique for orient ‘index’.

    - default is ‘columns’
    - allowed values are: {‘split’,’records’,’index’,’columns’,’values’}
    - The DataFrame index must be unique for orient ‘index’ and ‘columns’.
    - The DataFrame columns must be unique for orient ‘index’, ‘columns’, and ‘records’.

    - The format of the JSON string
      
      - split : dict like `{index -> [index], columns -> [columns], data -> [values]}`
      - records : list like `[{column -> value}, ... , {column -> value}]`

```

table = read_json('http://example.com/table.json')
```

Chapter 29. API Reference
- **index**: dict like `{index -> {column -> value}}`
- **columns**: dict like `{column -> {index -> value}}`
- **values**: just the values array

**typ**: type of object to recover (series or frame), default ‘frame’

**dtype**: boolean or dict, default True

- If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data.

**convert_axes**: boolean, default True

- Try to convert the axes to the proper dtypes.

**convert_dates**: boolean, default True

- List of columns to parse for dates; If True, then try to parse datelike columns default is True

**keep_default_dates**: boolean, default True.

- If parsing dates, then parse the default datelike columns

**numpy**: boolean, default False

- Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.

**precise_float**: boolean, default False.

- Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality

**date_unit**: string, default None

- The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.

**Returns**

**result**: Series or DataFrame
Read CSV (comma-separated) file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters

filepath_or_buffer: string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

sep: string, default ','

Delimiter to use. If sep is None, will try to automatically determine this. Regular expressions are accepted.

dtype: {'c', 'python'}

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

engine: {'c', 'python'}

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

lineterminator: string (length 1), default None

Character to break file into lines. Only valid with C parser

quotechar: string (length 1)

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting: int or csv.QUOTE_* instance, default None

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

skipinitialspace: boolean, default False

Skip spaces after delimiter

escapechar: string (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

dtype: Type name or dict of column -> type

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} (Unsupported with engine=’python’)
**compression**: {'gzip', 'bz2', None}, default None

For on-the-fly decompression of on-disk data

**dialect**: string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

**header**: int row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines, so header=0 denotes the first line of data rather than the first line of the file.

**skiprows**: list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

**index_col**: int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

**names**: array-like

List of column names to use. If file contains no header row, then you should explicitly pass header=None

**prefix**: string or None (default)

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

**na_values**: list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

**true_values**: list

Values to consider as True

**false_values**: list

Values to consider as False

**keep_default_na**: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to

**parse_dates**: boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. ‘foo’ : [1, 3] -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates.

**keep_date_col**: boolean, default False
If True and parse_dates specifies combining multiple columns then keep the original columns.

**date_parser** : function

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

**dayfirst** : boolean, default False

DD/MM format dates, international and European format

**thousands** : str, default None

Thousands separator

**comment** : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Also, fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing '#empty

1,2,3

a,b,c' with 'header=0' will

result in '1,2,3' being treated as the header.

**decimal** : str, default '.

Character to recognize as decimal point. E.g. use ',' for European data

**nrows** : int, default None

Number of rows of file to read. Useful for reading pieces of large files

**iterator** : boolean, default False

Return TextFileReader object

**chunksize** : int, default None

Return TextFileReader object for iteration

**skipfooter** : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c')

**converters** : dict. optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

**verbose** : boolean, default False

Indicate number of NA values placed in non-numeric columns

**delimiter** : string, default None

Alternative argument name for sep. Regular expressions are accepted.

**encoding** : string, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’)

**squeeze** : boolean, default False

If the parsed data only contains one column then return a Series
**na_filter**: boolean, default True

Detect missing value markers (empty strings and the value of `na_values`). In data without any NAs, passing `na_filter=False` can improve the performance of reading a large file.

**usecols**: array-like

Return a subset of the columns. Results in much faster parsing time and lower memory usage.

**mangle_dupe_cols**: boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...'X’

**tupleize_cols**: boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

**error_bad_lines**: boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

**warn_bad_lines**: boolean, default True

If `error_bad_lines` is False, and `warn_bad_lines` is True, a warning for each “bad line” will be output. (Only valid with C parser).

**infer_datetime_format**: boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

Returns

**result**: DataFrame or TextParser

---

**pandas.io.parsers.read_fwf**

**pandas.io.parsers.read_fwf** *(filepath_or_buffer, colspecs='infer', widths=None, **kwds)*

Read a table of fixed-width formatted lines into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters

**filepath_or_buffer**: string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

**colspecs**: list of pairs (int, int) or ‘infer’, optional

A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data (default=’infer’).

**widths**: list of ints. optional

A list of field widths which can be used instead of `colspecs` if the intervals are contiguous.

**lineterminator**: string (length 1), default None
Character to break file into lines. Only valid with C parser

**quotechar** : string (length 1)

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

**quoting** : int or csv.QUOTE_* instance, default None

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

**skipinitialspace** : boolean, default False

Skip spaces after delimiter

**escapechar** : string (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

**dtype** : Type name or dict of column -> type

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python')

**compression** : {'gzip', 'bz2', None}, default None

For on-the-fly decompression of on-disk data

**dialect** : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char. See csv.Dialect documentation for more details

**header** : int row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines, so header=0 denotes the first line of data rather than the first line of the file.

**skiprows** : list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

**index_col** : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

**names** : array-like

List of column names to use. If file contains no header row, then you should explicitly pass header=None

**prefix** : string or None (default)

Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ...

**na_values** : list-like or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

**true_values** : list
Values to consider as True

**false_values** : list
Values to consider as False

**keep_default_na** : bool, default True
If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to

**parse_dates** : boolean, list of ints or names, list of lists, or dict
If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates.

**keep_date_col** : boolean, default False
If True and parse_dates specifies combining multiple columns then keep the original columns.

**date_parser** : function
Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser/parser to do the conversion.

**dayfirst** : boolean, default False
DD/MM format dates, international and European format

**thousands** : str, default None
Thousands separator

**comment** : str, default None
Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Also, fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing ‘#empty’

1,2,3

a,b,c’ with ‘header=0’ will
result in ‘1,2,3’ being treated as the header.

**decimal** : str, default ‘.’
Character to recognize as decimal point. E.g. use ‘,’ for European data

**nrows** : int, default None
Number of rows of file to read. Useful for reading pieces of large files

**iterator** : boolean, default False
Return TextFileReader object

**chunksize** : int, default None
Return TextFileReader object for iteration

**skipfooter** : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c')

**converters** : dict, optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

**verbose** : boolean, default False

Indicate number of NA values placed in non-numeric columns

**delimiter** : string, default None

Alternative argument name for sep. Regular expressions are accepted.

**encoding** : string, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’)

**squeeze** : boolean, default False

If the parsed data only contains one column then return a Series

**na_filter** : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

**usecols** : array-like

Return a subset of the columns. Results in much faster parsing time and lower memory usage.

**mangle_dupe_cols** : boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...'X'

**tupleize_cols** : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

**error_bad_lines** : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

**warn_bad_lines** : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

**infer_datetime_format** : boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

**Returns**

result : DataFrame or TextParser

Also, ‘delimiter’ is used to specify the filler character of the
fields if it is not spaces (e.g., ‘~’).

pandas.io.parsers.read_table

```
pandas.io.parsers.read_table(filepath_or_buffer, sep='\t', dialect=None, compression=None, doublequote=True, escapechar=None, quotechar='"', quoting=0, skipinitialspace=False, lineterminator=None, header='infer', index_col=None, names=None, prefix=None, skipfooter=0, skiprows=None, skip_footer=0, na_values=None, na_values=None, true_values=None, false_values=None, delimiter=None, converters=None, dtype=None, usecols=None, engine=None, delim_whitespace=False, as_recarray=False, na_filter=True, keep_default_na=True, thousands=None, comment=None, decimal=' ', parse_dates=False, keep_date_col=False, dayfirst=False, parse_dates=False, keep_date_col=False, dayfirst=False, date_parser=None, memory_map=False, nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_cols=False, infer_datetime_format=False)
```

Read general delimited file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

**Parameters**

- **filepath_or_buffer** : string or file handle / StringIO. The string could be
  a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
  expected. For instance, a local file could be file://localhost/path/to/table.csv

- **sep** : string, default t (tab-stop)
  Delimiter to use. Regular expressions are accepted.

- **engine** : {'c', 'python'}
  Parser engine to use. The C engine is faster while the python engine is currently
  more feature-complete.

- **lineterminator** : string (length 1), default None
  Character to break file into lines. Only valid with C parser

- **quotechar** : string (length 1)
  The character used to denote the start and end of a quoted item. Quoted items can
  include the delimiter and it will be ignored.

- **quoting** : int or csv.QUOTE_* instance, default None
  Control field quoting behavior per csv.QUOTE_* constants. Use one of
  QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
  QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

- **skipinitialspace** : boolean, default False
  Skip spaces after delimiter

- **escapechar** : string (length 1), default None
  One-character string used to escape delimiter when quoting is QUOTE_NONE.

- **dtype** : Type name or dict of column -> type
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python')

**compression** : {'gzip', 'bz2', None}, default None

For on-the-fly decompression of on-disk data

**dialect** : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

**header** : int row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines, so header=0 denotes the first line of data rather than the first line of the file.

**skiprows** : list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

**index_col** : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

**names** : array-like

List of column names to use. If file contains no header row, then you should explicitly pass header=None

**prefix** : string or None (default)

Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ...

**na_values** : list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

**true_values** : list

Values to consider as True

**false_values** : list

Values to consider as False

**keep_default_na** : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to

**parse_dates** : boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result 'foo' A fast-path exists for iso8601-formatted dates.
**keep_date_col** : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

**date_parser** : function

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

**dayfirst** : boolean, default False

DD/MM format dates, international and European format

**thousands** : str, default None

Thousands separator

**comment** : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Also, fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing '#empty

1,2,3

a,b,c' with 'header=0' will

result in '1,2,3' being treated as the header.

**decimal** : str, default '\'

Character to recognize as decimal point. E.g. use ',' for European data

**nrows** : int, default None

Number of rows of file to read. Useful for reading pieces of large files

**iterator** : boolean, default False

Return TextFileReader object

**chunksize** : int, default None

Return TextFileReader object for iteration

**skipfooter** : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c')

**converters** : dict. optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

**verbose** : boolean, default False

Indicate number of NA values placed in non-numeric columns

**delimiter** : string, default None

Alternative argument name for sep. Regular expressions are accepted.

**encoding** : string, default None

Encoding to use for UTF when reading/writing (ex. 'utf-8')

**squeeze** : boolean, default False
If the parsed data only contains one column then return a Series

**na_filter** : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

**usecols** : array-like

Return a subset of the columns. Results in much faster parsing time and lower memory usage.

**mangle_dupe_cols** : boolean, default True

Duplicate columns will be specified as ‘X.0’...'X.N', rather than ‘X'...'X'

**tupleize_cols** : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

**error_bad_lines** : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

**warn_bad_lines** : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

**infer_datetime_format** : boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

**Returns**  
result : DataFrame or TextParser

---

**pandas.io.pickle.read_pickle**

**pandas.io.pickle.read_pickle**(path)

Load pickled pandas object (or any other pickled object) from the specified file path

Warning: Loading pickled data received from untrusted sources can be unsafe. See: http://docs.python.org/2.7/library/pickle.html

**Parameters**  
path : string

File path

**Returns**  
unpickled : type of object stored in file

---

**pandas.io.pytables.HDFStore.append**

**HDFStore.append**(key, value, format=None, append=True, columns=None, dropna=None, **kwargs)

Append to Table in file. Node must already exist and be Table format.
Parameters

key : object

table(t)

Parameters

key : object

Returns

obj : type of object stored in file

pandas.io.pytables.HDFStore.put

HDFStore.put (key, value, format=’fixed’, append=False, **kwargs)

Store object in HDFStore

Parameters

key : object

value : {Series, DataFrame, Panel}

format : ‘fixed(f)’ | ‘table(t)’, default is ‘fixed’

Notes

Does *not* check if data being appended overlaps with existing data in the table, so be careful
append : boolean, default False
This will force Table format, append the input data to the existing.

encoding : default None, provide an encoding for strings
dropna : boolean, default True, do not write an ALL nan row to
the store settable by the option ‘io.hdf.dropna_table’

pandas.io.pytables.HDFStore.select

HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunks=None, auto_close=False, **kwargs)
Retrieve pandas object stored in file, optionally based on where criteria

Parameters

key : object

where : list of Term (or convertable) objects, optional
start : integer (defaults to None), row number to start selection
stop : integer (defaults to None), row number to stop selection
columns : a list of columns that if not None, will limit the return

iterator : boolean, return an iterator, default False
chunks : nrows to include in iteration, return an iterator
auto_close : boolean, should automatically close the store when

finished, default is False

Returns

The selected object

pandas.io.pytables.read_hdf

pandas.io.pytables.read_hdf(path_or_buf, key, **kwargs)
read from the store, close it if we opened it

Retrieve pandas object stored in file, optionally based on where criteria

Parameters

path_or_buf : path (string), or buffer to read from

key : group identifier in the store
where : list of Term (or convertable) objects, optional
start : optional, integer (defaults to None), row number to start

selection
stop : optional, integer (defaults to None), row number to stop

selection

columns : optional, a list of columns that if not None, will limit the

return columns
iterator : optional, boolean, return an iterator, default False
chunksize : optional, nrows to include in iteration, return an iterator
auto_close : optional, boolean, should automatically close the store
when finished, default is False

Returns  The selected object

pandas.io.sql.read_sql

pandas.io.sql.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None)
Read SQL query or database table into a DataFrame.

Parameters  sql : string
    SQL query to be executed or database table name.

    con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
        Using SQLAlchemy makes it possible to use any DB supported by that library. If a
        DBAPI2 object, only sqlite3 is supported.

    index_col : string, optional
        column name to use as index for the returned DataFrame object.

    coerce_float : boolean, default True
        Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal)
        to floating point, useful for SQL result sets

    params : list, tuple or dict, optional
        List of parameters to pass to execute method.

    parse_dates : list or dict
        • List of column names to parse as dates
        • Dict of {column_name: format string} where format string is strftime compatible
          in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing
          integer timestamps
        • Dict of {column_name: arg dict}, where the arg dict corresponds to the key-
          word arguments of pandas.to_datetime() Especially useful with databases without
          native Datetime support, such as SQLite

    columns : list
        List of column names to select from sql table (only used when reading a table).

Returns  DataFrame

See Also:

read_sql_table  Read SQL database table into a DataFrame

read_sql_query  Read SQL query into a DataFrame
Notes

This function is a convenience wrapper around read_sql_table and read_sql_query (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query).

pandas.io.sql.read_frame

pandas.io.sql.read_frame(*args, **kwargs)

DEPRECATED - use read_sql

Read SQL query or database table into a DataFrame.

Parameters

- sql : string
  SQL query to be executed or database table name.
- con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
  Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
- index_col : string, optional
  column name to use as index for the returned DataFrame object.
- coerce_float : boolean, default True
  Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets
- params : list, tuple or dict, optional
  List of parameters to pass to execute method.
- parse_dates : list or dict
  • List of column names to parse as dates
  • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
  • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite
- columns : list
  List of column names to select from sql table (only used when reading a table).

Returns

DataFrame

See Also:

read_sql_table Read SQL database table into a DataFrame
read_sql_query Read SQL query into a DataFrame
Notes

This function is a convenience wrapper around `read_sql_table` and `read_sql_query` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query).

**pandas.io.sql.write_frame**

```
pandas.io.sql.write_frame(frame, name, con, flavor='sqlite', if_exists='fail', **kwargs)
```

DEPRECATED - use to_sql

Write records stored in a DataFrame to a SQL database.

**Parameters**

- `frame`: DataFrame
- `name`: string
- `con`: DBAPI2 connection
- `flavor`: {'sqlite', 'mysql'}, default 'sqlite'
  - The flavor of SQL to use.
- `if_exists`: {'fail', 'replace', 'append'}, default 'fail'
  - fail: If table exists, do nothing.
  - replace: If table exists, drop it, recreate it, and insert data.
  - append: If table exists, insert data. Create if does not exist.
- `index`: boolean, default False
  - Write DataFrame index as a column

**See Also:**

pandas.DataFrame.to_sql

Notes

This function is deprecated in favor of to_sql. There are however two differences:

- With to_sql the index is written to the sql database by default. To keep the behaviour this function you need to specify `index=False`.
- The new to_sql function supports sqlalchemy engines to work with different sql flavors.

**pandas.io.stata.read_stata**

```
pandas.io.stata.read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encoding=None, index=None)
```

Read Stata file into DataFrame

**Parameters**

- `filepath_or_buffer`: string or file-like object
  - Path to .dta file or object implementing a binary read() functions
- `convert_dates`: boolean, defaults to True
  - Convert date variables to DataFrame time values
- `convert_categoricals`: boolean, defaults to True
  - Convert categorical variables to DataFrame categorical types
- `encoding`: string, default None
  - Encoding of the data
- `index`: boolean, default None
  - Use the stata variable named `stata.index` as the DataFrame index

**See Also:**

pandas.DataFrame.to_stata

Notes

This function reads a Stata file into a DataFrame.
convert_categoricals : boolean, defaults to True
Read value labels and convert columns to Categorical/Factor variables

encoding : string, None or encoding
Encoding used to parse the files. Note that Stata doesn’t support unicode. None
defaults to cp1252.

index : identifier of index column
identifier of column that should be used as index of the DataFrame

pandas.stats.moments.ewma

pandas.stats.moments.ewma(arg, com=None, span=None, halflife=None, min_periods=0,
freq=None, adjust=True, how=None)
Exponentially-weighted moving average

Parameters

arg : Series, DataFrame

com : float, optional
Center of mass: \( \alpha = 1/(1 + \text{com}) \),

span : float, optional
Specify decay in terms of span, \( \alpha = 2/(\text{span} + 1) \)

halflife : float, optional
Specify decay in terms of halflife, \( \alpha = 1 - \exp(\log(0.5)/\text{halflife}) \)

min_periods : int, default 0
Number of observations in sample to require (only affects beginning)

freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

adjust : boolean, default True
Divide by decaying adjustment factor in beginning periods to account for imbalance
in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’
Method for down- or re-sampling

Returns

y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter \( s \), we have that the decay parameter \( \alpha \) is related to the
span as \( \alpha = 2/(s + 1) = 1/(1 + c) \)

where \( c \) is the center of mass. Given a span, the associated center of mass is \( c = (s - 1)/2 \)

So a “20-day EWMA” would have center 9.5.
pandas.stats.moments.ewmcorr

**pandas.stats.moments.ewmcorr** *(arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, freq=None, pairwise=None, how=None)*

Exponentially-weighted moving correlation

**Parameters**

arg1 : Series, DataFrame, or ndarray

arg2 : Series, DataFrame, or ndarray, optional

if not supplied then will default to arg1 and produce pairwise output

com : float, optional

Center of mass: \( \alpha = 1/(1 + \text{com}) \),

span : float, optional

Specify decay in terms of span, \( \alpha = 2/(\text{span} + 1) \)

halflife : float, optional

Specify decay in terms of halflife, \( \alpha = 1 - \exp(\log(0.5)/\text{halflife}) \)

min_periods : int, default 0

Number of observations in sample to require (only affects beginning)

freq : None or string alias / date offset object, default=None

Frequency to conform to before computing statistic

adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’

Method for down- or re-sampling

pairwise : bool, default False

If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

**Returns**

y : type of input argument

**Notes**

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter \( s \), we have that the decay parameter \( \alpha \) is related to the span as \( \alpha = 2/(s + 1) = 1/(1 + c) \)

where \( c \) is the center of mass. Given a span, the associated center of mass is \( c = (s - 1)/2 \)

So a “20-day EWMA” would have center 9.5.
pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.stats.moments.ewmcov

`pandas.stats.moments.ewmcov(arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, pairwise=None, how=None)`

Exponentially-weighted moving covariance

**Parameters**

- **arg1**: Series, DataFrame, or ndarray

- **arg2**: Series, DataFrame, or ndarray, optional
  
  If not supplied then will default to `arg1` and produce pairwise output

- **com**: float, optional
  
  Center of mass: $\alpha = 1/(1 + \text{com})$

- **span**: float, optional
  
  Specify decay in terms of span, $\alpha = 2/(\text{span} + 1)$

- **halflife**: float, optional
  
  Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/\text{halflife})$

- **min_periods**: int, default 0
  
  Number of observations in sample to require (only affects beginning)

- **freq**: None or string alias / date offset object, default=None
  
  Frequency to conform to before computing statistic

- **adjust**: boolean, default True
  
  Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

- **how**: string, default ‘mean’
  
  Method for down- or re-sampling

- **pairwise**: bool, default False
  
  If False then only matching columns between `arg1` and `arg2` will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

**Returns**

- **y**: type of input argument

**Notes**

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter $s$, we have that the decay parameter $\alpha$ is related to the span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where $c$ is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.
pandas.stats.moments.ewmstd

Exponentially-weighted moving std

Parameters

arg : Series, DataFrame

com : float, optional
  Center of mass: $\alpha = 1/(1 + com)$

span : float, optional
  Specify decay in terms of span, $\alpha = 2/(span + 1)$

halflife : float, optional
  Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/halflife)$

min_periods : int, default 0
  Number of observations in sample to require (only affects beginning)

freq : None or string alias / date offset object, default=None
  Frequency to conform to before computing statistic

adjust : boolean, default True
  Divide by decaying adjustment factor in beginning periods to account for imbalance
  in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’
  Method for down- or re-sampling

bias : boolean, default False
  Use a standard estimation bias correction

Returns

y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter $s$, we have that the decay parameter $\alpha$ is related to the
span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where $c$ is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.

pandas.stats.moments.ewmvar

Exponentially-weighted moving variance

Parameters

arg : Series, DataFrame

com : float, optional
  Center of mass: $\alpha = 1/(1 + com)$,
span : float, optional
   Specify decay in terms of span, \( \alpha = \frac{2}{(\text{span} + 1)} \)
halflife : float, optional
   Specify decay in terms of halflife, \( \alpha = 1 - \exp(\log(0.5)/\text{halflife}) \)

min_periods : int, default 0
   Number of observations in sample to require (only affects beginning)

freq : None or string alias / date offset object, default=None
   Frequency to conform to before computing statistic
adjust : boolean, default True
   Divide by decaying adjustment factor in beginning periods to account for imbalance
   in relative weightings (viewing EWMA as a moving average)
how : string, default ‘mean’
   Method for down- or re-sampling
bias : boolean, default False
   Use a standard estimation bias correction

Returns y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter \( s \), we have that the decay parameter \( \alpha \) is related to the
span as \( \alpha = \frac{2}{(s + 1)} = \frac{1}{1 + c} \)
where \( c \) is the center of mass. Given a span, the associated center of mass is \( c = \frac{(s - 1)}{2} \)
So a “20-day EWMA” would have center 9.5.

pandas.stats.moments.expanding_apply

pandas.stats.moments.expanding_apply(arg, func, min_periods=1, freq=None, center=False, args=(), kwargs={})

Generic expanding function application.

Parameters arg : Series, DataFrame
   func : function
      Must produce a single value from an ndarray input
min_periods : int, default None
   Minimum number of observations in window required to have a value (otherwise
   result is NA).
freq : string or DateOffset object, optional (default None)
   Frequency to conform the data to before computing the statistic. Specified as a
   frequency string or DateOffset object.
center : boolean, default False
Whether the label should correspond with center of window.

**args** : tuple
Passed on to func

**kwargs** : dict
Passed on to func

**Returns**  
y : type of input argument

**Notes**

The *freq* keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of *resample()* (i.e. using the *mean*).

**pandas.stats.moments.expanding_corr**

```
expanding_corr(arg1, arg2=None, min_periods=1, freq=None, center=False, pairwise=None)
```

Expanding sample correlation.

**Parameters**

- **arg1** : Series, DataFrame, or ndarray
- **arg2** : Series, DataFrame, or ndarray, optional
  If not supplied then will default to arg1 and produce pairwise output
- **min_periods** : int, default None
  Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq** : string or DateOffset object, optional (default None)
  Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **pairwise** : bool, default False
  If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

**Returns**

y : type depends on inputs

<table>
<thead>
<tr>
<th>DataFrame / DataFrame</th>
<th>DataFrame (matches on columns) or Panel (pairwise)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame / Series</td>
<td>Computes result for each column Series / Series</td>
</tr>
</tbody>
</table>

**pandas.stats.moments.expanding_count**

```
expanding_count(arg, freq=None, center=False)
```

Expanding count of number of non-NaN observations.

**Parameters**

- **arg** : DataFrame or numpy ndarray-like
- **freq** : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a
frequency string or DateOffset object.

**center** : boolean, default False

Whether the label should correspond with center of window.

**Returns**  
**expanding_count** : type of caller

**Notes**

The *freq* keyword is used to conform time series data to a specified frequency by resampling the data. This is
done with the default parameters of *resample()* (i.e. using the *mean*).

**pandas.stats.moments.expanding_cov**

pandas.stats.moments.expanding_cov(*arg1*, *arg2=None*, *min_periods=1*, *freq=None*, *center=False*, *pairwise=None*)

Unbiased expanding covariance.

**Parameters**

*arg1* : Series, DataFrame, or ndarray

*arg2* : Series, DataFrame, or ndarray, optional

if not supplied then will default to *arg1* and produce pairwise output

*min_periods* : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

*freq* : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a
frequency string or DateOffset object.

*pairwise* : bool, default False

If False then only matching columns between *arg1* and *arg2* will be used and the
output will be a DataFrame. If True then all pairwise combinations will be calculated
and the output will be a Panel in the case of DataFrame inputs. In the case of missing
elements, only complete pairwise observations will be used.

**Returns**

*y* : type depends on inputs

DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
DataFrame / Series -> Computes result for each column Series / Series -> Series

**pandas.stats.moments.expanding_kurt**

pandas.stats.moments.expanding_kurt(*arg*, *min_periods=1*, *freq=None*, *center=False*, **kwargs)

Unbiased expanding kurtosis.

**Parameters**

*arg* : Series, DataFrame

*min_periods* : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).
freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a
frequency string or DateOffset object.

Returns y : type of input argument

**pandas.stats.moments.expanding_mean**

Expanding mean.

Parameters arg : Series, DataFrame

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise
result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a
frequency string or DateOffset object.

Returns y : type of input argument

**pandas.stats.moments.expanding_median**

Expanding median.

Parameters arg : Series, DataFrame

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise
result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a
frequency string or DateOffset object.

Returns y : type of input argument

**pandas.stats.moments.expanding_quantile**

Expanding quantile.

Parameters arg : Series, DataFrame

quantile : float

0 <= quantile <= 1

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

**freq**: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center**: boolean, default False

Whether the label should correspond with center of window.

**Returns**

`y`: type of input argument

**Notes**

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

### pandas.stats.moments.expanding_skew

```python
pandas.stats.moments.expanding_skew(arg, min_periods=1, freq=None, center=False, **kwargs)
```

Unbiased expanding skewness.

**Parameters**

`arg`: Series, DataFrame

`min_periods`: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

`freq`: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**Returns**

`y`: type of input argument

### pandas.stats.moments.expanding_std

```python
pandas.stats.moments.expanding_std(arg, min_periods=1, freq=None, center=False, **kwargs)
```

Unbiased expanding standard deviation.

**Parameters**

`arg`: Series, DataFrame

`min_periods`: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

`freq`: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**Returns**

`y`: type of input argument
**pandas.stats.moments.expanding_sum**

Expanding sum.

