pandas: powerful Python data analysis toolkit

Release 0.15.1

Wes McKinney & PyData Development Team

November 08, 2014
CONTENTS

1 What's New
 1.1 v0.15.1 (November 9, 2014) .. 3
 1.2 v0.15.0 (October 18, 2014) .. 9
 1.3 v0.14.1 (July 11, 2014) .. 36
 1.4 v0.14.0 (May 31, 2014) .. 41
 1.5 v0.13.1 (February 3, 2014) .. 68
 1.6 v0.13.0 (January 3, 2014) .. 75
 1.7 v0.12.0 (July 24, 2013) .. 98
 1.8 v0.11.0 (April 22, 2013) .. 109
 1.9 v0.10.1 (January 22, 2013) .. 118
 1.10 v0.10.0 (December 17, 2012) ... 124
 1.11 v0.9.1 (November 14, 2012) ... 135
 1.12 v0.9.0 (October 7, 2012) ... 139
 1.13 v0.8.1 (July 22, 2012) ... 141
 1.14 v0.8.0 (June 29, 2012) ... 141
 1.15 v0.7.3 (April 12, 2012) ... 146
 1.16 v0.7.2 (March 16, 2012) ... 150
 1.17 v0.7.1 (February 29, 2012) ... 151
 1.18 v0.7.0 (February 9, 2012) ... 151
 1.19 v0.6.1 (December 13, 2011) ... 156
 1.20 v0.6.0 (November 25, 2011) ... 157
 1.21 v0.5.0 (October 24, 2011) ... 159
 1.22 v0.4.3 through v0.4.1 (September 25 - October 9, 2011) 160

2 Installation .. 163
 2.1 Python version support .. 163
 2.2 Installing pandas .. 163
 2.3 Dependencies .. 166

3 Frequently Asked Questions (FAQ) .. 169
 3.1 DataFrame memory usage .. 169
 3.2 PeriodIndex / DateArray properties and functions .. 172
 3.3 Frequency conversion .. 172
 3.4 Plotting .. 173
 3.5 Converting to and from period format .. 174
 3.6 Treatment of missing data .. 174
 3.7 Resampling with timestamps and periods .. 174

4 Package overview .. 177
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Data structures at a glance</td>
<td>177</td>
</tr>
<tr>
<td>4.2 Mutability and copying of data</td>
<td>178</td>
</tr>
<tr>
<td>4.3 Getting Support</td>
<td>178</td>
</tr>
<tr>
<td>4.4 Credits</td>
<td>178</td>
</tr>
<tr>
<td>4.5 Development Team</td>
<td>178</td>
</tr>
<tr>
<td>4.6 License</td>
<td>178</td>
</tr>
<tr>
<td>5 10 Minutes to pandas</td>
<td>181</td>
</tr>
<tr>
<td>5.1 Object Creation</td>
<td>181</td>
</tr>
<tr>
<td>5.2 Viewing Data</td>
<td>183</td>
</tr>
<tr>
<td>5.3 Selection</td>
<td>184</td>
</tr>
<tr>
<td>5.4 Missing Data</td>
<td>189</td>
</tr>
<tr>
<td>5.5 Operations</td>
<td>189</td>
</tr>
<tr>
<td>5.6 Merge</td>
<td>192</td>
</tr>
<tr>
<td>5.7 Grouping</td>
<td>194</td>
</tr>
<tr>
<td>5.8 Reshaping</td>
<td>195</td>
</tr>
<tr>
<td>5.9 Time Series</td>
<td>197</td>
</tr>
<tr>
<td>5.10 Categoricals</td>
<td>198</td>
</tr>
<tr>
<td>5.11 Plotting</td>
<td>200</td>
</tr>
<tr>
<td>5.12 Getting Data In/Out</td>
<td>201</td>
</tr>
<tr>
<td>5.13 Gotchas</td>
<td>203</td>
</tr>
<tr>
<td>6 Tutorials</td>
<td>205</td>
</tr>
<tr>
<td>6.1 Internal Guides</td>
<td>205</td>
</tr>
<tr>
<td>6.2 pandas Cookbook</td>
<td>205</td>
</tr>
<tr>
<td>6.3 Lessons for New pandas Users</td>
<td>206</td>
</tr>
<tr>
<td>6.4 Excel charts with pandas, vincent and xlsxwriter</td>
<td>206</td>
</tr>
<tr>
<td>6.5 Various Tutorials</td>
<td>206</td>
</tr>
<tr>
<td>7 Cookbook</td>
<td>207</td>
</tr>
<tr>
<td>7.1 Idioms</td>
<td>207</td>
</tr>
<tr>
<td>7.2 Selection</td>
<td>210</td>
</tr>
<tr>
<td>7.3 MultiIndexing</td>
<td>214</td>
</tr>
<tr>
<td>7.4 Missing Data</td>
<td>218</td>
</tr>
<tr>
<td>7.5 Grouping</td>
<td>219</td>
</tr>
<tr>
<td>7.6 Timeseries</td>
<td>227</td>
</tr>
<tr>
<td>7.7 Merge</td>
<td>227</td>
</tr>
<tr>
<td>7.8 Plotting</td>
<td>228</td>
</tr>
<tr>
<td>7.9 Data In/Out</td>
<td>229</td>
</tr>
<tr>
<td>7.10 Computation</td>
<td>232</td>
</tr>
<tr>
<td>7.11 Timedeltas</td>
<td>233</td>
</tr>
<tr>
<td>7.12 Aliasing Axis Names</td>
<td>234</td>
</tr>
<tr>
<td>7.13 Creating Example Data</td>
<td>235</td>
</tr>
<tr>
<td>8 Intro to Data Structures</td>
<td>237</td>
</tr>
<tr>
<td>8.1 Series</td>
<td>237</td>
</tr>
<tr>
<td>8.2 DataFrame</td>
<td>242</td>
</tr>
<tr>
<td>8.3 Panel</td>
<td>254</td>
</tr>
<tr>
<td>8.4 Panel4D (Experimental)</td>
<td>258</td>
</tr>
<tr>
<td>8.5 PanelND (Experimental)</td>
<td>260</td>
</tr>
<tr>
<td>9 Essential Basic Functionality</td>
<td>263</td>
</tr>
<tr>
<td>9.1 Head and Tail</td>
<td>263</td>
</tr>
<tr>
<td>9.2 Attributes and the raw ndarray(s)</td>
<td>264</td>
</tr>
<tr>
<td>9.3 Accelerated operations</td>
<td>265</td>
</tr>
</tbody>
</table>
26.2 SparseList ... 745
26.3 SparseIndex objects .. 746

27 Caveats and Gotchas .. 747
27.1 Using If/Truth Statements with pandas 747
27.2 NaN, Integer NA values and NA type promotions 748
27.3 Integer indexing .. 750
27.4 Label-based slicing conventions .. 750
27.5 Miscellaneous indexing gotchas ... 751
27.6 Timestamp limitations .. 753
27.7 Parsing Dates from Text Files .. 753
27.8 Differences with NumPy .. 754
27.9 Thread-safety ... 754
27.10 HTML Table Parsing ... 754
27.11 Byte-Ordering Issues .. 755

28 rpy2 / R interface ... 757
28.1 Transferring R data sets into Python 757
28.2 Converting DataFrames into R objects 758
28.3 Calling R functions with pandas objects 758
28.4 High-level interface to R estimators 758

29 pandas Ecosystem ... 759
29.1 Statistics and Machine Learning .. 759
29.2 Visualization .. 760
29.3 IDE ... 760
29.4 API ... 760
29.5 Domain Specific .. 761
29.6 Out-of-core .. 761

30 Comparison with R / R libraries ... 763
30.1 Base R ... 763
30.2 zoo ... 769
30.3 xts ... 769
30.4 plyr ... 769
30.5 reshape / reshape2 ... 770

31 Comparison with SQL .. 775
31.1 SELECT .. 775
31.2 WHERE .. 776
31.3 GROUP BY .. 778
31.4 JOIN .. 780
31.5 UNION .. 782
31.6 UPDATE .. 783
31.7 DELETE .. 783

32 API Reference ... 785
32.1 Input/Output .. 785
32.2 General functions ... 811
32.3 Series ... 852
32.4 DataFrame .. 999
32.5 Panel ... 1162
32.6 Panel4D ... 1240
32.7 Index ... 1286
32.8 DatetimeIndex .. 1315
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

- Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
- Ordered and unordered (not necessarily fixed-frequency) time series data.
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels
- Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R's data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

- Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
- Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
- Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
- Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
- Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
- Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
- Intuitive merging and joining data sets
- Flexible reshaping and pivoting of data sets
- Hierarchical labeling of axes (possible to have multiple labels per tick)
- Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format
- Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.
Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Some other notes

- pandas is **fast**. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However, as with anything else generalization usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool.

- pandas is a dependency of statsmodels, making it an important part of the statistical computing ecosystem in Python.

- pandas has been used extensively in production in financial applications.

Note: This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do invest some time in learning about NumPy first.

See the package overview for more detail about what’s in the library.
WHAT’S NEW

These are new features and improvements of note in each release.

1.1 v0.15.1 (November 9, 2014)

This is a minor bug-fix release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

- Enhancements
- API Changes
- Bug Fixes

1.1.1 API changes

- `s.dt.hour` and other `.dt` accessors will now return `np.nan` for missing values (rather than previously -1), (GH8689)

  ```
  In [1]: s = Series(date_range('20130101',periods=5,freq='D'))
  In [2]: s.iloc[2] = np.nan
  In [3]: s
  Out[3]:
  0 2013-01-01
  1 2013-01-02
  2 NaT
  3 2013-01-04
  4 2013-01-05
  dtype: datetime64[ns]
  previous behavior:
  In [6]: s.dt.hour
  Out[6]:
  0 0
  1 0
  2 -1
  3 0
  ```
current behavior:

```
In [4]: s.dt.hour
Out[4]:
0   0
1   0
2   NaN
3   0
4   0
dtype: float64
```

- `groupby` with `as_index=False` will not add erroneous extra columns to result (GH8582):

```
In [5]: np.random.seed(2718281)

In [6]: df = pd.DataFrame(np.random.randint(0, 100, (10, 2)),
                      columns=['jim', 'joe'])

In [7]: df.head()
Out[7]:
   jim  joe
0   61  81
1   96  49
2   55  65
3   72  51
4   77  12

In [8]: ts = pd.Series(5 * np.random.randint(0, 3, 10))

previous behavior:

```
In [4]: df.groupby(ts, as_index=False).max()
Out[4]:
 NaN jim joe
0 72 83
1 5 77 84
2 96 65
```

current behavior:

```
In [9]: df.groupby(ts, as_index=False).max()
Out[9]:
 jim joe
0 72 83
1 77 84
2 96 65
```

- `groupby` will not erroneously exclude columns if the column name conflicts with the grouper name (GH8112):

```
In [10]: df = pd.DataFrame({'jim': range(5), 'joe': range(5, 10)})

In [11]: df
Out[11]:
 jim joe
0 0 5
1 1 6
```
In [12]: gr = df.groupby(df['jim'] < 2)

previous behavior (excludes 1st column from output):

In [4]: gr.apply(sum)
Out[4]:
     joe
    jim
   False 24
   True  11

current behavior:

In [13]: gr.apply(sum)
Out[13]:
     jim  joe
        jim
       False  9  24
       True   1  11

• Support for slicing with monotonic decreasing indexes, even if start or stop is not found in the index (GH7860):

In [14]: s = pd.Series(['a', 'b', 'c', 'd'], [4, 3, 2, 1])

In [15]: s
Out[15]:
   4   a
   3   b
   2   c
   1   d
dtype: object

previous behavior:

In [8]: s.loc[3.5:1.5]
KeyError: 3.5

current behavior:

In [16]: s.loc[3.5:1.5]
Out[16]:
   3   b
   2   c
dtype: object

• `io.data.Options` has been fixed for a change in the format of the Yahoo Options page (GH8612), (GH8741)

Note: As a result of a change in Yahoo’s option page layout, when an expiry date is given, `Options` methods now return data for a single expiry date. Previously, methods returned all data for the selected month.

The `month` and `year` parameters have been undeprecated and can be used to get all options data for a given month.
If an expiry date that is not valid is given, data for the next expiry after the given date is returned.

Option data frames are now saved on the instance as callsYYMMDD or putsYYMMDD. Previously they were saved as callsMMMYY and putsMMMYY. The next expiry is saved as calls and puts.

New features:

- The expiry parameter can now be a single date or a list-like object containing dates.
- A new property expiry_dates was added, which returns all available expiry dates.

Current behavior:

```
In [17]: from pandas.io.data import Options
In [18]: aapl = Options('aapl','yahoo')
In [19]: aapl.get_call_data().iloc[0:5,0:1]
Out[19]:
 Strike Expiry Type Symbol
0 80 2014-11-14 call AAPL141114C00080000 29.05
1 84 2014-11-14 call AAPL141114C00084000 24.80
2 85 2014-11-14 call AAPL141114C00085000 24.05
3 86 2014-11-14 call AAPL141114C00086000 22.76
4 87 2014-11-14 call AAPL141114C00087000 21.74
In [20]: aapl.expiry_dates
Out[20]:
[datetime.date(2014, 11, 14),
 datetime.date(2014, 11, 22),
 datetime.date(2014, 11, 28),
 datetime.date(2014, 12, 5),
 datetime.date(2014, 12, 12),
 datetime.date(2014, 12, 20),
 datetime.date(2014, 12, 27),
 datetime.date(2014, 12, 31),
 datetime.date(2015, 1, 17),
 datetime.date(2015, 2, 20),
 datetime.date(2015, 4, 17),
 datetime.date(2015, 7, 17),
 datetime.date(2016, 1, 15),
 datetime.date(2017, 1, 20)]
In [21]: aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3]).iloc[0:5,0:1]
Out[21]:
 Strike Expiry Type Symbol
0 109 2014-11-22 call AAPL141114C00109000 1.48
1 110 2014-11-28 call AAPL141114C00110000 1.79
2 110 2014-11-14 call AAPL141114C00110000 0.55
3 110 2014-11-22 call AAPL141114C00110000 1.02
4 110 2014-11-28 call AAPL141114C00110000 1.32
```

See the Options documentation in Remote Data.

- pandas now also registers the datetime64 dtype in matplotlib’s units registry to plot such values as date-times. This is activated once pandas is imported. In previous versions, plotting an array of datetime64 values will have resulted in plotted integer values. To keep the previous behaviour, you can do del matplotlib.units.registry[np.datetime64] (GH8614).
1.1.2 Enhancements

- `concat` permits a wider variety of iterables of pandas objects to be passed as the first parameter (GH8645):

  ```python
 In [22]: from collections import deque
 In [23]: df1 = pd.DataFrame([1, 2, 3])
 In [24]: df2 = pd.DataFrame([4, 5, 6])

 previous behavior:
 In [7]: pd.concat(deque((df1, df2)))
 TypeError: first argument must be a list-like of pandas objects, you passed an object of type "deque"

 current behavior:
 In [25]: pd.concat(deque((df1, df2)))
 Out[25]:
 0 1
 1 2
 2 3
 0 4
 1 5
 2 6
  ```

- Represent `MultiIndex` labels with a `dtype` that utilizes memory based on the level size. In prior versions, the memory usage was a constant 8 bytes per element in each level. In addition, in prior versions, the `reported` memory usage was incorrect as it didn’t show the usage for the memory occupied by the underlying data array. (GH8456)

  ```python
 In [26]: dfi = DataFrame(1,index=pd.MultiIndex.from_product([['a'],range(1000)]),columns=['A'])

 previous behavior:
 # this was underreported in prior versions
 In [1]: dfi.memory_usage(index=True)
 Out[1]:
 Index 8000 # took about 24008 bytes in < 0.15.1
 A 8000
dtype: int64

 current behavior:
 In [27]: dfi.memory_usage(index=True)
 Out[27]:
 Index 11020
 A 8000
dtype: int64
  ```

- Added Index properties `is_monotonic_increasing` and `is_monotonic_decreasing` (GH8680).

- Added option to select columns when importing Stata files (GH7935)

- Qualify memory usage in `DataFrame.info()` by adding `+` if it is a lower bound (GH8578)

- Raise errors in certain aggregation cases where an argument such as `numeric_only` is not handled (GH8592)

- Added support for 3-character ISO and non-standard country codes in `io.wb.download()` (GH8482)
• **World Bank data requests** now will warn/raise based on an `errors` argument, as well as a list of hard-coded country codes and the World Bank’s JSON response. In prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the hard-coded approach. All countries will work now, but some bad countries will raise exceptions because some edge cases break the entire response. (GH8482)

• Added option to `Series.str.split()` to return a DataFrame rather than a Series (GH8428)

• Added option to `df.info(null_counts=None|True|False)` to override the default display options and force showing of the null-counts (GH8701)

### 1.1.3 Bug Fixes

• Bug in unpickling of a `CustomBusinessDay` object (GH8591)

• Bug in coercing `Categorical` to a records array, e.g. `df.to_records()` (GH8626)

• Bug in `Categorical` not created properly with `Series.to_frame()` (GH8626)

• Bug in coercing in `astype` of a `Categorical` of a passed `pd.Categorical` (this now raises `TypeError` correctly), (GH8626)

• Bug in `cut/qcut` when using `Series` and `retbins=True` (GH8589)

• Bug in writing `Categorical` columns to an SQL database with `to_sql` (GH8624).

• Bug in comparing `Categorical` of datetime raising when being compared to a scalar datetime (GH8687)

• Bug in selecting from a `Categorical` with `.iloc` (GH8623)

• Bug in `groupby-transform` with a `Categorical` (GH8623)

• Bug in duplicated/drop_duplicates with a `Categorical` (GH8623)

• Bug in `Categorical` reflected comparison operator raising if the first argument was a numpy array scalar (e.g. `np.int64`) (GH8658)

• Bug in `Panel` indexing with a list-like (GH8710)

• Compat issue is `DataFrame.dtypes` when `options.mode.use_inf_as_null` is True (GH8722)

• Bug in `read_csv`, `dialect` parameter would not take a string (issue: 8703)

• Bug in slicing a multi-index level with an empty-list (GH8737)

• Bug in numeric index operations of add/sub with Float/Index Index with numpy arrays (GH8608)

• Bug in `setitem` with empty indexer and unwanted coercion of dtypes (GH8669)

• Bug in `ix/loc` block splitting on `setitem` (manifests with integer-like dtypes, e.g. `datetime64`) (GH8607)

• Bug when doing label based indexing with integers not found in the index for non-unique but monotonic indexes (GH8680).

• Bug when indexing a `Float64Index` with `np.nan` on numpy 1.7 (GH8980).

• Fix `shape` attribute for `MultiIndex` (GH8609)

• Bug in `GroupBy` where a name conflict between the grouper and columns would break `groupby` operations (GH7115, GH8112)

• Fixed a bug where plotting a column `y` and specifying a label would mutate the index name of the original `DataFrame` (GH8494)

• Fix regression in plotting of a `DatetimeIndex` directly with matplotlib (GH8614).
• Bug in `date_range` where partially-specified dates would incorporate current date (GH6961)
• Bug in Setting by indexer to a scalar value with a mixed-dtype `Panel4d` was failing (GH8702)
• Bug where DataReader's would fail if one of the symbols passed was invalid. Now returns data for valid symbols and np.nan for invalid (GH8494)
• Bug in `get_quote_yahoo` that wouldn’t allow non-float return values (GH5229).

1.2 v0.15.0 (October 18, 2014)

This is a major release from 0.14.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Warning: pandas >= 0.15.0 will no longer support compatibility with NumPy versions < 1.7.0. If you want to use the latest versions of pandas, please upgrade to NumPy >= 1.7.0 (GH7711)

• Highlights include:
  – The `Categorical` type was integrated as a first-class pandas type, see here
  – New scalar type `Timedelta`, and a new index type `TimedeltaIndex`, see here
  – New datetimelike properties accessor `.dt` for Series, see Datetimelike Properties
  – New DataFrame default display for `df.info()` to include memory usage, see Memory Usage
  – `read_csv` will now by default ignore blank lines when parsing, see here
  – API change in using Indexes in set operations, see here
  – Enhancements in the handling of timezones, see here
  – A lot of improvements to the rolling and expanding moment funtions, see here
  – Internal refactoring of the Index class to no longer sub-class `ndarray`, see Internal Refactoring
  – dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)
  – Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing
  – Split out string methods documentation into Working with Text Data
• Check the API Changes and deprecations before updating
• Other Enhancements
• Performance Improvements
• Bug Fixes

Warning: In 0.15.0 `Index` has internally been refactored to no longer sub-class `ndarray` but instead subclass `PandasObject`, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

Warning: The refactorings in `Categorical` changed the two argument constructor from “codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use `Categorical` directly, please audit your code before updating to this pandas version and change it to use the `from_codes()` constructor. See more on Categorical here
1.2.1 New features

**Categoricals in Series/DataFrame**

Categorical can now be included in Series and DataFrames and gained new methods to manipulate. Thanks to Jan Schulz for much of this API/implementation. (GH3943, GH5313, GH5314, GH7444, GH7839, GH7848, GH7864, GH7914, GH7768, GH8006, GH3678, GH8075, GH8076, GH8143, GH8453, GH8518).

For full docs, see the categorical introduction and the API documentation.

```
In [1]: df = DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})

In [2]: df["grade"] = df["raw_grade"].astype("category")

In [3]: df["grade"]
Out[3]:
 0 a
 1 b
 2 b
 3 a
 4 a
 5 e
Name: grade, dtype: category
Categories (3, object): [a < b < e]

Rename the categories
In [4]: df["grade"].cat.categories = ["very good", "good", "very bad"]

Reorder the categories and simultaneously add the missing categories
In [5]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [6]: df["grade"]
Out[6]:
 0 very good
 1 good
 2 good
 3 very good
 4 very good
 5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad < bad < medium < good < very good]

In [7]: df.sort("grade")
Out[7]:
 id raw_grade grade
 4 3 b good
 3 4 very good
 2 3 b good
 1 2 b good
 5 6 very bad
 0 1 a very good

In [8]: df.groupby("grade").size()
Out[8]:
 grade
 very bad 1
 bad NaN
 medium NaN
```
good  2
dtype: float64

- pandas.core.group_agg and pandas.core.factor_agg were removed. As an alternative, construct a dataframe and use `df.groupby(<group>).agg(<func>)`.

- Supplying “codes/labels and levels” to the Categorical constructor is not supported anymore. Supplying two arguments to the constructor is now interpreted as “values and levels (now called ‘categories’)”. Please change your code to use the `from_codes()` constructor.

- The `Categorical.labels` attribute was renamed to `Categorical.codes` and is read only. If you want to manipulate codes, please use one of the API methods on Categoricals.

- The `Categorical.levels` attribute is renamed to `Categorical.categories`.

### TimedeltaIndex/Scalar

We introduce a new scalar type `Timedelta`, which is a subclass of `datetime.timedelta`, and behaves in a similar manner, but allows compatibility with `np.timedelta64` types as well as a host of custom representation, parsing, and attributes. This type is very similar to how `Timestamp` works for datetimes. It is a nice-API box for the type. See the docs. (GH3009, GH4533, GH8209, GH8187, GH8190, GH7869, GH7661, GH8345, GH8471)

**Warning:** Timedelta scalars (and TimedeltaIndex) component fields are not the same as the component fields on a `datetime.timedelta` object. For example, `.seconds` on a `datetime.timedelta` object returns the total number of seconds combined between `hours`, `minutes` and `seconds`. In contrast, the pandas Timedelta breaks out hours, minutes, microseconds and nanoseconds separately.

```python
Timedelta accessor
In [9]: tds = Timedelta('31 days 5 min 3 sec')

In [10]: tds.minutes
Out[10]: 5L

In [11]: tds.seconds
Out[11]: 3L

datetime.timedelta accessor
this is 5 minutes * 60 + 3 seconds
In [12]: tds.to_pydatetime().seconds
Out[12]: 303
```

**Warning:** Prior to 0.15.0 `pd.to_timedelta` would return a `Series` for list-like/Series input, and a `np.timedelta64` for scalar input. It will now return a `TimedeltaIndex` for list-like input, `Series` for `Series` input, and `Timedelta` scalar for scalar input.

The arguments to `pd.to_timedelta` are now `(arg,unit='ns',box=True,coerce=False)`, previously were `(arg,box=True,unit='ns')` as these are more logical.

Construct a scalar

```python
In [13]: Timedelta('1 days 06:05:01.00003')
Out[13]: Timedelta('1 days 06:05:01.000030')

In [14]: Timedelta('15.5us')
Out[14]: Timedelta('0 days 00:00:00.000015')
```
In [15]: Timedelta('1 hour 15.5us')
Out[15]: Timedelta('0 days 01:00:00.000015')

# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [16]: Timedelta('-1us')
Out[16]: Timedelta('-1 days +23:59:59.999999')

# a NaT
In [17]: Timedelta('nan')
Out[17]: NaT

Access fields for a Timedelta
In [18]: td = Timedelta('1 hour 3m 15.5us')

In [19]: td.hours
Out[19]: 1L

In [20]: td.minutes
Out[20]: 3L

In [21]: td.microseconds
Out[21]: 15L

In [22]: td.nanoseconds
Out[22]: 500L

Construct a TimedeltaIndex
In [23]: TimedeltaIndex(['1 days','1 days, 00:00:05',
                   ....:
                   np.timedelta64(2,'D'),timedelta(days=2,seconds=2))

       Out[23]:
       <class 'pandas.tseries.tdi.TimedeltaIndex'>

       ['1 days 00:00:00', ..., '2 days 00:00:02']

       Length: 4, Freq: None

Constructing a TimedeltaIndex with a regular range
In [24]: timedelta_range('1 days',periods=5,freq='D')
Out[24]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>

['1 days', ..., '5 days']

Length: 5, Freq: <Day>

In [25]: timedelta_range(start='1 days',end='2 days',freq='30T')
Out[25]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>

['1 days 00:00:00', ..., '2 days 00:00:00']

Length: 49, Freq: <30 * Minutes>

You can now use a TimedeltaIndex as the index of a pandas object
In [26]: s = Series(np.arange(5),
                   ....:
                   index=timedelta_range('1 days',periods=5,freq='s'))

In [27]: s
You can select with partial string selections

\[
\text{In [28]: s['1 day 00:00:02']}
\]
\[
\text{Out[28]: 2}
\]

\[
\text{In [29]: s['1 day':'1 day 00:00:02']}
\]
\[
\text{Out[29]:}
\]
\[
\begin{align*}
1 \text{ days} & : 00:00:00 & 0 \\
1 \text{ days} & : 00:00:01 & 1 \\
1 \text{ days} & : 00:00:02 & 2 \\
1 \text{ days} & : 00:00:03 & 3 \\
1 \text{ days} & : 00:00:04 & 4 \\
\end{align*}
\]
\[
\text{Freq: <Second>, dtype: int32}
\]

Finally, the combination of `TimedeltaIndex` with `DatetimeIndex` allow certain combination operations that are `NaT` preserving:

\[
\text{In [30]: tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'])}
\]
\[
\text{In [31]: tdi.tolist()}
\]
\[
\text{Out[31]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]} 
\]

\[
\text{In [32]: dti = date_range('20130101', periods=3)}
\]
\[
\text{In [33]: dti.tolist()}
\]
\[
\text{Out[33]:}
\]
\[
\begin{align*}
\text{Timestamp('2013-01-01 00:00:00', offset='D'),} \\
\text{Timestamp('2013-01-02 00:00:00', offset='D'),} \\
\text{Timestamp('2013-01-03 00:00:00', offset='D')} \\
\end{align*}
\]

\[
\text{In [34]: (dti + tdi).tolist()}
\]
\[
\text{Out[34]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]} 
\]

\[
\text{In [35]: (dti - tdi).tolist()}
\]
\[
\text{Out[35]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]} 
\]

- iteration of a Series e.g. `list(Series(...))` of `timedelta64[ns]` would prior to v0.15.0 return `np.timedelta64` for each element. These will now be wrapped in `Timedelta`.

### Memory Usage

Implemented methods to find memory usage of a DataFrame. See the FAQ for more. (GH6852).

A new display option `display.memory_usage` (see Options and Settings) sets the default behavior of the `memory_usage` argument in the `df.info()` method. By default `display.memory_usage` is `True`.

\[
\text{In [36]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',} \\
\text{.....: 'complex128', 'object', 'bool']}
\]
\[
\text{In [37]: n = 5000}
\]
In [38]: data = dict([(t, np.random.randint(100, size=n).astype(t)) for t in dtypes])

In [39]: df = DataFrame(data)

In [40]: df['categorical'] = df['object'].astype('category')

In [41]: df.info()

Additionally memory_usage() is an available method for a dataframe object which returns the memory usage of each column.

In [42]: df.memory_usage(index=True)

.dt accessor

Series has gained an accessor to succinctly return datetime like properties for the values of the Series, if its a datetime/period like Series. (GH7207) This will return a Series, indexed like the existing Series. See the docs

# datetime
In [43]: s = Series(date_range('20130101 09:10:12', periods=4))

In [44]: s

In [45]: s.dt.hour
pandas: powerful Python data analysis toolkit, Release 0.15.1

```
In [46]: s.dt.second
Out[46]:
0 12
1 12
2 12
3 12
dtype: int64

In [47]: s.dt.day
Out[47]:
0 1
1 2
2 3
3 4
dtype: int64

In [48]: s.dt.freq
Out[48]: <Day>
```

This enables nice expressions like this:

```
In [49]: s[s.dt.day==2]
Out[49]:
1 2013-01-02 09:10:12
dtype: datetime64[ns]
```

You can easily produce tz aware transformations:

```
In [50]: stz = s.dt.tz_localize('US/Eastern')

In [51]: stz
Out[51]:
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00
dtype: object

In [52]: stz.dt.tz
Out[52]: <DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>
```

You can also chain these types of operations:

```
In [53]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[53]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: object
```

The `.dt` accessor works for period and timedelta dtypes.
# period
In [54]: s = Series(period_range('20130101', periods=4, freq='D'))

In [55]: s
Out[55]:
0  2013-01-01
1  2013-01-02
2  2013-01-03
3  2013-01-04
dtype: object

In [56]: s.dt.year
Out[56]:
0  2013
1  2013
2  2013
3  2013
dtype: int64

In [57]: s.dt.day
Out[57]:
0  1
1  2
2  3
3  4
dtype: int64

# timedelta
In [58]: s = Series(timedelta_range('1 day 00:00:05', periods=4, freq='s'))

In [59]: s
Out[59]:
0    1 days 00:00:05
1    1 days 00:00:06
2    1 days 00:00:07
3    1 days 00:00:08
dtype: timedelta64[ns]

In [60]: s.dt.days
Out[60]:
0  1
1  1
2  1
3  1
dtype: int64

In [61]: s.dt.seconds
Out[61]:
0   5
1   6
2   7
3   8
dtype: int64

In [62]: s.dt.components
Out[62]:
    days  hours  minutes  seconds  milliseconds  microseconds  nanoseconds
0        0       0        0          5              0            0            0
Timezone handling improvements

- `tz_localize(None)` for tz-aware Timestamp and DatetimeIndex now removes timezone holding local time, previously this resulted in Exception or TypeError (GH7812)

  In [63]: ts = Timestamp('2014-08-01 09:00', tz='US/Eastern')

  In [64]: ts
t  Out[64]: Timestamp('2014-08-01 09:00:00-0400', tz='US/Eastern')

  In [65]: ts.tz_localize(None)
  Out[65]: Timestamp('2014-08-01 09:00:00')

  In [66]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')

  In [67]: didx
d  Out[67]:<class 'pandas.tseries.index.DatetimeIndex'>
  [2014-08-01 09:00:00-04:00, ..., 2014-08-01 18:00:00-04:00]
  Length: 10, Freq: H, Timezone: US/Eastern

  In [68]: didx.tz_localize(None)
  Out[68]:<class 'pandas.tseries.index.DatetimeIndex'>
  [2014-08-01 09:00:00, ..., 2014-08-01 18:00:00]
  Length: 10, Freq: H, Timezone: None

- `tz_localize` now accepts the ambiguous keyword which allows for passing an array of bools indicating whether the date belongs in DST or not, ‘NaT’ for setting transition times to NaT, ‘infer’ for inferring DST/non-DST, and ‘raise’ (default) for an AmbiguousTimeError to be raised. See the docs for more details (GH7943)

- DataFrame.tz_localize and DataFrame.tz_convert now accepts an optional level argument for localizing a specific level of a MultiIndex (GH7846)

- Timestamp.tz_localize and Timestamp.tz_convert now raise TypeError in error cases, rather than Exception (GH8025)

- a timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone (rather than being a naive datetime64[ns]) as object dtype (GH8411)

- Timestamp.__repr__ displays dateutil.tz.tzoffset info (GH7907)

Rolling/Expanding Moments improvements

- `rolling_min()`, `rolling_max()`, `rolling_cov()`, and `rolling_corr()` now return objects with all NaN when len(arg) < min_periods <= window rather than raising. (This makes all rolling functions consistent in this behavior). (GH7766)

Prior to 0.15.0

In [69]: s = Series([10, 11, 12, 13])
In [15]: rolling_min(s, window=10, min_periods=5)
ValueError: min_periods (5) must be <= window (4)

New behavior

In [70]: rolling_min(s, window=10, min_periods=5)
Out[70]:
0  NaN
1  NaN
2  NaN
3  NaN
dtype: float64

- rolling_max(), rolling_min(), rolling_sum(), rolling_mean(), rolling_median(),
  rolling_std(), rolling_var(), rolling_skew(), rolling_kurt(),
  rolling_quantile(), rolling_cov(), rolling_corr(), rolling_corr_pairwise(),
  rolling_window(), and rolling_apply() with center=True previously would return a result of
  the same structure as the input arg with NaN in the final (window-1)/2 entries.

Now the final (window-1)/2 entries of the result are calculated as if the input arg were followed by
  (window-1)/2 NaN values (or with shrinking windows, in the case of rolling_apply()). (GH7925,
  GH8269)

Prior behavior (note final value is NaN):

In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0  1
1  3
2  6
3  NaN
dtype: float64

New behavior (note final value is 5 = sum([2, 3, NaN])):

In [71]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[71]:
0  1
1  3
2  6
3  5
dtype: float64

- rolling_window() now normalizes the weights properly in rolling mean mode (mean=True) so that the
calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated
  without weighting (i.e. ‘boxcar’). See the note on normalization for further details. (GH7618)

In [72]: s = Series([10.5, 8.8, 11.4, 9.7, 9.3])

Behavior prior to 0.15.0:

In [39]: rolling_window(s, window=3, win_type='triang', center=True)
Out[39]:
0    NaN
1  6.583333
2  6.883333
3  6.683333
4    NaN
dtype: float64
New behavior

In [73]: rolling_window(s, window=3, win_type='triang', center=True)
Out[73]:
0  NaN
1  9.875
2  10.325
3  10.025
4  NaN
dtype: float64

• Removed center argument from all expanding_ functions (see list), as the results produced when center=True did not make much sense. (GH7925)

• Added optional ddof argument to expanding_cov() and rolling_cov(). The default value of 1 is backwards-compatible. (GH8279)

• Documented the ddof argument to expanding_var(), expanding_std(), rolling_var(), and rolling_std(). These functions’ support of a ddof argument (with a default value of 1) was previously undocumented. (GH8064)

• ewma(), ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now interpret min_periods in the same manner that the rolling_*() and expanding_*() functions do: a given result entry will be NaN if the (expanding, in this case) window does not contain at least min_periods values. The previous behavior was to set to NaN the min_periods entries starting with the first non-NaN value. (GH7977)

Prior behavior (note values start at index 2, which is min_periods after index 0 (the index of the first non-empty value)):

In [74]: s = Series([1, None, None, None, 2, 3])
In [51]: ewma(s, com=3., min_periods=2)
Out[51]:
0  NaN
1  NaN
2  1.000000
3  1.000000
4  1.571429
5  2.189189
dtype: float64

New behavior (note values start at index 4, the location of the 2nd (since min_periods=2) non-empty value):

In [75]: ewma(s, com=3., min_periods=2)
Out[75]:
0  NaN
1  NaN
2  NaN
3  NaN
4  1.759644
5  2.383784
dtype: float64

• ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now have an optional adjust argument, just like ewma() does, affecting how the weights are calculated. The default value of adjust is True, which is backwards-compatible. See Exponentially weighted moment functions for details. (GH7911)

• ewma(), ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now have an optional ignore_na argument. When ignore_na=False (the default), missing values are taken into account in the weights calculation. When ignore_na=True (which reproduces the pre-0.15.0 behavior), missing values are ignored in the weights calculation. (GH7543)
In [76]: ewma(Series([None, 1., 8.]), com=2.)
Out[76]:
0  NaN
1   1.0
2   5.2
dtype: float64

In [77]: ewma(Series([1., None, 8.]), com=2., ignore_na=True)  # pre-0.15.0 behavior
Out[77]:
0   1.0
1   1.0
2   5.2
dtype: float64

In [78]: ewma(Series([1., None, 8.]), com=2., ignore_na=False)  # new default
Out[78]:
0   1.000000
1   1.000000
2   5.846154
dtype: float64

Warning: By default (ignore_na=False) the ewm*() functions’ weights calculation in the presence of missing values is different than in pre-0.15.0 versions. To reproduce the pre-0.15.0 calculation of weights in the presence of missing values one must specify explicitly ignore_na=True.

• Bug in expanding_cov(), expanding_corr(), rolling_cov(), rolling_cor(), ewmcov(), and ewmcorr() returning results with columns sorted by name and producing an error for non-unique columns; now handles non-unique columns and returns columns in original order (except for the case of two DataFrames with pairwise=False, where behavior is unchanged) (GH7542)

• Bug in rolling_count() and expanding_*() functions unnecessarily producing error message for zero-length data (GH8056)

• Bug in rolling_apply() and expanding_apply() interpreting min_periods=0 as min_periods=1 (GH8080)

• Bug in expanding_std() and expanding_var() for a single value producing a confusing error message (GH7900)

• Bug in rolling_std() and rolling_var() for a single value producing 0 rather than NaN (GH7900)

• Bug in ewmstd(), ewmvol(), ewmvar(), and ewmcov() calculation of de-biasing factors when bias=False (the default). Previously an incorrect constant factor was used, based on adjust=True, ignore_na=True, and an infinite number of observations. Now a different factor is used for each entry, based on the actual weights (analogous to the usual $N/(N-1)$ factor). In particular, for a single point a value of NaN is returned when bias=False, whereas previously a value of (approximately) 0 was returned.

For example, consider the following pre-0.15.0 results for ewmvar(..., bias=False), and the corresponding debiasing factors:

In [79]: s = Series([1., 2., 0., 4.])

In [89]: ewmvar(s, com=2., bias=False)
Out[89]:
0  -2.775558e-16
1   3.000000e-01
2   9.556787e-01
3   3.585799e+00
dtype: float64
In [90]: ewmvar(s, com=2., bias=False) / ewmvar(s, com=2., bias=True)
Out[90]:
    0    1.25
    1    1.25
    2    1.25
    3    1.25
dtype: float64

Note that entry 0 is approximately 0, and the debiasing factors are a constant 1.25. By comparison, the following 0.15.0 results have a NaN for entry 0, and the debiasing factors are decreasing (towards 1.25):

In [80]: ewmvar(s, com=2., bias=False)
Out[80]:
   0         NaN
   1    0.500000
   2   1.210526
   3  4.089069
dtype: float64

In [81]: ewmvar(s, com=2., bias=False) / ewmvar(s, com=2., bias=True)
Out[81]:
   0         NaN
   1  2.083333
   2  1.583333
   3  1.425439
dtype: float64

See Exponentially weighted moment functions for details. (GH7912)

Improvements in the sql io module

- Added support for a chunksize parameter to to_sql function. This allows DataFrame to be written in chunks and avoid packet-size overflow errors (GH8062).
- Added support for a chunksize parameter to read_sql function. Specifying this argument will return an iterator through chunks of the query result (GH2908).
- Added support for writing datetime.date and datetime.time object columns with to_sql (GH6932).
- Added support for specifying a schema to read from/write to with read_sql_table and to_sql (GH7441, GH7952). For example:

```
 df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')
```

1.2.2 Backwards incompatible API changes

Breaking changes

API changes related to Categorical (see here for more details):
• The Categorical constructor with two arguments changed from “codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use Categorical directly, please audit your code by changing it to use the from_codes() constructor.

An old function call like (prior to 0.15.0):

```python
pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c'])
```

will have to adapted to the following to keep the same behaviour:

```python
In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c'])
Out[2]:
[a, b, a, c, b]
Categories (3, object): [a, b, c]
```

API changes related to the introduction of the Timedelta scalar (see above for more details):

• Prior to 0.15.0 to_timedelta() would return a Series for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input.

For API changes related to the rolling and expanding functions, see detailed overview above.

Other notable API changes:

• Consistency when indexing with .loc and a list-like indexer when no values are found.

```python
In [82]: df = DataFrame([[‘a’],[‘b’]],index=[1,2])
In [83]: df
Out[83]:
 0
 1 a
 2 b
```

In prior versions there was a difference in these two constructs:

– `df.loc[[3]]` would return a frame reindexed by 3 (with all np.nan values)
– `df.loc[[3,:]]` would raise KeyError.

Both will now raise a KeyError. The rule is that at least 1 indexer must be found when using a list-like and .loc (GH7999)

Furthermore in prior versions these were also different:

– `df.loc[[1,3]]` would return a frame reindexed by [1,3]
– `df.loc[[1,3,:]]` would raise KeyError.

Both will now return a frame reindex by [1,3]. E.g.

```python
In [84]: df.loc[[1,3]]
Out[84]:
 0 1 3
 a NaN
```

```python
In [85]: df.loc[[1,3],:]
Out[85]:
 0 1 3
 a NaN
```
This can also be seen in multi-axis indexing with a `Panel`.

```python
In [86]: p = Panel(np.arange(2*3*4).reshape(2,3,4),
 : items=['ItemA','ItemB'],
 : major_axis=[1,2,3],
 : minor_axis=['A','B','C','D'])
```

```python
In [87]: p
Out[87]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemB
Major_axis axis: 1 to 3
Minor_axis axis: A to D
```

The following would raise `KeyError` prior to 0.15.0:

```python
In [88]: p.loc[['ItemA','ItemD'],:,'D']
```

```python
Out[88]:
ItemA ItemD
1 3 NaN
2 7 NaN
3 11 NaN
```

Furthermore, `.loc` will raise `KeyError` if no values are found in a multi-index with a list-like indexer:

```python
In [89]: s = Series(np.arange(3,dtype='int64'),
 : index=MultiIndex.from_product([['A'], ['foo','bar','baz']],
 : names=['one','two']).sortlevel()
```

```python
In [90]: s
Out[90]:
one two
A bar 1
 baz 2
 foo 0
dtype: int64
```

```python
In [91]: try:
 : s.loc[['D']]
 : except KeyError as e:
 : print("KeyError: " + str(e))
```

```
KeyError: 'cannot index a multi-index axis with these keys'
```

- Assigning values to `None` now considers the dtype when choosing an ‘empty’ value (GH7941).

Previously, assigning to `None` in numeric containers changed the dtype to object (or errored, depending on the call). It now uses NaN:

```python
In [92]: s = Series([1, 2, 3])
In [93]: s.loc[0] = None
In [94]: s
Out[94]:
0 NaN
dtype: int64
```
NaT is now used similarly for datetime containers.
For object containers, we now preserve `None` values (previously these were converted to `NaN` values).

```python
In [95]: s = Series(['a', 'b', 'c'])
In [96]: s.loc[0] = None
In [97]: s
Out[97]:
0 None
1 b
2 c
dtype: object
```

To insert a `NaN`, you must explicitly use `np.nan`. See the `docs`.

- In prior versions, updating a pandas object inplace would not reflect in other python references to this object. 
  `(GH8511, GH5104)`

  ```python
 In [98]: s = Series([1, 2, 3])
 In [99]: s2 = s
 In [100]: s += 1.5
 Behavior prior to v0.15.0
 # the original object
 In [5]: s
 Out[5]:
 0 2.5
 1 3.5
 2 4.5
 dtype: float64

 # a reference to the original object
 In [7]: s2
 Out[7]:
 0 1
 1 2
 2 3
 dtype: int64
  ```

  This is now the correct behavior

  ```python
 # the original object
 In [101]: s
 Out[101]:
 0 2.5
 1 3.5
 2 4.5
 dtype: float64

 # a reference to the original object
  ```
In [102]: s2
Out[102]:
0  2.5
1  3.5
2  4.5
dtype: float64

• Made both the C-based and Python engines for `read_csv` and `read_table` ignore empty lines in input as well as whitespace-filled lines, as long as `sep` is not whitespace. This is an API change that can be controlled by the keyword parameter `skip_blank_lines`. See the docs (GH4466)

• A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone and inserted as `object` dtype rather than being converted to a naive `datetime64[ns]` (GH8411).

• Bug in passing a `DatetimeIndex` with a timezone that was not being retained in DataFrame construction from a dict (GH7822)

  In prior versions this would drop the timezone, now it retains the timezone, but gives a column of `object` dtype:

  In [103]: i = date_range('1/1/2011', periods=3, freq='10s', tz = 'US/Eastern')
  In [104]: i
  Out[104]:
  <class 'pandas.tseries.index.DatetimeIndex'>
  [2011-01-01 00:00:00-05:00, ..., 2011-01-01 00:00:20-05:00]
  Length: 3, Freq: 10S, Timezone: US/Eastern

  In [105]: df = DataFrame({'a' : i })
  In [106]: df
  Out[106]:
          a
    0  2011-01-01 00:00:00-05:00
    1  2011-01-01 00:00:10-05:00
    2  2011-01-01 00:00:20-05:00

  In [107]: df.dtypes
  Out[107]:
         a
  dtype: object

  Previously this would have yielded a column of `datetime64` dtype, but without timezone info.

  The behaviour of assigning a column to an existing dataframe as `df['a'] = i` remains unchanged (this already returned an `object` column with a timezone).

• When passing multiple levels to `stack()`, it will now raise a `ValueError` when the levels aren’t all level names or all level numbers (GH7660). See Reshaping by stacking and unstacking.

• Raise a `ValueError` in `df.to_hdf` with ‘fixed’ format, if `df` has non-unique columns as the resulting file will be broken (GH7761)

• `SettingWithCopy` raise/warnings (according to the option `mode.chained_assignment`) will now be issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (GH7845, GH7950)

  In [1]: df = DataFrame(np.arange(0,9), columns=['count'])
  In [2]: df['group'] = 'b'
pandas: powerful Python data analysis toolkit, Release 0.15.1

In [3]: df.iloc[0:5]['group'] = 'a'
/usr/local/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html

• merge, DataFrame.merge, and ordered_merge now return the same type as the left argument (GH7737).

• Previously an enlargement with a mixed-dtype frame would act unlike .append which will preserve dtypes (related GH2578, GH8176):

In [108]: df = DataFrame([[True, 1],[False, 2]],
......: columns=["female","fitness"])
......:

In [109]: df
df

Out[109]:
female  fitness
0      True   1
1      False  2

In [110]: df.dtypes
dtypes: object

Out[110]:
female   bool   
fitness  int64
            dtype: object

# dtypes are now preserved

In [112]: df
df

Out[112]:
female    fitness
0   True    1
1  False    2
2  False    2

In [113]: df.dtypes
df

Out[113]:
female   bool   
fitness  int64
            dtype: object

• Series.to_csv() now returns a string when path=None, matching the behaviour of DataFrame.to_csv() (GH8215).

• read_hdf now raises IOError when a file that doesn’t exist is passed in. Previously, a new, empty file was created, and a KeyError raised (GH7715).

• DataFrame.info() now ends its output with a newline character (GH8114)

• Concatenating no objects will now raise a ValueError rather than a bare Exception.

• Merge errors will now be sub-classes of ValueError rather than raw Exception (GH8501)

• DataFrame.plot and Series.plot keywords are now have consistent orders (GH8037)
Internal Refactoring

In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be a transparent change with only very limited API implications (GH5080, GH7439, GH7796, GH8024, GH8367, GH7997, GH8522):

- you may need to unpickle pandas version < 0.15.0 pickles using pd.read_pickle rather than pickle.load. See pickle docs
- when plotting with a PeriodIndex, the matplotlib internal axes will now be arrays of Period rather than a PeriodIndex (this is similar to how a DatetimeIndex passes arrays of datetimes now)
- MultiIndex will now raise similarly to other pandas objects w.r.t. truth testing, see here (GH7897).
- When plotting a DatetimeIndex directly with matplotlib's plot function, the axis labels will no longer be formatted as dates but as integers (the internal representation of a datetime64). UPDATE This is fixed in 0.15.1, see here.

Deprecations

- The attributes Categorical labels and levels attributes are deprecated and renamed to codes and categories.
- The outtype argument to pd.DataFrame.to_dict has been deprecated in favor of orient. (GH7840)
- The convert_dummies method has been deprecated in favor of get_dummies (GH8140)
- The infer_dst argument in tz_localize will be deprecated in favor of ambiguous to allow for more flexibility in dealing with DST transitions. Replace infer_dst=True with ambiguous='infer' for the same behavior (GH7943). See the docs for more details.
- The top-level pd.value_range has been deprecated and can be replaced by .describe() (GH8481)
- The Index set operations + and - were deprecated in order to provide these for numeric type operations on certain index types. + can be replaced by .union() or |, and - by .difference(). Further the method name Index.diff() is deprecated and can be replaced by Index.difference() (GH8226)

```python
+
Index(['a','b','c']) + Index(['b','c','d'])

should be replaced by
Index(['a','b','c']).union(Index(['b','c','d']))

-
Index(['a','b','c']) - Index(['b','c','d'])

should be replaced by
Index(['a','b','c']).difference(Index(['b','c','d']))
```

- The infer_types argument to read_html() now has no effect and is deprecated (GH7762, GH7032).

Removal of prior version deprecations/changes

- Remove DataFrame.delevel method in favor of DataFrame.reset_index
### 1.2.3 Enhancements

Enhancements in the importing/exporting of Stata files:

- Added support for bool, uint8, uint16 and uint32 datatypes in `to_stata` (GH7097, GH7365)
- Added conversion option when importing Stata files (GH8527)
- `DataFrame.to_stata` and `StataWriter` check string length for compatibility with limitations imposed in dta files where fixed-width strings must contain 244 or fewer characters. Attempting to write Stata dta files with strings longer than 244 characters raises a `ValueError` (GH7858)
- `read_stata` and `StataReader` can import missing data information into a `DataFrame` by setting the argument `convert_missing` to True. When using this option, missing values are returned as `StataMissingValue` objects and columns containing missing values have `object` data type. (GH8045)

Enhancements in the plotting functions:

- Added `layout` keyword to `DataFrame.plot`. You can pass a tuple of `(rows, columns)`, one of which can be -1 to automatically infer (GH6667, GH8071).
- Allow to pass multiple axes to `DataFrame.plot`, `hist` and `boxplot` (GH5353, GH6970, GH7069)
- Added support for `c`, `colormap` and `colorbar` arguments for `DataFrame.plot` with kind='scatter' (GH7780)
- Histogram from `DataFrame.plot` with kind='hist' (GH7809), See the docs.
- Boxplot from `DataFrame.plot` with kind='box' (GH7998), See the docs.

Other:

- `read_csv` now has a keyword parameter `float_precision` which specifies which floating-point converter the C engine should use during parsing, see here (GH8002, GH8044)
- Added `searchsorted` method to `Series` objects (GH7447)
- `describe()` on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via the `include/exclude` arguments. See the docs (GH8164).

```
In [114]: df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8,
 : 'catB': ['a', 'b', 'c', 'd'] * 6,
 : 'numC': np.arange(24),
 : 'numD': np.arange(24.) + .5})

In [115]: df.describe(include=['object'])
Out[115]:
 catA catB
 count 24 24
 unique 2 4
 top foo d
 freq 16 6

In [116]: df.describe(include=['number', 'object'], exclude=['float'])
Out[116]:
 catA catB numC
 count 24 24 24.000000
 unique 2 4 NaN
 top foo d NaN
 freq 16 6 NaN
 mean NaN NaN 11.500000
 std NaN NaN 7.071068
```
Requested all columns is possible with the shorthand ‘all’

```
In[117]: df.describe(include='all')
Out[117]:
 catA catB numC numD
count 24.000 24.000 24.000 24.000
unique 2.000 4.000 NaN NaN
top foo d NaN NaN
freq 16.000 6.000 NaN NaN
mean NaN NaN 11.500 12.000
std NaN NaN 7.071 7.071
min NaN NaN 0.000 0.500
25% NaN NaN 5.750 6.250
50% NaN NaN 11.500 12.000
75% NaN NaN 17.250 17.750
max NaN NaN 23.000 23.500
```

Without those arguments, ‘describe’ will behave as before, including only numerical columns or, if none are, only categorical columns. See also the docs

- Added `split` as an option to the `orient` argument in `pd.DataFrame.to_dict`. (GH7840)
- The `get_dummies` method can now be used on DataFrames. By default only catagorical columns are encoded as 0’s and 1’s, while other columns are left untouched.