**Parameters**
- `arg`: Series, DataFrame
- `min_periods`: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
  - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**Returns**
- `y`: type of input argument

**pandas.stats.moments.expanding_var**

Numerically stable implementation using Welford's method.

Unbiased expanding variance.

**Parameters**
- `arg`: Series, DataFrame
- `min_periods`: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
  - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**Returns**
- `y`: type of input argument

**pandas.stats.moments.rolling_apply**

Generic moving function application.

**Parameters**
- `arg`: Series, DataFrame
- `window`: int
  - Size of the moving window. This is the number of observations used for calculating the statistic.
- `func`: function
  - Must produce a single value from an ndarray input
- `min_periods`: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

`center` : boolean, default False

Whether the label should correspond with center of window

`args` : tuple

Passed on to func

`kwargs` : dict

Passed on to func

**Returns**

`y` : type of input argument

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the mean).

**pandas.stats.moments.rolling_corr**

`pandas.stats.moments.rolling_corr`(*arg1*, *arg2=None*, *window=None*, *min_periods=None*, *freq=None*, *center=False*, *pairwise=None*, *how=None*)

Moving sample correlation.

**Parameters**

`arg1` : Series, DataFrame, or ndarray

`arg2` : Series, DataFrame, or ndarray, optional

  if not supplied then will default to `arg1` and produce pairwise output

`window` : int

  Size of the moving window. This is the number of observations used for calculating the statistic.

`min_periods` : int, default None

  Minimum number of observations in window required to have a value (otherwise result is NA).

`freq` : string or DateOffset object, optional (default None)

  Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

`center` : boolean, default False

  Set the labels at the center of the window.

`how` : string, default ‘None’

  Method for down- or re-sampling

`pairwise` : bool, default False
If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

**Returns**

<table>
<thead>
<tr>
<th>y</th>
<th>type depends on inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame / DataFrame</td>
<td>DataFrame (matches on columns) or Panel (pairwise)</td>
</tr>
<tr>
<td>DataFrame / Series</td>
<td>Computes result for each column Series / Series</td>
</tr>
</tbody>
</table>

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**pandas.stats.moments.rolling_count**

```
pandas.stats.moments.rolling_count (arg, window, freq=None, center=False, how=None)
```

Rolling count of number of non-NaN observations inside provided window.

**Parameters**

- **arg** : DataFrame or numpy ndarray-like

  - **window** : int
    
    Size of the moving window. This is the number of observations used for calculating the statistic.

  - **freq** : string or DateOffset object, optional (default None)
    
    Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

  - **center** : boolean, default False
    
    Whether the label should correspond with center of window

  - **how** : string, default ‘mean’
    
    Method for down- or re-sampling

**Returns**

- **rolling_count** : type of caller

**Notes**

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**pandas.stats.moments.rolling_cov**

```
pandas.stats.moments.rolling_cov (arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None)
```

Unbiased moving covariance.
Parameters  
arg1 : Series, DataFrame, or ndarray

arg2 : Series, DataFrame, or ndarray, optional
    if not supplied then will default to arg1 and produce pairwise output

window : int
    Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
    Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
    Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
    Set the labels at the center of the window.

how : string, default ‘None’
    Method for down- or re-sampling

pairwise : bool, default False
    If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns  
y : type depends on inputs
    DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
    DataFrame / Series -> Computes result for each column Series / Series -> Series

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.stats.moments.rolling_kurt

pandas.stats.moments.rolling_kurt (arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)

Unbiased moving kurtosis.

Parameters  
arg : Series, DataFrame

window : int
    Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Set the labels at the center of the window.

how : string, default ‘None’

Method for down- or re-sampling

Returns  y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.stats.moments.rolling_mean

pandas.stats.moments.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)

Moving mean.

Parameters arg : Series, DataFrame

window : int

Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Set the labels at the center of the window.

how : string, default ‘None’

Method for down- or re-sampling

Returns  y : type of input argument
Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

```python
pandas.stats.moments.rolling_median
```

This function calculates the rolling median of a dataset. It uses a skip list implementation for efficiency, with a time complexity of \( O(N \log(window)) \) with \( N \) observations.

**Parameters**
- `arg`: Series, DataFrame
- `window`: int
  - Size of the moving window. This is the number of observations used for calculating the statistic.
- `min_periods`: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
  - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- `center`: boolean, default False
  - Set the labels at the center of the window.
- `how`: string, default 'median'
  - Method for down- or re-sampling

**Returns**
- `y`: type of input argument

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

```python
pandas.stats.moments.rolling_quantile
```

This function calculates the rolling quantile of a dataset. It uses the same skip list implementation as `rolling_median`.

**Parameters**
- `arg`: Series, DataFrame
- `window`: int
  - Size of the moving window.
- `quantile`: float
  - Quantile to compute. Must be between 0 and 1.
- `min_periods`: int, default None
- `freq`: string or DateOffset object, optional (default None)
- `center`: boolean, default False
  - Set the labels at the center of the window.
- `how`: string, default 'quantile'
  - Method for down- or re-sampling
pandas: powerful Python data analysis toolkit, Release 0.14.1

Size of the moving window. This is the number of observations used for calculating the statistic.

**quantile**: float

\[ 0 \leq \text{quantile} \leq 1 \]

**min_periods**: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

**freq**: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center**: boolean, default False

Whether the label should correspond with center of window

**Returns**  
\( y \): type of input argument

### Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**pandas.stats.moments.rolling_skew**

*pandas.stats.moments.rolling_skew* (*arg*, *window*, *min_periods=None*, *freq=None*, *center=False*, *how=None*, **kwargs)

Unbiased moving skewness.

**Parameters**

**arg**: Series, DataFrame

**window**: int

Size of the moving window. This is the number of observations used for calculating the statistic.

**min_periods**: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

**freq**: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center**: boolean, default False

Set the labels at the center of the window.

**how**: string, default ‘None’

Method for down- or re-sampling

**Returns**  
\( y \): type of input argument

29.10. General utility functions
Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

**pandas.stats.moments.rolling_std**

```
```
pandas.stats.moments.rolling_std(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
```

Unbiased moving standard deviation.

Parameters arg : Series, DataFrame

window : int

Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

def: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Set the labels at the center of the window.

how : string, default ‘None’

Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.stats.moments.rolling_sum

```
```
pandas.stats.moments.rolling_sum(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
```

Moving sum.

**Parameters** arg : Series, DataFrame

window : int
Size of the moving window. This is the number of observations used for calculating the statistic.

**min_periods** : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False
Set the labels at the center of the window.

**how** : string, default ‘None’
Method for down- or re-sampling

**Returns**  
y : type of input argument

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**pandas.stats.moments.rolling_var**

`pandas.stats.moments.rolling_var(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)`

Numerically stable implementation using Welford’s method.

Unbiased moving variance.

**Parameters**  
arg : Series, DataFrame

**window** : int
Size of the moving window. This is the number of observations used for calculating the statistic.

**min_periods** : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False
Set the labels at the center of the window.

**how** : string, default ‘None’
Method for down- or re-sampling
Returns  
y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas: powerful Python data analysis toolkit, Release 0.14.1

pandas.tools.merge.concat

pandas.tools.merge.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False)

Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number

Parameters

- **objs** : list or dict of Series, DataFrame, or Panel objects
  
  If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case an Exception will be raised

- **axis** : {0, 1, ...}, default 0
  
  The axis to concatenate along

- **join** : {'inner', 'outer'}, default 'outer'
  
  How to handle indexes on other axis(es)

- **join_axes** : list of Index objects
  
  Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic

- **verify_integrity** : boolean, default False
  
  Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation

- **keys** : sequence, default None
  
  If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level

- **levels** : list of sequences, default None
  
  Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys

- **names** : list, default None
  
  Names for the levels in the resulting hierarchical index

- **ignore_index** : boolean, default False
  
  If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where
the concatenation axis does not have meaningful indexing information. Note the the index values on the other axes are still respected in the join.

Returns concatenated : type of objects

Notes

The keys, levels, and names arguments are all optional

pandas.tools.merge.merge

pandas.tools.merge.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters left : DataFrame

right : DataFrame

how : {'left', 'right', 'outer', 'inner'}, default 'inner'

- left: use only keys from left frame (SQL: left outer join)
- right: use only keys from right frame (SQL: right outer join)
- outer: use union of keys from both frames (SQL: full outer join)
- inner: use intersection of keys from both frames (SQL: inner join)

on : label or list

Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.

left_on : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns

right_on : label or list, or array-like

Field names to join on in right DataFrame or vector/list of vectors per left_on docs

left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index

sort : boolean, default False

Sort the join keys lexicographically in the result DataFrame

suffixes : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively
copy : boolean, default True

If False, do not copy data unnecessarily

Returns merged : DataFrame

Examples

```python
>>> A
lkey value
0 foo 1
1 bar 2
2 baz 3
3 foo 4

>>> B
rkey value
0 foo 5
1 bar 6
2 qux 7
3 bar 8

>>> merge(A, B, left_on='lkey', right_on='rkey', how='outer')
lkey value_x rkey value_y
0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7
```

pandas.tools.pivot.pivot_table

pandas.tools.pivot.pivot_table(*args, **kwargs)

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame

Parameters data : DataFrame

values : column to aggregate, optional

index : a column, Grouper, array which has the same length as data, or list of them.

Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.

columns : a column, Grouper, array which has the same length as data, or list of them.

Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.

aggfunc : function, default numpy.mean, or list of functions

If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)

fill_value : scalar, default None

Value to replace missing values with

margins : boolean, default False

Add all row / columns (e.g. for subtotal / grand totals)

dropna : boolean, default True

Do not include columns whose entries are all NaN
rows : kwarg only alias of index [deprecated]
cols : kwarg only alias of columns [deprecated]

Returns  table : DataFrame

Examples

```python
>>> df
 A B C D
0 foo one small 1
1 foo one large 2
2 foo one large 2
3 foo two small 3
4 foo two small 3
5 bar one large 4
6 bar one small 5
7 bar two small 6
8 bar two large 7

>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
>>> table
 small large
 foo one 1 4
 two 6 NaN
 bar one 5 4
 two 6 7
```

pandas.tseries.tools.to_datetime

pandas.tseries.tools.to_datetime(arg, errors='ignore', dayfirst=False, utc=None, box=True, format=None, coerce=False, unit='ns', infer_datetime_format=False)

Convert argument to datetime

Parameters  arg : string, datetime, array of strings (with possible NAs)
errors : {'ignore', 'raise'}, default 'ignore'
  Errors are ignored by default (values left untouched)

dayfirst : boolean, default False
  If True parses dates with the day first, eg 20/01/2005 Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug).

utc : boolean, default None
  Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well)

box : boolean, default True
  If True returns a DatetimeIndex, if False returns ndarray of values

format : string, default None
  strftime to parse time, eg “%d/%m/%Y”

29.10. General utility functions 1281
coerce : force errors to NaT (False by default)

unit : unit of the arg (D,s,ms,us,ns) denote the unit in epoch
  (e.g. a unix timestamp), which is an integer/float number

infer_datetime_format: boolean, default False
  If no format is given, try to infer the format based on the first datetime string. Provides a large speed-up in many cases.

Returns ret : datetime if parsing succeeded

Examples

Take separate series and convert to datetime

```python
>>> import pandas as pd
>>> i = pd.date_range('20000101', periods=100)
>>> df = pd.DataFrame(dict(year=i.year, month=i.month, day=i.day))
>>> pd.to_datetime(df.year*10000 + df.month*100 + df.day, format='%Y%m%d')
```

Or from strings

```python
>>> df = df.astype(str)
>>> pd.to_datetime(df.day + df.month + df.year, format='%d%m%Y')
```
CONTRIBUTING TO PANDAS

See the following links:

- The developer pages on the website
- Guidelines on bug reports and pull requests
- Some extra tips on using git

30.1 Contributing to the documentation

If you’re not the developer type, contributing to the documentation is still of huge value. You don’t even have to be an expert on pandas to do so! Something as simple as rewriting small passages for clarity as you reference the docs is a simple but effective way to contribute. The next person to read that passage will be in your debt!

Actually, there are sections of the docs that are worse off by being written by experts. If something in the docs doesn’t make sense to you, updating the relevant section after you figure it out is a simple way to ensure it will help the next person.

Table of contents:

- About the pandas documentation
- How to build the pandas documentation
  - Requirements
  - Building pandas
  - Building the documentation
- Where to start?

30.1.1 About the pandas documentation

The documentation is written in reStructuredText, which is almost like writing in plain English, and built using Sphinx. The Sphinx Documentation has an excellent introduction to reST. Review the Sphinx docs to perform more complex changes to the documentation as well.

Some other important things to know about the docs:

- The pandas documentation consists of two parts: the docstrings in the code itself and the docs in this folder pandas/doc/.
The docstrings provide a clear explanation of the usage of the individual functions, while the documentation in this folder consists of tutorial-like overviews per topic together with some other information (whatsnew, installation, etc).

- The docstrings follow the Numpy Docstring Standard which is used widely in the Scientific Python community. This standard specifies the format of the different sections of the docstring. See this document for a detailed explanation, or look at some of the existing functions to extend it in a similar manner.

- The tutorials make heavy use of the ipython directive sphinx extension. This directive lets you put code in the documentation which will be run during the doc build. For example:

```
.. ipython:: python
 :align: center
 :width: 300px

 x = 2
 x**3
```

will be rendered as

```
In [1]: x = 2

In [2]: x**3
Out[2]: 8
```

This means that almost all code examples in the docs are always run (and the output saved) during the doc build. This way, they will always be up to date, but it makes the doc building a bit more complex.

### 30.1.2 How to build the pandas documentation

#### Requirements

To build the pandas docs there are some extra requirements: you will need to have sphinx and ipython installed. numpydoc is used to parse the docstrings that follow the Numpy Docstring Standard (see above), but you don’t need to install this because a local copy of numpydoc is included in the pandas source code.

Furthermore, it is recommended to have all optional dependencies installed. This is not needed, but be aware that you will see some error messages. Because all the code in the documentation is executed during the doc build, the examples using this optional dependencies will generate errors. Run `pd.show_version()` to get an overview of the installed version of all dependencies.

```
Warning: Building the docs with Sphinx version 1.2 is broken. Use the latest stable version (1.2.1) or the older 1.1.3.
```

#### Building pandas

For a step-by-step overview on how to set up your environment, to work with the pandas code and git, see the developer pages. When you start to work on some docs, be sure to update your code to the latest development version (`master`):

```
git fetch upstream
git rebase upstream/master
```

Often it will be necessary to rebuild the C extension after updating:

```
python setup.py build_ext --inplace
```
Building the documentation

So how do you build the docs? Navigate to your local the folder pandas/doc/ directory in the console and run:

```
python make.py html
```

And then you can find the html output in the folder pandas/doc/build/html/.

The first time it will take quite a while, because it has to run all the code examples in the documentation and build all generated docstring pages. In subsequent evocations, sphinx will try to only build the pages that have been modified.

If you want to do a full clean build, do:

```
python make.py clean
python make.py build
```

Staring with 0.13.1 you can tell make.py to compile only a single section of the docs, greatly reducing the turn-around time for checking your changes. You will be prompted to delete unrequired .rst files, since the last commited version can always be restored from git.

```
#omit autosummary and api section
python make.py clean
python make.py --no-api

compile the docs with only a single
section, that which is in indexing.rst
python make.py clean
python make.py --single indexing
```

For comparison, a full doc build may take 10 minutes. a --no-api build may take 3 minutes and a single section may take 15 seconds.

30.1.3 Where to start?

There are a number of issues listed under Docs and Good as first PR where you could start out.

Or maybe you have an idea of you own, by using pandas, looking for something in the documentation and thinking ‘this can be improved’, let’s do something about that!

Feel free to ask questions on mailing list or submit an issue on Github.
RELEASE NOTES

This is the list of changes to pandas between each release. For full details, see the commit logs at http://github.com/pydata/pandas

What is it

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language.

Where to get it

• Source code: http://github.com/pydata/pandas
• Binary installers on PyPI: http://pypi.python.org/pypi/pandas
• Documentation: http://pandas.pydata.org

31.1 pandas 0.14.1

Release date: (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

• New methods select_dtypes() to select columns based on the dtype and sem() to calculate the standard error of the mean.
• Support for dateutil timezones (see docs).
• Support for ignoring full line comments in the read_csv() text parser.
• New documentation section on Options and Settings.
• Lots of bug fixes.

See the v0.14.1 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.1.

31.1.1 Thanks

• Andrew Rosenfeld
• Andy Hayden
• Benjamin Adams
• Benjamin M. Gross
• Brian Quistorff
• Brian Wignall
• bwignall
• clham
• Daniel Waeber
• David Bew
• David Stephens
• DSM
• dsm054
• helger
• immerrr
• Jacob Schaer
• jaimefrio
• Jan Schulz
• John David Reaver
• John W. O’Brien
• Joris Van den Bossche
• jreback
• Julien Danjou
• Kevin Sheppard
• K.-Michael Aye
• Kyle Meyer
• lexual
• Matthew Brett
• Matt Wittmann
• Michael Mueller
• Mortada Mehyar
• onesandzeroes
• Phillip Cloud
• Rob Levy
• rockg
• sanguineturtle
• Schaer, Jacob C
31.2 pandas 0.14.0

**Release date:** (May 31, 2014)

This is a major release from 0.13.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

- Officially support Python 3.4
- SQL interfaces updated to use `sqlalchemy`, see [here](#).
- Display interface changes, see [here](#).
- MultiIndexing using Slicers, see [here](#).
- Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see [here](#).
- More consistency in groupby results and more flexible groupby specifications, see [here](#).
- Holiday calendars are now supported in `CustomBusinessDay`, see [here](#).
- Several improvements in plotting functions, including: hexbin, area and pie plots, see [here](#).
- Performance doc section on I/O operations, see [here](#).

See the v0.14.0 *Whatsnew* overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.0.

31.2.1 Thanks

- Acanthostega
- Adam Marcus
- agijsberts
- akittredge
- Alex Gaudio
- Alex Rothberg
- AllenDowney
- Andrew Rosenfeld
- Andy Hayden
• Jeff Tratner
• John David Reaver
• John McNamara
• John W. O’Brien
• Jonathan Chambers
• Joris Van den Bossche
• jreback
• jsexauer
• Julia Evans
• Júlio
• Katie Atkinson
• kdiether
• Kelsey Jordahl
• Kevin Sheppard
• K.-Michael Aye
• Matthias Kuhn
• Matt Wittmann
• Max Grender-Jones
• Michael E. Gruen
• michaelws
• mikebailey
• Mike Kelly
• Nipun Batra
• Noah Spies
• ojdo
• onesandzeroes
• Patrick O’Keefe
• phaebz
• Phillip Cloud
• Pietro Battiston
• PKEuS
• Randy Carnevale
• ribonouous
• Robert Gibboni
• rockg
• sinhrks
31.3 pandas 0.13.1

Release date: (February 3, 2014)

31.3.1 New Features

- Added `date_format` and `datetime_format` attribute to `ExcelWriter`. (GH4133)

31.3.2 API Changes

- `Series.sort` will raise a `ValueError` (rather than a `TypeError`) on sorting an object that is a view of another (GH5856, GH5853)
- `Raise/Warn SettingWithCopyError` (according to the option `chained_assignment` in more cases, when detecting chained assignment, related (GH5938, GH6025)
- `DataFrame.head(0)` returns self instead of empty frame (GH5846)
- `autocorrelation_plot` now accepts `**kwargs`. (GH5623)
- `convert_objects` now accepts a `convert_timedeltas='coerce'` argument to allow forced dtype conversion of timedeltas (GH5458, issue:5689)
- Add `-NaN` and `-nan` to the default set of NA values (GH5952). See `NA Values`.
- `NDFrame` now has an `equals` method. (GH5283)
- `DataFrame.apply` will use the reduce argument to determine whether a `Series` or a `DataFrame` should be returned when the `DataFrame` is empty (GH6007).
31.3.3 Experimental Features

31.3.4 Improvements to existing features

- perf improvements in Series datetime/timedelta binary operations (GH5801)
- `option_context` context manager now available as top-level API (GH5752)
- `df.info()` view now display dtype info per column (GH5682)
- `df.info()` now honors option max_info_rows, disable null counts for large frames (GH5974)
- perf improvements in DataFrame `count/dropna` for axis=1
- Series.str.contains now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (GH5879)
- support `dtypes` property on Series/Panel/Panel4D
- extend `Panel.apply` to allow arbitrary functions (rather than only ufuncs) (GH1148) allow multiple axes to be used to operate on slabs of a Panel
- The `ArrayFormatter` for `datetime` and `timedelta64` now intelligently limit precision based on the values in the array (GH3401)
- `pd.show_versions()` is now available for convenience when reporting issues.
- perf improvements to Series.str.extract (GH5944)
- perf improvements in `dtypes/ftypes` methods (GH5968)
- perf improvements in indexing with object dtypes (GH5968)
- improved dtype inference for `timedelta` like passed to constructors (GH5458, GH5689)
- escape special characters when writing to latex (:issue: 5374)
- perf improvements in `DataFrame.apply` (GH6013)
- `pd.read_csv` and `pd.to_datetime` learned a new `infer_datetime_format` keyword which greatly improves parsing perf in many cases. Thanks to @lexical for suggesting and @danbirken for rapidly implementing. (GH5490, :issue: 6021)
- add ability to recognize ‘%p’ format code (am/pm) to date parsers when the specific format is supplied (GH5361)
- Fix performance regression in JSON IO (GH5765)
- performance regression in Index construction from Series (GH6150)

31.3.5 Bug Fixes

- Bug in `io.wb.get_countries` not including all countries (GH6008)
- Bug in Series replace with timestamp dict (GH5797)
- `read_csv/read_table` now respects the `prefix` kwarg (GH5732).
- Bug in selection with missing values via `.ix` from a duplicate indexed DataFrame failing (GH5835)
- Fix issue of boolean comparison on empty DataFrames (GH5808)
- Bug in isnull handling `NaN` in an object array (GH5443)
- Bug in `to_datetime` when passed a `np.nan` or integer datelike and a format string (GH5863)
- Bug in groupby dtype conversion with datetimelike (GH5869)
• Regression in handling of empty Series as indexers to Series (GH5877)
• Bug in internal caching, related to (GH5727)
• Testing bug in reading json/msgpack from a non-filepath on windows under py3 (GH5874)
• Bug when assigning to .ix[tuple(...)] (GH5896)
• Bug in fully reindexing a Panel (GH5905)
• Bug in idxmin/max with object dtypes (GH5914)
• Bug in BusinessDay when adding n days to a date not on offset when n>5 and n%5==0 (GH5890)
• Bug in assigning to chained series with a series via ix (GH5928)
• Bug in creating an empty DataFrame, copying, then assigning (GH5932)
• Bug in DataFrame.tail with empty frame (GH5846)
• Bug in propagating metadata on resample (GH5862)
• Fixed string-representation of NaT to be “NaT” (GH5708)
• Fixed string-representation for Timestamp to show nanoseconds if present (GH5912)
• pd.match not returning passed sentinel
• Panel.to_frame() no longer fails when major_axis is a MultiIndex (GH5402).
• Bug in pd.read_msgpack with inferring a DateTimeIndex frequency incorrectly (GH5947)
• Fixed to_datetime for array with both Tz-aware datetimes and NaT’s (GH5961)
• Bug in rolling skew/kurtosis when passed a Series with bad data (GH5749)
• Bug in scipy interpolate methods with a datetime index (GH5975)
• Bug in NaT comparison if a mixed datetime/np.datetime64 with NaT were passed (GH5968)
• Fixed bug with pd.concat losing dtypes information if all inputs are empty (GH5742)
• Recent changes in IPython cause warnings to be emitted when using previous versions of pandas in QTConsole, now fixed. If you’re using an older version and need to suppress the warnings, see (GH5922).
• Bug in merging timedelta dtypes (GH5695)
• Bug in plotting.scatter_matrix function. Wrong alignment among diagonal and off-diagonal plots, see (GH5497).
• Regression in Series with a multi-index via ix (GH6018)
• Bug in Series.xs with a multi-index (GH6018)
• Bug in Series construction of mixed type with datelike and an integer (which should result in object type and not automatic conversion) (GH6028)
• Possible segfault when chained indexing with an object array under numpy 1.7.1 (GH6026, GH6056)
• Bug in setting using fancy indexing a single element with a non-scalar (e.g. a list), (GH6043)
• to_sql did not respect if_exists (GH4110 GH4304)
• Regression in .get(None) indexing from 0.12 (GH5652)
• Subtle iloc indexing bug, surfaced in (GH6059)
• Bug with insert of strings into DatetimeIndex (GH5818)
• Fixed unicode bug in to_html/HTML repr (GH6098)
• Fixed missing arg validation in get_options_data (GH6105)
• Bug in assignment with duplicate columns in a frame where the locations are a slice (e.g. next to each other) (GH6120)
• Bug in propogating _ref_locs during construction of a DataFrame with dups index/columns (GH6121)
• Bug in DataFrame.apply when using mixed datelike reductions (GH6125)
• Bug in DataFrame.append when appending a row with different columns (GH6129)
• Bug in DataFrame construction with recarray and non-ns datetime dtype (GH6140)
• Bug in .loc setitem indexing with a dataframe on rhs, multiple item setting, and a datetimelike (GH6152)
• Fixed a bug in query/eval during lexicographic string comparisons (GH6155).
• Fixed a bug in query where the index of a single-element Series was being thrown away (GH6148).
• Bug in HDFStore on appending a dataframe with multi-indexed columns to an existing table (GH6167)
• Consistency with dtypes in setting an empty DataFrame (GH6171)
• Bug in selecting on a multi-index HDFStore even in the presence of under specified column spec (GH6169)
• Bug in nanops.var with ddof=1 and 1 elements would sometimes return inf rather than nan on some platforms (GH6136)
• Bug in Series and DataFrame bar plots ignoring the use_index keyword (GH6209)
• Bug in groupby with mixed str/int under python3 fixed; argsort was failing (GH6212)

31.4 pandas 0.13.0

Release date: January 3, 2014

31.4.1 New Features

• plot(kind='kde') now accepts the optional parameters bw_method and ind, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)
• Added isin method to DataFrame (GH4211)
• df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled by default). (GH5070).
• Clipboard functionality now works with PySide (GH4282)
• New extract string method returns regex matches more conveniently (GH4685)
• Auto-detect field widths in read_fwf when unspecified (GH4488)
• to_csv() now outputs datetime objects according to a specified format string via the date_format keyword (GH4313)
• Added LastWeekOfMonth DateOffset (GH4637)
• Added cumcount groupby method (GH4466)
• Added FY5253, and FY5253Quarter DateOffsets (GH4511)
• Added mode() method to Series and DataFrame to get the statistical mode(s) of a column/series. (GH5367)

31.4.2 Experimental Features

• The new eval() function implements expression evaluation using numexpr behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series.

• DataFrame has a new eval() that evaluates an expression in the context of the DataFrame; allows inline expression assignment

• A query() method has been added that allows you to select elements of a DataFrame using a natural query syntax nearly identical to Python syntax.

• pd.eval and friends now evaluate operations involving datetime64 objects in Python space because numexpr cannot handle NaT values (GH4897).

• Add msgpack support via pd.read_msgpack() and pd.to_msgpack() / df.to_msgpack() for serialization of arbitrary pandas (and python objects) in a lightweight portable binary format (GH686, GH5506)

• Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.

• Added pandas.io.gbq for reading from (and writing to) Google BigQuery into a DataFrame. (GH4140)

31.4.3 Improvements to existing features

• read_html now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305)

• read_excel now supports an integer in its sheetname argument giving the index of the sheet to read in (GH4301).