```
In [118]: df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
 'C': [1, 2, 3]})
In [119]: pd.get_dummies(df)
Out[119]:
 C A_a A_b B_b B_c
0 1 0 0 1
1 2 0 1 1
2 3 1 0 0
```

- `PeriodIndex` supports `resolution` as the same as `DatetimeIndex` (GH7708)
- `pandas.tseries.holiday` has added support for additional holidays and ways to observe holidays (GH7070)
- `pandas.tseries.holiday.Holiday` now supports a list of offsets in Python3 (GH7070)
- `pandas.tseries.holiday.Holiday` now supports a `days_of_week` parameter (GH7070)
- `GroupBy.nth()` now supports selecting multiple nth values (GH7910)

```
In [120]: business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B')
In [121]: df = DataFrame(1, index=business_dates, columns=['a', 'b'])
 # get the first, 4th, and last date index for each month
In [122]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[122]:
 a b
0 1 1
1 2 1
2 3 1
```
• Period and PeriodIndex supports addition/subtraction with timedelta-likes (GH7966)

If Period freq is D, H, T, S, L, U, N, Timedelta-like can be added if the result can have same freq. Otherwise, only the same offsets can be added.

In [123]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')

In [124]: idx
Out[124]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-07-01 09:00, ..., 2014-07-01 13:00]
Length: 5, Freq: H

In [125]: idx + pd.offsets.Hour(2)
Out[125]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-07-01 11:00, ..., 2014-07-01 15:00]
Length: 5, Freq: H

In [126]: idx + Timedelta('120m')
Out[126]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-07-01 11:00, ..., 2014-07-01 15:00]
Length: 5, Freq: H

In [127]: idx = pd.period_range('2014-07', periods=5, freq='M')

In [128]: idx
Out[128]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-07, ..., 2014-11]
Length: 5, Freq: M

In [129]: idx + pd.offsets.MonthEnd(3)
Out[129]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-10, ..., 2015-02]
Length: 5, Freq: M

• Added experimental compatibility with openpyxl for versions >= 2.0. The DataFrame.to_excel method engine keyword now recognizes openpyxl1 and openpyxl2 which will explicitly require openpyxl v1 and v2 respectively, failing if the requested version is not available. The openpyxl engine is now a meta-engine that automatically uses whichever version of openpyxl is installed. (GH7177)

• DataFrame.fillna can now accept a DataFrame as a fill value (GH8377)

• Passing multiple levels to stack() will now work when multiple level numbers are passed (GH7660). See Reshaping by stacking and unstacking.

• set_names(), set_labels(), and set_levels() methods now take an optional level keyword ar-
gument to all modification of specific level(s) of a MultiIndex. Additionally set_names() now accepts a scalar string value when operating on an Index or on a specific level of a MultiIndex (GH7792)

In [130]: idx = MultiIndex.from_product([['a'], range(3), list("pqr")], names=['foo', 'bar', 'baz'])

In [131]: idx.set_names('qux', level=0)
Out[131]:
MultiIndex(levels=[[u'a'], [0, 1, 2], [u'p', u'q', u'r']],
    labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
    names=[u'qux', u'bar', u'baz'])

In [132]: idx.set_names(['qux','baz'], level=[0,1])
Out[132]:
MultiIndex(levels=[[u'a'], [0, 1, 2], [u'p', u'q', u'r']],
    labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
    names=[u'qux', u'baz', u'baz'])

In [133]: idx.set_levels(['a','b','c'], level='bar')
Out[133]:
MultiIndex(levels=[[u'a'], [u'a', u'b', u'c'], [u'p', u'q', u'r']],
    labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
    names=[u'foo', u'bar', u'baz'])

Index.isin now supports a level argument to specify which index level to use for membership tests (GH7892, GH7890)

In [1]: idx = MultiIndex.from_product([[0, 1], ['a', 'b', 'c']])

In [2]: idx.values
Out[2]: array([(0, 'a'), (0, 'b'), (0, 'c'), (1, 'a'), (1, 'b'), (1, 'c')], dtype=object)

In [3]: idx.isin(['a', 'c', 'e'], level=1)
Out[3]: array([ True, False, True, False, True, False], dtype=bool)

Index now supports duplicated and drop_duplicates. (GH4060)

In [135]: idx = Index([1, 2, 3, 4, 1, 2])

In [136]: idx
Out[136]: Int64Index([1, 2, 3, 4, 1, 2], dtype='int64')

In [137]: idx.duplicated()
Out[137]: Index([False, False, False, False, True, True], dtype='bool')

In [138]: idx.drop_duplicates()
Out[138]: Int64Index([1, 2, 3, 4], dtype='int64')

add copy=True argument to pd.concat to enable pass thru of complete blocks (GH8252)

Added support for numpy 1.8+ data types (bool_, int_, float_, string_) for conversion to R dataframe (GH8400)
1.2.4 Performance

- Performance improvements in `DatetimeIndex.__iter__` to allow faster iteration (GH7683)
- Performance improvements in `Period` creation (and `PeriodIndex` setitem) (GH5155)
- Improvements in `Series.transform` for significant performance gains (revised) (GH6496)
- Performance improvements in `StataReader` when reading large files (GH8040, GH8073)
- Performance improvements in `StataWriter` when writing large files (GH8079)
- Performance and memory usage improvements in multi-key `groupby` (GH8128)
- Performance improvements in `groupby .agg` and `.apply` where builtins max/min were not mapped to numpy/cythonized versions (GH7722)
- Performance improvement in writing to sql (to_sql) of up to 50% (GH8208).
- Performance benchmarking of `groupby` for large value of ngroups (GH6787)
- Performance improvement in `CustomBusinessDay,CustomBusinessMonth` (GH8236)
- Performance improvement for `MultiIndex.values` for multi-level indexes containing datetimes (GH8543)

1.2.5 Bug Fixes

- Bug in `pivot_table`, when using margins and a dict `aggfunc` (GH8349)
- Bug in `read_csv` where `squeeze=True` would return a view (GH8217)
- Bug in checking of table name in `read_sql` in certain cases (GH7826).
- Bug in `DataFrame.groupby` where `Grouper` does not recognize level when frequency is specified (GH7885)
- Bug in multiindexes dtypes getting mixed up when `DataFrame` is saved to SQL table (GH8021)
- Bug in `Series` 0-division with a float and integer operand dtypes (GH7785)
- Bug in `Series.astype("unicode")` not calling `unicode` on the values correctly (GH7758)
- Bug in `DataFrame.as_matrix()` with mixed datetime64[ns] and timedelta64[ns] dtypes (GH7778)
- Bug in `HDFStore.select_column()` not preserving UTC timezone info when selecting a `DatetimeIndex` (GH7777)
- Bug in `to_datetime` when `format=’%Y%m%d’` and `coerce=True` are specified, where previously an object array was returned (rather than a coerced time-series with NaT), (GH7930)
- Bug in `DatetimeIndex` and `PeriodIndex` in-place addition and subtraction cause different result from normal one (GH6527)
- Bug in adding and subtracting `PeriodIndex` with `PeriodIndex` raise `TypeError` (GH7741)
- Bug in `combine_first` with `PeriodIndex` data raises `TypeError` (GH3367)
- Bug in multi-index slicing with missing indexers (GH7866)
- Bug in multi-index slicing with various edge cases (GH8132)
- Regression in multi-index indexing with a non-scalar type object (GH7914)
- Bug in `Timestamp` comparisons with `==` and int64 dtype (GH8058)
• Bug in pickles contains `DateOffset` may raise `AttributeError` when normalize attribute is referred internally (GH7748)

• Bug in Panel when using `major_xs` and `copy=False` is passed (deprecation warning fails because of missing warnings) (GH8152).

• Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity when matching block and manager items, when there’s only one block there’s no ambiguity (GH7794)

• Bug in putting a `PeriodIndex` into a `Series` would convert to `int64` dtype, rather than object of `Periods` (GH7932)

• Bug in `HDFStore` iteration when passing a `where` (GH8014)

• Bug in `DataFrameGroupby.transform` when transforming with a passed non-sorted key (GH8046, GH8430)

• Bug in repeated timeseries line and area plot may result in `ValueError` or incorrect kind (GH7733)

• Bug in inference in a `MultiIndex` with `datetime.date` inputs (GH7888)

• Bug in `get` where an `IndexError` would not cause the default value to be returned (GH7725)

• Bug in `offsets.apply`, `rollforward` and `rollback` may reset nanosecond (GH7697)

• Bug in `offsets.apply`, `rollforward` and `rollback` may raise `AttributeError` if `Timestamp` has `dateutil` tzinfo (GH7697)

• Bug in sorting a multi-index frame with a `Float64Index` (GH8017)

• Bug in inconsistent panel setitem with a rhs of a `DataFrame` for alignment (GH7763)

• Bug in `is_superperiod` and `is_subperiod` cannot handle higher frequencies than `S` (GH7760, GH7772, GH7803)

• Bug in 32-bit platforms with `Series.shift` (GH8129)

• Bug in `PeriodIndex.unique` returns `int64` np.ndarray (GH7540)

• Bug in `groupby.apply` with a non-affecting mutation in the function (GH8467)

• Bug in `DataFrame.reset_index` which has `MultiIndex` contains `PeriodIndex` or `DatetimeIndex` with `tz` raises `ValueError` (GH7746, GH7793)

• Bug in `DataFrame.plot` with `subplots=True` may draw unnecessary minor xticks and yticks (GH7801)

• Bug in `StataReader` which did not read variable labels in 117 files due to difference between Stata documentation and implementation (GH7816)

• Bug in `StataReader` where strings were always converted to 244 characters-fixed width irrespective of underlying string size (GH7858)

• Bug in `DataFrame.plot` and `Series.plot` may ignore `rot` and `fontsize` keywords (GH7844)

• Bug in `DatetimeIndex.value_counts` doesn’t preserve `tz` (GH7735)

• Bug in `PeriodIndex.value_counts` results in `Int64Index` (GH7735)

• Bug in `DataFrame.join` when doing left join on index and there are multiple matches (GH5391)

• Bug in `GroupBy.transform()` where int groups with a transform that didn’t preserve the index were incorrectly truncated (GH7972).

• Bug in `groupby` where callable objects without name attributes would take the wrong path, and produce a `DataFrame` instead of a `Series` (GH7929)

• Bug in `groupby` error message when a `DataFrame` grouping column is duplicated (GH7511)
- Bug in `read_html` where the `infer_types` argument forced coercion of date-likes incorrectly (GH7762, GH7032).
- Bug in `Series.str.cat` with an index which was filtered as to not include the first item (GH7857).
- Bug in `Timestamp` cannot parse nanosecond from string (GH7878).
- Bug in `Timestamp` with string offset and `tz` results incorrect (GH7833).
- Bug in `tslib.tz_convert` and `tslib.tz_convert_single` may return different results (GH7798).
- Bug in `DatetimeIndex.intersection` of non-overlapping timestamps with `tz` raises `IndexError` (GH7880).
- Bug in alignment with `TimeOps` and non-unique indexes (GH8363).
- Bug in `GroupBy.filter()` where fast path vs. slow path made the filter return a non scalar value that appeared valid but wasn’t (GH7870).
- Bug in `date_range()`/`DatetimeIndex()` when the timezone was inferred from input dates yet incorrect times were returned when crossing DST boundaries (GH7835, GH7901).
- Bug in `to_excel()` where a negative sign was being prepended to positive infinity and was absent for negative infinity (GH7949).
- Bug in area plot draws legend with incorrect `alpha` when `stacked=True` (GH8027).
- Period and `PeriodIndex` addition/subtraction with `np.timedelta64` results in incorrect internal representations (GH7740).
- Bug in `Holiday` with no offset or observance (GH7987).
- Bug in `DataFrame.to_latex` formatting when columns or index is a `MultiIndex` (GH7982).
- Bug in `DateOffset` around Daylight Savings Time produces unexpected results (GH5175).
- Bug in `DataFrame.shift` where empty columns would throw `ZeroDivisionError` on numpy 1.7 (GH8019).
- Bug in installation where `html_encoding/*.html` wasn’t installed and therefore some tests were not running correctly (GH7927).
- Bug in `read_html` where bytes objects were not tested for in `_read` (GH7927).
- Bug in `DataFrame.stack()` when one of the column levels was a datelike (GH8039).
- Bug in broadcasting numpy scalars with `DataFrame` (GH8116).
- Bug in `pivot_table` performed with nameless index and columns raises `KeyError` (GH8103).
- Bug in `DataFrame.plot(kind='scatter')` draws points and errorbars with different colors when the color is specified by `c` keyword (GH8081).
- Bug in `Float64Index` where `iat` and `at` were not testing and were failing (GH8092).
- Bug in `DataFrame.boxplot()` where y-limits were not set correctly when producing multiple axes (GH7528, GH5517).
- Bug in `read_csv` where line comments were not handled correctly given a custom line terminator or `delim_whitespace=True` (GH8122).
- Bug in `read_html` where empty tables caused a `StopIteration` (GH7575).
- Bug in `read_html` where empty tables caused a `StopIteration` (GH7575).
- Bug in casting when setting a column in a same-dtype block (GH7704).
- Bug in accessing groups from a `GroupBy` when the original grouper was a tuple (GH8121).
- Bug in `.at` that would accept integer indexers on a non-integer index and do fallback (GH7814).
• Bug with kde plot and NaNs (GH8182)
• Bug in `GroupBy.count` with float32 data type were nan values were not excluded (GH8169).
• Bug with stacked barplots and NaNs (GH8175).
• Bug in resample with non evenly divisible offsets (e.g. ‘7s’) (GH8371)
• Bug in interpolation methods with the `limit` keyword when no values needed interpolating (GH7173).
• Bug where `col_space` was ignored in `DataFrame.to_string()` when header=False (GH8230).
• Bug in `DatetimeIndex.asof` incorrectly matching partial strings and returning the wrong date (GH8245).
• Bug in plotting methods modifying the global matplotlib reParams (GH8242).
• Bug in `DataFrame.__setitem__` that caused errors when setting a dataframe column to a sparse array (GH8131)
• Bug where `Dataframe.boxplot()` failed when entire column was empty (GH8181).
• Bug with messed variables in `radviz` visualization (GH8199).
• Bug in interpolation methods with the `limit` keyword when no values needed interpolating (GH7173).
• Bug where `col_space` was ignored in `DataFrame.to_string()` when header=False (GH8230).
• Bug in `to_clipboard` that would clip long column data (GH8305)
• Bug in `DataFrame` terminal display: Setting max_column/max_rows to zero did not trigger auto-resizing of dfs to fit terminal width/height (GH7180).
• Bug in OLS where running with “cluster” and “nw_lags” parameters did not work correctly, but also did not throw an error (GH5884).
• Bug in `DataFrame.dropna` that interpreted non-existent columns in the subset argument as the ‘last column’ (GH8303)
• Bug in `Index.intersection` on non-monotonic non-unique indexes (GH8362).
• Bug in masked series assignment where mismatching types would break alignment (GH8387)
• Bug in `NDFrame.equals` gives false negatives with dtype=object (GH8437)
• Bug in assignment with indexer where type diversity would break alignment (GH8258)
• Bug in `NDFrame.loc` indexing when row/column names were lost when target was a list/ndarray (GH6552)
• Regression in `NDFrame.loc` indexing when rows/columns were converted to Float64Index if target was an empty list/ndarray (GH7774)
• Bug in `Series` that allows it to be indexed by a `DataFrame` which has unexpected results. Such indexing is no longer permitted (GH8444)
• Bug in item assignment of a `DataFrame` with multi-index columns where right-hand-side columns were not aligned (GH7655)
• Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality (GH7065)
• Bug in `DataFrame.eval()` where the dtype of the `not` operator (~) was not correctly inferred as `bool`.
1.3 v0.14.1 (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

- Highlights include:
  - New methods `select_dtypes()` to select columns based on the dtype and `sem()` to calculate the standard error of the mean.
  - Support for dateutil timezones (see docs).
  - Support for ignoring full line comments in the `read_csv()` text parser.
  - New documentation section on Options and Settings.
  - Lots of bug fixes.

- Enhancements
- API Changes
- Performance Improvements
- Experimental Changes
- Bug Fixes

1.3.1 API changes

- Openpyxl now raises a ValueError on construction of the openpyxl writer instead of warning on pandas import (GH7284).
- For `StringMethods.extract`, when no match is found, the result - only containing NaN values - now also has dtype=object instead of float (GH7242)
- Period objects no longer raise a TypeError when compared using `==` with another object that isn’t a Period. Instead when comparing a Period with another object using `==` if the other object isn’t a Period False is returned. (GH7376)
- Previously, the behaviour on resetting the time or not in offsets.apply, rollforward and rollback operations differed between offsets. With the support of the normalize keyword for all offsets(see below) with a default value of False (preserve time), the behaviour changed for certain offsets (BusinessMonthBegin, MonthEnd, BusinessMonthEnd, CustomBusinessMonthEnd, BusinessYearBegin, LastWeekOfMonth, FY5253Quarter, LastWeekOfMonth, Easter):

  ```
 In [6]: from pandas.tseries import offsets
 In [7]: d = pd.Timestamp('2014-01-01 09:00')

 # old behaviour < 0.14.1
 In [8]: d + offsets.MonthEnd()
 Out[8]: Timestamp('2014-01-31 00:00:00')

 Starting from 0.14.1 all offsets preserve time by default. The old behaviour can be obtained with normalize=True

 # new behaviour
 In [1]: d + offsets.MonthEnd()
 Out[1]: Timestamp('2014-01-31 09:00:00')
  ```
In [2]: d + offsets.MonthEnd(normalize=True)
Out[2]: Timestamp('2014-01-31 00:00:00')

Note that for the other offsets the default behaviour did not change.

- Add back #N/A N/A as a default NA value in text parsing, (regression from 0.12) (GH5521)
- Raise a TypeError on inplace-setting with a .where and a non np.nan value as this is inconsistent with a set-item expression like df[mask] = None (GH7656)

### 1.3.2 Enhancements

- Add dropna argument to value_counts and nunique (GH5569).
- Add select_dtypes() method to allow selection of columns based on dtype (GH7316). See the docs.
- All offsets supports the normalize keyword to specify whether offsets.apply, rollforward and rollback resets the time (hour, minute, etc) or not (default False, preserves time) (GH7156):
  
  ```python
 In [3]: import pandas.tseries.offsets as offsets

 In [4]: day = offsets.Day()

 In [5]: day.apply(Timestamp('2014-01-01 09:00'))
 Out[5]: Timestamp('2014-01-02 09:00:00')

 In [6]: day = offsets.Day(normalize=True)

 In [7]: day.apply(Timestamp('2014-01-01 09:00'))
 Out[7]: Timestamp('2014-01-02 00:00:00')
  ```

- PeriodIndex is represented as the same format as DatetimeIndex (GH7601)
- StringMethods now work on empty Series (GH7242)
- The file parsers read_csv and read_table now ignore line comments provided by the parameter comment, which accepts only a single character for the C reader. In particular, they allow for comments before file data begins (GH2685)
- Add NotImplementedError for simultaneous use of chunksize and nrows for read_csv() (GH6774).
- Tests for basic reading of public S3 buckets now exist (GH7281).
- read_html now sports an encoding argument that is passed to the underlying parser library. You can use this to read non-ascii encoded web pages (GH7323).
- read_excel now supports reading from URLs in the same way that read_csv does. (GH6809)
- Support for dateutil timezones, which can now be used in the same way as pytz timezones across pandas. (GH4688)

  ```python
 In [8]: rng = date_range('3/6/2012 00:00', periods=10, freq='D',
 tz='dateutil/Europe/London')
 ...:

 In [9]: rng.tz
 Out[9]: tzfile('/usr/share/zoneinfo/Europe/London')
  ```

See the docs.
• **Implemented** `sem` (standard error of the mean) operation for `Series`, `DataFrame`, `Panel`, and `Groupby` (GH6897)

• **Add** `nlargest` and `nsmallest` to the `Series` groupby whitelist, which means you can now use these methods on a `SeriesGroupBy` object (GH7053).

• **All offsets** apply, `rollforward` and `rollback` can now handle `np.datetime64`, previously results in `ApplyTypeError` (GH7452)

• **Period** and `PeriodIndex` can contain `NaT` in its values (GH7485)

• **Support pickling** `Series`, `DataFrame` and `Panel` objects with non-unique labels along `item` axis (index, columns and items respectively) (GH7370).

• Improved inference of datetime/timedelta with mixed null objects. Regression from 0.13.1 in interpretation of an object Index with all null elements (GH7431)

1.3.3 Performance

• **Improvements in dtype inference** for numeric operations involving yielding performance gains for dtypes: `int64`, `timedelta64`, `datetime64` (GH7223)

• **Improvements in Series.transform** for significant performance gains (GH6496)

• **Improvements in DataFrame.transform with ufuncs and built-in grouper functions** for significant performance gains (GH7383)

• **Regression in groupby aggregation of datetime64 dtypes** (GH7555)

• **Improvements in `MultiIndex.from_product` for large iterables** (GH7627)

1.3.4 Experimental

• **pandas.io.data.Options** has a new method, `get_all_data` method, and now consistently returns a multi-indexed `DataFrame`, see the docs. (GH5602)

• `io.gbq.read_gbq` and `io.gbq.to_gbq` were refactored to remove the dependency on the Google `bq.py` command line client. This submodule now uses `httplib2` and the Google `apiclient` and `oauth2client` API client libraries which should be more stable and, therefore, reliable than `bq.py`. See the docs. (GH6937).

1.3.5 Bug Fixes

• **Bug in DataFrame.where** with a symmetric shaped frame and a passed other of a `DataFrame` (GH7506)

• **Bug in Panel indexing with a multi-index axis** (GH7516)

• **Regression in datetime-like slice indexing** with a duplicated index and non-exact end-points (GH7523)

• **Bug in setitem with list-of-lists and single vs mixed types** (GH7551)

• **Bug in timeops with non-aligned Series** (GH7500)

• **Bug in timedelta inference** when assigning an incomplete `Series` (GH7592)

• **Bug in groupby .nth with a Series and integer-like column name** (GH7559)

• **Bug in Series.get with a boolean accessor** (GH7407)

• **Bug in value_counts where NaT did not qualify as missing** (NaN) (GH7423)
• Bug in `to_timedelta` that accepted invalid units and misinterpreted ‘m/h’ (GH7611, GH6423)
• Bug in line plot doesn’t set correct `xlim` if `secondary_y=True` (GH7459)
• Bug in grouped `hist` and `scatter` plots use old figsize default (GH7394)
• Bug in plotting subplots with `DataFrame.plot, hist` clears passed `ax` even if the number of subplots is one (GH7391).
• Bug in plotting subplots with `DataFrame.boxplot` with `by` kw raises `ValueError` if the number of subplots exceeds 1 (GH7391).
• Bug in subplots displays ticklabels and labels in different rule (GH5897)
• Bug in `Panel.apply` with a multi-index as an axis (GH7469)
• Bug in `DatetimeIndex.insert` doesn’t preserve name and tz (GH7299)
• Bug in `DatetimeIndex.asobject` doesn’t preserve name (GH7299)
• Bug in multi-index slicing with datetimelike ranges (strings and Timestamps), (GH7429)
• Bug in `Index.min` and `max` doesn’t handle `nan` and `NaT` properly (GH7261)
• Bug in `PeriodIndex.min/max` results in int (GH7609)
• Bug in `resample` where `fill_method` was ignored if you passed `how` (GH2073)
• Bug in `TimeGrouper` doesn’t exclude column specified by key (GH7227)
• Bug in `DataFrame` and `Series` `bar` and `barh` plot raises `TypeError` when `bottom` and `left` keyword is specified (GH7226)
• Bug in `DataFrame.hist` raises `TypeError` when it contains non numeric column (GH7277)
• Bug in `Index.delete` does not preserve name and freq attributes (GH7302)
• Bug in `DataFrame.query()`/eval where local string variables with the `@` sign were being treated as temporaries attempting to be deleted (GH7300).
• Bug in `Float64Index` which didn’t allow duplicates (GH7149).
• Bug in `DataFrame.replace()` where truthy values were being replaced (GH7140).
• Bug in `StringMethods.extract()` where a single match group Series would use the matcher’s name instead of the group name (GH7313).
• Bug in `isnull()` when `mode.use_inf_as_null` == True where `isnull` wouldn’t test `True` when it encountered an `inf/-inf` (GH7315).
• Bug in inferred_freq results in None for eastern hemisphere timezones (GH7310)
• Bug in `Easter` returns incorrect date when offset is negative (GH7195)
• Bug in broadcasting with `.div`, integer dtypes and divide-by-zero (GH7325)
• Bug in `CustomBusinessDay.apply` raises `NameError` when `np.datetime64` object is passed (GH7196)
• Bug in `MultiIndex.append, concat and pivot_table` don’t preserve timezone (GH6606)
• Bug in `.loc` with a list of indexers on a single-multi index level (that is not nested) (GH7349)
• Bug in `Series.map` when mapping a dict with tuple keys of different lengths (GH7333)
• Bug all `StringMethods` now work on empty Series (GH7242)
• Fix delegation of `read_sql` to `read_sql_query` when query does not contain ‘select’ (GH7324).
• Bug where a string column name assignment to a DataFrame with a Float64Index raised a TypeError during a call to np.isnan (GH7366).
• Bug where NDFrame.replace() didn’t correctly replace objects with Period values (GH7379).
• Bug in .ix getitem should always return a Series (GH7150)
• Bug in multi-index slicing with incomplete indexers (GH7399)
• Bug in multi-index slicing with a step in a sliced level (GH7400)
• Bug where negative indexers in DateTimeIndex were not correctly sliced (GH7408)
• Bug where NaT wasn’t repr’d correctly in a MultiIndex (GH7406, GH7409).
• Bug where bool objects were converted to nan in convert_objects (GH7416).
• Bug in quantile ignoring the axis keyword argument (:issue'7306')
• Bug where nanops._maybe_null_out doesn’t work with complex numbers (GH7353)
• Bug in several nanops functions when axis==0 for 1-dimensional nan arrays (GH7354)
• Bug where nanops.nanmedian doesn’t work when axis==None (GH7352)
• Bug where nanops._has_infs doesn’t work with many dtypes (GH7357)
• Bug in StataReader.data where reading a 0-observation dta failed (GH7369)
• Bug in StataReader when reading Stata 13 (117) files containing fixed width strings (GH7360)
• Bug in StataWriter where encoding was ignored (GH7286)
• Bug in DatetimeIndex comparison doesn’t handle NaT properly (GH7529)
• Bug in passing input with tzinfo to some offsets apply, rollforward or rollback resets tzinfo or raises ValueError (GH7465)
• Bug in DatetimeIndex.to_period, PeriodIndex.asobject, PeriodIndex.to_timestamp doesn’t preserve name (GH7485)
• Bug in DatetimeIndex.to_period and PeriodIndex.to_timestamp handle NaT incorrectly (GH7228)
• Bug in offsets.apply, rollforward and rollback may return normal datetime (GH7502)
• Bug in resample raises ValueError when target contains NaT (GH7227)
• Bug in Timestamp.tz_localize resets nanosecond info (GH7354)
• Bug in DatetimeIndex.asobject raises ValueError when it contains NaT (GH7359)
• Bug in Timestamp.__new__ doesn’t preserve nanosecond properly (GH7610)
• Bug in Index.astype(float) where it would return an object dtype Index (GH7464).
• Bug in DataFrame.reset_index resets index loses tz (GH3950)
• Bug in DatetimeIndex.freqstr raises AttributeError when freq is None (GH7606)
• Bug in GroupBy.size created by TimeGrouper raises AttributeError (GH7453)
• Bug in single column bar plot is misaligned (GH7498).
• Bug in area plot with tz-aware time series raises ValueError (GH7471)
• Bug in non-monotonic Index.union may preserve name incorrectly (GH7458)
• Bug in DatetimeIndex.intersection doesn’t preserve timezone (GH4690)
• Bug in `rolling_var` where a window larger than the array would raise an error (GH7297)
• Bug in `pandas.core.strings.str_contains` does not properly match in a case insensitive fashion when `regex=False` and `case=False` (GH7505)
• Bug in `expanding_cov`, `expanding_corr`, `rolling_cov`, and `rolling_corr` for two arguments with mismatched index (GH7512)
• Bug in `to_sql` taking the boolean column as text column (GH7678)

1.4 v0.14.0 (May 31, 2014)

This is a major release from 0.13.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Highlights include:
  – Officially support Python 3.4
  – SQL interfaces updated to use `sqlalchemy`, See Here.
  – Display interface changes, See Here
  – MultiIndexing Using Slicers, See Here.
  – Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see Here
  – More consistency in groupby results and more flexible groupby specifications, See Here
  – Holiday calendars are now supported in `CustomBusinessDay`, see Here
  – Several improvements in plotting functions, including: hexbin, area and pie plots, see Here.
  – Performance doc section on I/O operations, See Here

• Other Enhancements
• API Changes
• Text Parsing API Changes
• Groupby API Changes
• Performance Improvements
• Prior Deprecations
• Deprecations
• Known Issues
• Bug Fixes
1.4.1 API changes

- `read_excel` uses 0 as the default sheet (GH6573)

- `iloc` will now accept out-of-bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed. These will be excluded. This will make pandas conform more with python/numpy indexing of out-of-bounds values. A single indexer that is out-of-bounds and drops the dimensions of the object will still raise `IndexError` (GH6296, GH6299). This could result in an empty axis (e.g. an empty DataFrame being returned)

```
In [1]: dfl = DataFrame(np.random.randn(5,2),columns=list('AB'))

In [2]: dfl
Out[2]:
 A B
0 1.583584 -0.438313
1 -0.402537 -0.780572
2 -0.141685 0.542241
3 0.370966 -0.251642
4 0.787484 1.666563

In [3]: dfl.iloc[:,2:3]
Out[3]:
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [4]: dfl.iloc[:,1:3]
Out[4]:
 B
 0 -0.438313
 1 -0.780572
 2 0.542241
 3 -0.251642
 4 1.666563

In [5]: dfl.iloc[4:6]
Out[5]:
 A B
0 0.787484 1.666563

These are out-of-bounds selections
```

dfl.iloc[[4,5,6]]

```
IndexError: positional indexers are out-of-bounds
```

dfl.iloc[:,4]

```
IndexError: single positional indexer is out-of-bounds
```

- Slicing with negative start, stop & step values handles corner cases better (GH6531):
  - `df.iloc[:~len(df)]` is now empty
  - `df.iloc[len(df)::]` now enumerates all elements in reverse
• The `DataFrame.interpolate()` keyword downcast default has been changed from `infer` to `None`. This is to preserve the original dtype unless explicitly requested otherwise (GH6290).

• When converting a dataframe to HTML it used to return `Empty DataFrame`. This special case has been removed, instead a header with the column names is returned (GH6062).

• Series and Index now internall share more common operations, e.g. `factorize()`, `nunique()`, `value_counts()` are now supported on Index types as well. The `Series.weekday` property from is removed from Series for API consistency. Using a `DateTimeIndex/PeriodIndex` method on a Series will now raise a `TypeError` (GH4551, GH4056, GH5519, GH6380, GH7206).

• Add `is_month_start`, `is_month_end`, `is_quarter_start`, `is_quarter_end`, `is_year_start`, `is_year_end` accessors for `DateTimeIndex / Timestamp` which return a boolean array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the frequency of the `DateTimeIndex / Timestamp` (GH4565, GH6998).

• Local variable usage has changed in `pandas.eval()`/`DataFrame.eval()`/`DataFrame.query()` (GH5987). For the `DataFrame` methods, two things have changed
  – Column names are now given precedence over locals
  – Local variables must be referred to explicitly. This means that even if you have a local variable that is *not* a column you must still refer to it with the ‘@’ prefix.
  – You can have an expression like `df.query('@a < a')` with no complaints from `pandas` about ambiguity of the name `a`.
  – The top-level `pandas.eval()` function does not allow you use the ‘@’ prefix and provides you with an error message telling you so.
  – `NameResolutionError` was removed because it isn’t necessary anymore.

• Define and document the order of column vs index names in query/eval (GH6676)

• `concat` will now concatenate mixed Series and DataFrames using the Series name or numbering columns as needed (GH2385). See the docs.

• Slicing and advanced/boolean indexing operations on `Index` classes as well as `Index.delete()` and `Index.drop()` methods will no longer change the type of the resulting index (GH6440, GH7040)

```
In [6]: i = pd.Index([1, 2, 3, 'a', 'b', 'c'])

In [7]: i[0,1,2]
Out[7]: Index([1, 2, 3], dtype='object')

In [8]: i.drop(['a', 'b', 'c'])
Out[8]: Int64Index([1, 2, 3], dtype='int64')
```

Previously, the above operation would return `Int64Index`. If you’d like to do this manually, use `Index.astype()`

```
In [9]: i[0,1,2].astype(np.int_)
Out[9]: Int64Index([1, 2, 3], dtype='int32')
```

• `set_index` no longer converts MultiIndexes to an Index of tuples. For example, the old behavior returned an Index in this case (GH6459):

  ```
 # Old behavior, casted MultiIndex to an Index
 In [10]: tuple_ind
 Out[10]: Index(((u'a', u'c'), (u'a', u'd'), (u'b', u'c'), (u'b', u'd')), dtype='object')
  ```

```

1.4. v0.14.0 (May 31, 2014) 43
```
In [11]: df_multi.set_index(tuple_ind)
Out[11]:
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, c)</td>
<td>0.471435</td>
<td>-1.190976</td>
</tr>
<tr>
<td>(a, d)</td>
<td>1.432707</td>
<td>-0.312652</td>
</tr>
<tr>
<td>(b, c)</td>
<td>-0.720589</td>
<td>0.887163</td>
</tr>
<tr>
<td>(b, d)</td>
<td>0.859588</td>
<td>-0.636524</td>
</tr>
</tbody>
</table>

# New behavior
In [12]: mi
Out[12]: MultiIndex(levels=[['a', 'b'], ['c', 'd']],
              labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

In [13]: df_multi.set_index(mi)
Out[13]:
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>0.471435 -1.190976</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>1.432707 -0.312652</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>-0.720589 0.887163</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>0.859588 -0.636524</td>
</tr>
</tbody>
</table>

This also applies when passing multiple indices to set_index:

# Old output, 2-level MultiIndex of tuples
In [14]: df_multi.set_index([df_multi.index, df_multi.index])
Out[14]:
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, c)</td>
<td>(a, c) 0.471435</td>
<td>-1.190976</td>
</tr>
<tr>
<td>(a, d)</td>
<td>(a, d) 1.432707</td>
<td>-0.312652</td>
</tr>
<tr>
<td>(b, c)</td>
<td>(b, c) -0.720589</td>
<td>0.887163</td>
</tr>
<tr>
<td>(b, d)</td>
<td>(b, d) 0.859588</td>
<td>-0.636524</td>
</tr>
</tbody>
</table>

# New output, 4-level MultiIndex
In [15]: df_multi.set_index([df_multi.index, df_multi.index])
Out[15]:
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>a c</td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b c</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>

• pairwise keyword was added to the statistical moment functions rolling_cov, rolling_corr, ewmcov, ewmcorr, expanding_cov, expanding_corr to allow the calculation of moving window covariance and correlation matrices (GH4950). See Computing rolling pairwise covariances and correlations in the docs.

In [16]: df = DataFrame(np.random.randn(10,4),columns=list('ABCD'))

In [17]: covs = rolling_cov(df[['A','B','C']], df[['B','C','D']], 5, pairwise=True)

In [18]: covs[df.index[-1]]
Out[18]:
<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.128104</td>
<td>0.183628</td>
<td>-0.047358</td>
</tr>
<tr>
<td>B</td>
<td>0.856265</td>
<td>0.058945</td>
<td>0.145447</td>
</tr>
<tr>
<td>C</td>
<td>0.058945</td>
<td>0.335350</td>
<td>0.390637</td>
</tr>
</tbody>
</table>

• Series.iteritems() is now lazy (returns an iterator rather than a list). This was the documented behavior
prior to 0.14. (GH6760)

- **Added** `nunique` and `value_counts` functions to `Index` for counting unique elements. (GH6734)
- `stack` and `unstack` now raise a `ValueError` when the `level` keyword refers to a non-unique item in the `Index` (previously raised a `KeyError`). (GH6738)
- `drop` unused order argument from `Series.sort`; args now are in the same order as `Series.order`; add `na_position` arg to conform to `Series.order` (GH6847)
- default sorting algorithm for `Series.order` is now quicksort, to conform with `Series.sort` (and numpys defaults)
- add `inplace` keyword to `Series.order/sort` to make them inverses (GH6859)
- `DataFrame.sort` now places NaNs at the beginning or end of the sort according to the `na_position` parameter. (GH3917)
- accept `TextFileReader` in `concat`, which was affecting a common user idiom (GH6583), this was a regression from 0.13.1
- **Added** `factorize` functions to `Index` and `Series` to get indexer and unique values (GH7090)
- `describe` on a `DataFrame` with a mix of `Timestamp` and string like objects returns a different `Index` (GH7088).
  Previously the index was unintentionally sorted.
- Arithmetic operations with **only** bool dtypes now give a warning indicating that they are evaluated in Python space for `+`, `-`, and `*` operations and raise for all others (GH7011, GH6762, GH7015, GH7210)

```python
x = pd.Series(np.random.rand(10) > 0.5)
y = True
x + y # warning generated: should do x | y instead
x / y # this raises because it doesn’t make sense
```

`NotImplementedError: operator ‘/’ not implemented for bool dtypes`

- In `HDFStore`, `select_as_multiple` will always raise a `KeyError`, when a key or the selector is not found (GH6177)
- `df[‘col’] = value and df.loc[:,’col’] = value` are now completely equivalent; previously the `.loc` would not necessarily coerce the dtype of the resultant series (GH6149)
- `dtypes` and `ftypes` now return a series with `dtype=object` on empty containers (GH5740)
- `df.to_csv` will now return a string of the CSV data if neither a target path nor a buffer is provided (GH6061)
- `pd.infer_freq()` will now raise a `TypeError` if given an invalid `Series/Index` type (GH6407, GH6463)
- A tuple passed to `DataFrame.sort_index` will be interpreted as the levels of the index, rather than requiring a list of tuple (GH4370)
- all offset operations now return `Timestamp` types (rather than `datetime`), Business/Week frequencies were incorrect (GH4069)
- `to_excel` now converts `np.inf` into a string representation, customizable by the `inf_rep` keyword argument (Excel has no native inf representation) (GH6782)
- Replace `pandas.compat.scipy.scoreatpercentile` with `numpy.percentile` (GH6810)
- `.quantile` on a `datetime[ns]` series now returns `Timestamp` instead of `np.datetime64` objects (GH6810)
- change `AssertionError` to `TypeError` for invalid types passed to `concat` (GH6583)
• Raise a `TypeError` when DataFrame is passed an iterator as the data argument (GH5357)

### 1.4.2 Display Changes

• The default way of printing large DataFrames has changed. DataFrames exceeding `max_rows` and/or `max_columns` are now displayed in a centrally truncated view, consistent with the printing of a `pandas.Series` (GH5603).

  In previous versions, a DataFrame was truncated once the dimension constraints were reached and an ellipse (...) signaled that part of the data was cut off.

```python
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: pd.options.display.max_rows = 6
In [4]: pd.options.display.max_columns = 6
In [5]: index = pd.DatetimeIndex(start='20010101', freq='D', periods=10)
In [6]: pd.DataFrame(np.arange(10*10).reshape((10,10)), index=index)
```

```
Out[6]:
 0 1 2 3 4 5
2001-01-01 0 1 2 3 4 5 ...
2001-01-02 10 11 12 13 14 15 ...
2001-01-03 20 21 22 23 24 25 ...
2001-01-04 30 31 32 33 34 35 ...
2001-01-05 40 41 42 43 44 45 ...
2001-01-06 50 51 52 53 54 55 ...

[10 rows x 10 columns]
```

In the current version, large DataFrames are centrally truncated, showing a preview of head and tail in both dimensions.

```python
In [24]: pd.DataFrame(np.arange(10*10).reshape((10,10)), index=index)
```

```
Out[24]:
 0 1 2 ... 7 8 9
2001-01-01 0 1 2 ... 7 8 9
2001-01-02 10 11 12 ... 17 18 19
2001-01-03 20 21 22 ... 27 28 29
...
2001-01-08 70 71 72 ... 77 78 79
2001-01-09 80 81 82 ... 87 88 89
2001-01-10 90 91 92 ... 97 98 99

[10 rows x 10 columns]
```

• allow option 'truncate' for `display.show_dimensions` to only show the dimensions if the frame is truncated (GH6547).

  The default for `display.show_dimensions` will now be `truncate`. This is consistent with how Series
display length.

In [19]: dfd = pd.DataFrame(np.arange(25).reshape(-1, 5), index=[0, 1, 2, 3, 4], columns=[0, 1, 2, 3, 4])

# show dimensions since this is truncated
In [20]: with pd.option_context('display.max_rows', 2, 'display.max_columns', 2, 'display.show_dimensions', 'truncate'):
    ....:     print(dfd)
    ....:
    0 ... 4
0 0 ... 4
.. .. ... ..
4 20 ... 24

[5 rows x 5 columns]

# will not show dimensions since it is not truncated
In [21]: with pd.option_context('display.max_rows', 10, 'display.max_columns', 40, 'display.show_dimensions', 'truncate'):
    ....:     print(dfd)
    ....:
    0 1 2 3 4
0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24

• Regression in the display of a MultiIndexed Series with display.max_rows is less than the length of the series (GH7101)
• Fixed a bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set to 'info' (GH7105)
• The verbose keyword in DataFrame.info(), which controls whether to shorten the info representation, is now None by default. This will follow the global setting in display.max_info_columns. The global setting can be overridden with verbose=True or verbose=False.
• Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)
• Offset/freq info now in Timestamp __repr__ (GH4553)

1.4.3 Text Parsing API Changes

read_csv() / read_table() will now be noiser w.r.t invalid options rather than falling back to the PythonParser.
• Raise ValueError when sep specified with delim_whitespace=True in read_csv() / read_table() (GH6607)
• Raise ValueError when engine='c' specified with unsupported options in read_csv() / read_table() (GH6607)
• Raise ValueError when fallback to python parser causes options to be ignored (GH6607)
• Produce ParserWarning on fallback to python parser when no options are ignored (GH6607)
• Translate sep='\s+' to delim_whitespace=True in read_csv() / read_table() if no other C-unsupported options specified (GH6607)
1.4.4 Groupby API Changes

More consistent behaviour for some groupby methods:

- `groupby` head and tail now act more like filter rather than an aggregation:

  ```
 In [22]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
 In [23]: g = df.groupby('A')
 In [24]: g.head(1) # filters DataFrame
 Out[24]:
 A B
 0 1 2
 2 5 6
 In [25]: g.apply(lambda x: x.head(1)) # used to simply fall-through
 Out[25]:
 A B
 A 0 1 2
 5 2 6
  ```

- `groupby` head and tail respect column selection:

  ```
 In [26]: g[['B']].head(1)
 Out[26]:
 B
 0 2
 2 6
  ```

- `groupby` nth now reduces by default; filtering can be achieved by passing `as_index=False`. With an optional `dropna` argument to ignore NaN. See the docs.

Reducing

```
In [27]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
In [28]: g = df.groupby('A')
In [29]: g.nth(0)
Out[29]:
 B
 A
 1 NaN
 5 6
 # this is equivalent to g.first()
In [30]: g.nth(0, dropna='any')
Out[30]:
 B
 A
 1 4
 5 6
 # this is equivalent to g.last()
In [31]: g.nth(-1, dropna='any')
Out[31]:
 B
 A
```
Filtering

In [32]: gf = df.groupby('A', as_index=False)

In [33]: gf.nth(0)
Out[33]:
   A  B
0  1 NaN
2  5  6

In [34]: gf.nth(0, dropna='any')
Out[34]:
   B
A
  1  4
  5  6

- groupby will now not return the grouped column for non-cython functions (GH5610, GH5614, GH6732), as its already the index

In [35]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [36]: g = df.groupby('A')

In [37]: g.count()
Out[37]:
   B
A
  1 1
  5 2

In [38]: g.describe()
Out[38]:
   B
A
  1 count  1.000000
       mean  4.000000
          std NaN
           min  4.000000
          25%  4.000000
          50%  4.000000
          75%  4.000000
             ...
  5 count  2.000000
       mean  7.000000
          std  1.414214
           min  6.000000
          25%  6.500000
          50%  7.000000
          75%  7.500000
         max  8.000000

[16 rows x 1 columns]

- passing as_index will leave the grouped column in-place (this is not change in 0.14.0)
In [39]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [40]: g = df.groupby('A', as_index=False)

In [41]: g.count()
Out[41]:
   A  B
0  1  1
1  5  2

In [42]: g.describe()
Out[42]:
   A       B
0  count   2  1.000000
     mean   1  4.000000
      std   0 NaN
     min   1  4.000000
    25%   1  4.000000
   50%   1  4.000000
  75%   1  4.000000
     ...      ... ...
1  mean   5  7.000000
    std   0  1.414214
    min   5  6.000000
   25%   5  6.500000
   50%   5  7.000000
  75%   5  7.500000
   max   5  8.000000

[16 rows x 2 columns]

• Allow specification of a more complex groupby via `pd.Grouper`, such as grouping by a Time and a string field simultaneously. See the docs. (GH3794)

• Better propagation/preservation of Series names when performing groupby operations:
  - `SeriesGroupBy.agg` will ensure that the name attribute of the original series is propagated to the result (GH6265).
  - If the function provided to `GroupBy.apply` returns a named series, the name of the series will be kept as the name of the column index of the DataFrame returned by `GroupBy.apply` (GH6124). This facilitates `DataFrame.stack` operations where the name of the column index is used as the name of the inserted column containing the pivoted data.

### 1.4.5 SQL

The SQL reading and writing functions now support more database flavors through SQLAlchemy (GH2717, GH4163, GH5950, GH6292). All databases supported by SQLAlchemy can be used, such as PostgreSQL, MySQL, Oracle, Microsoft SQL server (see documentation of SQLAlchemy on included dialects).

The functionality of providing DBAPI connection objects will only be supported for sqlite3 in the future. The `mysql` flavor is deprecated.

The new functions `read_sql_query()` and `read_sql_table()` are introduced. The function `read_sql()` is kept as a convenience wrapper around the other two and will delegate to specific function depending on the provided input (database table name or sql query).

In practice, you have to provide a SQLAlchemy engine to the sql functions. To connect with SQLAlchemy you use
the `create_engine()` function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For an in-memory sqlite database:

```python
In [43]: from sqlalchemy import create_engine
Create your connection.
In [44]: engine = create_engine('sqlite:////:memory:)
```

This engine can then be used to write or read data to/from this database:

```python
In [45]: df = pd.DataFrame({'A': [1,2,3], 'B': ['a', 'b', 'c']})
In [46]: df.to_sql('db_table', engine, index=False)
```

You can read data from a database by specifying the table name:

```python
In [47]: pd.read_sql_table('db_table', engine)
Out[47]:
 A B
0 1 a
1 2 b
2 3 c
```

or by specifying a sql query:

```python
In [48]: pd.read_sql_query('SELECT * FROM db_table', engine)
Out[48]:
 A B
0 1 a
1 2 b
2 3 c
```

Some other enhancements to the sql functions include:

- support for writing the index. This can be controlled with the `index` keyword (default is True).
- specify the column label to use when writing the index with `index_label`.
- specify string columns to parse as datetimes with the `parse_dates` keyword in `read_sql_query()` and `read_sql_table()`.

**Warning:** Some of the existing functions or function aliases have been deprecated and will be removed in future versions. This includes: `tquery`, `uquery`, `read_frame`, `frame_query`, `write_frame`.

**Warning:** The support for the 'mysql' flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).

### 1.4.6 MultiIndexing Using Slicers

In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see `Selection by Label`, including slices, lists of labels, labels, and boolean indexers.

You can use `slice(None)` to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as `slice(None)`.

As usual, **both sides** of the slicers are included as this is label indexing.
Warning: You should specify all axes in the `.loc` specifier, meaning the indexer for the `index` and for the `columns`. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MuliIndex for the rows. You should do this:

```
df.loc[(slice('A1','A3'),......,:),]
```

rather than this:

```
df.loc[(slice('A1','A3'),......)]
```

Warning: You will need to make sure that the selection axes are fully lexsorted!

```
In [49]: def mklbl(prefix,n):
 : return ["%s%s" % (prefix,i) for i in range(n)]
 :

In [50]: index = MultiIndex.from_product([mklbl('A',4),
 : mklbl('B',2),
 : mklbl('C',4),
 : mklbl('D',2)])
 :

In [51]: columns = MultiIndex.from_tuples([('a','foo'),('a','bar'),
 : ('b','foo'),('b','bah')],
 : names=['lvl0', 'lvl1'])
 :

In [52]: df = DataFrame(np.arange(len(index)*len(columns)).reshape((len(index),len(columns))),
 : index=index,
 : columns=columns).sortlevel().sortlevel(axis=1)
 :

In [53]: df
Out[53]:
 a b
-- --
 A B C D
lvl0
lvl1
A0 B0 C0 D0 1 0 3 2
 D1 5 4 7 6
C1 D0 9 8 11 10
 D1 13 12 15 14
C2 D0 17 16 19 18
 D1 21 20 23 22
C3 D0 25 24 27 26
 D1 29 28 31 30
 ...
A3 B1 C0 D1 229 228 231 230
C1 D0 233 232 235 234
 D1 237 236 239 238
C2 D0 241 240 243 242
 D1 245 244 247 246
C3 D0 249 248 251 250
 D1 253 252 255 254
...
[64 rows x 4 columns]
Basic multi-index slicing using slices, lists, and labels.

In [54]: df.loc[(slice('A1', 'A3'), slice(None), ['C1', 'C3']), :]
Out[54]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lvl0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>lvl1</td>
<td></td>
<td>bar</td>
</tr>
<tr>
<td>A1</td>
<td>B0</td>
<td>C0</td>
</tr>
<tr>
<td></td>
<td>73</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>77</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>93</td>
<td>92</td>
</tr>
<tr>
<td>B1</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>105</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>121</td>
<td>120</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>B0</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>205</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>217</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>221</td>
<td>220</td>
</tr>
<tr>
<td>B1</td>
<td>C0</td>
<td>D1</td>
</tr>
<tr>
<td></td>
<td>233</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>237</td>
<td>236</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>249</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>253</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>B0</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>A0</td>
<td>B0</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>B0</td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>216</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>222</td>
</tr>
<tr>
<td>A3</td>
<td>B0</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>232</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>238</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>254</td>
</tr>
</tbody>
</table>

[24 rows x 4 columns]

You can use a pd.IndexSlice to shortcut the creation of these slices

In [55]: idx = pd.IndexSlice

In [56]: df.loc[idx[:, :, ['C1', 'C3']], idx[:, 'foo']]
Out[56]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lvl0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>lvl1</td>
<td></td>
<td>foo foo</td>
</tr>
<tr>
<td>A0</td>
<td>B0</td>
<td>C0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>B1</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>B0</td>
<td>C1</td>
</tr>
<tr>
<td></td>
<td>204</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>216</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>220</td>
<td>222</td>
</tr>
<tr>
<td>B1</td>
<td>C1</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>232</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>236</td>
<td>238</td>
</tr>
<tr>
<td>C3</td>
<td>D0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>248</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>252</td>
<td>254</td>
</tr>
</tbody>
</table>

[32 rows x 2 columns]

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

In [57]: df.loc['A1', (slice(None), 'foo')]
Out[57]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>lvl0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>lvl1</td>
<td></td>
<td>foo foo</td>
</tr>
<tr>
<td>B0</td>
<td>C0</td>
<td>D0</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>68</td>
<td>70</td>
</tr>
<tr>
<td>C1</td>
<td>D0</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>76</td>
<td>78</td>
</tr>
</tbody>
</table>

[24 rows x 4 columns]
Using a boolean indexer you can provide selection related to the `values`.

```python
mask = df[('a', 'foo')] > 200

In [60]: df.loc[idx[mask, [:'C1', 'C3']], idx[::, 'foo']]  
Out[60]:  
```

You can also specify the `axis` argument to `.loc` to interpret the passed slicers on a single axis.

```python
In [61]: df.loc(axis=0)[:, [:'C1', 'C3']]  
Out[61]:  
```

Chapter 1. What’s New
Furthermore you can set the values using these methods:

In[62]: df2 = df.copy()

In[63]: df2.loc(axis=0)[::,::,['C1','C3']] = -10

In[64]: df2

Out[64]:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[32 rows x 4 columns]

You can use a right-hand-side of an alignable object as well.

In[65]: df2 = df.copy()

In[66]: df2.loc[idx[::,::,['C1','C3']],:] = df2*1000

In[67]: df2

Out[67]:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[64 rows x 4 columns]
1.4.7 Plotting

- Hexagonal bin plots from DataFrame.plot with kind='hexbin' (GH5478), See the docs.
- DataFrame.plot and Series.plot now supports area plot with specifying kind='area' (GH6656), See the docs.
- Pie plots from Series.plot and DataFrame.plot with kind='pie' (GH6976), See the docs.
- Plotting with Error Bars is now supported in the .plot method of DataFrame and Series objects (GH3796, GH6834), See the docs.
- DataFrame.plot and Series.plot now support a table keyword for plotting matplotlib.Table, See the docs. The table keyword can receive the following values.
 - False: Do nothing (default).
 - True: Draw a table using the DataFrame or Series called plot method. Data will be transposed to meet matplotlib’s default layout.
 - DataFrame or Series: Draw matplotlib.table using the passed data. The data will be drawn as displayed in print method (not transposed automatically). Also, helper function pandas.tools.plotting.table is added to create a table from DataFrame and Series, and add it to an matplotlib.Axes.
- plot(legend='reverse') will now reverse the order of legend labels for most plot kinds. (GH6014)
- Line plot and area plot can be stacked by stacked=True (GH6656)
- Following keywords are now acceptable for DataFrame.plot() with kind='bar' and kind='barh':
 - width: Specify the bar width. In previous versions, static value 0.5 was passed to matplotlib and it cannot be overwritten. (GH6604)
 - align: Specify the bar alignment. Default is center (different from matplotlib). In previous versions, pandas passes align='edge' to matplotlib and adjust the location to center by itself, and it results align keyword is not applied as expected. (GH4525)
 - position: Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1(right/top-end). Default is 0.5 (center). (GH6604)

Because of the default align value changes, coordinates of bar plots are now located on integer values (0.0, 1.0, 2.0 ...). This is intended to make bar plot be located on the same coordinates as line plot. However, bar plot may differs unexpectedly when you manually adjust the bar location or drawing area, such as using set_xlim, set_ylim, etc. In this cases, please modify your script to meet with new coordinates.
• The `parallel_coordinates()` function now takes argument `color` instead of `colors`. A `FutureWarning` is raised to alert that the old `colors` argument will not be supported in a future release. (GH6956)

• The `parallel_coordinates()` and `andrews_curves()` functions now take positional argument `frame` instead of `data`. A `FutureWarning` is raised if the old `data` argument is used by name. (GH6956)

• `DataFrame.boxplot()` now supports `layout` keyword (GH6769)

• `DataFrame.boxplot()` has a new keyword argument, `return_type`. It accepts `'dict'`, `'axes'`, or `'both'`, in which case a namedtuple with the matplotlib axes and a dict of matplotlib Lines is returned.

1.4.8 Prior Version Deprecations/Changes

There are prior version deprecations that are taking effect as of 0.14.0.

• Remove `DateRange` in favor of `DatetimeIndex` (GH6816)

• Remove `column` keyword from `DataFrame.sort` (GH4370)

• Remove `precision` keyword from `set_eng_float_format()` (GH395)

• Remove `force_unicode` keyword from `DataFrame.to_string()`, `DataFrame.to_latex()`, and `DataFrame.to_html()`; these function encode in unicode by default (GH2224, GH2225)

• Remove `nanRep` keyword from `DataFrame.to_csv()` and `DataFrame.to_string()` (GH275)

• Remove `unique` keyword from `HDFStore.select_column()` (GH3256)

• Remove `inferTimeRule` keyword from `Timestamp.offset()` (GH391)

• Remove `name` keyword from `get_data_yahoo()` and `get_data_google()` (commit b921d1a)

• Remove `offset` keyword from `DatetimeIndex` constructor (commit 3136390)

• Remove `time_rule` from several rolling-moment statistical functions, such as `rolling_sum()` (GH1042)

• Removed neg – boolean operations on numpy arrays in favor of `inv ~`, as this is going to be deprecated in numpy 1.9 (GH6960)

1.4.9 Deprecations

• The `pivot_table()`/`DataFrame.pivot_table()` and `crosstab()` functions now take arguments `index` and `columns` instead of `rows` and `cols`. A `FutureWarning` is raised to alert that the old `rows` and `cols` arguments will not be supported in a future release (GH5505)

• The `DataFrame.drop_duplicates()` and `DataFrame.duplicated()` methods now take argument `subset` instead of `cols` to better align with `DataFrame.dropna()`. A `FutureWarning` is raised to alert that the old `cols` arguments will not be supported in a future release (GH6680)

• The `DataFrame.to_csv()` and `DataFrame.to_excel()` functions now take argument `columns` instead of `cols`. A `FutureWarning` is raised to alert that the old `cols` arguments will not be supported in a future release (GH6645)

• Indexers will warn `FutureWarning` when used with a scalar indexer and a non-floating point Index (GH4892, GH6960)

```python
# non-floating point indexes can only be indexed by integers / labels
In [1]: Series(1,np.arange(5))[3.0]
      pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should
         Out[1]: 1
```
In [2]: Series(1, np.arange(5)).iloc[3.0]
 pandas/core/index.py:469: FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[2]: 1

In [3]: Series(1, np.arange(5)).iloc[3.0:4]
 pandas/core/index.py:527: FutureWarning: slice indexers when using iloc should be integers and not floating point
Out[3]:
 3 1
 dtype: int64

these are Float64Indexes, so integer or floating point is acceptable
In [4]: Series(1, np.arange(5.))[3]
Out[4]: 1

In [5]: Series(1, np.arange(5.))[3.0]
Out[6]: 1

• Numpy 1.9 compat w.r.t. deprecation warnings (GH6960)

• Panel.shift() now has a function signature that matches DataFrame.shift(). The old positional argument lags has been changed to a keyword argument periods with a default value of 1. A FutureWarning is raised if the old argument lags is used by name. (GH6910)

• The order keyword argument of factorize() will be removed. (GH6926).

• Remove the copy keyword from DataFrame.xs(), Panel.major_xs(), Panel.minor_xs(). A view will be returned if possible, otherwise a copy will be made. Previously the user could think that copy=False would ALWAYS return a view. (GH6894)

• The parallel_coordinates() function now takes argument color instead of colors. A FutureWarning is raised to alert that the old colors argument will not be supported in a future release. (GH6956)

• The parallel_coordinates() and andrews_curves() functions now take positional argument frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)

• The support for the ‘mysql‘ flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).

• The following io.sql functions have been deprecated: tquery, uquery, read_frame, frame_query, write_frame.

• The percentile_width keyword argument in describe() has been deprecated. Use the percentiles keyword instead, which takes a list of percentiles to display. The default output is unchanged.

• The default return type of boxplot() will change from a dict to a matplotlib Axes in a future release. You can use the future behavior now by passing return_type=’axes’ to boxplot.

1.4.10 Known Issues

• OpenPyXL 2.0.0 breaks backwards compatibility (GH7169)

1.4.11 Enhancements

• DataFrame and Series will create a MultiIndex object if passed a tuples dict, See the docs (GH3323)
In [68]: Series({('a', 'b'): 1, ('a', 'a'): 0,
....: ('a', 'c'): 2, ('b', 'a'): 3, ('b', 'b'): 4})
....:

Out[68]:
a a 0
b 1
 c 2
b a 3
 b 4
dtype: int64

In [69]: DataFrame({('a', 'b'): {(A, B): 1, (A, C): 2},
....: ('a', 'c'): {(A, B): 5, (A, C): 6},
....: ('b', 'a'): {(A, C): 7, (A, B): 8},
....: ('b', 'b'): {(A, D): 9, (A, B): 10}})
....:

Out[69]:
a b
A B 4 1 5 8 10
C 3 2 6 7 NaN
D NaN NaN NaN NaN 9

• Added the `sym_diff` method to `Index` (GH5543)
• `DataFrame.to_latex` now takes a `longtable` keyword, which if True will return a table in a `longtable` environment. (GH6617)
• Add option to turn off escaping in `DataFrame.to_latex` (GH6472)
• `pd.read_clipboard` will, if the keyword `sep` is unspecified, try to detect data copied from a spreadsheet and parse accordingly. (GH6223)
• Joining a singly-indexed DataFrame with a multi-indexed DataFrame (GH3662)

See the docs. Joining multi-index DataFrames on both the left and right is not yet supported ATM.

In [70]: household = DataFrame(dict(household_id = [1,2,3],
....: male = [0,1,0],
....: wealth = [196087.3,316478.7,294750]),
....: columns = ['household_id','male','wealth']
....:).set_index('household_id')

In [71]: household
Out[71]:

 male wealth
household_id
1 0 196087.3
2 1 316478.7
3 0 294750.0

In [72]: portfolio = DataFrame(dict(household_id = [1,2,2,3,3,3,4],
....: asset_id = ["nl0000301109","nl0000289783","gb00b03mlx29",
....: "gb00b03mlx29","lu0197800237","n10000289965",np.nan],
....: name = ["ABN Amro","Robeco","Royal Dutch Shell","Royal Dutch Shell",
....: "AAB Eastern Europe Equity Fund","Postbank BioTech Fonds",np.nan],
....: share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]],
....: columns = ['household_id','asset_id','name','share']
....:)
In [73]: portfolio
Out[73]:

<table>
<thead>
<tr>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>household_id</td>
<td>asset_id</td>
</tr>
<tr>
<td>nl0000301109</td>
<td>ABN Amro 1.00</td>
</tr>
<tr>
<td>nl0000289783</td>
<td>Robeco 0.40</td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>Royal Dutch Shell 0.60</td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>Royal Dutch Shell 0.15</td>
</tr>
<tr>
<td>lu0197800237</td>
<td>AAB Eastern Europe Equity Fund 0.60</td>
</tr>
<tr>
<td>n10000289965</td>
<td>Postbank BioTech Fonds 0.25</td>
</tr>
</tbody>
</table>

In [74]: household.join(portfolio, how='inner')
Out[74]:

<table>
<thead>
<tr>
<th>male</th>
<th>wealth</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>household_id</td>
<td>asset_id</td>
<td></td>
</tr>
<tr>
<td>nl0000301109</td>
<td>0 196087.3 ABN Amro</td>
<td></td>
</tr>
<tr>
<td>nl0000289783</td>
<td>1 316478.7 Robeco</td>
<td></td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>1 316478.7 Royal Dutch Shell</td>
<td></td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>0 294750.0 Royal Dutch Shell</td>
<td></td>
</tr>
<tr>
<td>lu0197800237</td>
<td>0 294750.0 AAB Eastern Europe Equity Fund</td>
<td></td>
</tr>
<tr>
<td>n10000289965</td>
<td>0 294750.0 Postbank BioTech Fonds</td>
<td></td>
</tr>
</tbody>
</table>

- `quotechar`, `doublequote`, and `escapechar` can now be specified when using `DataFrame.to_csv` (GH5414, GH4528)
- Partially sort by only the specified levels of a MultiIndex with the `sort_remaining` boolean kwarg. (GH3984)
- Added `to_julian_date` to `TimeStamp` and `DatetimeIndex`. The Julian Date is used primarily in astronomy and represents the number of days from noon, January 1, 4713 BC. Because nanoseconds are used to define the time in pandas the actual range of dates that you can use is 1678 AD to 2262 AD. (GH4041)
- `DataFrame.to_stata` will now check data for compatibility with Stata data types and will upcast when needed. When it is not possible to losslessly upcast, a warning is issued (GH6327)
- `DataFrame.to_stata` and `StataWriter` will accept keyword arguments `time_stamp` and `data_label` which allow the time stamp and dataset label to be set when creating a file. (GH6545)
- `pandas.io.gbq` now handles reading unicode strings properly. (GH5940)
- `Holidays Calendars` are now available and can be used with the `CustomBusinessDay` offset (GH6719)
- `Float64Index` is now backed by a `float64` dtype ndarray instead of an `object` dtype array (GH6471).
- Implemented `Panel.pct_change` (GH6904)
- Added how option to rolling-moment functions to dictate how to handle resampling: `rolling_max()` defaults to max, `rolling_min()` defaults to min, and all others default to mean (GH6297)
• CustomBusinessMonthBegin and CustomBusinessMonthEnd are now available (GH6866)

• Series.quantile() and DataFrame.quantile() now accept an array of quantiles.

• describe() now accepts an array of percentiles to include in the summary statistics (GH4196)

• pivot_table can now accept Group by index and columns keywords (GH6913)

In [75]: import datetime
In [76]: df = DataFrame({
 ...: 'Branch': 'A A A A A B'.split(),
 ...: 'Buyer': 'Carl Mark Carl Carl Joe Joe'.split(),
 ...: 'Quantity': [1, 3, 5, 1, 8, 1],
 ...: 'Date': [datetime.datetime(2013,11,1,13,0), datetime.datetime(2013,9,1,13,5),
 ...: datetime.datetime(2013,10,1,20,0), datetime.datetime(2013,10,2,10,0),
 ...: datetime.datetime(2013,11,1,20,0), datetime.datetime(2013,10,2,10,0)],
 ...: 'PayDay': [datetime.datetime(2013,10,4,0,0), datetime.datetime(2013,10,15,13,5),
 ...: datetime.datetime(2013,9,5,20,0), datetime.datetime(2013,11,2,10,0),
 ...: datetime.datetime(2013,10,7,20,0), datetime.datetime(2013,9,5,10,0)]}
 ...