• get_dummies works with NaN (GH4446)

• Added a test for read_clipboard() and to_clipboard() (GH4282)

• Added bins argument to value_counts (GH3945), also sort and ascending, now available in Series method as well as top-level function.

• Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) to infinity. (GH4220, GH4219), affecting read_table, read_csv, etc.

• Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402)

• Significant table writing performance improvements in HDFStore

• JSON date serialization now performed in low-level C code.

• JSON support for encoding datetime.time

• Expanded JSON docs, more info about orient options and the use of the numpy param when decoding.

• Add drop_level argument to xs (GH4180)

• Can now resample a DataFrame with ohlc (GH2320)

• Index.copy() and MultiIndex.copy() now accept keyword arguments to change attributes (i.e., names, levels, labels) (GH4039)

• Add rename and set_names methods to Index as well as set_names, set_levels, set_labels to MultiIndex. (GH4039) with improved validation for all (GH4039, GH4794)

• A Series of dtype timedelta64[ns] can now be divided-multiplied by an integer series (GH4521)
• A Series of dtype `timedelta64[ns]` can now be divided by another `timedelta64[ns]` object to yield a `float64` dtype Series. This is frequency conversion; astyping is also supported.

• `Timedelta64` support `fillna/ffill/bfill` with an integer interpreted as seconds, or a `timedelta` (GH3371)

• Box numeric ops on `timedelta` Series (GH4984)

• `Datetime64` support `fillna/ffill/bfill`

• Performance improvements with `__getitem__` on DataFrames with when the key is a column

• Support for using a `DateTimeIndex/PeriodsIndex` directly in a datelike calculation e.g. `s-s.index` (GH4629)

• Better/cleaned up exceptions in core/common, io/excel and core/format (GH4721, GH3954), as well as cleaned up test cases in tests/test_frame, tests/test_multilevel (GH4732).

• Performance improvement of timeseries plotting with `PeriodIndex` and added test to vbench (GH4705 and GH4722)

• Add `axis` and `level` keywords to `where`, so that the `other` argument can now be an alignable pandas object.

• `to_datetime` with a format of ‘%Y%m%d’ now parses much faster

• It’s now easier to hook new Excel writers into pandas (just subclass `ExcelWriter` and register your engine). You can specify an engine in `to_excel` or in `ExcelWriter`. You can also specify which writers you want to use by default with config options `io.excel.xlsx.writer` and `io.excel.xls.writer`. (GH4745, GH4750)

• `Panel.to_excel()` now accepts keyword arguments that will be passed to its DataFrame’s `to_excel()` methods. (GH4750)

• Added XlsxWriter as an optional `ExcelWriter` engine. This is about 5x faster than the default openpyxl xlsx writer and is equivalent in speed to the xlwt xls writer module. (GH4542)

• allow DataFrame constructor to accept more list-like objects, e.g. list of collections.Sequence and array.Array objects (GH3783, GH4297, GH4851), thanks @lgautier

• DataFrame constructor now accepts a numpy masked record array (GH3478), thanks @jnothman

• `__getitem__` with tuple key (e.g., `[ :, 2]`) on Series without MultiIndex raises `ValueError` (GH4759, GH4837)

• `read_json` now raises a (more informative) `ValueError` when the dict contains a bad key and `orient='split'` (GH4730, GH4838)

• `read_stata` now accepts Stata 13 format (GH4291)

• `ExcelWriter` and `ExcelFile` can be used as contextmanagers. (GH3441, GH4933)

• pandas is now tested with two different versions of statsmodels (0.4.3 and 0.5.0) (GH4981).

• Better string representations of MultiIndex (including ability to roundtrip via repr). (GH3347, GH4935)

• Both ExcelFile and `read_excel` to accept an xlr.d.Book for the io (formerly path_or_buf) argument; this requires engine to be set. (GH4961).

• `concat` now gives a more informative error message when passed objects that cannot be concatenated (GH4608).

• Add `halflife` option to exponentially weighted moving functions (PR GH4998)

• `to_dict` now takes `records` as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)
• tz_localize can infer a fall daylight savings transition based on the structure of unlocalized data (GH4230).

• DatetimeIndex is now in the API documentation.

• Improve support for converting R datasets to pandas objects (more informative index for timeseries and numeric, support for factors, dist, and high-dimensional arrays).

• read_html() now supports the parse_dates, tupleize_cols and thousands parameters (GH4770).

• json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067).

• DataFrame.from_records() will now accept generators (GH4910).

• DataFrame.interpolate() and Series.interpolate() have been expanded to include interpolation methods from scipy. (GH4434, GH1892)

• Series now supports a to_frame method to convert it to a single-column DataFrame (GH5164).

• DatetimeIndex (and date_range) can now be constructed in a left- or right-open fashion using the closed parameter (GH4579).

• Python csv parser now supports usecols (GH4335).

• Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

• NDFrame.drop() now accepts names as well as integers for the axis argument. (GH5354)

• Added short docstrings to a few methods that were missing them + fixed the docstrings for Panel flex methods. (GH536)

• NDFrame.drop(), NDFrame.dropna(), and .drop_duplicates() all accept inplace as a keyword argument; however, this only means that the wrapper is updated inplace, a copy is still made internally. (GH1960, GH5247, GH5628, and related GH2325 [still not closed])

• Fixed bug in tools.plotting.andrews_curvres so that lines are drawn grouped by color as expected.

• read_excel() now tries to convert integral floats (like 1.0) to int by default. (GH5394)

• Excel writers now have a default option merge_cells in to_excel() to merge cells in MultiIndex and Hierarchical Rows. Note: using this option it is no longer possible to round trip Excel files with merged MultiIndex and Hierarchical Rows. Set the merge_cells to False to restore the previous behaviour. (GH5254)

• The FRED DataReader now accepts multiple series (issue’3413’)

• StataWriter adjusts variable names to Stata’s limitations (GH5709)

### 31.4.4 API Changes

• DataFrame.reindex() and forward/backward filling now raises ValueError if either index is not monotonic (GH4483, GH4484).

• pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jratner. As a result, pandas now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into compat. (GH4384, GH4375, GH4372)

• pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat. pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting and pandas constructors.(GH4384, GH4375, GH4372)
• deprecated iterkv, which will be removed in a future release (was just an alias of iteritems used to get around 2to3's changes). (GH4384, GH4375, GH4372)

• Series.get with negative indexers now returns the same as [] (GH4390)

• allow ix/loc for Series/DataFrame/Panel to set on any axis even when the single-key is not currently contained in the index for that axis (GH2578, GH5226, GH5632, GH5720, GH5744, GH5756)

• Default export for to_clipboard is now csv with a sep of t for compat (GH3368)

• at now will enlarge the object inplace (and return the same) (GH2578)

• DataFrame.plot will scatter plot x versus y by passing kind=’scatter’ (GH2215)

• HDFStore
  - append_to_multiple automatically synchronizes writing rows to multiple tables and adds a dropna kwarg (GH4698)
  - handle a passed Series in table format (GH4330)
  - added an is_open property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)
  - a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise ClosedFileError
  - removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table (GH4367)
  - removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if you try to use mode=’w’ with an OPEN file handle (GH4367)
  - allow a passed locations array or mask as a where condition (GH4467)
  - add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625)
  - the format keyword now replaces the table keyword; allowed values are fixed(f)|table(t) the Storer format has been renamed to Fixed
  - a column multi-index will be recreated properly (GH4710); raise on trying to use a multi-index with data_columns on the same axis
  - select_as_coordinates will now return an Int64Index of the resultant selection set
  - support timedelta64[ns] as a serialization type (GH3577)
  - store datetime.date objects as ordinals rather then timetuples to avoid timezone issues (GH2852), thanks @tavistmorph and @numpand
  - numexpr 2.2.2 fixes incompatibility in PyTables 2.4 (GH4908)
  - flush now accepts an fsync parameter, which defaults to False (GH5364)
  - unicode indices not supported on table formats (GH5386)
  - pass thru store creation arguments; can be used to support in-memory stores

• JSON
pandas: powerful Python data analysis toolkit, Release 0.14.1

- added `date_unit` parameter to specify resolution of timestamps. Options are seconds, milliseconds, microseconds and nanoseconds. (GH4362, GH4498).
- added `default_handler` parameter to allow a callable to be passed which will be responsible for handling otherwise unserialisable objects. (GH5138)

**Index and MultiIndex changes (GH4039):**
- Setting `levels` and `labels` directly on `MultiIndex` is now deprecated. Instead, you can use the `set_levels()` and `set_labels()` methods.
- `levels`, `labels` and `names` properties no longer return lists, but instead return containers that do not allow setting of items (‘mostly immutable’)
- `levels`, `labels` and `names` are validated upon setting and are either copied or shallow-copied.
- `inplace` setting of `levels` or `labels` now correctly invalidates the cached properties. (GH5238).
- `__deepcopy__` now returns a shallow copy (currently: a view) of the data - allowing metadata changes.
- `MultiIndex.astype()` now only allows `np.object_`-like dtypes and now returns a `MultiIndex` rather than an `Index`. (GH4039)
- Added `is_` method to `Index` that allows fast equality comparison of views (similar to `np.may_share_memory` but no false positives, and changes on `levels` and `labels` setting on `MultiIndex`). (GH4859, GH4909)
- Aliased `__iadd__` to `__add__`. (GH4996)
- Added `is_` method to `Index` that allows fast equality comparison of views (similar to `np.may_share_memory` but no false positives, and changes on `levels` and `labels` setting on `MultiIndex`). (GH4859, GH4909)

**Infer and downcast dtype if `downcast='infer'` is passed to `fillna/ffill/bfill` (GH4604)**

- `__nonzero__` for all `NDFrame` objects, will now raise a `ValueError`, this reverts back to (GH1073, GH4633) behavior. Add `.bool()` method to `NDFrame` objects to facilitate evaluating of single-element boolean Series
- `DataFrame.update()` no longer raises a `DataConflictError`, it now will raise a `ValueError` instead (if necessary) (GH4732)
- `Series.isin()` and `DataFrame.isin()` now raise a `TypeError` when passed a string (GH4763). Pass a list of one element (containing the string) instead.
- Remove undocumented/unused kind keyword argument from `read_excel`, and `ExcelFile`. (GH4713, GH4712)
- The method argument of `NDFrame.replace()` is valid again, so that a a list can be passed to `to_replace` (GH4743).

- provide automatic dtype conversions on _reduce operations (GH3371)
- exclude non-numerics if mixed types with datelike in _reduce operations (GH3371)
- default for `tupleize_cols` is now `False` for both `to_csv` and `read_csv`. Fair warning in 0.12 (GH3604)
- moved timedeltas support to pandas.tseries.timedeltas.py; add timedeltas string parsing, add top-level `to_timedelta` function
- `NDFrame` now is compatible with Python’s toplevel `abs()` function (GH4821).
- raise `TypeError` on invalid comparison ops on Series/DataFrame (e.g. integer/datetime) (GH4968)
• Added a new index type, \texttt{Float64Index}. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes \texttt{[], ix, loc} for scalar indexing and slicing work exactly the same. Indexing on other index types are preserved (and positional fallback for \texttt{[], ix}), with the exception, that floating point slicing on indexes on non \texttt{Float64Index} will raise a \texttt{TypeError}, e.g. \texttt{Series(range(5))[3.5:4.5]} (GH263, issue: 5375)

• Make Categorical \texttt{repr} nicer (GH4368)

• Remove deprecated \texttt{Factor} (GH3650)

• Remove deprecated \texttt{set_printoptions/reset_printoptions} (issue: 3046)

• Remove deprecated \_\_verbose\_info (GH3215)

• Begin removing methods that don’t make sense on GroupBy objects (GH4887).

• Remove deprecated \texttt{read_clipboard/to_clipboard/ExcelFile/ExcelWriter} from pandas.io.parsers (GH3717)

• All non-Index NDFrames (\texttt{Series, DataFrame, Panel, Panel4D, SparsePanel}, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). \texttt{SparsePanel} does not support \texttt{pow} or \texttt{mod} with non-scalars. (GH3765)

• Arithmetic func factories are now passed real names (suitable for using with super) (GH5240)

• Provide numpy compatibility with 1.7 for a calling convention like \texttt{np.prod(pandas_object)} as numpy call with additional keyword args (GH4435)

• Provide \_\_dir\_ method (and local context) for \texttt{tab completion} / remove ipython completers code (GH4501)

• Support non-unique axes in a Panel via indexing operations (GH4960)

• \texttt{.truncate} will raise a \texttt{ValueError} if invalid before and after dates are given (GH5242)

• Timestamp now supports now/today/utcnow class methods (GH5339)

• default for \texttt{display.max_seq_len} is now 100 rather then \texttt{None}. This activates truncated display ("...") of long sequences in various places. (GH3391)

• All division with NDFrame - likes is now true division, regardless of the future import. You can use \texttt{\//} and \texttt{floordiv} to do integer division.

In [3]: arr = np.array([1, 2, 3, 4])

In [4]: arr2 = np.array([5, 3, 2, 1])

In [5]: arr / arr2
Out[5]: array([0, 0, 1, 4])

In [6]: pd.Series(arr) / pd.Series(arr2) # no future import required
Out[6]:
        0   0.200000
        1   0.666667
        2   1.500000
        3   4.000000
dtype: float64

• \texttt{raise/warn SettingWithCopyError/Warning} exception/warning when setting of a copy thru chained assignment is detected, settable via option \texttt{mode.chained_assignment}

• test the list of NA values in the csv parser. add N/A, #NA as independent default na values (GH5521)
• The refactoring involving `Series` deriving from NDFrame breaks rpy2<=2.3.8. an Issue has been opened against rpy2 and a workaround is detailed in GH5698. Thanks @JanSchulz.

• `Series.argmin` and `Series.argmax` are now aliased to `Series.idxmin` and `Series.idxmax`. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element (GH6214)

### 31.4.5 Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass `Series` from NDFrame, which is the base class currently for `DataFrame` and `Panel`, to unify methods and behaviors. `Series` formerly subclassed directly from `ndarray`.

(GH4080, GH3862, GH816) See Internal Refactoring

• Refactor of series.py/frame.py/panel.py to move common code to generic.py

• added `_setup_axes` to created generic NDFrame structures

• moved methods

  - from_axes, _wrap_array, axes, ix, loc, iloc, shape, empty, swapaxes, transpose, pop
  - __iter__, keys, __contains__, __len__, __neg__, __invert__
  - convert_objects, as_blocks, as_matrix, values
  - __getstate__, __setstate__ (compat remains in frame/panel)
  - __getattr__, __setattr__
  - _indexed_same, reindex_like, align, where, mask
  - fillna, replace (Series replace is now consistent with DataFrame)
  - filter (also added axis argument to selectively filter on a different axis)
  - reindex, reindex_axis, take
  - truncate (moved to become part of NDFrame)
  - isnull/notnull now available on NDFrame objects

• These are API changes which make Panel more consistent with DataFrame

• swapaxes on a Panel with the same axes specified now return a copy

• support attribute access for setting

• filter supports same api as original DataFrame filter

• fillna refactored to core/generic.py, while > 3ndim is NotImplemented

• Series now inherits from NDFrame rather than directly from ndarray. There are several minor changes that affect the API.

• numpy functions that do not support the array interface will now return ndarrays rather than series, e.g. np.diff, np.ones_like, np.where

• Series(0.5) would previously return the scalar 0.5, this is no longer supported

• TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if desired)

• Refactor of Sparse objects to use BlockManager
• Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is non-consolidatable. SparseSeries and SparseDataFrame now inherit more methods from there hierarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of the SparseBlock)

• Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)

• Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient

• enable setitem on SparseSeries for boolean/integer/slices

• SparsePanels implementation is unchanged (e.g. not using BlockManager, needs work)

• added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense (as well as the dtype)

• All NDFrame objects now have a _prop_attributes, which can be used to indicated various values to propogate to a new object from an existing (e.g. name in Series will follow more automatically now)

• Internal type checking is now done via a suite of generated classes, allowing isinstance(value, klass) without having to directly import the klass, courtesy of @jtratner

• Bug in Series update where the parent frame is not updating its cache based on changes (GH4080, GH5216) or types (GH3217), fillna (GH3386)

• Indexing with dtype conversions fixed (GH4463, GH4204)

• Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work

• Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy

• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with the same signature for Panel

• Series (for index) / Panel (for items) now as attribute access to its elements (GH1903)

• Refactor clip methods to core/generic.py (GH4798)

• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality

• Refactor of Series arithmetic with time-like objects (datetime/timedelta/time etc.) into a separate, cleaned up wrapper class. (GH4613)

• Complex compat for Series with ndarray. (GH4819)

• Removed unnecessary rwproperty from codebase in favor of builtin property. (GH4843)

• Removed the keep_internal keyword parameter in pandas/core/groupby.py because it wasn’t being used (GH5102).

• Base DateOffsets are no longer all instantiated on importing pandas, instead they are generated and cached on the fly. The internal representation and handling of DateOffsets has also been clarified. (GH5189, related GH5004)

• MultiIndex constructor now validates that passed levels and labels are compatible. (GH5213, GH5214)
• Unity dropna for Series/DataFrame signature (GH5250), tests from GH5234, courtesy of @rockg
• Rewrite assert_almost_equal() in cython for performance (GH4398)
• Added an internal _update_inplace method to facilitate updating NDFrame wrappers on inplace ops (only is for convenience of caller, doesn’t actually prevent copies). (GH5247)

31.4.6 Bug Fixes

• HDFStore
  – raising an invalid TypeError rather than ValueError when appending with a different block ordering (GH4096)
  – read_hdf was not respecting as passed mode (GH4504)
  – appending a 0-len table will work correctly (GH4273)
  – to_hdf was raising when passing both arguments append and table (GH4584)
  – reading from a store with duplicate columns across dtypes would raise (GH4767)
  – Fixed a bug where ValueError wasn’t correctly raised when column names weren’t strings (GH4956)
  – A zero length series written in Fixed format not deserializing properly. (GH4708)
  – Fixed decoding perf issue on pyt3 (GH5441)
  – Correctly handle data_columns with a Panel (GH5527)
  – Fixed bug in tslib.tz_convert(vals, tz1, tz2): it could raise IndexError exception while trying to access trans[pos + 1] (GH4496)
• The by argument now works correctly with the layout argument (GH4102, GH4014) in *.hist plotting methods
• Fixed bug in PeriodIndex.map where using str would return the str representation of the index (GH4136)
• Fixed test failure test_time_series_plot_color_with_empty_kwargs when using custom matplotlib default colors (GH4345)
• Fix running of stata IO tests. Now uses temporary files to write (GH4353)
• Fixed an issue where DataFrame.sum was slower than DataFrame.mean for integer valued frames (GH4365)
• read_html tests now work with Python 2.6 (GH4351)
• Fixed bug where network testing was throwing NameError because a local variable was undefined (GH4381)
• In to_json, raise if a passed orient would cause loss of data because of a duplicate index (GH4359)
• In to_json, fix date handling so milliseconds are the default timestamp as the docstring says (GH4362).
• as_index is no longer ignored when doing groupby apply (GH4648, GH3417)
• JSON NaT handling fixed, NaTs are now serialised to null (GH4498)
• Fixed JSON handling of escapable characters in JSON object keys (GH4593)
• Fixed passing keep_default_na=False when na_values=None (GH4318)
• Fixed bug with values raising an error on a DataFrame with duplicate columns and mixed dtypes, surfaced in (GH4377)
• Fixed bug with duplicate columns and type conversion in read_json when orient='split' (GH4377)
• Fixed JSON bug where locales with decimal separators other than '.' threw exceptions when encoding / decoding certain values. (GH4918)
• Fix .iat indexing with a PeriodIndex (GH4390)
• Fixed an issue where PeriodIndex joining with self was returning a new instance rather than the same instance (GH4379); also adds a test for this for the other index types
• Fixed a bug with all the dtypes being converted to object when using the CSV parser with the usecols parameter (GH3192)
• Fix an issue in merging blocks where the resulting DataFrame had partially set _ref_locs (GH4403)
• Fixed an issue where hist subplots were being overwritten when they were called using the top level matplotlib API (GH4408)
• Fixed a bug where calling Series.astype(str) would truncate the string (GH4405, GH4437)
• Fixed a py3 compat issue where bytes were being repr'd as tuples (GH4455)
• Fixed Panel attribute naming conflict if item is named 'a' (GH3440)
• Fixed an issue where duplicate indexes were raising when plotting (GH4486)
• Fixed an issue where cumsum and cumprod didn't work with bool dtypes (GH4170, GH4440)
• Fixed Panel slicing issued in xs that was returning an incorrect dimmed object (GH4016)
• Fix resampling bug where custom reduce function not used if only one group (GH3849, GH4494)
• Fixed Panel assignment with a transposed frame (GH3830)
• Raise on set indexing with a Panel and a Panel as a value which needs alignment (GH3777)
• frozenset objects now raise in the Series constructor (GH4482, GH4480)
• Fixed issue with sorting a duplicate multi-index that has multiple dtypes (GH4516)
• Fixed bug in DataFrame.set_values which was causing name attributes to be lost when expanding the index. (GH3742, GH4039)
• Fixed issue where individual names, levels and labels could be set on MultiIndex without validation (GH3714, GH4039)
• Fixed (GH3334) in pivot_table. Margins did not compute if values is the index.
• Fix bug in having a rhs of np.timedelta64 or np.offsets.DateOffset when operating with datetimes (GH4532)
• Fix arithmetic with series/datet imeindex and np.timedelta64 not working the same (GH4134) and buggy timedelta in numpy 1.6 (GH4135)
• Fix bug in pd.read_clipboard on windows with PY3 (GH4561); not decoding properly
• tslib.get_period_field() and tslib.get_period_field_arr() now raise if code argument out of range (GH4519, GH4520)
• Fix boolean indexing on an empty series loses index names (GH4235), infer_dtype works with empty arrays.
• Fix reindexing with multiple axes; if an axes match was not replacing the current axes, leading to a possible lazy frequency inference issue (GH3317)
• Fixed issue where DataFrame.apply was reraising exceptions incorrectly (causing the original stack trace to be truncated).
• Fix selection with ix/loc and non_unique selectors (GH4619)
• Fix assignment with iloc/loc involving a dtype change in an existing column (GH4312, GH5702) have internal setitem_with_indexer in core/indexing to use Block.setitem
• Fixed bug where thousands operator was not handled correctly for floating point numbers in csv_import (GH4322)
• Fix an issue with CacheableOffset not properly being used by many DateOffset; this prevented the DateOffset from being cached (GH4609)
• Fix boolean comparison with a DataFrame on the lhs, and a list/tuple on the rhs (GH4576)
• Fix error/dtype conversion with setitem of None on Series/DataFrame (GH4667)
• Fix decoding based on a passed in non-default encoding in pd.read_stata (GH4626)
• Fix DataFrame.from_records with a plain-vanilla ndarray. (GH4727)
• Fix some inconsistencies with Index.rename and MultiIndex.rename, etc. (GH4718, GH4628)
• Bug in using iloc/loc with a cross-sectional and duplicate indices (GH4726)
• Bug with using QUOTE_NONE with to_csv causing Exception. (GH4328)
• Bug with Series indexing not raising an error when the right-hand-side has an incorrect length (GH2702)
• Bug in multi-indexing with a partial string selection as one part of a MultiIndex (GH4758)
• Bug with reindexing on the index with a non-unique index will now raise ValueError (GH4746)
• Bug in setting with loc/ix a single indexer with a multi-index axis and a numpy array, related to (GH3777)
• Bug in concatenation with duplicate columns across dtypes not merging with axis=0 (GH4771, GH4975)
• Bug in iloc with a slice index failing (GH4771)
• Incorrect error message with no colspecs or width in read_fwf. (GH4774)
• Fix bugs in indexing in a Series with a duplicate index (GH4548, GH4550)
• Fixed bug with reading compressed files with read_fwf in Python 3. (GH3963)
• Fixed an issue with a duplicate index and assignment with a dtype change (GH4686)
• Fixed an issue related to ticklocs/ticklabels with log scale bar plots across different versions of matplotlib (GH4789)
• Suppressed DeprecationWarning associated with internal calls issued by repr() (GH4391)
• Fixed an issue with a duplicate index and duplicate selector with .loc (GH4825)
• Fixed an issue with DataFrame.sort_index where, when sorting by a single column and passing a list for ascending, the argument for ascending was being interpreted as True (GH4839, GH4846)
• Fixed Panel.tshift not working. Added freq support to Panel.shift (GH4853)
• Fix an issue in TextFileReader w/ Python engine (i.e. PythonParser) with thousands != "," (GH4596)
• Bug in getitem with a duplicate index when using where (GH4879)
• Fix Type inference code coerces float column into datetime (GH4601)
• Fixed _ensure_numeric does not check for complex numbers (GH4902)
• Fixed a bug in Series.hist where two figures were being created when the by argument was passed (GH4112, GH4113).
- Fixed a bug in `convert_objects` for > 2 ndims (GH4937)
- Fixed a bug in DataFrame/Panel cache insertion and subsequent indexing (GH4939, GH5424)
- Fixed string methods for `FrozenNDArray` and `FrozenList` (GH4929)
- Fixed a bug with setting invalid or out-of-range values in indexing enlargement scenarios (GH4940)
- Tests for fillna on empty Series (GH4346), thanks @immerrr
- Fixed `copy()` to shallow copy axes/indices as well and thereby keep separate metadata. (GH4202, GH4830)
- Fixed skiprows option in Python parser for read_csv (GH4382)
- Fixed bug preventing `cut` from working with `np.inf` levels without explicitly passing labels (GH3415)
- Fixed wrong check for overlapping in `DatetimeIndex.union` (GH4564)
- Fixed conflict between thousands separator and date parser in `csv_parser` (GH4678)
- Fix appending when dtypes are not the same (error showing mixing float/`np.datetime64`) (GH4993)
- Fix repr for `DateOffset`. No longer show duplicate entries in kwds. Removed unused offset fields. (GH4638)
- `Timestamp` objects can now appear in the left hand side of a comparison operation with a `Series` or `DataFrame` object (GH4982).
- Fix a bug when indexing with `np.nan` via `iloc/loc` (GH5016)
- Fixed a bug where low memory c parser could create different types in different chunks of the same file. Now coerces to numerical type or raises warning. (GH3866)
- Fix a bug where reshaping a `Series` to its own shape raised `TypeError` (GH4554) and other reshaping issues.
- Bug in setting with `ix/loc` and a mixed int/string index (GH4544)
- Make sure series-series boolean comparions are label based (GH4947)
- Bug in multi-level indexing with a `Timestamp` partial indexer (GH4294)
- Tests/fix for multi-index construction of an all-nan frame (GH4078)
- Fixed a bug where `read_html()` wasn’t correctly inferring values of tables with commas (GH5029)
- Fixed a bug where `read_html()` wasn’t providing a stable ordering of returned tables (GH4770, GH5029).
- Fixed a bug where `read_html()` was incorrectly parsing when passed `index_col=0` (GH5066).
- Fixed a bug where `read_html()` was incorrectly inferring the type of headers (GH5048).
- Fixed a bug where `DatetimeIndex` joins with `PeriodIndex` caused a stack overflow (GH3899).
- Fixed a bug where `groupby` objects didn’t allow plots (GH5102).
- Fixed a bug where `groupby` objects weren’t tab-completing column names (GH5102).
- Fixed a bug where `groupby.plot()` and friends were duplicating figures multiple times (GH5102).
- Provide automatic conversion of `object` dtypes on fillna, related (GH5103)
- Fixed a bug where default options were being overwritten in the option parser cleaning (GH5121).
- Treat a list/ndarray identically for `iloc` indexing with list-like (GH5006)
- Fix `MultiIndex.get_level_values()` with missing values (GH5074)
- Fix bound checking for `Timestamp` with `datetime64` input (GH4065)
• Fix a bug where TestReadHtml wasn’t calling the correct read_html() function (GH5150).
• Fix a bug with NDFrame.replace() which made replacement appear as though it was (incorrectly) using regular expressions (GH5143).
• Fix better error message for to_datetime (GH4928)
• Made sure different locales are tested on travis-ci (GH4918). Also adds a couple of utilities for getting locales and setting locales with a context manager.
• Fixed segfault on isnull(MultiIndex) (now raises an error instead) (GH5123, GH5125)
• Allow duplicate indices when performing operations that align (GH5185, GH5639)
• Compound dtypes in a constructor raise NotImplementedError (GH5191)
• Bug in comparing duplicate frames (GH4421) related
• Bug in describe on duplicate frames
• Bug in to_datetime with a format and coerce=True not raising (GH5195)
• Bug in loc setting with multiple indexers and a rhs of a Series that needs broadcasting (GH5206)
• Fixed bug where inplace setting of levels or labels on MultiIndex would not clear cached values property and therefore return wrong values. (GH5215)
• Fixed bug where filtering a grouped DataFrame or Series did not maintain the original ordering (GH4621).
• Fixed Period with a business date freq to always roll-forward if on a non-business date. (GH5203)
• Fixed bug in Excel writers where frames with duplicate column names weren’t written correctly. (GH5235)
• Fixed issue with drop and a non-unique index on Series (GH5248)
• Fixed seg fault in C parser caused by passing more names than columns in the file. (GH5156)
• Fix Series.isin with date/time-like dtypes (GH5021)
• C and Python Parser can now handle the more common multi-index column format which doesn’t have a row for index names (GH4702)
• Bug when trying to use an out-of-bounds date as an object dtype (GH5312)
• Bug when trying to display an embedded PandasObject (GH5324)
• Allows operating of Timestamps to return a datetime if the result is out-of-bounds related (GH5312)
• Fix return value/type signature of initObjToJSON() to be compatible with numpy’s import_array() (GH5334, GH5326)
• Bug when renaming then set_index on a DataFrame (GH5344)
• Test suite no longer leaves around temporary files when testing graphics. (GH5347) (thanks for catching this @yarakoptic!)
• Fixed html tests on win32. (GH4580)
• Make sure that head/tail are iloc based, (GH5370)
• Fixed bug for PeriodIndex string representation if there are 1 or 2 elements. (GH5372)
• The GroupBy methods transform and filter can be used on Series and DataFrames that have repeated (non-unique) indices. (GH4620)
• Fix empty series not printing name in repr (GH4651)
• Make tests create temp files in temp directory by default. (GH5419)
• `pd.to_timedelta` of a scalar returns a scalar (GH5410)
• `pd.to_timedelta` accepts NaN and NaT, returning NaT instead of raising (GH5437)
• performance improvements in `isnull` on larger size pandas objects
• Fixed various setitem with 1d ndarray that does not have a matching length to the indexer (GH5508)
• Bug in getitem with a multi-index and `iloc` (GH5528)
• Bug in delitem on a Series (GH5542)
• Bug fix in apply when using custom function and objects are not mutated (GH5545)
• Bug in selecting from a non-unique index with `loc` (GH5553)
• Bug in groupby returning non-consistent types when user function returns a `None` (GH5592)
• Work around regression in numpy 1.7.0 which erroneously raises `IndexError` from `ndarray.item` (GH5666)
• Bug in repeated indexing of object with resultant non-unique index (GH5678)
• Bug in `fillna` with Series and a passed series/dict (GH5703)
• Bug in groupby transform with a datetime-like grouper (GH5712)
• Bug in multi-index selection in PY3 when using certain keys (GH5725)
• Row-wise concat of differing dtypes failing in certain cases (GH5754)

31.5 `pandas 0.12.0`
Release date: 2013-07-24

31.5.1 New Features

• `pd.read_html()` can now parse HTML strings, files or urls and returns a list of `DataFrame`s courtesy of @cpcloud. (GH3477, GH3605, GH3606)
• Support for reading Amazon S3 files. (GH3504)
• Added module for reading and writing JSON strings/files: `pandas.io.json` includes `to_json` `DataFrame/Series` method, and a `read_json` top-level reader various issues (GH1226, GH3804, GH3876, GH3867, GH1305)
• Added module for reading and writing Stata files: `pandas.io.stata` (GH1512) includes `to_stata` `DataFrame` method, and a `read_stata` top-level reader
• Added support for writing in `to_csv` and reading in `read_csv`, multi-index columns. The `header` option in `read_csv` now accepts a list of the rows from which to read the index. Added the option, `tupleize_cols` to provide compatibility for the pre 0.12 behavior of writing and reading multi-index columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as a multi-index column. Note: The default value will change in 0.12 to make the default to `write` and read multi-index columns in the new format. (GH3571, GH1651, GH3141)
• Add iterator to `Series.str` (GH3638)
• `pd.set_option()` now allows N option, value pairs (GH3667).
• Added keyword parameters for different types of `scatter_matrix` subplots
• A `filter` method on grouped Series or DataFrames returns a subset of the original (GH3680, GH919)
• Access to historical Google Finance data in `pandas.io.data` (GH3814)
pandas: powerful Python data analysis toolkit, Release 0.14.1

- DataFrame plotting methods can sample column colors from a Matplotlib colormap via the colormap keyword. (GH3860)

### 31.5.2 Improvements to existing features

- Fixed various issues with internal pprinting code, the repr() for various objects including TimeStamp and Index now produces valid python code strings and can be used to recreate the object, (GH3038, GH3379, GH3251, GH3460)

- convert_objects now accepts a copy parameter (defaults to True)

- HDFStore
  - will retain index attributes (freq,tz,name) on recreation (GH3499, issue:4098)
  - will warn with a AttributeConflictWarning if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing
  - support datelike columns with a timezone as data_columns (GH2852)
  - table writing performance improvements.
  - support python3 (via PyTables 3.0.0) (GH3750)

- Add modulo operator to Series, DataFrame

- Add date method to DatetimeIndex

- Add dropna argument to pivot_table (issue: 3820)

- Simplified the API and added a describe method to Categorical

- melt now accepts the optional parameters var_name and value_name to specify custom column names of the returned DataFrame (GH3649), thanks @hoechenberger. If var_name is not specified and dataframe.columns.name is not None, then this will be used as the var_name (GH4144). Also support for MultiIndex columns.

- clipboard functions use pyperclip (no dependencies on Windows, alternative dependencies offered for Linux) (GH3837).

- Plotting functions now raise a TypeError before trying to plot anything if the associated objects have a dtype of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.

- Added Faq section on repr display options, to help users customize their setup.

- where operations that result in block splitting are much faster (GH3733)

- Series and DataFrame hist methods now take a figsize argument (GH3834)

- DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)

- Add unit keyword to Timestamp and to_datetime to enable passing of integers or floats that are in an epoch unit of D, s, ms, us, ns, thanks @mtkini (GH3969) (e.g. unix timestamps or epoch s, with fractional seconds allowed) (GH3540)

- DataFrame corr method (spearman) is now cythonized.

- Improved network test decorator to catch IOError (and therefore URLError as well). Added with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, new optional_args decorator factory for decorators. (GH3910, GH3914)
• read_csv will now throw a more informative error message when a file contains no columns, e.g., all newline characters

• Added layout keyword to DataFrame.hist() for more customizable layout (GH4050)

• Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default datetime.min and datetime.max (respectively), thanks @SleepingPills

• read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

31.5.3 API Changes

• HDFStore
  – When removing an object, remove(key) raises KeyError if the key is not a valid store object.
  – raise a TypeError on passing where or columns to select with a Storer; these are invalid parameters at this time (GH4189)
  – can now specify an encoding option to append/put to enable alternate encodings (GH3750)
  – enable support for iterator/chunksize with read_hdf

• The repr() for (Multi)Index now obeys display.max_seq_items rather than numpy threshold print options. (GH3426, GH3466)

• Added mangle_dupe_cols option to read_table/csv, allowing users to control legacy behaviour re dupe cols (A, A.1, A.2 vs A, A) (GH3468) Note: The default value will change in 0.12 to the “no mangle” behaviour. If your code relies on this behaviour, explicitly specify mangle_dupe_cols=True in your calls.

• Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int (GH3425)

• The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a TypeError when performed on a Series and return an empty Series when performed on a DataFrame similar to performing these operations on, for example, a DataFrame of slice objects: - sum, prod, mean, std, var, skew, kurt, corr, and cov

• Do not allow datetimelike/timedeltalike creation except with valid types (e.g. cannot pass datetime64[ms]) (GH3423)

• Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. Regression from 0.10.1, partial revert on (GH2893) with (GH3596)

• Raise on iloc when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Since iloc is purely positional based, the labels on the Series are not alignable (GH3631)

• The raise_on_error option to plotting methods is obviated by GH3572, so it is removed. Plots now always raise when data cannot be plotted or the object being plotted has a dtype of object.

• DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and DataFrame.replace() instead (GH3582, GH3675, GH3676).

• the method and axis arguments of DataFrame.replace() are deprecated

• DataFrame.replace's infer_types parameter is removed and now performs conversion by default. (GH3907)

• Deprecated display.height, display.width is now only a formatting option does not control triggering of summary, similar to < 0.11.0.

• Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted if True, default is False (same as prior to 0.12) (GH3679)
pandas: powerful Python data analysis toolkit, Release 0.14.1

- io API changes
  - added `pandas.io.api` for i/o imports
  - removed Excel support to `pandas.io.excel`
  - added top-level `pd.read_sql` and `to_sql` DataFrame methods
  - removed `clipboard` support to `pandas.io.clipboard`
  - replace top-level and instance methods `save` and `load` with top-level `read_pickle` and `to_pickle` instance method, `save` and `load` will give deprecation warning.

- the `method` and `axis` arguments of DataFrame.replace() are deprecated
- set `FutureWarning` to require `data_source`, and to replace year/month with expiry date in `pandas.io.options`. This is in preparation to add options data from google (GH3822)

- the `method` and `axis` arguments of DataFrame.replace() are deprecated
- Implement `__nonzero__` for NDFrame objects (GH3691, GH3696)
- as_matrix with mixed signed and unsigned dtypes will result in 2 x the lcd of the unsigned as an int, maxing with int64, to avoid precision issues (GH3733)
- `na_values` in a list provided to `read_csv/read_excel` will match string and numeric versions e.g. `na_values=['99']` will match 99 whether the column ends up being int, float, or string (GH3611)
- `read_html` now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to parse. A list of parsers to try until success is also valid
- more consistency in the to_datetime return types (give string/array of string inputs) (GH3888)

- The internal pandas class hierarchy has changed (slightly). The previous `PandasObject` now is called `PandasContainer` and a new `PandasObject` has become the baseclass for `PandasContainer` as well as `Index`, `Categorical`, `GroupBy`, `SparseList`, and `SparseArray` (+ their base classes). Currently, `PandasObject` provides string methods (from `StringMixin`). (GH4090, GH4092)
- New `StringMixin` that, given a `__unicode__` method, gets python 2 and python 3 compatible string methods (`.str`, `.bytes`, and `.repr`). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)

### 31.5.4 Experimental Features

- Added experimental `CustomBusinessDay` class to support `DateOffsets` with custom holiday calendars and custom weekmasks. (GH2301)

### 31.5.5 Bug Fixes

- Fixed an esoteric excel reading bug. `xlrd>= 0.9.0` now required for excel support. Should provide python3 support (for reading) which has been lacking. (GH3164)
- Disallow Series constructor called with MultiIndex which caused segfault (GH4187)
- Allow unioning of date ranges sharing a timezone (GH3491)
- Fix to_csv issue when having a large number of rows and `NaT` in some columns (GH3437)
- `.loc` was not raising when passed an integer list (GH3449)
- Unordered time series selection was misbehaving when using label slicing (GH3448)
- Fix sorting in a frame with a list of columns which contains datetime64[ns] dtypes (GH3461)
• DataFrames fetched via FRED now handle '.' as a NaN. (GH3469)
• Fix regression in a DataFrame apply with axis=1, objects were not being converted back to base dtypes correctly (GH3480)
• Fix issue when storing uint dtypes in an HDFStore. (GH3493)
• Non-unique index support clarified (GH3468)
  – Addressed handling of dupe columns in df.to_csv new and old (GH3454, GH3457)
  – Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
  – Fix construction of a DataFrame with a duplicate index
  – ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194)
  – applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
  – Fix to_csv to handle non-unique columns (GH3495)
  – Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
  – Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
  – Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
  – Non-unique indexing with a slice via loc and friends fixed (GH3659)
  – Allow insert/delete to non-unique columns (GH3679)
  – Extend reindex to correctly deal with non-unique indices (GH3679)
  – DataFrame.itertuples() now works with frames with duplicate column names (GH3873)
  – Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for location-based taking
    – Allow non-unique indexing in series via .ix/.loc and **getitem** (GH4246)
    – Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)
• Fixed bug in groupby with empty series referencing a variable before assignment. (GH3510)
• Allow index name to be used in groupby for non MultiIndex (GH4014)
• Fixed bug in mixed-frame assignment with aligned series (GH3492)
• Fixed bug in selecting month/quarter/year from a series would not select the time element on the last day (GH3546)
• Fixed a couple of MultiIndex rendering bugs in df.to_html() (GH3547, GH3553)
• Properly convert np.datetime64 objects in a Series (GH3416)
• Raise a TypeError on invalid datetime/timedelta operations e.g. add datetimes, multiple timedelta x datetime
• Fix .diff on datelike and timedelta operations (GH3100)
  – combine_first not returning the same dtypes in cases where it can (GH3552)
• Fixed bug with Panel.transpose argument aliases (GH3556)
• Fixed platform bug in PeriodIndex.take (GH3579)
• Fixed bug in incorrect conversion of datetime64[ns] in combine_first (GH3593)
• Fixed bug in reset_index with NaN in a multi-index (GH3586)
• fillna methods now raise a TypeError when the value parameter is a list or tuple.
• Fixed bug where a time-series was being selected in preference to an actual column name in a frame (GH3594)
• Make secondary_y work properly for bar plots (GH3598)
• Fix modulo and integer division on Series,DataFrames to act similar to float dtypes to return np.nan or np.inf as appropriate (GH3590)
• Fix incorrect dtype on groupby with as_index=False (GH3610)
• Fix read_csv/read_excel to correctly encode identical na_values, e.g. na_values=[-999.0,-999] was failing (GH3611)
• Disable HTML output in qtconsole again. (GH3657)
• Reworked the new repr display logic, which users found confusing. (GH3663)
• Fix indexing issue in ndim >= 3 with iloc (GH3617)
• Correctly parse date columns with embedded (nan/NaT) into datetime64[ns] dtype in read_csv when parse_dates is specified (GH3062)
• Fix not consolidating before to_csv (GH3624)
• Fix alignment issue when setitem in a DataFrame with a piece of a DataFrame (GH3626) or a mixed DataFrame and a Series (GH3668)
• Fix plotting of unordered DatetimeIndex (GH3601)
• sql.write_frame failing when writing a single column to sqlite (GH3628), thanks to @stonebig
• Fix pivoting with nan in the index (GH3558)
• Fix running of bs4 tests when it is not installed (GH3605)
• Fix parsing of html table (GH3606)
• read_html() now only allows a single backend: html5lib (GH3616)
• convert_objects with convert_dates=’coerce’ was parsing some single-letter strings into today’s date
• DataFrame.from_records did not accept empty recarrays (GH3682)
• DataFrame.to_csv will succeed with the deprecated option nanRep, @tdsmith
• DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)
• Fix file tokenization error with r delimiter and quoted fields (GH3453)
• Groupby transform with item-by-item not upcasting correctly (GH3740)
• Incorrectly read a HDFStore multi-index Frame witha column specification (GH3748)
• read_html now correctly skips tests (GH3741)
• PandasObjects raise TypeError when trying to hash (GH3882)
• Fix incorrect arguments passed to concat that are not list-like (e.g. concat(df1,df2)) (GH3481)
• Correctly parse when passed the dtype=str (or other variable-len string dtypes) in read_csv (GH3795)
• Fix index name not propogating when using loc/ix (GH3880)
• Fix groupby when applying a custom function resulting in a returned DataFrame was not converting dtypes (GH3911)
Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument wasn’t working (GH3907)

Fixed __truediv__ in Python 2.7 with numexpr installed to actually do true division when dividing two integer arrays with at least 10000 cells total (GH3764)

Indexing with a string with seconds resolution not selecting from a time index (GH3925)

csv parsers would loop infinitely if iterator=True but no chunksize was specified (GH3967), python parser failing with chunksize=1

Fix index name not propagating when using shift

Fixed dropna=False being ignored with multi-index stack (GH3997)

Fixed flattening of columns when renaming MultiIndex columns DataFrame (GH4004)

Fix Series.clip for datetime series. NA/NaN threshold values will now throw ValueError (GH3996)

Fixed insertion issue into DataFrame, after rename (GH4032)

Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)

Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)

Series.hist will now take the figure from the current environment if one is not passed

Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)

Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)

Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)

Fix bug where HDFStore will fail to append because of a different block ordering on-disk (GH4096)

Better error messages on inserting incompatible columns to a frame (GH4107)

Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False (GH4115)

Fixed bug in convert_objects(convert_numeric=True) where a mixed numeric and object Series/Frame was not converting properly (GH4119)

Fixed bugs in multi-index selection with column multi-index and duplicates (GH4145, GH4146)

Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)

Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly MilliSecondLocator (GH3990)

Fixed bug in Series.where where broadcasting a single element input vector to the length of the series resulted in multiplying the value inside the input (GH4192)

Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)

Fixed the legend displaying in DataFrame.plot(kind=’kde’) (GH4216)

Fixed bug where Index slices weren’t carrying the name attribute (GH4226)

Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)

Fixed bug where html5lib wasn’t being properly skipped (GH4265)

Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)
31.6 pandas 0.11.0

Release date: 2013-04-22

31.6.1 New Features

- New documentation section, 10 Minutes to Pandas
- New documentation section, Cookbook
- Allow mixed dtypes (e.g. float32/float64/int32/int16/int8) to coexist in DataFrames and propagate in operations
- Add function to pandas.io.data for retrieving stock index components from Yahoo! finance (GH2795)
- Support slicing with time objects (GH2681)
- Added .iloc attribute, to support strict integer based indexing, analogous to .ix (GH2922)
- Added .loc attribute, to support strict label based indexing, analogous to .ix (GH3053)
- Added .iat attribute, to support fast scalar access via integers (replaces iget_value/iset_value)
- Added .at attribute, to support fast scalar access via labels (replaces get_value/set_value)
- Moved functionality from irow,icol,iget_value/iset_value to .iloc indexer (via _ixs methods in each object)
- Added support for expression evaluation using the numexpr library
- Added convert=boolean to take routines to translate negative indices to positive, defaults to True
- Added to_series() method to indices, to facilitate the creation of indexers (GH3275)

31.6.2 Improvements to existing features

- Improved performance of df.to_csv() by up to 10x in some cases. (GH3059)
- added blocks attribute to DataFrames, to return a dict of dtypes to homogeneously dtyped DataFrames
- added keyword convert_numeric to convert_objects() to try to convert object dtypes to numeric types (default is False)
- convert_dates in convert_objects can now be coerce which will return a datetime64[ns] dtype with non-convertibles set as NaT; will preserve an all-nan object (e.g. strings), default is True (to perform soft-conversion)
- Series print output now includes the dtype by default
- Optimize internal reindexing routines (GH2819, GH2867)
- describe_option() now reports the default and current value of options.
- Add format option to pandas.to_datetime with faster conversion of strings that can be parsed with datetime.strptime
- Add axes property to Series for compatibility
- Add xs function to Series for compatibility
- Allow setitem in a frame where only mixed numerics are present (e.g. int and float), (GH3037)
- HDFStore
- Provide dotted attribute access to `get` from stores (e.g. `store.df == store['df']`)

- New keywords `iterator=boolean, and chunksize=number_in_a_chunk` are provided to support iteration on `select` and `select_as_multiple` (GH3076)

- Support `read_hdf/to_hdf API similar to read_csv/to_csv` (GH3222)

- Add `squeeze` method to possibly remove length 1 dimensions from an object.

```python
In [1]: p = Panel(randn(3, 4, 4), items=['ItemA', 'ItemB', 'ItemC'],
 ...: major_axis=date_range('20010102', periods=4),
 ...: minor_axis=['A', 'B', 'C', 'D'])
 ...

In [2]: p.reindex(items=['ItemA']).squeeze()
Out[2]:
 A B C D
2001-01-02 0.469112 -0.282863 -1.509059 -1.135632
2001-01-03 1.212112 -0.173215 0.119209 -1.044236
2001-01-04 -0.861849 -2.104569 -0.494929 1.071804
2001-01-05 0.721555 -0.706771 -1.039575 0.271860
```

- Improvement to Yahoo API access in `pd.io.data.Options` (GH2758)

- Added option `display.max_seq_items` to control the number of elements printed per sequence `pprinting` it. (GH2979)

- Added option `display.chop_threshold` to control display of small numerical values. (GH2739)

- Added option `display.max_info_rows` to prevent `verbose_info` from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)

- `value_counts()` now accepts a “normalize” argument, for normalized histograms. (GH2710).

- `DataFrame.from_records` now accepts not only dicts but any instance of the collections.Mapping ABC.

- Allow selection semantics via a string with a datelike index to work in both Series and DataFrames (GH3070)

```python
In [5]: idx = date_range("2001-10-1", periods=5, freq='M')

In [6]: ts = Series(np.random.rand(len(idx)), index=idx)

In [7]: ts['2001']
Out[7]:
2001-10-31 0.838796
2001-11-30 0.897333
```
2001-12-31 0.732592
Freq: M, dtype: float64

In [8]: df = DataFrame(dict(A = ts))
In [9]: df['2001']
Out[9]:
   A
2001-10-31 0.838796
2001-11-30 0.897333
2001-12-31 0.732592

• added option `display.mpl_style` providing a sleeker visual style for plots. Based on https://gist.github.com/huyng/816622 (GH3075).

• Improved performance across several core functions by taking memory ordering of arrays into account. Courtesy of @stephenwlin (GH3130)

• Improved performance of groupby transform method (GH2121)

• Handle “ragged” CSV files missing trailing delimiters in rows with missing fields when also providing explicit list of column names (so the parser knows how many columns to expect in the result) (GH2981)

• On a mixed DataFrame, allow setting with indexers with ndarray/DataFrame on rhs (GH3216)

• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)

• Add `time` method to DatetimeIndex (GH3180)

• Return NA when using Series.str[...] for values that are not long enough (GH3223)

• Display cursor coordinate information in time-series plots (GH1670)

• `to_html()` now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes &, in addition to < and >. (GH2919)

31.6.3 API Changes

• Do not automatically upcast numeric specified dtypes to `int64` or `float64` (GH622 and GH797)

• DataFrame construction of lists and scalars, with no dtype present, will result in casting to `int64` or `float64`, regardless of platform. This is not an apparent change in the API, but noting it.

• Guarantee that `convert_objects()` for Series/DataFrame always returns a copy

• groupby operations will respect dtypes for numeric float operations (float32/float64); other types will be operated on, and will try to cast back to the input dtype (e.g. if an int is passed, as long as the output doesn’t have nans, then an int will be returned)

• backfill/pad/take/diff/ohlc will now support float32/int16/int8 operations

• Block types will upcast as needed in where/masking operations (GH2793)

• Series now automatically will try to set the correct dtype based on passed datetimelike objects (datetime/Timestamp)
  – timedelta64 are returned in appropriate cases (e.g. Series - Series, when both are datetime64)
  – mixed datetimes and objects (GH2751) in a constructor will be cast correctly
  – astype on datetimes to object are now handled (as well as NaT conversions to np.nan)
- all timedelta like objects will be correctly assigned to `timedelta64` with mixed `NaN` and/or `NaT` allowed
- arguments to DataFrame.clip were inconsistent to numpy and Series clipping (GH2747)
- `util.testing.assert_frame_equal` now checks the column and index names (GH2964)
- Constructors will now return a more informative `ValueError` on failures when invalid shapes are passed
- Don’t suppress `TypeError` in GroupBy.agg (GH3238)
- Methods return None when inplace=True (GH1893)
- `HDFStore`
  - added the method `select_column` to select a single column from a table as a Series.
  - deprecated the `unique` method, can be replicated by `select_column(key, column).unique()`
  - `min_itemsize` parameter will now automatically create `data_columns` for passed keys
- Downcast on pivot if possible (GH3283), adds argument `downcast` to `fillna`
- Introduced options `display.height/width` for explicitly specifying terminal height/width in characters. Deprecated `display.line_width`, now replaced by `display.width`. These defaults are in effect for scripts as well, so unless disabled, previously very wide output will now be output as “expand_repr” style wrapped output.
- Various defaults for options (including `display.max_rows`) have been revised, after a brief survey concluded they were wrong for everyone. Now at w=80,h=60.
- HTML repr output in IPython qtconsole is once again controlled by the option `display.notebook_repr_html`, and on by default.