In [77]: df
Out[77]:
Date PayDay Branch Buyer Quantity
2013-11-01 13:00 0:00 A Carl 1
2013-09-01 13:05 0:00 A Mark 3
2013-10-01 20:00 0:00 A Carl 5
2013-10-02 10:00 0:00 A Carl 1
2013-11-01 20:00 0:00 A Joe 8
2013-10-02 10:00 0:00 B Joe 1

In [78]: pivot_table(df, index=Grouper(freq='M', key='Date'),
 ...
 columns=Grouper(freq='M', key='PayDay'),
 values='Quantity', aggfunc=np.sum)
 ...
Out[78]:
Date PayDay 2013-09-30 2013-10-31 2013-11-30
2013-09-30 NaN 3 NaN
2013-10-31 6 NaN 1
2013-11-30 NaN 9 NaN

• Arrays of strings can be wrapped to a specified width (str.wrap) (GH6999)

• Add nsmallest() and Series.nlargest() methods to Series, See the docs (GH3960)

• PeriodIndex fully supports partial string indexing like DatetimeIndex (GH7043)

In [79]: prng = period_range('2013-01-01 09:00', periods=100, freq='H')

In [80]: ps = Series(np.random.randn(len(prng)), index=prng)

In [81]: ps
Out[81]:
2013-01-01 09:00 0.755414
2013-01-01 10:00 0.215269
2013-01-01 11:00 0.841009
2013-01-01 12:00 1.445810
2013-01-01 13:00 1.401973
...
read_excel can now read milliseconds in Excel dates and times with xlrd >= 0.9.3. (GH5945)

- pd.stats.moments.rolling_var now uses Welford’s method for increased numerical stability (GH6817)
- pd.expanding_apply and pd.rolling_apply now take args and kwargs that are passed on to the func (GH6289)
- DataFrame.rank() now has a percentage rank option (GH5971)
- Series.rank() now has a percentage rank option (GH5971)
- Series.rank() and DataFrame.rank() now accept method='dense' for ranks without gaps (GH6514)
- Support passing encoding with xlwt (GH3710)
- Refactor Block classes removing Block.items attributes to avoid duplication in item handling (GH6745, GH6988).
- Testing statements updated to use specialized asserts (GH6175)

1.4.12 Performance

- Performance improvement when converting DatetimeIndex to floating ordinals using DatetimeConverter (GH6636)
- Performance improvement for DataFrame.shift (GH5609)
- Performance improvement in indexing into a multi-indexed Series (GH5567)
- Performance improvements in single-dtyped indexing (GH6484)
- Improve performance of DataFrame construction with certain offsets, by removing faulty caching (e.g. MonthEnd,BusinessMonthEnd), (GH6479)
- Improve performance of CustomBusinessDay (GH6584)
- Improve performance of slice indexing on Series with string keys (GH6341, GH6372)
• Performance improvement for `DataFrame.from_records` when reading a specified number of rows from an iterable (GH6700)
• Performance improvements in timedelta conversions for integer dtypes (GH6754)
• Improved performance of compatible pickles (GH6899)
• Improve performance in certain reindexing operations by optimizing `take_2d` (GH6749)
• `GroupBy.count()` is now implemented in Cython and is much faster for large numbers of groups (GH7016).

1.4.13 Experimental

There are no experimental changes in 0.14.0

1.4.14 Bug Fixes

• Bug in `Series` `ValueError` when index doesn’t match data (GH6532)
• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
• Bug in `pd.DataFrame.sort_index` where `mergesort` wasn’t stable when `ascending=False` (GH6399)
• Bug in `pd.tseries.frequencies.to_offset` when argument has leading zeroes (GH6391)
• Bug in version string gen. for dev versions with shallow clones / install from tarball (GH6127)
• Inconsistent tz parsing `Timestamp / to_datetime` for current year (GH5958)
• Indexing bugs with reordered indexes (GH6252, GH6254)
• Bug in `.xs` with a Series multiindex (GH6258, GH5684)
• Bug in conversion of a string types to a DatetimeIndex with a specified frequency (GH6273, GH6274)
• Bug in `eval` where type-promotion failed for large expressions (GH6205)
• Bug in `interpolate` with `inplace=True` (GH6281)
• `HDFStore.remove` now handles start and stop (GH6177)
• `HDFStore.select_as_multiple` handles start and stop the same way as `select` (GH6177)
• `HDFStore.select_as_coordinates` and `select_column` works with a where clause that results in filters (GH6177)
• Regression in join of non_unique_indexes (GH6329)
• Issue with groupby `agg` with a single function and a a mixed-type frame (GH6337)
• Bug in `DataFrame.replace()` when passing a non- `bool` `to_replace` argument (GH6332)
• Raise when trying to align on different levels of a multi-index assignment (GH3738)
• Bug in setting complex dtypes via boolean indexing (GH6345)
• Bug in TimeGrouper/resample when presented with a non-monotonic DatetimeIndex that would return invalid results. (GH4161)
• Bug in index name propogation in TimeGrouper/resample (GH4161)
• TimeGrouper has a more compatible API to the rest of the groupers (e.g. `groups` was missing) (GH3881)
• Bug in multiple grouping with a TimeGrouper depending on target column order (GH6764)
- Bug in pd.eval when parsing strings with possible tokens like ‘&’ (GH6351)
- Bug correctly handle placements of -inf in Panels when dividing by integer 0 (GH6178)
- DataFrame.shift with axis=1 was raising (GH6371)
- Disabled clipboard tests until release time (run locally with nosetests -A disabled) (GH6048).
- Bug in DataFrame.replace() when passing a nested dict that contained keys not in the values to be replaced (GH6342)
- str.match ignored the na flag (GH6609).
- Bug in take with duplicate columns that were not consolidated (GH6240)
- Bug in interpolate changing dtypes (GH6290)
- Bug in Series.get, was using a buggy access method (GH6383)
- Bug in hdfstore queries of the form where=[('date', '>=', datetime(2013,1,1)), ('date', '<=', datetime(2014,1,1))] (GH6313)
- Bug in DataFrame.dropna with duplicate indices (GH6355)
- Regression in chained getitem indexing with embedded list-like from 0.12 (GH6394)
- Float64Index with nans not comparing correctly (GH6401)
- eval/query expressions with strings containing the @ character will now work (GH6366).
- Bug in Series.reindex when specifying a method with some nan values was inconsistent (noted on a resample) (GH6418)
- Bug in DataFrame.replace() where nested dicts were erroneously depending on the order of dictionary keys and values (GH5338).
- Perf issue in concatting with empty objects (GH3259)
- Clarify sorting of sym_diff on Index objects with NaN values (GH6444)
- Regression in MultiIndex.from_product with a DatetimeIndex as input (GH6439)
- Bug in str.extract when passed a non-default index (GH6348)
- Bug in str.split when passed pat=None and n=1 (GH6466)
- Bug in io.data.DataReader when passed "F-F_Momentum_Factor" and data_source="famafrench" (GH6460)
- Bug in sum of a timedelta64[ns] series (GH6462)
- Bug in resample with a timezone and certain offsets (GH6397)
- Bug in iat/iloc with duplicate indices on a Series (GH6493)
- Bug in read_html where nan’s were incorrectly being used to indicate missing values in text. Should use the empty string for consistency with the rest of pandas (GH5129).
- Bug in read_html tests where redirected invalid URLs would make one test fail (GH6445).
- Bug in multi-axis indexing using .loc on non-unique indices (GH6504)
- Bug that caused _ref_locs corruption when slice indexing across columns axis of a DataFrame (GH6525)
- Regression from 0.13 in the treatment of numpy datetime64 non-ns dtypes in Series creation (GH6529)
- .names attribute of MultiIndexes passed to set_index are now preserved (GH6459).
- Bug in setitem with a duplicate index and an alignable rhs (GH6541)
• Bug in setitem with `.loc` on mixed integer Indexes (GH6546)
• Bug in `pd.read_stata` which would use the wrong data types and missing values (GH6327)
• Bug in `DataFrame.to_stata` that lead to data loss in certain cases, and could be exported using the wrong data types and missing values (GH6335)
• StataWriter replaces missing values in string columns by empty string (GH6802)
• Inconsistent types in `Timestamp` addition/subtraction (GH6543)
• Bug in preserving frequency across `Timestamp` addition/subtraction (GH4547)
• Bug in empty list lookup caused `IndexError` exceptions (GH6536, GH6551)
• `Series.quantile` raising on an `object` dtype (GH6555)
• Bug in `.xs` with a `nan` in level when dropped (GH6574)
• Bug in `fillna` with method=`’bfill/ffill’` and `datetime64[ns]` dtype (GH6587)
• Bug in `sql` writing with mixed dtypes possibly leading to data loss (GH6509)
• Bug in `Series.pop` (GH6600)
• Bug in `iloc` indexing when positional indexer matched `Int64Index` of the corresponding axis and no reordering happened (GH6612)
• Bug in `fillna` with `limit` and `value` specified
• Bug in `DataFrame.to_stata` when columns have non-string names (GH4558)
• Bug in `compat` with np.compress, surfaced in (GH6658)
• Bug in binary operations with a rhs of a Series not aligning (GH6681)
• Bug in `DataFrame.to_stata` which incorrectly handles `nan` values and ignores `with_index` keyword argument (GH6685)
• Bug in resample with extra bins when using an evenly divisible frequency (GH4076)
• Bug in consistency of `groupby` aggregation when passing a custom function (GH6715)
• Bug in resample when `how=None` resample freq is the same as the axis frequency (GH5955)
• Bug in downcasting inference with empty arrays (GH6733)
• Bug in `obj.blocks` on sparse containers dropping all but the last items of same for dtype (GH6748)
• Bug in unpickling `NaT` (NaTType) (GH4606)
• Bug in `DataFrame.replace()` where regex metacharacters were being treated as regexes even when `regex=False` (GH6777)
• Bug in `timedelta` ops on 32-bit platforms (GH6808)
• Bug in setting a tz-aware index directly via `.index` (GH6785)
• Bug in expressions.py where numexpr would try to evaluate arithmetic ops (GH6762).
• Bug in `Makefile` where it didn’t remove Cython generated C files with `make clean` (GH6768)
• Bug with `numpy < 1.7.2` when reading long strings from `HDFStore` (GH6166)
• Bug in `DataFrame._reduce` where non bool-like (0/1) integers were being coverted into bools. (GH6806)
• Regression from 0.13 with `fillna` and a Series on datetime-like (GH6344)
• Bug in adding `np.timedelta64` to `DateTimeIndex` with timezone outputs incorrect results (GH6818)
• Bug in `DataFrame.replace()` where changing a dtype through replacement would only replace the first occurrence of a value (GH6689)
• Better error message when passing a frequency of ‘MS’ in `Period` construction (GH5332)
• Bug in `Series.__unicode__` when `max_rows=None` and the Series has more than 1000 rows. (GH6863)
• Bug in `groupby.get_group` where a datetlike wasn’t always accepted (GH5267)
• Bug in `groupby.get_group` created by `TimeGrouper` raises `AttributeError` (GH6914)
• Bug in `DatetimeIndex.tz_localize` and `DatetimeIndex.tz_convert` converting `NaT` incorrectly (GH5546)
• Bug in arithmetic operations affecting `NaT` (GH6873)
• Bug in `Series.str.extract` where the resulting `Series` from a single group match wasn’t renamed to the group name
• Bug in `DataFrame.to_csv` where setting `index=False` ignored the `header` kwarg (GH6186)
• Bug in `DataFrame.plot` and `Series.plot`, where the legend behave inconsistently when plotting to the same axes repeatedly (GH6678)
• Internal tests for patching `__finalize__` / bug in merge not finalizing (GH6923, GH6927)
• accept `TextFileReader` in `concat`, which was affecting a common user idiom (GH6583)
• Bug in `C` parser with leading whitespace (GH3374)
• Bug in `C` parser with `delim_whitespace=True` and \r-delimited lines
• Bug in `python` parser with explicit multi-index in row following column header (GH6893)
• Bug in `Series.rank` and `DataFrame.rank` that caused small floats (<1e-13) to all receive the same rank (GH6886)
• Bug in `DataFrame.apply` with functions that used `*args` or `**kwargs` and returned an empty result (GH6952)
• Bug in `sum/mean` on 32-bit platforms on overflows (GH6915)
• Moved `Panel.shift` to `NDFrame.slice_shift` and fixed to respect multiple dtypes. (GH6959)
• Bug in enabling `subplots=True` in `DataFrame.plot` only has single column raises `TypeError`, and `Series.plot` raises `AttributeError` (GH6951)
• Bug in `DataFrame.plot` draws unnecessary axes when enabling `subplots` and `kind=scatter` (GH6951)
• Bug in `read_csv` from a filesystem with non-utf-8 encoding (GH6807)
• Bug in `iloc` when setting / aligning (GH6766)
• Bug causing `UnicodeEncodeError` when get_dummies called with unicode values and a prefix (GH6885)
• Bug in timeseries-with-frequency plot cursor display (GH5453)
• Bug surfaced in `groupby.plot` when using a `Float64Index` (GH7025)
• Stopped tests from failing if options data isn’t able to be downloaded from Yahoo (GH7034)
• Bug in `parallel_coordinates` and `radviz` where reordering of class column caused possible color/class mismatch (GH6956)
• Bug in `radviz` and `andrews_curves` where multiple values of ‘color’ were being passed to plotting method (GH6956)
• Bug in `Float64Index.isin()` where containing nan s would make indices claim that they contained all
the things (GH7066).
• Bug in `DataFrame.boxplot` where it failed to use the axis passed as the ax argument (GH3578)
• Bug in the `XlsxWriter` and `XlwtWriter` implementations that resulted in datetime columns being formatted
without the time (GH7075) were being passed to plotting method
• `read_fwf()` treats None in colspec like regular python slices. It now reads from the beginning or until the
end of the line when colspec contains a None (previously raised a TypeError)
• Bug in cache coherence with chained indexing and slicing; add _is_view property to NDFrame to correctly
predict views; mark is_copy on xs only if its an actual copy (and not a view) (GH7084)
• Bug in DatetimeIndex creation from string ndarray with dayfirst=True (GH5917)
• Bug in MultiIndex.from_arrays created from DatetimeIndex doesn’t preserve freq and tz (GH7090)
• Bug in unstack raises ValueError when MultiIndex contains PeriodIndex (GH4342)
• Bug in boxplot and hist draws unnecessary axes (GH6769)
• Regression in groupby.nth () for out-of-bounds indexers (GH6621)
• Bug in quantile with datetime values (GH6965)
• Bug in `Dataframe.set_index, reindex` and pivot don’t preserve DatetimeIndex and
PeriodIndex attributes (GH3950, GH5878, GH6631)
• Bug in MultiIndex.get_level_values doesn’t preserve DatetimeIndex and PeriodIndex attributes (GH7092)
• Bug in Groupby doesn’t preserve tz (GH3950)
• Bug in PeriodIndex partial string slicing (GH6716)
• Bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set
to ‘info’ (GH7105)
• Bug in DatetimeIndex specifying freq raises ValueError when passed value is too short (GH7098)
• Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)
• Bug in PeriodIndex string slicing with out of bounds values (GH5407)
• Fixed a memory error in the hashtable implementation/factorizer on resizing of large tables (GH7157)
• Bug in isnull when applied to 0-dimensional object arrays (GH7176)
• Bug in query/eval when applied to 0-dimensional object arrays (GH7178)
• Bug in recognizing out-of-bounds positional list indexers with iloc and a multi-axis tuple indexer (GH7189)
• Bug in setitem with a single value, multi-index and integer indices (GH7190, GH7218)
• Bug in expressions evaluation with reversed ops, showing in series-dataframe ops (GH7198, GH7192)
• Bug in multi-axis indexing with > 2 ndim and a multi-index (GH7199)
• Fix a bug where invalid eval/query operations would blow the stack (GH5198)
1.5 v0.13.1 (February 3, 2014)

This is a minor release from 0.13.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

 Highlights include:

- Added `infer_datetime_format` keyword to `read_csv/to_datetime` to allow speedups for homogeneously formatted datetimes.
- Will intelligently limit display precision for datetime/timedelta formats.
- Enhanced Panel `apply()` method.
- Suggested tutorials in new `Tutorials` section.
- Our pandas ecosystem is growing, We now feature related projects in a new `Pandas Ecosystem` section.
- Much work has been taking place on improving the docs, and a new `Contributing` section has been added.
- Even though it may only be of interest to devs, we <3 our new CI status page: ScatterCI.

Warning: 0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing chained assignment on a string-like array. Please review the docs, chained indexing can have unexpected results and should generally be avoided.

This would previously segfault:

```python
In [1]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
In [2]: df['A'].iloc[0] = np.nan
```

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
<td>1</td>
<td>bar</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>foo</td>
<td>4</td>
<td>bar</td>
<td></td>
</tr>
</tbody>
</table>

The recommended way to do this type of assignment is:

```python
In [4]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))
In [5]: df.ix[0,'A'] = np.nan
```

```python
In [6]: df
Out[6]:
     A
0   NaN
1   bar
2   bah
3   foo
4   bar
```
1.5.1 Output Formatting Enhancements

- `df.info()` view now display dtype info per column (GH5682)
- `df.info()` now honors the option `max_info_rows`, to disable null counts for large frames (GH5974)

```python
In [7]: max_info_rows = pd.get_option('max_info_rows')

In [8]: df = DataFrame(dict(A = np.random.randn(10),
...:                     B = np.random.randn(10),
...:                     C = date_range('20130101', periods=10)))

In [9]: df.iloc[3:6, [0,2]] = np.nan

# set to not display the null counts
In [10]: pd.set_option('max_info_rows',0)

In [11]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 3 columns):
A   float64
B   float64
C   datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 320.0 bytes

# this is the default (same as in 0.13.0)
In [12]: pd.set_option('max_info_rows',max_info_rows)

In [13]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 3 columns):
A   7 non-null float64
B   10 non-null float64
C   7 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 320.0 bytes

- Add `show_dimensions` display option for the new DataFrame repr to control whether the dimensions print.

```python
In [14]: df = DataFrame([[1, 2], [3, 4]])

In [15]: pd.set_option('show_dimensions', False)

In [16]: df
Out[16]:
0 1
1 2

In [17]: pd.set_option('show_dimensions', True)

In [18]: df
Out[18]:
0 1
0 2
```
1 3 4
[2 rows x 2 columns]

- The `ArrayFormatter` for `datetime` and `timedelta64` now intelligently limit precision based on the values in the array (GH3401)

Previously output might look like:

```
age today diff
0 2001-01-01 00:00:00 2013-04-19 00:00:00 4491 days, 00:00:00
1 2004-06-01 00:00:00 2013-04-19 00:00:00 3244 days, 00:00:00
```

Now the output looks like:

```
In [19]: df = DataFrame([Timestamp('20010101'),
 Timestamp('20040601')], columns=['age'])

In [20]: df['today'] = Timestamp('20130419')

In [21]: df['diff'] = df['today']-df['age']

In [22]: df
Out[22]:
 age today diff
0 2001-01-01 2013-04-19 4491 days
1 2004-06-01 2013-04-19 3244 days
```

1.5.2 API changes

- Add `-NaN` and `-nan` to the default set of NA values (GH5952). See *NA Values*.
- Added `Series.str.get_dummies` vectorized string method (GH6021), to extract dummy/indicator variables for separated string columns:

```
In [23]: s = Series(['a', 'a|b', np.nan, 'a|c'])

In [24]: s.str.get_dummies(sep='|')
Out[24]:
a b c
0 1 0 0
1 1 1 0
2 0 0 0
3 1 0 1
```

- Added the `NDFrame.equals()` method to compare if two NDFrames are equal have equal axes, dtypes, and values. Added the `array_equivalent` function to compare if two ndarrays are equal. NaNs in identical locations are treated as equal. (GH5283) See also the docs for a motivating example.

```
In [25]: df = DataFrame({'col': ['foo', 0, np.nan]})

In [26]: df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])
```
In [27]: df.equals(df2)
Out[27]: False

In [28]: df.equals(df2.sort())
Out[28]: True

In [29]: import pandas.core.common as com

In [30]: com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan]))
Out[30]: True

In [31]: np.array_equal(np.array([0, np.nan]), np.array([0, np.nan]))
Out[31]: False

• DataFrame.apply will use the reduce argument to determine whether a Series or a DataFrame should be returned when the DataFrame is empty (GH6007).

Previously, calling DataFrame.apply an empty DataFrame would return either a DataFrame if there were no columns, or the function being applied would be called with an empty Series to guess whether a Series or DataFrame should be returned:

In [32]: def applied_func(col):
       ....:     print("Apply function being called with: ", col)
       ....:     return col.sum()
       ....:

In [33]: empty = DataFrame(columns=['a', 'b'])

In [34]: empty.apply(applied_func)
('Apply function being called with: ', Series([], dtype: float64))
Out[34]:
   a    NaN
   b    NaN
dtype: float64

Now, when apply is called on an empty DataFrame: if the reduce argument is True a Series will returned, if it is False a DataFrame will be returned, and if it is None (the default) the function being applied will be called with an empty series to try and guess the return type.

In [35]: empty.apply(applied_func, reduce=True)
Out[35]:
a    NaN
b    NaN
dtype: float64

In [36]: empty.apply(applied_func, reduce=False)
Out[36]:
Empty DataFrame
Columns: [a, b]
Index: []

[0 rows x 2 columns]

1.5.3 Prior Version Deprecations/Changes

There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1
1.5.4 Deprecations

There are no deprecations of prior behavior in 0.13.1

1.5.5 Enhancements

- `pd.read_csv` and `pd.to_datetime` learned a new `infer_datetime_format` keyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490, GH6021)

  If `parse_dates` is enabled and this flag is set, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

  ```python
 # Try to infer the format for the index column
 df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
 infer_datetime_format=True)
  ```

- `date_format` and `datetime_format` keywords can now be specified when writing to excel files (GH4133)

- `MultiIndex.from_product` convenience function for creating a MultiIndex from the cartesian product of a set of iterables (GH6055):

  ```python
 In [37]: shades = ['light', 'dark']
 In [38]: colors = ['red', 'green', 'blue']
 In [39]: MultiIndex.from_product([[shades, colors], names=['shade', 'color'])
 Out[39]: MultiIndex(levels=[['dark', 'light'], ['blue', 'green', 'red']],
 labels=[[1, 1, 1, 0, 0, 0], [2, 1, 0, 2, 1, 0]],
 names=['shade', 'color'])
  ```

- `Panel apply()` will work on non-ufuncs. See the docs.

  ```python
 In [40]: import pandas.util.testing as tm
 In [41]: panel = tm.makePanel(5)
 In [42]: panel
 Out[42]:
 <class 'pandas.core.panel.Panel'>
 Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
 Items axis: ItemA to ItemC
 Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
 Minor_axis axis: A to D
 In [43]: panel['ItemA']
 Out[43]:
 A B C D
 2000-01-03 0.952478 -1.239072 -1.409432 -0.014752
 2000-01-04 0.988138 0.139683 1.422986 1.272395
 2000-01-05 -0.072608 -0.223019 -2.147855 -1.449567
 2000-01-06 -0.550603 2.123692 -1.347533 -1.195524
 2000-01-07 -0.938153 0.122273 0.363565 -0.591863
 [5 rows x 4 columns]
  ```
Specifying an apply that operates on a Series (to return a single element)

```python
In [44]: panel.apply(lambda x: x.dtype, axis='items')
```

```
Out[44]:
A B C D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
2000-01-06 float64 float64 float64 float64
2000-01-07 float64 float64 float64 float64

[5 rows x 4 columns]
```

A similar reduction type operation

```python
In [45]: panel.apply(lambda x: x.sum(), axis='major_axis')
```

```
Out[45]:
 ItemA ItemB ItemC
A 0.379252 -3.696907 3.709335
B 0.923558 0.504242 4.656781
C -3.118269 -1.545718 3.188329
D -1.979310 -0.758060 -1.436483

[4 rows x 3 columns]
```

This is equivalent to

```python
In [46]: panel.sum('major_axis')
```

```
Out[46]:
 ItemA ItemB ItemC
A 0.379252 -3.696907 3.709335
B 0.923558 0.504242 4.656781
C -3.118269 -1.545718 3.188329
D -1.979310 -0.758060 -1.436483

[4 rows x 3 columns]
```

A transformation operation that returns a Panel, but is computing the z-score across the major_axis

```python
In [47]: result = panel.apply(
 : lambda x: (x-x.mean())/x.std(),
 : axis='major_axis')
```

```
In [48]: result
```

```
Out[48]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
```

```python
In [49]: result[‘ItemA’]
```

```
Out[49]:
 A B C D
2000-01-03 1.004994 -1.166509 -0.535027 0.350970
2000-01-04 1.045875 0.036892 1.393532 1.536326
2000-01-05 -0.718186 1.588611 -0.492880 -0.736422
2000-01-06 -1.162486 -0.051156 0.672185 -0.180500
2000-01-07
```

Panel `apply()` operating on cross-sectional slabs. (GH1148)

```
In [50]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T

In [51]: result = panel.apply(f, axis = ['items','major_axis'])

In [52]: result
Out[52]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [53]: result.loc[:, :, 'ItemA']
Out[53]:
 A B C D
2000-01-03 0.116579 -0.667845 -1.151538 -0.157547
2000-01-04 0.650448 -1.114910 0.841527 0.760706
2000-01-05 -0.987433 -0.438897 -1.154468 -0.015033
2000-01-06 0.494000 1.060450 -0.775993 -1.140165
2000-01-07 -0.363770 0.013169 0.392036 -1.123913
```

This is equivalent to the following

```
In [54]: result = Panel(dict([(ax, f(panel.loc[:, :, ax]))
 : : for ax in panel.minor_axis]))

In [55]: result
Out[55]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [56]: result.loc[:, :, 'ItemA']
Out[56]:
 A B C D
2000-01-03 0.116579 -0.667845 -1.151538 -0.157547
2000-01-04 0.650448 -1.114910 0.841527 0.760706
2000-01-05 -0.987433 -0.438897 -1.154468 -0.015033
2000-01-06 0.494000 1.060450 -0.775993 -1.140165
2000-01-07 -0.363770 0.013169 0.392036 -1.123913
```

1.5.6 Performance

Performance improvements for 0.13.1

- Series datetime/timedelta binary operations (GH5801)
• **DataFrame** `count/dropna` for `axis=1`

• Series.str.contains now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (GH5879)

• Series.str.extract (GH5944)

• `dtypes/ftypes` methods (GH5968)

• indexing with object dtypes (GH5968)

• `DataFrame.apply` (GH6013)

• Regression in JSON IO (GH5765)

• Index construction from Series (GH6150)

### 1.5.7 Experimental

There are no experimental changes in 0.13.1

### 1.5.8 Bug Fixes

See [V0.13.1 Bug Fixes](#) for an extensive list of bugs that have been fixed in 0.13.1.

See the [full release notes](#) or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.

### 1.6 v0.13.0 (January 3, 2014)

This is a major release from 0.12.0 and includes a number of API changes, several new features and enhancements along with a large number of bug fixes.

Highlights include:

• support for a new index type `Float64Index`, and other Indexing enhancements

• `HDFStore` has a new string based syntax for query specification

• support for new methods of interpolation

• updated `timedelta` operations

• a new string manipulation method `extract`

• Nanosecond support for Offsets

• `isin` for DataFrames

Several experimental features are added, including:

• new `eval/query` methods for expression evaluation

• support for msgpack serialization

• an i/o interface to Google’s BigQuery

There are several new or updated docs sections including:

• *Comparison with SQL*, which should be useful for those familiar with SQL but still learning pandas.

• *Comparison with R*, idiom translations from R to pandas.
**Enhancing Performance**, ways to enhance pandas performance with `eval`/`query`.

**Warning:** In 0.13.0 `Series` has internally been refactored to no longer sub-class `ndarray` but instead subclass `NDFrame`, similar to the rest of the pandas containers. This should be a transparent change with only very limited API implications. See *Internal Refactoring*.

### 1.6.1 API changes

- `read_excel` now supports an integer in its `sheetname` argument giving the index of the sheet to read in (GH4301).

- Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) as infinity. (GH4220, GH4219), affecting `read_table`, `read_csv`, etc.

- pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into compat. (GH4384, GH4375, GH4372)

- `pandas.util.compat` and `pandas.util.py3compat` have been merged into `pandas.compat`. `pandas.compat` now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting and pandas constructors.(GH4384, GH4375, GH4372)

- `Series.get` with negative indexers now returns the same as `[]` (GH4390)

- Changes to how `Index` and `MultiIndex` handle metadata (levels, labels, and names) (GH4039):

  ```python
 # previously, you would have set levels or labels directly
 index.levels = [[[1, 2, 3, 4], [1, 2, 4, 4]]

 # now, you use the set_levels or set_labels methods
 index = index.set_levels([[1, 2, 3, 4], [1, 2, 4, 4]])

 # similarly, for names, you can rename the object
 # but setting names is not deprecated
 index = index.set_names(["bob", "cranberry"])

 # and all methods take an inplace kwarg - but return None
 index.set_names(["bob", "cranberry"], inplace=True)
  ```

- All division with `NDFrame` objects is now `truedivision`, regardless of the future import. This means that operating on pandas objects will by default use floating point division, and return a floating point dtype. You can use `//` and `floordiv` to do integer division.

  **Integer division**

  ```python
 In [3]: arr = np.array([1, 2, 3, 4])
 In [4]: arr2 = np.array([5, 3, 2, 1])
 In [5]: arr / arr2
 Out[5]: array([0, 0, 1, 4])
 In [6]: Series(arr) // Series(arr2)
 Out[6]:
 0 0
 1 0
  ```
In [2]: pd.Series(arr) / pd.Series(arr2)  # no future import required
Out[2]:
   0  0.200000
   1  0.666667
   2  1.500000
   3  4.000000
dtype: float64

• Infer and downcast dtype if `downcast='infer'` is passed to `fillna/ffill/bfill` (GH4604)
• `__nonzero__` for all NDFrame objects, will now raise a `ValueError`, this reverts back to (GH1073, GH4633) behavior. See `gotchas` for a more detailed discussion.

This prevents doing boolean comparison on entire pandas objects, which is inherently ambiguous. These all will raise a `ValueError`.

    if df:
        ...
df1 and df2
s1 and s2

Added the `.bool()` method to NDFrame objects to facilitate evaluating of single-element boolean Series:

In [1]: Series([True]).bool()
Out[1]: True
In [2]: Series([False]).bool()
Out[2]: False
In [3]: DataFrame([[True]]).bool()
Out[3]: True
In [4]: DataFrame([[False]]).bool()
Out[4]: False

• All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not support `pow` or `mod` with non-scalars. (GH3765)
• Series and DataFrame now have a `mode()` method to calculate the statistical mode(s) by axis/Series. (GH5367)
• Chained assignment will now by default warn if the user is assigning to a copy. This can be changed with the option `mode.chained_assignment`, allowed options are `raise/warn/None`. See the docs.

In [5]: dfc = DataFrame({'A': ['aaa','bbb','ccc'],'B':[1,2,3]})
In [6]: pd.set_option('chained_assignment','warn')

The following warning / exception will show if this is attempted.
In [7]: dfc.loc[0]['A'] = 1111
Traceback (most recent call last)
...
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead

Here is the correct method of assignment.

In [8]: dfc.loc[0,'A'] = 11

In [9]: dfc
Out[9]:
       A  B
0     11  1
1   bbb  2
2    ccc  3
[3 rows x 2 columns]

• Panel.reindex has the following call signature Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)
to conform with other NDFrame objects. See Internal Refactoring for more information.

• Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element.
  (GH6214)

1.6.2 Prior Version Deprecations/Changes

These were announced changes in 0.12 or prior that are taking effect as of 0.13.0

• Remove deprecated Factor (GH3650)

• Remove deprecated set_printoptions/reset_printoptions (GH3046)

• Remove deprecated _verbose_info (GH3215)

• Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter from pandas.io.parsers (GH3717) These are available as functions in the main pandas namespace (e.g. pd.read_clipboard)

• default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12 (GH3604)

• default for display.max_seq_len is now 100 rather then None. This activates truncated display ("...") of long sequences in various places. (GH3391)

1.6.3 Deprecations

Deprecated in 0.13.0

• deprecated iterkv, which will be removed in a future release (this was an alias of iteritems used to bypass 2to3's changes). (GH4384, GH4375, GH4372)

• deprecated the string method match, whose role is now performed more idiomatically by extract. In a future release, the default behavior of match will change to become analogous to contains, which returns a boolean indexer. (Their distinction is strictness: match relies on re.match while contains relies on re.search.) In this release, the deprecated behavior is the default, but the new behavior is available through the keyword argument as_indexer=True.
1.6.4 Indexing API Changes

Prior to 0.13, it was impossible to use a label indexer (.loc/.ix) to set a value that was not contained in the index of a particular axis. (GH2578). See the docs

In the Series case this is effectively an appending operation

```
In [10]: s = Series([1,2,3])

In [11]: s
Out[11]:
0 1
1 2
2 3
dtype: int64

In [13]: s
Out[13]:
0 1
1 2
2 3
5 5
dtype: float64
```

This would previously KeyError

```
In [16]: dfi.loc[:,’C’] = dfi.loc[:,’A’]

In [17]: dfi
Out[17]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4

[3 rows x 3 columns]
```

This is like an append operation.

```
In [18]: dfi.loc[3] = 5

In [19]: dfi
Out[19]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5
```

1.6. v0.13.0 (January 3, 2014)
1 2 3 2
2 4 5 4
3 5 5 5

[4 rows x 3 columns]

A Panel setting operation on an arbitrary axis aligns the input to the Panel

```
In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2),
 items=['Item1','Item2'],
 major_axis=pd.date_range('2001/1/12',periods=4),
 minor_axis=['A','B'],dtype='float64')

In [21]: p
Out[21]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to B
```

```
In [22]: p.loc[:,:,'C'] = Series([30,32],index=p.items)

In [23]: p
Out[23]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to C
```

```
In [24]: p.loc[:,:,'C']
Out[24]:
 Item1 Item2
2001-01-12 30 32
2001-01-13 30 32
2001-01-14 30 32
2001-01-15 30 32

[4 rows x 2 columns]
```

1.6.5 Float64Index API Change

- Added a new index type, Float64Index. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing and slicing work exactly the same. See the docs, (GH263)

Construction is by default for floating type values.

```
In [25]: index = Index([1.5, 2, 3, 4.5, 5])

In [26]: index
Out[26]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')

In [27]: s = Series(range(5),index=index)
```
In [28]: s
Out[28]:
1.5  0
2.0  1
3.0  2
4.5  3
5.0  4
dtype: int64

custom selection for [], .ix, .loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

In [29]: s[3]
Out[29]: 2

In [30]: s.ix[3]
Out[30]: 2

In [31]: s.loc[3]
Out[31]: 2

The only positional indexing is via .iloc

In [32]: s.iloc[3]
Out[32]: 3

A scalar index that is not found will raise KeyError

Slicing is ALWAYS on the values of the index, for [], .ix, .loc and ALWAYS positional with .iloc

In [33]: s[2:4]
Out[33]:
2   1
3   2
dtype: int64

In [34]: s.ix[2:4]
Out[34]:
2   1
3   2
dtype: int64

In [35]: s.loc[2:4]
Out[35]:
2   1
3   2
dtype: int64

In [36]: s.iloc[2:4]
Out[36]:
3.0  2
4.5  3
dtype: int64

In float indexes, slicing using floats are allowed

In [37]: s[2.1:4.6]
Out[37]:
3.0  2
4.5  3
dtype: int64

In [38]: s.loc[2.1:4.6]
Out[38]:
3.0  2
4.5  3
dtype: int64

- Indexing on other index types are preserved (and positional fallback for [], ix), with the exception, that floating point slicing on indexes on non Float64Index will now raise a TypeError.

In [1]: Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)

In [1]: Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.

In [3]: Series(range(5))[3.0]
Out[3]: 3

1.6.6 HDFStore API Changes

- Query Format Changes. A much more string-like query format is now supported. See the docs.

In [39]: path = 'test.h5'

In [40]: dfq = DataFrame(randn(10,4),
       ....: columns=list('ABCD'),
       ....: index=date_range('20130101',periods=10))
       ....:

In [41]: dfq.to_hdf(path,'dfq',format='table',data_columns=True)
Use boolean expressions, with in-line function evaluation.

In [42]: read_hdf(path,'dfq',
       ....: where="index>Timestamp('20130104') & columns=['A', 'B']")
       ....:
Out[42]:
     A     B
2013-01-05 -1.392054  1.153922
2013-01-06 -0.881047  0.295080
2013-01-07 -1.407085  0.126781
2013-01-08 -0.838843  0.553921
2013-01-09  1.529401  0.205455
2013-01-10  0.299071  1.076541
[6 rows x 2 columns]

Use an inline column reference

In [43]: read_hdf(path,'dfq',
       ....: where="A>0 or C>0")
       ....:
Out[43]:
     A     B     C     D
• Significant table writing performance improvements
• handle a passed Series in table format (GH4330)
• can now serialize a timedelta64[ns] dtype in a table (GH3577), See the docs.
• added an is_open property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)
• a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise ClosedFileError
In [50]: path = ‘test.h5’
In [51]: df = DataFrame(randn(10,2))
In [52]: store1 = HDFStore(path)
In [53]: store2 = HDFStore(path)
In [54]: store1.append(‘df’,df)
In [55]: store2.append(‘df2’,df)
In [56]: store1
Out[56]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [57]: store2
Out[57]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [58]: store1.close()

In [59]: store2
Out[59]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [60]: store2.close()

In [61]: store2
Out[61]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
File is CLOSED

• removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table (GH4367)
• removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if you try to use mode='w' with an OPEN file handle (GH4367)
• allow a passed locations array or mask as a where condition (GH4467). See the docs for an example.
• add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625)
• pass thru store creation arguments; can be used to support in-memory stores

1.6.7 DataFrame repr Changes

The HTML and plain text representations of DataFrame now show a truncated view of the table once it exceeds a certain size, rather than switching to the short info view (GH4886, GH5550). This makes the representation more consistent as small DataFrames get larger.
To get the info view, call `DataFrame.info()`. If you prefer the info view as the repr for large DataFrames, you can set this by running `set_option('display.large_repr', 'info')`.

### 1.6.8 Enhancements

- `df.to_clipboard()` learned a new `excel` keyword that lets you paste `df` data directly into excel (enabled by default). (GH5070).
- `read_html` now raises a `URLError` instead of catching and raising a `ValueError` (GH4303, GH4305)
- Added a test for `read_clipboard() and to_clipboard()` (GH4282)
- Clipboard functionality now works with PySide (GH4282)
- Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402)
- `to_dict` now takes `records` as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)
- NaN handing in `get_dummies` (GH4446) with `dummy_na`

```python
In [62]: get_dummies([1, 2, np.nan])
Out[62]:
 1 2
 --- ---
 0 1 0
 1 0 1
 2 0 0
[3 rows x 2 columns]
```

```python
In [63]: get_dummies([1, 2, np.nan], dummy_na=True)
Out[63]:
 1 2 NaN
 --- --- ---
 0 1 0 0
 1 0 1 0
 2 0 0 1
[3 rows x 3 columns]
```

- `timedelta64[ns]` operations. See the docs.

**Warning**: Most of these operations require `numpy >= 1.7`
Using the new top-level `to_timedelta`, you can convert a scalar or array from the standard timedelta format (produced by `to_csv`) into a timedelta type (`np.timedelta64` in nanoseconds).

```python
In [64]: to_timedelta('1 days 06:05:01.00003')
Out[64]: Timedelta('1 days 06:05:01.000030')

In [65]: to_timedelta('15.5us')
Out[65]: Timedelta('0 days 00:00:00.000015')

In [66]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
Out[66]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['1 days 06:05:01.000030', ..., NaT]
Length: 3, Freq: None

In [67]: to_timedelta(np.arange(5),unit='s')
Out[67]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['00:00:00', ..., '00:00:04']
Length: 5, Freq: None

In [68]: to_timedelta(np.arange(5),unit='d')
Out[68]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['0 days', ..., '4 days']
Length: 5, Freq: None
```

A Series of dtype `timedelta64[ns]` can now be divided by another `timedelta64[ns]` object, or astyped to yield a `float64` dtyped Series. This is frequency conversion. See the docs for the docs.

```python
In [69]: from datetime import timedelta
In [70]: td = Series(date_range('20130101',periods=4))-Series(date_range('20121201',periods=4))
In [71]: td[2] += np.timedelta64(timedelta(minutes=5,seconds=3))
In [72]: td[3] = np.nan
In [73]: td
Out[73]:
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 NaT
dtype: timedelta64[ns]

to days
In [74]: td / np.timedelta64(1,'D')
Out[74]:
0 31.000000
1 31.000000
2 31.003507
3 NaN
dtype: float64

In [75]: td.astype('timedelta64[D]')
Out[75]:
0 31
1 31
```
Dividing or multiplying a `timedelta64[ns]` Series by an integer or integer Series

```
In [78]: td * -1
Out[78]:
0 -31 days 00:00:00
1 -31 days 00:00:00
2 -32 days 23:54:57
3 NaT
dtype: timedelta64[ns]
```

```
In [79]: td * Series([1,2,3,4])
Out[79]:
0 31 days 00:00:00
1 62 days 00:00:00
2 93 days 00:15:09
3 NaT
dtype: timedelta64[ns]
```

**Absolute DateOffset objects can act equivalently to timedeltas**

```
In [80]: from pandas import offsets
```

```
In [81]: td + offsets.Minute(5) + offsets.Milli(5)
Out[81]:
0 31 days 00:05:00.005000
1 31 days 00:05:00.005000
2 31 days 00:10:03.005000
3 NaT
dtype: timedelta64[ns]
```

**Fillna is now supported for timedeltas**

```
In [82]: td.fillna(0)
Out[82]:
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:05:03
3 0 days
```

---

1.6. v0.13.0 (January 3, 2014)
You can do numeric reduction operations on timedeltas.

```python
In [84]: td.mean()
Out[84]: Timedelta('31 days 00:01:41')
```

```python
In [85]: td.quantile(.1)
Out[85]: Timedelta('31 days 00:00:00')
```

- `plot(kind='kde')` now accepts the optional parameters `bw_method` and `ind`, passed to `scipy.stats.gaussian_kde()` (for scipy >= 0.11.0) to set the bandwidth, and to `gkde.evaluate()` to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)

- Dataframe constructor now accepts a numpy masked record array (GH3478)

- The new vectorized string method `extract` return regular expression matches more conveniently.

```python
In [86]: Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)')
Out[86]:
0 a 1
1 b 2
2 NaN NaN
```

Elements that do not match return NaN. Extracting a regular expression with more than one group returns a DataFrame with one column per group.

```python
In [87]: Series(['a1', 'b2', 'c3']).str.extract('([ab])\(\d\)')
Out[87]:
 letter digit
0 a 1
1 b 2
2 NaN NaN
```

Elements that do not match return a row of NaN. Thus, a Series of messy strings can be converted into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating `get()` to access tuples or `re.match` objects.

Named groups like

```python
In [88]: Series(['a1', 'b2', 'c3']).str.extract(
 : "(?P<letter>[ab])(?P<digit>\d)"
 :)
Out[88]:
 letter digit
 0 a 1
 1 b 2
 2 NaN NaN
```
and optional groups can also be used.

```
In [89]: Series(['a1', 'b2', '3']).str.extract(
 : '(?P<letter>[ab])?(?P<digit>\d)')
 :
Out[89]:
 letter digit
0 a 1
1 b 2
2 NaN 3
```

- `read_stata` now accepts Stata 13 format (GH4291)
- `read_fwf` now infers the column specifications from the first 100 rows of the file if the data has correctly separated and properly aligned columns using the delimiter provided to the function (GH4488).
- Support for nanosecond times as an offset

**Warning:** These operations require `numpy >= 1.7`

Period conversions in the range of seconds and below were reworked and extended up to nanoseconds. Periods in the nanosecond range are now available.

```
In [90]: date_range('2013-01-01', periods=5, freq='5N')
Out[90]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01, ..., 2013-01-01]
Length: 5, Freq: 5N, Timezone: None
```

or with frequency as offset

```
In [91]: date_range('2013-01-01', periods=5, freq=pd.offsets.Nano(5))
Out[91]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01, ..., 2013-01-01]
Length: 5, Freq: 5N, Timezone: None
```

Timestamps can be modified in the nanosecond range

```
In [92]: t = Timestamp('20130101 09:01:02')

In [93]: t + pd.datetools.Nano(123)
Out[93]: Timestamp('2013-01-01 09:01:02.000000123')
```

- A new method, `isin` for DataFrames, which plays nicely with boolean indexing. The argument to `isin`, what we’re comparing the DataFrame to, can be a DataFrame, Series, dict, or array of values. See the docs for more.

To get the rows where any of the conditions are met:

```
In [94]: dfi = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'f', 'n']})
In [95]: dfi
Out[95]:
 A B
0 1 a
In [96]: other = DataFrame({'A': [1, 3, 3, 7], 'B': ['e', 'f', 'f', 'e']})

In [97]: mask = df1.isin(other)

In [98]: mask
Out[98]:
 A B
0 True False
1 False False
2 True True
3 False False

In [99]: df1[mask.any(1)]
Out[99]:
 A B
0 1 a
2 3 f

• Series now supports a to_frame method to convert it to a single-column DataFrame (GH5164)
• All R datasets listed here http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html can now be loaded into Pandas objects

  ```python
  import pandas.rpy.common as com
  com.load_data('Titanic')
  ```

• tz_localize can infer a fall daylight savings transition based on the structure of the unlocalized data (GH4230), see the docs

• DatetimeIndex is now in the API documentation, see the docs

• json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067)

• Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.

• Python csv parser now supports usecols (GH4335)

• Frequencies gained several new offsets:
 – LastWeekOfMonth (GH4637)
 – FY5253, and FY5253Quarter (GH4511)

• DataFrame has a new interpolate method, similar to Series (GH4434, GH1892)

In [100]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
 : 'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})

In [101]: df.interpolate()
Out[101]:

Chapter 1. What’s New
A B
0 1.0 0.25
1 2.1 1.50
2 3.4 2.75
3 4.7 2.0
4 5.6 4.0
5 6.8 4.4

[6 rows x 2 columns]

Additionally, the method argument to interpolate has been expanded to include 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'bicubic', 'barycentric', 'krogh', 'piecewise_polynomial', 'pchip', 'polynomial', 'spline'. The new methods require scipy. Consult the Scipy reference guide and documentation for more information about when the various methods are appropriate. See the docs.

Interpolate now also accepts a limit keyword argument. This works similar to fillna's limit:

In [102]: ser = Series([1, 2, np.nan, np.nan, np.nan, 11])

In [103]: ser.interpolate(limit=2)
Out[103]:
0 1
1 3
2 5
3 7
4 NaN
5 11

dtype: float64

• Added wide_to_long panel data convenience function. See the docs.

In [104]: np.random.seed(123)

In [105]: df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
 "A1980" : {0 : "d", 1 : "e", 2 : "f"},
 "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
 "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
 "X" : dict(zip(range(3), np.random.randn(3)))})

In [106]: df["id"] = df.index

In [107]: df
Out[107]:
0 a d 2.5 3.2 -1.085631 0
1 b e 1.2 1.3 0.997345 1
2 c f 0.7 0.1 0.282978 2

[3 rows x 6 columns]

In [108]: wide_to_long(df, ["A", "B"], i="id", j="year")
Out[108]:
 X A B
id year
0 1970 -1.085631 a 2.5
1 1970 0.997345 b 1.2
• to_csv now takes a date_format keyword argument that specifies how output datetime objects should be formatted. Datetimes encountered in the index, columns, and values will all have this formatting applied. (GH4313)

• DataFrame.plot will scatter plot x versus y by passing kind='scatter' (GH2215)

• Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

1.6.9 Experimental

• The new eval() function implements expression evaluation using numexpr behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series. For example,

```python
In [109]: nrows, ncols = 20000, 100

In [110]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols))
.....:       for _ in range(4)]

# eval with NumExpr backend
In [111]: %timeit pd.eval('df1 + df2 + df3 + df4')
100 loops, best of 3: 14 ms per loop

# pure Python evaluation
In [112]: %timeit df1 + df2 + df3 + df4
100 loops, best of 3: 20.3 ms per loop
```

For more details, see the docs

• Similar to pandas.eval, DataFrame has a new DataFrame.eval method that evaluates an expression in the context of the DataFrame. For example,

```python
In [113]: df = DataFrame(randn(10, 2), columns=['a', 'b'])

In [114]: df.eval('a + b')
Out[114]:
0 -0.685204
1  1.589745
2  0.325441
3 -1.784153
4 -0.432893
5  0.171850
6  1.895919
7  3.065587
8 -0.092759
9  1.391365
dtype: float64
```

• query() method has been added that allows you to select elements of a DataFrame using a natural query syntax nearly identical to Python syntax. For example,
In [115]: n = 20

In [116]: df = DataFrame(np.random.randint(n, size=(n, 3)), columns=['a', 'b', 'c'])

In [117]: df.query('a < b < c')
Out[117]:
 a b c
11 1 5 8
15 8 16 19
[2 rows x 3 columns]

selects all the rows of df where a < b < c evaluates to True. For more details see the the docs.

• pd.read_msgpack() and pd.to_msgpack() are now a supported method of serialization of arbitrary pandas (and python objects) in a lightweight portable binary format. See the docs

Warning: Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.

In [118]: df = DataFrame(np.random.rand(5,2),columns=list('AB'))

In [119]: df.to_msgpack('foo.msg')

In [120]: pd.read_msgpack('foo.msg')
Out[120]:
 A B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575
[5 rows x 2 columns]

In [121]: s = Series(np.random.rand(5),index=date_range('20130101',periods=5))

In [122]: pd.to_msgpack('foo.msg', df, s)

In [123]: pd.read_msgpack('foo.msg')
Out[123]:
 A B
[0 0.251082 0.017357
 1 0.347915 0.929879
 2 0.546233 0.203368
 3 0.064942 0.031722
 4 0.355309 0.524575

[5 rows x 2 columns], 2013-01-01 0.022321
2013-01-02 0.227025
2013-01-03 0.383282
2013-01-04 0.193225
2013-01-05 0.110977
Freq: D, dtype: float64

You can pass iterator=True to iterator over the unpacked results
In [124]: for o in pd.read_msgpack('foo.msg', iterator=True):
 : print o
 :
 A B
0 0.251082 0.017357
1 0.347915 0.929879
2 0.546233 0.203368
3 0.064942 0.031722
4 0.355309 0.524575

[5 rows x 2 columns]
2013-01-01 0.022321
2013-01-02 0.227025
2013-01-03 0.383282
2013-01-04 0.193225
2013-01-05 0.110977
Freq: D, dtype: float64

- pandas.io.gbg provides a simple way to extract from, and load data into, Google’s BigQuery Data Sets by way of pandas DataFrames. BigQuery is a high performance SQL-like database service, useful for performing ad-hoc queries against extremely large datasets. See the docs

```python
from pandas.io import gbq

# A query to select the average monthly temperatures in the
# in the year 2000 across the USA. The dataset,
# publicdata:samples.gsod, is available on all BigQuery accounts,
# and is based on NOAA gsod data.
query = """SELECT station_number as STATION,
month as MONTH, AVG(mean_temp) as MEAN_TEMP
FROM publicdata:samples.gsod
WHERE YEAR = 2000
GROUP BY STATION, MONTH
ORDER BY STATION, MONTH ASC"""

# Fetch the result set for this query
# Your Google BigQuery Project ID
# To find this, see your dashboard:
# https://code.google.com/apis/console/b/0/?noredirect
projectid = xxxxxxxxx;

df = gbq.read_gbq(query, project_id = projectid)

# Use pandas to process and reshape the dataset

df2 = df.pivot(index='STATION', columns='MONTH', values='MEAN_TEMP')
df3 = pandas.concat([df2.min(), df2.mean(), df2.max()],
    axis=1, keys=['Min Tem', 'Mean Temp', 'Max Temp'])

The resulting DataFrame is:

```
> df3

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Min Tem</th>
<th>Mean Temp</th>
<th>Max Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-53.336667</td>
<td>39.827892</td>
<td>89.770968</td>
</tr>
<tr>
<td>2</td>
<td>-49.837500</td>
<td>43.685219</td>
<td>93.437932</td>
</tr>
<tr>
<td>3</td>
<td>-77.926087</td>
<td>48.708355</td>
<td>96.099998</td>
</tr>
</tbody>
</table>
1.6.10 Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass `Series` from `NDFrame`, which is the base class currently for `DataFrame` and `Panel`, to unify methods and behaviors. `Series` formerly subclassed directly from `ndarray`. (GH4080, GH3862, GH816)
Warning: There are two potential incompatibilities from < 0.13.0

- Using certain numpy functions would previously return a `Series` if passed a `Series` as an argument. This seems only to affect `np.ones_like`, `np.empty_like`, `np.diff` and `np.where`. These now return `ndarrays`.

```python
In [125]: s = Series([1, 2, 3, 4])

Numpy Usage

In [126]: np.ones_like(s)
Out[126]: array([1, 1, 1, 1], dtype=int64)

In [127]: np.diff(s)
Out[127]: array([1, 1, 1], dtype=int64)

In [128]: np.where(s>1,s,np.nan)
Out[128]: array([ nan, 2., 3., 4.])

Pandonic Usage

In [129]: Series(1,index=s.index)
Out[129]:
   0  1
   1  1
   2  1
   3  1
 dtype: int64

In [130]: s.diff()
Out[130]:
   0  NaN
   1  1
   2  1
   3  1
 dtype: float64

In [131]: s.where(s>1)
Out[131]:
   0  NaN
   1   2
   2   3
   3   4
 dtype: float64
```

- Passing a `Series` directly to a cython function expecting an `ndarray` type will no longer work directly, you must pass `Series.values`. See `Enhancing Performance`.
- `Series(0.5)` would previously return the scalar 0.5, instead this will return a 1-element `Series`
- This change breaks `rpy2<=2.3.8`. An issue has been opened against `rpy2` and a workaround is detailed in `GH5698`. Thanks @JanSchulz.

- Pickle compatibility is preserved for pickles created prior to 0.13. These must be unpickled with `pd.read_pickle`, see `Pickling`.
- Refactor of `series.py/frame.py/panel.py` to move common code to `generic.py`
 - added `_setup_axes` to created generic NDFrame structures
 - moved methods
 - `from_axes`, `_wrap_array`, `axes`, `ix`, `loc`, `iloc`, `shape`, `empty`, `swapaxes`, `transpose`, `pop`
* __iter__, keys, __contains__, __len__, __neg__, __invert__
* convert_objects, as_blocks, as_matrix, values
* __getstate__, __setstate__ (compat remains in frame/panel)
* __getattr__, __setattr__
* _indexed_same, reindex_like, align, where, mask
* fillna, replace (Series replace is now consistent with DataFrame)
* filter (also added axis argument to selectively filter on a different axis)
* reindex, reindex_axis, take
* truncate (moved to become part of NDFrame)

- These are API changes which make Panel more consistent with DataFrame
 - swapaxes on a Panel with the same axes specified now return a copy
 - support attribute access for setting
 - filter supports the same API as the original DataFrame filter
- Reindex called with no arguments will now return a copy of the input object
- TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if desired)
- Refactor of Sparse objects to use BlockManager
 - Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is non-consolidatable. SparseSeries and SparseDataFrame now inherit more methods from there hierarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of the SparseBlock)
 - Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)
 - Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient
 - enable setitem on SparseSeries for boolean/integer/slices
 - Sparse Panels implementation is unchanged (e.g. not using BlockManager, needs work)
- added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense (as well as the dtype)
- All NDFrame objects can now use __finalize__() to specify various values to propagate to new objects from an existing one (e.g. name in Series will follow more automatically now)
- Internal type checking is now done via a suite of generated classes, allowing isinstance(value, klass) without having to directly import the klass, courtesy of @jtratner
- Bug in Series update where the parent frame is not updating its cache based on changes (GH4080) or types (GH3217), fillna (GH3386)
- Indexing with dtype conversions fixed (GH4463, GH4204)
- Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work
- Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy
• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with the same signature for Panel
• Refactor clip methods to core/generic.py (GH4798)
• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality
• Series (for index)/Panel (for items) now allow attribute access to its elements (GH1903)

```python
In [132]: s = Series([1,2,3],index=list('abc'))
In [133]: s.b
Out[133]: 2
In [134]: s.a = 5
In [135]: s
Out[135]:
    a 5
    b 2
    c 3
dtype: int64
```

1.6.11 Bug Fixes

See V0.13.0 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.0.

See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.

1.7 v0.12.0 (July 24, 2013)

This is a major release from 0.11.0 and includes several new features and enhancements along with a large number of bug fixes.

Highlights include a consistent I/O API naming scheme, routines to read html, write multi-indexes to csv files, read & write STATA data files, read & write JSON format files, Python 3 support for HDFStore, filtering of groupby expressions via filter, and a revamped replace routine that accepts regular expressions.

1.7.1 API changes

• The I/O API is now much more consistent with a set of top level reader functions accessed like pd.read_csv() that generally return a pandas object.
 - read_csv
 - read_excel
 - read_hdf
 - read_sql
 - read_json
 - read_html
 - read_stata
- `read_clipboard`

The corresponding `writer` functions are object methods that are accessed like `df.to_csv()`
- `to_csv`
- `to_excel`
- `to_hdf`
- `to_sql`
- `to_json`
- `to_html`
- `to_stata`
- `to_clipboard`

- Fix modulo and integer division on Series,DataFrames to act similarly to float dtypes to return `np.nan` or `np.inf` as appropriate (GH3590). This correct a numpy bug that treats integer and float dtypes differently.

```
In [1]: p = DataFrame({'first': [4,5,8], 'second': [0,0,3]})

In [2]: p % 0
Out[2]:
   first  second
 0   NaN     NaN
 1   NaN     NaN
 2   NaN     NaN

[3 rows x 2 columns]

In [3]: p % p
Out[3]:
   first  second
 0 0.000000     NaN
 1 0.000000     NaN
 2 0.000000 0.000000

[3 rows x 2 columns]

In [4]: p / p
Out[4]:
   first  second
 0 1.000000 0.000000
 1 1.000000 0.000000
 2 1.000000 1.000000

[3 rows x 2 columns]

In [5]: p / 0
Out[5]:
   first  second
 0  inf     inf
 1  inf     inf
 2  inf     inf

[3 rows x 2 columns]
```
• Add `squeeze` keyword to `groupby` to allow reduction from DataFrame -> Series if groups are unique. This is a Regression from 0.10.1. We are reverting back to the prior behavior. This means `groupby` will return the same shaped objects whether the groups are unique or not. Revert this issue (GH2893) with (GH3596).

```python
In [6]: df2 = DataFrame([["val1": 1, "val2" : 20}, {"val1":1, "val2": 19},
             {"val1":1, "val2": 27}, {"val1":1, "val2": 12}])

In [7]: def func(dataf):
   ...:     return dataf["val2"] - dataf["val2"].mean()
   ...:

# squeezing the result frame to a series (because we have unique groups)
In [8]: df2.groupby("val1", squeeze=True).apply(func)
Out[8]:
   0   0.5
  1  -0.5
  2   7.5
  3  -7.5
Name: 1, dtype: float64

# no squeezing (the default, and behavior in 0.10.1)
In [9]: df2.groupby("val1").apply(func)
Out[9]:
   val2  0  1  2  3
  val1
     1  0.5 -0.5  7.5 -7.5
[1 rows x 4 columns]
```

• Raise on `iloc` when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Since `iloc` is purely positional based, the labels on the Series are not alignable (GH3631). This case is rarely used, and there are plenty of alternatives. This preserves the `iloc` API to be purely positional based.

```python
In [10]: df = DataFrame(lrange(5), list('ABCDE'), columns=['a'])

In [11]: mask = (df.a%2 == 0)

In [12]: mask
Out[12]:
   A  True
   B  False
   C  True
   D  False
   E  True
Name: a, dtype: bool

# this is what you should use
In [13]: df.loc[mask]
Out[13]:
   a
  A  0
  C  2
  E  4
[3 rows x 1 columns]
```
this will work as well

```python
In [14]: df.iloc[mask.values]
Out[14]:
    a
A 0
C 2
E 4
[3 rows x 1 columns]
```

df.iloc[mask] will raise a ValueError

- The `raise_on_error` argument to plotting functions is removed. Instead, plotting functions raise a `TypeError` when the `dtype` of the object is `object` to remind you to avoid `object` arrays whenever possible and thus you should cast to an appropriate numeric dtype if you need to plot something.