### 31.6.4 Bug Fixes

- Fix seg fault on empty data frame when fillna with `pad` or `backfill` (GH2778)
- Single element ndarrays of datetimelike objects are handled (e.g. np.array(datetime(2001,1,1,0,0))), w/o dtype being passed
- 0-dim ndarrays with a passed dtype are handled correctly (e.g. np.array(0.,dtype='float32'))
- Fix some boolean indexing inconsistencies in Series.__getitem__/__setitem__ (GH2776)
- Fix issues with DataFrame and Series constructor with integers that overflow `int64` and some mixed typed type lists (GH2845)
- `HDFStore`
  - Fix weird PyTables error when using too many selectors in a where also correctly filter on any number of values in a Term expression (so not using numexpr filtering, but isn filtering)
  - Internally, change all variables to be private-like (now have leading underscore)
  - Fixes for query parsing to correctly interpret boolean and != (GH2849, GH2973)
  - Fixes for pathological case on SparseSeries with 0-len array and compression (GH2931)
  - Fixes bug with writing rows if part of a block was all-nan (GH3012)
  - Exceptions are now `ValueError` or `TypeError` as needed
  - A table will now raise if `min_itemsize` contains fields which are not queryables
- Bug showing up in applymap where some object type columns are converted (GH2909) had an incorrect default in `convert_objects`
• TimeDeltas
  – Series ops with a Timestamp on the rhs was throwing an exception (GH2898) added tests for Series ops with datetimes, timedeltas, Timestamps, and datelike Series on both lhs and rhs
  – Fixed subtle timedelta64 inference issue on py3 & numpy 1.7.0 (GH3094)
  – Fixed some formatting issues on timedelta when negative
  – Support null checking on timedelta64, representing (and formatting) with NaT
  – Support setitem with np.nan value, converts to NaT
  – Support min/max ops in a Dataframe (abs not working, nor do we error on non-supported ops)
  – Support idxmin/idxmax/abs/max/min in a Series (GH2989, GH2982)
• Bug on in-place putmasking on an integer series that needs to be converted to float (GH2746)
• Bug in argsort of datetime64[ns] Series with NaT (GH2967)
• Bug in value_counts of datetime64[ns] Series (GH3002)
• Fixed printing of NaT in an index
• Bug in idxmin/idxmax of datetime64[ns] Series with NaT (GH2982)
• Bug in icol, take with negative indicies was producing incorrect return values (see GH2922, GH2892), also check for out-of-bounds indices (GH3029)
• Bug in DataFrame column insertion when the column creation fails, existing frame is left in an irrecoverable state (GH3010)
• Bug in DataFrame update, combine_first where non-specified values could cause dtype changes (GH3016, GH3041)
• Bug in groupby with first/last where dtypes could change (GH3041, GH2763)
• Formatting of an index that has nan was inconsistent or wrong (would fill from other values), (GH2850)
• Unstack of a frame with no nans would always cause dtype upcasting (GH2929)
• Fix scalar datetime.datetime parsing bug in read_csv (GH3071)
• Fixed slow printing of large Dataframes, due to inefficient dtype reporting (GH2807)
• Fixed a segfault when using a function as grouper in groupby (GH3035)
• Fix pretty-printing of infinite data structures (closes GH2978)
• Fixed exception when plotting timeseries bearing a timezone (closes GH2877)
• str.contains ignored na argument (GH2806)
• Substitute warning for segfault when grouping with categorical grouper of mismatched length (GH3011)
• Fix exception in SparseSeries.density (GH2083)
• Fix upsampling bug with closed=’left’ and daily to daily data (GH3020)
• Fixed missing tick bars on scatter_matrix plot (GH3063)
• Fixed bug in Timestamp(d, tz=foo) when d is date() rather then datetime() (GH2993)
• series.plot(kind=’bar’) now respects pylab color schem (GH3115)
• Fixed bug in reshape if not passed correct input, now raises TypeError (GH2719)
• Fixed a bug where Series ctor did not respect ordering if OrderedDict passed in (GH3282)
• Fix NameError issue on RESO_US (GH2787)
• Allow selection in an unordered timeseries to work similarly to an ordered timeseries (GH2437).
• Fix implemented .xs when called with axes=1 and a level parameter (GH2903)
• Timestamp now supports the class method fromordinal similar to datetimes (GH3042)
• Fix issue with indexing a series with a boolean key and specifying a 1-len list on the rhs (GH2745) or a list on the rhs (GH3235)
• Fixed bug in groupby apply when kernel generate list of arrays having unequal len (GH1738)
• fixed handling of rolling_corr with center=True which could produce corr>1 (GH3155)
• Fixed issues where indices can be passed as ‘index/column’ in addition to 0/1 for the axis parameter
• PeriodIndex.tolist now boxes to Period (GH3178)
• PeriodIndex.get_loc KeyError now reports Period instead of ordinal (GH3179)
• df.to_records bug when handling MultiIndex (GH3189)
• Fix Series.__getitem__ segfault when index less than -length (GH3168)
• Fix bug when using Timestamp as a date parser (GH2932)
• Fix bug creating date range from Timestamp with time zone and passing same time zone (GH2926)
• Add comparison operators to Period object (GH2781)
• Fix bug when concatenating two Series into a DataFrame when they have the same name (GH2797)
• Fix automatic color cycling when plotting consecutive timeseries without color arguments (GH2816)
• fixed bug in the pickling of PeriodIndex (GH2891)
• Upcast/split blocks when needed in a mixed DataFrame when setitem with an indexer (GH3216)
• Invoking df.applymap on a dataframe with dupe cols now raises a ValueError (GH2786)
• Apply with invalid returned indices raise correct Exception (GH2808)
• Fixed a bug in plotting log-scale bar plots (GH3247)
• df.plot() grid on/off now obeys the mpl default style, just like series.plot(). (GH3233)
• Fixed a bug in the legend of plotting.andrews_curves() (GH3278)
• Produce a series on apply if we only generate a singular series and have a simple index (GH2893)
• Fix Python ascii file parsing when integer falls outside of floating point spacing (GH3258)
• fixed pretty priniting of sets (GH3294)
• Panel() and Panel.from_dict() now respects ordering when give OrderedDict (GH3303)
• DataFrame where with a datetimelike incorrectly selecting (GH3311)
• Ensure index casts work even in Int64Index
• Fix set_index segfault when passing MultiIndex (GH3308)
• Ensure pickles created in py2 can be read in py3
• Insert ellipsis in MultiIndex summary repr (GH3348)
• Groupby will handle mutation among an input groups columns (and fallback to non-fast apply) (GH3380)
• Eliminated unicode errors on FreeBSD when using MPL GTK backend (GH3360)
• Period.strptime should return unicode strings always (GH3363)
• Respect passed read_* chunksize in get_chunk function (GH3406)

31.7 pandas 0.10.1

Release date: 2013-01-22

31.7.1 New Features

• Add data interface to World Bank WDI pandas.io.wb (GH2592)

31.7.2 API Changes

• Restored inplace=True behavior returning self (same object) with deprecation warning until 0.11 (GH1893)
• HDFStore
  – refactored HFDStore to deal with non-table stores as objects, will allow future enhancements
  – removed keyword compression from put (replaced by keyword complib to be consistent across library)
  – warn PerformanceWarning if you are attempting to store types that will be pickled by PyTables

31.7.3 Improvements to existing features

• HDFStore
  – enables storing of multi-index dataframes (closes GH1277)
  – support data column indexing and selection, via data_columns keyword in append
  – support write chunking to reduce memory footprint, via chunksize keyword to append
  – support automatic indexing via index keyword to append
  – support expectedrows keyword in append to inform PyTables about the expected tablesize
  – support start and stop keywords in select to limit the row selection space
  – added get_store context manager to automatically import with pandas
  – added column filtering via columns keyword in select
  – added methods append_to_multiple/select_as_multiple/select_as_coordinates to do multiple-table append/selection
  – added support for datetime64 in columns
  – added method unique to select the unique values in an indexable or data column
  – added method copy to copy an existing store (and possibly upgrade)
  – show the shape of the data on disk for non-table stores when printing the store
  – added ability to read PyTables flavor tables (allows compatibility to other HDF5 systems)
• Add logx option to DataFrame/Series.plot (GH2327, GH2565)
• Support reading gzipped data from file-like object
• `pivot_table aggfunc` can be anything used in GroupBy.aggregate (GH2643)
• Implement DataFrame merges in case where set cardinalities might overflow 64-bit integer (GH2690)
• Raise exception in C file parser if integer dtype specified and have NA values. (GH2631)
• Attempt to parse ISO8601 format dates when parse_dates=True in read_csv for major performance boost in such cases (GH2698)
• Add methods `neg` and `inv` to Series
• Implement kind option in ExcelFile to indicate whether it’s an XLS or XLSX file (GH2613)
• Documented a fast-path in pd.read_Csv when parsing iso8601 datetime strings yielding as much as a 20x speedup. (GH5993)

31.7.4 Bug Fixes

• Fix read_csv/read_table multithreading issues (GH2608)
• HDFStore
  – correctly handle `nan` elements in string columns; serialize via the `nan_rep` keyword to append
  – raise correctly on non-implemented column types (unicode/date)
  – handle correctly `Term` passed types (e.g. `index<1000`, when index is `Int64`), (closes GH512)
  – handle Timestamp correctly in data_columns (closes GH2637)
  – contains correctly matches on non-natural names
  – correctly store `float32` dtypes in tables (if not other float types in the same table)
• Fix DataFrame.info bug with UTF8-encoded columns. (GH2576)
• Fix DatetimeIndex handling of FixedOffset tz (GH2604)
• More robust detection of being in IPython session for wide DataFrame console formatting (GH2585)
• Fix platform issues with `file:///` in unit test (GH2564)
• Fix bug and possible segfault when grouping by hierarchical level that contains NA values (GH2616)
• Ensure that MultiIndex tuples can be constructed with NAs (GH2616)
• Fix int64 overflow issue when unstacking MultiIndex with many levels (GH2616)
• Exclude non-numeric data from DataFrame.quantile by default (GH2625)
• Fix a Cython C int64 boxing issue causing read_csv to return incorrect results (GH2599)
• Fix groupby summing performance issue on boolean data (GH2692)
• Don’t bork Series containing datetime64 values with to_datetime (GH2699)
• Fix DataFrame.from_records corner case when passed columns, index column, but empty record list (GH2633)
• Fix C parser-tokenizer bug with trailing fields. (GH2668)
• Don’t exclude non-numeric data from GroupBy.max/min (GH2700)
• Don’t lose time zone when calling DatetimeIndex.drop (GH2621)
• Fix setitem on a Series with a boolean key and a non-scalar as value (GH2686)
• Box datetime64 values in Series.apply/map (GH2627, GH2689)
• Upconvert datetime + datetime64 values when concatenating frames (GH2624)
• Raise a more helpful error message in merge operations when one DataFrame has duplicate columns (GH2649)
• Fix partial date parsing issue occurring only when code is run at EOM (GH2618)
• Prevent MemoryError when using counting sort in sortlevel with high-cardinality MultiIndex objects (GH2684)
• Fix Period resampling bug when all values fall into a single bin (GH2070)
• Fix buggy interaction with usecols argument in read_csv when there is an implicit first index column (GH2654)
• Fix bug in `Index.summary()` where string format methods were being called incorrectly. (GH3869)

31.8 pandas 0.10.0

Release date: 2012-12-17

31.8.1 New Features

• Brand new high-performance delimited file parsing engine written in C and Cython. 50% or better performance in many standard use cases with a fraction as much memory usage. (GH407, GH821)
• Many new file parser (read_csv, read_table) features:
  – Support for on-the-fly gzip or bz2 decompression (`compression` option)
  – Ability to get back numpy.recarray instead of DataFrame (`as_recarray=True`)
  – `dtype` option: explicit column dtypes
  – `usecols` option: specify list of columns to be read from a file. Good for reading very wide files with many irrelevant columns (GH1216 GH926, GH2465)
  – Enhanced unicode decoding support via `encoding` option
  – `skipinitialspace` dialect option
  – Can specify strings to be recognized as True (`true_values`) or False (`false_values`) (GH1216 GH926, GH2465)
  – High-performance `delim_whitespace` option for whitespace-delimited files; a preferred alternative to the ‘s+’ regular expression delimiter
  – Option to skip “bad” lines (wrong number of fields) that would otherwise have caused an error in the past (`error_bad_lines` and `warn_bad_lines` options)
  – Substantially improved performance in the parsing of integers with thousands markers and lines with comments
  – Easy of European (and other) decimal formats (`decimal` option) (GH584, GH2466)
  – Custom line terminators (e.g. `lineterminator='~'`) (GH2457)
  – Handling of no trailing commas in CSV files (GH2333)
  – Ability to handle fractional seconds in date_converters (GH2209)
  – `read_csv` allow scalar arg to `na_values` (GH1944)
  – Explicit column dtype specification in read_* functions (GH1858)
  – Easier CSV dialect specification (GH1743)
  – Improve parser performance when handling special characters (GH1204)
• Google Analytics API integration with easy oauth2 workflow (GH2283)
• Add error handling to Series.str.encode/decode (GH2276)
• Add where and mask to Series (GH2337)
• Grouped histogram via by keyword in Series/DataFrame.hist (GH2186)
• Support optional min_periods keyword in corr and cov for both Series and DataFrame (GH2002)
• Add duplicated and drop_duplicates functions to Series (GH1923)
• Add docs for HDFStore table format
• ‘density’ property in SparseSeries (GH2384)
• Add ffill and bfill convenience functions for forward- and backfilling time series data (GH2284)
• New option configuration system and functions set_option, get_option, describe_option, and reset_option. Deprecate set_printoptions and reset_printoptions (GH2393). You can also access options as attributes via pandas.options.X
• Wide DataFrames can be viewed more easily in the console with new expand_frame_repr and line_width configuration options. This is on by default now (GH2436)
• Scikits.timeseries-like moving window functions via rolling_window (GH1270)

31.8.2 Experimental Features

• Add support for Panel4D, a named 4 Dimensional stucture
• Add support for ndpanel factory functions, to create custom, domain-specific N-Dimensional containers

31.8.3 API Changes

• The default binning/labeling behavior for resample has been changed to closed=’left’, label=’left’ for daily and lower frequencies. This had been a large source of confusion for users. See “what’s new” page for more on this. (GH2410)
• Methods with inplace option now return None instead of the calling (modified) object (GH1893)
• The special case DataFrame - TimeSeries doing column-by-column broadcasting has been deprecated. Users should explicitly do e.g. df.sub(ts, axis=0) instead. This is a legacy hack and can lead to subtle bugs.
• inf/-inf are no longer considered as NA by isnull/notnull. To be clear, this is legacy cruft from early pandas. This behavior can be globally re-enabled using the new option mode.use_inf_as_null (GH2050, GH1919)
• pandas.merge will now default to sort=False. For many use cases sorting the join keys is not necessary, and doing it by default is wasteful
• Specify header=0 explicitly to replace existing column names in file in read_* functions.
• Default column names for header-less parsed files (yielded by read_csv, etc.) are now the integers 0, 1, ... A new argument prefix has been added; to get the v0.9.x behavior specify prefix=’X’ (GH2034). This API change was made to make the default column names more consistent with the DataFrame constructor’s default column names when none are specified.
• DataFrame selection using a boolean frame now preserves input shape
• If function passed to Series.apply yields a Series, result will be a DataFrame (GH2316)
• Values like YES/NO/yes/no will not be considered as boolean by default any longer in the file parsers. This can be customized using the new true_values and false_values options (GH2360)
• `obj.fillna()` is no longer valid; make `method='pad'` no longer the default option, to be more explicit about what kind of filling to perform. Add `ffill/bfill` convenience functions per above (GH2284)

• `HDFStore.keys()` now returns an absolute path-name for each key
• `to_string()` now always returns a unicode string. (GH2224)
• File parsers will not handle NA sentinel values arising from passed converter functions

31.8.4 Improvements to existing features

• Add `nrows` option to DataFrame.from_records for iterators (GH1794)
• Unstack/reshape algorithm rewrite to avoid high memory use in cases where the number of observed key-tuples is much smaller than the total possible number that could occur (GH2278). Also improves performance in most cases.
• Support duplicate columns in DataFrame.from_records (GH2179)
• Add `normalize` option to Series/DataFrame.asfreq (GH2137)
• SparseSeries and SparseDataFrame construction from empty and scalar values now no longer create dense ndarrays unnecessarily (GH2322)
• `HDFStore` now supports hierarchial keys (GH2397)
• Support multiple query selection formats for `HDFStore` tables (GH1996)
• Support `del store[‘df’]` syntax to delete HDFStores
• Add multi-dtype support for `HDFStore` tables
• `min_itemsize` parameter can be specified in `HDFStore` table creation
• Indexing support in `HDFStore` tables (GH698)
• Add `line_terminator` option to DataFrame.to_csv (GH2383)
• added implementation of str(x)/unicode(x)/bytes(x) to major pandas data structures, which should do the right thing on both py2.x and py3.x. (GH2224)
• Reduce groupby.apply overhead substantially by low-level manipulation of internal NumPy arrays in DataFrames (GH535)
• Implement `value_vars` in `melt` and add `melt` to pandas namespace (GH2412)
• Added boolean comparison operators to Panel
• Enable `Series.str.strip/lstrip/rstrip` methods to take an argument (GH2411)
• The DataFrame ctor now respects column ordering when given an OrderedDict (GH2455)
• Assigning DatetimeIndex to Series changes the class to TimeSeries (GH2139)
• Improve performance of `.value_counts` method on non-integer data (GH2480)
• `get_level_values` method for MultiIndex return Index instead of ndarray (GH2449)
• `convert_to_r_dataframe` conversion for datetime values (GH2351)
• Allow DataFrame.to_csv to represent inf and nan differently (GH2026)
• Add `min_i` argument to `nancorr` to specify minimum required observations (GH2002)
• Add `inplace` option to sortlevel / sort functions on DataFrame (GH1873)
• Enable DataFrame to accept scalar constructor values like Series (GH1856)
• DataFrame.from_records now takes optional `size` parameter (GH1794)
• include iris dataset (GH1709)
• No datetime64 DataFrame column conversion of datetime.datetime with tzinfo (GH1581)
• Micro-optimizations in DataFrame for tracking state of internal consolidation (GH217)
• Format parameter in DataFrame.to_csv (GH1525)
• Partial string slicing for `DatetimeIndex` for daily and higher frequencies (GH2306)
• Implement `col_space` parameter in `to_html` and `to_string` in DataFrame (GH1000)
• Override `Series.tolist` and box datetime64 types (GH2447)
• Optimize `unstack` memory usage by compressing indices (GH2278)
• Fix HTML repr in IPython qtconsole if opening window is small (GH2275)
• Escape more special characters in console output (GH2492)
• `df.select` now invokes `bool` on the result of `crit(x)` (GH2487)

**31.8.5 Bug Fixes**

• Fix major performance regression in DataFrame.iteritems (GH2273)
• Fixes bug when negative period passed to `Series/DataFrame.diff` (GH2266)
• Escape tabs in console output to avoid alignment issues (GH2038)
• Properly box datetime64 values when retrieving cross-section from mixed-dtype DataFrame (GH2272)
• Fix concatenation bug leading to GH2057, GH2257
• Fix regression in Index console formatting (GH2319)
• Box Period data when assigning PeriodIndex to frame column (GH2243, GH2281)
• Raise exception on calling reset_index on Series with inplace=True (GH2277)
• Enable setting multiple columns in DataFrame with hierarchical columns (GH2295)
• Respect `dtype=object` in DataFrame constructor (GH2291)
• Fix DatetimeIndex.join bug with tz-aware indexes and how=`outer` (GH2317)
• `pop(...)` and `del` works with DataFrame with duplicate columns (GH2349)
• Treat empty strings as NA in date parsing (rather than let dateutil do something weird) (GH2263)
• Prevent `uint64` -> `int64` overflows (GH2355)
• Enable joins between MultiIndex and regular Index (GH2024)
• Fix time zone metadata issue when unioning non-overlapping DatetimeIndex objects (GH2367)
• Raise/handle int64 overflows in parsers (GH2247)
• Deleting of consecutive rows in `HDFStore`'s tables` is much faster than before
• Appending on a HDFStore would fail if the table was not first created via `put`
• Use `col_space` argument as minimum column width in `DataFrame.to_html` (GH2328)
• Fix tz-aware DatetimeIndex.to_period (GH2232)
• Fix DataFrame row indexing case with MultiIndex (GH2314)
- Fix to_excel exporting issues with Timestamp objects in index (GH2294)
- Fixes assigning scalars and array to hierarchical column chunk (GH1803)
- Fixed a UnicodeDecodeError with series tidy_repr (GH2225)
- Fixed issued with duplicate keys in an index (GH2347, GH2380)
- Fixed issues re: Hash randomization, default on starting w/ py3.3 (GH2331)
- Fixed issue with missing attributes after loading a pickled dataframe (GH2431)
- Fix Timestamp formatting with tzoffset time zone in dateutil 2.1 (GH2443)
- Fix GroupBy.apply issue when using BinGrouper to do ts binning (GH2300)
- Fix issues resulting from datetime.datetime columns being converted to datetime64 when calling DataFrame.apply (GH2374)
- Raise exception when calling to_panel on non uniquely-indexed frame (GH2441)
- Improved detection of console encoding on IPython zmq frontends (GH2458)
- Preserve time zone when .append-ing two time series (GH2260)
- Box timestamps when calling reset_index on time-zone-aware index rather than creating a tz-less datetime64 column (GH2262)
- Enable searching non-string columns in DataFrame.filter(like=...) (GH2467)
- Fixed issue with losing nanosecond precision upon conversion to DatetimeIndex(GH2252)
- Handle timezones in Datetime.normalize (GH2338)
- Fix test case where dtype specification with endianness causes failures on big endian machines (GH2318)
- Fix plotting bug where upsampling causes data to appear shifted in time (GH2448)
- Fix read_csv failure for UTF-16 with BOM and skiprows(GH2298)
- read_csv with names arg not implicitly setting header=None(GH2459)
- Unrecognized compression mode causes segfault in read_csv(GH2474)
- In read_csv, header=0 and passed names should discard first row(GH2269)
- Correctly route to stdout/stderr in read_table (GH2071)
- Fix exception when Timestamp.to_datetime is called on a Timestamp with tzoffset (GH2471)
- Fixed unintentional conversion of datetime64 to long in groupby.first() (GH2133)
- Union of empty DataFrames now return empty with concatenated index (GH2307)
- DataFrame.sort_index raises more helpful exception if sorting by column with duplicates (GH2488)
- DataFrame.to_string formatters can be list, too (GH2520)
- DataFrame.combine_first will always result in the union of the index and columns, even if one DataFrame is length-zero (GH2525)
- Fix several DataFrame.iloc/irow with duplicate indices issues (GH2228, GH2259)
- Use Series names for column names when using concat with axis=1 (GH2489)
- Raise Exception if start, end, periods all passed to date_range (GH2538)
- Fix Panel resampling issue (GH2537)
31.9 pandas 0.9.1

Release date: 2012-11-14

31.9.1 New Features

• Can specify multiple sort orders in DataFrame/Series.sort/sort_index (GH928)
• New top and bottom options for handling NAs in rank (GH1508, GH2159)
• Add where and mask functions to DataFrame (GH2109, GH2151)
• Add at_time and between_time functions to DataFrame (GH2149)
• Add flexible pow and rpow methods to DataFrame (GH2190)

31.9.2 API Changes

• Upsampling period index “spans” intervals. Example: annual periods upsampled to monthly will span all months in each year
• Period.end_time will yield timestamp at last nanosecond in the interval (GH2124, GH2125, GH1764)
• File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

31.9.3 Improvements to existing features

• Time rule inference for week-of-month (e.g. WOM-2FRI) rules (GH2140)
• Improve performance of datetime + business day offset with large number of offset periods
• Improve HTML display of DataFrame objects with hierarchical columns
• Enable referencing of Excel columns by their column names (GH1936)
• DataFrame.dot can accept ndarrays (GH2042)
• Support negative periods in Panel.shift (GH2164)
• Make .drop(...) work with non-unique indexes (GH2101)
• Improve performance of Series/DataFrame.diff (re: GH2087)
• Support unary ~ (__invert__) in DataFrame (GH2110)
• Turn off pandas-style tick locators and formatters (GH2205)
• DataFrame[DataFrame] uses DataFrame.where to compute masked frame (GH2230)

31.9.4 Bug Fixes

• Fix some duplicate-column DataFrame constructor issues (GH2079)
• Fix bar plot color cycle issues (GH2082)
• Fix off-center grid for stacked bar plots (GH2157)
• Fix plotting bug if inferred frequency is offset with N > 1 (GH2126)
• Implement comparisons on date offsets with fixed delta (GH2078)
- Handle inf/-inf correctly in read_* parser functions (GH2041)
- Fix matplotlib unicode interaction bug
- Make WLS r-squared match statsmodels 0.5.0 fixed value
- Fix zero-trimming DataFrame formatting bug
- Correctly compute/box datetime64 min/max values from Series.min/max (GH2083)
- Fix unstacking edge case with unrepresented groups (GH2100)
- Fix Series.str failures when using pipe pattern ‘|’ (GH2119)
- Fix pretty-printing of dict entries in Series, DataFrame (GH2144)
- Cast other datetime64 values to nanoseconds in DataFrame ctor (GH2095)
- Alias Timestamp.astimezone to tz_convert, so will yield Timestamp (GH2060)
- Fix timedelta64 formatting from Series (GH2165, GH2146)
- Handle None values gracefully in dict passed to Panel constructor (GH2075)
- Box datetime64 values as Timestamp objects in Series/DataFrame.iget (GH2148)
- Fix Timestamp indexing bug in DatetimeIndex.insert (GH2155)
- Use index name(s) (if any) in DataFrame.to_records (GH2161)
- Don’t lose index names in Panel.to_frame/DataFrame.to_panel (GH2163)
- Work around length-0 boolean indexing NumPy bug (GH2096)
- Fix partial integer indexing bug in DataFrame.xs (GH2107)
- Fix variety of cut/qcut string-bin formatting bugs (GH1978, GH1979)
- Raise Exception when xs view not possible of MultiIndex’d DataFrame (GH2117)
- Fix groupby(...).first() issue with datetime64 (GH2133)
- Better floating point error robustness in some rolling_* functions (GH2114, GH2527)
- Fix ewma NA handling in the middle of Series (GH2128)
- Fix numerical precision issues in diff with integer data (GH2087)
- Fix bug in MultiIndex.__getitem__ with NA values (GH2008)
- Fix DataFrame.from_records dict-arg bug when passing columns (GH2179)
- Fix Series and DataFrame.diff for integer dtypes (GH2087, GH2174)
- Fix bug when taking intersection of DatetimeIndex with empty index (GH2129)
- Pass through timezone information when calling DataFrame.align (GH2127)
- Properly sort when joining on datetime64 values (GH2196)
- Fix indexing bug in which False/True were being coerced to 0/1 (GH2199)
- Many unicode formatting fixes (GH2201)
- Fix improper MultiIndex conversion issue when assigning e.g. DataFrame.index (GH2200)
- Fix conversion of mixed-type DataFrame to ndarray with dup columns (GH2236)
- Fix duplicate columns issue (GH2218, GH2219)
- Fix SparseSeries.__pow__ issue with NA input (GH2220)
- Fix icol with integer sequence failure (GH2228)
- Fixed resampling tz-aware time series issue (GH2245)
- SparseDataFrame.icol was not returning SparseSeries (GH2227, GH2229)
- Enable ExcelWriter to handle PeriodIndex (GH2240)
- Fix issue constructing DataFrame from empty Series with name (GH2234)
- Use console-width detection in interactive sessions only (GH1610)
- Fix parallel_coordinates legend bug with mpl 1.2.0 (GH2237)
- Make tz_localize work in corner case of empty Series (GH2248)

### 31.10 pandas 0.9.0

**Release date:** 10/7/2012

#### 31.10.1 New Features

- Add `str.encode` and `str.decode` to `Series` (GH1706)
- Add `to_latex` method to `DataFrame` (GH1735)
- Add convenient expanding window equivalents of all rolling_* ops (GH1785)
- Add Options class to `pandas.io.data` for fetching options data from Yahoo! Finance (GH1748, GH1739)
- Recognize and convert more boolean values in file parsing (Yes, No, TRUE, FALSE, variants thereof) (GH1691, GH1295)

#### 31.10.2 Improvements to existing features

- Proper handling of NA values in merge operations (GH1990)
- Add `flags` option for `re.compile` in some `Series.str` methods (GH1659)
- Parsing of UTC date strings in `read_*` functions (GH1693)
- Handle generator input to `Series` (GH1679)
- Add `na_action='ignore'` to `Series.map` to quietly propagate NAs (GH1661)
- Add `args/kwds` options to `Series.apply` (GH1829)
- Add `inplace` option to `Series/DataFrame.reset_index` (GH1797)
- Add `level` parameter to `Series.reset_index`
- Add quoting option for `DataFrame.to_csv` (GH1902)
- Indicate long column value truncation in `DataFrame` output with ... (GH1854)
- `DataFrame.dot` will not do data alignment, and also work with `Series` (GH1915)
- Add `na` option for missing data handling in some vectorized string methods (GH1689)
- If `index_label=False` in `DataFrame.to_csv`, do not print fields/commas in the text output. Results in easier importing into R (GH1583)
• Can pass tuple/list of axes to DataFrame.dropna to simplify repeated calls (dropping both columns and rows) (GH924)
• Improve DataFrame.to_html output for hierarchically-indexed rows (do not repeat levels) (GH1929)
• TimeSeries.between_time can now select times across midnight (GH1871)
• Enable skip footer parameter in ExcelFile.parse (GH1843)