- Add `colormap` keyword to DataFrame plotting methods. Accepts either a `matplotlib` colormap object (ie, `matplotlib.cm.jet`) or a string name of such an object (ie, 'jet'). The colormap is sampled to select the color for each column. Please see `Colormaps` for more information. (GH3860)

- DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and DataFrame.replace() instead. (GH3582, GH3675, GH3676)

- The `method` and `axis` arguments of DataFrame.replace() are deprecated

- DataFrame.replace 's `infer_types` parameter is removed and now performs conversion by default. (GH3907)

- Add the keyword `allow_duplicates` to DataFrame.insert to allow a duplicate column to be inserted if `True`, default is `False` (same as prior to 0.12) (GH3679)

- Implement `__nonzero__` for `NDFrame` objects (GH3691, GH3696)

- IO api

 - added top-level function `read_excel` to replace the following. The original API is deprecated and will be removed in a future version

    ```python
    from pandas.io.parsers import ExcelFile
    xls = ExcelFile('path_to_file.xls')
xls.parse('Sheet1', index_col=None, na_values=['NA'])
    ```

 With

    ```python
    import pandas as pd
    pd.read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
    ```

 - added top-level function `read_sql` that is equivalent to the following

    ```python
    from pandas.io.sql import read_frame
    read_frame(....)
    ```

- DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)

- Do not allow astypes on `datetime64[ns]` except to `object`, and `timedelta64[ns]` to `object/int` (GH3425)

- The behavior of `datetime64` dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a `TypeError` when performed on a `Series` and return an `empty` `Series` when performed on a `DataFrame` similar to performing these operations on, for example, a `DataFrame` of slice objects:

 - `sum`, `prod`, `mean`, `std`, `var`, `skew`, `kurt`, `corr`, and `cov`
• `read_html` now defaults to `None` when reading, and falls back on `bs4 + html5lib` when `lxml` fails to parse. A list of parsers to try until success is also valid.

• The internal pandas class hierarchy has changed (slightly). The previous `PandasObject` now is called `PandasContainer` and a new `PandasObject` has become the baseclass for `PandasContainer` as well as `Index`, `Categorical`, `GroupBy`, `SparseList`, and `SparseArray (+ their base classes). Currently, `PandasObject` provides string methods (from `StringMixin`). (GH4090, GH4092)

• New `StringMixin` that, given a `__unicode__` method, gets python 2 and python 3 compatible string methods (`__str__`, `__bytes__`, and `__repr__`). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)

1.7.2 I/O Enhancements

• `pd.read_html()` can now parse HTML strings, files or urls and return DataFrames, courtesy of @cpcloud. (GH3477, GH3605, GH3606, GH3616). It works with a single parser backend: BeautifulSoup4 + html5lib. See the docs.

You can use `pd.read_html()` to read the output from `DataFrame.to_html()` like so:

```python
In [15]: df = DataFrame({'a': range(3), 'b': list('abc')})

In [16]: print(df)
   a  b
 0  0  a
 1  1  b
 2  2  c

[3 rows x 2 columns]

In [17]: html = df.to_html()

In [18]: alist = pd.read_html(html, infer_types=True, index_col=0)

In [19]: print(df == alist[0])
   a   b
 0  True  True
 1  True  True
 2  True  True

[3 rows x 2 columns]
```

Note that `alist` here is a Python `list` so `pd.read_html()` and `DataFrame.to_html()` are not inverses.

– `pd.read_html()` no longer performs hard conversion of date strings (GH3656).

Warning: You may have to install an older version of BeautifulSoup4. See the installation docs.

• Added module for reading and writing Stata files: `pandas.io.stata` (GH1512) accessible via `read_stata` top-level function for reading, and `to_stata` DataFrame method for writing. See the docs.

• Added module for reading and writing json format files: `pandas.io.json` accessible via `read_json` top-level function for reading, and `to_json` DataFrame method for writing. See the docs various issues (GH1226, GH3804, GH3876, GH3867, GH1305).

• MultiIndex column support for reading and writing csv format files.
The header option in `read_csv` now accepts a list of the rows from which to read the index.

The option, `tupleize_cols` can now be specified in both `to_csv` and `read_csv`, to provide compatibility for the pre 0.12 behavior of writing and reading MultiIndex columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as a `MultiIndex` column.

Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13, the default to write and read `MultiIndex` columns will be in the new format. (GH3571, GH1651, GH3141)

If an `index_col` is not specified (e.g. you don’t have an index, or wrote it with `df.to_csv(..., index=False)`), then any names on the columns index will be lost.

```python
In [20]: from pandas.util.testing import makeCustomDataframe as mkdf
In [21]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
In [22]: df.to_csv('mi.csv',tupleize_cols=False)
In [23]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,
R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2
R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2
R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2
R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2
```

```python
In [24]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1],tupleize_cols=False)
```

- Support for HDFStore (via PyTables 3.0.0) on Python3
- Iterator support via `read_hdf` that automatically opens and closes the store when iteration is finished. This is only for tables:

```python
In [25]: path = ‘store_iterator.h5’
In [26]: DataFrame(randn(10,2)).to_hdf(path,‘df’,table=True)
In [27]: for df in read_hdf(path,’df’, chunksize=3):
    ....:     print(df)
    ....:     0  1
    0  1.392665 -0.123497
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

1 -0.402761 -0.246604
2 -0.288433 -0.763434

[3 rows x 2 columns]
0 1
3 2.069526 -1.203569
4 0.591830 0.841159
5 -0.501083 -0.816561

[3 rows x 2 columns]
0 1
6 -0.207082 -0.664112
7 0.580411 -0.965628
8 -0.038605 -0.460478

[3 rows x 2 columns]
0 1
9 -0.310458 0.866493

[1 rows x 2 columns]

- read_csv will now throw a more informative error message when a file contains no columns, e.g., all newline characters

1.7.3 Other Enhancements

- DataFrame.replace() now allows regular expressions on contained Series with object dtype. See the examples section in the regular docs Replacing via String Expression

For example you can do

In [28]: df = DataFrame({'a': list('ab..'), 'b': [1, 2, 3, 4]})

In [29]: df.replace(regex=r'\s*\.', value=np.nan)
Out[29]:
 a b
0 a 1
1 b 2
2 NaN 3
3 NaN 4

[4 rows x 2 columns]

to replace all occurrences of the string ‘.’ with zero or more instances of surrounding whitespace with NaN.

Regular string replacement still works as expected. For example, you can do

In [30]: df.replace('.', np.nan)
Out[30]:
 a b
0 a 1
1 b 2
2 NaN 3
3 NaN 4

[4 rows x 2 columns]

to replace all occurrences of the string ‘.’ with NaN.
• *pd.melt()* now accepts the optional parameters *var_name* and *value_name* to specify custom column names of the returned DataFrame.

• *pd.set_option()* now allows N option, value pairs (GH3667).

 Let’s say that we had an option ‘a.b’ and another option ‘b.c’. We can set them at the same time:

  ```
  In [31]: pd.get_option('a.b')
  Out[31]: 2
  ```

  ```
  In [32]: pd.get_option('b.c')
  Out[32]: 3
  ```

  ```
  In [33]: pd.set_option('a.b', 1, 'b.c', 4)
  ```

  ```
  In [34]: pd.get_option('a.b')
  Out[34]: 1
  ```

  ```
  In [35]: pd.get_option('b.c')
  Out[35]: 4
  ```

• The *filter* method for group objects returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.

  ```
  In [36]: sf = Series([1, 1, 2, 3, 3, 3])
  sf.groupby(sf).filter(lambda x: x.sum() > 2)
  Out[37]:
  3 3
  4 3
  5 3
  dtype: int64
  ```

 The argument of *filter* must a function that, applied to the group as a whole, returns True or False. Another useful operation is filtering out elements that belong to groups with only a couple members.

  ```
  In [38]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')})
  dff.groupby('B').filter(lambda x: len(x) > 2)
  Out[39]:
     A  B
  2 2  b
  3 3  b
  4 4  b
  5 5  b
  [4 rows x 2 columns]
  ```

 Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

  ```
  In [40]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
  Out[40]:
     A  B
  0 NaN NaN
  1 NaN NaN
  2 2  b
  3 3  b
  4 4  b
  ```
Series and DataFrame hist methods now take a figsize argument (GH3834)

- DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)
- Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default datetime.min and datetime.max (respectively), thanks @SleepingPills

- read_html now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

1.7.4 Experimental Features

- Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars and custom weekmasks. (GH2301)

Note: This uses the numpy.busdaycalendar API introduced in Numpy 1.7 and therefore requires Numpy 1.7.0 or newer.

```python
In [41]: from pandas.tseries.offsets import CustomBusinessDay

In [42]: from datetime import datetime

# As an interesting example, let’s look at Egypt where
# a Friday-Saturday weekend is observed.
In [43]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

# They also observe International Workers’ Day so let’s
# add that for a couple of years
In [44]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]

In [45]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)

In [46]: dt = datetime(2013, 4, 30)

In [47]: print(dt + 2 * bday_egypt)
2013-05-05 00:00:00

In [48]: dts = date_range(dt, periods=5, freq=bday_egypt)

In [49]: print(Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'.split())))
2013-04-30 Tue
2013-05-02 Thu
2013-05-05 Sun
2013-05-06 Mon
2013-05-07 Tue
Freq: C, dtype: object
1.7.5 Bug Fixes

• Plotting functions now raise a TypeError before trying to plot anything if the associated objects have have a dtype of object (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.

• fillna methods now raise a TypeError if the value parameter is a list or tuple.

• Series.str now supports iteration (GH3638). You can iterate over the individual elements of each string in the Series. Each iteration yields a Series with either a single character at each index of the original Series or NaN. For example,

```python
In [50]: strs = 'go', 'bow', 'joe', 'slow'
In [51]: ds = Series(strs)

In [52]: for s in ds.str:
 : print(s)
 :
0 g
1 b
2 j
3 s
dtype: object
0 o
1 o
2 o
3 l
dtype: object
0 NaN
1 w
2 e
3 o
dtype: object
0 NaN
1 NaN
2 NaN
3 w
dtype: object

In [53]: s
Out[53]:
0 NaN
1 NaN
2 NaN
3 w
dtype: object

In [54]: s.dropna().values.item() == 'w'
Out[54]: True
```

The last element yielded by the iterator will be a Series containing the last element of the longest string in the Series with all other elements being NaN. Here since ‘slow’ is the longest string and there are no other strings with the same length ‘w’ is the only non-null string in the yielded Series.

• HDFStore
  – will retain index attributes (freq,tz,name) on recreation (GH3499)
- will warn with a `AttributeConflictWarning` if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing

- support datelike columns with a timezone as `data_columns` (GH2852)

- Non-unique index support clarified (GH3468).
  - Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
  - Fix construction of a DataFrame with a duplicate index
  - `ref_loc` support to allow duplicative indices across dtypes, allows `iget` support to always find the index (even across dtypes) (GH2194)
  - `applymap` on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
  - Fix `to_csv` to handle non-unique columns (GH3495)
  - Duplicate indexes with `getitem` will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
  - Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
  - Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
  - Allow insert/delete to non-unique columns (GH3679)
  - Non-unique indexing with a slice via `loc` and friends fixed (GH3659)
  - Allow insert/delete to non-unique columns (GH3679)
  - Extend `reindex` to correctly deal with non-unique indices (GH3679)
  - DataFrame.itertuples() now works with frames with duplicate column names (GH3873)
  - Bug in non-unique indexing via `iloc` (GH4017); added `takeable` argument to `reindex` for location-based taking
  - Allow non-unique indexing in series via `.ix/.loc` and friends fixed (GH4246)
  - Fixed non-unique indexing memory allocation issue with `.ix/.loc` (GH4280)

- `DataFrame.from_records` did not accept empty recarrays (GH3682)

- `read_html` now correctly skips tests (GH3741)

- Fixed a bug where `DataFrame.replace` with a compiled regular expression in the `to_replace` argument wasn’t working (GH3907)

- Improved network test decorator to catch `IOError` (and therefore `URLError` as well). Added `with_connectivity_check` decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, new `optional_args` decorator factory for decorators. (GH3910, GH3914)

- Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)

- Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)

- `Series.hist` will now take the figure from the current environment if one is not passed

- Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)

- Fixed running of `tox` under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)
pandas: powerful Python data analysis toolkit, Release 0.15.1

- Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
- Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False (GH4115)
- Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)
- Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly (GH3990)
- Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
- Fixed the legend displaying in DataFrame.plot(kind=’kde’) (GH4216)
- Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
- Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)
- Fixed bug where html5lib wasn’t being properly skipped (GH4265)
- Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)

See the full release notes or issue tracker on GitHub for a complete list.

1.8 v0.11.0 (April 22, 2013)

This is a major release from 0.10.1 and includes many new features and enhancements along with a large number of bug fixes. The methods of Selecting Data have had quite a number of additions, and Dtype support is now full-fledged. There are also a number of important API changes that long-time pandas users should pay close attention to.

There is a new section in the documentation, 10 Minutes to Pandas, primarily geared to new users.

There is a new section in the documentation, Cookbook, a collection of useful recipes in pandas (and that we want contributions!).

There are several libraries that are now Recommended Dependencies

1.8.1 Selection Choices

Starting in 0.11.0, object selection has had a number of user-requested additions in order to support more explicit location based indexing. Pandas now supports three types of multi-axis indexing.

- .loc is strictly label based, will raise KeyError when the items are not found, allowed inputs are:
  - A single label, e.g. 5 or ‘a’, (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
  - A list or array of labels ['a', 'b', 'c']
  - A slice object with labels 'a':'f', (note that contrary to usual python slices, both the start and the stop are included!)
  - A boolean array

  See more at Selection by Label

- .iloc is strictly integer position based (from 0 to length-1 of the axis), will raise IndexError when the requested indicies are out of bounds. Allowed inputs are:
  - An integer e.g. 5
  - A list or array of integers [4, 3, 0]
– A slice object with ints 1:7
– A boolean array

See more at \textit{Selection by Position}

• \texttt{.ix} supports mixed integer and label based access. It is primarily label based, but will fallback to integer positional access. \texttt{.ix} is the most general and will support any of the inputs to \texttt{.loc} and \texttt{.iloc}, as well as support for floating point label schemes. \texttt{.ix} is especially useful when dealing with mixed positional and label based hierarchical indexes.

As using integer slices with \texttt{.ix} have different behavior depending on whether the slice is interpreted as position based or label based, it’s usually better to be explicit and use \texttt{.iloc} or \texttt{.loc}.

See more at \textit{Advanced Indexing} and \textit{Advanced Hierarchical}.

\section*{1.8.2 Selection Deprecations}

Starting in version 0.11.0, these methods \textit{may} be deprecated in future versions.

• \texttt{.irow}
• \texttt{.icol}
• \texttt{.iget_value}

See the section \textit{Selection by Position} for substitutes.

\section*{1.8.3 Dtypes}

Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the \texttt{dtype} keyword, a passed \texttt{ndarray}, or a passed \texttt{Series}, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will \textbf{NOT} be combined. The following example will give you a taste.

\begin{verbatim}
In [1]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
In [2]: df1
Out[2]:
     A
0  0.245972
1  0.319442
2  1.378512
3  0.292502
4  0.329791
5  1.392047
6  0.769914
7 -2.472300
[8 rows x 1 columns]
In [3]: df1.dtypes
Out[3]:
     A    float32
dtype: object
In [4]: df2 = DataFrame(dict( A = Series(randn(8),dtype='float16'),
                          B = Series(randn(8)),
                          C = Series(randn(8),dtype='uint8')))
\end{verbatim}
In [5]: df2
Out[5]:
   A          B          C
0 0.611328  0.270630   255
1-1.044922 1.685677    0
2 1.503906 -0.440747    0
3-1.328125-0.115070    1
4-1.024414  0.632102    0
5 0.660156  0.585977    0
6-1.236328 1.444787    0
7 2.169922 0.201135    0

[8 rows x 3 columns]

In [6]: df2.dtypes
Out[6]:
A  float16
B  float64
C   uint8
dtype: object

# here you get some upcasting
In [7]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [8]: df3
Out[8]:
   A          B          C
0-0.365356  0.270630   255
1 1.364364-1.685677    0
2-1.035623-0.440747    0
3 2.882418  0.440747    0
4-1.354205-0.632102    0
5 2.052203  0.585977    0
6-1.206243  1.444787    0
7 4.642221-0.201135    0

[8 rows x 3 columns]

In [9]: df3.dtypes
Out[9]:
A   float32
B   float64
C   float64
dtype: object

1.8.4 Dtype Conversion

This is lower-common-denominator upcasting, meaning you get the dtype which can accomodate all of the types

In [10]: df3.values.dtype
Out[10]: dtype('float64')

Conversion

In [11]: df3.astype('float32').dtypes
Out[11]:
A   float32
1.8.  v0.11.0 (April 22, 2013)
Mixed Conversion

In [12]: df3['D'] = '1.'
In [13]: df3['E'] = '1'
In [14]: df3.convert_objects(convert_numeric=True).dtypes
Out[14]:
A float32
B float64
C float64
D float64
E int64
dtype: object

# same, but specific dtype conversion
In [15]: df3['D'] = df3['D'].astype('float16')
In [16]: df3['E'] = df3['E'].astype('int32')
In [17]: df3.dtypes
Out[17]:
A float32
B float64
C float64
D float16
E int32
dtype: object

Forcing Date coercion (and setting NaT when not datelike)

In [18]: from datetime import datetime
In [19]: s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1,
....:     Timestamp('20010104'), '20010105'], dtype='O')
....:
In [20]: s.convert_objects(convert_dates='coerce')
Out[20]:
0  2001-01-01
1    NaT
2    NaT
3    NaT
4 2001-01-04
5 2001-01-05
dtype: datetime64[ns]

1.8.5 Dtype Gotchas

Platform Gotchas

Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of int64 and float64, regardless of platform. This is not an apparent change from earlier versions of pandas. If you specify dtypes, they WILL be respected, however (GH2837)
The following will all result in int64 dtypes

```python
In [21]: DataFrame([1,2],columns=['a']).dtypes
Out[21]:
 a int64
 dtype: object

In [22]: DataFrame({'a': [1,2]}).dtypes
Out[22]:
 a int64
 dtype: object

In [23]: DataFrame({'a': 1}, index=range(2)).dtypes
Out[23]:
 a int64
 dtype: object
```

Keep in mind that `DataFrame(np.array([1,2]))` WILL result in int32 on 32-bit platforms!

**Upcasting Gotchas**

Performing indexing operations on integer type data can easily upcast the data. The dtype of the input data will be preserved in cases where nans are not introduced.

```python
In [24]: dfi = df3.astype('int32')

In [25]: dfi['D'] = dfi['D'].astype('int64')

In [26]: dfi
Out[26]:
 A B C D E
0 0 0 255 1 1
1 1 -1 0 1 1
2 2 0 0 1 1
3 -1 0 1 1 1
4 1 0 0 1 1
5 2 0 0 1 1
6 2 -1 0 1 1
7 -4 0 0 1 1

[8 rows x 5 columns]
```

```python
In [27]: dfi.dtypes
Out[27]:
 A int32
 B int32
 C int32
 D int64
 E int32
 dtype: object

In [28]: casted = dfi[dfi>0]

In [29]: casted
Out[29]:
 A B C D E
0 NaN NaN 255 1 1
1 NaN NaN 1 1 1
2 NaN NaN 2 1 1
3 NaN NaN 1 1 1
```
In [30]: casted.dtypes
Out[30]:
A  float64
B  float64
C  float64
D  int64
E  int32
dtype: object

While float dtypes are unchanged.

In [31]: df4 = df3.copy()

In [32]: df4[‘A’] = df4[‘A’].astype(‘float32’)

In [33]: df4.dtypes
Out[33]:
A  float32
B  float64
C  float64
D  float16
E  int32
dtype: object

In [34]: casted = df4[df4>0]

In [35]: casted
Out[35]:
A  B  C  D  E
0  NaN NaN  255  1  1
1  1.364364 NaN NaN  1  1
2  2.882418 NaN NaN  1  1
3  NaN NaN  1  1  1
4  1.354205 NaN NaN  1  1
5  2.052203 NaN NaN  1  1
6  2.006243 NaN NaN  1  1
7  NaN NaN NaN  1  1

[8 rows x 5 columns]

In [36]: casted.dtypes
Out[36]:
A  float32
B  float64
C  float64
D  float16
E  int32
dtype: object
1.8.6 Datetimes Conversion

Datetime64[ns] columns in a DataFrame (or a Series) allow the use of np.nan to indicate a nan value, in addition to the traditional NaT, or not-a-time. This allows convenient nan setting in a generic way. Furthermore datetime64[ns] columns are created by default, when passed datetimelike objects (this change was introduced in 0.10.1) (GH2809, GH2810)

In [37]: df = DataFrame(randn(6,2),date_range('20010102',periods=6),columns=['A','B'])

In [38]: df['timestamp'] = Timestamp('20010103')

In [39]: df
Out[39]:
   A    B    timestamp
0  2.09  2.09  2001-01-02
1 -1.44  0.15  2001-01-02
2 -1.12 -0.79  2001-01-03
3  0.10  1.26  2001-01-03
4 -0.72 -0.65  2001-01-03
5 -0.83  0.76  2001-01-03

[6 rows x 3 columns]

# datetime64[ns] out of the box
In [40]: df.get_dtype_counts()
Out[40]:
datetime64[ns]    1
float64          2
dtype: int64

# use the traditional nan, which is mapped to NaT internally
In [41]: df.ix[2:4,['A','timestamp']] = np.nan

In [42]: df
Out[42]:
   A    B    timestamp
0  2.09  2.09  2001-01-02
1 -1.44  0.15  2001-01-02
2 NaN  NaN   NaT
3 NaN  NaN   NaT
4 -0.72 -0.65  2001-01-03
5 -0.83  0.76  2001-01-03

[6 rows x 3 columns]

As of release 0.11.0 (April 22, 2013)
1.8.7 API changes

- Added to_series() method to indices, to facilitate the creation of indexers (GH3275)
- HDFStore
  - added the method select_column to select a single column from a table as a Series.
  - deprecated the unique method, can be replicated by select_column(key, column).unique()
  - min_itemsize parameter to append will now automatically create data_columns for passed keys

1.8.8 Enhancements

- Improved performance of df.to_csv() by up to 10x in some cases. (GH3059)
- Numexpr is now a Recommended Dependencies, to accelerate certain types of numerical and boolean operations
- Bottleneck is now a Recommended Dependencies, to accelerate certain types of nan operations
- HDFStore
  - support read_hdf/to_hdf API similar to read_csv/to_csv
    - provide dotted attribute access to get from stores, e.g. store.df == store['df']
  - new keywords iterator=boolean, and chunksize=number_in_a_chunk are provided to support iteration on select and select_as_multiple (GH3076)
• You can now select timestamps from an unordered timeseries similarly to an ordered timeseries (GH2437)

• You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (GH3070)

In [55]: idx = date_range("2001-10-1", periods=5, freq='M')

In [56]: ts = Series(np.random.rand(len(idx)), index=idx)

In [57]: ts['2001']
Out[57]:
2001-10-31 0.483450
2001-11-30 0.407530
2001-12-31 0.965096
Freq: M, dtype: float64

In [58]: df = DataFrame(dict(A = ts))

In [59]: df['2001']
Out[59]:
     A
2001-10-31 0.483450
2001-11-30 0.407530
2001-12-31 0.965096
[3 rows x 1 columns]

• Squeeze to possibly remove length 1 dimensions from an object.

In [60]: p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
....: major_axis=date_range('20010102',periods=4),
....: minor_axis=['A','B','C','D'])
....:

In [61]: p.reindex(items=['ItemA']).squeeze()
Out[62]:
    A    B    C    D
2001-01-02 0.396537 0.534880 -0.488797 -1.539385
2001-01-03 -0.829037 0.306681 -0.331032  1.544977
2001-01-04 -0.621754 1.026208 -0.413106 -1.490869
2001-01-05 -1.253235 -0.538879 -1.487449 -1.426475
[4 rows x 4 columns]

In [63]: p.reindex(items=['ItemA'],minor=['B']).squeeze()
Out[63]:
2001-01-02 0.534880
2001-01-03 0.306681
2001-01-04 1.026208
2001-01-05 -0.538879
Freq: D, Name: B, dtype: float64

• In pd.io.data.Options,
– Fix bug when trying to fetch data for the current month when already past expiry.
– Now using lxml to scrape html instead of Beautiful Soup (lxml was faster).
– New instance variables for calls and puts are automatically created when a method that creates them is called. This works for current month where the instance variables are simply calls and puts. Also works for future expiry months and save the instance variable as callsMMYY or putsMMYY, where MMYY are, respectively, the month and year of the option’s expiry.
– Options.get_near_stock_price now allows the user to specify the month for which to get relevant options data.
– Options.get_forward_data now has optional kwargs near and above_below. This allows the user to specify if they would like to only return forward looking data for options near the current stock price. This just obtains the data from Options.get_near_stock_price instead of Options.get_xxx_data() (GH2758).

• Cursor coordinate information is now displayed in time-series plots.
• added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979)
• added option display.chop_threshold to control display of small numerical values. (GH2739)
• added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)
• value_counts() now accepts a “normalize” argument, for normalized histograms. (GH2710).
• DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.
• added option display.mpl_style providing a sleeker visual style for plots. Based on https://gist.github.com/huyng/816622 (GH3075).
• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)
• to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes &, in addition to < and >. (GH2919)

See the full release notes or issue tracker on GitHub for a complete list.

1.9 v0.10.1 (January 22, 2013)

This is a minor release from 0.10.0 and includes new features, enhancements, and bug fixes. In particular, there is substantial new HDFStore functionality contributed by Jeff Reback.

An undesired API breakage with functions taking the inplace option has been reverted and deprecation warnings added.

1.9.1 API changes

• Functions taking an inplace option return the calling object as before. A deprecation message has been added
• Groupby aggregations Max/Min no longer exclude non-numeric data (GH2700)
• Resampling an empty DataFrame now returns an empty DataFrame instead of raising an exception (GH2640)
• The file reader will now raise an exception when NA values are found in an explicitly specified integer column instead of converting the column to float (GH2631)
• DatetimeIndex.unique now returns a DatetimeIndex with the same name and
1.9.2 New features

- MySQL support for database (contribution from Dan Allan)

1.9.3 HDFStore

You may need to upgrade your existing data files. Please visit the compatibility section in the main docs.

You can designate (and index) certain columns that you want to be able to perform queries on a table, by passing a list to `data_columns`:

```
In [1]: store = HDFStore('store.h5')

In [2]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
 columns=['A', 'B', 'C'])

In [3]: df['string'] = 'foo'

In [4]: df.ix[4:6,'string'] = np.nan

In [5]: df.ix[7:9,'string'] = 'bar'

In [6]: df['string2'] = 'cool'

In [7]: df
```

```
Out[7]:
 A B C string string2
2000-01-01 -1.601262 -0.256718 0.239369 foo cool
2000-01-02 0.174122 -1.131794 -1.948006 foo cool
2000-01-03 0.980347 -0.674429 -0.361633 foo cool
2000-01-04 -0.761218 1.768215 0.152288 foo cool
2000-01-05 -0.862613 -0.210968 -0.859278 NaN cool
2000-01-06 1.498195 0.462413 -0.647604 NaN cool
2000-01-07 1.511487 -0.727189 -0.342928 foo cool
2000-01-08 -0.007364 1.427674 0.104020 bar cool
```

```
[8 rows x 5 columns]
```

# on-disk operations

```
In [8]: store.append('df', df, data_columns = ['B','C','string','string2'])

In [9]: store.select('df',['B > 0', 'string == foo'])
```

```
Out[9]:
 A B C string string2
2000-01-04 -0.761218 1.768215 0.152288 foo cool
```

```
[1 rows x 5 columns]
```

# this is in-memory version of this type of selection

```
In [10]: df[(df.B > 0) & (df.string == 'foo')]
```

```
Out[10]:
 A B C string string2
2000-01-04 -0.761218 1.768215 0.152288 foo cool
```

[8 rows x 5 columns]
Retrieving unique values in an indexable or data column.

```python
note that this is deprecated as of 0.14.0
can be replicated by: store.select_column('df','index').unique()
store.unique('df','index')
store.unique('df','string')
```

You can now store `datetime64` in data columns.

```python
In [11]: df_mixed = df.copy()
In [12]: df_mixed['datetime64'] = Timestamp('20010102')
In [13]: df_mixed.ix[3:4,['A','B']] = np.nan
In [14]: store.append('df_mixed', df_mixed)
In [15]: df_mixed1 = store.select('df_mixed')
In [16]: df_mixed1
Out[16]:
 A B C string string2 datetime64
0 2000-01-01 -1.601262 -0.256718 foo cool 2001-01-02
1 2000-01-02 0.174122 -1.131794 foo cool 2001-01-02
2 2000-01-03 0.980347 -0.674429 foo cool 2001-01-02
3 2000-01-04 NaN NaN NaN NaN NaN
4 2000-01-05 -0.862613 -0.210968 NaN cool NaN 2001-01-02
5 2000-01-06 1.498195 0.462413 -0.647604 NaN cool NaN 2001-01-02
6 2000-01-07 1.511487 -0.727189 -0.342928 NaN cool NaN 2001-01-02
7 2000-01-08 -0.007364 1.427674 0.104020 bar cool 2001-01-02
```

```python
In [17]: df_mixed1.get_dtype_counts()
Out[17]:
 datetime64[ns] 1
 float64 3
 object 2
dtype: int64
```

You can pass `columns` keyword to select to filter a list of the return columns, this is equivalent to passing a `Term('columns',list_of_columns_to_filter)`

```python
In [18]: store.select('df', columns = ['A','B'])
Out[18]:
 A B
0 2000-01-01 -1.601262 -0.256718
1 2000-01-02 0.174122 -1.131794
2 2000-01-03 0.980347 -0.674429
3 2000-01-04 -0.761218 1.768215
4 2000-01-05 -0.862613 -0.210968
5 2000-01-06 1.498195 0.462413
6 2000-01-07 1.511487 -0.727189
7 2000-01-08 -0.007364 1.427674
```

[8 rows x 2 columns]
HDFStore now serializes multi-index dataframes when appending tables.

```
In [19]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
 ['one', 'two', 'three'],
 [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
 labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
 [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
 names=['foo', 'bar'])

In [20]: df = DataFrame(np.random.randn(10, 3), index=index,
 columns=['A', 'B', 'C'])

In [21]: df
Out[21]:
 A B C
 foo bar
 foo one 2.052171 -1.230963 -0.019240
 two -1.713238 0.838912 -0.637855
 three 0.215109 -1.515362 1.586924
 bar one -0.447974 -1.573998 0.630925
 two -0.071659 -1.277640 -0.102206
 baz two 0.870302 1.275280 -1.199212
 three 1.060780 1.673018 1.249874
 qux one 1.458210 -0.710542 0.825392
 two 1.557329 1.993441 -0.166293
 three 0.150468 0.132104 0.580923
 [10 rows x 3 columns]

In [22]: store.append('mi',df)

In [23]: store.select('mi')
Out[23]:
 A B C
 foo bar
 foo one 2.052171 -1.230963 -0.019240
 two -1.713238 0.838912 -0.637855
 three 0.215109 -1.515362 1.586924
 bar one -0.447974 -1.573998 0.630925
 two -0.071659 -1.277640 -0.102206
 baz two 0.870302 1.275280 -1.199212
 three 1.060780 1.673018 1.249874
 qux one 1.458210 -0.710542 0.825392
 two 1.557329 1.993441 -0.166293
 three 0.150468 0.132104 0.580923
 [10 rows x 3 columns]
```

In [24]: store.select('mi', Term('foo=bar'))
Out[24]:
        A     B     C
   foo bar
      one -0.447974 -1.573998   0.630925
      two -0.071659 -1.277640  -0.102206
   [2 rows x 3 columns]

# the levels are automatically included as data columns
```
```
Multi-table creation via `append_to_multiple` and selection via `select_as_multiple` can create/select from multiple tables and return a combined result, by using `where` on a selector table.

```
In [25]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
 : columns=['A', 'B', 'C', 'D', 'E', 'F'])
 :

In [26]: df_mt['foo'] = 'bar'

you can also create the tables individually
In [27]: store.append_to_multiple({ 'df1_mt' : ['A','B'], 'df2_mt' : None }, df_mt, selector = 'df1_mt')

In [28]: store
Out[28]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
 /df frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
 /df2_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B])
 /df1_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
 /df_mixed frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index])
 /mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[bar,foo])

individual tables were created
In [29]: store.select('df1_mt')
Out[29]:
 A B
2000-01-01 -0.128750 1.445964
2000-01-02 -0.688741 0.228006
2000-01-03 0.932498 -2.200069
2000-01-04 1.298390 1.662964
2000-01-05 -0.462446 -0.112019
2000-01-06 -1.626124 0.982041
2000-01-07 0.942864 2.502156
2000-01-08 0.268766 -1.225092

[8 rows x 2 columns]

In [30]: store.select('df2_mt')
Out[30]:
 C D E F foo
2000-01-01 -0.431163 0.016640 0.904578 -1.645852 bar
2000-01-02 0.800353 -0.451572 0.831767 0.228760 bar
2000-01-03 1.239198 0.185437 -0.540770 -0.370038 bar
2000-01-04 -0.040863 0.290110 -0.096145 1.717830 bar
2000-01-05 -0.134024 -0.205969 1.348944 -1.198246 bar
2000-01-06 0.059493 -0.460111 -1.565401 -0.025706 bar
2000-01-07 0.302741 0.261551 -0.066342 0.897097 bar
2000-01-08 0.582752 -1.490764 -0.639757 -0.952750 bar

[8 rows x 5 columns]

as a multiple
In [31]: store.select_as_multiple(['df1_mt', 'df2_mt'], where = ['A>0', 'B>0'], selector = 'df1_mt')
Out[31]:
 A B C D E F foo
2000-01-04 1.298390 1.662964 -0.040863 0.290110 -0.096145 1.717830 bar
2000-01-07 0.942864 2.502156 -0.302741 0.261551 -0.066342 0.897097 bar

[2 rows x 7 columns]
Enhancements

- **HDFStore** now can read native PyTables table format tables
- You can pass `nan_rep = 'my_nan_rep'` to append, to change the default nan representation on disk (which converts to/from *np.nan*), this defaults to *nan*.
- You can pass `index` to append. This defaults to *True*. This will automagically create indices on the *indexables* and *data columns* of the table
- You can pass `chunksize=an integer` to append, to change the writing chunksize (default is 50000). This will significantly lower your memory usage on writing.
- You can pass `expectedrows=an integer` to the first append, to set the TOTAL number of expectedrows that PyTables will expected. This will optimize read/write performance.
- `Select` now supports passing `start` and `stop` to provide selection space limiting in selection.
- Greatly improved ISO8601 (e.g., yyyy-mm-dd) date parsing for file parsers (GH2698)
- Allow `DataFrame.merge` to handle combinatorial sizes too large for 64-bit integer (GH2690)
- Series now has unary negation (-series) and inversion (~series) operators (GH2686)
- `DataFrame.plot` now includes a `logx` parameter to change the x-axis to log scale (GH2327)
- Series arithmetic operators can now handle constant and ndarray input (GH2574)
- ExcelFile now takes a `kind` argument to specify the file type (GH2613)
- A faster implementation for Series.str methods (GH2602)

Bug Fixes

- **HDFStore** tables can now store float32 types correctly (cannot be mixed with float64 however)
- Fixed Google Analytics prefix when specifying request segment (GH2713).
- Function to reset Google Analytics token store so users can recover from improperly setup client secrets (GH2687).
- Fixed groupby bug resulting in segfault when passing in MultiIndex (GH2706)
- Fixed bug where passing a Series with datetime64 values into to_datetime results in bogus output values (GH2699)
- Fixed bug in pattern in HDFStore expressions when pattern is not a valid regex (GH2694)
- Fixed performance issues while aggregating boolean data (GH2692)
- When given a boolean mask key and a Series of new values, Series __setitem__ will now align the incoming values with the original Series (GH2686)
- Fixed MemoryError caused by performing counting sort on sorting MultiIndex levels with a very large number of combinatorial values (GH2684)
- Fixed bug that causes plotting to fail when the index is a DatetimeIndex with a fixed-offset timezone (GH2683)
- Corrected businessday subtraction logic when the offset is more than 5 bdays and the starting date is on a weekend (GH2680)
- Fixed C file parser behavior when the file has more columns than data (GH2668)
- Fixed file reader bug that misaligned columns with data in the presence of an implicit column and a specified usecols value
- DataFrames with numerical or datetime indices are now sorted prior to plotting (GH2609)
- Fixed DataFrame.from_records error when passed columns, index, but empty records (GH2633)
- Several bug fixed for Series operations when dtype is datetime64 (GH2689, GH2629, GH2626)

See the full release notes or issue tracker on GitHub for a complete list.

1.10 v0.10.0 (December 17, 2012)

This is a major release from 0.9.1 and includes many new features and enhancements along with a large number of bug fixes. There are also a number of important API changes that long-time pandas users should pay close attention to.

1.10.1 File parsing new features

The delimited file parsing engine (the guts of read_csv and read_table) has been rewritten from the ground up and now uses a fraction the amount of memory while parsing, while being 40% or more faster in most use cases (in some cases much faster).

There are also many new features:
- Much-improved Unicode handling via the encoding option.
- Column filtering (usecols)
- Dtype specification (dtype argument)
- Ability to specify strings to be recognized as True/False
- Ability to yield NumPy record arrays (as_recarray)
- High performance delim_whitespace option
- Decimal format (e.g. European format) specification
- Easier CSV dialect options: escapechar, lineterminator, quotechar, etc.
- More robust handling of many exceptional kinds of files observed in the wild

1.10.2 API changes

Deprecated DataFrame BINOP TimeSeries special case behavior

The default behavior of binary operations between a DataFrame and a Series has always been to align on the DataFrame’s columns and broadcast down the rows, except in the special case that the DataFrame contains time series. Since there are now method for each binary operator enabling you to specify how you want to broadcast, we are phasing out this special case (Zen of Python: Special cases aren’t special enough to break the rules). Here’s what I’m talking about:

```
In [1]: import pandas as pd

In [2]: df = pd.DataFrame(np.random.randn(6, 4),
                   index=pd.date_range('1/1/2000', periods=6))
              ...

In [3]: df
```

```
Out[3]:
          0     1     2     3
2000-01-01 -0.892402  0.505987 -0.681624  0.850162
```
2000-01-02 0.586586 1.175843 -0.160391 0.481679
2000-01-03 0.408279 1.641246 0.383888 -1.495227
2000-01-04 1.166096 -0.802272 -0.275253 0.517938
2000-01-05 -0.750872 1.216537 -0.910343 -0.606534
2000-01-06 -0.410659 0.264024 -0.069315 -1.814768

[6 rows x 4 columns]

deprecated now
In [4]: df - df[0]
Out[4]:
0 1 2 3
2000-01-01 0 1.398389 0.210778 1.742564
2000-01-02 0 0.589256 -0.746978 -0.104908
2000-01-03 0 1.232968 -0.024391 -1.903505
2000-01-04 0 -1.968368 -1.441350 -0.648158
2000-01-05 0 1.967410 -0.159471 0.144338
2000-01-06 0 0.674682 0.341344 -1.404109

[6 rows x 4 columns]

Change your code to
In [5]: df.sub(df[0], axis=0) # align on axis 0 (rows)
Out[5]:
0 1 2 3
2000-01-01 0 1.398389 0.210778 1.742564
2000-01-02 0 0.589256 -0.746978 -0.104908
2000-01-03 0 1.232968 -0.024391 -1.903505
2000-01-04 0 -1.968368 -1.441350 -0.648158
2000-01-05 0 1.967410 -0.159471 0.144338
2000-01-06 0 0.674682 0.341344 -1.404109

[6 rows x 4 columns]

You will get a deprecation warning in the 0.10.x series, and the deprecated functionality will be removed in 0.11 or later.

Altered resample default behavior

The default time series resample binning behavior of daily D and higher frequencies has been changed to closed='left', label='left'. Lower frequencies are unaffected. The prior defaults were causing a great deal of confusion for users, especially resampling data to daily frequency (which labeled the aggregated group with the end of the interval: the next day).

Note:
In [6]: dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')
In [7]: series = Series(np.arange(len(dates)), index=dates)
In [8]: series
Out[8]:
2000-01-01 00:00:00 0
2000-01-01 04:00:00 1
2000-01-01 08:00:00 2
2000-01-01 12:00:00 3
2000-01-01 16:00:00 4
...
2000-01-04 04:00:00 19
In [9]: series.resample('D', how='sum')
Out[9]:
2000-01-01 15
2000-01-02 51
2000-01-03 87
2000-01-04 123
2000-01-05 24
Freq: D, dtype: int32

old behavior
In [10]: series.resample('D', how='sum', closed='right', label='right')
Out[10]:
2000-01-01 0
2000-01-02 21
2000-01-03 57
2000-01-04 93
2000-01-05 129
Freq: D, dtype: int32

- Infinity and negative infinity are no longer treated as NA by isnull and notnull. That they every were was a relic of early pandas. This behavior can be re-enabled globally by the mode.use_inf_as_null option:

In [11]: s = pd.Series([1.5, np.inf, 3.4, -np.inf])

In [12]: pd.isnull(s)
Out[12]:
0 False
1 False
2 False
3 False
dtype: bool

In [13]: s.fillna(0)
Out[13]:
0 1.500000
1 inf
2 3.400000
3 -inf
dtype: float64

In [14]: pd.set_option('use_inf_as_null', True)

In [15]: pd.isnull(s)
Out[15]:
0 False
1 True
2 False
3 True
dtype: bool

In [16]: s.fillna(0)
Out[16]:
0 1.5
1 0.0
2 3.4
3 0.0
dtype: float64

In [17]: pd.reset_option('use_inf_as_null')

- Methods with the inplace option now all return None instead of the calling object. E.g. code written like df = df.fillna(0, inplace=True) may stop working. To fix, simply delete the unnecessary variable assignment.

- pandas.merge no longer sorts the group keys (sort=False) by default. This was done for performance reasons: the group-key sorting is often one of the more expensive parts of the computation and is often unnecessary.

- The default column names for a file with no header have been changed to the integers 0 through N - 1. This is to create consistency with the DataFrame constructor with no columns specified. The v0.9.0 behavior (names X0, X1, ...) can be reproduced by specifying prefix='X':

In [18]: data= 'a,b,c

1,Yes,2
3,No,4'

In [19]: print(data)
a,b,c
1,Yes,2
3,No,4

In [20]: pd.read_csv(StringIO(data), header=None)
Out[20]:
 0 1 2
0 a b c
1 1 Yes 2
2 3 No 4
[3 rows x 3 columns]

In [21]: pd.read_csv(StringIO(data), header=None, prefix='X')
Out[21]:
 X0 X1 X2
0 a b c
1 1 Yes 2
2 3 No 4
[3 rows x 3 columns]

- Values like ‘Yes’ and ‘No’ are not interpreted as boolean by default, though this can be controlled by new true_values and false_values arguments:

In [22]: print(data)
a,b,c
1,Yes,2
3,No,4

In [23]: pd.read_csv(StringIO(data))
Out[23]:
a b c
0 1 Yes 2
1 3 No 4
In [24]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[24]:
 a b c
0 1 True 2
1 3 False 4

• The file parsers will not recognize non-string values arising from a converter function as NA if passed in the
 na_values argument. It’s better to do post-processing using the replace function instead.

• Calling fillna on Series or DataFrame with no arguments is no longer valid code. You must either specify a
 fill value or an interpolation method:

In [25]: s = Series([np.nan, 1., 2., np.nan, 4])

In [26]: s
Out[26]:
0 NaN
1 1
2 2
3 NaN
4 4
dtype: float64

In [27]: s.fillna(0)
Out[27]:
0 0
1 1
2 2
3 0
4 4
dtype: float64

In [28]: s.fillna(method='pad')
Out[28]:
0 NaN
1 1
2 2
3 2
4 4
dtype: float64

Convenience methods ffill and bfill have been added:

In [29]: s.ffill()
Out[29]:
0 NaN
1 1
2 2
3 2
4 4
dtype: float64

• Series.apply will now operate on a returned value from the applied function, that is itself a series, and
 possibly upcast the result to a DataFrame
In [30]: def f(x):
 : return Series([x, x**2], index = ['x', 'x^2'])
 :

In [31]: s = Series(np.random.rand(5))

In [32]: s
Out[32]:
0 0.013135
1 0.909855
2 0.098093
3 0.023540
4 0.141354
 dtype: float64

In [33]: s.apply(f)
Out[33]:
x x^2
0 0.013135 0.000173
1 0.909855 0.827836
2 0.098093 0.009622
3 0.023540 0.000554
4 0.141354 0.019981
[5 rows x 2 columns]

• New API functions for working with pandas options (GH2097):

 - get_option / set_option - get/set the value of an option. Partial names are accepted.
 - reset_option - reset one or more options to their default value. Partial names are accepted.
 - describe_option - print a description of one or more options. When called with no arguments, print all registered options.

 Note: set_printoptions/ reset_printoptions are now deprecated (but functioning), the print options now live under “display.XYZ”. For example:

 In [34]: get_option("display.max_rows")
Out[34]: 15

• to_string() methods now always return unicode strings (GH2224).

1.10.3 New features

1.10.4 Wide DataFrame Printing

Instead of printing the summary information, pandas now splits the string representation across multiple rows by default:

In [35]: wide_frame = DataFrame(randn(5, 16))

In [36]: wide_frame
Out[36]:
 0 1 2 3 4 5 6
0 2.520045 1.570114 -0.360875 -0.880096 0.235532 0.207232 -1.983857
1 0.422194 0.288403 -0.487393 -0.777639 0.055865 1.383381 0.085638
2 0.585174 -0.568825 -0.719412 1.191340 -0.456362 0.089931 0.776079
3 1.218080 -0.564705 -0.581790 0.286071 0.048725 1.002440 1.276582

1.10. v0.10.0 (December 17, 2012)
The old behavior of printing out summary information can be achieved via the 'expand_frame_repr' print option:

In [37]: pd.set_option('expand_frame_repr', False)

In [38]: wide_frame
Out[38]:

The width of each line can be changed via 'line_width' (80 by default):

In [39]: pd.set_option('line_width', 40)

line_width has been deprecated, use display.width instead (currently both are identical)

In [40]: wide_frame
Out[40]:

130 Chapter 1. What’s New
1.10.5 Updated PyTables Support

Docs for PyTables `Table` format & several enhancements to the api. Here is a taste of what to expect.

```python
In [41]: store = HDFStore('store.h5')

In [42]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
   ....:  columns=['A', 'B', 'C'])
   ....:

In [43]: df
Out[43]:
   A          B          C
0 2000-01-01 -2.036047  0.000830 -0.955697
1 2000-01-02 -0.898872 -0.725411  0.059904
2 2000-01-03 -0.449644  1.082900 -1.221265
3 2000-01-04  0.361078  1.330704  0.855932
4 2000-01-05  1.216718  1.488887  0.018993
5 2000-01-06 -0.877046  0.045976  0.437274
6 2000-01-07 -0.567182 -0.888657 -0.556383
7 2000-01-08  0.655457  1.117949 -2.782376

[8 rows x 3 columns]
```

appending data frames

```python
In [44]: df1 = df[0:4]

In [45]: df2 = df[4:]

In [46]: store.append('df', df1)
```
In [47]: store.append('df', df2)

In [48]: store
Out[48]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df
 frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

selecting the entire store
In [49]: store.select('df')
Out[49]:
 A B C
2000-01-01 -2.036047 0.000830 -0.955697
2000-01-02 -0.898872 -0.725411 0.059904
2000-01-03 -0.449644 1.082900 -1.221265
2000-01-04 0.361078 1.330704 0.855932
2000-01-05 -1.216718 1.488887 0.018993
2000-01-06 -0.877046 0.045976 0.437274
2000-01-07 -0.567182 -0.888657 -0.556383
2000-01-08 0.655457 1.117949 -2.782376

[8 rows x 3 columns]

In [50]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
 major_axis=date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])

In [51]: wp
Out[51]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

storing a panel
In [52]: store.append('wp', wp)

selecting via A QUERY
In [53]: store.select('wp',
 ['major_axis>20000102', 'minor_axis', '=', ['A', 'B']])

Out[53]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B

removing data from tables
In [54]: store.remove('wp', Term('major_axis>20000103'))
Out[54]: 8

In [55]: store.select('wp')
Out[55]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
deleting a store
In [56]: del store['df']

In [57]: store
Out[57]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])

Enhancements

• added ability to hierarchical keys

 In [58]: store.put('foo/bar/bah', df)

 In [59]: store.append('food/orange', df)

 In [60]: store.append('food/apple', df)

 In [61]: store
Out[61]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
/food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/foo/bar/bah frame (shape->[8,3])

remove all nodes under this level
In [62]: store.remove('food')

In [63]: store
Out[63]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/wp wide_table (typ->appendable,nrows->12,ncols->2,indexers->[major_axis,minor_axis])
/foo/bar/bah frame (shape->[8,3])

• added mixed-dtype support!

 In [64]: df['string'] = 'string'

 In [65]: df['int'] = 1

 In [66]: store.append('df', df)

 In [67]: df1 = store.select('df')

 In [68]: df1
Out[68]:
 A B C string int
2000-01-01 -2.036047 0.000830 -0.955697 string 1
2000-01-02 -0.898872 -0.725411 0.059904 string 1
2000-01-03 -0.449644 1.082900 -1.221265 string 1
2000-01-04 0.361078 1.330704 0.855932 string 1
pandas: powerful Python data analysis toolkit, Release 0.15.1

2000-01-05 -1.216718 1.488887 0.018993 string 1
2000-01-06 -0.877046 0.045976 0.437274 string 1
2000-01-07 -0.567182 -0.888657 -0.556383 string 1
2000-01-08 0.655457 1.117949 -2.782376 string 1

[8 rows x 5 columns]

In [69]: df1.get_dtype_counts()
Out[69]:
float64 3
int64 1
object 1
dtype: int64

• performance improvements on table writing
• support for arbitrarily indexed dimensions
• SparseSeries now has a density property (GH2384)
• enable Series.str.strip/lstrip/rstrip methods to take an input argument to strip arbitrary characters (GH2411)
• implement value_vars in melt to limit values to certain columns and add melt to pandas namespace (GH2412)

Bug Fixes
• added Term method of specifying where conditions (GH1996).
• del store[‘df’] now call store.remove(‘df’) for store deletion
• deleting of consecutive rows is much faster than before
• min_itemsize parameter can be specified in table creation to force a minimum size for indexing columns (the previous implementation would set the column size based on the first append)
• indexing support via create_table_index (requires PyTables >= 2.3) (GH698).
• appending on a store would fail if the table was not first created via put
• fixed issue with missing attributes after loading a pickled dataframe (GH2431)
• minor change to select and remove: require a table ONLY if where is also provided (and not None)

Compatibility
0.10 of HDFStore is backwards compatible for reading tables created in a prior version of pandas, however, query terms using the prior (undocumented) methodology are unsupported. You must read in the entire file and write it out using the new format to take advantage of the updates.

1.10.6 N Dimensional Panels (Experimental)

Adding experimental support for Panel4D and factory functions to create n-dimensional named panels. Docs for NDim. Here is a taste of what to expect.

In [70]: p4d = Panel4D(randn(2, 2, 5, 4),
.....: labels=['Label1','Label2'],
.....: items=['Item1', 'Item2'],
.....: major_axis=date_range('1/1/2000', periods=5),
.....: minor_axis=['A', 'B', 'C', 'D'])
`In [71]: p4d
Out[71]:
<class 'pandas.core.panel.Panel4D'>
Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

See the full release notes or issue tracker on GitHub for a complete list.

1.11 v0.9.1 (November 14, 2012)

This is a bugfix release from 0.9.0 and includes several new features and enhancements along with a large number of bug fixes. The new features include by-column sort order for DataFrame and Series, improved NA handling for the rank method, masking functions for DataFrame, and intraday time-series filtering for DataFrame.

1.11.1 New features

- `Series.sort`, `DataFrame.sort`, and `DataFrame.sort_index` can now be specified in a per-column manner to support multiple sort orders (GH928)

 `In [1]: df = DataFrame(np.random.randint(0, 2, (6, 3)), columns=['A', 'B', 'C'])`

 `In [2]: df.sort(['A', 'B'], ascending=[1, 0])`

 `Out[2]:
 A B C
 2 0 1 1
 3 0 1 1
 4 0 0 1
 0 1 1 0
 1 1 0 1
 5 1 0 1

 [6 rows x 3 columns]`

- `DataFrame.rank` now supports additional argument values for the `na_option` parameter so missing values can be assigned either the largest or the smallest rank (GH1508, GH2159)

 `In [3]: df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C'])`

 `In [4]: df.ix[2:4] = np.nan`

 `In [5]: df.rank()`

 `Out[5]:
 A B C
 0 3 2 1
 1 2 1 3
 2 NaN NaN NaN
 3 NaN NaN NaN
 4 NaN NaN NaN
 5 1 3 2

 [6 rows x 3 columns]`
In [6]: df.rank(na_option='top')
Out[6]:
 A B C
0 6 5 4
1 5 4 6
2 2 2 2
3 2 2 2
4 2 2 2
5 4 6 5
[6 rows x 3 columns]

In [7]: df.rank(na_option='bottom')
Out[7]:
 A B C
0 3 2 1
1 2 1 3
2 5 5 5
3 5 5 5
4 5 5 5
5 1 3 2
[6 rows x 3 columns]

- DataFrame has new *where* and *mask* methods to select values according to a given boolean mask (GH2109, GH2151)

 DataFrame currently supports slicing via a boolean vector the same length as the DataFrame (inside the []). The returned DataFrame has the same number of columns as the original, but is sliced on its index.

 In [8]: df = DataFrame(np.random.randn(5, 3), columns = ['A', 'B', 'C'])

 In [9]: df
 Out[9]:
 A B C
0 0.706220 -1.130744 -0.690308
1 -0.885387 0.246004 1.986687
2 0.212595 -1.189832 -0.344258
3 0.816335 -1.514102 1.298184
4 0.089527 0.576687 -0.737750
[5 rows x 3 columns]

 In [10]: df[df['A'] > 0]
 Out[10]:
 A B C
0 0.706220 -1.130744 -0.690308
1 -0.885387 0.246004 1.986687
2 0.212595 -1.189832 -0.344258
3 0.816335 -1.514102 1.298184
4 0.089527 0.576687 -0.737750
[4 rows x 3 columns]

 If a DataFrame is sliced with a DataFrame based boolean condition (with the same size as the original DataFrame), then a DataFrame the same size (index and columns) as the original is returned, with elements that do not meet the boolean condition as *NaN*. This is accomplished via the new method *DataFrame.where*. In addition, *where* takes an optional *other* argument for replacement.
pandas: powerful Python data analysis toolkit, Release 0.15.1

In [11]: df[df>0]
Out[11]:
 A B C
0 0.706220 NaN NaN
1 NaN 0.246004 1.986687
2 0.212595 NaN NaN
3 0.816335 NaN 1.298184
4 0.089527 0.576687 NaN

[5 rows x 3 columns]

In [12]: df.where(df>0)
Out[12]:
 A B C
0 0.706220 NaN NaN
1 NaN 0.246004 1.986687
2 0.212595 NaN NaN
3 0.816335 NaN 1.298184
4 0.089527 0.576687 NaN

[5 rows x 3 columns]

In [13]: df.where(df>0,-df)
Out[13]:
 A B C
0 0.706220 1.130744 -0.690308
1 0.885387 3.000000 3.000000
2 0.212595 1.189832 0.344258
3 0.816335 1.514102 1.298184
4 0.089527 0.576687 0.737750

[5 rows x 3 columns]

Furthermore, *where* now aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analagous to partial setting via `.ix` (but on the contents rather than the axis labels).

In [14]: df2 = df.copy()

In [15]: df2[df2[1:4] > 0] = 3

In [16]: df2
Out[16]:
 A B C
0 0.706220 -1.130744 -0.690308
1 -0.885387 3.000000 3.000000
2 3.000000 -1.189832 -0.344258
3 3.000000 -1.514102 3.000000
4 0.089527 0.576687 -0.737750

[5 rows x 3 columns]

DataFrame.mask is the inverse boolean operation of *where*.

In [17]: df.mask(df<=0)
Out[17]:
 A B C
0 0.706220 NaN NaN
1 NaN 0.246004 1.986687
 1.11. v0.9.1 (November 14, 2012) 137
• Enable referencing of Excel columns by their column names (GH1936)

```python
In [18]: xl = ExcelFile('data/test.xls')

In [19]: xl.parse('Sheet1', index_col=0, parse_dates=True,
                          parse_cols='A:D')
```

```python
Out[19]:
          A   B   C
2000-01-03 0.980269 3.685731 -0.364217
2000-01-04 1.047916 -0.041232 -0.161812
2000-01-05 0.498581 0.731168 -0.537677
2000-01-06 1.120202 1.567621  0.003641
2000-01-07 -0.487094 0.571455 -1.611639
2000-01-10 0.836649 0.246462  0.588543
2000-01-11 -0.157161 1.340307  1.195778
```

[7 rows x 3 columns]

• Added option to disable pandas-style tick locators and formatters using `series.plot(x_compat=True)` or `pandas.plot_params['x compat'] = True` (GH2205)

• Existing TimeSeries methods `at_time` and `between_time` were added to DataFrame (GH2149)

• DataFrame.dot can now accept ndarrays (GH2042)

• DataFrame.drop now supports non-unique indexes (GH2101)

• Panel.shift now supports negative periods (GH2164)

• DataFrame now support unary ~ operator (GH2110)

1.11.2 API changes

• Upsampling data with a PeriodIndex will result in a higher frequency TimeSeries that spans the original time window

```python
In [20]: prng = period_range('2012Q1', periods=2, freq='Q')

In [21]: s = Series(np.random.randn(len(prng)), prng)

In [22]: s.resample('M')
```

```python
Out[22]:
2012-01  0.194513
2012-02  NaN
2012-03  NaN
2012-04 -0.854246
2012-05  NaN
2012-06  NaN
Freq: M, dtype: float64
```

• Period.end_time now returns the last nanosecond in the time interval (GH2124, GH2125, GH1764)
```python
In [23]: p = Period('2012')

In [24]: p.end_time
Out[24]: Timestamp('2012-12-31 23:59:59.999999999')
```

- File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

```python
In [25]: data = 'A,B,C
00001,001,5
00002,002,6'

In [26]: read_csv(StringIO(data), converters={'A': lambda x: x.strip()})
Out[26]:
   A  B  C
0  0  1  5
1  2  6
```

See the [full release notes](#) or issue tracker on GitHub for a complete list.

1.12 v0.9.0 (October 7, 2012)

This is a major release from 0.8.1 and includes several new features and enhancements along with a large number of bug fixes. New features include vectorized unicode encoding/decoding for `Series.str`, `to_latex` method to DataFrame, more flexible parsing of boolean values, and enabling the download of options data from Yahoo! Finance.

1.12.1 New features

- Add `encode` and `decode` for unicode handling to `vectorized string processing methods` in `Series.str` (GH1706)
- Add `DataFrame.to_latex` method (GH1735)
- Add convenient expanding window equivalents of all rolling_* ops (GH1785)
- Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
- More flexible parsing of boolean values (Yes, No, TRUE, FALSE, etc) (GH1691, GH1295)
- Add `level` parameter to `Series.reset_index`
- `TimeSeries.between_time` can now select times across midnight (GH1871)
- Series constructor can now handle generator as input (GH1679)
- `DataFrame.dropna` can now take multiple axes (tuple/list) as input (GH924)
- Enable `skip_footer` parameter in `ExcelFile.parse` (GH1843)

1.12.2 API changes

- The default column names when `header=None` and no columns names passed to functions like `read_csv` has changed to be more Pythonic and amenable to attribute access:

  ```python
  In [1]: data = '0,0,1
n1,0
n0,1,0'
  ```

  ```python
  In [2]: df = read_csv(StringIO(data), header=None)
  ```

  ```python
  In [3]: df
  ```
Out[3]:
 0 1 2
0 0 0 1
1 1 1 0
2 0 1 0

[3 rows x 3 columns]

- Creating a Series from another Series, passing an index, will cause reindexing to happen inside rather than treating the Series like an ndarray. Technically improper usages like `Series(df[col1], index=df[col2])` that worked before “by accident” (this was never intended) will lead to all NA Series in some cases. To be perfectly clear:

```
In [4]: s1 = Series([1, 2, 3])
In [5]: s1
Out[5]:
   0 1
0 1 2
1 3
   dtype: int64
```

```
In [6]: s2 = Series(s1, index=['foo', 'bar', 'baz'])
In [7]: s2
Out[7]:
   foo   NaN
   bar   NaN
   baz   NaN
   dtype: float64
```

- Deprecated `day_of_year` API removed from PeriodIndex, use `dayofyear` (GH1723)
- Don’t modify NumPy suppress printoption to True at import time
- The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
- Legacy cruft removed: pandas.stats.misc.quantileTS
- Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
- Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
- Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
- `first` and `last` methods in GroupBy no longer drop non-numeric columns (GH1809)
- Resolved inconsistencies in specifying custom NA values in text parser. `na_values` of type dict no longer override default NAs unless `keep_default_na` is set to false explicitly (GH1657)
- `DataFrame.dot` will not do data alignment, and also work with Series (GH1915)

See the full release notes or issue tracker on GitHub for a complete list.
1.13 v0.8.1 (July 22, 2012)

This release includes a few new features, performance enhancements, and over 30 bug fixes from 0.8.0. New features include notably NA friendly string processing functionality and a series of new plot types and options.

1.13.1 New features

- Add vectorized string processing methods accessible via Series.str (GH620)
- Add option to disable adjustment in EWMA (GH1584)
- Radviz plot (GH1566)
- Parallel coordinates plot
- Bootstrap plot
- Per column styles and secondary y-axis plotting (GH1559)
- New datetime converters millisecond plotting (GH1599)
- Add option to disable “sparse” display of hierarchical indexes (GH1538)
- Series/DataFrame’s set_index method can append levels to an existing Index/MultiIndex (GH1569, GH1577)

1.13.2 Performance improvements

- Improved implementation of rolling min and max (thanks to Bottleneck !)
- Add accelerated ‘median’ GroupBy option (GH1358)
- Significantly improve the performance of parsing ISO8601-format date strings with DatetimeIndex or to_datetime (GH1571)
- Improve the performance of GroupBy on single-key aggregations and use with Categorical types
- Significant datetime parsing performance improvements

1.14 v0.8.0 (June 29, 2012)

This is a major release from 0.7.3 and includes extensive work on the time series handling and processing infrastructure as well as a great deal of new functionality throughout the library. It includes over 700 commits from more than 20 distinct authors. Most pandas 0.7.3 and earlier users should not experience any issues upgrading, but due to the migration to the NumPy datetime64 dtype, there may be a number of bugs and incompatibilities lurking. Lingering incompatibilities will be fixed ASAP in a 0.8.1 release if necessary. See the full release notes or issue tracker on GitHub for a complete list.

1.14.1 Support for non-unique indexes

All objects can now work with non-unique indexes. Data alignment / join operations work according to SQL join semantics (including, if application, index duplication in many-to-many joins)
1.14.2 NumPy datetime64 dtype and 1.6 dependency

Time series data are now represented using NumPy’s datetime64 dtype; thus, pandas 0.8.0 now requires at least NumPy 1.6. It has been tested and verified to work with the development version (1.7+) of NumPy as well which includes some significant user-facing API changes. NumPy 1.6 also has a number of bugs having to do with nanosecond resolution data, so I recommend that you steer clear of NumPy 1.6’s datetime64 API functions (though limited as they are) and only interact with this data using the interface that pandas provides.

See the end of the 0.8.0 section for a “porting” guide listing potential issues for users migrating legacy codebases from pandas 0.7 or earlier to 0.8.0.

Bug fixes to the 0.7.x series for legacy NumPy < 1.6 users will be provided as they arise. There will be no more further development in 0.7.x beyond bug fixes.

1.14.3 Time series changes and improvements

Note: With this release, legacy scikits.timeseries users should be able to port their code to use pandas.

Note: See documentation for overview of pandas timeseries API.

- New datetime64 representation speeds up join operations and data alignment, reduces memory usage, and improve serialization / deserialization performance significantly over datetime.datetime

- High performance and flexible resample method for converting from high-to-low and low-to-high frequency. Supports interpolation, user-defined aggregation functions, and control over how the intervals and result labeling are defined. A suite of high performance Cython/C-based resampling functions (including Open-High-Low-Close) have also been implemented.

- Revamp of frequency aliases and support for frequency shortcuts like ‘15min’, or ‘1h30min’

- New DatetimeIndex class supports both fixed frequency and irregular time series. Replaces now deprecated DateRange class

- New PeriodIndex and Period classes for representing time spans and performing calendar logic, including the 12 fiscal quarterly frequencies <timeseries.quarterly>. This is a partial port of, and a substantial enhancement to, elements of the scikits.timeseries codebase. Support for conversion between PeriodIndex and DatetimeIndex

- New Timestamp data type subclasses datetime.datetime, providing the same interface while enabling working with nanosecond-resolution data. Also provides easy time zone conversions.

- Enhanced support for time zones. Add tz_convert and tz_localize methods to TimeSeries and DataFrame. All timestamps are stored as UTC; Timestamps from DatetimeIndex objects with time zone set will be localized to localtime. Time zone conversions are therefore essentially free. User needs to know very little about pytz library now; only time zone names as as strings are required. Time zone-aware timestamps are equal if and only if their UTC timestamps match. Operations between time zone-aware time series with different time zones will result in a UTC-indexed time series.

- Time series string indexing conveniences / shortcuts: slice years, year and month, and index values with strings

- Enhanced time series plotting; adaptation of scikits.timeseries matplotlib-based plotting code

- New date_range, bdate_range, and period_range factory functions

- Robust frequency inference function infer_freq and inferred_freq property of DatetimeIndex, with option to infer frequency on construction of DatetimeIndex
• to_datetime function efficiently parses array of strings to DatetimeIndex. DatetimeIndex will parse array or list of strings to datetime64
• Optimized support for datetime64-dtype data in Series and DataFrame columns
• New NaT (Not-a-Time) type to represent NA in timestamp arrays
• Optimize Series.asof for looking up “as of” values for arrays of timestamps
• Milli, Micro, Nano date offset objects
• Can index time series with datetime.time objects to select all data at particular time of day (TimeSeries.at_time) or between two times (TimeSeries.between_time)
• Add tshift method for leading/lagging using the frequency (if any) of the index, as opposed to a naive lead/lag using shift

1.14.4 Other new features

• New cut and qcut functions (like R’s cut function) for computing a categorical variable from a continuous variable by binning values either into value-based (cut) or quantile-based (qcut) bins
• Rename Factor to Categorical and add a number of usability features
• Add limit argument to fillna/reindex
• More flexible multiple function application in GroupBy, and can pass list (name, function) tuples to get result in particular order with given names
• Add flexible replace method for efficiently substituting values
• Enhanced read_csv/read_table for reading time series data and converting multiple columns to dates
• Add comments option to parser functions: read_csv, etc.
• Add :ref:`dayfirst <io.dayfirst>` option to parser functions for parsing international DD/MM/YYYY dates
• Allow the user to specify the CSV reader dialect to control quoting etc.
• Handling thousands separators in read_csv to improve integer parsing.
• Enable unstacking of multiple levels in one shot. Alleviate pivot_table bugs (empty columns being introduced)
• Move to klib-based hash tables in one shot. Alleviate pivot_table bugs (empty columns being introduced)
• Move to klib-based hash tables for indexing; better performance and less memory usage than Python’s dict
• Add first, last, min, max, and prod optimized GroupBy functions
• New ordered_merge function
• Add flexible comparison instance methods eq, ne, lt, gt, etc. to DataFrame, Series
• Improve scatter_matrix plotting function and add histogram or kernel density estimates to diagonal
• Add ‘kde’ plot option for density plots
• Support for converting DataFrame to R data.frame through rpy2
• Improved support for complex numbers in Series and DataFrame
• Add pct_change method to all data structures
• Add max_colwidth configuration option for DataFrame console output
• Interpolate Series values using index values
• Can select multiple columns from GroupBy
• Add *update* methods to Series/DataFrame for updating values in place
• Add *any* and *all* method to DataFrame

1.14.5 New plotting methods

Series.plot now supports a secondary_y option:

```python
In [1]: plt.figure()
Out[1]: <matplotlib.figure.Figure at 0xadcf322c>

In [2]: fx['FR'].plot(style='g')
Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0xadcf398c>

In [3]: fx['IT'].plot(style='k--', secondary_y=True)
Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0xadcf3d4c>
```

```
../_static/whatsnew_secondary_y.png
```

Vytautas Jancauskas, the 2012 GSOC participant, has added many new plot types. For example, `'kde'` is a new option:

```python
In [4]: s = Series(np.concatenate((np.random.randn(1000),
                      ...
                      np.random.randn(1000) * 0.5 + 3)))

In [5]: plt.figure()
Out[5]: <matplotlib.figure.Figure at 0xadcf31cc>

In [6]: s.hist(normed=True, alpha=0.2)
Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0xaca97aec>

In [7]: s.plot(kind='kde')
Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0xaca97aec>
```

```
../_static/whatsnew_kde.png
```

See the *plotting page* for much more.

1.14.6 Other API changes

• Deprecation of `offset`, `time_rule`, and `timeRule` arguments names in time series functions. Warnings will be printed until pandas 0.9 or 1.0.
1.14.7 Potential porting issues for pandas <= 0.7.3 users

The major change that may affect you in pandas 0.8.0 is that time series indexes use NumPy's datetime64 data type instead of dtype=object arrays of Python's built-in datetime.datetime objects. DateRange has been replaced by DatetimeIndex but otherwise behaved identically. But, if you have code that converts DateRange or Index objects that used to contain datetime.datetime values to plain NumPy arrays, you may have bugs lurking with code using scalar values because you are handing control over to NumPy:

```python
In [8]: import datetime
In [9]: rng = date_range('1/1/2000', periods=10)
In [10]: rng[5]
Out[10]: Timestamp('2000-01-06 00:00:00', offset='D')
In [11]: isinstance(rng[5], datetime.datetime)
Out[11]: True
In [12]: rng_asarray = np.asarray(rng)
In [13]: scalar_val = rng_asarray[5]
In [14]: type(scalar_val)
Out[14]: numpy.datetime64
```

pandas's Timestamp object is a subclass of datetime.datetime that has nanosecond support (the nanosecond field store the nanosecond value between 0 and 999). It should substitute directly into any code that used datetime.datetime values before. Thus, I recommend not casting DatetimeIndex to regular NumPy arrays.

If you have code that requires an array of datetime.datetime objects, you have a couple of options. First, the asobject property of DatetimeIndex produces an array of Timestamp objects:

```python
In [15]: stamp_array = rng.asobject
In [16]: stamp_array
Out[16]: Index(['2000-01-01 00:00:00', '2000-01-02 00:00:00', '2000-01-03 00:00:00', '2000-01-04 00:00:00', '2000-01-05 00:00:00', '2000-01-06 00:00:00', '2000-01-07 00:00:00', '2000-01-08 00:00:00', '2000-01-09 00:00:00', '2000-01-10 00:00:00'], dtype='datetime64[ns]')
In [17]: stamp_array[5]
Out[17]: Timestamp('2000-01-06 00:00:00', offset='D')
```

To get an array of proper datetime.datetime objects, use the to_pydatetime method:

```python
In [18]: dt_array = rng.to_pydatetime()
In [19]: dt_array
Out[19]:
array([datetime.datetime(2000, 1, 1, 0, 0),
       datetime.datetime(2000, 1, 2, 0, 0),
       datetime.datetime(2000, 1, 3, 0, 0),
       datetime.datetime(2000, 1, 4, 0, 0),
       datetime.datetime(2000, 1, 5, 0, 0),
       datetime.datetime(2000, 1, 6, 0, 0),
       datetime.datetime(2000, 1, 7, 0, 0),
       datetime.datetime(2000, 1, 8, 0, 0),
       datetime.datetime(2000, 1, 9, 0, 0),
       datetime.datetime(2000, 1, 10, 0, 0)), dtype=object)
```
matplotlib knows how to handle `datetime.datetime` but not `Timestamp` objects. While I recommend that you plot time series using `TimeSeries.plot`, you can either use `to_pydatetime` or register a converter for the `Timestamp` type. See `matplotlib` documentation for more on this.

Warning: There are bugs in the user-facing API with the nanosecond `datetime64` unit in NumPy 1.6. In particular, the string version of the array shows garbage values, and conversion to `dtype=object` is similarly broken.

```python
In [21]: rng = date_range('1/1/2000', periods=10)
```

```python
In [22]: rng
Out[22]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01, ..., 2000-01-10]
Length: 10, Freq: D, Timezone: None
```

```python
In [23]: np.asarray(rng)
Out[23]:
array(['2000-01-01T01:00:00.000000000+0100','2000-01-02T01:00:00.000000000+0100','2000-01-03T01:00:00.000000000+0100','2000-01-04T01:00:00.000000000+0100','2000-01-05T01:00:00.000000000+0100','2000-01-06T01:00:00.000000000+0100','2000-01-07T01:00:00.000000000+0100','2000-01-08T01:00:00.000000000+0100','2000-01-09T01:00:00.000000000+0100','2000-01-10T01:00:00.000000000+0100'], dtype='datetime64[ns]')
```

```python
In [24]: converted = np.asarray(rng, dtype=object)
```

```python
In [25]: converted[5]
Out[25]: 947116800000000000L
```

Trust me: don’t panic. If you are using NumPy 1.6 and restrict your interaction with `datetime64` values to `pandas`’s API you will be just fine. There is nothing wrong with the data-type (a 64-bit integer internally); all of the important data processing happens in `pandas` and is heavily tested. I strongly recommend that you do not work directly with `datetime64` arrays in NumPy 1.6 and only use the `pandas` API.

Support for non-unique indexes: In the latter case, you may have code inside a `try:... catch:` block that failed due to the index not being unique. In many cases it will no longer fail (some method like `append` still check for uniqueness unless disabled). However, all is not lost: you can inspect `index.is_unique` and raise an exception explicitly if it is `False` or go to a different code branch.

1.15 v.0.7.3 (April 12, 2012)

This is a minor release from 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug fixes” even though they do constitute a change in behavior. See the full release notes or issue tracker on GitHub for a complete list.
1.15.1 New features

- New *fixed width file reader*, `read_fwf`
- New `scatter_matrix` function for making a scatter plot matrix

```python
from pandas.tools.plotting import scatter_matrix
scatter_matrix(df, alpha=0.2)
```

- Add `stacked` argument to Series and DataFrame’s `plot` method for *stacked bar plots*.

```python
df.plot(kind='bar', stacked=True)
```
df.plot(kind='barh', stacked=True)

- Add log x and y scaling options to DataFrame.plot and Series.plot
- Add kurt methods to Series and DataFrame for computing kurtosis

1.15.2 NA Boolean Comparison API Change

Reverted some changes to how NA values (represented typically as NaN or None) are handled in non-numeric Series:

```python
In [1]: series = Series(['Steve', np.nan, 'Joe'])

In [2]: series == 'Steve'
Out[2]:
0   True
```
In comparisons, NA / NaN will always come through as False except with != which is True. Be very careful with boolean arithmetic, especially negation, in the presence of NA data. You may wish to add an explicit NA filter into boolean array operations if you are worried about this:

```
In [4]: mask = series == 'Steve'
In [5]: series[mask & series.notnull()]
```

While propagating NA in comparisons may seem like the right behavior to some users (and you could argue on purely technical grounds that this is the right thing to do), the evaluation was made that propagating NA everywhere, including in numerical arrays, would cause a large amount of problems for users. Thus, a “practicality beats purity” approach was taken. This issue may be revisited at some point in the future.

1.15.3 Other API Changes

When calling apply on a grouped Series, the return value will also be a Series, to be more consistent with the groupby behavior with DataFrame:

```
In [1]: df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
   ...:         'foo', 'bar', 'foo', 'foo'],
   ...:         'B' : ['one', 'one', 'two', 'three',
   ...:         'two', 'two', 'one', 'three'],
   ...:         'C' : np.random.randn(8), 'D' : np.random.randn(8))

In [2]: df
Out[2]:
   A   B   C   D
0  foo one 0.144909 1.387310
1  bar one -1.033812 0.063490
2  foo two 0.197333 1.437656
3  bar three -0.059730 -0.814844
4  foo two 0.087205 -0.482060
5  bar two -1.607906 1.521442
6  foo one -1.275249 0.882182
7  foo three -0.054460 -0.108020

[8 rows x 4 columns]

In [3]: grouped = df.groupby('A')['C']

In [4]: grouped.describe()
Out[4]:
```
A
bar count 3.000000
 mean -0.900483
 std 0.782652
 min -1.607906
 25% -1.320859
...
foo std 0.619410
 min -1.275249
 25% -0.054460
 50% 0.087205
 75% 0.144909
 max 0.197333
Length: 16, dtype: float64

In [5]: grouped.apply(lambda x: x.order()[-2:]) # top 2 values
Out[5]:
A
 bar 1 -1.033812
 3 -0.059730
 foo 0 0.144909
 2 0.197333
dtype: float64

1.16 v.0.7.2 (March 16, 2012)

This release targets bugs in 0.7.1, and adds a few minor features.

1.16.1 New features

- Add additional tie-breaking methods in DataFrame.rank (GH874)
- Add ascending parameter to rank in Series, DataFrame (GH875)
- Add coerce_float option to DataFrame.from_records (GH893)
- Add sort_columns parameter to allow unsorted plots (GH918)
- Enable column access via attributes on GroupBy (GH882)
- Can pass dict of values to DataFrame.fillna (GH661)
- Can select multiple hierarchical groups by passing list of values in .ix (GH134)
- Add axis option to DataFrame.fillna (GH174)
- Add level keyword to drop for dropping values from a level (GH159)

1.16.2 Performance improvements

- Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
- Intercept __builtin__.sum in groupby (GH885)
1.17 v.0.7.1 (February 29, 2012)

This release includes a few new features and addresses over a dozen bugs in 0.7.0.

1.17.1 New features

- Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)
- Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
- Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
- Add fill_value option to reindex, align methods (GH784)
- Enable concat to produce DataFrame from Series (GH87)
- Add between method to Series (GH802)
- Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
- Support for reading Excel 2007 XML documents using openpyxl

1.17.2 Performance improvements

- Improve performance and memory usage of fillna on DataFrame
- Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH87)

1.18 v.0.7.0 (February 9, 2012)

1.18.1 New features

- New unified merge function for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)
- New unified concatenation function for concatenating Series, DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of Series.append and DataFrame.append (GH468, GH479, GH273)
- Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.append too
- Can pass list of dicts (e.g., a list of JSON objects) to DataFrame constructor (GH526)
- You can now set multiple columns in a DataFrame via __getitem__, useful for transformation (GH342)
- Handle differently-indexed output values in DataFrame.apply (GH498)

```
In [1]: df = DataFrame(randn(10, 4))
In [2]: df.apply(lambda x: x.describe())
Out[2]:
   0       1       2       3
count 10.000000 10.000000 10.000000 10.000000
mean  0.119046  0.455043 -0.093701 -0.330828
std   0.814006  0.972606  0.948124  0.814913
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>-0.964456</th>
<th>-0.790943</th>
<th>-1.921164</th>
<th>-1.578003</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>-0.512550</td>
<td>-0.462622</td>
<td>-0.683389</td>
<td>-0.934434</td>
<td></td>
</tr>
<tr>
<td>50%</td>
<td>0.013691</td>
<td>0.415879</td>
<td>-0.061961</td>
<td>-0.343709</td>
<td></td>
</tr>
<tr>
<td>75%</td>
<td>0.616168</td>
<td>1.351857</td>
<td>0.671847</td>
<td>0.150746</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>1.507974</td>
<td>1.755240</td>
<td>1.183075</td>
<td>1.051356</td>
<td></td>
</tr>
</tbody>
</table>

[8 rows x 4 columns]

- *Add* `reorder_levels` method to Series and DataFrame (GH534)
- *Add* dict-like `get` function to DataFrame and Panel (GH521)
- *Add* `DataFrame.iterrows` method for efficiently iterating through the rows of a DataFrame
- *Add* `DataFrame.to_panel` with code adapted from `LongPanel.to_long`
- *Add* `reindex_axis` method added to DataFrame
- *Add* level option to binary arithmetic functions on DataFrame and Series
- *Add* level option to the `reindex` and `align` methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others)
- *Add* attribute-based item access to `Panel` and add IPython completion (GH563)
- *Add* `logy` option to `Series.plot` for log-scaling on the Y axis
- *Add* `index` and `header` options to `DataFrame.to_string`
- *Can* pass multiple DataFrames to `DataFrame.join` to join on index (GH115)
- *Can* pass multiple Panels to `Panel.join` (GH115)
- *Added* justify argument to `DataFrame.to_string` to allow different alignment of column headers
- *Add* sort option to `GroupBy` to allow disabling sorting of the group keys for potential speedups (GH595)
- *Can* pass MaskedArray to Series constructor (GH563)
- *Add* Panel item access via attributes and IPython completion (GH554)
- Implement `DataFrame.lookup`, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338)
- Can pass a list of functions to aggregate with `groupby` on a DataFrame, yielding an aggregated result with hierarchical columns (GH166)
- Can call `cummin` and `cummax` on Series and DataFrame to get cumulative minimum and maximum, respectively (GH647)
- `value_range` added as utility function to get min and max of a dataframe (GH288)
- *Added* `encoding` argument to `read_csv`, `read_table`, `to_csv` and `from_csv` for non-ascii text (GH717)
- *Added* `abs` method to pandas objects
- *Added* `crosstab` function for easily computing frequency tables
- *Added* `isin` method to index objects
- *Added* `level` argument to `xs` method of DataFrame.
1.18.2 API Changes to integer indexing

One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete review of how integer indexes are handled with regard to label-based indexing. Here is an example:

```python
In [3]: s = Series(randn(10), index=range(0, 20, 2))
In [4]: s
Out[4]:
   0   -0.392051
   2   -0.189537
   4     0.886170
   6   -1.125894
   8     0.319635
  10    0.998222
  12    0.091743
  14   -2.032047
  16   -0.448560
  18    0.730510
dtype: float64
```

```
In [5]: s[0]
Out[5]: -0.39205110783730307
In [6]: s[2]
Out[6]: -0.18953739573269113
In [7]: s[4]
Out[7]: 0.88617008348573789
```

This is all exactly identical to the behavior before. However, if you ask for a key not contained in the Series, in versions 0.6.1 and prior, Series would fall back on a location-based lookup. This now raises a `KeyError`:

```python
In [2]: s[1]
KeyError: 1
```

This change also has the same impact on DataFrame:

```python
In [3]: df = DataFrame(randn(8, 4), index=range(0, 16, 2))
In [4]: df
Out[4]:
   0      1      2      3
  0  0.88427  0.3363  -0.1787  0.03162
  2  0.14451 -0.1415   0.2504  0.58374
  4 -1.44779  0.9186  -1.4996  0.27163
  6 -0.26598 -2.4184  -0.2658  0.11503
  8 -0.58776  0.3144  -0.8566  0.61941
10  0.10940 -0.7175  -1.0108  0.47990
12 -1.16919 -0.3087  -0.6049  0.43544
14 -0.07337  0.3410   0.0424  -0.16037
```

```
In [5]: df.ix[3]
KeyError: 3
```

In order to support purely integer-based indexing, the following methods have been added:
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.iget_value(i)</td>
<td>Retrieve value stored at location i</td>
</tr>
<tr>
<td>Series.iget(i)</td>
<td>Alias for iget_value</td>
</tr>
<tr>
<td>DataFrame.irow(i)</td>
<td>Retrieve the i-th row</td>
</tr>
<tr>
<td>DataFrame.icol(j)</td>
<td>Retrieve the j-th column</td>
</tr>
<tr>
<td>DataFrame.iget_value(i, j)</td>
<td>Retrieve the value at row i and column j</td>
</tr>
</tbody>
</table>

1.18.3 API tweaks regarding label-based slicing

Label-based slicing using `ix` now requires that the index be sorted (monotonic) **unless** both the start and endpoint are contained in the index:

```
In [8]: s = Series(randn(6), index=list('gmkaec'))
```

```
In [9]: s
Out[9]:
g 1.269713
m 1.209524
k 2.160843
a 0.533532
e -2.371548
c 0.562726
dtype: float64
```

Then this is OK:

```
In [10]: s.ix['k':'e']
Out[10]:
k 2.160843
a 0.533532
e -2.371548
dtype: float64
```

But this is not:

```
In [12]: s.ix['b':'h']
KeyError 'b'
```

If the index had been sorted, the “range selection” would have been possible:

```
In [11]: s2 = s.sort_index()
```

```
In [12]: s2
Out[12]:
a 0.533532
c 0.562726
e -2.371548
g 1.269713
k 2.160843
m 1.209524
dtype: float64
```

```
In [13]: s2.ix['b':'h']
Out[13]:
c 0.562726
e -2.371548
g 1.269713
dtype: float64
```
1.18.4 Changes to Series [] operator

As an notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__ and __setitem__ methods). The behavior will be the same as passing similar input to ix except in the case of integer indexing:

In [14]: s = Series(randn(6), index=list('acegkm'))

In [15]: s
Out[15]:
a 2.031757
b 0.851077
c 0.660056
d -1.662471
e 0.571380
f 0.945588
Name: 0, dtype: float64

In [16]: s[‘m’, ‘a’, ‘c’, ‘e’]
Out[16]:
m 0.945588
a 2.031757
c 0.851077
e 0.660056
Name: 0, dtype: float64

In [17]: s[‘b’:’l’]
Out[17]:
c 0.851077
d 0.660056
g -1.662471
k 0.571380
Name: 0, dtype: float64

In [18]: s[‘c’:’k’]
Out[18]:
c 0.851077
d 0.660056
g -1.662471
k 0.571380
Name: 0, dtype: float64

In the case of integer indexes, the behavior will be exactly as before (shadowing ndarray):

In [19]: s = Series(randn(6), index=range(0, 12, 2))

In [20]: s[[4, 0, 2]]
Out[20]:
4 -1.263534
0 -0.414691
2 2.108285
Name: 0, dtype: float64

In [21]: s[1:5]
Out[21]:
2 2.108285
4 -1.263534
6 2.617801
8 1.967592
Name: 0, dtype: float64
dtype: float64

If you wish to do indexing with sequences and slicing on an integer index with label semantics, use `ix`.

1.18.5 Other API Changes

- The deprecated `LongPanel` class has been completely removed
- If `Series.sort` is called on a column of a DataFrame, an exception will now be raised. Before it was possible to accidentally mutate a DataFrame’s column by doing `df[col].sort()` instead of the side-effect free method `df[col].order()` (GH316)
- Miscellaneous renames and deprecations which will (harmlessly) raise `FutureWarning`
- `drop` added as an optional parameter to `DataFrame.reset_index` (GH699)

1.18.6 Performance improvements

- **Cythonized GroupBy aggregations** no longer presort the data, thus achieving a significant speedup (GH93). GroupBy aggregations with Python functions significantly sped up by clever manipulation of the ndarray data type in Cython (GH496).
- Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
- Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
- Can store objects indexed by tuples and floats in HDFStore (GH492)
- Don’t print length by default in `Series.to_string`, add `length` option (GH489)
- Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
- Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
- Improve column reindexing performance by using specialized Cython take function
- Further performance tweaking of `Series.__getitem__` for standard use cases
- Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
- Friendlier error message in `setup.py` if NumPy not installed
- Use common set of NA-handling operations (sum, mean, etc.) in `Panel` class also (GH536)
- Default name assignment when calling `reset_index` on `DataFrame` with a regular (non-hierarchical) index (GH476)
- Use Cythonized groupers when possible in `Series/DataFrame` stat ops with `level` parameter passed (GH545)
- Ported skiplist data structure to C to speed up `rolling_median` by about 5-10x in most typical use cases (GH374)

1.19 v.0.6.1 (December 13, 2011)

1.19.1 New features

- Can `append single rows` (as Series) to a `DataFrame`
• Add Spearman and Kendall rank correlation options to Series.corr and DataFrame.corr (GH428)

• Added get_value and set_value methods to Series, DataFrame, and Panel for very low-overhead access (>2x faster in many cases) to scalar elements (GH437, GH438). set_value is capable of producing an enlarged object.

• Add PyQt table widget to sandbox (GH435)

• DataFrame.align can accept Series arguments and an axis option (GH461)

• Implement new SparseArray and SparseList data structures. SparseSeries now derives from SparseArray (GH463)

• Better console printing options (GH453)

• Implement fast data ranking for Series and DataFrame, fast versions of scipy.stats.rankdata (GH428)

• Implement DataFrame.from_items alternate constructor (GH444)

• DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)

• Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)

• Add margins option to pivot_table for computing subgroup aggregates (GH114)

• Add Series.from_csv function (GH482)

• Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH #462)

• MultiIndex.get_level_values can accept the level name

1.19.2 Performance improvements

• Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (PR #425)

• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame

• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed

• Column deletion in DataFrame copies no data (computes views on blocks) (GH #158)

1.20 v.0.6.0 (November 25, 2011)

1.20.1 New Features

• Added melt function to pandas.core.reshape

• Added level parameter to group by level in Series and DataFrame descriptive statistics (GH313)

• Added head and tail methods to Series, analogous to to DataFrame (GH296)

• Added Series.isin function which checks if each value is contained in a passed sequence (GH289)

• Added float_format option to Series.to_string

• Added skip_footer (GH291) and converters (GH343) options to read_csv and read_table

• Added drop_duplicates and duplicated functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)

• Implemented operators ‘&’, ‘|’, ‘^’, ‘~’ on DataFrame (GH347)

• Added Series.mad, mean absolute deviation
• **Added** `QuarterEnd DateOffset` (GH321)
• **Added** `dot` to `DataFrame` (GH65)
• **Added** `orient` option to `Panel.from_dict` (GH359, GH301)
• **Added** `orient` option to `DataFrame.from_dict`
• **Added** passing list of tuples or list of lists to `DataFrame.from_records` (GH357)
• **Added** multiple levels to `groupby` (GH103)
• **Allow** multiple columns in `by` argument of `DataFrame.sort_index` (GH92, GH362)
• **Added** fast `get_value` and `put_value` methods to `DataFrame` (GH360)
• **Added** `cov` instance methods to `Series` and `DataFrame` (GH194, GH362)
• **Added** `kind='bar'` option to `DataFrame.plot` (GH348)
• **Added** `idxmin` and `idxmax` to `Series` and `DataFrame` (GH286)
• **Added** `read_clipboard` function to parse `DataFrame` from clipboard (GH300)
• **Added** `nunique` function to `Series` for counting unique elements (GH297)
• **Made** `DataFrame` constructor use `Series` name if no columns passed (GH373)
• **Support** regular expressions in `read_table/read_csv` (GH364)
• **Added** `DataFrame.to_html` for writing `DataFrame` to HTML (GH387)
• **Added** support for `MaskedArray` data in `DataFrame`, masked values converted to `NaN` (GH396)
• **Added** `DataFrame.boxplot` function (GH368)
• **Can** pass extra args, `kwds` to `DataFrame.apply` (GH376)
• **Implement** `DataFrame.join` with `vector` on argument (GH312)
• **Added** `legend` boolean flag to `DataFrame.plot` (GH324)
• **Can** pass multiple levels to `stack` and `unstack` (GH370)
• **Can** pass multiple values columns to `pivot_table` (GH381)
• **Use** `Series` name in `GroupBy` for result index (GH363)
• **Added** `raw` option to `DataFrame.apply` for performance if only need ndarray (GH309)
• **Added** proper, tested weighted least squares to standard and panel OLS (GH303)

1.20.2 Performance Enhancements

• **VBENCH** Cythonized `cache_readonly`, resulting in substantial micro-performance enhancements throughout the codebase (GH361)
• **VBENCH** Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than `np.apply_along_axis` (GH309)
• **VBENCH** Improved performance of `MultiIndex.from_tuples`
• **VBENCH** Special Cython matrix iterator for applying arbitrary reduction operations
• **VBENCH + DOCUMENT** Add `raw` option to `DataFrame.apply` for getting better performance when
• **VBENCH** Faster cythonized count by level in `Series` and `DataFrame` (GH341)
• VBENCH? Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
• VBENCH New Cython vectorized function map_infer speeds up Series.apply and Series.map significantly when passed elementwise Python function, motivated by (GH355)
• VBENCH Significantly improved performance of Series.order, which also makes np.unique called on a Series faster (GH327)
• VBENCH Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)

1.21 v.0.5.0 (October 24, 2011)

1.21.1 New Features

• *Added* DataFrame.align method with standard join options
• *Added* parse_dates option to read_csv and read_table methods to optionally try to parse dates in the index columns
• *Added* nrows, chunksize, and iterator arguments to read_csv and read_table. The last two return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242)
• *Added* ability to join on multiple columns in DataFrame.join (GH214)
• *Added* private _get_duplicates function to Index for identifying duplicate values more easily (ENH5c)
• *Added* column attribute access to DataFrame.
• *Added* Python tab completion hook for DataFrame columns. (GH233, GH230)
• *Implemented* Series.describe for Series containing objects (GH241)
• *Added* inner join option to DataFrame.join when joining on key(s) (GH248)
• *Implemented* selecting DataFrame columns by passing a list to __getitem__ (GH253)
• *Implemented* & and | to intersect / union Index objects, respectively (GH261)
• *Added* pivot_table convenience function to pandas namespace (GH234)
• *Implemented* Panel.rename_axis function (GH243)
• DataFrame will show index level names in console output (GH334)
• *Implemented* Panel.take
• *Added* set_eng_float_format for alternate DataFrame floating point string formatting (ENH61)
• *Added* convenience set_index function for creating a DataFrame index from its existing columns
• *Implemented* groupby hierarchical index level name (GH223)
• *Added* support for different delimiters in DataFrame.to_csv (GH244)
• *TODO: DOCS ABOUT TAKE METHODS

1.21.2 Performance Enhancements

• VBENCH Major performance improvements in file parsing functions read_csv and read_table
• VBENCH Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations
• VBENCH Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)
• VBENCH Improved speed of DataFrame.xs on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)
• VBENCH With new DataFrame.align method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%.
• VBENCH Significantly sped up conversion of nested dict into DataFrame (GH212)
• VBENCH Significantly speed up DataFrame __repr__ and count on large mixed-type DataFrame objects

1.22 v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)

1.22.1 New Features

• Added Python 3 support using 2to3 (GH200)
 • Added name attribute to Series, now prints as part of Series.__repr__
 • Added instance methods isnull and notnull to Series (GH209, GH203)
 • Added Series.align method for aligning two series with choice of join method (ENH56)
 • Added method get_level_values to MultiIndex (GH188)
• Set values in mixed-type DataFrame objects via .ix indexing attribute (GH135)
• Added new DataFrame methods get_dtype_counts and property dtypes (ENHdc)
• Added ignore_index option to DataFrame.append to stack DataFrames (ENH1b)
• read_csv tries to sniff delimiters using csv.Sniffer (GH146)
• read_csv can read multiple columns into a MultiIndex; DataFrame's to_csv method writes out a corresponding MultiIndex (GH151)
• DataFrame.rename has a new copy parameter to rename a DataFrame in place (ENHed)
• Enable unstacking by name (GH142)
• Enable sortlevel to work by level (GH141)

1.22.2 Performance Enhancements

• Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
• Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
• Improved performance of isnull and notnull, a regression from v0.3.0 (GH187)
• Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each DataFrame argument do not need to be created. Substantial performance increases result (GH176)
• Substantially improved performance of generic Index.intersection and Index.union
• Implemented BlockManager.take resulting in significantly faster take performance on mixed-type DataFrame objects (GH104)
• Improved performance of Series.sort_index
• Significant groupby performance enhancement: removed unnecessary integrity checks in DataFrame internals that were slowing down slicing operations to retrieve groups

• Optimized _ensure_index function resulting in performance savings in type-checking Index objects

• Wrote fast time series merging / joining methods in Cython. Will be integrated later into DataFrame.join and related functions
The easiest way for the majority of users to install pandas is to install it as part of the Anaconda distribution, a cross-platform distribution for data analysis and scientific computing. This is the recommended installation method for most users.

Instructions for installing from source, PyPI, various Linux distributions, or a development version are also provided.

2.1 Python version support

Officially Python 2.6, 2.7, 3.2, 3.3, and 3.4.

2.2 Installing pandas

2.2.1 Trying out pandas, no installation required!

The easiest way to start experimenting with pandas doesn’t involve installing pandas at all.

Wakari is a free service that provides a hosted IPython Notebook service in the cloud.

Simply create an account, and have access to pandas from within your browser via an IPython Notebook in a few minutes.

2.2.2 Installing pandas with Anaconda

Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users.

The simplest way to install not only pandas, but Python and the most popular packages that make up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python distribution for data analytics and scientific computing.

After running a simple installer, the user will have access to pandas and the rest of the SciPy stack without needing to install anything else, and without needing to wait for any software to be compiled.

Installation instructions for Anaconda can be found here.

A full list of the packages available as part of the Anaconda distribution can be found here.

An additional advantage of installing with Anaconda is that you don’t require admin rights to install it, it will install in the user’s home directory, and this also makes it trivial to delete Anaconda at a later date (just delete that folder).
2.2.3 Installing pandas with Miniconda

The previous section outlined how to get pandas installed as part of the Anaconda distribution. However this approach means you will install well over one hundred packages and involves downloading the installer which is a few hundred megabytes in size.

If you want to have more control on which packages, or have a limited internet bandwidth, then installing pandas with Miniconda may be a better solution.

Conda is the package manager that the Anaconda distribution is built upon. It is a package manager that is both cross-platform and language agnostic (it can play a similar role to a pip and virtualenv combination).

Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to install additional packages.

First you will need Conda to be installed and downloading and running the Miniconda will do this for you. The installer can be found here

The next step is to create a new conda environment (these are analogous to a virtualenv but they also allow you to specify precisely which Python version to install also). Run the following commands from a terminal window:

```
conda create -n name_of_my_env python
```

This will create a minimal environment with only Python installed in it. To put your self inside this environment run:

```
source activate name_of_my_env
```

On Windows the command is:

```
activate name_of_my_env
```

The final step required is to install pandas. This can be done with the following command:

```
conda install pandas
```

To install a specific pandas version:

```
conda install pandas=0.13.1
```

To install other packages, IPython for example:

```
conda install ipython
```

To install the full Anaconda distribution:

```
conda install anaconda
```

If you require any packages that are available to pip but not conda, simply install pip, and use pip to install these packages:

```
conda install pip
pip install django
```

2.2.4 Installing from PyPI

Pandas can be installed via pip from PyPI.

```
pip install pandas
```

This will likely require the installation of a number of dependencies, including NumPy, will require a compiler to compile required bits of code, and can take a few minutes to complete.
2.2.5 Installing using your Linux distribution’s package manager.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Status</th>
<th>Download / Repository Link</th>
<th>Install method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian</td>
<td>stable</td>
<td>official Debian repository</td>
<td>sudo apt-get install python-pandas</td>
</tr>
<tr>
<td>Debian & Ubuntu</td>
<td>unstable (latest packages)</td>
<td>NeuroDebian</td>
<td>sudo apt-get install python-pandas</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>stable</td>
<td>official Ubuntu repository</td>
<td>sudo apt-get install python-pandas</td>
</tr>
<tr>
<td>Ubuntu</td>
<td>unstable (daily builds)</td>
<td>PythonXY PPA; activate by: sudo add-apt-repository ppa:pythonxy/pythonxy-devel & & sudo apt-get update</td>
<td>sudo apt-get install python-pandas</td>
</tr>
<tr>
<td>OpenSuse & Fedora</td>
<td>stable</td>
<td>OpenSuse Repository</td>
<td>zypper in python-pandas</td>
</tr>
</tbody>
</table>

2.2.6 Installing from source

Note: Installing from the git repository requires a recent installation of Cython as the cythonized C sources are no longer checked into source control. Released source distributions will contain the built C files. I recommend installing the latest Cython via `easy_install -U Cython`.

The source code is hosted at http://github.com/pydata/pandas, it can be checked out using git and compiled / installed like so:

```
git clone git://github.com/pydata/pandas.git
cd pandas
python setup.py install
```

Make sure you have Cython installed when installing from the repository, rather then a tarball or pypi.

On Windows, I suggest installing the MinGW compiler suite following the directions linked to above. Once configured properly, run the following on the command line:

```
python setup.py build --compiler=mingw32
python setup.py install
```

Note that you will not be able to import pandas if you open an interpreter in the source directory unless you build the C extensions in place:

```
python setup.py build_ext --inplace
```

The most recent version of MinGW (any installer dated after 2011-08-03) has removed the `-mno-cygwin` option but Distutils has not yet been updated to reflect that. Thus, you may run into an error like “unrecognized command line option ‘-mno-cygwin’”. Until the bug is fixed in Distutils, you may need to install a slightly older version of MinGW (2011-08-02 installer).
2.2.7 Running the test suite

pandas is equipped with an exhaustive set of unit tests covering about 97% of the codebase as of this writing. To run it on your machine to verify that everything is working (and you have all of the dependencies, soft and hard, installed), make sure you have nose and run:

```
$ nosetests pandas
```

```
..........................................................................
...........................S..................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
..........................................................................
.................S........................................................
....
..........................................................................
.................S........................................................
....
```

Ran 818 tests in 21.631s
OK (SKIP=2)

2.3 Dependencies

- NumPy: 1.7.0 or higher
- python-dateutil 1.5
- pytz
 - Needed for time zone support

2.3.1 Recommended Dependencies

- numexpr: for accelerating certain numerical operations. numexpr uses multiple cores as well as smart chunking and caching to achieve large speedups. If installed, must be Version 2.1 or higher.
- bottleneck: for accelerating certain types of nan evaluations. bottleneck uses specialized cython routines to achieve large speedups.

Note: You are highly encouraged to install these libraries, as they provide large speedups, especially if working with large data sets.

2.3.2 Optional Dependencies

- Cython: Only necessary to build development version. Version 0.19.1 or higher.
- SciPy: miscellaneous statistical functions
- PyTables: necessary for HDF5-based storage. Version 3.0.0 or higher required.
- SQLAlchemy: for SQL database support. Version 0.8.1 or higher recommended.
• **matplotlib**: for plotting

• **statsmodels**
 – Needed for parts of `pandas.stats`

• **openpyxl, xlrd/xlwt**
 – openpyxl version 1.6.1 or higher, but lower than 2.0.0
 – Needed for Excel I/O

• **XlsxWriter**
 – Alternative Excel writer.

• **boto**: necessary for Amazon S3 access.

• One of PyQt4, PySide, pygtk, xsel, or xclip: necessary to use `read_clipboard()`. Most package managers on Linux distributions will have xclip and/or xsel immediately available for installation.

• Google’s `python-gflags` and `google-api-python-client`
 – Needed for `gbq`

• **setuptools**
 – Needed for `gbq` (specifically, it utilizes `pkg_resources`)

• **httplib2**
 – Needed for `gbq`

• One of the following combinations of libraries is needed to use the top-level `read_html()` function:
 – BeautifulSoup4 and html5lib (Any recent version of html5lib is okay.)
 – BeautifulSoup4 and lxml
 – BeautifulSoup4 and html5lib and lxml
 – Only lxml, although see `HTML reading gotchas` for reasons as to why you should probably **not** take this approach.

```
Warning:
  – if you install BeautifulSoup4 you must install either lxml or html5lib or both. `read_html()` will **not** work with only BeautifulSoup4 installed.
  – You are highly encouraged to read `HTML reading gotchas`. It explains issues surrounding the installation and usage of the above three libraries
  – **You may need to install an older version of BeautifulSoup4:**
  * Versions 4.2.1, 4.1.3 and 4.0.2 have been confirmed for 64 and 32-bit Ubuntu/Debian
  – Additionally, if you’re using Anaconda you should definitely read the gotchas about HTML parsing libraries
```

Note:

– if you’re on a system with `apt-get` you can do

  ```
sudo apt-get build-dep python-lxml
  ```

 to get the necessary dependencies for installation of lxml. This will prevent further headaches down the line.
Note: Without the optional dependencies, many useful features will not work. Hence, it is highly recommended that you install these. A packaged distribution like Enthought Canopy may be worth considering.
CHAPTER THREE

FREQUENTLY ASKED QUESTIONS (FAQ)

3.1 DataFrame memory usage

As of pandas version 0.15.0, the memory usage of a dataframe (including the index) is shown when accessing the `info` method of a dataframe. A configuration option, `display.memory_usage` (see Options and Settings), specifies if the dataframe’s memory usage will be displayed when invoking the `df.info()` method.

For example, the memory usage of the dataframe below is shown when calling `df.info()`:

```
In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
...:      'complex128', 'object', 'bool']
...:

In [2]: n = 5000

In [3]: data = dict((t, np.random.randint(100, size=n).astype(t))
...:      for t in dtypes)
...:

In [4]: df = DataFrame(data)

In [5]: df['categorical'] = df['object'].astype('category')

In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool 5000 non-null bool
complex128 5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64 5000 non-null float64
int64 5000 non-null int64
object 5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1), object(1), timedelta64[ns](1)
memory usage: 303.5+ KB
```

The `+` symbol indicates that the true memory usage could be higher, because pandas does not count the memory used by values in columns with `dtype=object`.
By default the display option is set to True but can be explicitly overridden by passing the memory_usage argument when invoking df.info().

The memory usage of each column can be found by calling the memory_usage method. This returns a Series with an index represented by column names and memory usage of each column shown in bytes. For the dataframe above, the memory usage of each column and the total memory usage of the dataframe can be found with the memory_usage method:

```python
In [7]: df.memory_usage()
Out[7]:
bool     5000
complex128  80000
datetime64[ns]  40000
float64    40000
int64      40000
object     20000
timedelta64[ns]  40000
categorical  5800
```

dtype: int64

total memory usage of dataframe
```python
In [8]: df.memory_usage().sum()
Out[8]: 270800
```

By default the memory usage of the dataframe’s index is not shown in the returned Series, the memory usage of the index can be shown by passing the index=True argument:

```python
In [9]: df.memory_usage(index=True)
Out[9]:
Index    40000
bool     5000
complex128  80000
datetime64[ns]  40000
float64    40000
int64      40000
object     20000
timedelta64[ns]  40000
categorical  5800
dtype: int64
```

The memory usage displayed by the info method utilizes the memory_usage method to determine the memory usage of a dataframe while also formatting the output in human-readable units (base-2 representation; i.e., 1KB = 1024 bytes).

See also Categorical Memory Usage.

3.1.1 Adding Features to your pandas Installation

pandas is a powerful tool and already has a plethora of data manipulation operations implemented, most of them are very fast as well. It’s very possible however that certain functionality that would make your life easier is missing. In that case you have several options:

1. Open an issue on Github, explain your need and the sort of functionality you would like to see implemented.
2. Fork the repo, Implement the functionality yourself and open a PR on Github.
3. Write a method that performs the operation you are interested in and Monkey-patch the pandas class as part of your IPython profile startup or PYTHONSTARTUP file.

 For example, here is an example of adding a just_foo_cols() method to the dataframe class:
import pandas as pd
def just_foo_cols(self):
 """Get a list of column names containing the string 'foo'
 """
 return [x for x in self.columns if 'foo' in x]

pd.DataFrame.just_foo_cols = just_foo_cols # monkey-patch the DataFrame class
df = pd.DataFrame([(list(range(4))], columns=['A','foo','foozball','bar'])
df.just_foo_cols()
del pd.DataFrame.just_foo_cols # you can also remove the new method

Monkey-patching is usually frowned upon because it makes your code less portable and can cause subtle bugs in some circumstances. Monkey-patching existing methods is usually a bad idea in that respect. When used with proper care, however, it’s a very useful tool to have.

3.1.2 Migrating from scikits.timeseries to pandas >= 0.8.0

Starting with pandas 0.8.0, users of scikits.timeseries should have all of the features that they need to migrate their code to use pandas. Portions of the scikits.timeseries codebase for implementing calendar logic and timespan frequency conversions (but not resampling, that has all been implemented from scratch from the ground up) have been ported to the pandas codebase.

The scikits.timeseries notions of Date and DateArray are responsible for implementing calendar logic:

In [16]: dt = ts.Date('Q', '1984Q3')

sic
In [17]: dt
Out[17]: <Q-DEC : 1984Q1>

In [18]: dt.asfreq('D', 'start')
Out[18]: <D : 01-Jan-1984>

In [19]: dt.asfreq('D', 'end')
Out[19]: <D : 31-Mar-1984>

In [20]: dt + 3
Out[20]: <Q-DEC : 1984Q4>

Date and DateArray from scikits.timeseries have been reincarnated in pandas Period and PeriodIndex:

In [10]: pnow('D') # scikits.timeseries.now()
Out[10]: Period('2014-11-08', 'D')

In [11]: Period(year=2007, month=3, day=15, freq='D')
Out[11]: Period('2007-03-15', 'D')

In [12]: p = Period('1984Q3')

In [13]: p
Out[13]: Period('1984Q3', 'Q-DEC')

In [14]: p.asfreq('D', 'start')
Out[14]: Period('1984-07-01', 'D')

In [15]: p.asfreq('D', 'end')

3.1. DataFrame memory usage
Out[15]: Period('1984-09-30', 'D')

In [16]: (p + 3).asfreq('T') + 6 * 60 + 30
Out[16]: Period('1985-07-01 06:29', 'T')

In [17]: rng = period_range('1990', '2010', freq='A')

In [18]: rng
Out[18]:
<class 'pandas.tseries.period.PeriodIndex'>
[1990, ..., 2010]
Length: 21, Freq: A-DEC

In [19]: rng.asfreq('B', 'end') - 3
Out[19]:
<class 'pandas.tseries.period.PeriodIndex'>
[1990-12-26, ..., 2010-12-28]
Length: 21, Freq: B

<table>
<thead>
<tr>
<th>scikits.timeseries</th>
<th>pandas</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Period</td>
<td>A span of time, from yearly through to secondly</td>
</tr>
<tr>
<td>DateArray</td>
<td>PeriodIndex</td>
<td>An array of timespans</td>
</tr>
<tr>
<td>convert</td>
<td>resample</td>
<td>Frequency conversion in scikits.timeseries</td>
</tr>
<tr>
<td>convert_to_annual</td>
<td>pivot_annual</td>
<td>currently supports up to daily frequency, see GH736</td>
</tr>
</tbody>
</table>

3.2 PeriodIndex / DateArray properties and functions

The scikits.timeseries DateArray had a number of information properties. Here are the pandas equivalents:

<table>
<thead>
<tr>
<th>scikits.timeseries</th>
<th>pandas</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_steps</td>
<td>np.diff(idx.values)</td>
<td></td>
</tr>
<tr>
<td>has_missing_dates</td>
<td>not idx.is_full</td>
<td></td>
</tr>
<tr>
<td>is_full</td>
<td>idx.is_full</td>
<td></td>
</tr>
<tr>
<td>is_valid</td>
<td>idx.is_monotonic and idx.is_unique</td>
<td></td>
</tr>
<tr>
<td>is_chronological</td>
<td>is_monotonic</td>
<td></td>
</tr>
<tr>
<td>arr.sort_chronologically()</td>
<td>idx.order()</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Frequency conversion

Frequency conversion is implemented using the resample method on TimeSeries and DataFrame objects (multiple time series). resample also works on panels (3D). Here is some code that resamples daily data to monthly:

In [20]: rng = period_range('Jan-2000', periods=50, freq='M')

In [21]: data = Series(np.random.randn(50), index=rng)

In [22]: data
Out[22]:
2000-01 1.544821
2000-02 -1.708552
2000-03 1.545458
2000-04 -0.735738
2000-05 -0.649091
2003-09 1.269838
2003-10 0.606166
2003-11 -0.827409
2003-12 -0.943863
2004-01 1.041569
2004-02 0.701815
Freq: M, Length: 50

In [23]: data.resample('A', how=np.mean)
Out[23]:
2000 0.102447
2001 -0.204847
2002 0.210840
2003 0.300564
2004 0.871692
Freq: A-DEC, dtype: float64

3.4 Plotting

Much of the plotting functionality of scikits.timeseries has been ported and adopted to pandas’s data structures. For example:

In [24]: rng = period_range('1987Q2', periods=10, freq='Q-DEC')
In [25]: data = Series(np.random.randn(10), index=rng)
In [26]: plt.figure(); data.plot()
Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0xa535b76c>
3.5 Converting to and from period format

Use the `to_timestamp` and `to_period` instance methods.

3.6 Treatment of missing data

Unlike scikits.timeseries, pandas data structures are not based on NumPy’s `MaskedArray` object. Missing data is represented as `NaN` in numerical arrays and either as `None` or `NaN` in non-numerical arrays. Implementing a version of pandas’s data structures that use `MaskedArray` is possible but would require the involvement of a dedicated maintainer. Active pandas developers are not interested in this.

3.7 Resampling with timestamps and periods

`resample` has a `kind` argument which allows you to resample time series with a DatetimeIndex to PeriodIndex:

```
In [27]: rng = date_range(’1/1/2000’, periods=200, freq=’D’)
In [28]: data = Series(np.random.randn(200), index=rng)
In [29]: data[:10]
Out[29]:
2000-01-01 -0.197661
2000-01-02  0.507155
2000-01-03 -0.493913
2000-01-04 -0.994339
2000-01-05 -0.581662
2000-01-06 -0.855251
2000-01-07 -0.256469
2000-01-08 -0.454868
2000-01-09  0.519612
2000-01-10  0.764490
Freq: D, dtype: float64
```

```
In [30]: data.index
Out[30]:
<class ‘pandas.tseries.index.DatetimeIndex’>
[2000-01-01, ..., 2000-07-18]
Length: 200, Freq: D, Timezone: None
```

```
In [31]: data.resample(’M’, kind=’period’)
Out[31]:
2000-01 -0.226155
2000-02  0.056704
2000-03 -0.132553
2000-04 -0.064003
2000-05  0.233736
2000-06 -0.301008
2000-07 -0.584631
Freq: M, dtype: float64
```

Similarly, resampling from periods to timestamps is possible with an optional interval (‘start’ or ‘end’) convention:
In [32]: rng = period_range('Jan-2000', periods=50, freq='M')

In [33]: data = Series(np.random.randn(50), index=rng)

In [34]: resampled = data.resample('A', kind='timestamp', convention='end')

In [35]: resampled.index
Out[35]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-12-31, ..., 2004-12-31]
Length: 5, Freq: A-DEC, Timezone: None

3.7.1 Byte-Ordering Issues

Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following:

In [36]: x = np.array(list(range(10)), '>i4') # big endian

In [37]: newx = x.byteswap().newbyteorder() # force native byteorder

In [38]: s = Series(newx)

See the NumPy documentation on byte order for more details.

3.7.2 Visualizing Data in Qt applications

There is experimental support for visualizing DataFrames in PyQt4 and PySide applications. At the moment you can display and edit the values of the cells in the DataFrame. Qt will take care of displaying just the portion of the DataFrame that is currently visible and the edits will be immediately saved to the underlying DataFrame.

To demonstrate this we will create a simple PySide application that will switch between two editable DataFrames. For this will use the DataFrameModel class that handles the access to the DataFrame, and the DataFrameWidget, which is just a thin layer around the QTableView.

```python
import numpy as np
import pandas as pd
from pandas.sandbox.qtpandas import DataFrameModel, DataFrameWidget
from PySide import QtGui, QtCore
# Or if you use PyQt4:
# from PyQt4 import QtGui, QtCore

class MainWidget(QtGui.QWidget):
    def __init__(self, parent=None):
        super(MainWidget, self).__init__(parent)

        # Create two DataFrames
        self.df1 = pd.DataFrame(np.arange(9).reshape(3, 3),
                                columns=['foo', 'bar', 'baz'])
        self.df2 = pd.DataFrame({
            'int': [1, 2, 3],
            'float': [1.5, 2.5, 3.5],
            'string': ['a', 'b', 'c'],
            'nan': [np.nan, np.nan, np.nan]
        })
```

3.7. Resampling with timestamps and periods
```python
	df = pd.DataFrame({'AAA': range(5), 'BBB': range(5, 10), 'CCC': range(10, 15), 'index': [1, 2, 3],
                  'columns': ['int', 'float', 'string', 'nan']}, index=['AAA', 'BBB', 'CCC'],
                  columns=['int', 'float', 'string', 'nan'])

# Create the widget and set the first DataFrame
self.widget = DataFrameWidget(self.df1)

# Create the buttons for changing DataFrames
self.button_first = QtGui.QPushButton('First')
self.button_first.clicked.connect(self.on_first_click)
self.button_second = QtGui.QPushButton('Second')
self.button_second.clicked.connect(self.on_second_click)

# Set the layout
vbox = QtGui.QVBoxLayout()
vbox.addWidget(self.widget)
hbox = QtGui.QHBoxLayout()
hbox.addWidget(self.button_first)
hbox.addWidget(self.button_second)
vbox.addLayout(hbox)
self.setLayout(vbox)

def on_first_click(self):
    '''Sets the first DataFrame'''
    self.widget.setDataFrame(self.df1)

def on_second_click(self):
    '''Sets the second DataFrame'''
    self.widget.setDataFrame(self.df2)

if __name__ == '__main__':
    import sys

    # Initialize the application
    app = QtGui.QApplication(sys.argv)
mw = MainWidget()
mw.show()
    app.exec_()
```
pandas consists of the following things

- A set of labeled array data structures, the primary of which are Series/TimeSeries and DataFrame
- Index objects enabling both simple axis indexing and multi-level / hierarchical axis indexing
- An integrated group by engine for aggregating and transforming data sets
- Date range generation (date_range) and custom date offsets enabling the implementation of customized frequencies
- Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and saving and loading pandas objects from the fast and efficient PyTables/HDF5 format.
- Memory-efficient “sparse” versions of the standard data structures for storing data that is mostly missing or mostly constant (some fixed value)
- Moving window statistics (rolling mean, rolling standard deviation, etc.)
- Static and moving window linear and panel regression

4.1 Data structures at a glance

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Series</td>
<td>1D labeled homogeneously-typed array</td>
</tr>
<tr>
<td>1</td>
<td>TimeSeries</td>
<td>Series with index containing datetimes</td>
</tr>
<tr>
<td>2</td>
<td>DataFrame</td>
<td>General 2D labeled, size-mutable tabular structure with potentially heterogeneously-typed columns</td>
</tr>
<tr>
<td>3</td>
<td>Panel</td>
<td>General 3D labeled, also size-mutable array</td>
</tr>
</tbody>
</table>

4.1.1 Why more than 1 data structure?

The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For example, DataFrame is a container for Series, and Panel is a container for DataFrame objects. We would like to be able to insert and remove objects from these containers in a dictionary-like fashion.

Also, we would like sensible default behaviors for the common API functions which take into account the typical orientation of time series and cross-sectional data sets. When using ndarrays to store 2- and 3-dimensional data, a burden is placed on the user to consider the orientation of the data set when writing functions; axes are considered more or less equivalent (except when C- or Fortran-contiguousness matters for performance). In pandas, the axes are
intended to lend more semantic meaning to the data; i.e., for a particular data set there is likely to be a “right” way to orient the data. The goal, then, is to reduce the amount of mental effort required to code up data transformations in downstream functions.