31.10.3 API Changes

• Change default header names in read_* functions to more Pythonic X0, X1, etc. instead of X.1, X.2. (GH2000)
• Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723)
• Don’t modify NumPy suppress printoption at import time
• The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
• Legacy cruft removed: pandas.stats.misc.quantileTS
• Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
• Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
• Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
• first and last methods in GroupBy no longer drop non-numeric columns (GH1809)
• Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer over-ride default NAs unless keep_default_na is set to false explicitly (GH1657)
• Enable skipfooter parameter in text parsers as an alias for skip footer

31.10.4 Bug Fixes

• Perform arithmetic column-by-column in mixed-type DataFrame to avoid type upcasting issues. Caused down-stream DataFrame.diff bug (GH1896)
• Fix matplotlib auto-color assignment when no custom spectrum passed. Also respect passed color keyword argument (GH1711)
• Fix resampling logical error with closed=’left’ (GH1726)
• Fix critical DatetimeIndex.union bugs (GH1730, GH1719, GH1745, GH1702, GH1753)
• Fix critical DatetimeIndex.intersection bug with unanchored offsets (GH1708)
• Fix MM-YYYY time series indexing case (GH1672)
• Fix case where Categorical group key was not being passed into index in GroupBy result (GH1701)
• Handle Ellipsis in Series.__getitem__/__setitem__ (GH1721)
• Fix some bugs with handling datetime64 scalars of other units in NumPy 1.6 and 1.7 (GH1717)
• Fix performance issue in MultiIndex.format (GH1746)
• Fixed GroupBy bugs interacting with DatetimeIndex asof / map methods (GH1677)
• Handle factors with NAs in pandas.rpy (GH1615)
• Fix statsmodels import in pandas.stats.var (GH1734)
• Fix DataFrame repr/info summary with non-unique columns (GH1700)
• Fix Series.iget_value for non-unique indexes (GH1694)
• Don’t lose tzinfo when passing DatetimeIndex as DataFrame column (GH1682)
• Fix tz conversion with time zones that haven’t had any DST transitions since first date in the array (GH1673)
• Fix field access with UTC->local conversion on unsorted arrays (GH1756)
• Fix isnull handling of array-like (list) inputs (GH1755)
• Fix regression in handling of Series in Series constructor (GH1671)
• Fix comparison of Int64Index with DatetimeIndex (GH1681)
• Fix min_periods handling in new rolling_max/min at array start (GH1695)
• Fix errors with how=’median’ and generic NumPy resampling in some cases caused by SeriesBinGrouper (GH1648, GH1688)
• When grouping by level, exclude unobserved levels (GH1697)
• Don’t lose tzinfo in DatetimeIndex when shifting by different offset (GH1683)
• Hack to support storing data with a zero-length axis in HDFStore (GH1707)
• Fix DatetimeIndex tz-aware range generation issue (GH1674)
• Fix method=’time’ interpolation with intraday data (GH1698)
• Don’t plot all-NA DataFrame columns as zeros (GH1696)
• Fix bug in scatter_plot with by option (GH1716)
• Fix performance problem in infer_freq with lots of non-unique stamps (GH1686)
• Fix handling of PeriodIndex as argument to create MultiIndex (GH1705)
• Fix re: unicode MultiIndex level names in Series/DataFrame repr (GH1736)
• Handle PeriodIndex in to_datetime instance method (GH1703)
• Support StaticTzInfo in DatetimeIndex infrastructure (GH1692)
• Allow MultiIndex setops with length-0 other type indexes (GH1727)
• Fix handling of DatetimeIndex in DataFrame.to_records (GH1720)
• Fix handling of general objects in isnull on which bool(...) fails (GH1749)
• Fix .ix indexing with MultiIndex ambiguity (GH1678)
• Fix .ix setting logic error with non-unique MultiIndex (GH1750)
• Basic indexing now works on MultiIndex with > 1000000 elements, regression from earlier version of pandas (GH1757)
• Handle non-float64 dtypes in fast DataFrame.corr/cov code paths (GH1761)
• Fix DatetimeIndex.isin to function properly (GH1763)
• Fix conversion of array of tz-aware datetime.datetime to DatetimeIndex with right time zone (GH1777)
• Fix DST issues with generating anchored date ranges (GH1778)
• Fix issue calling sort on result of Series.unique (GH1807)
• Fix numerical issue leading to square root of negative number in rolling_std (GH1840)
• Let Series.str.split accept no arguments (like str.split) (GH1859)
• Allow user to have dateutil 2.1 installed on a Python 2 system (GH1851)
• Catch ImportError less aggressively in pandas/__init__.py (GH1845)
• Fix pip source installation bug when installing from GitHub (GH1805)
• Fix error when window size > array size in rolling_apply (GH1850)
• Fix pip source installation issues via SSH from GitHub
• Fix OLS.summary when column is a tuple (GH1837)
• Fix bug in __doc__ patching when -OO passed to interpreter (GH1792 GH1741 GH1774)
• Fix unicode console encoding issue in IPython notebook (GH1782, GH1768)
• Fix unicode formatting issue with Series.name (GH1782)
• Fix bug in DataFrame.duplicated with datetime64 columns (GH1833)
• Fix bug in Panel internals resulting in error when doing fillna after truncate not changing size of panel (GH1823)
• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
• Fix UnboundLocalError in Panel.__setitem__ and add better error (GH1826)
• Fix to_csv issues with list of string entries. Isnull works on list of strings now too (GH1791)
• Fix Timestamp comparisons with datetime values outside the nanosecond range (1677-2262)
• Revert to prior behavior of normalize_date with datetime.date objects (return datetime)
• Fix broken interaction between np.nansum and Series.any/all
• Fix bug with multiple column date parsers (GH1866)
• DatetimeIndex.union(Int64Index) was broken
• Make plot x vs y interface consistent with integer indexing (GH1842)
• set_index inplace modified data even if unique check fails (GH1831)
• Only use Q-OCT/NOV/DEC in quarterly frequency inference (GH1789)
• Upcast to dtype=object when unstacking boolean DataFrame (GH1820)
• Fix float64/float32 merging bug (GH1849)
• Fixes to Period.start_time for non-daily frequencies (GH1857)
• Fix failure when converter used on index_col in read_csv (GH1835)
• Implement PeriodIndex.append so that pandas.concat works correctly (GH1815)
• Avoid Cython out-of-bounds access causing segfault sometimes in pad_2d, backfill_2d
• Fix resampling error with intraday times and anchored target time (like AS-DEC) (GH1772)
• Fix .ix indexing bugs with mixed-integer indexes (GH1799)
• Respect passed color keyword argument in Series.plot (GH1890)
• Fix rolling_min/max when the window is larger than the size of the input array. Check other malformed inputs (GH1899, GH1897)
• Rolling variance / standard deviation with only a single observation in window (GH1884)
• Fix unicode sheet name failure in to_excel (GH1828)
- Override DatetimeIndex.min/max to return Timestamp objects (GH1895)
- Fix column name formatting issue in length-truncated column (GH1906)
- Fix broken handling of copying Index metadata to new instances created by view(...) calls inside the NumPy infrastructure
- Support datetime.date again in DateOffset.rollback/rollforward
- Raise Exception if set passed to Series constructor (GH1913)
- Add TypeError when appending HDFStore table w/ wrong index type (GH1881)
- Don’t raise exception on empty inputs in EW functions (e.g. ewma) (GH1900)
- Make asof work correctly with PeriodIndex (GH1883)
- Fix extlinks in doc build
- Fill boolean DataFrame with NaN when calling shift (GH1814)
- Fix setuptools bug causing pip not to Cythonize .pyx files sometimes
- Fix negative integer indexing regression in .ix from 0.7.x (GH1888)
- Fix error while retrieving timezone and utc offset from subclasses of datetime.tzinfo without .zone and ._utcoffset attributes (GH1922)
- Fix DataFrame formatting of small, non-zero FP numbers (GH1911)
- Various fixes by upcasting of date -> datetime (GH1395)
- Raise better exception when passing multiple functions with the same name, such as lambdas, to GroupBy.aggregate
- Fix DataFrame.apply with axis=1 on a non-unique index (GH1878)
- Proper handling of Index subclasses in pandas.unique (GH1759)
- Set index names in DataFrame.from_records (GH1744)
- Fix time series indexing error with duplicates, under and over hash table size cutoff (GH1821)
- Handle list keys in addition to tuples in DataFrame.xs when partial-indexing a hierarchically-indexed DataFrame (GH1796)
- Support multiple column selection in DataFrame.__getitem__ with duplicate columns (GH1943)
- Fix time zone localization bug causing improper fields (e.g. hours) in time zones that have not had a UTC transition in a long time (GH1946)
- Fix errors when parsing and working with with fixed offset timezones (GH1922, GH1928)
- Fix text parser bug when handling UTC datetime objects generated by dateutil (GH1693)
- Fix plotting bug when ‘B’ is the inferred frequency but index actually contains weekends (GH1668, GH1669)
- Fix plot styling bugs (GH1666, GH1665, GH1658)
- Fix plotting bug with index/columns with unicode (GH1685)
- Fix DataFrame constructor bug when passed Series with datetime64 dtype in a dict (GH1680)
- Fixed regression in generating DatetimeIndex using timezone aware datetime.datetime (GH1676)
- Fix DataFrame bug when printing concatenated DataFrames with duplicated columns (GH1675)
- Fixed bug when plotting time series with multiple intraday frequencies (GH1732)
- Fix bug in DataFrame.duplicated to enable iterables other than list-types as input argument (GH1773)
• Fix resample bug when passed list of lambdas as how argument (GH1808)
• Repr fix for MultiIndex level with all NAs (GH1971)
• Fix PeriodIndex slicing bug when slice start/end are out-of-bounds (GH1977)
• Fix read_table bug when parsing unicode (GH1975)
• Fix BlockManager.iget bug when dealing with non-unique MultiIndex as columns (GH1970)
• Fix reset_index bug if both drop and level are specified (GH1957)
• Work around unsafe NumPy object->int casting with Cython function (GH1987)
• Fix datetime64 formatting bug in DataFrame.to_csv (GH1993)
• Default start date in pandas.io.data to 1/1/2000 as the docs say (GH2011)

31.11 pandas 0.8.1

Release date: July 22, 2012

31.11.1 New Features

• Add vectorized, NA-friendly string methods to Series (GH1621, GH620)
• Can pass dict of per-column line styles to DataFrame.plot (GH1559)
• Selective plotting to secondary y-axis on same subplot (GH1640)
• Add new bootstrap_plot plot function
• Add new parallel_coordinates plot function (GH1488)
• Add radviz plot function (GH1566)
• Add multi_sparse option to set_printoptions to modify display of hierarchical indexes (GH1538)
• Add dropna method to Panel (GH171)

31.11.2 Improvements to existing features

• Use moving min/max algorithms from Bottleneck in rolling_min/rolling_max for > 100x speedup. (GH1504, GH50)
• Add Cython group median method for >15x speedup (GH1358)
• Drastically improve to_datetime performance on ISO8601 datetime strings (with no time zones) (GH1571)
• Improve single-key groupby performance on large data sets, accelerate use of groupby with a Categorical variable
• Add ability to append hierarchical index levels with set_index and to drop single levels with reset_index (GH1569, GH1577)
• Always apply passed functions in resample, even if upsampling (GH1596)
• Avoid unnecessary copies in DataFrame constructor with explicit dtype (GH1572)
• Cleaner DatetimeIndex string representation with 1 or 2 elements (GH1611)
• Improve performance of array-of-Period to PeriodIndex, convert such arrays to PeriodIndex inside Index (GH1215)
• More informative string representation for weekly Period objects (GH1503)
• Accelerate 3-axis multi data selection from homogeneous Panel (GH979)
• Add adjust option to ewma to disable adjustment factor (GH1584)
• Add new matplotlib converters for high frequency time series plotting (GH1599)
• Handling of tz-aware datatime.datetime objects in to_datetime; raise Exception unless utc=True given (GH1581)

31.11.3 Bug Fixes

• Fix NA handling in DataFrame.to_panel (GH1582)
• Handle TypeError issues inside PyObject_RichCompareBool calls in khash (GH1318)
• Fix resampling bug to lower case daily frequency (GH1588)
• Fix kendall/spearman DataFrame.corr bug with no overlap (GH1595)
• Fix bug in DataFrame.set_index (GH1592)
• Don’t ignore axes in boxplot if by specified (GH1565)
• Fix Panel .ix indexing with integers bug (GH1603)
• Fix Partial indexing bugs (years, months, ...) with PeriodIndex (GH1601)
• Fix MultiIndex console formatting issue (GH1606)
• Unordered index with duplicates doesn’t yield scalar location for single entry (GH1586)
• Fix resampling of tz-aware time series with “anchored” freq (GH1591)
• Fix DataFrame.rank error on integer data (GH1589)
• Selection of multiple SparseDataFrame columns by list in __getitem__ (GH1585)
• Override Index.tolist for compatibility with MultiIndex (GH1576)
• Fix hierarchical summing bug with MultiIndex of length 1 (GH1568)
• Work around numpy.concatenate use/bug in Series.set_value (GH1561)
• Ensure Series/DataFrame are sorted before resampling (GH1580)
• Fix unhandled IndexError when indexing very large time series (GH1562)
• Fix DatetimeIndex intersection logic error with irregular indexes (GH1551)
• Fix unit test errors on Python 3 (GH1550)
• Fix .ix indexing bugs in duplicate DataFrame index (GH1201)
• Better handle errors with non-existing objects in HDFStore (GH1254)
• Don’t copy int64 array data in DatetimeIndex when copy=False (GH1624)
• Fix resampling of conforming periods quarterly to annual (GH1622)
• Don’t lose index name on resampling (GH1631)
• Support python-dateutil version 2.1 (GH1637)
• Fix broken scatter_matrix axis labeling, esp. with time series (GH1625)
• Fix cases where extra keywords weren’t being passed on to matplotlib from Series.plot (GH1636)
• Fix BusinessMonthBegin logic for dates before 1st bday of month (GH1645)
• Ensure string alias converted (valid in DatetimeIndex.get_loc) in DataFrame.xs / __getitem__ (GH1644)
• Fix use of string alias timestamps with tz-aware time series (GH1647)
• Fix Series.max/min and Series.describe on len-0 series (GH1650)
• Handle None values in dict passed to concat (GH1649)
• Fix Series.interpolate with method=’values’ and DatetimeIndex (GH1646)
• Fix IndexError in left merges on a DataFrame with 0-length (GH1628)
• Fix DataFrame column width display with UTF-8 encoded characters (GH1620)
• Handle case in pandas.io.data.get_data_yahoo where Yahoo! returns duplicate dates for most recent business day
• Avoid downsampling when plotting mixed frequencies on the same subplot (GH1619)
• Fix read_csv bug when reading a single line (GH1553)
• Fix bug in C code causing monthly periods prior to December 1969 to be off (GH1570)

31.12 pandas 0.8.0

Release date: 6/29/2012

31.12.1 New Features

• New unified DatetimeIndex class for nanosecond-level timestamp data
• New Timestamp datetime.datetime subclass with easy time zone conversions, and support for nanoseconds
• New PeriodIndex class for timespans, calendar logic, and Period scalar object
• High performance resampling of timestamp and period data. New resample method of all pandas data structures
• New frequency names plus shortcut string aliases like ‘15h’, ‘1h30min’
• Time series string indexing shorthand (GH222)
• Add week, dayofyear array and other timestamp array-valued field accessor functions to DatetimeIndex
• Add GroupBy.prod optimized aggregation function and ‘prod’ fast time series conversion method (GH1018)
• Implement robust frequency inference function and inferred_freq attribute on DatetimeIndex (GH391)
• New tz_convert and tz_localize methods in Series / DataFrame
• Convert DatetimeIndexes to UTC if time zones are different in join/setops (GH864)
• Add limit argument for forward/backward filling to reindex, fillna, etc. (GH825 and others)
• Add support for indexes (dates or otherwise) with duplicates and common sense indexing/selection functionality
• Series/DataFrame.update methods, in-place variant of combine_first (GH961)
• Add match function to API (GH502)
• Add Cython-optimized first, last, min, max, prod functions to GroupBy (GH994, GH1043)
• Dates can be split across multiple columns (GH1227, GH1186)
• Add experimental support for converting pandas DataFrame to R data.frame via rpy2 (GH350, GH1212)
• Can pass list of (name, function) to GroupBy.aggregate to get aggregates in a particular order (GH610)
• Can pass dicts with lists of functions or dicts to GroupBy aggregate to do much more flexible multiple function aggregation (GH642, GH610)
• New ordered_merge functions for merging DataFrames with ordered data. Also supports group-wise merging for panel data (GH813)
• Add keys() method to DataFrame
• Add flexible replace method for replacing potentially values to Series and DataFrame (GH929, GH1241)
• Add ‘kde’ plot kind for Series/DataFrame.plot (GH1059)
• More flexible multiple function aggregation with GroupBy
• Add pct_change function to Series/DataFrame
• Add option to interpolate by Index values in Series.interpolate (GH1206)
• Add max_colwidth option for DataFrame, defaulting to 50
• Conversion of DataFrame through rpy2 to R data.frame (GH1282)
• Add keys() method on DataFrame (GH1240)
• Add new match function to API (similar to R) (GH502)
• Add dayfirst option to parsers (GH854)
• Add method argument to align method for forward/backward fill in (GH216)
• Add new cut function (patterned after R) for discretizing data into equal range-length bins or arbitrary breaks of your choosing (GH415)
• Add new qcut for cutting with quantiles (GH1378)
• Add value_counts top level array method (GH1392)
• Added Andrews curves plot tupe (GH1325)
• Add lag plot (GH1440)
• Add autocorrelation_plot (GH1425)
• Add support for tox and Travis CI (GH1382)
• Add support for Categorical use in GroupBy (GH292)
• Add any and all methods to DataFrame (GH1416)
• Add secondary_y option to Series.plot
• Add experimental lreshape function for reshaping wide to long

31.12.2 Improvements to existing features

• Switch to klib/khash-based hash tables in Index classes for better performance in many cases and lower memory footprint
• Shipping some functions from scipy.stats to reduce dependency, e.g. Series.describe and DataFrame.describe (GH1092)
- Can create MultiIndex by passing list of lists or list of arrays to Series, DataFrame constructor, etc. (GH831)
- Can pass arrays in addition to column names to DataFrame.set_index (GH402)
- Improve the speed of “square” reindexing of homogeneous DataFrame objects by significant margin (GH836)
- Handle more dtypes when passed MaskedArrays in DataFrame constructor (GH406)
- Improved performance of join operations on integer keys (GH682)
- Can pass multiple columns to GroupBy object, e.g. grouped[[col1, col2]] to only aggregate a subset of the value columns (GH383)
- Add histogram / kde plot options for scatter_matrix diagonals (GH1237)
- Add inplace option to Series/DataFrame.rename and sort_index, DataFrame.drop_duplicates (GH805, GH207)
- More helpful error message when nothing passed to Series.reindex (GH1267)
- Can mix array and scalars as dict-value inputs to DataFrame ctor (GH1329)
- Use DataFrame columns’ name for legend title in plots
- Preserve frequency in DatetimeIndex when possible in boolean indexing operations
- Promote datetime.date values in data alignment operations (GH867)
- Add order method to Index classes (GH1028)
- Avoid hash table creation in large monotonic hash table indexes (GH1160)
- Store time zones in HDFStore (GH1232)
- Enable storage of sparse data structures in HDFStore (GH85)
- Enable Series.asof to work with arrays of timestamp inputs
- Cython implementation of DataFrame.corr speeds up by > 100x (GH1349, GH1354)
- Exclude “nuisance” columns automatically in GroupBy.transform (GH1364)
- Support functions-as-strings in GroupBy.transform (GH1362)
- Use index name as xlabel/ylabel in plots (GH1415)
- Add convert_dtype option to Series.apply to be able to leave data as dtype=object (GH1414)
- Can specify all index level names in concat (GH1419)
- Add dialect keyword to parsers for quoting conventions (GH1363)
- Enable DataFrame[bool_DataFrame] += value (GH1366)
- Add retries argument to get_data_yahoo to try to prevent Yahoo! API 404s (GH826)
- Improve performance of reshaping by using O(N) categorical sorting
- Series names will be used for index of DataFrame if no index passed (GH1494)
- Header argument in DataFrame.to_csv can accept a list of column names to use instead of the object’s columns (GH921)
- Add raise_conflict argument to DataFrame.update (GH1526)
- Support file-like objects in ExcelFile (GH1529)
31.12.3 API Changes

- Rename `pandas._tseries` to `pandas.lib`
- Rename Factor to Categorical and add improvements. Numerous Categorical bug fixes
- Frequency name overhaul, WEEKDAY/EOM and rules with @ deprecated. `get_legacy_offset_name` backwards compatibility function added
- Raise ValueError in DataFrame.__nonzero__, so “if df” no longer works (GH1073)
- Change BDay (business day) to not normalize dates by default (GH506)
- Remove deprecated DataMatrix name
- Default merge suffixes for overlap now have underscores instead of periods to facilitate tab completion, etc. (GH1239)
- Deprecation of offset, time_rule timeRule parameters throughout codebase
- Series.append and DataFrame.append no longer check for duplicate indexes by default, add verify_integrity parameter (GH1394)
- Refactor Factor class, old constructor moved to Factor.from_array
- Modified internals of MultiIndex to use less memory (no longer represented as array of tuples) internally, speed up construction time and many methods which construct intermediate hierarchical indexes (GH1467)

31.12.4 Bug Fixes

- Fix OverflowError from storing pre-1970 dates in HDFStore by switching to datetime64 (GH179)
- Fix logical error with February leap year end in YearEnd offset
- Series([False, nan]) was getting casted to float64 (GH1074)
- Fix binary operations between boolean Series and object Series with booleans and NAs (GH1074, GH1079)
- Couldn’t assign whole array to column in mixed-type DataFrame via .ix (GH1142)
- Fix label slicing issues with float index values (GH1167)
- Fix segfault caused by empty groups passed to groupby (GH1048)
- Fix occasionally misbehaved reindexing in the presence of NaN labels (GH522)
- Fix imprecise logic causing weird Series results from .apply (GH1183)
- Unstack multiple levels in one shot, avoiding empty columns in some cases. Fix pivot table bug (GH1181)
- Fix formatting of MultiIndex on Series/DataFrame when index name coincides with label (GH1217)
- Handle Excel 2003 #N/A as NaN from xlrd (GH1213, GH1225)
- Fix timestamp locale-related deserialization issues with HDFStore by moving to datetime64 representation (GH1081, GH809)
- Fix DataFrame.duplicated/drop_duplicates NA value handling (GH557)
- Actually raise exceptions in fast reducer (GH1243)
- Fix various timezone-handling bugs from 0.7.3 (GH969)
- GroupBy on level=0 discarded index name (GH1313)
- Better error message with unmergeable DataFrames (GH1307)
**31.13 pandas 0.7.3**

**Release date:** April 12, 2012

**31.13.1 New Features**

- Support for non-unique indexes: indexing and selection, many-to-one and many-to-many joins (GH1306)
- Added fixed-width file reader, read_fwf (GH952)
- Add group_keys argument to groupby to not add group names to MultiIndex in result of apply (GH938)
- DataFrame can now accept non-integer label slicing (GH946). Previously only DataFrame.ix was able to do so.
- DataFrame.apply now retains name attributes on Series objects (GH983)
- Numeric DataFrame comparisons with non-numeric values now raise proper TypeError (GH943). Previously raise “PandasError: DataFrame constructor not properly called!”
- Add kurt methods to Series and DataFrame (GH964)
- Can pass dict of column -> list/set NA values for text parsers (GH754)
- Allows users specified NA values in text parsers (GH754)
- Parsers checks for openpyxl dependency and raises ImportError if not found (GH1007)
- New factory function to create HDFStore objects that can be used in a with statement so users do not have to explicitly call HDFStore.close (GH1005)
- pivot_table is now more flexible with same parameters as groupby (GH941)
- Added stacked bar plots (GH987)
- scatter_matrix method in pandas/tools/plotting.py (GH935)
- DataFrame.boxplot returns plot results for ex-post styling (GH985)
- Short version number accessible as pandas.version.short_version (GH930)
- Additional documentation in panel.to_frame (GH942)
- More informative Series.apply docstring regarding element-wise apply (GH977)
- Notes on rpy2 installation (GH1006)
- Add rotation and font size options to hist method (GH1012)
- Use exogenous / X variable index in result of OLS.y_predict. Add OLS.predict method (GH1027, GH1008)

31.13.2 API Changes

- Calling apply on grouped Series, e.g. describe(), will no longer yield DataFrame by default. Will have to call unstack() to get prior behavior
- NA handling in non-numeric comparisons has been tightened up (GH933, GH953)
- No longer assign dummy names key_0, key_1, etc. to groupby index (GH1291)

31.13.3 Bug Fixes

- Fix logic error when selecting part of a row in a DataFrame with a MultiIndex index (GH1013)
- Series comparison with Series of differing length causes crash (GH1016).
- Fix bug in indexing when selecting section of hierarchically-indexed row (GH1013)
- DataFrame.plot(logy=True) has no effect (GH1011).
- Broken arithmetic operations between SparsePanel-Panel (GH1015)
- Unicode repr issues in MultiIndex with non-ascii characters (GH1010)
- DataFrame.lookup() returns inconsistent results if exact match not present (GH1001)
- DataFrame arithmetic operations not treating None as NA (GH992)
- DataFrameGroupBy.apply returns incorrect result (GH991)
- Series.reshape returns incorrect result for multiple dimensions (GH989)
• Series.std and Series.var ignores ddof parameter (GH934)
• DataFrame.append loses index names (GH980)
• DataFrame.plot(kind='bar') ignores color argument (GH958)
• Inconsistent Index comparison results (GH948)
• Improper int dtype DataFrame construction from data with NaN (GH846)
• Removes default ‘result’ name in groupby results (GH995)
• DataFrame.from_records no longer mutate input columns (GH975)
• Use Index name when grouping by it (GH1313)

31.14 pandas 0.7.2

Release date: March 16, 2012

31.14.1 New Features

• Add additional tie-breaking methods in DataFrame.rank (GH874)
• Add ascending parameter to rank in Series, DataFrame (GH875)
• Add sort_columns parameter to allow unsorted plots (GH918)
• IPython tab completion on GroupBy objects

31.14.2 API Changes

• Series.sum returns 0 instead of NA when called on an empty series. Analogously for a DataFrame whose rows
  or columns are length 0 (GH844)

31.14.3 Improvements to existing features

• Don’t use groups dict in Grouper.size (GH860)
• Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
• Enable column access via attributes on GroupBy (GH882)
• Enable setting existing columns (only) via attributes on DataFrame, Panel (GH883)
• Intercept __builtin__.sum in groupby (GH885)
• Can pass dict to DataFrame.fillna to use different values per column (GH661)
• Can select multiple hierarchical groups by passing list of values in .ix (GH134)
• Add level keyword to drop for dropping values from a level (GH159)
• Add coerce_float option on DataFrame.from_records (GH893)
• Raise exception if passed date_parser fails in read_csv
• Add axis option to DataFrame.fillna (GH174)
• Fixes to Panel to make it easier to subclass (GH888)
31.14.4 Bug Fixes

- Fix overflow-related bugs in groupby (GH850, GH851)
- Fix unhelpful error message in parsers (GH856)
- Better err msg for failed boolean slicing of dataframe (GH859)
- Series.count cannot accept a string (level name) in the level argument (GH869)
- Group index platform int check (GH870)
- concat on axis=1 and ignore_index=True raises TypeError (GH871)
- Further unicode handling issues resolved (GH795)
- Fix failure in multiindex-based access in Panel (GH880)
- Fix DataFrame boolean slice assignment failure (GH881)
- Fix combineAdd NotImplementedError for SparseDataFrame (GH887)
- Fix DataFrame.to_html encoding and columns (GH890, GH891, GH909)
- Fix na-filling handling in mixed-type DataFrame (GH910)
- Fix to DataFrame.set_value with non-existant row/col (GH911)
- Fix malformed block in groupby when excluding nuisance columns (GH916)
- Fix inconsistant NA handling in dtype=object arrays (GH925)
- Fix missing center-of-mass computation in ewmcov (GH862)
- Don’t raise exception when opening read-only HDF5 file (GH847)
- Fix possible out-of-bounds memory access in 0-length Series (GH917)

31.15 pandas 0.7.1

Release date: February 29, 2012

31.15.1 New Features

- Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)
- Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
- Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
- Add fill_value option to reindex, align methods (GH784)
- Enable concat to produce DataFrame from Series (GH787)
- Add between method to Series (GH802)
- Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
- Support for reading Excel 2007 XML documents using openpyxl
### 31.15.2 Improvements to existing features

- Improve performance and memory usage of fillna on DataFrame
- Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)

### 31.15.3 Bug Fixes

- Fix memory leak when inserting large number of columns into a single DataFrame (GH790)
- Appending length-0 DataFrame with new columns would not result in those new columns being part of the resulting concatenated DataFrame (GH782)
- Fixed groupby corner case when passing dictionary grouper and as_index is False (GH819)
- Fixed bug whereby bool array sometimes had object dtype (GH820)
- Fix exception thrown on np.diff (GH816)
- Fix to_records where columns are non-strings (GH822)
- Fix Index.intersection where indices have incomparable types (GH811)
- Fix ExcelFile throwing an exception for two-line file (GH837)
- Add clearer error message in csv parser (GH835)
- Fix loss of fractional seconds in HDFStore (GH513)
- Fix DataFrame join where columns have datetimes (GH787)
- Work around numpy performance issue in take (GH817)
- Improve comparison operations for NA-friendliness (GH801)
- Fix indexing operation for floating point values (GH780, GH798)
- Fix groupby case resulting in malformed dataframe (GH814)
- Fix behavior of reindex of Series dropping name (GH812)
- Improve on redundant groupby computation (GH775)
- Catch possible NA assignment to int/bool series with exception (GH839)

### 31.16 pandas 0.7.0

**Release date:** 2/9/2012

### 31.16.1 New Features

- New `merge` function for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)
- New `concat` function for concatenating DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of DataFrame.append (GH468, GH479, GH273)
- Handle differently-indexed output values in DataFrame.apply (GH498)
- Can pass list of dicts (e.g., a list of shallow JSON objects) to DataFrame constructor (GH526)
• Add `reorder_levels` method to Series and DataFrame (GH534)
• Add dict-like `get` function to DataFrame and Panel (GH521)
• `DataFrame.iterrows` method for efficiently iterating through the rows of a DataFrame
• Added `DataFrame.to_panel` with code adapted from `LongPanel.to_long`
• `reindex_axis` method added to DataFrame
• Add `level` option to binary arithmetic functions on DataFrame and Series
• Add `level` option to the `reindex` and `align` methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others)
• Add attribute-based item access to `Panel` and add IPython completion (PR GH554)
• Add `logy` option to `Series.plot` for log-scaling on the Y axis
• Add `index`, `header`, and `justify` options to `DataFrame.to_string`. Add option to (GH570, GH571)
• Can pass multiple DataFrames to `DataFrame.join` to join on index (GH115)
• Can pass multiple Panels to `Panel.join` (GH115)
• Can pass multiple DataFrames to `DataFrame.append` to concatenate (stack) and multiple Series to `Series.append` too
• Added `justify` argument to `DataFrame.to_string` to allow different alignment of column headers
• Add `sort` option to `GroupBy` to allow disabling sorting of the group keys for potential speedups (GH595)
• Can pass `MaskedArray` to `Series.constructor` (GH563)
• Add Panel item access via attributes and IPython completion (GH554)
• Implement `DataFrame.lookup`, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338)
• Add `verbose` option to `read_csv` and `read_table` to show number of NA values inserted in non-numeric columns (GH614)
• Can pass a list of dicts or Series to `DataFrame.append` to concatenate multiple rows (GH464)
• Add `level` argument to `DataFrame.xs` for selecting data from other MultiIndex levels. Can take one or more levels with potentially a tuple of keys for flexible retrieval of data (GH371, GH629)
• New `crosstab` function for easily computing frequency tables (GH170)
• Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with hierarchical columns (GH166)
• Add integer-indexing functions `iget` in Series and `irow/iget` in DataFrame (GH628)
• Add new `Series.unique` function, significantly faster than `numpy.unique` (GH658)
• Add new `cummin` and `cummax` instance methods to Series and DataFrame (GH647)
• Add new `value_range` function to return min/max of a dataframe (GH288)
• Add `drop` parameter to `reset_index` method of DataFrame and added method to Series as well (GH699)
• Add `isin` method to Index objects, works just like `Series.isin` (GH GH657)
• Implement array interface on Panel so that ufuncs work (re: GH740)
• Add `sort` option to `DataFrame.join` (GH731)
• Improved handling of NAs (propagation) in binary operations with dtype=object arrays (GH737)
• Add abs method to Pandas objects
• Added algorithms module to start collecting central algos

31.16.2 API Changes

• Label-indexing with integer indexes now raises KeyError if a label is not found instead of falling back on location-based indexing (GH700)
• Label-based slicing via ix or [] on Series will now only work if exact matches for the labels are found or if the index is monotonic (for range selections)
• Label-based slicing and sequences of labels can be passed to [] on a Series for both getting and setting (GH86)
• [] operator (__getitem__ and __setitem__) will raise KeyError with integer indexes when an index is not contained in the index. The prior behavior would fall back on position-based indexing if a key was not found in the index which would lead to subtle bugs. This is now consistent with the behavior of .ix on DataFrame and friends (GH328)
• Rename DataFrame.delevel to DataFrame.reset_index and add deprecation warning
• Series.sort (an in-place operation) called on a Series which is a view on a larger array (e.g. a column in a DataFrame) will generate an Exception to prevent accidentally modifying the data source (GH316)
• Refactor to remove deprecated LongPanel class (GH552)
• Deprecated Panel.to_long, renamed to to_frame
• Deprecated colSpace argument in DataFrame.to_string, renamed to col_space
• Rename precision to accuracy in engineering float formatter (GH GH395)
• The default delimiter for read_csv is comma rather than letting csv.Sniffer infer it
• Rename col_or_columns argument in DataFrame.drop_duplicates (GH GH734)

31.16.3 Improvements to existing features

• Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
• Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
• Can store objects indexed by tuples and floats in HDFStore (GH492)
• Don’t print length by default in Series.to_string, add length option (GH GH489)
• Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
• Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
• Improve column reindexing performance by using specialized Cython take function
• Further performance tweaking of Series.__getitem__ for standard use cases
• Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
• Friendlier error message in setup.py if NumPy not installed
• Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)
• Default name assignment when calling `reset_index` on DataFrame with a regular (non-hierarchical) index (GH476)

• Use Cythonized groupers when possible in Series/DataFrame stat ops with `level` parameter passed (GH545)

• Ported skiplist data structure to C to speed up `rolling_median` by about 5-10x in most typical use cases (GH374)

• Some performance enhancements in constructing a Panel from a dict of DataFrame objects

• Made `Index._get_duplicates` a public method by removing the underscore

• Prettier printing of floats, and column spacing fix (GH395, GH571)

• Add `bold_rows` option to DataFrame.to_html (GH586)

• Improve the performance of DataFrame.sort_index by up to 5x or more when sorting by multiple columns

• Substantially improve performance of DataFrame and Series constructors when passed a nested dict or dict, respectively (GH540, GH621)

• Modified setup.py so that pip / setuptools will install dependencies (GH GH507, various pull requests)

• Unstack called on DataFrame with non-MultiIndex will return Series (GH GH477)

• Improve DataFrame.to_string and console formatting to be more consistent in the number of displayed digits (GH395)

• Use bottleneck if available for performing NaN-friendly statistical operations that it implemented (GH91)

• Monkey-patch context to traceback in DataFrame.apply to indicate which row/column the function application failed on (GH614)

• Improved ability of read_table and read_clipboard to parse console-formatted DataFrames (can read the row of index names, etc.)

• Can pass list of group labels (without having to convert to an ndarray yourself) to `groupby` in some cases (GH659)

• Use `kind` argument to Series.order for selecting different sort kinds (GH668)

• Add option to Series.to_csv to omit the index (GH684)

• Add `delimiter` as an alternative to `sep` in read_csv and other parsing functions

• Substantially improved performance of groupby on DataFrames with many columns by aggregating blocks of columns all at once (GH745)

• Can pass a file handle or StringIO to Series/DataFrame.to_csv (GH765)

• Can pass sequence of integers to DataFrame.irow(icol) and Series.iget, (GH GH654)

• Prototypes for some vectorized string functions

• Add float64 hash table to solve the Series.unique problem with NAs (GH714)

• Memoize objects when reading from file to reduce memory footprint

• Can get and set a column of a DataFrame with hierarchical columns containing “empty” (‘’) lower levels without passing the empty levels (PR GH768)

31.16.4 Bug Fixes

• Raise exception in out-of-bounds indexing of Series instead of seg-faulting, regression from earlier releases (GH495)
• Fix error when joining DataFrames of different dtypes within the same typeclass (e.g. float32 and float64) (GH486)
• Fix bug in Series.min/Series.max on objects like datetime.datetime (GH GH487)
• Preserve index names in Index.union (GH501)
• Fix bug in Index joining causing subclass information (like DateRange type) to be lost in some cases (GH500)
• Accept empty list as input to DataFrame constructor, regression from 0.6.0 (GH491)
• Can output DataFrame and Series with ndarray objects in a dtype=object array (GH490)
• Return empty string from Series.to_string when called on empty Series (GH GH488)
• Fix exception passing empty list to DataFrame.from_records
• Fix Index.format bug (excluding name field) with datetimes with time info
• Fix scalar value access in Series to always return NumPy scalars, regression from prior versions (GH510)
• Handle rows skipped at beginning of file in read_* functions (GH505)
• Handle improper dtype casting in set_value methods
• Unary ‘-’ / __neg__ operator on DataFrame was returning integer values
• Unbox 0-dim ndarrays from certain operators like all, any in Series
• Fix handling of missing columns (was combine_first-specific) in DataFrame.combine for general case (GH529)
• Fix type inference logic with boolean lists and arrays in DataFrame indexing
• Use centered sum of squares in R-square computation if entity_effects=True in panel regression
• Handle all NA case in Series.{corr, cov}, was raising exception (GH548)
• Aggregating by multiple levels with level argument to DataFrame, Series stat method, was broken (GH545)
• Fix Cython buf when converter passed to read_csv produced a numeric array (buffer dtype mismatch when passed to Cython type inference function) (GH GH546)
• Fix exception when setting scalar value using .ix on a DataFrame with a MultiIndex (GH551)
• Fix outer join between two DateRanges with different offsets that returned an invalid DateRange
• Cleanup DataFrame.from_records failure where index argument is an integer
• Fix Data.from_records failure when passed a dictionary
• Fix NA handling in {Series, DataFrame}.rank with non-floating point dtypes
• Fix bug related to integer type-checking in .ix-based indexing
• Handle non-string index name passed to DataFrame.from_records
• DataFrame.insert caused the columns name(s) field to be discarded (GH527)
• Fix erroneous in monotonic many-to-one left joins
• Fix DataFrame.to_string to remove extra column white space (GH571)
• Format floats to default to same number of digits (GH395)
• Added decorator to copy docstring from one function to another (GH449)
• Fix error in monotonic many-to-one left joins
• Fix __eq__ comparison between DateOffsets with different relativedelta keywords passed
• Fix exception caused by parser converter returning strings (GH583)
• Fix MultiIndex formatting bug with integer names (GH601)
• Fix bug in handling of non-numeric aggregates in Series.groupby (GH612)
• Fix TypeError with tuple subclasses (e.g. namedtuple) in DataFrame.from_records (GH611)
• Catch misreported console size when running IPython within Emacs
• Fix minor bug in pivot table margins, loss of index names and length-1 ‘All’ tuple in row labels
• Add support for legacy WidePanel objects to be read from HDFStore
• Fix out-of-bounds segfault in pad_object and backfill_object methods when either source or target array are empty
• Could not create a new column in a DataFrame from a list of tuples
• Fix bugs preventing SparseDataFrame and SparseSeries working with groupby (GH666)
• Use sort kind in Series.sort / argsort (GH668)
• Fix DataFrame operations on non-scalar, non-pandas objects (GH672)
• Don’t convert DataFrame column to integer type when passing integer to __setitem__ (GH669)
• Fix downstream bug in pivot_table caused by integer level names in MultiIndex (GH678)
• Fix SparseSeries.combine_first when passed a dense Series (GH687)
• Fix performance regression in HDFStore loading when DataFrame or Panel stored in table format with datetimes
• Raise Exception in DateRange when offset with n=0 is passed (GH683)
• Fix get/set inconsistency with .ix property and integer location but non-integer index (GH707)
• Use right dropna function for SparseSeries. Return dense Series for NA fill value (GH730)
• Fix Index.format bug causing incorrectly string-formatted Series with datetime indexes (GH726, GH758)
• Fix errors caused by object dtype arrays passed to ols (GH759)
• Fix error where column names lost when passing list of labels to DataFrame.__getitem__, (GH662)
• Fix error whereby top-level week iterator overwrote week instance
• Fix circular reference causing memory leak in sparse array / series / frame, (GH663)
• Fix integer-slicing from integers-as-floats (GH670)
• Fix zero division errors in nanops from object dtype arrays in all NA case (GH676)
• Fix csv encoding when using unicode (GH705, GH717, GH738)
• Fix assumption that each object contains every unique block type in concat, (GH708)
• Fix sortedness check of multiindex in to_panel (GH719, 720)
• Fix that None was not treated as NA in PyObjectHashTable
• Fix hashing dtype because of endianness confusion (GH747, GH748)
• Fix SparseSeries.dropna to return dense Series in case of NA fill value (GH730)
• Use map_infer instead of np.vectorize, handle NA sentinels if converter yields numeric array, (GH753)
• Fixes and improvements to DataFrame.rank (GH742)
• Fix catching AttributeError instead of NameError for bottleneck
• Try to cast non-MultiIndex to better dtype when calling reset_index (GH726 GH440)
• Fix #1.QNAN0 float bug on 2.6/win64
• Allow subclasses of dicts in DataFrame constructor, with tests
• Fix problem whereby set_index destroys column multiindex (GH764)
• Hack around bug in generating DateRange from naive DateOffset (GH770)
• Fix bug in DateRange.intersection causing incorrect results with some overlapping ranges (GH771)

31.16.5 Thanks

• Craig Austin
• Chris Billington
• Marius Cobzarenco
• Mario Gamboa-Cavazos
• Hans-Martin Gaudecker
• Arthur Gerigk
• Yaroslav Halchenko
• Jeff Hammerbacher
• Matt Harrison
• Andreas Hilboll
• Luc Kesters
• Adam Klein
• Gregg Lind
• Solomon Negusse
• Wouter Overmeire
• Christian Prinoth
• Jeff Reback
• Sam Reckoner
• Craig Reeson
• Jan Schulz
• Skipper Seabold
• Ted Square
• Graham Taylor
• Aman Thakral
• Chris Uga
• Dieter Vandenbussche
• Texas P.
• Pinxing Ye
• ... and everyone I forgot
31.17 pandas 0.6.1

Release date: 12/13/2011

31.17.1 API Changes

- Rename names argument in DataFrame.from_records to columns. Add deprecation warning
- Boolean get/set operations on Series with boolean Series will reindex instead of requiring that the indexes be exactly equal (GH429)

31.17.2 New Features

- Can pass Series to DataFrame.append with ignore_index=True for appending a single row (GH430)
- Add Spearman and Kendall correlation options to Series.corr and DataFrame.corr (GH428)
- Add new get_value and set_value methods to Series, DataFrame, and Panel to very low-overhead access to scalar elements. df.get_value(row, column) is about 3x faster than df[column][row] by handling fewer cases (GH437, GH438). Add similar methods to sparse data structures for compatibility
- Add Qt table widget to sandbox (GH435)
- DataFrame.align can accept Series arguments, add axis keyword (GH461)
- Implement new SparseList and SparseArray data structures. SparseSeries now derives from SparseArray (GH463)
- max_columns / max_rows options in set_printoptions (GH453)
- Implement Series.rank and DataFrame.rank, fast versions of scipy.stats.rankdata (GH428)
- Implement DataFrame.from_items alternate constructor (GH444)
- DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)
- Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)
- Add margins option to pivot_table for computing subgroup aggregates (GH114)
- Add Series.from_csv function (GH482)

31.17.3 Improvements to existing features

- Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (GH425)
- Use same formatting function for outputting floating point Series to console as in DataFrame (GH420)
- DataFrame.delevel will try to infer better dtype for new columns (GH440)
- Exclude non-numeric types in DataFrame.{corr, cov}
- Override Index.astype to enable dtype casting (GH412)
- Use same float formatting function for Series.__repr__ (GH420)
- Use available console width to output DataFrame columns (GH453)
- Accept ndarrays when setting items in Panel (GH452)
- Infer console width when printing __repr__ of DataFrame to console (PR GH453)
pandas: powerful Python data analysis toolkit, Release 0.14.1

• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
• Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH462)
• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
• Column deletion in DataFrame copies no data (computes views on blocks) (GH GH158)
• MultiIndex.get_level_values can take the level name
• More helpful error message when DataFrame.plot fails on one of the columns (GH478)
• Improve performance of DataFrame.{index, columns} attribute lookup

31.17.4 Bug Fixes

• Fix O(K^2) memory leak caused by inserting many columns without consolidating, had been present since 0.4.0 (GH467)
• DataFrame.count should return Series with zero instead of NA with length-0 axis (GH423)
• Fix Yahoo! Finance API usage in pandas.io.data (GH419, GH427)
• Fix upstream bug causing failure in Series.align with empty Series (GH434)
• Function passed to DataFrame.apply can return a list, as long as it’s the right length. Regression from 0.4 (GH432)
• Don’t “accidentally” upcast scalar values when indexing using .ix (GH431)
• Fix groupby exception raised with as_index=False and single column selected (GH421)
• Implement DateOffset.__ne__ causing downstream bug (GH456)
• Fix __doc__-related issue when converting py -> pyo with py2exe
• Bug fix in left join Cython code with duplicate monotonic labels
• Fix bug when unstacking multiple levels described in GH451
• Exclude NA values in dtype=object arrays, regression from 0.5.0 (GH469)
• Use Cython map_infer function in DataFrame.applymap to properly infer output type, handle tuple return values and other things that were breaking (GH465)
• Handle floating point index values in HDFStore (GH454)
• Fixed stale column reference bug (cached Series object) caused by type change / item deletion in DataFrame (GH473)
• Index.get_loc should always raise Exception when there are duplicates
• Handle differently-indexed Series input to DataFrame constructor (GH475)
• Omit nuisance columns in multi-groupby with Python function
• Buglet in handling of single grouping in general apply
• Handle type inference properly when passing list of lists or tuples to DataFrame constructor (GH484)
• Preserve Index / MultiIndex names in GroupBy.apply concatenation step (GH GH481)
31.17.5 Thanks

- Ralph Bean
- Luca Beltrame
- Marius Cobzarenco
- Andreas Hilboll
- Jev Kuznetsov
- Adam Lichtenstein
- Wouter Overmeire
- Fernando Perez
- Nathan Pinger
- Christian Prinoth
- Alex Reyfman
- Joon Ro
- Chang She
- Ted Square
- Chris Uga
- Dieter Vandenbussche

31.18 pandas 0.6.0

Release date: 11/25/2011

31.18.1 API Changes

- Arithmetic methods like `sum` will attempt to sum dtype=object values by default instead of excluding them (GH382)

31.18.2 New Features

- Add `melt` function to `pandas.core.reshape`
- Add `level` parameter to group by level in Series and DataFrame descriptive statistics (GH313)
- Add `head` and `tail` methods to Series, analogous to to DataFrame (PR GH296)
- Add `Series.isin` function which checks if each value is contained in a passed sequence (GH289)
- Add `float_format` option to `Series.to_string`
- Add `skip_footer` (GH291) and `converters` (GH343) options to `read_csv` and `read_table`
- Add proper, tested weighted least squares to standard and panel OLS (GH GH303)
- Add `drop_duplicates` and `duplicated` functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)
• Implement logical (boolean) operators & , | , ^ on DataFrame (GH347)
• Add Series.mad, mean absolute deviation, matching DataFrame
• Add QuarterEnd DateOffset (GH321)
• Add matrix multiplication function dot to DataFrame (GH65)
• Add orient option to Panel.from_dict to ease creation of mixed-type Panels (GH359, GH301)
• Add DataFrame.from_dict with similar orient option
• Can now pass list of tuples or list of lists to DataFrame.from_records for fast conversion to DataFrame (GH357)
• Can pass multiple levels to groupby, e.g. df.groupby(level=[0, 1]) (GH103)
• Can sort by multiple columns in DataFrame.sort_index (GH92, GH362)
• Add fast get_value and put_value methods to DataFrame and micro-performance tweaks (GH360)
• Add cov instance methods to Series and DataFrame (GH194, GH362)
• Add bar plot option to DataFrame.plot (GH348)
• Add idxmin and idxmax functions to Series and DataFrame for computing index labels achieving maximum and minimum values (GH286)
• Add read_clipboard function for parsing DataFrame from OS clipboard, should work across platforms (GH300)
• Add nunique function to Series for counting unique elements (GH297)
• DataFrame constructor will use Series name if no columns passed (GH373)
• Support regular expressions and longer delimiters in read_table/read_csv, but does not handle quoted strings yet (GH364)
• Add DataFrame.to_html for formatting DataFrame to HTML (GH387)
• MaskedArray can be passed to DataFrame constructor and masked values will be converted to NaN (GH396)
• Add DataFrame.boxplot function (GH368, others)
• Can pass extra args, kwds to DataFrame.apply (GH376)

31.18.3 Improvements to existing features

• Raise more helpful exception if date parsing fails in DateRange (GH298)
• Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)
• Print level names in hierarchical index in Series repr (GH305)
• Return DataFrame when performing GroupBy on selected column and as_index=False (GH308)
• Can pass vector to on argument in DataFrame.join (GH312)
• Don’t show Series name if it’s None in the repr, also omit length for short Series (GH317)
• Show legend by default in DataFrame.plot, add legend boolean flag (GH324)
• Significantly improved performance of Series.order, which also makes np.unique called on a Series faster (GH327)
• Faster cythonized count by level in Series and DataFrame (GH341)
• Raise exception if dateutil 2.0 installed on Python 2.x runtime (GH346)
• Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
• New Cython vectorized function `map_infer` speeds up `Series.apply` and `Series.map` significantly when passed elementwise Python function, motivated by GH355

• Cythonized `cache_readonly`, resulting in substantial micro-performance enhancements throughout the codebase (GH361)

• Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than `np.apply_along_axis` (GH309)

• Add `raw` option to `DataFrame.apply` for getting better performance when the passed function only requires an ndarray (GH309)

• Improve performance of `MultiIndex.from_tuples`

• Can pass multiple levels to `stack` and `unstack` (GH370)

• Can pass multiple values columns to `pivot_table` (GH381)

• Can call `DataFrame.delevel` with standard Index with name set (GH393)

• Use `Series.name` in GroupBy for result index (GH363)

• Refactor `Series/DataFrame` stat methods to use common set of NaN-friendly function

• Handle NumPy scalar integers at C level in Cython conversion routines

31.18.4 Bug Fixes

• Fix bug in `DataFrame.to_csv` when writing a DataFrame with an index name (GH290)

• DataFrame should clear its Series caches on consolidation, was causing “stale” Series to be returned in some corner cases (GH304)

• DataFrame constructor failed if a column had a list of tuples (GH293)

• Ensure that `Series.apply` always returns a Series and implement `Series.round` (GH314)

• Support boolean columns in Cythonized groupby functions (GH315)

• `DataFrame.describe` should not fail if there are no numeric columns, instead return categorical describe (GH323)

• Fixed bug which could cause columns to be printed in wrong order in `DataFrame.to_string` if specific list of columns passed (GH325)

• Fix legend plotting failure if DataFrame columns are integers (GH326)

• Shift start date back by one month for Yahoo! Finance API in pandas.io.data (GH329)

• Fix `DataFrame.join` failure on unconsolidated inputs (GH331)

• `DataFrame.min/max` will no longer fail on mixed-type DataFrame (GH337)

• Fix `read_csv` / `read_table` failure when passing list to `index_col` that is not in ascending order (GH349)

• Fix failure passing Int64Index to Index.union when both are monotonic

• Fix error when passing SparseSeries to (dense) DataFrame constructor

• Added missing bang at top of setup.py (GH352)

• Change `is_monotonic` on MultiIndex so it properly compares the tuples

• Fix MultiIndex outer join logic (GH351)

• Set index name attribute with single-key groupby (GH358)
- Bug fix in reflexive binary addition in Series and DataFrame for non-commutative operations (like string concatenation) (GH353)
- setupegg.py will invoke Cython (GH192)
- Fix block consolidation bug after inserting column into MultiIndex (GH366)
- Fix bug in join operations between Index and Int64Index (GH367)
- Handle min_periods=0 case in moving window functions (GH365)
- Fixed corner cases in DataFrame.apply/pivot with empty DataFrame (GH378)
- Fixed repr exception when Series name is a tuple
- Always return DateRange from \texttt{asfreq} (GH390)
- Pass level names to \texttt{swaplevel} (GH379)
- Don’t lose index names in \texttt{MultiIndex.droplevel} (GH394)
- Infer more proper return type in \texttt{DataFrame.apply} when no columns or rows depending on whether the passed function is a reduction (GH389)
- Always return NA/NaN from Series.min/max and DataFrame.min/max when all of a row/column/values are NA (GH384)
- Enable partial setting with \texttt{.ix / advanced indexing} (GH397)
- Handle mixed-type DataFrames correctly in unstack, do not lose type information (GH403)
- Fix integer name formatting bug in Index.format and in Series.__repr__
- Handle label types other than string passed to groupby (GH405)
- Fix bug in \texttt{.ix-based indexing with partial retrieval when a label is not contained in a level}
- Index name was not being pickled (GH408)
- Level name should be passed to result index in GroupBy.apply (GH416)

### 31.18.5 Thanks

- Craig Austin
- Marius Cobzarenco
- Joel Cross
- Jeff Hammerbacher
- Adam Klein
- Thomas Kluyver
- Jev Kuznetsov
- Kieran O’Mahony
- Wouter Overmeire
- Nathan Pinger
- Christian Prinot
- Skipper Seabold
- Chang She
31.19 pandas 0.5.0

Release date: 10/24/2011

This release of pandas includes a number of API changes (see below) and cleanup of deprecated APIs from pre-0.4.0 releases. There are also bug fixes, new features, numerous significant performance enhancements, and includes a new ipython completer hook to enable tab completion of DataFrame columns accesses and attributes (a new feature).

In addition to the changes listed here from 0.4.3 to 0.5.0, the minor releases 4.1, 0.4.2, and 0.4.3 brought some significant new functionality and performance improvements that are worth taking a look at.