For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and the columns rather than axis 0 and axis 1. And iterating through the columns of the DataFrame thus results in more readable code:

```python
for col in df.columns:
    series = df[col]
    # do something with series
```

4.2 Mutability and copying of data

All pandas data structures are value-mutable (the values they contain can be altered) but not always size-mutable. The length of a Series cannot be changed, but, for example, columns can be inserted into a DataFrame. However, the vast majority of methods produce new objects and leave the input data untouched. In general, though, we like to favor immutability where sensible.

4.3 Getting Support

The first stop for pandas issues and ideas is the Github Issue Tracker. If you have a general question, pandas community experts can answer through Stack Overflow.

Longer discussions occur on the developer mailing list, and commercial support inquiries for Lambda Foundry should be sent to: support@lambdafoundry.com

4.4 Credits

pandas development began at AQR Capital Management in April 2008. It was open-sourced at the end of 2009. AQR continued to provide resources for development through the end of 2011, and continues to contribute bug reports today.

Since January 2012, Lambda Foundry, has been providing development resources, as well as commercial support, training, and consulting for pandas.

pandas is only made possible by a group of people around the world like you who have contributed new code, bug reports, fixes, comments and ideas. A complete list can be found on Github.

4.5 Development Team

pandas is a part of the PyData project. The PyData Development Team is a collection of developers focused on the improvement of Python’s data libraries. The core team that coordinates development can be found on Github. If you’re interested in contributing, please visit the project website.

4.6 License

pandas: powerful Python data analysis toolkit, Release 0.15.1

[72x748]
pandas is distributed under a 3-clause ("Simplified" or "New") BSD license. Parts of NumPy, SciPy, numpydoc, bottleneck, which all have BSD-compatible licenses, are included. Their licenses follow the pandas license.

pandas license
==============
Copyright (c) 2011-2012, Lambda Foundry, Inc. and PyData Development Team
All rights reserved.

Copyright (c) 2008-2011 AQR Capital Management, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

About the Copyright Holders
===========================
AQR Capital Management began pandas development in 2008. Development was led by Wes McKinney. AQR released the source under this license in 2009. Wes is now an employee of Lambda Foundry, and remains the pandas project lead.

The PyData Development Team is the collection of developers of the PyData project. This includes all of the PyData sub-projects, including pandas. The core team that coordinates development on GitHub can be found here: http://github.com/pydata.
Full credits for pandas contributors can be found in the documentation.

Our Copyright Policy
====================

PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important to note that these contributions are typically only changes to the repositories. Thus, the PyData source code, in its entirety, is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire PyData Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change when they commit the change to one of the PyData repositories.

With this in mind, the following banner should be used in any source code file to indicate the copyright and license terms:

#---
Copyright (c) 2012, PyData Development Team
All rights reserved.
Distributed under the terms of the BSD Simplified License.
The full license is in the LICENSE file, distributed with this software.
#---

Other licenses can be found in the LICENSES directory.
10 MINUTES TO PANDAS

This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook.

Customarily, we import as follows:

```
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt
```

5.1 Object Creation

See the *Data Structure Intro section*.

Creating a *Series* by passing a list of values, letting pandas create a default integer index:

```
In [4]: s = pd.Series([1,3,5,np.nan,6,8])
```

```
In [5]: s
Out[5]:
0   1
1   3
2   5
3  NaN
4   6
5   8
   dtype: float64
```

Creating a *DataFrame* by passing a numpy array, with a datetime index and labeled columns:

```
In [6]: dates = pd.date_range('20130101', periods=6)
```

```
In [7]: dates
Out[7]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01, ..., 2013-01-06]
Length: 6, Freq: D, Timezone: None
```

```
In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
```

```
In [9]: df
Out[9]:
```
Creating a DataFrame by passing a dict of objects that can be converted to series-like.

```
In [10]: df2 = pd.DataFrame({
    'A' : 1.,
    ....: 'B' : pd.Timestamp('20130102'),
    ....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
    ....: 'D' : np.array([3] * 4,dtype='int32'),
    ....: 'E' : pd.Categorical(['test','train','test','train']),
    ....: 'F' : 'foo'
})
```

```
In [11]: df2
Out[11]:
A      B      C      D      E      F
0  1.0  2013-01-02  1.0  3.0    test   foo
1  1.0  2013-01-02  1.0  3.0    train  foo
2  1.0  2013-01-02  1.0  3.0    test   foo
3  1.0  2013-01-02  1.0  3.0    train  foo
```

Having specific dtypes

```
In [12]: df2.dtypes
Out[12]:
A    float64
B  datetime64[ns]
C     float32
D       int32
E  category
F        object
dtype: object
```

If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled. Here’s a subset of the attributes that will be completed:

```
In [13]: df2.<TAB>
df2.A  df2.boxplot
df2.abs  df2.C
df2.add  df2.clip
df2.add_prefix  df2.clip_lower
df2.add_suffix  df2.clip_upper
df2.align  df2.columns
df2.all  df2.combine
df2.any  df2.combineAdd
df2.append  df2.combine_first
df2.apply  df2.combineMult
df2.applymap  df2.compound
df2.as_blocks  df2.consolidate
df2.asfreq  df2.convert_objects
df2.as_matrix  df2.copy
df2.astype  df2.corr
df2.at  df2.corrwith
df2.at_time  df2.count
```
As you can see, the columns A, B, C, and D are automatically tab completed. E is there as well; the rest of the attributes have been truncated for brevity.

5.2 Viewing Data

See the Basics section

See the top & bottom rows of the frame

<table>
<thead>
<tr>
<th>In [14]</th>
<th>df.head()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out [14]:</td>
<td>A B C D</td>
</tr>
<tr>
<td></td>
<td>2013-01-01</td>
</tr>
<tr>
<td></td>
<td>2013-01-02</td>
</tr>
<tr>
<td></td>
<td>2013-01-03</td>
</tr>
<tr>
<td></td>
<td>2013-01-04</td>
</tr>
<tr>
<td></td>
<td>2013-01-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In [15]</th>
<th>df.tail(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out [15]:</td>
<td>A B C D</td>
</tr>
<tr>
<td></td>
<td>2013-01-04</td>
</tr>
<tr>
<td></td>
<td>2013-01-05</td>
</tr>
<tr>
<td></td>
<td>2013-01-06</td>
</tr>
</tbody>
</table>

Display the index, columns, and the underlying numpy data

<table>
<thead>
<tr>
<th>In [16]</th>
<th>df.index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out [16]:</td>
<td><class 'pandas.tseries.index.DatetimeIndex'></td>
</tr>
<tr>
<td></td>
<td>[2013-01-01, ..., 2013-01-06]</td>
</tr>
<tr>
<td></td>
<td>Length: 6, Freq: D, Timezone: None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In [17]</th>
<th>df.columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out [17]:</td>
<td>Index([u'A', u'B', u'C', u'D'], dtype='object')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In [18]</th>
<th>df.values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out [18]:</td>
<td>array([[0.4691, -0.2829, -1.5091, -1.1356], 1.2121, -0.1732, 0.1192, -1.0442], -0.8618, -2.1046, -0.4949, 1.0718], 0.72155, -0.706771, -1.03575, 0.27186), -0.425, 0.567, 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525]))</td>
</tr>
</tbody>
</table>

Describe shows a quick statistic summary of your data

<table>
<thead>
<tr>
<th>In [19]</th>
<th>df.describe()</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out [19]:</td>
<td>A B C D</td>
</tr>
</tbody>
</table>

5.2. Viewing Data
Transposing your data

In [20]: df.T
Out[20]:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.469112</td>
<td>1.212112</td>
<td>-0.861849</td>
<td>0.721555</td>
<td>-0.424972</td>
<td>-0.673690</td>
</tr>
<tr>
<td>B</td>
<td>-0.282863</td>
<td>-0.173215</td>
<td>-2.104569</td>
<td>-0.706771</td>
<td>0.567020</td>
<td>0.113648</td>
</tr>
<tr>
<td>C</td>
<td>-1.509059</td>
<td>0.119209</td>
<td>-0.494929</td>
<td>-1.039575</td>
<td>0.276232</td>
<td>-1.478427</td>
</tr>
<tr>
<td>D</td>
<td>-1.135632</td>
<td>-1.044236</td>
<td>1.071804</td>
<td>0.271860</td>
<td>-1.087401</td>
<td>0.524988</td>
</tr>
</tbody>
</table>

Sorting by an axis

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>-1.135632</td>
<td>-1.509059</td>
<td>-0.282863</td>
<td>0.469112</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.044236</td>
<td>0.119209</td>
<td>-0.173215</td>
<td>1.212112</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>1.071804</td>
<td>-0.494929</td>
<td>-2.104569</td>
<td>-0.706771</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.271860</td>
<td>-1.039575</td>
<td>-0.706771</td>
<td>0.567020</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>1.087401</td>
<td>0.276232</td>
<td>0.567020</td>
<td>-0.424972</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
</tr>
</tbody>
</table>

Sorting by values

In [22]: df.sort(columns='B')
Out[22]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>1.071804</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
<tr>
<td>2013-01-01</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
</tbody>
</table>

5.3 Selection

Note: While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc, .iloc and .ix.

See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing

5.3.1 Getting

Selecting a single column, which yields a Series, equivalent to df.A
In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64

Selecting via [], which slices the rows.

In [24]: df[0:3]
Out[24]:
 A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804

In [25]: df['20130102':'20130104']
Out[25]:
 A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

5.3.2 Selection by Label

See more in Selection by Label

For getting a cross section using a label

In [26]: df.loc[dates[0]]
Out[26]:
 A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

Selecting on a multi-axis by label

In [27]: df.loc[:,['A','B']]
Out[27]:
 A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

Showing label slicing, both endpoints are included

In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:
 A B
2013-01-02 1.212112 -0.173215

5.3. Selection
Reduction in the dimensions of the returned object

In [29]: df.loc['20130102', ['A','B']]
Out[29]:
A 1.212112
B -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value

In [30]: df.loc[dates[0], 'A']
Out[30]: 0.46911229990718628

For getting fast access to a scalar (equiv to the prior method)

In [31]: df.at[dates[0], 'A']
Out[31]: 0.46911229990718628

5.3.3 Selection by Position

See more in Selection by Position

Select via the position of the passed integers

In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64

By integer slices, acting similar to numpy/python

In [33]: df.iloc[3:5,0:2]
Out[33]:
 A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

By lists of integer position locations, similar to the numpy/python style

In [34]: df.iloc[[1,2,4], [0,2]]
Out[34]:
 A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232

For slicing rows explicitly

In [35]: df.iloc[1:3,:]
Out[35]:
 A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
For slicing columns explicitly

In [36]: df.iloc[:,1:3]

Out[36]:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>-0.282863</td>
<td>-1.509059</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>-0.173215</td>
<td>0.119209</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-2.104569</td>
<td>-0.494929</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>-0.706771</td>
<td>-1.039575</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>0.567020</td>
<td>0.276232</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>0.113648</td>
<td>-1.478427</td>
</tr>
</tbody>
</table>

For getting a value explicitly

In [37]: df.iloc[1,1]

Out[37]: -0.17321464905330861

For getting fast access to a scalar (equiv to the prior method)

In [38]: df.iat[1,1]

Out[38]: -0.17321464905330861

5.3.4 Boolean Indexing

Using a single column’s values to select data.

In [39]: df[df.A > 0]

Out[39]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
</tbody>
</table>

A **where** operation for getting.

In [40]: df[df > 0]

Out[40]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.469112</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>NaN</td>
<td>0.119209</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>1.071804</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>NaN</td>
<td>NaN</td>
<td>0.271860</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>NaN</td>
<td>0.567020</td>
<td>0.276232</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>NaN</td>
<td>0.113648</td>
<td>NaN</td>
<td>0.524988</td>
</tr>
</tbody>
</table>

Using the **isin()** method for filtering:

In [41]: df2 = df.copy()

In [42]: df2['E']=['one', 'one', 'two', 'three', 'four', 'three']

In [43]: df2

Out[43]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
<td>one</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
<td>one</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>1.071804</td>
<td>two</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
<td>three</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
<td>four</td>
</tr>
</tbody>
</table>
In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>1.071804</td>
<td>two</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
<td>four</td>
</tr>
</tbody>
</table>

5.3.5 Setting

Setting a new column automatically aligns the data by the indexes

In [45]: s1 = pd.Series([1,2,3,4,5,6],index=pd.date_range('20130102',periods=6))

In [46]: s1
Out[46]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-02</td>
<td>1</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>2</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>3</td>
</tr>
<tr>
<td>2013-01-05</td>
<td>4</td>
</tr>
<tr>
<td>2013-01-06</td>
<td>5</td>
</tr>
<tr>
<td>2013-01-07</td>
<td>6</td>
</tr>
</tbody>
</table>

Freq: D, dtype: int64

In [47]: df['F'] = s1

Setting values by label

In [48]: df.at[dates[0],'A'] = 0

Setting values by position

In [49]: df.iat[0,1] = 0

Setting by assigning with a numpy array

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

The result of the prior setting operations

In [51]: df
Out[51]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-1.509059</td>
<td>5 NaN</td>
<td></td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>5 1</td>
<td></td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>5 2</td>
<td></td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>5 3</td>
<td></td>
</tr>
<tr>
<td>2013-01-05</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>5 4</td>
<td></td>
</tr>
<tr>
<td>2013-01-06</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>5 5</td>
<td></td>
</tr>
</tbody>
</table>

A where operation with setting.

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2
Out[54]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.4 Missing Data

pandas primarily uses the value `np.nan` to represent missing data. It is by default not included in computations. See the **Missing Data section**

Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.

```python
In [55]: df1 = df.reindex(index=dates[0:4],columns=list(df.columns) + ['E'])
```

```python
In [56]: df1.loc[dates[0]:dates[1],'E'] = 1
```

```python
In [57]: df1
Out[57]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-1.509059</td>
<td>5 NaN</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>5 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>5 NaN</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>0.706771</td>
<td>-1.039575</td>
<td>5 3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

To drop any rows that have missing data.

```python
In [58]: df1.dropna(how='any')
```

```python
Out[58]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>5 1</td>
<td>1</td>
</tr>
</tbody>
</table>

Filling missing data

```python
In [59]: df1.fillna(value=5)
```

```python
Out[59]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>0.000000</td>
<td>0.000000</td>
<td>-1.509059</td>
<td>5 5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2013-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>5 1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2013-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>5 2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2013-01-04</td>
<td>0.721555</td>
<td>0.706771</td>
<td>-1.039575</td>
<td>5 3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

To get the boolean mask where values are `nan`

```python
In [60]: pd.isnull(df1)
```

```python
Out[60]:
```

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>F</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>2013-01-02</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>2013-01-03</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>2013-01-04</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

5.5 Operations

See the **Basic section on Binary Ops**
5.5.1 Stats

Operations in general exclude missing data.

Performing a descriptive statistic

```
In [61]: df.mean()
Out[61]:
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64
```

Same operation on the other axis

```
In [62]: df.mean(1)
Out[62]:
2013-01-01  0.872735
2013-01-02  1.431621
2013-01-03  0.707731
2013-01-04  1.395042
2013-01-05  1.883656
2013-01-06  1.592306
Freq: D, dtype: float64
```

Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.

```
In [63]: s = pd.Series([1,3,5,np.nan,6,8],index=dates).shift(2)
In [64]: s
Out[64]:
2013-01-01   NaN
2013-01-02   NaN
2013-01-03    1
2013-01-04    3
2013-01-05    5
2013-01-06   NaN
Freq: D, dtype: float64
In [65]: df.sub(s,axis='index')
Out[65]:
     A   B    C    D    F
2013-01-01  NaN  NaN  NaN  NaN  NaN
2013-01-02  NaN  NaN  NaN  NaN  NaN
2013-01-03 1.861849 3.104569 1.494929 4.039575 2.0
2013-01-04 2.78445 3.706771 4.039575 2.039575 0.0
2013-01-05 5.424972 4.32980 4.723768 0.0 -1.0
2013-01-06  NaN  NaN  NaN  NaN  NaN
```

5.5.2 Apply

Applying functions to the data

```
In [66]: df.apply(np.cumsum)
Out[66]:
     A   B    C    D    F
2013-01-01  NaN  NaN  NaN  NaN  NaN
2013-01-02  NaN  NaN  NaN  NaN  NaN
2013-01-03 -1.861849 -3.104569 -1.494929 4.039575 2.0
2013-01-04 -2.78445 -3.706771 -4.039575 2.039575 0.0
2013-01-05 -5.424972 -4.32980 -4.723768 0.0 -1.0
2013-01-06  NaN  NaN  NaN  NaN  NaN
```
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1
2013-01-03 0.350263 -2.277784 -1.884779 15 3
2013-01-04 1.071818 -2.984555 -2.924354 20 6
2013-01-05 0.646846 -2.417535 -4.126549 30 15

In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64

5.5.3 Histogramming

See more at Histogramming and Discretization

In [68]: s = pd.Series(np.random.randint(0,7,size=10))

In [69]: s
Out[69]:
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype: int32

In [70]: s.value_counts()
Out[70]:
4 5
6 2
2 2
1 1
dtype: int64

5.5.4 String Methods

Series is equipped with a set of string processing methods in the str attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in str generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()
Out[72]:
5.6 Merge

5.6.1 Concat

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

See the Merging section

Concatenating pandas objects together

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:
 0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -1.945867
7 1.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]:
 0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -1.945867
7 1.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495
5.6.2 Join

SQL style merges. See the Database style joining

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]:
 key lval
0 foo 1
1 foo 2

In [80]: right
Out[80]:
 key rval
0 foo 4
1 foo 5

In [81]: pd.merge(left, right, on='key')
Out[81]:
 key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

5.6.3 Append

Append rows to a dataframe. See the Appending

In [82]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [83]: df
Out[83]:
 A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758

In [84]: s = df.iloc[3]

In [85]: df.append(s, ignore_index=True)
Out[85]:
 A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 0.141809 0.220390 0.435589 0.192451

5.6. Merge
5.7 Grouping

By “group by” we are referring to a process involving one or more of the following steps

- **Splitting** the data into groups based on some criteria
- **Applying** a function to each group independently
- **Combining** the results into a data structure

See the *Grouping section*

In [86]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
 : foo', 'bar', 'foo', 'foo'],
 : 'B': ['one', 'one', 'two', 'three',
 : 'two', 'two', 'one', 'three'],
 : 'C': np.random.randn(8),
 : 'D': np.random.randn(8))

In [87]: df
Out[87]:
 A B C D
 0 foo one -1.202872 -0.055224
 1 bar one -1.814470 2.395985
 2 foo two 1.018601 1.552825
 3 bar three -0.595447 0.166599
 4 foo two 1.395433 0.047609
 5 bar two -0.392670 -0.136473
 6 foo one 0.007207 -0.561757
 7 foo three 1.928123 -1.623033

Grouping and then applying a function `sum` to the resulting groups.

In [88]: df.groupby('A').sum()
Out[88]:
 C D
 A
 bar -2.802588 2.42611
 foo 3.146492 -0.63958

Grouping by multiple columns forms a hierarchical index, which we then apply the function.

In [89]: df.groupby(['A', 'B']).sum()
Out[89]:
 C D
 A B
 bar one -1.814470 2.395985
 three -0.595447 0.166599
 two -0.392670 -0.136473
 foo one -1.195665 -0.616981
 three 1.928123 -1.623033
 two 2.414034 1.600434
5.8 Reshaping

See the sections on Hierarchical Indexing and Reshaping.

5.8.1 Stack

In [90]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
 ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]))

In [91]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [92]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [93]: df2 = df[:4]

In [94]: df2
Out[94]:

 A B
first second
bar one 0.029399 -0.542108
two 0.282696 -0.087302
baz one -1.575170 1.771208
two 0.816482 1.100230

The stack function “compresses” a level in the DataFrame’s columns.

In [95]: stacked = df2.stack()

In [96]: stacked
Out[96]:

 first second
bar one A 0.029399
 B -0.542108
two A 0.282696
 B -0.087302
baz one A -1.575170
 B 1.771208
two A 0.816482
 B 1.100230
dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:

In [97]: stacked.unstack()
Out[97]:

 first second
bar one A 0.029399
 B -0.542108
two A 0.282696
 B -0.087302
baz one A -1.575170
 B 1.771208
two A 0.816482
 B 1.100230

In [98]: stacked.unstack(1)

5.8. Reshaping
5.8.2 Pivot Tables

See the section on *Pivot Tables*.

```python
In [100]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
                      'B': ['A', 'B', 'C'] * 4,
                      'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
                      'D': np.random.randn(12),
                      'E': np.random.randn(12)})
```

We can produce pivot tables from this data very easily:

```python
In [102]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
```
5.9 Time Series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications. See the Time Series section

In [103]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [104]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [105]: ts.resample('5Min', how='sum')
Out[105]:
2012-01-01 25083
Freq: 5T, dtype: int32

Time zone representation

In [106]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [107]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [108]: ts
Out[108]:
2012-03-06 0.464000
2012-03-07 0.227371
2012-03-08 -0.496922
2012-03-09 0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64

In [109]: ts_utc = ts.tz_localize('UTC')

In [110]: ts_utc
Out[110]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64

Convert to another time zone

In [111]: ts_utc.tz_convert('US/Eastern')
Out[111]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00 0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64

Converting between time span representations

5.9. Time Series
In [112]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [113]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [114]: ts
Out[114]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
2012-04-30 0.281957
2012-05-31 1.523962
Freq: M, dtype: float64

In [115]: ps = ts.to_period()

In [116]: ps
Out[116]:
2012-01 -1.134623
2012-02 -1.561819
2012-03 -0.260838
2012-04 0.281957
2012-05 1.523962
Freq: M, dtype: float64

In [117]: ps.to_timestamp()
Out[117]:
2012-01-01 -1.134623
2012-02-01 -1.561819
2012-03-01 -0.260838
2012-04-01 0.281957
2012-05-01 1.523962
Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

In [118]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [119]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [120]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [121]: ts.head()
Out[121]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64

5.10 Categoricals

Since version 0.15, pandas can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API documentation.
In [122]: df = pd.DataFrame({'id':[1,2,3,4,5,6], 'raw_grade':['a', 'b', 'b', 'a', 'a', 'e']})

Convert the raw grades to a categorical data type.

In [123]: df['grade'] = df['raw_grade'].astype('category')

In [124]: df['grade']
Out[124]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a < b < e]

Rename the categories to more meaningful names (assigning to Series.cat.categories is inplace!)

In [125]: df['grade'].cat.categories = ['very good', 'good', 'very bad']

Reorder the categories and simultaneously add the missing categories (methods under Series.cat return a new Series per default).

In [126]: df['grade'] = df['grade'].cat.set_categories(['very bad', 'bad', 'medium', 'good', 'very good'])

In [127]: df['grade']
Out[127]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad < bad < medium < good < very good]

Sorting is per order in the categories, not lexical order.

In [128]: df.sort('grade')
Out[128]:
 id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good

Grouping by a categorical column shows also empty categories.

In [129]: df.groupby('grade').size()
Out[129]:
grade
very bad 1
bad NaN
medium NaN
good 2
very good 3
dtype: float64

5.10. Categoricals
5.11 Plotting

Plotting docs.

```python
In [130]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))

In [131]: ts = ts.cumsum()

In [132]: ts.plot()
```

```
Out[132]: <matplotlib.axes._subplots.AxesSubplot at 0xaf40e8cc>
```

On DataFrame, `plot` is a convenience to plot all of the columns with labels:

```python
In [133]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
                      columns=['A', 'B', 'C', 'D'])

In [134]: df = df.cumsum()

In [135]: plt.figure(); df.plot(); plt.legend(loc='best')
```

```
Out[135]: <matplotlib.legend.Legend at 0xaf3512cc>
```
5.12 Getting Data In/Out

5.12.1 CSV

Writing to a csv file

In [136]: df.to_csv('foo.csv')

Reading from a csv file

In [137]: pd.read_csv('foo.csv')

Out[137]:
 Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753

...
5.12.2 HDF5

Reading and writing to HDFStores

Writing to a HDF5 Store

In [138]: df.to_hdf('foo.h5','df')

Reading from a HDF5 Store

In [139]: pd.read_hdf('foo.h5','df')

Out[139]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.266457</td>
<td>-0.399641</td>
<td>-0.219582</td>
<td>1.186860</td>
</tr>
<tr>
<td>1</td>
<td>-1.170732</td>
<td>-0.345873</td>
<td>1.653061</td>
<td>-0.282953</td>
</tr>
<tr>
<td>2</td>
<td>-1.734933</td>
<td>0.530468</td>
<td>2.060811</td>
<td>-0.513536</td>
</tr>
<tr>
<td>3</td>
<td>-1.555121</td>
<td>1.452620</td>
<td>0.239859</td>
<td>-1.156896</td>
</tr>
<tr>
<td>4</td>
<td>0.578117</td>
<td>0.511371</td>
<td>0.103552</td>
<td>-2.428202</td>
</tr>
<tr>
<td>5</td>
<td>0.478344</td>
<td>0.49933</td>
<td>-0.741620</td>
<td>-1.962409</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>997</td>
<td>-10.216020</td>
<td>-9.480682</td>
<td>-3.933802</td>
<td>29.758560</td>
</tr>
<tr>
<td>998</td>
<td>-11.856774</td>
<td>-10.671012</td>
<td>-3.216025</td>
<td>29.369368</td>
</tr>
</tbody>
</table>

[1000 rows x 4 columns]

5.12.3 Excel

Reading and writing to MS Excel

Writing to an excel file

In [140]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

Reading from an excel file

In [141]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

Out[141]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.266457</td>
<td>-0.399641</td>
<td>-0.219582</td>
<td>1.186860</td>
</tr>
<tr>
<td>1</td>
<td>-1.170732</td>
<td>-0.345873</td>
<td>1.653061</td>
<td>-0.282953</td>
</tr>
<tr>
<td>2</td>
<td>-1.734933</td>
<td>0.530468</td>
<td>2.060811</td>
<td>-0.513536</td>
</tr>
<tr>
<td>3</td>
<td>-1.555121</td>
<td>1.452620</td>
<td>0.239859</td>
<td>-1.156896</td>
</tr>
<tr>
<td>4</td>
<td>0.578117</td>
<td>0.511371</td>
<td>0.103552</td>
<td>-2.428202</td>
</tr>
<tr>
<td>5</td>
<td>0.478344</td>
<td>0.49933</td>
<td>-0.741620</td>
<td>-1.962409</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>997</td>
<td>-10.216020</td>
<td>-9.480682</td>
<td>-3.933802</td>
<td>29.758560</td>
</tr>
<tr>
<td>998</td>
<td>-11.856774</td>
<td>-10.671012</td>
<td>-3.216025</td>
<td>29.369368</td>
</tr>
</tbody>
</table>

[1000 rows x 4 columns]
5.13 Gotchas

If you are trying an operation and you see an exception like:

```python
>>> if pd.Series([False, True, False]):
    print("I was true")
Traceback
...  
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

See Comparisons for an explanation and what to do.
See Gotchas as well.
This is a guide to many pandas tutorials, geared mainly for new users.

6.1 Internal Guides

pandas own 10 Minutes to pandas

More complex recipes are in the Cookbook

6.2 pandas Cookbook

The goal of this cookbook (by Julia Evans) is to give you some concrete examples for getting started with pandas. These are examples with real-world data, and all the bugs and weirdness that that entails.

Here are links to the v0.1 release. For an up-to-date table of contents, see the pandas-cookbook GitHub repository. To run the examples in this tutorial, you’ll need to clone the GitHub repository and get IPython Notebook running. See How to use this cookbook.

- A quick tour of the IPython Notebook: Shows off IPython’s awesome tab completion and magic functions.
- Chapter 1: Reading your data into pandas is pretty much the easiest thing. Even when the encoding is wrong!
- Chapter 2: It’s not totally obvious how to select data from a pandas dataframe. Here we explain the basics (how to take slices and get columns)
- Chapter 3: Here we get into serious slicing and dicing and learn how to filter dataframes in complicated ways, really fast.
- Chapter 4: Groupby/aggregate is seriously my favorite thing about pandas and I use it all the time. You should probably read this.
- Chapter 5: Here you get to find out if it’s cold in Montreal in the winter (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
- Chapter 6: Strings with pandas are great. It has all these vectorized string operations and they’re the best. We will turn a bunch of strings containing “Snow” into vectors of numbers in a trice.
- Chapter 7: Cleaning up messy data is never a joy, but with pandas it’s easier.
- Chapter 8: Parsing Unix timestamps is confusing at first but it turns out to be really easy.
6.3 Lessons for New pandas Users

For more resources, please visit the main repository.

• 01 - Lesson: - Importing libraries - Creating data sets - Creating data frames - Reading from CSV - Exporting to CSV - Finding maximums - Plotting data
• 02 - Lesson: - Reading from TXT - Exporting to TXT - Selecting top/bottom records - Descriptive statistics - Grouping/sorting data
• 03 - Lesson: - Creating functions - Reading from EXCEL - Exporting to EXCEL - Outliers - Lambda functions - Slice and dice data
• 04 - Lesson: - Adding/deleting columns - Index operations
• 05 - Lesson: - Stack/Unstack/Transpose functions
• 06 - Lesson: - GroupBy function
• 07 - Lesson: - Ways to calculate outliers
• 08 - Lesson: - Read from Microsoft SQL databases
• 09 - Lesson: - Export to CSV/EXCEL/TXT
• 10 - Lesson: - Converting between different kinds of formats
• 11 - Lesson: - Combining data from various sources

6.4 Excel charts with pandas, vincent and xlsxwriter

• Using Pandas and XlsxWriter to create Excel charts

6.5 Various Tutorials

• Wes McKinney’s (pandas BDFL) blog
• Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson
• Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013
• Financial analysis in python, by Thomas Wiecki
• Intro to pandas data structures, by Greg Reda
• Pandas and Python: Top 10, by Manish Amde
• Pandas Tutorial, by Mikhail Semeniuk
This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to this documentation.

Adding interesting links and/or inline examples to this section is a great First Pull Request.

Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the StackOverflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.

Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for newer users.

These examples are written for python 3.4. Minor tweaks might be necessary for earlier python versions.

7.1 Idioms

These are some neat pandas idioms

if-then/if-then-else on one column, and assignment to another one or more columns:

```
In [1]: df = pd.DataFrame(  
   ...:     {'AAA': [4,5,6,7], 'BBB': [10,20,30,40], 'CCC': [100,50,-30,-50]}); df
   ...
Out[1]:  
   AAA  BBB  CCC  
  0   4    10  100  
  1   5     20   50  
  2   6    30  -30  
  3   7    40  -50  
```

7.1.1 if-then...

An if-then on one column

```
In [2]: df.ix[df.AAA >= 5,'BBB'] = -1; df
Out[2]:  
   AAA  BBB  CCC  
  0   4    10  100  
  1   5    -1   50  
  2   6    -1  -30  
  3   7    -1  -50  
```

An if-then with assignment to 2 columns:
In [3]: df.ix[df.AAA >= 5,[‘BBB’,'CCC']] = 555; df
Out[3]:
 AAA BBB CCC
0 4 10 100
1 5 555 555
2 6 555 555
3 7 555 555

Add another line with different logic, to do the -else

In [4]: df.ix[df.AAA < 5,[‘BBB’,'CCC']] = 2000; df
Out[4]:
 AAA BBB CCC
0 4 2000 2000
1 5 555 555
2 6 555 555
3 7 555 555

Or use pandas where after you’ve set up a mask

In [6]: df.where(df_mask,-1000)
Out[6]:
 AAA BBB CCC
0 4 -1000 2000
1 5 -1000 -1000
2 6 -1000 555
3 7 -1000 -1000

if-then-else using numpy’s where()

In [7]: df = pd.DataFrame(
...:
 {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
...:
Out[7]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [8]: df[‘logic’] = np.where(df[‘AAA’] > 5,’high’,’low’); df
Out[8]:
 AAA BBB CCC logic
0 4 10 100 low
1 5 20 50 low
2 6 30 -30 high
3 7 40 -50 high

7.1.2 Splitting

Split a frame with a boolean criterion

In [9]: df = pd.DataFrame(
 ...:
 {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
 ...:
Out[9]:
7.1.3 Building Criteria

Select with multi-column criteria

In [13]: df = pd.DataFrame(
 : {'AAA': [4,5,6,7], 'BBB': [10,20,30,40], 'CCC': [100,50,-30,-50]}); df
 :
Out[13]:
 AAA BBB CCC
 0 4 10 100
 1 5 20 50
 2 6 30 -30
 3 7 40 -50

...and (without assignment returns a Series)

In [14]: newseries = df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']; newseries
Out[14]:
0 4
1 5
Name: AAA, dtype: int64

...or (without assignment returns a Series)

In [15]: newseries = df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']; newseries;

...or (with assignment modifies the DataFrame.)

In [16]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1; df
Out[16]:
 AAA BBB CCC
 0 0.1 10 100
 1 5.0 20 50
 2 0.1 30 -30
 3 0.1 40 -50

Select rows with data closest to certain value using argsort

In [17]: df = pd.DataFrame(
 : {'AAA': [4,5,6,7], 'BBB': [10,20,30,40], 'CCC': [100,50,-30,-50]}); df
 :
Out[17]:

AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [18]: aValue = 43.0

In [19]: df.ix[(df.CCC-aValue).abs().argsort()]
Out[19]:
AAA BBB CCC
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50

Dynamically reduce a list of criteria using a binary operators

In [20]: df = pd.DataFrame(
....: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40], 'CCC' : [100,50,-30,-50]});
Out[20]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [21]: Crit1 = df.AAA <= 5.5

In [22]: Crit2 = df.BBB == 10.0

In [23]: Crit3 = df.CCC > -40.0

One could hard code:

In [24]: AllCrit = Crit1 & Crit2 & Crit3

...Or it can be done with a list of dynamically built criteria

In [25]: CritList = [Crit1,Crit2,Crit3]

In [26]: AllCrit = functools.reduce(lambda x,y: x & y, CritList)

In [27]: df[AllCrit]
Out[27]:
AAA BBB CCC
0 4 10 100

7.2 Selection

7.2.1 DataFrames

The indexing docs.

Using both row labels and value conditionals

Chapter 7. Cookbook
In [28]: df = pd.DataFrame(
 : {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
 :
Out[28]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [29]: df[(df.AAA <= 6) & (df.index.isin([0,2,4]))]
Out[29]:
 AAA BBB CCC
0 4 10 100
2 6 30 -30

Use loc for label-oriented slicing and iloc positional slicing

In [30]: data = {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}
In [31]: df = pd.DataFrame(data=data,index=['foo','bar','boo','kar']); df
Out[31]:
 AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

There are 2 explicit slicing methods, with a third general case

1. Positional-oriented (Python slicing style: exclusive of end)
2. Label-oriented (Non-Python slicing style: inclusive of end)
3. General (Either slicing style: depends on if the slice contains labels or positions)

In [32]: df.loc['bar':'kar'] #Label
Out[32]:
 AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

#Generic
In [33]: df.ix[0:3] #Same as .iloc[0:3]
Out[33]:
 AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30

In [34]: df.ix['bar':'kar'] #Same as loc['bar':'kar']
Out[34]:
 AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.
In [35]: df2 = pd.DataFrame(data=data,index=[1,2,3,4]); #Note index starts at 1.

In [36]: df2.iloc[1:3] #Position-oriented
Out[36]:
 AAA BBB CCC
2 5.0 20.0 50.0
3 6.0 30.0 -30.0

In [37]: df2.loc[1:3] #Label-oriented
Out[37]:
 AAA BBB CCC
1 4.0 10.0 100.0
2 5.0 20.0 50.0
3 6.0 30.0 -30.0

In [38]: df2.ix[1:3] #General, will mimic loc (label-oriented)
Out[38]:
 AAA BBB CCC
1 4.0 10.0 100.0
2 5.0 20.0 50.0
3 6.0 30.0 -30.0

In [39]: df2.ix[0:3] #General, will mimic iloc (position-oriented), as loc[0:3] would raise a KeyError
Out[39]:
 AAA BBB CCC
1 4.0 10.0 100.0
2 5.0 20.0 50.0
3 6.0 30.0 -30.0

Using inverse operator (~) to take the complement of a mask

In [40]: df = pd.DataFrame(
 : {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40], 'CCC' : [100,50,-30,-50]}); df
Out[40]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [41]: df[~((df.AAA <= 6) & (df.index.isin([0,2,4])))]
Out[41]:
 AAA BBB CCC
1 5 20 50
3 7 40 -50

7.2.2 Panels

Extend a panel frame by transposing, adding a new dimension, and transposing back to the original dimensions

In [42]: rng = pd.date_range('1/1/2013',periods=100,freq='D')

In [43]: data = np.random.randn(100, 4)

In [44]: cols = ['A','B','C','D']
[In [45]:] df1, df2, df3 = pd.DataFrame(data, rng, cols), pd.DataFrame(data, rng, cols), pd.DataFrame(data, rng, cols)

[In [46]:] pf = pd.Panel({'df1':df1,'df2':df2,'df3':df3});pf

Out[46]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 100 (major_axis) x 4 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to D

#Assignment using Transpose (pandas < 0.15)
[In [47]:] pf = pf.transpose(2,0,1)

[In [48]:] pf['E'] = pd.DataFrame(data, rng, cols)

[In [49]:] pf = pf.transpose(1,2,0);pf

Out[49]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 100 (major_axis) x 5 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to E

#Direct assignment (pandas > 0.15)
[In [50]:] pf.loc[:,:,'F'] = pd.DataFrame(data, rng, cols);pf

Out[50]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 100 (major_axis) x 6 (minor_axis)
Items axis: df1 to df3
Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
Minor_axis axis: A to F

Mask a panel by using np.where and then reconstructing the panel with the new masked values

7.2.3 New Columns

Efficiently and dynamically creating new columns using applymap

[In [51]:] df = pd.DataFrame(
 ...: {‘AAA’ : [1,2,1,3], ‘BBB’ : [1,1,2,2], ‘CCC’ : [2,1,3,1]}); df

Out[51]:
 AAA BBB CCC
0 1 1 2
1 2 1 1
2 1 2 3
3 3 2 1

[In [52]:] source_cols = df.columns # or some subset would work too.

[In [53]:] new_cols = [str(x) + "_cat" for x in source_cols]

[In [55]:] df[new_cols] = df[source_cols].applymap(categories.get);df

Out[55]:
 AAA BBB CCC AAA_cat BBB_cat CCC_cat
0 1 1 2 1 1 2
1 2 1 1 1 2 1
2 1 2 3 3 1 2
3 3 2 1
Keep other columns when using min() with groupby

In [56]: df = pd.DataFrame(
 : {'AAA' : [1,1,1,2,2,2,3,3], 'BBB' : [2,1,3,4,5,1,2,3]}); df

Out[56]:
 AAA BBB
0 1 2
1 1 1
2 1 3
3 2 4
4 2 5
5 2 1
6 3 2
7 3 3

Method 1 : idxmin() to get the index of the mins

In [57]: df.loc[df.groupby("AAA")["BBB").idxmin()]

Out[57]:
 AAA BBB
 1 1 1
 5 2 1
 6 3 2

Method 2 : sort then take first of each

In [58]: df.sort("BBB").groupby("AAA", as_index=False).first()

Out[58]:
 AAA BBB
 0 1 1
 1 2 1
 2 3 2

Notice the same results, with the exception of the index.

7.3 MultIndexing

The multindexing docs.

Creating a multi-index from a labeled frame

In [59]: df = pd.DataFrame({'row' : [0,1,2],
 : 'One_X' : [1.1,1.1,1.1],
 : 'One_Y' : [1.2,1.2,1.2],
 : 'Two_X' : [1.11,1.11,1.11],
 : 'Two_Y' : [1.22,1.22,1.22]}); df

Out[59]:
 One_X One_Y Two_X Two_Y row
 0 1.1 1.2 1.11 1.22 0
 1 1.1 1.2 1.11 1.22 1
 2 1.1 1.2 1.11 1.22 2
As Labelled Index
In [60]: df = df.set_index('row');df
Out[60]:
<table>
<thead>
<tr>
<th></th>
<th>One_X</th>
<th>One_Y</th>
<th>Two_X</th>
<th>Two_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>row</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.1</td>
<td>1.2</td>
<td>1.11</td>
<td>1.22</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
<td>1.11</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>1.1</td>
<td>1.2</td>
<td>1.11</td>
<td>1.22</td>
</tr>
</tbody>
</table>

With Hierarchical Columns
In [61]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_')) for c in df.columns]);df
Out[61]:
<table>
<thead>
<tr>
<th></th>
<th>One</th>
<th>Two</th>
</tr>
</thead>
<tbody>
<tr>
<td>row</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>0</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>1.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Now stack & Reset
In [62]: df = df.stack(0).reset_index(1);df
Out[62]:
<table>
<thead>
<tr>
<th>level_1</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>row</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>One</td>
<td>1.10</td>
</tr>
<tr>
<td>0</td>
<td>Two</td>
<td>1.11</td>
</tr>
<tr>
<td>1</td>
<td>One</td>
<td>1.10</td>
</tr>
<tr>
<td>1</td>
<td>Two</td>
<td>1.11</td>
</tr>
<tr>
<td>2</td>
<td>One</td>
<td>1.10</td>
</tr>
<tr>
<td>2</td>
<td>Two</td>
<td>1.11</td>
</tr>
</tbody>
</table>

And fix the labels (Notice the label 'level_1' got added automatically)
In [63]: df.columns = ['Sample','All_X','All_Y'];df
Out[63]:
<table>
<thead>
<tr>
<th>Sample</th>
<th>All_X</th>
<th>All_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>row</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>One</td>
<td>1.10</td>
</tr>
<tr>
<td>0</td>
<td>Two</td>
<td>1.11</td>
</tr>
<tr>
<td>1</td>
<td>One</td>
<td>1.10</td>
</tr>
<tr>
<td>1</td>
<td>Two</td>
<td>1.11</td>
</tr>
<tr>
<td>2</td>
<td>One</td>
<td>1.10</td>
</tr>
<tr>
<td>2</td>
<td>Two</td>
<td>1.11</td>
</tr>
</tbody>
</table>

7.3.1 Arithmetic

Performing arithmetic with a multi-index that needs broadcasting
In [64]: cols = pd.MultiIndex.from_tuples([(x,y) for x in ['A','B','C'] for y in ['O','I']])

In [65]: df = pd.DataFrame(np.random.randn(2,6),index=['n','m'],columns=cols); df
Out[65]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
<td>I</td>
<td>O</td>
</tr>
<tr>
<td>n</td>
<td>1.920906</td>
<td>-0.388231</td>
<td>-2.314394</td>
</tr>
<tr>
<td>m</td>
<td>-1.765956</td>
<td>0.850423</td>
<td>0.388054</td>
</tr>
</tbody>
</table>

7.3. MultiIndexing
In [66]: df = df.div(df['C'], level=1); df
Out[66]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>O</td>
<td>I</td>
<td>O</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>I</td>
<td>I</td>
</tr>
</tbody>
</table>

7.3.2 Slicing

Slicing a multi-index with `xs`

In [67]: coords = [('AA', 'one'), ('AA', 'six'), ('BB', 'one'), ('BB', 'two'), ('BB', 'six')]

In [68]: index = pd.MultiIndex.from_tuples(coords)

In [69]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ['MyData']); df
Out[69]

<table>
<thead>
<tr>
<th>MyData</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA one 11</td>
</tr>
<tr>
<td>six 22</td>
</tr>
<tr>
<td>BB one 33</td>
</tr>
<tr>
<td>two 44</td>
</tr>
<tr>
<td>six 55</td>
</tr>
</tbody>
</table>

To take the cross section of the 1st level and 1st axis the index:

In [70]: df.xs('BB', level=0, axis=0) # Note: level and axis are optional, and default to zero
Out[70]

<table>
<thead>
<tr>
<th>MyData</th>
</tr>
</thead>
<tbody>
<tr>
<td>one 33</td>
</tr>
<tr>
<td>two 44</td>
</tr>
<tr>
<td>six 55</td>
</tr>
</tbody>
</table>

...and now the 2nd level of the 1st axis.

In [71]: df.xs('six', level=1, axis=0)
Out[71]

<table>
<thead>
<tr>
<th>MyData</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA 22</td>
</tr>
<tr>
<td>BB 55</td>
</tr>
</tbody>
</table>

Slicing a multi-index with `xs`, method #2

In [72]: index = list(itertools.product(['Ada', 'Quinn', 'Violet'], ['Comp', 'Math', 'Sci']))

In [73]: headr = list(itertools.product(['Exams', 'Labs'], ['I', 'II']))

In [74]: indx = pd.MultiIndex.from_tuples(index, names=['Student', 'Course'])

In [75]: cols = pd.MultiIndex.from_tuples(headr) # Notice these are un-named

In [76]: data = [(70 + x + y + (x * y) % 3 for x in range(4)) for y in range(9)]

In [77]: df = pd.DataFrame(data, indx, cols); df
Out[77]

<table>
<thead>
<tr>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

Student Course
In [78]: All = slice(None)

In [79]: df.loc['Violet']
Out[79]:

<table>
<thead>
<tr>
<th>Course</th>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Comp</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>Math</td>
<td>77</td>
<td>79</td>
</tr>
<tr>
<td>Sci</td>
<td>78</td>
<td>81</td>
</tr>
</tbody>
</table>

In [80]: df.loc[(All, 'Math'), All]
Out[80]:

<table>
<thead>
<tr>
<th>Student</th>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>Quinn</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>Violet</td>
<td>77</td>
<td>79</td>
</tr>
</tbody>
</table>

In [81]: df.loc[(slice('Ada', 'Quinn'), 'Math'), All]
Out[81]:

<table>
<thead>
<tr>
<th>Student</th>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>Quinn</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>Violet</td>
<td>77</td>
<td>79</td>
</tr>
</tbody>
</table>

In [82]: df.loc[(All, 'Math'), ('Exams')]
Out[82]:

<table>
<thead>
<tr>
<th>Student</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada</td>
<td>71</td>
</tr>
<tr>
<td>Quinn</td>
<td>74</td>
</tr>
<tr>
<td>Violet</td>
<td>77</td>
</tr>
</tbody>
</table>

In [83]: df.loc[(All, 'Math'), (All, 'II')]
Out[83]:

<table>
<thead>
<tr>
<th>Student</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ada</td>
<td>73</td>
</tr>
<tr>
<td>Quinn</td>
<td>76</td>
</tr>
<tr>
<td>Violet</td>
<td>79</td>
</tr>
</tbody>
</table>

Setting portions of a multi-index with xs

7.3. Multindexing
7.3.3 Sorting

Sort by specific column or an ordered list of columns, with a multi-index

```python
In [84]: df.sort(('Labs', 'II'), ascending=False)
Out[84]:

<table>
<thead>
<tr>
<th></th>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Student</td>
<td>Course</td>
<td>I</td>
</tr>
<tr>
<td>Violet</td>
<td>Sci</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Comp</td>
<td>76</td>
</tr>
<tr>
<td>Quinn</td>
<td>Sci</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Comp</td>
<td>73</td>
</tr>
<tr>
<td>Ada</td>
<td>Sci</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Comp</td>
<td>70</td>
</tr>
</tbody>
</table>
```

Partial Selection, the need for sortedness;

7.3.4 Levels

Prepending a level to a multiindex

Flatten Hierarchical columns

7.3.5 panelnd

The `panelnd` docs.

Construct a 5D panelnd

7.4 Missing Data

The `missing data` docs.

Fill forward a reversed timeseries

```python
In [85]: df = pd.DataFrame(np.random.randn(6,1), index=pd.date_range('2013-08-01', periods=6, freq='B'), columns=list('A'))
In [86]: df.ix[3,'A'] = np.nan
In [87]: df.reindex(df.index[::-1]).ffill()
In [88]:
```

Out[88]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-08-01</td>
<td>-1.054874</td>
</tr>
<tr>
<td>2013-08-02</td>
<td>-0.179642</td>
</tr>
<tr>
<td>2013-08-05</td>
<td>0.639589</td>
</tr>
<tr>
<td>2013-08-06</td>
<td>NaN</td>
</tr>
<tr>
<td>2013-08-07</td>
<td>1.906684</td>
</tr>
<tr>
<td>2013-08-08</td>
<td>0.104050</td>
</tr>
</tbody>
</table>

```python
In [88]: df.reindex(df.index[::-1]).ffill()
Out[88]:
```
cumsum reset at NaN values

7.4.1 Replace

Using replace with backrefs

7.5 Grouping

The grouping docs.

Basic grouping with apply

Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns

In [89]: df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
 'size': list('SSMMMLL'),
 'weight': [8, 10, 11, 1, 20, 12, 12],
 'adult': [False] * 5 + [True] * 2}); df

Out[89]:

<table>
<thead>
<tr>
<th>adult</th>
<th>animal</th>
<th>size</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>cat</td>
<td>S</td>
<td>8</td>
</tr>
<tr>
<td>False</td>
<td>dog</td>
<td>S</td>
<td>10</td>
</tr>
<tr>
<td>False</td>
<td>cat</td>
<td>M</td>
<td>11</td>
</tr>
<tr>
<td>False</td>
<td>fish</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>False</td>
<td>dog</td>
<td>M</td>
<td>20</td>
</tr>
<tr>
<td>True</td>
<td>cat</td>
<td>L</td>
<td>12</td>
</tr>
<tr>
<td>True</td>
<td>cat</td>
<td>L</td>
<td>12</td>
</tr>
</tbody>
</table>

#List the size of the animals with the highest weight.
In [90]: df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].idxmax()])
Out[90]:
animal
 cat L
 dog M
 fish M
dtype: object

Using get_group

In [91]: gb = df.groupby(['animal'])

In [92]: gb.get_group('cat')
Out[92]:

<table>
<thead>
<tr>
<th>adult</th>
<th>animal</th>
<th>size</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>cat</td>
<td>S</td>
<td>8</td>
</tr>
<tr>
<td>False</td>
<td>cat</td>
<td>M</td>
<td>11</td>
</tr>
</tbody>
</table>
Apply to different items in a group

```
In [93]: def GrowUp(x):
   ....:     avg_weight = sum(x[x.size == 'S'].weight * 1.5)
   ....:     avg_weight += sum(x[x.size == 'M'].weight * 1.25)
   ....:     avg_weight += sum(x[x.size == 'L'].weight)
   ....:     avg_weight = avg_weight / len(x)
   ....:     return pd.Series(['L', avg_weight, True], index=['size', 'weight', 'adult'])
   ....:
In [94]: expected_df = gb.apply(GrowUp)
In [95]: expected_df
Out[95]:
   size  weight  adult
   animal
    cat     L  12.4375    True
    dog     L  20.0000    True
    fish    L   1.2500    True
```

Expanding Apply

```
In [96]: S = pd.Series([i / 100.0 for i in range(1, 11)])
In [97]: def CumRet(x, y):
   ....:     return x * (1 + y)
   ....:
In [98]: def Red(x):
   ....:     return functools.reduce(CumRet, x, 1.0)
   ....:
In [99]: pd.expanding_apply(S, Red)
Out[99]:
          0  1.010000
          1  1.030200
          2  1.061106
          3  1.103550
          4  1.158728
          5  1.228251
          6  1.314229
          7  1.419367
          8  1.547110
          9  1.701821
dtype: float64
```

Replacing some values with mean of the rest of a group

```
In [100]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, -1, 1, 2]})
In [101]: gb = df.groupby('A')
In [102]: def replace(g):
   ....:     mask = g < 0
   ....:     g.loc[mask] = g[~mask].mean()
   ....:     return g
   ....:
In [103]: gb.replace(replace)
```

Chapter 7. Cookbook
In [103]: gb.transform(replace)
Out[103]:
 B
0 1
1 1
2 1
3 2

Sort groups by aggregated data

In [104]: df = pd.DataFrame({'code': ['foo', 'bar', 'baz'] * 2, 'data': [0.16, -0.21, 0.33, 0.45, -0.59, 0.62], 'flag': [False, True] * 3})

In [105]: code_groups = df.groupby('code')
In [106]: agg_n_sort_order = code_groups[['data']].transform(sum).sort('data')
In [107]: sorted_df = df.ix[agg_n_sort_order.index]
In [108]: sorted_df
Out[108]:
 code data flag
0 foo 0.16 False
1 bar -0.21 True
2 baz 0.33 False
3 foo 0.45 True
4 bar -0.59 False
5 baz 0.62 True

Create multiple aggregated columns

In [109]: rng = pd.date_range(start="2014-10-07", periods=10, freq='2min')
In [110]: ts = pd.Series(data = list(range(10)), index = rng)
In [111]: def MyCust(x):
 ...: if len(x) > 2:
 ...: return x[1] * 1.234
 ...: return pd.NaT
 ...
In [112]: mhc = {'Mean' : np.mean, 'Max' : np.max, 'Custom' : MyCust}
In [113]: ts.resample("5min", how = mhc)
Out[113]:
 Max Custom Mean
2014-10-07 00:00:00 2.1234 1.0
2014-10-07 00:05:00 4.0 NaN 3.5
2014-10-07 00:10:00 7.404 6.0
2014-10-07 00:15:00 9.0 NaN 8.5
In [114]: ts
Out[114]:
2014-10-07 00:00:00 0
2014-10-07 00:02:00 1
Create a value counts column and reassign back to the DataFrame

```
In [115]: df = pd.DataFrame({
    ....:     'Color': 'Red Red Red Blue'.split(),
    ....:     'Value': [100, 150, 50, 50]
    ....: }); df
```

```
Out[115]:
    Color  Value
0     Red    100
1     Red    150
2     Red     50
3    Blue     50
```

```
In [116]: df['Counts'] = df.groupby(['Color']).transform(len)
```

```
In [117]: df
```

```
Out[117]:
    Color  Value  Counts
0     Red    100     3
1     Red    150     3
2     Red     50     3
3    Blue     50     1
```

Shift groups of the values in a column based on the index

```
In [118]: df = pd.DataFrame({
    ....:     'line_race': [10, 10, 8, 10, 10, 8],
    ....:     'beyer': [99, 102, 103, 103, 88, 100],
    ....:     'index': [u'Last Gunfighter', u'Last Gunfighter', u'Last Gunfighter',
    ....:                  u'Paynter', u'Paynter', u'Paynter']}); df
```

```
Out[118]:
     beyer  line_race
Last Gunfighter  99        10
Last Gunfighter 102        10
Last Gunfighter 103         8
    Paynter  88          10
    Paynter 100         10
```

```
In [119]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)
```

```
In [120]: df
```

```
Out[120]:
     beyer  line_race  beyer_shifted
Last Gunfighter  99        10          NaN
Last Gunfighter 102        10            99
Last Gunfighter 103         8        102
    Paynter  88          10          NaN
    Paynter 103         10          NaN
```
Select row with maximum value from each group

In [121]: df = pd.DataFrame({'host':['other','other','that','this','this'],
 'service':['mail','web','mail','mail','web'],
 'no':[1, 2, 1, 2, 1]}).set_index(['host', 'service'])

In [122]: mask = df.groupby(level=0).agg('idxmax')

In [123]: df_count = df.loc[mask['no']].reset_index()

In [124]: df_count
Out[124]:
 host service no
0 other web 2
1 that mail 1
2 this mail 2

7.5.1 Expanding Data

Alignment and to-date

Rolling Computation window based on values instead of counts

Rolling Mean by Time Interval

7.5.2 Splitting

Splitting a frame

Create a list of dataframes, split using a delineation based on logic included in rows.

In [125]: df = pd.DataFrame(data={'Case' : ['A','A','A','B','A','A','B','A','A'],
 'Data' : np.random.randn(9)})

In [126]: dfs = list(zip(*df.groupby(pd.rolling_median((1*(df['Case']=='B')).cumsum(),3,True))))[-1]

In [127]: dfs[0]
Out[127]:
 Case Data
0 A 0.174068
1 A -0.439461
2 A -0.741343
3 B -0.079673

In [128]: dfs[1]
Out[128]:
 Case Data
4 A -0.922875
5 A 0.303638
6 B -0.917368

7.5. Grouping
Case Data
7 A -1.624062
8 A -0.758514

7.5.3 Pivot

The *Pivot* docs.

Partial sums and subtotals

```python
In [130]: df = pd.DataFrame(data={'Province': ['ON','QC','BC','AL','AL','MN','ON'],
                        'City': ['Toronto','Montreal','Vancouver','Calgary','Edmonton','Winnipeg','Windsor'],
                        'Sales': [13,6,16,8,4,3,1]})

In [131]: table = pd.pivot_table(df,values=['Sales'],index=['Province'],columns=['City'],aggfunc=np.sum,margins=True)

In [132]: table.stack('City')
```

```
Out[132]:

<table>
<thead>
<tr>
<th>Province</th>
<th>City</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Calgary</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Edmonton</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Vancouver</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>MN</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Winnipeg</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Calgary</td>
</tr>
<tr>
<td></td>
<td>Edmonton</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Montreal</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Toronto</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Vancouver</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Windsor</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Winnipeg</td>
<td>3</td>
</tr>
</tbody>
</table>

[20 rows x 1 columns]
```

Frequency table like plyr in R

```python
In [133]: grades = [48,99,75,80,42,80,72,68,36,78]

In [134]: df = pd.DataFrame( {'ID': ["%d" % r for r in range(10)],
                        'Gender': ['F', 'M', 'F', 'M', 'F', 'M', 'M', 'M', 'M', 'M'],
                        'Class': ['algebra', 'stats', 'bio', 'algebra', 'algebra', 'stats', 'stats', 'algebra', 'bio', 'bio'],
                        'Participated': ['yes','yes','yes','yes','no','yes','yes','yes','yes','yes'],
                        'Passed': ['yes' if x > 50 else 'no' for x in grades],
                        'Employed': [True,True,True,False,False,False,False,True,True,False],
                        'Grade': grades})

In [135]: df.groupby('ExamYear').agg({'Participated': lambda x: x.value_counts()['yes'],
                                              'Passed': lambda x: sum(x == 'yes'),
                                              'Employed': lambda x : sum(x),
                                              'Grade': lambda x : sum(x) / len(x)})
```
Out[135]:
<table>
<thead>
<tr>
<th>ExamYear</th>
<th>Grade</th>
<th>Employed</th>
<th>Participated</th>
<th>Passed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>74</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2008</td>
<td>68</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2009</td>
<td>60</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

7.5.4 Apply

Rolling Apply to Organize - Turning embedded lists into a multi-index frame

In[136]: df = pd.DataFrame(data={'A': [[2, 4, 8, 16], [100, 200], [10, 20, 30]], 'B': [['a', 'b', 'c'], ['jj', 'kk'], ['ccc']]}, index=['I', 'II', 'III'])

In[137]:
def SeriesFromSubList(aList):
 : return pd.Series(aList)
 :

In[138]: df_orgz = pd.concat(dict((ind, row.apply(SeriesFromSubList)) for ind, row in df.iterrows()))

Rolling Apply with a DataFrame returning a Series

Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned

In[139]: df = pd.DataFrame(data=np.random.randn(2000,2)/100000, index=pd.date_range('2001-01-01', periods=2000), columns=['A','B']); df

Out[139]:
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-01-01 -0.000056</td>
<td>-0.000059</td>
</tr>
<tr>
<td>2001-01-02 -0.000107</td>
<td>-0.000168</td>
</tr>
<tr>
<td>2001-01-03 0.000040</td>
<td>0.000061</td>
</tr>
<tr>
<td>2001-01-04 0.000039</td>
<td>0.000182</td>
</tr>
<tr>
<td>2001-01-05 0.000071</td>
<td>-0.000067</td>
</tr>
<tr>
<td>2001-01-06 0.000024</td>
<td>0.000031</td>
</tr>
<tr>
<td>2001-01-07 0.000012</td>
<td>-0.000021</td>
</tr>
<tr>
<td>... ...</td>
<td></td>
</tr>
<tr>
<td>2006-06-17 0.000129</td>
<td>0.000094</td>
</tr>
<tr>
<td>2006-06-18 0.000059</td>
<td>0.000216</td>
</tr>
<tr>
<td>2006-06-19 -0.000069</td>
<td>0.000283</td>
</tr>
<tr>
<td>2006-06-20 0.000089</td>
<td>0.000084</td>
</tr>
<tr>
<td>2006-06-21 0.000075</td>
<td>0.000041</td>
</tr>
<tr>
<td>2006-06-22 -0.000037</td>
<td>-0.000011</td>
</tr>
<tr>
<td>2006-06-23 -0.000070</td>
<td>-0.000048</td>
</tr>
</tbody>
</table>

[2000 rows x 2 columns]

In[140]:
def gm(aDF, Const):
 : v = (((aDF.A+aDF.B)+1).cumprod()-1)*Const
 : return (aDF.index[0], v.iloc[-1])
 :

In[141]: S = pd.Series(dict((gm(df.iloc[i:min(i+51, len(df)-1)], 5) for i in range(len(df)-50)))); S

Out[141]:
2001-01-01	-0.003108
2001-01-02	-0.001787
2001-01-03	0.000204
2001-01-04	-0.000166

7.5. Grouping
Rolling apply with a DataFrame returning a Scalar

Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)

In [142]: rng = pd.date_range(start='2014-01-01', periods=100)

In [143]: df = pd.DataFrame({‘Open’: np.random.randn(len(rng)),
......: ‘Close’: np.random.randn(len(rng)),
......: ‘Volume’: np.random.randint(100, 2000, len(rng))}, index=rng); df

Out[143]:
 Close Open Volume
2014-01-01 1.550590 0.458513 1371
2014-01-02 -0.818812 -0.508850 1433
2014-01-03 1.160619 0.257610 645
2014-01-04 0.081521 -1.773393 878
2014-01-05 1.083284 -0.560676 1143
2014-01-06 -0.518721 0.284174 1088
2014-01-07 0.140661 1.146889 1722
......
2014-04-04 0.458193 -0.669474 1768
2014-04-05 0.108502 -1.616315 836
2014-04-06 1.418082 -1.294906 694
2014-04-07 0.486530 1.171647 796
2014-04-08 0.181885 0.501639 265
2014-04-09 -0.707238 -0.361868 1293
2014-04-10 1.211432 1.564429 1088

[100 rows x 3 columns]

In [144]: def vwap(bars):

In [145]: window = 5

In [146]: s = pd.concat([pd.Series(vwap(df.iloc[i:i+window]), index=df.index[i+window]) for i in range(len(df)-window)]);

Out[146]:
 Close Open Volume
2014-01-06 0.55
2014-01-07 0.06
2014-01-08 0.32
2014-01-09 0.03
2014-01-10 0.08
......
2014-04-05 0.48
2014-04-06 0.54
2014-04-07 0.46
2014-04-08 0.45
2014-04-09 0.53
2014-04-10 0.15

Length: 95
7.6 Timeseries

Between times
Using indexer between time
Constructing a datetime range that excludes weekends and includes only certain times

Vectorized Lookup
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series.
How to rearrange a python pandas DataFrame?
Dealing with duplicates when reindexing a timeseries to a specified frequency
Calculate the first day of the month for each entry in a DatetimeIndex

```
In [147]: dates = pd.date_range('2000-01-01', periods=5)

In [148]: dates.to_period(freq='M').to_timestamp()
Out[148]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-01, ..., 2000-01-01]
Length: 5, Freq: None, Timezone: None
```

7.6.1 Resampling

The Resample docs.
TimeGrouping of values grouped across time
TimeGrouping #2
Using TimeGrouper and another grouping to create subgroups, then apply a custom function
Resampling with custom periods
Resample intraday frame without adding new days
Resample minute data
Resample with groupby

7.7 Merge

The Concat docs. The Join docs.
Append two dataframes with overlapping index (emulate R rbind)

```
In [149]: rng = pd.date_range('2000-01-01', periods=6)

In [150]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C'])
In [151]: df2 = df1.copy()

ignore_index is needed in pandas < v0.13, and depending on df construction
```
In [152]: df = df1.append(df2, ignore_index=True); df
Out[152]:
 A B C
0 -0.174202 -0.477257 0.239870
1 -0.654455 -1.411456 -1.778457
2 0.351578 0.307871 -0.286865
3 0.565398 -0.185821 0.937593
4 0.446473 0.566368 0.721476
5 1.710685 -0.667054 -0.651191
6 -0.174202 -0.477257 0.239870
7 -0.654455 -1.411456 -1.778457
8 0.351578 0.307871 -0.286865
9 0.565398 -0.185821 0.937593
10 0.446473 0.566368 0.721476
11 1.710685 -0.667054 -0.651191

Self Join of a DataFrame

In [153]: df = pd.DataFrame(data={'Area' : ['A'] * 5 + ['C'] * 2,
.....: 'Bins' : [110] * 2 + [160] * 3 + [40] * 2,
.....: 'Test_0' : [0, 1, 0, 1, 2, 0, 1],
.....: 'Data' : np.random.randn(7)});df
.....:
Out[153]:
 Area Bins Data Test_0
0 A 110 -0.399974 0
1 A 110 -1.519206 1
2 A 160 1.678487 0
3 A 160 0.005345 1
4 A 160 -0.534461 2
5 C 40 0.255077 0
6 C 40 1.093310 1

In [154]: df['Test_1'] = df['Test_0'] - 1
In [155]: pd.merge(df, df, left_on=['Bins', 'Area', 'Test_0'], right_on=['Bins', 'Area', 'Test_1'], suffixes=('_L', '_R'))
Out[155]:
 Area Bins Data_L Test_0_L Test_1_L Data_R Test_0_R Test_1_R
0 A 110 -0.399974 0 -1 -1.519206 1 0
1 A 160 1.678487 0 -1 0.005345 1 0
2 A 160 0.005345 1 -1 -0.534461 2 1
3 C 40 0.255077 0 -1 1.093310 1 0

How to set the index and join

KDB like asof join

Join with a criteria based on the values

7.8 Plotting

The Plotting docs.

Make Matplotlib look like R

Setting x-axis major and minor labels

Plotting multiple charts in an ipython notebook
Creating a multi-line plot
Plotting a heatmap
Annotate a time-series plot
Annotate a time-series plot #2
Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter

Boxplot for each quartile of a stratifying variable

In [156]: df = pd.DataFrame(
 : {u'stratifying_var': np.random.uniform(0, 100, 20),
 : u'price': np.random.normal(100, 5, 20)})

In [157]: df[u'quartiles'] = pd.qcut(
 : df[u'stratifying_var'],
 : 4,
 : labels=[u'0-25%', u'25-50%', u'50-75%', u'75-100%'])

In [158]: df.boxplot(column=u'price', by=u'quartiles')
Out[158]: <matplotlib.axes._subplots.AxesSubplot at 0xad3a8dcc>

7.9 Data In/Out

Performance comparison of SQL vs HDF5
7.9.1 CSV

The CSV docs

read_csv in action

appending to a csv

how to read in multiple files, appending to create a single dataframe

Reading a csv chunk-by-chunk

Reading only certain rows of a csv chunk-by-chunk

Reading the first few lines of a frame

Reading a file that is compressed but not by gzip/bz2 (the native compressed formats which read_csv understands). This example shows a WinZipped file, but is a general application of opening the file within a context manager and using that handle to read. See here

Inferring dtypes from a file

Dealing with bad lines

Dealing with bad lines II

Reading CSV with Unix timestamps and converting to local timezone

Write a multi-row index CSV without writing duplicates

Parsing date components in multi-columns is faster with a format

In [30]: i = pd.date_range(’20000101’, periods=10000)

In [31]: df = pd.DataFrame(dict(year = i.year, month = i.month, day = i.day))

In [32]: df.head()

Out[32]:
 day month year
0 1 1 2000
1 2 1 2000
2 3 1 2000
3 4 1 2000
4 5 1 2000

In [33]: %timeit pd.to_datetime(df.year*10000+df.month*100+df.day, format=’%Y%m%d’)
100 loops, best of 3: 7.08 ms per loop

simulate combining into a string, then parsing
In [34]: ds = df.apply(lambda x: ”%04d%02d%02d” % (x[’year’],x[’month’],x[’day’]), axis=1)

In [35]: ds.head()

Out[35]:
0 20000101
1 20000102
2 20000103
3 20000104
4 20000105

dtype: object

In [36]: %timeit pd.to_datetime(ds)
1 loops, best of 3: 488 ms per loop
7.9.2 SQL

The SQL docs
Reading from databases with SQL

7.9.3 Excel

The Excel docs
Reading from a filelike handle Reading HTML tables from a server that cannot handle the default request header

7.9.4 HDFStore

The HDFStores docs
Simple Queries with a Timestamp Index
Managing heterogeneous data using a linked multiple table hierarchy
Merging on-disk tables with millions of rows
De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data from csv file and creating a store by chunks, with date parsing as well. See here
Creating a store chunk-by-chunk from a csv file
Appending to a store, while creating a unique index
Large Data work flows
Reading in a sequence of files, then providing a global unique index to a store while appending
Groupby on a HDFStore with low group density
Groupby on a HDFStore with high group density
Hierarchical queries on a HDFStore
Counting with a HDFStore
Troubleshoot HDFStore exceptions
Setting min_itemsize with strings
Using ptrepack to create a completely-sorted-index on a store

Storing Attributes to a group node

In [159]: df = pd.DataFrame(np.random.randn(8,3))
In [160]: store = pd.HDFStore('test.h5')
In [161]: store.put('df',df)

you can store an arbitrary python object via pickle
In [162]: store.get_storer('df').attrs.my_attribute = dict(A = 10)

In [163]: store.get_storer('df').attrs.my_attribute
Out[163]: {'A': 10}
7.9.5 Binary Files

pandas readily accepts numpy record arrays, if you need to read in a binary file consisting of an array of C structs. For example, given this C program in a file called `main.c` compiled with `gcc main.c -std=gnu99` on a 64-bit machine,

```c
#include <stdio.h>
#include <stdint.h>

typedef struct _Data{
    int32_t count;
    double avg;
    float scale;
} Data;

int main(int argc, const char *argv[])
{
    size_t n = 10;
    Data d[n];

    for (int i = 0; i < n; ++i)
    {
        d[i].count = i;
        d[i].avg = i + 1.0;
        d[i].scale = (float) i + 2.0f;
    }

    FILE *file = fopen("binary.dat", "wb");
    fwrite(&d, sizeof(Data), n, file);
    fclose(file);

    return 0;
}
```

the following Python code will read the binary file `binary.dat` into a pandas DataFrame, where each element of the struct corresponds to a column in the frame:

```python
import numpy as np

names = ['count', 'avg', 'scale']
# note that the offsets are larger than the size of the type because of # struct padding
offsets = [0, 8, 16]
formats = ['i4', 'f8', 'f4']
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},
               align=True)
df = pd.DataFrame(np.fromfile('binary.dat', dt))
```

Note: The offsets of the structure elements may be different depending on the architecture of the machine on which the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not cross platform. We recommended either HDF5 or msgpack, both of which are supported by pandas’ IO facilities.

7.10 Computation

Numerical integration (sample-based) of a time series
7.11 Timedeltas

The Timedeltas docs.

Using timedeltas

In [164]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))

In [165]: s - s.max()
Out[165]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]

In [166]: s.max() - s
Out[166]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]

In [167]: s - datetime.datetime(2011,1,1,3,5)
Out[167]:
0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]

In [168]: s + datetime.timedelta(minutes=5)
Out[168]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

In [169]: datetime.datetime(2011,1,1,3,5) - s
Out[169]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]

In [170]: datetime.timedelta(minutes=5) + s
Out[170]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

Adding and subtracting deltas and dates

In [171]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])

In [172]: df = pd.DataFrame({'A': s, 'B': deltas}); df
Out[172]:
 A B
0 2012-01-01 0 days
1 2012-01-02 1 days
In [173]: df['New Dates'] = df['A'] + df['B'];

In [174]: df['Delta'] = df['A'] - df['New Dates']; df
Out[174]:
 A B New Dates Delta
0 2012-01-01 0 days 2012-01-01 0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days

In [175]: df.dtypes
Out[175]:
A datetime64[ns]
B timedelta64[ns]
New Dates datetime64[ns]
Delta timedelta64[ns]
dtype: object

Another example

Values can be set to NaT using np.nan, similar to datetime

In [176]: y = s - s.shift(); y
Out[176]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]

In [177]: y[1] = np.nan; y
Out[177]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]

7.12 Aliasing Axis Names

To globally provide aliases for axis names, one can define these 2 functions:

In [178]: def set_axis_alias(cls, axis, alias):
 ...: if axis not in cls._AXIS_NUMBERS:
 ...: raise Exception("invalid axis [\$s] for alias [\$s]" % (axis, alias))
 ...: cls._AXIS_ALIASES[alias] = axis
 ...

In [179]: def clear_axis_alias(cls, axis, alias):
 ...: if axis not in cls._AXIS_NUMBERS:
 ...: raise Exception("invalid axis [\$s] for alias [\$s]" % (axis, alias))
 ...: cls._AXIS_ALIASES.pop(alias,None)
 ...

In [180]: set_axis_alias(pd.DataFrame,'columns', 'myaxis2')

In [181]: df2 = pd.DataFrame(np.random.randn(3,2),columns=['c1','c2'],index=['i1','i2','i3'])
In [182]: df2.sum(axis='myaxis2')
Out[182]:
 i1 0.239786
 i2 0.259018
 i3 0.163470
 dtype: float64

In [183]: clear_axis_alias(pd.DataFrame,'columns', 'myaxis2')

7.13 Creating Example Data

To create a dataframe from every combination of some given values, like R’s `expand.grid()` function, we can create a dict where the keys are column names and the values are lists of the data values:

In [184]: def expand_grid(data_dict):
 ...: rows = itertools.product(*data_dict.values())
 ...: return pd.DataFrame.from_records(rows, columns=data_dict.keys())
 ...

In [185]: df = expand_grid(
 ...: {'height': [60, 70],
 ...: 'weight': [100, 140, 180],
 ...: 'sex': ['Male', 'Female']})
 ...

In [186]: df
Out[186]:
 sex weight height
 0 Male 100 60
 1 Male 100 70
 2 Male 140 60
 3 Male 140 70
 4 Male 180 60
 5 Male 180 70
 6 Female 100 60
 7 Female 100 70
 8 Female 140 60
 9 Female 140 70
 10 Female 180 60
 11 Female 180 70
INTRO TO DATA STRUCTURES

We’ll start with a quick, non-comprehensive overview of the fundamental data structures in pandas to get you started. The fundamental behavior about data types, indexing, and axis labeling / alignment apply across all of the objects. To get started, import numpy and load pandas into your namespace:

```python
In [1]: import numpy as np
# will use a lot in examples
In [2]: randn = np.random.randn
In [3]: from pandas import *
```

Here is a basic tenet to keep in mind: **data alignment is intrinsic**. The link between labels and data will not be broken unless done so explicitly by you.

We’ll give a brief intro to the data structures, then consider all of the broad categories of functionality and methods in separate sections.

When using pandas, we recommend the following import convention:

```python
import pandas as pd
```

8.1 Series

Warning: In 0.13.0 **Series** has internaly been refactored to no longer sub-class `ndarray` but instead subclass `NDFrame`, similarly to the rest of the pandas containers. This should be a transparent change with only very limited API implications (See the [Internal Refactoring](#))

Series is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the **index**. The basic method to create a Series is to call:

```python
>>> s = Series(data, index=index)
```

Here, **data** can be many different things:

- a Python dict
- an ndarray
- a scalar value (like 5)
The passed **index** is a list of axis labels. Thus, this separates into a few cases depending on what **data** is:

From ndarray

If **data** is an ndarray, **index** must be the same length as **data**. If no index is passed, one will be created having values [0, ..., len(data) - 1].

```
In [4]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [5]: s
Out[5]:
a -2.783
b 0.426
c -0.650
d 1.146
e -0.663
dtype: float64
```

```
In [6]: s.index
Out[6]: Index([u'a', u'b', u'c', u'd', u'e'], dtype='object')
```

```
In [7]: Series(randn(5))
Out[7]:
0 0.294
1 -0.405
2 1.167
3 0.842
4 0.540
dtype: float64
```

Note: Starting in v0.8.0, pandas supports non-unique index values. If an operation that does not support duplicate index values is attempted, an exception will be raised at that time. The reason for being lazy is nearly all performance-based (there are many instances in computations, like parts of GroupBy, where the index is not used).

From dict

If **data** is a dict, if **index** is passed the values in data corresponding to the labels in the index will be pulled out. Otherwise, an index will be constructed from the sorted keys of the dict, if possible.

```
In [8]: d = {'a' : 0., 'b' : 1., 'c' : 2.}
In [9]: Series(d)
Out[9]:
a 0
b 1
c 2
dtype: float64
```

```
In [10]: Series(d, index=['b', 'c', 'd', 'a'])
Out[10]:
b 1
c 2
d NaN
a 0
dtype: float64
```

Note: NaN (not a number) is the standard missing data marker used in pandas
From scalar value If data is a scalar value, an index must be provided. The value will be repeated to match the length of index

```python
In [11]: Series(5., index=['a', 'b', 'c', 'd', 'e'])
Out[11]:
a 5
b 5
c 5
d 5
e 5
dtype: float64
```

8.1.1 Series is ndarray-like

Series acts very similarly to an ndarray, and is a valid argument to most NumPy functions. However, things like slicing also slice the index.

```python
In [12]: s[0]
Out[12]: -2.7827595933769942

In [13]: s[:3]
Out[13]:
a -2.783
b 0.426
c -0.650
dtype: float64

In [14]: s[s > s.median()]
Out[14]:
b 0.426
d 1.146
dtype: float64

In [15]: s[[4, 3, 1]]
Out[15]:
e -0.663
d 1.146
b 0.426
dtype: float64

In [16]: np.exp(s)
Out[16]:
a 0.062
b 1.532
c 0.522
d 3.147
e 0.515
dtype: float64
```

We will address array-based indexing in a separate section.

8.1.2 Series is dict-like

A Series is like a fixed-size dict in that you can get and set values by index label:
In [17]: s['a']
Out[17]: -2.7827595933769942

In [18]: s['e'] = 12.

In [19]: s
Out[19]:
a -2.783
b 0.426
c -0.650
d 1.146
e 12.000
dtype: float64

In [20]: 'e' in s
Out[20]: True

In [21]: 'f' in s
Out[21]: False

If a label is not contained, an exception is raised:

```
>>> s['f']
KeyError: 'f'
```

Using the `get` method, a missing label will return None or specified default:

In [22]: s.get('f')

In [23]: s.get('f', np.nan)
Out[23]: nan

See also the section on attribute access.

8.1.3 Vectorized operations and label alignment with Series

When doing data analysis, as with raw NumPy arrays looping through Series value-by-value is usually not necessary. Series can be also be passed into most NumPy methods expecting an ndarray.

In [24]: s + s
Out[24]:
a -5.566
b 0.853
c -1.301
d 2.293
e 24.000
dtype: float64

In [25]: s * 2
Out[25]:
a -5.566
b 0.853
c -1.301
d 2.293
e 24.000
dtype: float64

In [26]: np.exp(s)
A key difference between Series and ndarray is that operations between Series automatically align the data based on label. Thus, you can write computations without giving consideration to whether the Series involved have the same labels.

In [27]: s[1:] + s[:-1]

Out[27]:
 a NaN
 b 0.853
 c -1.301
 d 2.293
 e NaN
dtype: float64

The result of an operation between unaligned Series will have the union of the indexes involved. If a label is not found in one Series or the other, the result will be marked as missing NaN. Being able to write code without doing any explicit data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated data alignment features of the pandas data structures set pandas apart from the majority of related tools for working with labeled data.

Note: In general, we chose to make the default result of operations between differently indexed objects yield the union of the indexes in order to avoid loss of information. Having an index label, though the data is missing, is typically important information as part of a computation. You of course have the option of dropping labels with missing data via the dropna function.

8.1.4 Name attribute

Series can also have a name attribute:

In [28]: s = Series(np.random.randn(5), name='something')

In [29]: s

Out[29]:
 0 0.541
 1 -1.175
 2 0.129
 3 0.043
 4 -0.429
Name: something, dtype: float64

In [30]: s.name

Out[30]: 'something'

The Series name will be assigned automatically in many cases, in particular when taking 1D slices of DataFrame as you will see below.
8.2 DataFrame

DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object. Like Series, DataFrame accepts many different kinds of input:

- Dict of 1D ndarrays, lists, dicts, or Series
- 2-D numpy.ndarray
- Structured or record ndarray
- A Series
- Another DataFrame

Along with the data, you can optionally pass `index` (row labels) and `columns` (column labels) arguments. If you pass an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict of Series plus a specific index will discard all data not matching up to the passed index.

If axis labels are not passed, they will be constructed from the input data based on common sense rules.

8.2.1 From dict of Series or dicts

The result `index` will be the union of the indexes of the various Series. If there are any nested dicts, these will be first converted to Series. If no columns are passed, the columns will be the sorted list of dict keys.

```
In [31]: d = {'one' : Series([1., 2., 3.], index=['a', 'b', 'c']),
   ....:     'two' : Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])
   ....: }

In [32]: df = DataFrame(d)

In [33]: df
Out[33]:
   one  two
   a   1   1
   b   2   2
   c   3   3
   d  NaN   4

In [34]: DataFrame(d, index=['d', 'b', 'a'])
Out[34]:
   one  two
   d  NaN   4
   b   2   2
   a   1   1

In [35]: DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
Out[35]:
    two  three
   d  NaN  NaN
   b  NaN  NaN
   a  NaN  NaN
```

The row and column labels can be accessed respectively by accessing the `index` and `columns` attributes:

Note: When a particular set of columns is passed along with a dict of data, the passed columns override the keys in the dict.
8.2.2 From dict of ndarrays / lists

The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays.
If no index is passed, the result will be range(n), where n is the array length.

In [38]: d = {'one': [1., 2., 3., 4.],
 ...: 'two': [4., 3., 2., 1.]}
 :

In [39]: DataFrame(d)
Out[39]:
 one two
 0 1 4
 1 2 3
 2 3 2
 3 4 1

In [40]: DataFrame(d, index=['a', 'b', 'c', 'd'])
Out[40]:
 one two
 a 1 4
 b 2 3
 c 3 2
 d 4 1

8.2.3 From structured or record array

This case is handled identically to a dict of arrays.

In [41]: data = np.zeros((2,),dtype=[('A', 'i4'),('B', 'f4'),('C', 'a10')])
In [42]: data[:] = [(1,2.,'Hello'),(2,3.,"World")]
In [43]: DataFrame(data)
Out[43]:
 A B C
 0 1 2 Hello
 1 2 3 World

In [44]: DataFrame(data, index=['first', 'second'])
Out[44]:
 A B C
first 1 2 Hello
second 2 3 World

In [45]: DataFrame(data, columns=['C', 'A', 'B'])
Out[45]:
 C A B
8.2.4 From a list of dicts

In [46]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]

In [47]: DataFrame(data2)
Out[47]:
 a b c
0 1 2 NaN
1 5 10 20

In [48]: DataFrame(data2, index=['first', 'second'])
Out[48]:
 a b c
first 1 2 NaN
second 5 10 20

In [49]: DataFrame(data2, columns=['a', 'b'])
Out[49]:
 a b
0 1 2
1 5 10

8.2.5 From a dict of tuples

You can automatically create a multi-indexed frame by passing a tuples dictionary

In [50]: DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
 ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
 ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
 ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})

Out[50]:
 a b
 A B 4 1 5 8 10
 C 3 2 6 7 NaN
 D NaN NaN NaN NaN 9

8.2.6 From a Series

The result will be a DataFrame with the same index as the input Series, and with one column whose name is the original name of the Series (only if no other column name provided).

Missing Data
Much more will be said on this topic in the Missing data section. To construct a DataFrame with missing data, use np.nan for those values which are missing. Alternatively, you may pass a numpy.MaskedArray as the data argument to the DataFrame constructor, and its masked entries will be considered missing.

8.2.7 Alternate Constructors

DataFrame.from_dict

DataFrame.from_dict takes a dict of dicts or a dict of array-like sequences and returns a DataFrame. It operates like the DataFrame constructor except for the orient parameter which is ‘columns’ by default, but which can be set to ‘index’ in order to use the dict keys as row labels. **DataFrame.from_records**

DataFrame.from_records takes a list of tuples or an ndarray with structured dtype. Works analogously to the normal DataFrame constructor, except that index maybe be a specific field of the structured dtype to use as the index. For example:

```
In [51]: data
Out[51]:
array([(1, 2.0, 'Hello'), (2, 3.0, 'World')],
      dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])
```

```
In [52]: DataFrame.from_records(data, index='C')
Out[52]:
     A  B
   C  Hello  1  2
       World  2  3
```

DataFrame.from_items

DataFrame.from_items works analogously to the form of the dict constructor that takes a sequence of (key, value) pairs, where the keys are column (or row, in the case of orient='index') names, and the value are the column values (or row values). This can be useful for constructing a DataFrame with the columns in a particular order without having to pass an explicit list of columns:

```
In [53]: DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])])
Out[53]:
   A  B
0  1  4
1  2  5
2  3  6
```

If you pass orient='index', the keys will be the row labels. But in this case you must also pass the desired column names:

```
In [54]: DataFrame.from_items([('A', [1, 2, 3]), ('B', [4, 5, 6])],
                          orient='index', columns=['one', 'two', 'three'])
```

8.2.8 Column selection, addition, deletion

You can treat a DataFrame semantically like a dict of like-indexed Series objects. Getting, setting, and deleting columns works with the same syntax as the analogous dict operations:
In [55]: df['one']
Out[55]:
a 1
b 2
c 3
d NaN
Name: one, dtype: float64

In [56]: df['three'] = df['one'] * df['two']

In [57]: df['flag'] = df['one'] > 2

In [58]: df
Out[58]:
 one two three flag
 a 1 1 1 False
 b 2 2 4 False
 c 3 3 9 True
 d NaN 4 NaN False

Columns can be deleted or popped like with a dict:

In [59]: del df['two']

In [60]: three = df.pop('three')

In [61]: df
Out[61]:
 one flag
 a 1 False
 b 2 False
 c 3 True
 d NaN False

When inserting a scalar value, it will naturally be propagated to fill the column:

In [62]: df['foo'] = 'bar'

In [63]: df
Out[63]:
 one flag foo
 a 1 False bar
 b 2 False bar
 c 3 True bar
 d NaN False bar

When inserting a Series that does not have the same index as the DataFrame, it will be conformed to the DataFrame’s index:

In [64]: df['one_trunc'] = df['one'][2]

In [65]: df
Out[65]:
 one flag foo one_trunc
 a 1 False bar 1
 b 2 False bar 2
 c 3 True bar NaN
 d NaN False bar NaN

You can insert raw ndarrays but their length must match the length of the DataFrame’s index.
By default, columns get inserted at the end. The `insert` function is available to insert at a particular location in the columns:

```
In [66]: df.insert(1, 'bar', df['one'])
```

```
In [67]: df
Out[67]:
      one  bar    flag  foo  one_trunc
     a     1     1  False    bar    1
     b     2     2  False  bar     2
     c     3     3   True  bar    NaN
     d  NaN  NaN  False  bar   NaN
```

8.2.9 Indexing / Selection

The basics of indexing are as follows:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Syntax</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select column</td>
<td><code>df[col]</code></td>
<td>Series</td>
</tr>
<tr>
<td>Select row by label</td>
<td><code>df.loc[label]</code></td>
<td>Series</td>
</tr>
<tr>
<td>Select row by integer location</td>
<td><code>df.iloc[loc]</code></td>
<td>Series</td>
</tr>
<tr>
<td>Slice rows</td>
<td><code>df[5:10]</code></td>
<td>DataFrame</td>
</tr>
<tr>
<td>Select rows by boolean vector</td>
<td><code>df[bool_vec]</code></td>
<td>DataFrame</td>
</tr>
</tbody>
</table>

Row selection, for example, returns a Series whose index is the columns of the DataFrame:

```
In [68]: df.loc['b']
Out[68]:
      one  bar    flag  foo  one_trunc
     a     1     1  False    bar    1
     b     2     2  False  bar     2
     c     3     3   True  bar    NaN
     d  NaN  NaN  False  bar   NaN
Name: b, dtype: object
```

```
In [69]: df.iloc[2]
Out[69]:
      one  bar    flag  foo  one_trunc
     a     1     1  False    bar    1
     b     2     2  False  bar     2
     c     3     3   True  bar    NaN
     d  NaN  NaN  False  bar   NaN
Name: c, dtype: object
```

For a more exhaustive treatment of more sophisticated label-based indexing and slicing, see the section on indexing. We will address the fundamentals of reindexing / conforming to new sets of labels in the section on reindexing.

8.2.10 Data alignment and arithmetic

Data alignment between DataFrame objects automatically align on **both the columns and the index** (row labels). Again, the resulting object will have the union of the column and row labels.

```
In [70]: df = DataFrame(randn(10, 4), columns=['A', 'B', 'C', 'D'])
```

```
In [71]: df2 = DataFrame(randn(7, 3), columns=['A', 'B', 'C'])
```
In [72]: df + df2
Out[72]:
 A B C D
0 -1.916 -0.986 -2.421 NaN
1 0.965 1.677 0.330 NaN
2 -1.662 2.197 -1.917 NaN
3 -0.189 0.765 -0.001 NaN
4 -1.076 0.397 -1.177 NaN
5 2.810 -0.179 -0.570 NaN
6 -1.227 0.196 0.531 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN

When doing an operation between DataFrame and Series, the default behavior is to align the Series index on the DataFrame columns, thus broadcasting row-wise. For example:

In [73]: df - df.iloc[0]
Out[73]:
 A B C D
0 0.000 0.000 0.000 0.000
1 2.386 1.358 1.223 -2.107
2 2.105 1.700 1.327 -0.689
3 1.874 2.718 2.382 -0.760
4 2.199 0.966 0.826 0.093
5 4.997 1.197 1.330 -0.285
6 1.263 0.578 1.071 -0.525
7 3.463 0.632 1.063 -0.443
8 2.680 3.163 1.298 -1.818
9 1.304 0.196 3.590 -0.867

In the special case of working with time series data, if the Series is a TimeSeries (which it will be automatically if the index contains datetime objects), and the DataFrame index also contains dates, the broadcasting will be column-wise:

In [74]: index = date_range('1/1/2000', periods=8)

In [75]: df = DataFrame(randn(8, 3), index=index, columns=list('ABC'))

In [76]: df
Out[76]:
 A B C
2000-01-01 0.063 -0.028 0.444
2000-01-02 -0.269 -1.578 1.850
2000-01-03 0.638 -0.557 -0.071
2000-01-04 -0.511 0.156 -1.076
2000-01-05 1.664 -0.438 -0.077
2000-01-06 0.029 0.179 1.740
2000-01-07 -0.729 0.898 -0.314
2000-01-08 -0.048 -0.876 0.169

In [77]: type(df['A'])
Out[77]: pandas.core.series.Series

In [78]: df - df['A']
Out[78]:
 A B C
2000-01-01 0 -0.091 0.381
2000-01-02 0 -1.309 2.119
2000-01-03 0 -1.195 -0.709
Warning:

```
    df - df['A']
```

is now deprecated and will be removed in a future release. The preferred way to replicate this behavior is

```
    df.sub(df['A'], axis=0)
```

For explicit control over the matching and broadcasting behavior, see the section on `flexible binary operations`.

Operations with scalars are just as you would expect:

In [79]: `df * 5 + 2`

Out [79]:

```
   A     B  C  
2000-01-01 2.314 1.858 4.218
2000-01-02 0.656 -5.888 11.251
2000-01-03 5.190 -0.783 1.644
2000-01-04 -0.557 2.781 -3.378
2000-01-05 10.318 -0.189 1.613
2000-01-06 2.146 2.895 10.700
2000-01-07 -1.645 -2.490 0.429
2000-01-08 1.760 -2.378 2.846
```

In [80]: `1 / df`

Out [80]:

```
   A     B  C  
2000-01-01 15.948 -35.193 2.255
2000-01-02 -3.721 -0.634 0.540
2000-01-03 1.567 -1.797 -14.039
2000-01-04 -1.955 6.398 -0.930
2000-01-05 0.601 -2.285 -12.936
2000-01-06 34.257 5.586 0.575
2000-01-07 -1.372 -1.114 -3.183
2000-01-08 -20.802 -1.142 5.913
```

In [81]: `df ** 4`

Out [81]:

```
   A    B     C  
2000-01-01 1.546e-05 6.519e-07 3.871e-02
2000-01-02 5.219e-03 6.195e+00 1.172e+01
2000-01-03 1.657e-01 9.598e-02 2.574e-05
2000-01-04 6.841e-02 5.966e-04 1.339e+00
2000-01-05 7.660e+00 3.671e-02 3.571e-05
2000-01-06 7.261e-07 1.027e-03 9.168e+00
2000-01-07 2.825e-01 6.503e-01 9.747e-03
2000-01-08 5.341e-06 5.878e-01 8.178e-04
```

Boolean operators work as well:

In [82]: `df1 = DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=bool)`
In [83]: df2 = DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] }, dtype=bool)

In [84]: df1 & df2
Out[84]:
 a b
0 False False
1 False True
2 True False

In [85]: df1 | df2
Out[85]:
 a b
0 True True
1 True True
2 True True

In [86]: df1 ^ df2
Out[86]:
 a b
0 True True
1 True False
2 False True

In [87]: -df1
Out[87]:
 a b
0 False True
1 True False
2 False False

8.2.11 Transposing

To transpose, access the T attribute (also the transpose function), similar to an ndarray:

only show the first 5 rows
In [88]: df[:5].T
Out[88]:
A 0.063 -0.269 0.638 -0.511 1.664
B -0.028 -1.578 -0.557 0.156 -0.438
C 0.444 1.850 -0.071 -1.076 -0.077

8.2.12 DataFrame interoperability with NumPy functions

Elementwise NumPy ufuncs (log, exp, sqrt, ...) and various other NumPy functions can be used with no issues on DataFrame, assuming the data within are numeric:

In [89]: np.exp(df)
Out[89]:
A 1.065 0.972 1.558
B 0.764 0.206 6.361
C 1.893 0.573 0.931
D 0.600 1.169 0.341
E 5.278 0.646 0.926
F 1.030 1.196 5.698
In [90]: np.asarray(df)
Out[90]:
array([[0.0627, -0.0284, 0.4436],
 [-0.2688, -1.5776, 1.8502],
 [0.6381, -0.5566, -0.0712],
 [-0.5114, 0.1563, -1.0756],
 [1.6636, -0.4377, -0.0773],
 [0.0292, 0.1790, 1.7401],
 [-0.7290, -0.8980, -0.3142],
 [-0.0481, -0.8756, 0.1691]])

The dot method on DataFrame implements matrix multiplication:

In [91]: df.T.dot(df)
Out[91]:
 A B C
A 4.047 -0.039 0.178
B -0.039 4.621 -2.581
C 0.178 -2.581 7.943

Similarly, the dot method on Series implements dot product:

In [92]: s1 = Series(np.arange(5,10))
In [93]: s1.dot(s1)
Out[93]: 255

DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics are quite different in places from a matrix.

8.2.13 Console display

Very large DataFrames will be truncated to display them in the console. You can also get a summary using `info()`. (Here I am reading a CSV version of the `baseball` dataset from the `plyr` R package):

In [94]: baseball = read_csv('data/baseball.csv')

In [95]: print(baseball)
 id player year stint ... hbp sh sf gidp
0 88641 womacto01 2006 2 ... 0 3 0 0
1 88643 schilcu01 2006 1 ... 0 0 0 0
..
98 89533 aloumo01 2007 1 ... 2 0 3 13
99 89534 alomasa02 2007 1 ... 0 0 0 0

[100 rows x 23 columns]

In [96]: baseball.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 100 entries, 0 to 99
Data columns (total 23 columns):
id 100 non-null int64
player 100 non-null object
year 100 non-null int64
stint 100 non-null int64
However, using `to_string` will return a string representation of the DataFrame in tabular form, though it won’t always fit the console width:

```python
In [97]: print(baseball.iloc[-20:, :12].to_string())
```

```
id    player    year    stint  team  lg  g  ab  r  h  X2b  X3b
80    89474     finlest01  2007  1    COL  NL  43  94  9  17  3   0
81    89480     embrea101  2007  1    OAK  AL  4  0  0  0  0   0
82    89481     edmonj101  2007  1    SLN  NL  117 365 39  92  15  2
83    89482     easleda01  2007  1    NYN  NL  76 193 24  54  6   0
84    89489     delgaca01  2007  1    NYN  NL  139 538 71 139 30  0
85    89493     cormirh01  2007  1    CIN  NL  6  0  0  0  0   0
86    89494     coninje01  2007  2    NYN  NL  21 41 2  8  2   0
87    89495     coninje01  2007  1    CIN  NL  80 215 23  57  11  1
88    89497     clemero02  2007  1    NYA  AL  2  2 0  1  0   0
89    89498     claytro01  2007  2    BOS  AL  8  6 1  0  0   0
90    89499     claytro01  2007  1    TOR  AL  69 189 23  48  14  0
91    89501     cirilje01  2007  2    ARI  NL  28 40 6  8  4   0
92    89502     cirilje01  2007  1    MIN  AL  50 153 18  40  9  2
93    89521     bondsba01  2007  1    SFN  NL  126 340 75  94 14  0
94    89523     biggicr01  2007  1    HOU  NL  141 517 68 130 31  3
95    89525     benitar01  2007  2    FLO  NL  34  0  0  0  0   0
96    89526     benitar01  2007  1    SFN  NL  19  0  0  0  0   0
97    89530     ausmubr01  2007  1    HOU  NL  117 349 38  82 16  3
98    89533     aloumo01  2007  1    NYN  NL  87 328 51 112 19  1
99    89534     alomasa02  2007  1    NYN  NL  8  22 1  3  1  0
```

New since 0.10.0, wide DataFrames will now be printed across multiple rows by default:

```python
In [98]: DataFrame(randn(3, 12))
```

```
Out[98]:
           0          1          2          3          4          5          6
0  1.225021  -0.528620  0.448676  0.619107  -1.199110  -0.949097  2.169523
1  -1.753617  0.992384  -0.505601  -0.599848  0.133585  0.008836  -1.767710
2  -0.461585  -1.321106  1.745476  1.445100  0.991037  -0.860733  -0.870661
           7          8          9          10          11
0  0.302230  0.919516  0.657436  0.262574  -0.804798
```
1 0.700112 -0.020773 -0.302481 0.347869 0.179123
2 -0.117845 -0.046266 2.095649 -0.524324 -0.610555

You can change how much to print on a single row by setting the `display.width` option:

In [99]: set_option('display.width', 40) # default is 80

In [100]: DataFrame(randn(3, 12))
Out[100]:
 0 1 2 3 4 5
0 -1.280951 1.472585 -1.001914 -0.51272 1.367586
1 0.130529 -1.603771 -0.128830 -0.515272
2 -1.084566 -0.515272 1.367586

 6 7 8
0 -0.291893 2.029038 -1.117195
1 -1.083341 -0.357234 -0.818199
2 0.963500 0.224105 -0.020051

4 5 6 7 8
0 1.044770 0.050668 -0.013289
1 -1.869301 -0.232977 -0.139801
2 0.963500 0.224105 -0.020051

9 10 11
0 1.598577 -0.397325 0.151653
1 -0.886885 1.238885 -1.639274
2 -0.486856 -0.545888 -0.927076

You can also disable this feature via the `expand_frame_repr` option. This will print the table in one block.

8.2.14 DataFrame column attribute access and IPython completion

If a DataFrame column label is a valid Python variable name, the column can be accessed like attributes:

In [101]: df = DataFrame({'foo1' : np.random.randn(5), 'foo2' : np.random.randn(5)})

In [102]: df
Out[102]:
 foo1 foo2
0 0.909160 1.360298
1 -0.667763 -1.603624
2 -0.101656 -1.648929
3 1.189682 0.145121
4 -0.090648 -2.536359

In [103]: df.foo1
Out[103]:
 0 1 2 3 4
Name: foo1, dtype: float64

The columns are also connected to the IPython completion mechanism so they can be tab-completed:
8.3 Panel

Panel is a somewhat less-used, but still important container for 3-dimensional data. The term panel data is derived from econometrics and is partially responsible for the name pandas: pan(el)-da(ta)-s. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data. However, for the strict purposes of slicing and dicing a collection of DataFrame objects, you may find the axis names slightly arbitrary:

- **items**: axis 0, each item corresponds to a DataFrame contained inside
- **major_axis**: axis 1, it is the index (rows) of each of the DataFrames
- **minor_axis**: axis 2, it is the columns of each of the DataFrames

Construction of Panels works about like you would expect:

8.3.1 From 3D ndarray with optional axis labels

```python
In [104]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
.....:     major_axis=date_range('1/1/2000', periods=5),
.....:     minor_axis=['A', 'B', 'C', 'D'])
.....:
In [105]: wp
Out[105]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
```

8.3.2 From dict of DataFrame objects

```python
In [106]: data = {'Item1' : DataFrame(randn(4, 3)),
.....:     'Item2' : DataFrame(randn(4, 2))}
.....:
In [107]: Panel(data)
Out[107]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2
```

Note that the values in the dict need only be **convertible to DataFrame**. Thus, they can be any of the other valid inputs to DataFrame as per above.

One helpful factory method is Panel.from_dict, which takes a dictionary of DataFrames as above, and the following named parameters:
Parameter Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersect</td>
<td>False</td>
<td>drops elements whose indices do not align</td>
</tr>
<tr>
<td>orient</td>
<td>items</td>
<td>use minor to use DataFrames’ columns as panel items</td>
</tr>
</tbody>
</table>

For example, compare to the construction above:

```python
In [108]: Panel.from_dict(data, orient='minor')
Out[108]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: 0 to 2
Major_axis axis: 0 to 3
Minor_axis axis: Item1 to Item2
```

Orient is especially useful for mixed-type DataFrames. If you pass a dict of DataFrame objects with mixed-type columns, all of the data will get upcasted to `dtype=object` unless you pass `orient='minor'`:

```python
In [109]: df = DataFrame({'a': ['foo', 'bar', 'baz'],
                          'b': np.random.randn(3)})
.....:
.....:
In [110]: df
Out[110]:
a    b
0   foo -1.264356
1   bar -0.497629
2   baz  1.789719
```

```python
In [111]: data = {'item1': df, 'item2': df}
In [112]: panel = Panel.from_dict(data, orient='minor')
In [113]: panel['a']
Out[113]:
       item1  item2
0     foo     foo
1     bar     bar
2     baz     baz
```

```python
In [114]: panel['b']
Out[114]:
       item1  item2
0  -1.264356 -1.264356
1  -0.497629 -0.497629
2   1.789719  1.789719
```

```python
In [115]: panel['b'].dtypes
Out[115]:
item1  float64
item2  float64
dtype: object
```

Note: Unfortunately Panel, being less commonly used than Series and DataFrame, has been slightly neglected feature-wise. A number of methods and options available in DataFrame are not available in Panel. This will get worked on, of course, in future releases. And faster if you join me in working on the codebase.
8.3.3 From DataFrame using `to_panel` method

This method was introduced in v0.7 to replace `LongPanel.to_long`, and converts a DataFrame with a two-level index to a Panel.

In [116]: midx = MultiIndex(levels=[['one', 'two'], ['x','y']], labels=[[1,1,0,0],[1,0,1,0]])

In [117]: df = DataFrame({'A' : [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=midx)

In [118]: df.to_panel()
Out[118]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: A to B
Major_axis axis: one to two
Minor_axis axis: x to y

8.3.4 Item selection / addition / deletion

Similar to DataFrame functioning as a dict of Series, Panel is like a dict of DataFrames:

In [119]: wp['Item1']
Out[119]:
 A B C D
2000-01-01 0.835993 -0.621868 -0.173710 -0.174326
2000-01-02 -0.354356 2.090183 -0.736019 -1.250412
2000-01-03 -0.581326 -0.244477 0.917119 0.611695
2000-01-04 1.576078 -0.528562 -0.704643 -0.481453
2000-01-05 1.085093 -1.229749 2.295679 -1.016910

In [120]: wp['Item3'] = wp['Item1'] / wp['Item2']

The API for insertion and deletion is the same as for DataFrame. And as with DataFrame, if the item is a valid python identifier, you can access it as an attribute and tab-complete it in IPython.

8.3.5 Transposing

A Panel can be rearranged using its `transpose` method (which does not make a copy by default unless the data are heterogeneous):

In [121]: wp.transpose(2, 0, 1)
Out[121]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 5 (minor_axis)
Items axis: A to D
Major_axis axis: Item1 to Item3
Minor_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00

8.3.6 Indexing / Selection

<table>
<thead>
<tr>
<th>Operation</th>
<th>Syntax</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select item</td>
<td>wp[item]</td>
<td>DataFrame</td>
</tr>
<tr>
<td>Get slice at major_axis label</td>
<td>wp.major_xs(val)</td>
<td>DataFrame</td>
</tr>
<tr>
<td>Get slice at minor_axis label</td>
<td>wp.minor_xs(val)</td>
<td>DataFrame</td>
</tr>
</tbody>
</table>
For example, using the earlier example data, we could do:

```python
In [122]: wp['Item1']
Out[122]:
          A         B         C         D
2000-01-01  0.835993 -0.621868 -0.173710 -0.174326
2000-01-02 -0.354356  2.090183 -0.736019 -1.250412
2000-01-03 -0.581326 -0.244477  0.917119  0.611695
2000-01-04 -1.576078 -0.528562 -0.704643 -0.481453
2000-01-05  1.085093 -1.229749  2.295679 -1.016910
```

```python
In [123]: wp.major_xs(wp.major_axis[2])
Out[123]:
         Item1     Item2     Item3
A -0.581326 -1.271582  0.457167
B -0.244477 -0.861256  0.283861
C  0.917119 -0.597879 -1.533955
D  0.611695 -0.118700 -5.153265
```

```python
In [124]: wp.minor_axis
Out[124]: Index(['u'A', 'u'B', 'u'C', 'u'D'], dtype='object')
```

```python
In [125]: wp.minor_xs('C')
Out[125]:
         Item1     Item2     Item3
2000-01-01 -0.173710  2.381645 -0.072937
2000-01-02 -0.736019 -2.413161  0.305002
2000-01-03  0.917119 -0.597879 -1.533955
2000-01-04 -0.704643 -1.536019  0.458746
2000-01-05  2.295679  0.181524 12.646732
```

8.3.7 Squeezing

Another way to change the dimensionality of an object is to **squeeze** a 1-len object, similar to `wp['Item1']`

```python
In [126]: wp.reindex(items=['Item1']).squeeze()
Out[126]:
          A         B         C         D
2000-01-01  0.835993 -0.621868 -0.173710 -0.174326
2000-01-02 -0.354356  2.090183 -0.736019 -1.250412
2000-01-03 -0.581326 -0.244477  0.917119  0.611695
2000-01-04 -1.576078 -0.528562 -0.704643 -0.481453
2000-01-05  1.085093 -1.229749  2.295679 -1.016910
```

```python
In [127]: wp.reindex(items=['Item1'], minor=['B']).squeeze()
Out[127]:
Date       Item1
2000-01-01  -0.621868
2000-01-02   2.090183
2000-01-03  -0.244477
2000-01-04  -0.528562
2000-01-05  -1.229749
Freq: D, Name: B, dtype: float64
```

8.3. Panel

257
8.3.8 Conversion to DataFrame

A Panel can be represented in 2D form as a hierarchically indexed DataFrame. See the section hierarchical indexing for more on this. To convert a Panel to a DataFrame, use the to_frame method:

```python
In [128]: panel = Panel(np.random.randn(3, 5, 4), items=['one', 'two', 'three'],
                 major_axis=date_range('1/1/2000', periods=5),
                 minor_axis=['a', 'b', 'c', 'd'])
```

```python
In [129]: panel.to_frame()
```

```
Out[129]:
          one  two  three
    major minor
   2000-01-01 a  0.445900 -1.286198 -1.023189
          b -0.574496 -0.407154  0.591682
          c  0.872979  0.068084 -0.008919
          d  0.297255 -2.157051 -0.415572
   2000-01-02 a -1.022617 -0.443982 -0.772683
          b  1.091870 -0.881639 -0.516197
          c  1.831444  0.851834  0.626655
          d  1.271808 -1.352515  0.269623
   2000-01-03 a -0.472876  0.228761  1.709250
          b -0.279340  0.416858 -0.830728
          c  0.495966  0.301709 -0.290244
          d  0.367858  0.569010 -1.588782
   2000-01-04 a -1.530917 -0.047619  0.639406
          b -0.285890  0.413370  1.055533
          c  0.943062  0.573056 -0.260898
          d  1.361752 -0.154419 -0.289725
   2000-01-05 a  0.210373  0.987044  0.279621
          b -1.945608  0.063191  0.454423
          c  2.532409  0.439086 -0.065750
          d  0.373819  1.657475  1.465709
```

8.4 Panel4D (Experimental)

Panel4D is a 4-Dimensional named container very much like a Panel, but having 4 named dimensions. It is intended as a test bed for more N-Dimensional named containers.

- **labels**: axis 0, each item corresponds to a Panel contained inside
- **items**: axis 1, each item corresponds to a DataFrame contained inside
- **major_axis**: axis 2, it is the index (rows) of each of the DataFrames
- **minor_axis**: axis 3, it is the columns of each of the DataFrames

Panel4D is a sub-class of Panel, so most methods that work on Panels are applicable to Panel4D. The following methods are disabled:

- `join`, `to_frame`, `to_excel`, `to_sparse`, `groupby`

Construction of Panel4D works in a very similar manner to a Panel.
8.4.1 From 4D ndarray with optional axis labels

```python
In [130]: p4d = Panel4D(randn(2, 2, 5, 4),
       labels=[‘Label1’, ‘Label2’],
       items=[‘Item1’, ‘Item2’],
       major_axis=date_range(‘1/1/2000’, periods=5),
```

```python
In [131]: p4d
Out[131]:
<class ’pandas.core.panelnd.Panel4D’>
Dimensions: 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
```

8.4.2 From dict of Panel objects

```python
In [132]: data = {‘Label1’ : Panel({‘Item1’ : DataFrame(randn(4, 3))}),
       ‘Label2’ : Panel({‘Item2’ : DataFrame(randn(4, 2))})}
```

```python
In [133]: Panel4D(data)
Out[133]:
<class ’pandas.core.panelnd.Panel4D’>
Dimensions: 2 (labels) x 2 (items) x 4 (major_axis) x 3 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2
```

Note that the values in the dict need only be convertible to Panels. Thus, they can be any of the other valid inputs to Panel as per above.

8.4.3 Slicing

Slicing works in a similar manner to a Panel. [] slices the first dimension. .ix allows you to slice arbitrarily and get back lower dimensional objects

```python
In [134]: p4d[‘Label1’]
Out[134]:
<class ’pandas.core.panel.Panel’>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
```

4D -> Panel

```python
In [135]: p4d.ix[::,:,’A’]
Out[135]:
<class ’pandas.core.panel.Panel’>
Dimensions: 2 (items) x 2 (major_axis) x 5 (minor_axis)
Items axis: Label1 to Label2
```
8.4.4 Transposing

A Panel4D can be rearranged using its transpose method (which does not make a copy by default unless the data are heterogeneous):

```
In [138]: p4d.transpose(3, 2, 1, 0)
Out[138]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 4 (labels) x 5 (items) x 2 (major_axis) x 2 (minor_axis)
Labels axis: A to D
Items axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Major_axis axis: Item1 to Item2
Minor_axis axis: Label1 to Label2
```

8.5 PanelND (Experimental)

PanelND is a module with a set of factory functions to enable a user to construct N-dimensional named containers like Panel4D, with a custom set of axis labels. Thus a domain-specific container can easily be created.

The following creates a Panel5D. A new panel type object must be sliceable into a lower dimensional object. Here we slice to a Panel4D.

```
In [139]: from pandas.core import panelnd
In [140]: Panel5D = panelnd.create_nd_panel_factory(
    klass_name = 'Panel5D',
    orders = [ 'cool', 'labels', 'items', 'major_axis', 'minor_axis' ],
    slices = { 'labels' : 'labels', 'items' : 'items',
               'major_axis' : 'major_axis', 'minor_axis' : 'minor_axis' },
    slicer = Panel4D,
    aliases = { 'major' : 'major_axis', 'minor' : 'minor_axis' },
    stat_axis = 2)
```

```
In [141]: p5d = Panel5D(dict(C1 = p4d))
```
In [142]: p5d
Out[142]:
<class 'pandas.core.panelnd.Panel5D'>
Dimensions: 1 (cool) x 2 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Cool axis: C1 to C1
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

print a slice of our 5D
In [143]: p5d.ix['C1',:,:,0:3,:]
Out[143]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 2 (labels) x 2 (items) x 3 (major_axis) x 4 (minor_axis)
Labels axis: Label1 to Label2
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D

transpose it
In [144]: p5d.transpose(1,2,3,4,0)
Out[144]:
<class 'pandas.core.panelnd.Panel5D'>
Dimensions: 2 (cool) x 2 (labels) x 5 (items) x 4 (major_axis) x 1 (minor_axis)
Cool axis: Label1 to Label2
Labels axis: Item1 to Item2
Items axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Major_axis axis: A to D
Minor_axis axis: C1 to C1

look at the shape & dim
In [145]: p5d.shape
Out[145]: (1, 2, 2, 5, 4)

In [146]: p5d.ndim
Out[146]: 5
Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some of the objects used in the examples from the previous section:

In [1]: index = date_range('1/1/2000', periods=8)

In [2]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [3]: df = DataFrame(randn(8, 3), index=index, columns=['A', 'B', 'C'])

In [4]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
 major_axis=date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])

9.1 Head and Tail

To view a small sample of a Series or DataFrame object, use the head and tail methods. The default number of elements to display is five, but you may pass a custom number.

In [5]: long_series = Series(randn(1000))

In [6]: long_series.head()

Out[6]:
0 -0.305384
1 -0.479195
2 0.095031
3 -0.270099
4 -0.707140
dtype: float64

In [7]: long_series.tail(3)

Out[7]:
997 0.588446
998 0.026465
999 -1.728222
dtype: float64
9.2 Attributes and the raw ndarray(s)

pandas objects have a number of attributes enabling you to access the metadata

- **shape**: gives the axis dimensions of the object, consistent with ndarray

- Axis labels
 - **Series**: index (only axis)
 - **DataFrame**: index (rows) and columns
 - **Panel**: items, major_axis, and minor_axis

Note, these attributes can be safely assigned to!

```python
In [8]: df[:2]
Out[8]:
       A         B         C
2000-01-01 0.187483 -1.933946 0.377312
2000-01-02 0.734122  2.141616 -0.011225
```

```python
In [9]: df.columns = [x.lower() for x in df.columns]
In [10]: df
Out[10]:
     a         b         c
2000-01-01 0.187483 -1.933946 0.377312
2000-01-02 0.734122  2.141616 -0.011225
2000-01-03 0.048869 -1.360687 -0.479010
2000-01-04 -0.859661 -0.231595 -0.527750
2000-01-05 -1.296337  0.150680  0.123836
2000-01-06  0.571764  1.555563 -0.823761
2000-01-07  0.535420 -1.032853  1.469725
2000-01-08  1.304124  1.449735  0.203109
```

To get the actual data inside a data structure, one need only access the `values` property:

```python
In [11]: s.values
Out[11]: array([ 0.1122,  0.8717, -0.8161, -0.7849,  1.0307])
```

```python
In [12]: df.values
Out[12]: array([[ 0.1875, -1.9339,  0.3773],
                 [ 0.7341,  2.1416, -0.0112],
                 [ 0.0489, -1.3607, -0.4790],
                 [-1.2963,  0.1507,  0.1238],
                 [ 0.5718,  1.5556, -0.8238],
                 [ 0.5354, -1.0329,  1.4697],
                 [ 1.3041,  1.4497,  0.2031]])
```

```python
In [13]: wp.values
Out[13]: array([[-1.032 ,  0.9698, -0.9627,  1.3821],
                [-0.9388,  0.6691, -0.4336, -0.2736],
                [ 0.6804, -0.3084, -0.2761, -1.8212],
                [-1.9936, -1.9274, -2.0279,  1.625 ],
                [ 0.5511,  3.0593,  0.4553, -0.0307],
                [ 0.9357,  1.0612, -2.1079,  0.1999],
```

Chapter 9. Essential Basic Functionality
If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame’s columns are not all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to.

Note: When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and integers, the resulting array will be of float dtype.

9.3 Accelerated operations

Pandas has support for accelerating certain types of binary numerical and boolean operations using the numexpr library (starting in 0.11.0) and the bottleneck libraries.

These libraries are especially useful when dealing with large data sets, and provide large speedups. numexpr uses smart chunking, caching, and multiple cores. bottleneck is a set of specialized cython routines that are especially fast when dealing with arrays that have nans.

Here is a sample (using 100 column x 100,000 row DataFrames):

<table>
<thead>
<tr>
<th>Operation</th>
<th>0.11.0 (ms)</th>
<th>Prior Version (ms)</th>
<th>Ratio to Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>df1 > df2</td>
<td>13.32</td>
<td>125.35</td>
<td>0.1063</td>
</tr>
<tr>
<td>df1 * df2</td>
<td>21.71</td>
<td>36.63</td>
<td>0.5928</td>
</tr>
<tr>
<td>df1 + df2</td>
<td>22.04</td>
<td>36.50</td>
<td>0.6039</td>
</tr>
</tbody>
</table>

You are highly encouraged to install both libraries. See the section Recommended Dependencies for more installation info.

9.4 Flexible binary operations

With binary operations between pandas data structures, there are two key points of interest:

- Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects.
- Missing data in computations

We will demonstrate how to manage these issues independently, though they can be handled simultaneously.

9.4.1 Matching / broadcasting behavior

DataFrame has the methods add, sub, mul, div and related functions radd, rsub, ... for carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions, you can use to either match on the index or columns via the axis keyword:

```
In [14]: df = DataFrame({'one' : Series(randn(3), index=['a', 'b', 'c']),
                    'two' : Series(randn(4), index=['a', 'b', 'c', 'd']),
                    'three': Series(randn(3), index=['b', 'c', 'd']))
```
In [15]: df
Out[15]:
 one three two
a -0.626544 NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d NaN 1.124472 -1.101558

In [16]: row = df.ix[1]

In [17]: column = df['two']

In [18]: df.sub(row, axis='columns')
Out[18]:
 one three two
a -0.487650 NaN -1.487837
b 0.000000 0.000000 0.000000
c 0.150512 0.639504 -1.585038
d NaN 1.301762 -2.237808

In [19]: df.sub(row, axis=1)
Out[19]:
 one three two
a -0.487650 NaN -1.487837
b 0.000000 0.000000 0.000000
c 0.150512 0.639504 -1.585038
d NaN 1.301762 -2.237808

In [20]: df.sub(column, axis='index')
Out[20]:
 one three two
a -0.274957 NaN 0.000000
b -1.275144 -1.313539 0.000000
c 0.460406 0.911003 0.000000
d NaN 2.226031 0.000000

In [21]: df.sub(column, axis=0)
Out[21]:
 one three two
a -0.274957 NaN 0.000000
b -1.275144 -1.313539 0.000000
c 0.460406 0.911003 0.000000
d NaN 2.226031 0.000000

Furthermore you can align a level of a multi-indexed DataFrame with a Series.