Thanks to all for bug reports, contributed patches and generally providing feedback on the library.

31.19.1 API Changes

- `read_table`, `read_csv`, and `ExcelFile.parse` default arguments for `index_col` is now None. To use one or more of the columns as the resulting DataFrame’s index, these must be explicitly specified now
- Parsing functions like `read_csv` no longer parse dates by default (GH GH225)
- Removed `weights` option in panel regression which was not doing anything principled (GH155)
- Changed `buffer` argument name in `Series.to_string` to `buf`
- `Series.to_string` and `DataFrame.to_string` now return strings by default instead of printing to sys.stdout
- Deprecated `nanRep` argument in various `to_string` and `to_csv` functions in favor of `na_rep`. Will be removed in 0.6 (GH275)
- Renamed `delimiter` to `sep` in `DataFrame.from_csv` for consistency
- Changed order of `Series.clip` arguments to match those of `numpy.clip` and added (unimplemented) `out` argument so `numpy.clip` can be called on a Series (GH272)
- Series functions renamed (and thus deprecated) in 0.4 series have been removed:
  - `asOf`, use `asof`
  - `toDict`, use `to_dict`
  - `toString`, use `to_string`
  - `toCSV`, use `to_csv`
  - `merge`, use `map`
  - `applymap`, use `apply`
  - `combineFirst`, use `combine_first`
  - `_firstTimeWithValue` use `first_valid_index`
pandas: powerful Python data analysis toolkit, Release 0.14.1

- `_lastTimeWithValue` use `last_valid_index`

- DataFrame functions renamed / deprecated in 0.4 series have been removed:
  - `asMatrix` method, use `as_matrix` or `values` attribute
  - `combineFirst`, use `combine_first`
  - `getXS`, use `xs`
  - `merge`, use `join`
  - `fromRecords`, use `from_records`
  - `fromcsv`, use `from_csv`
  - `toRecords`, use `to_records`
  - `toDict`, use `to_dict`
  - `toString`, use `to_string`
  - `toCSV`, use `to_csv`
  - `_lastTimeWithValue` use `last_valid_index`
  - `_firstTimeWithValue` use `first_valid_index`
  - `toDataMatrix` is no longer needed
  - `rows()` method, use `index` attribute
  - `cols()` method, use `columns` attribute
  - `dropEmptyRows()`, use `dropna(how='all')`
  - `dropIncompleteRows()`, use `dropna()`
  - `tapply(f)`, use `apply(f, axis=1)`
  - `tgroupby(keyfunc, aggfunc)`, use `groupby` with `axis=1`

31.19.2 Deprecations Removed

- `indexField` argument in `DataFrame.from_records`
- `missingAtEnd` argument in `Series.order`. Use `na_last` instead
- `Series.fromValue` classmethod, use regular `Series` constructor instead
- Functions `parseCSV`, `parseText`, and `parseExcel` methods in `pandas.io.parsers` have been removed
- `Index.asOfDate` function
- `Panel.getMinorXS` (use `minor_xs`) and `Panel.getMajorXS` (use `major_xs`)
- `Panel.toWide`, use `Panel.to_wide` instead

31.19.3 New Features

- Added `DataFrame.align` method with standard join options
- Added `parse_dates` option to `read_csv` and `read_table` methods to optionally try to parse dates in the index columns
• Add `nrows`, `chunksize`, and `iterator` arguments to `read_csv` and `read_table`. The last two return a new `TextParser` class capable of lazily iterating through chunks of a flat file (GH242)
• Added ability to join on multiple columns in `DataFrame.join` (GH214)
• Added private `_get_duplicates` function to `Index` for identifying duplicate values more easily
• Added column attribute access to DataFrame, e.g. `df.A` equivalent to `df['A']` if ‘A’ is a column in the DataFrame (GH213)
• Added IPython tab completion hook for DataFrame columns. (GH233, GH230)
• Implement `Series.describe` for Series containing objects (GH241)
• Add inner join option to `DataFrame.join` when joining on key(s) (GH248)
• Can select set of DataFrame columns by passing a list to `__getitem__` (GH GH253)
• Can use `&` and `|` to intersection / union Index objects, respectively (GH GH261)
• Added `pivot_table` convenience function to pandas namespace (GH234)
• Implemented `Panel.rename_axis` function (GH243)
• DataFrame will show index level names in console output
• Implemented `Panel.take`
• Add `set_eng_float_format` function for setting alternate DataFrame floating point string formatting
• Add convenience `set_index` function for creating a DataFrame index from its existing columns

31.19.4 Improvements to existing features

• Major performance improvements in file parsing functions `read_csv` and `read_table`
• Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations
• File parsing functions like `read_csv` and `read_table` will explicitly check if a parsed index has duplicates and raise a more helpful exception rather than deferring the check until later
• Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)
• Improved speed of `DataFrame.xs` on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)
• With new `DataFrame.align` method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%.
• Significantly speed up conversion of nested dict into DataFrame (GH212)
• Can pass hierarchical index level name to `groupby` instead of the level number if desired (GH223)
• Add support for different delimiters in `DataFrame.to_csv` (GH244)
• Add more helpful error message when importing pandas post-installation from the source directory (GH250)
• Significantly speed up DataFrame `__repr__` and `count` on large mixed-type DataFrame objects
• Better handling of pyx file dependencies in Cython module build (GH271)
31.19.5 Bug Fixes

- **read_csv / read_table fixes**
  - Be less aggressive about converting float->int in cases of floating point representations of integers like 1.0, 2.0, etc.
  - “True”/”False” will not get correctly converted to boolean
  - Index name attribute will get set when specifying an index column
  - Passing column names should force header=None (GH257)
  - Don’t modify passed column names when index_col is not None (GH258)
  - Can sniff CSV separator in zip file (since seek is not supported, was failing before)
- Worked around matplotlib “bug” in which series[:, np.newaxis] fails. Should be reported upstream to matplotlib (GH224)
- DataFrame.iteritems was not returning Series with the name attribute set. Also neither was DataFrame._series
- Can store datetime.date objects in HDFStore (GH231)
- Index and Series names are now stored in HDFStore
- Fixed problem in which data would get upcasted to object dtype in GroupBy.apply operations (GH237)
- Fixed outer join bug with empty DataFrame (GH238)
- Can create empty Panel (GH239)
- Fix join on single key when passing list with 1 entry (GH246)
- Don’t raise Exception on plotting DataFrame with an all-NA column (GH251, GH254)
- Bug min/max errors when called on integer DataFrames (GH241)
- DataFrame.iteritems and DataFrame._series not assigning name attribute
- Panel.__repr__ raised exception on length-0 major/Minor axes
- DataFrame.join on key with empty DataFrame produced incorrect columns
- Implemented MultiIndex.diff (GH260)
- Int64Index.take and MultiIndex.take lost name field, fix downstream issue GH262
- Can pass list of tuples to Series (GH270)
- Can pass level name to DataFrame.stack
- Support set operations between MultiIndex and Index
- Fix many corner cases in MultiIndex set operations - Fix MultiIndex-handling bug with GroupBy.apply when returned groups are not indexed the same
- Fix corner case bugs in DataFrame.apply
- Setting DataFrame index did not cause Series cache to get cleared
- Various int32 -> int64 platform-specific issues
- Don’t be too aggressive converting to integer when parsing file with MultiIndex (GH285)
- Fix bug when slicing Series with negative indices before beginning
31.19.6 Thanks

- Thomas Kluyver
- Daniel Fortunov
- Aman Thakral
- Luca Beltrame
- Wouter Overmeire

31.20 pandas 0.4.3

Release date: 10/9/2011

is a bugfix release from 0.4.2 but also includes a handful of new and enhanced features. Also, pandas can now be installed and used on Python 3 thanks to Thomas Kluyver!

31.20.1 New Features

- Python 3 support using 2to3 (GH200, Thomas Kluyver)
- Add name attribute to Series and add relevant logic and tests. Name now prints as part of Series.__repr__
- Add name attribute to standard Index so that stacking / unstacking does not discard names and so that indexed DataFrame objects can be reliably round-tripped to flat files, pickle, HDF5, etc.
- Add isnull and notnull as instance methods on Series (GH209, GH203)

31.20.2 Improvements to existing features

- Skip xld-related unit tests if not installed
- Index.append and MultiIndex.append can accept a list of Index objects to concatenate together
- Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
- Refactored Series.__repr__ to be a bit more clean and consistent

31.20.3 API Changes

- Series.describe and DataFrame.describe now bring the 25% and 75% quartiles instead of the 10% and 90% deciles. The other outputs have not changed
- Series.toString will print deprecation warning, has been de-camelCased to to_string

31.20.4 Bug Fixes

- Fix broken interaction between Index and Int64Index when calling intersection. Implement Int64Index.intersection
- MultiIndex.sortlevel discarded the level names (GH202)
- Fix bugs in groupby, join, and append due to improper concatenation of MultiIndex objects (GH201)
• Fix regression from 0.4.1, isnull and notnull ceased to work on other kinds of Python scalar objects like datetime
datetime
• Raise more helpful exception when attempting to write empty DataFrame or LongPanel to HDFStore (GH204)
• Use stdlib csv module to properly escape strings with commas in DataFrame.to_csv (GH206, Thomas Kluyver)
• Fix Python ndarray access in Cython code for sparse blocked index integrity check
• Fix bug writing Series to CSV in Python 3 (GH209)
• Miscellaneous Python 3 bugfixes

31.20.5 Thanks

• Thomas Kluyver
• rsamson

31.21 pandas 0.4.2

Release date: 10/3/2011

is a performance optimization release with several bug fixes. The new t64Index and new merging / joining Cython
code and related Python infrastructure are the main new additions

31.21.1 New Features

• Added fast Int64Index type with specialized join, union, intersection. Will result in significant performance
enhancements for int64-based time series (e.g. using NumPy’s datetime64 one day) and also faster operations
on DataFrame objects storing record array-like data.
• Refactored Index classes to have a join method and associated data alignment routines throughout the codebase
to be able to leverage optimized joining / merging routines.
• Added Series.align method for aligning two series with choice of join method
• Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
• Added is_monotonic property to Index classes with associated Cython code to evaluate the monotonicity of the
Index values
• Add method get_level_values to MultiIndex
• Implemented shallow copy of BlockManager object in DataFrame internals

31.21.2 Improvements to existing features

• Improved performance of isnull and notnull, a regression from v0.3.0 (GH187)
• Wrote templating / code generation script to auto-generate Cython code for various functions which need to be
available for the 4 major data types used in pandas (float64, bool, object, int64)
• Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each DataFrame
argument do not need to be created. Substantial performance increases result (GH176)
• Substantially improved performance of generic Index.intersection and Index.union
• Improved performance of `DateRange.union` with overlapping ranges and non-cacheable offsets (like Minute). Implemented analogous fast `DateRange.intersection` for overlapping ranges.
• Implemented `BlockManager.take` resulting in significantly faster `take` performance on mixed-type `DataFrame` objects (GH104)
• Improved performance of `Series.sort_index`
• Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals that were slowing down slicing operations to retrieve groups
• Added informative Exception when passing dict to DataFrame groupby aggregation with axis != 0

31.21.3 API Changes

31.21.4 Bug Fixes

• Fixed minor unhandled exception in Cython code implementing fast groupby aggregation operations
• Fixed bug in unstacking code manifesting with more than 3 hierarchical levels
• Throw exception when step specified in label-based slice (GH185)
• Fix isnull to correctly work with np.float32. Fix upstream bug described in GH182
• Finish implementation of as_index=False in groupby for DataFrame aggregation (GH181)
• Raise SkipTest for pre-epoch HDFStore failure. Real fix will be sorted out via datetime64 dtype

31.21.5 Thanks

• Uri Laserson
• Scott Sinclair

31.22 pandas 0.4.1

Release date: 9/25/2011

is is primarily a bug fix release but includes some new features and improvements

31.22.1 New Features

• Added new `DataFrame` methods `get_dtype_counts` and property `dtypes`
• Setting of values using .ix indexing attribute in mixed-type DataFrame objects has been implemented (fixes GH135)
• `read_csv` can read multiple columns into a `MultiIndex`. DataFrame’s `to_csv` method will properly write out a `MultiIndex` which can be read back (GH151, thanks to Skipper Seabold)
• Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and related functions
• Added ignore_index option to `DataFrame.append` for combining unindexed records stored in a DataFrame
31.22.2 Improvements to existing features

- Some speed enhancements with internal Index type-checking function
- `DataFrame.rename` has a new `copy` parameter which can rename a DataFrame in place
- Enable unstacking by level name (GH142)
- Enable sortlevel to work by level name (GH141)
- `read_csv` can automatically “sniff” other kinds of delimiters using `csv.Sniffer` (GH146)
- Improved speed of unit test suite by about 40%
- Exception will not be raised calling `HDFStore.remove` on non-existent node with where clause
- Optimized `_ensure_index` function resulting in performance savings in type-checking Index objects

31.22.3 API Changes

31.22.4 Bug Fixes

- Fixed DataFrame constructor bug causing downstream problems (e.g. `.copy()` failing) when passing a Series as the values along with a column name and index
- Fixed single-key groupby on DataFrame with `as_index=False` (GH160)
- `Series.shift` was failing on integer Series (GH154)
- `unstack` methods were producing incorrect output in the case of duplicate hierarchical labels. An exception will now be raised (GH147)
- Calling `count` with level argument caused reduceat failure or segfault in earlier NumPy (GH169)
- Fixed `DataFrame.corrwith` to automatically exclude non-numeric data (GH GH144)
- Unicode handling bug fixes in `DataFrame.to_string` (GH138)
- Excluding OLS degenerate unit test case that was causing platform specific failure (GH149)
- Skip blosc-dependent unit tests for PyTables < 2.2 (GH137)
- Calling `copy` on `DateRange` did not copy over attributes to the new object (GH168)
- Fix bug in `HDFStore` in which Panel data could be appended to a Table with different item order, thus resulting in an incorrect result read back

31.22.5 Thanks

- Yaroslav Halchenko
- Jeff Reback
- Skipper Seabold
- Dan Lovell
- Nick Pentreath
31.23 pandas 0.4.0

Release date: 9/12/2011

31.23.1 New Features

- **pandas.core.sparse** module: “Sparse” (mostly-NA, or some other fill value) versions of Series, DataFrame, and Panel. For low-density data, this will result in significant performance boosts, and smaller memory footprint. Added to_sparse methods to Series, DataFrame, and Panel. See online documentation for more on these

- Fancy indexing operator on Series / DataFrame, e.g. via .ix operator. Both getting and setting of values is supported; however, setting values will only currently work on homogeneously-typed DataFrame objects. Things like:
  - series.ix[[d1, d2, d3]]
  - frame.ix[5:10, ['C', 'B', 'A']], frame.ix[5:10, 'A':'C']
  - frame.ix[d1:date2]

- Significantly enhanced groupby functionality
  - Can groupby multiple keys, e.g. df.groupby(['key1', 'key2']). Iteration with multiple groupings products a flattened tuple
  - “Nuisance” columns (non-aggregatable) will automatically be excluded from DataFrame aggregation operations
  - Added automatic “dispatching to Series / DataFrame methods to more easily invoke methods on groups. e.g. s.groupby(crit).std() will work even though std is not implemented on the GroupBy class

- Hierarchical / multi-level indexing
  - New the MultiIndex class. Integrated MultiIndex into Series and DataFrame fancy indexing, slicing, __getitem__ and __setitem__, reindexing, etc. Added level keyword argument to groupby to enable grouping by a level of a MultiIndex

- New data reshaping functions: stack and unstack on DataFrame and Series
  - Integrate with MultiIndex to enable sophisticated reshaping of data

- Index objects (labels for axes) are now capable of holding tuples

- Series.describe, DataFrame.describe: produces an R-like table of summary statistics about each data column

- DataFrame.quantile, Series.quantile for computing sample quantiles of data across requested axis

- Added general DataFrame.dropna method to replace dropIncompleteRows and dropEmptyRows, deprecated those.

- Series arithmetic methods with optional fill_value for missing data, e.g. a.add(b, fill_value=0). If a location is missing for both it will still be missing in the result though.

- fill_value option has been added to DataFrame.{add, mul, sub, div} methods similar to Series

- Boolean indexing with DataFrame objects: data[data > 0.1] = 0.1 or data[data> other] = 1.

- pytz tzinfo support in DateRange
  - tz_localize, tz_normalize, and tz_validate methods added

- Added ExcelFile class to pandas.io.parsers for parsing multiple sheets out of a single Excel 2003 document
pandas: powerful Python data analysis toolkit, Release 0.14.1

- GroupBy aggregations can now optionally broadcast, e.g. produce an object of the same size with the aggregated value propagated
- Added select function in all data structures: reindex axis based on arbitrary criterion (function returning boolean value), e.g. frame.select(lambda x: ‘foo’ in x, axis=1)
- DataFrame.consolidate method, API function relating to redesigned internals
- DataFrame.insert method for inserting column at a specified location rather than the default __setitem__ behavior (which puts it at the end)
- HDFStore class in pandas.io.pytables has been largely rewritten using patches from Jeff Reback from others. It now supports mixed-type DataFrame and Series data and can store Panel objects. It also has the option to query DataFrame and Panel data. Loading data from legacy HDFStore files is supported explicitly in the code
- Added set_printoptions method to modify appearance of DataFrame tabular output
- rolling_quantile functions; a moving version of Series.quantile / DataFrame.quantile
- Generic rolling_apply moving window function
- New drop method added to Series, DataFrame, etc. which can drop a set of labels from an axis, producing a new object
- reindex methods now sport a copy option so that data is not forced to be copied then the resulting object is indexed the same
- Added sort_index methods to Series and Panel. Renamed DataFrame.sort to sort_index. Leaving DataFrame.sort for now.
- Added skipna option to statistical instance methods on all the data structures
- pandas.io.data module providing a consistent interface for reading time series data from several different sources

31.23.2 Improvements to existing features

- The 2-dimensional DataFrame and DataMatrix classes have been extensively redesigned internally into a single class DataFrame, preserving where possible their optimal performance characteristics. This should reduce confusion from users about which class to use.
  - Note that under the hood there is a new essentially “lazy evaluation” scheme within respect to adding columns to DataFrame. During some operations, like-typed blocks will be “consolidated” but not before.
- DataFrame accessing columns repeatedly is now significantly faster than DataMatrix used to be in 0.3.0 due to an internal Series caching mechanism (which are all views on the underlying data)
- Column ordering for mixed type data is now completely consistent in DataFrame. In prior releases, there was inconsistent column ordering in DataMatrix
- Improved console / string formatting of DataMatrix with negative numbers
- Improved tabular data parsing functions, read_table and read_csv:
  - Added skiprows and na_values arguments to pandas.io.parsers functions for more flexible IO
  - parseCSV / read_csv functions and others in pandas.io.parsers now can take a list of custom NA values, and also a list of rows to skip
- Can slice DataFrame and get a view of the data (when homogeneously typed), e.g. frame.xs(idx, copy=False) or frame.ix[idx]
- Many speed optimizations throughout Series and DataFrame
• Eager evaluation of groups when calling `groupby` functions, so if there is an exception with the grouping function it will raised immediately versus sometime later on when the groups are needed

• `datetools.WeekOfMonth` offset can be parameterized with \( n \) different than 1 or -1.

• Statistical methods on DataFrame like `mean`, `std`, `var`, `skew` will now ignore non-numerical data. Before a not very useful error message was generated. A flag `numeric_only` has been added to DataFrame.`sum` and DataFrame.`count` to enable this behavior in those methods if so desired (disabled by default)

• DataFrame.`pivot` generalized to enable pivoting multiple columns into a DataFrame with hierarchical columns

• DataFrame constructor can accept structured / record arrays

• Panel constructor can accept a dict of DataFrame-like objects. Do not need to use `from_dict` anymore (`from_dict` is there to stay, though).

### 31.23.3 API Changes

• The `DataMatrix` variable now refers to `DataFrame`, will be removed within two releases

• WidePanel is now known as `Panel`. The `WidePanel` variable in the pandas namespace now refers to the renamed `Panel` class

• LongPanel and Panel / WidePanel now no longer have a common subclass. LongPanel is now a subclass of DataFrame having a number of additional methods and a hierarchical index instead of the old LongPanelIndex object, which has been removed. Legacy LongPanel pickles may not load properly

• Cython is now required to build pandas from a development branch. This was done to avoid continuing to check in cythonized C files into source control. Builds from released source distributions will not require Cython

• Cython code has been moved up to a top level pandas/src directory. Cython extension modules have been renamed and promoted from the lib subpackage to the top level, i.e.

  - pandas.lib.tseries -> pandas._tseries
  - pandas.lib.sparse -> pandas._sparse

• DataFrame pickling format has changed. Backwards compatibility for legacy pickles is provided, but it’s recommended to consider PyTables-based HDFStore for storing data with a longer expected shelf life

• A copy argument has been added to the DataFrame constructor to avoid unnecessary copying of data. Data is no longer copied by default when passed into the constructor

• Handling of boolean dtype in DataFrame has been improved to support storage of boolean data with NA / NaN values. Before it was being converted to float64 so this should not (in theory) cause API breakage

• To optimize performance, Index objects now only check that their labels are unique when uniqueness matters (i.e. when someone goes to perform a lookup). This is a potentially dangerous tradeoff, but will lead to much better performance in many places (like groupby).

• Boolean indexing using Series must now have the same indices (labels)

• Backwards compatibility support for begin/end/nPeriods keyword arguments in DateRange class has been removed

• More intuitive / shorter filling aliases `ffill` (for pad) and `bfill` (for backfill) have been added to the functions that use them: `reindex`, `asfreq`, `fillna`.

• pandas.core.mixins code moved to pandas.core.generic

• `buffer` keyword arguments (e.g. DataFrame.toString) renamed to `buf` to avoid using Python built-in name

• DataFrame.rows() removed (use DataFrame.index)
pandas: powerful Python data analysis toolkit, Release 0.14.1

- Added deprecation warning to DataFrame.cols(), to be removed in next release
- DataFrame deprecations and de-camelCasing: merge, asMatrix, toDataMatrix, _firstTimeWithValue, _lastTimeWithValue, toRecords, fromRecords, tgroupby, toString
- pandas.io.parsers method deprecations
  - parseCSV is now read_csv and keyword arguments have been de-camelCased
  - parseText is now read_table
  - parseExcel is replaced by the ExcelFile class and its parse method
- fillMethod arguments (deprecated in prior release) removed, should be replaced with method
- Series.fill, DataFrame.fill, and Panel.fill removed, use fillna instead
- groupby functions now exclude NA / NaN values from the list of groups. This matches R behavior with NAs in factors e.g. with the tapply function
- Removed parseText, parseCSV and parseExcel from pandas namespace
- Series.combineFunc renamed to Series.combine and made a bit more general with a fill_value keyword argument defaulting to NaN
- Removed pandas.core.pytools module. Code has been moved to pandas.core.common
- Tacked on groupName attribute for groups in GroupBy renamed to name
- Panel/LongPanel dims attribute renamed to shape to be more conformant
- Slicing a Series returns a view now
- More Series deprecations / renaming: toCSV to to_csv, asOf to asof, merge to map, applymap to apply, toDict to to_dict, combineFirst to combine_first. Will print FutureWarning.
- DataFrame.to_csv does not write an “index” column label by default anymore since the output file can be read back without it. However, there is a new index_label argument. So you can do index_label='index' to emulate the old behavior
- datetools.Week argument renamed from dayOfWeek to weekday
- timeRule argument in shift has been deprecated in favor of using the offset argument for everything. So you can still pass a time rule string to offset
- Added optional encoding argument to read_csv, read_table, to_csv, from_csv to handle unicode in python 2.x

31.23.4 Bug Fixes

- Column ordering in pandas.io.parsers.parseCSV will match CSV in the presence of mixed-type data
- Fixed handling of Excel 2003 dates in pandas.io.parsers
- DateRange caching was happening with high resolution DateOffset objects, e.g. DateOffset(seconds=1). This has been fixed
- Fixed __truediv__ issue in DataFrame
- Fixed DataFrame.toCSV bug preventing IO round trips in some cases
- Fixed bug in Series.plot causing matplotlib to barf in exceptional cases
- Disabled Index objects from being hashable, like ndarrays
- Added __ne__ implementation to Index so that operations like ts[ts != idx] will work
- Added __ne__ implementation to DataFrame
• Bug! unintuitive result when calling *fillna* on unordered labels
• Bug calling *sum* on boolean DataFrame
• Bug fix when creating a DataFrame from a dict with scalar values
• Series.{sum, mean, std, ...} now return NA/NaN when the whole Series is NA
• NumPy 1.4 through 1.6 compatibility fixes
• Fixed bug in bias correction in *rolling_cov*, was affecting *rolling_corr* too
• R-square value was incorrect in the presence of fixed and time effects in the *PanelOLS* classes
• *HDFStore* can handle duplicates in table format, will take

### 31.23.5 Thanks

• Joon Ro
• Michael Pennington
• Chris Uga
• Chris Withers
• Jeff Reback
• Ted Square
• Craig Austin
• William Ferreira
• Daniel Fortunov
• Tony Roberts
• Martin Felder
• John Marino
• Tim McNamara
• Justin Berka
• Dieter Vandenbussche
• Shane Conway
• Skipper Seabold
• Chris Jordan-Squire

### 31.24 pandas 0.3.0

**Release date:** February 20, 2011
31.24.1 New features

- `corrwith` function to compute column- or row-wise correlations between two DataFrame objects
- Can boolean-index DataFrame objects, e.g. `df[df > 2] = 2, px[px > last_px] = 0`
- Added comparison magic methods (`__lt__, __gt__, etc.)
- Flexible explicit arithmetic methods (add, mul, sub, div, etc.)
- Added `reindex_like` method
- Added `reindex_like` method to WidePanel
- Convenience functions for accessing SQL-like databases in `pandas.io.sql` module
- Added (still experimental) HDFStore class for storing pandas data structures using HDF5 / PyTables in `pandas.io.pytables` module
- Added WeekOfMonth date offset
- `pandas.rpy` (experimental) module created, provide some interfacing / conversion between rpy2 and pandas

31.24.2 Improvements to existing features

- Unit test coverage: 100% line coverage of core data structures
- Speed enhancement to rolling_{median, max, min}
- Column ordering between DataFrame and DataMatrix is now consistent: before DataFrame would not respect column order
- Improved `{Series, DataFrame}.plot methods to be more flexible (can pass matplotlib Axis arguments, plot DataFrame columns in multiple subplots, etc.)

31.24.3 API Changes

- Exponentially-weighted moment functions in `pandas.stats.moments` have a more consistent API and accept a `min_periods` argument like their regular moving counterparts.
- `fillMethod` argument in Series, DataFrame changed to `method`, `FutureWarning` added.
- `fill` method in Series, DataFrame/DataMatrix, WidePanel renamed to `fillna`, `FutureWarning` added to `fill`
- Renamed `DataFrame.getXS` to `xs`, `FutureWarning` added
- Removed `cap` and `floor` functions from DataFrame, renamed to `clip_upper` and `clip_lower` for consistency with NumPy

31.24.4 Bug Fixes

- Fixed bug in IndexableSkiplist Cython code that was breaking rolling_max function
- Numerous numpy.int64-related indexing fixes
- Several NumPy 1.4.0 NaN-handling fixes
- Bug fixes to pandas.io.parsers.parseCSV
- Fixed `DateRange` caching issue with unusual date offsets
- Fixed bug in `DateRange.union`
• Fixed corner case in *IndexableSkipList* implementation
pandas, 1