In [22]: dfmi = df.copy()

In [23]: dfmi.index = MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')],
 names=['first','second'])

In [24]: dfmi.sub(column, axis=0, level='second')
Out[24]:
 one three two
first second
 l a -0.274957 NaN 0.000000
 b -1.275144 -1.313539 0.000000
 c 0.460406 0.911003 0.000000
With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps confusingly?) give you the option to specify the broadcast axis. For example, suppose we wished to demean the data over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis:

```
In [25]: major_mean = wp.mean(axis='major')
In [26]: major_mean
Out[26]:
   Item1     Item2
A  -0.546569 -0.260774
B   0.492478  0.147993
C  -0.649010 -0.532794
D   0.176307  0.623812
```

```
In [27]: wp.sub(major_mean, axis='major')
Out[27]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
```

And similarly for axis="items" and axis="minor".

Note: I could be convinced to make the axis argument in the DataFrame methods match the broadcasting behavior of Panel. Though it would require a transition period so users can change their code...

9.4.2 Missing data / operations with fill values

In Series and DataFrame (though not yet in Panel), the arithmetic functions have the option of inputting a fill_value, namely a value to substitute when at most one of the values at a location are missing. For example, when adding two DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the result will be NaN (you can later replace NaN with some other value using fillna if you wish).

```
In [28]: df
Out[28]:
   one   three  two
  a -0.626544 NaN -0.351587
  b -0.138894 -0.177289  1.136249
  c  0.011617  0.462215 -0.448789
  d  NaN  1.124472 -1.101558
```

```
In [29]: df2
Out[29]:
   one   three  two
  a -0.626544  1.000000 -0.351587
  b -0.138894 -0.177289  1.136249
  c  0.011617  0.462215 -0.448789
  d  NaN  1.124472 -1.101558
```

```
In [30]: df + df2
Out[30]:
   one    three   two
  a -1.253088 NaN -0.703174
```

9.4. Flexible binary operations
In [31]: df.add(df2, fill_value=0)
Out[31]:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>three</td>
<td>two</td>
</tr>
<tr>
<td>a</td>
<td>-1.253088</td>
<td>1.000000</td>
</tr>
<tr>
<td>b</td>
<td>-0.277789</td>
<td>-0.354579</td>
</tr>
<tr>
<td>c</td>
<td>0.023235</td>
<td>0.924429</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>2.248945</td>
</tr>
</tbody>
</table>

9.4.3 Flexible Comparisons

Starting in v0.8, pandas introduced binary comparison methods eq, ne, lt, gt, le, and ge to Series and DataFrame whose behavior is analogous to the binary arithmetic operations described above:

In [32]: df.gt(df2)
Out[32]:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>three</td>
<td>two</td>
</tr>
<tr>
<td>a</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>b</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>c</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>d</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

In [33]: df2.ne(df)
Out[33]:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>three</td>
<td>two</td>
</tr>
<tr>
<td>a</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>b</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>c</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>d</td>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

These operations produce a pandas object the same type as the left-hand-side input that if of dtype bool. These boolean objects can be used in indexing operations, see here

9.4.4 Boolean Reductions

You can apply the reductions: empty, any(), all(), and bool() to provide a way to summarize a boolean result.

In [34]: (df>0).all()
Out[34]:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>three</td>
<td>False</td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>False</td>
<td></td>
</tr>
</tbody>
</table>
dtype: bool

In [35]: (df>0).any()
Out[35]:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>three</td>
<td>True</td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>True</td>
<td></td>
</tr>
</tbody>
</table>
dtype: bool

You can reduce to a final boolean value.
In [36]: (df>0).any().any()
Out[36]: True

You can test if a pandas object is empty, via the empty property.

In [37]: df.empty
Out[37]: False

In [38]: DataFrame(columns=list('ABC')).empty
Out[38]: True

To evaluate single-element pandas objects in a boolean context, use the method .bool():

In [39]: Series([True]).bool()
Out[39]: True

In [40]: Series([False]).bool()
Out[40]: False

In [41]: DataFrame([[True]]).bool()
Out[41]: True

In [42]: DataFrame([[False]]).bool()
Out[42]: False

Warning: You might be tempted to do the following:

```
>>> if df:
...     ...
```

Or

```
>>> df and df2
```

These both will raise as you are trying to compare multiple values.

```
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

See *gotchas* for a more detailed discussion.

9.4.5 Comparing if objects are equivalent

Often you may find there is more than one way to compute the same result. As a simple example, consider \(df+df\) and \(df*2\). To test that these two computations produce the same result, given the tools shown above, you might imagine using \((df+df == df*2).all()\). But in fact, this expression is False:

In [43]: df+df == df*2
Out[43]:
 one three two
 a True False True
 b True True True
 c True True True
 d False True True

In [44]: (df+df == df*2).all()
Out[44]:
 one False
Notice that the boolean DataFrame `df+df == df*2` contains some False values! That is because NaNs do not compare as equals:

```
In [45]: np.nan == np.nan
Out[45]: False
```

So, as of v0.13.1, NDFrames (such as Series, DataFrames, and Panels) have an `equals` method for testing equality, with NaNs in corresponding locations treated as equal.

```
In [46]: (df+df).equals(df*2)
Out[46]: True
```

Note that the Series or DataFrame index needs to be in the same order for equality to be True:

```
In [47]: df1 = DataFrame({'col': ['foo', 0, np.nan]})
```

```
In [48]: df2 = DataFrame({'col': [np.nan, 0, 'foo']}, index=[2,1,0])
```

```
In [49]: df1.equals(df2)
Out[49]: False
```

```
In [50]: df1.equals(df2.sort())
Out[50]: True
```

9.4.6 Combining overlapping data sets

A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the other. An example would be two data series representing a particular economic indicator where one is considered to be of “higher quality”. However, the lower quality series might extend further back in history or have more complete data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation is `combine_first`, which we illustrate:

```
In [51]: df1 = DataFrame({'A' : [1., np.nan, 3., 5., np.nan],
   ....:     'B' : [np.nan, 2., 3., np.nan, 6.]}),
```

```
In [52]: df2 = DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.],
   ....:     'B' : [np.nan, np.nan, 3., 4., 6., 8.]}),
```

```
In [53]: df1
Out[53]:
   A   B
0  1  NaN
1 NaN  2
2  3  3
3  5  NaN
4 NaN  6
```

```
In [54]: df2
Out[54]:
   A   B
0  5  NaN
1  2  NaN
2  4  3
3  3  4
4  7  6
```

Notice that the boolean DataFrame `df+df == df*2` contains some False values! That is because NaNs do not compare as equals:

```
In [45]: np.nan == np.nan
Out[45]: False
```

So, as of v0.13.1, NDFrames (such as Series, DataFrames, and Panels) have an `equals` method for testing equality, with NaNs in corresponding locations treated as equal.

```
In [46]: (df+df).equals(df*2)
Out[46]: True
```

Note that the Series or DataFrame index needs to be in the same order for equality to be True:

```
In [47]: df1 = DataFrame({'col': ['foo', 0, np.nan]})
```

```
In [48]: df2 = DataFrame({'col': [np.nan, 0, 'foo']}, index=[2,1,0])
```

```
In [49]: df1.equals(df2)
Out[49]: False
```

```
In [50]: df1.equals(df2.sort())
Out[50]: True
```

9.4.6 Combining overlapping data sets

A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the other. An example would be two data series representing a particular economic indicator where one is considered to be of “higher quality”. However, the lower quality series might extend further back in history or have more complete data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation is `combine_first`, which we illustrate:

```
In [51]: df1 = DataFrame({'A' : [1., np.nan, 3., 5., np.nan],
   ....:     'B' : [np.nan, 2., 3., np.nan, 6.]}),
```

```
In [52]: df2 = DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.],
   ....:     'B' : [np.nan, np.nan, 3., 4., 6., 8.]}),
```

```
In [53]: df1
Out[53]:
   A   B
0  1  NaN
1 NaN  2
2  3  3
3  5  NaN
4 NaN  6
```

```
In [54]: df2
Out[54]:
   A   B
0  5  NaN
1  2  NaN
2  4  3
3  3  4
4  7  6
```
0 5 NaN
1 2 NaN
2 4 3
3 NaN 4
4 3 6
5 7 8

In [55]: df1.combine_first(df2)
Out[55]:
 A B
0 1 NaN
1 2 2
2 3 3
3 5 4
4 3 6
5 7 8

9.4.7 General DataFrame Combine

The combine_first method above calls the more general DataFrame method combine. This method takes another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs of Series (i.e., columns whose names are the same).

So, for instance, to reproduce combine_first as above:

In [56]: combiner = lambda x, y: np.where(isnull(x), y, x)
In [57]: df1.combine(df2, combiner)
Out[57]:
 A B
0 1 NaN
1 2 2
2 3 3
3 5 4
4 3 6
5 7 8

9.5 Descriptive statistics

A large number of methods for computing descriptive statistics and other related operations on Series, DataFrame, and Panel. Most of these are aggregations (hence producing a lower-dimensional result) like sum, mean, and quantile, but some of them, like cumsum and cumprod, produce an object of the same size. Generally speaking, these methods take an axis argument, just like ndarray.{sum, std, ...}, but the axis can be specified by name or integer:

- **Series**: no axis argument needed
- **DataFrame**: “index” (axis=0, default), “columns” (axis=1)
- **Panel**: “items” (axis=0), “major” (axis=1, default), “minor” (axis=2)

For example:

In [58]: df
Out[58]:
 one three two
 a -0.626544 NaN -0.351587
All such methods have a `skipna` option signaling whether to exclude missing data (True by default):

```python
In [61]: df.sum(0, skipna=False)
Out[61]:
one  NaN
three NaN
two  -0.765684
dtype: float64
```

```python
In [62]: df.sum(axis=1, skipna=True)
Out[62]:
a  -0.978131
b  0.820066
c  0.025044
d  0.022914
dtype: float64
```

Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standardization (rendering data zero mean and standard deviation 1), very concisely:

```python
In [63]: ts_stand = (df - df.mean()) / df.std()
```

```python
In [64]: ts_stand.std()
Out[64]:
one  1
three  1
two  1
dtype: float64
```

```python
In [65]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)
```

```python
In [66]: xs_stand.std(1)
Out[66]:
a  1
b  1
c  1
d  1
dtype: float64
```

Note that methods like `cumsum` and `cumprod` preserve the location of NA values:
In [67]: df.cumsum()
Out[67]:
 one three two
a -0.626544 NaN -0.351587
b -0.765438 -0.177289 0.784662
c -0.753821 0.284925 0.335874
d NaN 1.409398 -0.765684

Here is a quick reference summary table of common functions. Each also takes an optional level parameter which applies only if the object has a hierarchical index.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>sum</td>
<td>Sum of values</td>
</tr>
<tr>
<td>mean</td>
<td>Mean of values</td>
</tr>
<tr>
<td>mad</td>
<td>Mean absolute deviation</td>
</tr>
<tr>
<td>median</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>max</td>
<td>Maximum</td>
</tr>
<tr>
<td>mode</td>
<td>Mode</td>
</tr>
<tr>
<td>abs</td>
<td>Absolute Value</td>
</tr>
<tr>
<td>prod</td>
<td>Product of values</td>
</tr>
<tr>
<td>std</td>
<td>Unbiased standard deviation</td>
</tr>
<tr>
<td>var</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>sem</td>
<td>Unbiased standard error of the mean</td>
</tr>
<tr>
<td>skew</td>
<td>Unbiased skewness (3rd moment)</td>
</tr>
<tr>
<td>kurt</td>
<td>Unbiased kurtosis (4th moment)</td>
</tr>
<tr>
<td>quantile</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>cumsum</td>
<td>Cumulative sum</td>
</tr>
<tr>
<td>cumprod</td>
<td>Cumulative product</td>
</tr>
<tr>
<td>cummax</td>
<td>Cumulative maximum</td>
</tr>
<tr>
<td>cummin</td>
<td>Cumulative minimum</td>
</tr>
</tbody>
</table>

Note that by chance some NumPy methods, like mean, std, and sum, will exclude NAs on Series input by default:

In [68]: np.mean(df['one'])
Out[68]: -0.25127365175839511

In [69]: np.mean(df['one'].values)
Out[69]: nan

Series also has a method nunique which will return the number of unique non-null values:

In [70]: series = Series(randn(500))
In [71]: series[20:500] = np.nan
In [72]: series[10:20] = 5
In [73]: series.nunique()
Out[73]: 11

9.5.1 Summarizing data: describe

There is a convenient describe function which computes a variety of summary statistics about a Series or the columns of a DataFrame (excluding NAs of course):
In [74]: series = Series(randn(1000))

In [75]: series[::2] = np.nan

In [76]: series.describe()
Out[76]:
 count 500.000000
 mean -0.039663
 std 1.069371
 min -3.463789
 25% -0.731101
 50% -0.058918
 75% 0.672758
 max 3.120271

In [77]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])

In [78]: frame.ix[::2] = np.nan

In [79]: frame.describe()
Out[79]:
 a b c d e
 count 500.000000 500.000000 500.000000 500.000000 500.000000
 mean 0.000954 -0.044014 0.075936 -0.003679 0.020751
 std 1.005133 0.974882 0.967432 1.004732 0.963812
 min -3.010899 -2.782760 -3.401252 -2.944925 -3.794127
 25% -0.682900 -0.681161 -0.528190 -0.663503 -0.615717
 50% -0.001651 -0.006279 0.040098 -0.003378 0.006282
 75% 0.656439 0.632852 0.717919 0.687214 0.653423
 max 3.007143 2.627688 2.702490 2.850852 3.072117

You can select specific percentiles to include in the output:

In [80]: series.describe(percentiles=[.05, .25, .75, .95])
Out[80]:
 count 500.000000
 mean -0.039663
 std 1.069371
 min -3.463789
 5% -1.741334
 25% -0.731101
 50% -0.058918
 75% 0.672758
 95% 1.854383
 max 3.120271

By default, the median is always included.

For a non-numerical Series object, describe will give a simple summary of the number of unique values and most frequently occurring values:

In [81]: s = Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a'])

In [82]: s.describe()
Out[82]:
 count 9
 unique 4
Note that on a mixed-type DataFrame object, `describe` will restrict the summary to include only numerical columns or, if none are, only categorical columns:

```
In [83]: frame = DataFrame({'a': ['Yes', 'Yes', 'No', 'No'], 'b': range(4)})
```

```
In [84]: frame.describe()
Out[84]:
          b
count  4.000000
mean   1.500000
std    1.290994
min    0.000000
25%    0.750000
50%    1.500000
75%    2.250000
max    3.000000
```

This behaviour can be controlled by providing a list of types as `include/exclude` arguments. The special value `all` can also be used:

```
In [85]: frame.describe(include=['object'])
Out[85]:
          a
        count  4
        unique  2
        top   No
        freq   2
```

```
In [86]: frame.describe(include=['number'])
Out[86]:
         b
count  4.000000
mean   1.500000
std    1.290994
min    0.000000
25%    0.750000
50%    1.500000
75%    2.250000
max    3.000000
```

```
In [87]: frame.describe(include='all')
Out[87]:
          a     b
        count  4  4.000000
        unique  2  NaN
        top     No  NaN
        freq    2  NaN
        mean  NaN  1.500000
        std   NaN  1.290994
        min   NaN  0.000000
        25%   NaN  0.750000
        50%   NaN  1.500000
        75%   NaN  2.250000
        max   NaN  3.000000
```

9.5. Descriptive statistics
9.5.2 Index of Min/Max Values

The `idxmin` and `idxmax` functions on Series and DataFrame compute the index labels with the minimum and maximum corresponding values:

In [88]: s1 = Series(randn(5))

In [89]: s1
Out[89]:
0 -0.872725
1 1.522411
2 0.080594
3 -1.676067
4 0.435804
dtype: float64

In [90]: s1.idxmin(), s1.idxmax()
Out[90]: (3, 1)

In [91]: df1 = DataFrame(randn(5,3), columns=['A','B','C'])

In [92]: df1
Out[92]:
 A B C
0 0.445734 -1.649461 0.169660
1 1.246181 0.131682 -2.001988
2 -1.273023 0.870502 0.214583
3 0.088452 -0.173364 1.207466
4 0.546121 0.409515 -0.310515

In [93]: df1.idxmin(axis=0)
Out[93]:
A 2
B 0
C 1
dtype: int64

In [94]: df1.idxmax(axis=1)
Out[94]:
 A B C
0 1.246181 0.131682 0.169660
1 -1.273023 0.870502 0.214583
2 0.088452 -0.173364 1.207466
3 0.546121 0.409515 -0.310515

When there are multiple rows (or columns) matching the minimum or maximum value, `idxmin` and `idxmax` return the first matching index:

In [95]: df3 = DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba'))

In [96]: df3
Out[96]:
 A
e 2
d 1

That feature relies on `select_dtypes`. Refer to there for details about accepted inputs.
In [97]: df3['A'].idxmin()
Out[97]: 'd'

Note: idxmin and idxmax are called argmin and argmax in NumPy.

9.5.3 Value counts (histogramming) / Mode

The value_counts Series method and top-level function computes a histogram of a 1D array of values. It can also be used as a function on regular arrays:

In [98]: data = np.random.randint(0, 7, size=50)

In [99]: data
Out[99]:
array([5, 3, 2, 2, 1, 4, 0, 4, 0, 2, 0, 6, 4, 1, 6, 3, 3, 0, 2, 1, 0, 5, 5,
 3, 6, 1, 5, 6, 2, 0, 0, 6, 3, 3, 5, 0, 4, 3, 3, 3, 0, 6, 1, 3, 5, 5,
 0, 4, 0, 6])

In [100]: s = Series(data)

In [101]: s.value_counts()
Out[101]:
0 11
3 10
6 7
5 7
4 5
2 5
1 5
dtype: int64

In [102]: value_counts(data)
Out[102]:
0 11
3 10
6 7
5 7
4 5
2 5
1 5
dtype: int64

Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame:

In [103]: s5 = Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])

In [104]: s5.mode()
Out[104]:
0 3
1 7
dtype: int64

9.5. Descriptive statistics
In [105]: df5 = DataFrame({"A": np.random.randint(0, 7, size=50),
 : "B": np.random.randint(-10, 15, size=50)})
 :

In [106]: df5.mode()
Out[106]:
 A B
0 1 -5

9.5.4 Discretization and quantiling

Continuous values can be discretized using the `cut` (bins based on values) and `qcut` (bins based on sample quantiles) functions:

In [107]: arr = np.random.randn(20)

In [108]: factor = cut(arr, 4)

In [109]: factor
Out[109]:
[(-0.645, 0.336], (-2.61, -1.626], (-1.626, -0.645], (-1.626, -0.645], ..., (0.336, 1.316],
Length: 20
Categories (4, object): [(-2.61, -1.626] < (-1.626, -0.645] < (-0.645, 0.336] < (0.336, 1.316]]

In [110]: factor = cut(arr, [-5, -1, 0, 1, 5])

In [111]: factor
Out[111]:
[(-1, 0], (-5, -1], (-1, 0], (-5, -1], (-1, 0], ..., (0, 1], (1, 5], (0, 1], (0, 1], (-5, -1]]
Length: 20
Categories (4, object): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]

`qcut` computes sample quantiles. For example, we could slice up some normally distributed data into equal-size quartiles like so:

In [112]: arr = np.random.randn(30)

In [113]: factor = qcut(arr, [0, .25, .5, .75, 1])

In [114]: factor
Out[114]:
[(-0.139, 1.00736], (1.00736, 1.976], (1.00736, 1.976], [-1.0705, -0.439], [-1.0705, -0.439], ..., (1.00736, 1.976],
Length: 30
Categories (4, object): [(-1.0705, -0.439] < (-0.439, -0.139] < (-0.139, 1.00736] < (1.00736, 1.976]]

In [115]: value_counts(factor)
Out[115]:
1.00736, 1.976 8
[-1.0705, -0.439] 8
(-0.139, 1.00736] 7
(-0.439, -0.139] 7
dtype: int64

We can also pass infinite values to define the bins:

In [116]: arr = np.random.randn(20)
9.6 Function application

Arbitrary functions can be applied along the axes of a DataFrame or Panel using the `apply` method, which, like the descriptive statistics methods, take an optional `axis` argument:

```python
In [119]: df.apply(np.mean)
Out[119]:
    one    -0.251274
           three    0.469799
           two    -0.191421
dtype: float64

In [120]: df.apply(np.mean, axis=1)
Out[120]:
a   -0.489066
b   0.273355
c   0.008348
d   0.011457
dtype: float64

In [121]: df.apply(lambda x: x.max() - x.min())
Out[121]:
    one     0.638161
           three   1.301762
           two    2.237808
dtype: float64

In [122]: df.apply(np.cumsum)
Out[122]:
   a   b   c   d
one -0.626544 NaN -0.351587
three -0.765438 -0.177289 0.784662
two -0.753821 0.284925 0.335874
   d   NaN 1.409398 -0.765684

In [123]: df.apply(np.exp)
Out[123]:
   a   b   c   d
one 0.534436 NaN 0.703570
three 0.870320 0.837537 3.115063
two 1.011685 1.587586 0.638401
   d   NaN 3.078592 0.332353
```

Depending on the return type of the function passed to `apply`, the result will either be of lower dimension or the same dimension.

`apply` combined with some cleverness can be used to answer many questions about a data set. For example, suppose we wanted to extract the date where the maximum value for each column occurred:
In [124]: tsdf = DataFrame(randn(1000, 3), columns=['A', 'B', 'C'], index=date_range('1/1/2000', periods=1000))

In [125]: tsdf.apply(lambda x: x.idxmax())
Out[125]:
A 2001-04-27
B 2002-06-02
C 2000-04-02
dtype: datetime64[ns]

You may also pass additional arguments and keyword arguments to the apply method. For instance, consider the following function you would like to apply:

```python
def subtract_and_divide(x, sub, divide=1):
    return (x - sub) / divide
```

You may then apply this function as follows:

def.apply(subtract_and_divide, args=(5,), divide=3)

Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:

In [126]: tsdf
Out[126]:
 A B C
2000-01-01 1.796883 -0.930690 3.542846
2000-01-02 -1.242888 -0.695279 -1.000884
2000-01-03 -0.720299 0.546303 -0.082042
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 -0.527402 0.933507 0.129646
2000-01-09 -0.338903 -1.265452 -1.969004
2000-01-10 0.532566 0.341548 0.150493

In [127]: tsdf.apply(Series.interpolate)
Out[127]:
 A B C
2000-01-01 1.796883 -0.930690 3.542846
2000-01-02 -1.242888 -0.695279 -1.000884
2000-01-03 -0.720299 0.546303 -0.082042
2000-01-04 -0.681720 0.623743 -0.039704
2000-01-05 -0.643140 0.701184 0.002633
2000-01-06 -0.604561 0.778625 0.044971
2000-01-07 -0.565982 0.856066 0.087309
2000-01-08 -0.527402 0.933507 0.129646
2000-01-09 -0.338903 -1.265452 -1.969004
2000-01-10 0.532566 0.341548 0.150493

Finally, apply takes an argument raw which is False by default, which converts each row or column into a Series before applying the function. When set to True, the passed function will instead receive an ndarray object, which has positive performance implications if you do not need the indexing functionality.

See Also:
The section on GroupBy demonstrates related, flexible functionality for grouping by some criterion, applying, and combining the results into a Series, DataFrame, etc.
9.6.1 Applying elementwise Python functions

Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods applymap on DataFrame and analogously map on Series accept any Python function taking a single value and returning a single value. For example:

```
In [128]: df4
Out[128]:
    one   three  two
   a -0.626544  NaN -0.351587
   b -0.138894 -0.177289  1.136249
   c  0.011617  0.462215 -0.448789
   d   NaN  1.124472 -1.101558

In [129]: f = lambda x: len(str(x))

In [130]: df4['one'].map(f)
Out[130]:
a 14
b 15
c 15
d 3
Name: one, dtype: int64

In [131]: df4.applymap(f)
Out[131]:
    one   three  two
   a   14     3  15
   b   15    15  11
   c   15    14  15
   d    3    13  14

Series.map has an additional feature which is that it can be used to easily “link” or “map” values defined by a secondary series. This is closely related to merging/joining functionality:

```
In [132]: s = Series(['six', 'seven', 'six', 'seven', 'six'],
 index=['a', 'b', 'c', 'd', 'e'])

In [133]: t = Series({'six' : 6., 'seven' : 7.})

In [134]: s
Out[134]:
a six
b seven
c six
d seven
e six
dtype: object

In [135]: s.map(t)
Out[135]:
a 6
b 7
c 6
d 7
e 6
dtype: float64
```
9.6.2 Applying with a Panel

Applying with a Panel will pass a Series to the applied function. If the applied function returns a Series, the result of the application will be a Panel. If the applied function reduces to a scalar, the result of the application will be a DataFrame.

**Note:** Prior to 0.13.1 apply on a Panel would only work on ufuncs (e.g. np.sum/np.max).

```python
In [136]: import pandas.util.testing as tm
In [137]: panel = tm.makePanel(5)
In [138]: panel
Out[138]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [139]: panel['ItemA']
Out[139]:
 A B C D
2000-01-03 0.330418 1.893177 0.801111 0.528154
2000-01-04 1.761200 0.170247 0.445614 -0.029371
2000-01-05 0.567133 -0.916844 1.453046 -0.631117
2000-01-06 -0.251020 0.835024 2.430373 -0.172441
2000-01-07 1.020099 1.259919 0.653093 -1.020485
```

A transformational apply.

```python
In [140]: result = panel.apply(lambda x: x*2, axis='items')
In [141]: result
Out[141]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [142]: result['ItemA']
Out[142]:
 A B C D
2000-01-03 0.660836 3.786354 1.602222 1.056308
2000-01-04 3.522400 0.340494 0.891228 -0.058742
2000-01-05 1.134266 -1.833689 2.906092 -1.262234
2000-01-06 -0.502039 1.670047 4.860747 -0.344882
2000-01-07 2.040199 2.519838 1.306185 -2.040969
```

A reduction operation.

```python
In [143]: panel.apply(lambda x: x.dtype, axis='items')
Out[143]:
 A B C D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
```
A similar reduction type operation

```
In [144]: panel.apply(lambda x: x.sum(), axis='major_axis')
```

```
Out[144]:
 ItemA ItemB ItemC
A 3.427831 -2.581431 0.840809
B 3.241522 -1.409935 -1.114512
C 5.783237 0.319672 -0.431906
D -1.325260 -2.914834 0.857043
```

This last reduction is equivalent to

```
In [145]: panel.sum('major_axis')
```

```
Out[145]:
 ItemA ItemB ItemC
A 3.427831 -2.581431 0.840809
B 3.241522 -1.409935 -1.114512
C 5.783237 0.319672 -0.431906
D -1.325260 -2.914834 0.857043
```

A transformation operation that returns a Panel, but is computing the z-score across the major_axis.

```
In [146]: result = panel.apply(lambda x: (x-x.mean())/x.std(), axis='major_axis')
```

```
In [147]: result
```

```
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
```

Apply can also accept multiple axes in the axis argument. This will pass a DataFrame of the cross-section to the applied function.

```
In [149]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T
```

```
In [150]: result = panel.apply(f, axis = ['items','major_axis'])
```

```
In [151]: result
```

```
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
```

9.6. Function application 283
Minor_axis axis: ItemA to ItemC

In [152]: result.loc[:, :, 'ItemA']
Out[152]:
   A       B       C       D
2000-01-03  0.864236  1.132969  0.557316  0.575106
2000-01-04  0.795745  0.652527  0.534808 -0.070674
2000-01-05 -0.310864  0.558627  1.086688 -1.051477
2000-01-06 -0.001065  0.832460  0.846006  0.043602
2000-01-07  1.128946  1.152469 -0.218186 -0.891680

This is equivalent to the following

In [153]: result = Panel(dict((ax, f(panel.loc[:, :, ax]))
                   for ax in panel.minor_axis))

In [154]: result
Out[154]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [155]: result.loc[:, :, 'ItemA']
Out[155]:
   A       B       C       D
2000-01-03  0.864236  1.132969  0.557316  0.575106
2000-01-04  0.795745  0.652527  0.534808 -0.070674
2000-01-05 -0.310864  0.558627  1.086688 -1.051477
2000-01-06 -0.001065  0.832460  0.846006  0.043602
2000-01-07  1.128946  1.152469 -0.218186 -0.891680

9.7 Reindexing and altering labels

reindex is the fundamental data alignment method in pandas. It is used to implement nearly all other features relying on label-alignment functionality. To reindex means to conform the data to match a given set of labels along a particular axis. This accomplishes several things:

- Reorders the existing data to match a new set of labels
- Inserts missing value (NA) markers in label locations where no data for that label existed
- If specified, fill data for missing labels using logic (highly relevant to working with time series data)

Here is a simple example:

In [156]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [157]: s
Out[157]:
           a   b   c   d   e
284 Chapter 9. Essential Basic Functionality
In [158]: s.reindex(['e', 'b', 'f', 'd'])
Out[158]:
    e    0.563622
    b   -0.672504
    f      NaN
    d    0.354653
dtype: float64

Here, the 'f' label was not contained in the Series and hence appears as NaN in the result.

With a DataFrame, you can simultaneously reindex the index and columns:

In [159]: df
Out[159]:
          one    three    two
a -0.626544   NaN  -0.351587
b -0.138894 -0.177289  1.136249
c  0.011617  0.462215 -0.448789
d   NaN    1.124472 -1.101558

In [160]: df.reindex(index=['c', 'f', 'b'], columns=['three', 'two', 'one'])
Out[160]:
         three    two    one
    c  0.462215  -0.448789  0.011617
    f   NaN       NaN  NaN
    b -0.177289  1.136249 -0.138894

For convenience, you may utilize the `reindex_axis` method, which takes the labels and a keyword `axis` parameter.

Note that the Index objects containing the actual axis labels can be shared between objects. So if we have a Series and a DataFrame, the following can be done:

In [161]: rs = s.reindex(df.index)

In [162]: rs
Out[162]:
    a    -1.010924
    b    -0.672504
    c    -1.139222
    d     0.354653
dtype: float64

In [163]: rs.index is df.index
Out[163]: True

This means that the reindexed Series’s index is the same Python object as the DataFrame’s index.

See Also:

*MultiIndex / Advanced Indexing* is an even more concise way of doing reindexing.

Note: When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing ninja: many operations are faster on pre-aligned data. Adding two unaligned DataFrames internally triggers a reindexing step. For exploratory analysis you will hardly notice the difference (because `reindex` has been heavily optimized), but when CPU cycles matter sprinkling a few explicit `reindex` calls here and there can have an impact.
9.7.1 Reindexing to align with another object

You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this is straightforward albeit verbose, it is a common enough operation that the `reindex_like` method is available to make this simpler:

```python
In [164]: df2
Out[164]:
 one two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 0.448789

In [165]: df3
Out[165]:
 one two
a -0.375270 -0.463545
b 0.112379 1.024292
c 0.262891 -0.560746

In [166]: df.reindex_like(df2)
Out[166]:
 one two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789
```

9.7.2 Reindexing with `reindex_axis`

9.7.3 Aligning objects with each other with `align`

The `align` method is the fastest way to simultaneously align two objects. It supports a `join` argument (related to joining and merging):

- `join='outer'`: take the union of the indexes (default)
- `join='left'`: use the calling object’s index
- `join='right'`: use the passed object’s index
- `join='inner'`: intersect the indexes

It returns a tuple with both of the reindexed Series:

```python
In [167]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [168]: s1 = s[:4]

In [169]: s2 = s[1:]

In [170]: s1.align(s2)
Out[170]:
(a -0.365106
 b 1.092702
 c -1.481449
d 1.781190
e NaN
dtype: float64, a NaN
```
In [171]: s1.align(s2, join='inner')
Out[171]:
(b 1.092702
c -1.481449
d 1.781190
dtype: float64, b 1.092702
c -1.481449
d 1.781190
dtype: float64)

In [172]: s1.align(s2, join='left')
Out[172]:
(a -0.365106
b 1.092702
c -1.481449
d 1.781190
dtype: float64, a NaN
b 1.092702
c -1.481449
d 1.781190
dtype: float64)

For DataFrames, the join method will be applied to both the index and the columns by default:

In [173]: df.align(df2, join='inner')
Out[173]:
(one two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789, one two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789)

You can also pass an axis option to only align on the specified axis:

In [174]: df.align(df2, join='inner', axis=0)
Out[174]:
(one three two
a -0.626544 NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789, one two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789)

If you pass a Series to DataFrame.align, you can choose to align both objects either on the DataFrame’s index or columns using the axis argument:

In [175]: df.align(df2.ix[0], axis=1)
Out[175]:
(one three two
a -0.626544 NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789, one two
a -0.626544 -0.351587
b -0.138894 1.136249
c 0.011617 -0.448789)
b  -0.138894 -0.177289  1.136249
c  0.011617  0.462215 -0.448789
d NaN  1.124472 -1.101558, one  -0.626544
three NaN
two  -0.351587
Name: a, dtype: float64)

9.7.4 Filling while reindexing

reindex takes an optional parameter method which is a filling method chosen from the following table:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad / ffill</td>
<td>Fill values forward</td>
</tr>
<tr>
<td>bfill / backfill</td>
<td>Fill values backward</td>
</tr>
</tbody>
</table>

Other fill methods could be added, of course, but these are the two most commonly used for time series data. In a way they only make sense for time series or otherwise ordered data, but you may have an application on non-time series data where this sort of “interpolation” logic is the correct thing to do. More sophisticated interpolation of missing values would be an obvious extension.

We illustrate these fill methods on a simple TimeSeries:

```
In [176]: rng = date_range(‘1/3/2000’, periods=8)

In [177]: ts = Series(randn(8), index=rng)

In [178]: ts2 = ts[[0, 3, 6]]
```

```
In [179]: ts
Out[179]:
2000-01-03 0.480993
2000-01-04 0.604244
2000-01-05 -0.487265
2000-01-06 1.990533
2000-01-07 0.327007
2000-01-08 1.053639
2000-01-09 -2.927808
2000-01-10 0.082065
Freq: D, dtype: float64
```

```
In [180]: ts2
Out[180]:
2000-01-03 0.480993
2000-01-06 1.990533
2000-01-09 -2.927808
dtype: float64
```

```
In [181]: ts2.reindex(ts.index)
Out[181]:
2000-01-03 0.480993
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 1.990533
2000-01-07 NaN
2000-01-08 NaN
2000-01-09 -2.927808
2000-01-10 NaN
```
Freq: D, dtype: float64

In [182]: ts2.reindex(ts.index, method='ffill')
Out[182]:
2000-01-03  0.480993
2000-01-04  0.480993
2000-01-05  0.480993
2000-01-06  1.990533
2000-01-07  1.990533
2000-01-08  1.990533
2000-01-09  -2.927808
2000-01-10  -2.927808
Freq: D, dtype: float64

In [183]: ts2.reindex(ts.index, method='bfill')
Out[183]:
2000-01-03  0.480993
2000-01-04  1.990533
2000-01-05  1.990533
2000-01-06  1.990533
2000-01-07  -2.927808
2000-01-08  -2.927808
2000-01-09  -2.927808
2000-01-10  NaN
Freq: D, dtype: float64

Note these methods require that the indexes are order increasing.

Note the same result could have been achieved using fillna:

In [184]: ts2.reindex(ts.index).fillna(method='ffill')
Out[184]:
2000-01-03  0.480993
2000-01-04  0.480993
2000-01-05  0.480993
2000-01-06  1.990533
2000-01-07  1.990533
2000-01-08  1.990533
2000-01-09  -2.927808
2000-01-10  -2.927808
Freq: D, dtype: float64

Note that reindex will raise a ValueError if the index is not monotonic. fillna will not make any checks on the order of the index.

9.7.5 Dropping labels from an axis

A method closely related to reindex is the drop function. It removes a set of labels from an axis:

In [185]: df
Out[185]:
     one   three   two
a -0.626544  NaN  -0.351587
b -0.138894 -0.177289  1.136249
c  0.011617  0.462215  -0.448789
d   NaN     1.124472 -1.101558

In [186]: df.drop(['a', 'd'], axis=0)
Out[186]:
   one  three  two
b -0.138894 -0.177289  1.136249
c   0.011617   0.462215 -0.448789

In [187]: df.drop(['one'], axis=1)
Out[187]:
   three  two
a   NaN   -0.351587
b -0.177289   1.136249
c   0.462215  -0.448789
d  1.124472  -1.101558

Note that the following also works, but is a bit less obvious / clean:

In [188]: df.reindex(df.index - ['a', 'd'])
Out[188]:
   one  three  two
b -0.138894 -0.177289  1.136249
c   0.011617   0.462215 -0.448789
d  1.124472  -1.101558

9.7.6 Renaming / mapping labels

The rename method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.

In [189]: s
Out[189]:
a  -0.365106
b   1.092702
c  -1.481449
d   1.781190
e  -0.031543
dtype: float64

In [190]: s.rename(str.upper)
Out[190]:
A  -0.365106
B   1.092702
C  -1.481449
D   1.781190
E  -0.031543
dtype: float64

If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique values). But if you pass a dict or Series, it need only contain a subset of the labels as keys:

In [191]: df.rename(columns={'one' : 'foo', 'two' : 'bar'},
                   index={'a' : 'apple', 'b' : 'banana', 'd' : 'durian'})
Out[191]:
   foo  three  bar
apple  -0.626544  NaN  -0.351587
banana -0.138894 -0.177289  1.136249
c    0.011617   0.462215 -0.448789
durian   NaN     1.124472  -1.101558

The rename method also provides an inplace named parameter that is by default False and copies the underlying data. Pass inplace=True to rename the data in place. The Panel class has a related rename_axis class which
can rename any of its three axes.

## 9.8 Iteration

Because Series is array-like, basic iteration produces the values. Other data structures follow the dict-like convention of iterating over the “keys” of the objects. In short:

- **Series**: values
- **DataFrame**: column labels
- **Panel**: item labels

Thus, for example:

```python
In [192]: for col in df:
 : print(col)
 :
one
three	two
```

### 9.8.1 iteritems

Consistent with the dict-like interface, **iteritems** iterates through key-value pairs:

- **Series**: (index, scalar value) pairs
- **DataFrame**: (column, Series) pairs
- **Panel**: (item, DataFrame) pairs

For example:

```python
In [193]: for item, frame in wp.iteritems():
 : print(item)
 : print(frame)
 :
Item1
 A B C D
2000-01-01 -1.032011 0.969818 -0.962723 1.382083
2000-01-02 -0.938794 0.669142 -0.433567 -0.273610
2000-01-03 0.680433 -0.308450 -0.276099 -1.821168
2000-01-04 -1.993606 -1.927385 -2.027924 1.624972
2000-01-05 0.551135 3.059267 0.455264 -0.030740
Item2
 A B C D
2000-01-01 0.935716 1.061192 -2.107852 0.199905
2000-01-02 0.323586 -0.641630 -0.587514 0.053897
2000-01-03 0.194889 -0.381994 0.318587 2.089075
2000-01-04 -0.728293 -0.090255 -0.748199 1.318931
2000-01-05 -2.029766 0.792652 0.461007 -0.542749
```

### 9.8.2 iterrows

New in v0.7 is the ability to iterate efficiently through rows of a DataFrame. It returns an iterator yielding each index value along with a Series containing the data in each row:
In [194]: for row_index, row in df2.iterrows():
    ......:    print('%s\n%s' % (row_index, row))
    ......:
    a
    one -0.626544
two -0.351587
Name: a, dtype: float64
b
one -0.138894
two 1.136249
Name: b, dtype: float64
c
one 0.011617
two -0.448789
Name: c, dtype: float64

For instance, a contrived way to transpose the DataFrame would be:

In [195]: df2 = DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]})

In [196]: print(df2)
   x  y
0  1  4
1  2  5
2  3  6

In [197]: print(df2.T)
   0  1  2
  x  1  2  3
  y  4  5  6

In [198]: df2_t = DataFrame(dict((idx,values) for idx, values in df2.iterrows()))

In [199]: print(df2_t)
   0  1  2
  x  1  2  3
  y  4  5  6

Note: iterrows does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

In [200]: df_iter = DataFrame([[1, 1.0]], columns=['x', 'y'])

In [201]: row = next(df_iter.iterrows())[1]

In [202]: print(row['x'].dtype)
floating

In [203]: print(df_iter['x'].dtype)
int64

9.8.3 itertuples

This method will return an iterator yielding a tuple for each row in the DataFrame. The first element of the tuple will be the row’s corresponding index value, while the remaining values are the row values proper.
For instance,

```python
In [204]: for r in df2.itertuples():
 : print(r)
 :
(0, 1, 4)
(1, 2, 5)
(2, 3, 6)
```

### 9.8.4 .dt accessor

Series has an accessor to succinctly return datetime like properties for the values of the Series, if its a datetime/period like Series. This will return a Series, indexed like the existing Series.

```python
datetime
In [205]: s = Series(date_range('20130101 09:10:12', periods=4))

In [206]: s
Out[206]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]

In [207]: s.dt.hour
Out[207]:
0 9
1 9
2 9
3 9
dtype: int64

In [208]: s.dt.second
Out[208]:
0 12
1 12
2 12
3 12
dtype: int64

In [209]: s.dt.day
Out[209]:
0 1
1 2
2 3
3 4
dtype: int64
```

This enables nice expressions like this:

```python
In [210]: s[s.dt.day==2]
Out[210]:
1 2013-01-02 09:10:12
dtype: datetime64[ns]
```

You can easily produces tz aware transformations:
In [211]: stz = s.dt.tz_localize('US/Eastern')

In [212]: stz
Out[212]:
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00
dtype: object

In [213]: stz.dt.tz
Out[213]: <DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>

You can also chain these types of operations:

In [214]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[214]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: object

The .dt accessor works for period and timedelta dtypes.

# period
In [215]: s = Series(period_range('20130101', periods=4, freq='D'))

In [216]: s
Out[216]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [217]: s.dt.year
Out[217]:
0 2013
1 2013
2 2013
3 2013
dtype: int64

In [218]: s.dt.day
Out[218]:
0 1
1 2
2 3
3 4
dtype: int64

# timedelta
In [219]: s = Series(timedelta_range('1 day 00:00:05', periods=4, freq='s'))

In [220]: s
Out[220]:
0 1 days 00:00:05
1 1 days 00:00:06
In [221]: s.dt.days
Out[221]:
0   1
1   1
2   1
3   1
dtype: int64

In [222]: s.dt.seconds
Out[222]:
0   5
1   6
2   7
3   8
dtype: int64

In [223]: s.dt.components
Out[223]:
          days  hours  minutes  seconds  milliseconds  microseconds  nanoseconds
0           1   0.0       0.0       5.0           0.0          0.0          0.0
1           1   0.0       0.0       6.0           0.0          0.0          0.0
2           1   0.0       0.0       7.0           0.0          0.0          0.0
3           1   0.0       0.0       8.0           0.0          0.0          0.0

Note: Series.dt will raise a TypeError if you access with a non-datetimelike values

9.9 Vectorized string methods

Series is equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series's str attribute and generally have names matching the equivalent (scalar) built-in string methods. For example:

In [224]: s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [225]: s.str.lower()
Out[225]:
0  a
1  b
2  c
3  aaba
4  baca
5  NaN
6  caba
7  dog
8  cat
dtype: object

Powerful pattern-matching methods are provided as well, but note that pattern-matching generally uses regular expressions by default (and in some cases always uses them).

Please see Vectorized String Methods for a complete description.
9.10 Sorting by index and value

There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values. The primary method for sorting axis labels (indexes) across data structures is the `sort_index` method.

```python
In [226]: unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'],
 columns=['three', 'two', 'one'])
 :

In [227]: unsorted_df.sort_index()
Out[227]:
 three two one
a NaN 0.351587 0.626544
b 1.136249 -0.138894 1.136249
c -0.177289 0.462215 -0.448789
d 1.124472 0.011617 1.124472

In [228]: unsorted_df.sort_index(ascending=False)
Out[228]:
 three two one
a NaN 0.351587 0.626544
b 1.136249 -0.138894 1.136249
c -0.177289 0.462215 -0.448789
d 1.124472 0.011617 1.124472

In [229]: unsorted_df.sort_index(axis=1)
Out[229]:
 one three two
a -0.626544 NaN 0.351587
b 1.124472 1.136249 -0.138894
c 0.462215 0.462215 -0.448789
d -0.138894 -0.177289 1.136249
```

DataFrame.sort_index can accept an optional `by` argument for `axis=0` which will use an arbitrary vector or a column name of the DataFrame to determine the sort order:

```python
In [230]: df1 = DataFrame({'one':[2,1,1,1],
 'two':[1,3,2,4],
 'three':[5,4,3,2]})

In [231]: df1.sort_index(by='two')
Out[231]:
 one three two
0 2 5 1
1 1 3 2
2 1 4 3
3 1 2 4
```

The `by` argument can take a list of column names, e.g.:

```python
In [232]: df1[['one', 'two', 'three']].sort_index(by=['one', 'two'])
Out[232]:
 one two three
0 2 1 2
1 1 1 3
2 3 1 4
3 0 2 1
```

Series has the method `order` (analogous to R’s `order` function) which sorts by value, with special treatment of NA values via the `na_position` argument:
In [233]: s[2] = np.nan

In [234]: s.order()
Out[234]:
0   A
3  Aaba
1    B
4   Baca
6   CABA
8  cat
7    dog
2     NaN
5     NaN
dtype: object

In [235]: s.order(na_position='first')
Out[235]:
2     NaN
5     NaN
0   A
3  Aaba
1    B
4   Baca
6   CABA
8  cat
7    dog
dtype: object

Note: Series.sort sorts a Series by value in-place. This is to provide compatibility with NumPy methods which expect the ndarray.sort behavior. Series.order returns a copy of the sorted data.

Series has the searchsorted method, which works similar to np.ndarray.searchsorted.

In [236]: ser = Series([1, 2, 3])

In [237]: ser.searchsorted([0, 3])
Out[237]: array([0, 2])

In [238]: ser.searchsorted([0, 4])
Out[238]: array([0, 3])

In [239]: ser.searchsorted([1, 3], side='right')
Out[239]: array([1, 3])

In [240]: ser.searchsorted([1, 3], side='left')
Out[240]: array([0, 2])

In [241]: ser = Series([3, 1, 2])

In [242]: ser.searchsorted([0, 3], sorter=np.argsort(ser))
Out[242]: array([0, 2])

9.10.1 smallest / largest values

New in version 0.14.0. Series has the nsmallest and nlargest methods which return the smallest or largest n values. For a large Series this can be much faster than sorting the entire Series and calling head(n) on the result.
In [243]: s = Series(np.random.permutation(10))

In [244]: s
Out[244]:
0 7
1 5
2 4
3 6
4 1
5 8
6 9
7 2
8 0
9 3
dtype: int32

In [245]: s.order()
Out[245]:
8 0
4 1
7 2
9 3
2 4
1 5
3 6
0 7
5 8
6 9
dtype: int32

In [246]: s.nsmallest(3)
Out[246]:
8 0
4 1
7 2
dtype: int32

In [247]: s.nlargest(3)
Out[247]:
6 9
5 8
0 7
dtype: int32

9.10.2 Sorting by a multi-index column

You must be explicit about sorting when the column is a multi-index, and fully specify all levels to by.

In [248]: df1.columns = MultiIndex.from_tuples([('a','one'), ('a','two'), ('b','three')])

In [249]: df1.sort_index(by=('a','two'))
Out[249]:
a   b
one two three
3 1 2 4
2 1 3 2
1 1 4 3
9.11 Copying

The `copy` method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable) and returns a new object. Note that it is seldom necessary to copy objects. For example, there are only a handful of ways to alter a DataFrame in-place:

- Inserting, deleting, or modifying a column
- Assigning to the `index` or `columns` attributes
- For homogeneous data, directly modifying the values via the `values` attribute or advanced indexing

To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects, leaving the original object untouched. If data is modified, it is because you did so explicitly.

9.12 dtypes

The main types stored in pandas objects are `float`, `int`, `bool`, `datetime64[ns]`, `timedelta[ns]`, and `object`. In addition these dtypes have item sizes, e.g. `int64` and `int32`. A convenient `dtypes` attribute for DataFrames returns a Series with the data type of each column.

```
In [250]: dft = DataFrame(dict(A = np.random.rand(3),
 B = 1,
 C = 'foo',
 D = Timestamp('20010102'),
 E = Series([1.0]*3).astype('float32'),
 F = False,
 G = Series([1]*3,dtype='int8')))

In [251]: dft
Out[251]:
A 0.028931
 B 1.0
 C foo
 D 2001-01-02
 E 1.000000
 F False
 G 1

In [252]: dft.dtypes
Out[252]:
A float64
 B int64
 C object
 D datetime64[ns]
 E float32
 F bool
 G int8
dtype: object
```

On a Series use the `dtype` method.

```
In [253]: dft['A'].dtype
Out[253]: dtype('float64')
```
If a pandas object contains data multiple dtypes in a single column, the dtype of the column will be chosen to accommodate all of the data types (object is the most general).

```python
these ints are coerced to floats
In [254]: Series([1, 2, 3, 4, 5, 6.])
Out[254]:
0 1
1 2
2 3
3 4
4 5
5 6
dtype: float64
```

```python
string data forces an 'object' dtype
In [255]: Series([1, 2, 3, 6., 'foo'])
Out[255]:
0 1
1 2
2 3
3 6
4 foo
dtype: object
```

The method `get_dtype_counts` will return the number of columns of each type in a `DataFrame`:

```python
In [256]: dft.get_dtype_counts()
Out[256]:
bool 1
datetime64[ns] 1
float32 1
float64 1
int64 1
int8 1
object 1
dtype: int64
```

Numeric dtypes will propagate and can coexist in DataFrames (starting in v0.11.0). If a dtype is passed (either directly via the `dtype` keyword, a passed `ndarray`, or a passed `Series`, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will NOT be combined. The following example will give you a taste.

```python
In [257]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
In [258]: df1
Out[258]:
 A
0 1.213978
1 -0.505425
2 0.254678
3 -0.744834
4 0.647650
5 0.822993
6 -1.543048
7 1.778703

In [259]: df1.dtypes
Out[259]:
A float32
dtype: object
```
In [260]: df2 = DataFrame(dict(A = Series(randn(8),dtype='float16'),
          ....:                  B = Series(randn(8)),
          ....:                  C = Series(np.array(randn(8),dtype='uint8')) ))

In [261]: df2
Out[261]:
   A       B       C
0 -0.123230 -1.508174 0
1  2.240234 -0.502623 0
2 -0.143799  0.529008 0
3 -2.884766  0.590536 1
4  0.027588  0.296947 0
5 -1.150391  0.007045 255
6  0.246460  0.707877 1
7 -0.455078  0.950661 0

In [262]: df2.dtypes
Out[262]:
A    float16
B    float64
C     uint8
dtype: object

9.12.1 defaults

By default integer types are int64 and float types are float64, REGARDLESS of platform (32-bit or 64-bit). The following will all result in int64 dtypes.

In [263]: DataFrame([1, 2], columns=['a']).dtypes
Out[263]:
a    int64
dtype: object

In [264]: DataFrame({'a': [1, 2]}).dtypes
Out[264]:
a    int64
dtype: object

In [265]: DataFrame({'a': list(range(2))}).dtypes
Out[265]:
a    int64
dtype: object

Numpy, however will choose platform-dependent types when creating arrays. The following WILL result in int32 on 32-bit platform.

In [266]: frame = DataFrame(np.array([1, 2]))

9.12.2 upcasting

Types can potentially be upcasted when combined with other types, meaning they are promoted from the current type (say int to float)
In [267]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [268]: df3
Out[268]:
   A          B          C
0  1.090748   -1.508174   0.0
1  1.734810   -0.502623   0.0
2  0.110879    0.529008   0.0
3  3.629600    0.590536   1.0
4  0.675238    0.296947   0.0
5  0.327398    0.007045  255.0
6  2.025163    0.707877   1.0
7  1.998126    0.950661   0.0

In [269]: df3.dtypes
Out[269]:
A     float32
B     float64
C     float64
dtype: object

The `values` attribute on a DataFrame return the lower-common-denominator of the dtypes, meaning the dtype that can accommodate ALL of the types in the resulting homogeneous dtype numpy array. This can force some upcasting.

In [270]: df3.values.dtype
Out[270]: dtype('float64')

9.12.3 astype

You can use the `astype` method to explicitly convert dtypes from one to another. These will by default return a copy, even if the dtype was unchanged (pass `copy=False` to change this behavior). In addition, they will raise an exception if the astype operation is invalid.

Upcasting is always according to the `numpy` rules. If two different dtypes are involved in an operation, then the more general one will be used as the result of the operation.

In [271]: df3
Out[271]:
   A          B          C
0  1.090748   -1.508174   0.0
1  1.734810   -0.502623   0.0
2  0.110879    0.529008   0.0
3  3.629600    0.590536   1.0
4  0.675238    0.296947   0.0
5  0.327398    0.007045  255.0
6  2.025163    0.707877   1.0
7  1.998126    0.950661   0.0

In [272]: df3.dtypes
Out[272]:
A     float32
B     float64
C     float64
dtype: object

# conversion of dtypes
In [273]: df3.astype('float32').dtypes
9.12.4 object conversion

`convert_objects` is a method to try to force conversion of types from the `object` dtype to other types. To force conversion of specific types that are *number like*, e.g. could be a string that represents a number, pass `convert_numeric=True`. This will force strings and numbers alike to be numbers if possible, otherwise they will be set to `np.nan`.

```
In [274]: df3['D'] = '1.'
In [275]: df3['E'] = '1'
In [276]: df3.convert_objects(convert_numeric=True).dtypes
```

```
Out[276]:
A float32
B float64
C float64
D float64
E int64
dtype: object
```

# same, but specific dtype conversion
```
In [277]: df3['D'] = df3['D'].astype('float16')
In [278]: df3['E'] = df3['E'].astype('int32')
```

```
In [279]: df3.dtypes
```

```
Out[279]:
A float32
B float64
C float64
D float16
E int32
dtype: object
```

To force conversion to `datetime64[ns]`, pass `convert_dates='coerce'`. This will convert any datetime-like object to dates, forcing other values to `NaT`. This might be useful if you are reading in data which is mostly dates, but occasionally has non-dates intermixed and you want to represent as missing.

```
In [280]: s = Series([datetime(2001,1,1,0,0),
.....: 'foo', 1.0, 1, Timestamp('20010104'),
.....: '20010105'], dtype='O')
```

```
In [281]: s
```

```
Out[281]:
0 2001-01-01 00:00:00
1 foo
2 1
3 1
4 2001-01-04 00:00:00
5 20010105
```
In addition, `convert_objects` will attempt the soft conversion of any `object` dtypes, meaning that if all the objects in a Series are of the same type, the Series will have that dtype.

### 9.12.5 gotchas

Performing selection operations on `integer` type data can easily upcast the data to `floating`. The dtype of the input data will be preserved in cases where nans are not introduced (starting in 0.11.0) See also `integer na gotchas`

```python
In [283]: dfi = df3.astype('int32')
In [284]: dfi['E'] = 1
In [285]: dfi
Out[285]:
 A B C D E
0 1 -1 0 1 1
1 1 0 0 1 1
2 0 0 0 1 1
3 -3 0 1 1 1
4 0 0 0 1 1
5 0 0 255 1 1
6 2 0 1 1 1
7 -1 0 0 1 1
```

```python
In [286]: dfi.dtypes
Out[286]:
A int32
B int32
C int32
D int32
E int64
dtype: object
```

```python
In [287]: casted = dfi[dfi>0]
In [288]: casted
Out[288]:
 A B C D E
0 NaN NaN NaN 1 1
1 NaN NaN NaN 1 1
2 NaN NaN NaN 1 1
3 NaN NaN NaN 1 1
4 NaN NaN NaN 1 1
5 NaN NaN 255 1 1
6 2 NaN 1 1 1
```
In [289]: casted.dtypes
Out[289]:
A   float64
B   float64
C   float64
D    int32
E    int64
dtype: object

While float dtypes are unchanged.

In [290]: dfa = df3.copy()

In [291]: dfa['A'] = dfa['A'].astype('float32')

In [292]: dfa.dtypes
Out[292]:
A    float32
B   float64
C   float64
D   float16
E     int32
dtype: object

In [293]: casted = dfa[df2>0]

In [294]: casted
Out[294]:
   A      B      C      D      E
0       NaN    NaN    NaN    NaN    NaN
1  1.734810    NaN    NaN    NaN    NaN
2       NaN  0.529008    NaN    NaN    NaN
3       NaN  0.590536    NaN    NaN    NaN
4  0.675238  0.296947    NaN    NaN    NaN
5       NaN  0.007045  255.007045    NaN    NaN
6  2.025163  0.707877    NaN    NaN    NaN
7       NaN  0.950661    NaN    NaN    NaN

In [295]: casted.dtypes
Out[295]:
A   float32
B   float64
C   float64
D   float16
E    float64
dtype: object

9.13 Selecting columns based on dtype

New in version 0.14.1. The select_dtypes() method implements subsetting of columns based on their dtype.

First, let’s create a DataFrame with a slew of different dtypes:
In [296]: df = DataFrame({'string': list('abc'),
                'int64': list(range(1, 4)),
                'uint8': np.arange(3, 6).astype('u1'),
                'float64': np.arange(4.0, 7.0),
                'bool1': [True, False, True],
                'bool2': [False, True, False],
                'dates': pd.date_range('now', periods=3).values,
                'category': pd.Categorical(list("ABC")))

In [297]: df['tdeltas'] = df.dates.diff()
In [298]: df['uint64'] = np.arange(3, 6).astype('u8')
In [299]: df['other_dates'] = pd.date_range('20130101', periods=3).values
In [300]: df
Out[300]:
bool1  bool2  category     dates  float64  int64  string  uint8
0     True  False     A 2014-11-08 16:36:23  4     1     a    3
1    False    True     B 2014-11-09 16:36:23  5     2     b    4
2     True    False     C 2014-11-10 16:36:23  6     3     c    5

  tdeltas  uint64  other_dates
0   NaT       3  2013-01-01
1  1 days     4  2013-01-02
2  1 days     5  2013-01-03

select_dtypes has two parameters include and exclude that allow you to say “give me the columns WITH these dtypes” (include) and/or “give the columns WITHOUT these dtypes” (exclude).

For example, to select bool columns
In [301]: df.select_dtypes(include=[bool])
Out[301]:
bool1  bool2
0    True  False
1    False    True
2    False    True

You can also pass the name of a dtype in the numpy dtype hierarchy:
In [302]: df.select_dtypes(include=['bool'])
Out[302]:
bool1  bool2
0    True  False
1    False    True
2    False    True

select_dtypes() also works with generic dtypes as well.

For example, to select all numeric and boolean columns while excluding unsigned integers
In [303]: df.select_dtypes(include=['number', 'bool'], exclude=['unsignedinteger'])
Out[303]:
bool1  bool2  float64  int64  tdeltas
0    True  False     4     1   NaT
1    False    True     5     2    1 days
2    True    False     6     3    1 days
To select string columns you must use the `object` dtype:

```
In [304]: df.select_dtypes(include=['object'])
Out[304]:
 0 a
 1 b
 2 c
```

To see all the child dtypes of a generic `dtype` like `numpy.number` you can define a function that returns a tree of child dtypes:

```
In [305]: def subdtypes(dtype):
 : subs = dtype.__subclasses__()
 : if not subs:
 : return dtype
 : return [dtype, [subdtypes(dt) for dt in subs]]
```

All numpy dtypes are subclasses of `numpy.generic`:

```
In [306]: subdtypes(np.generic)
Out[306]:
[numpy.generic,
 [numpy.number,
 [[numpy.integer,
 [numpy.signedinteger,
 [numpy.int8, numpy.int16, numpy.int32, numpy.int64, numpy.timedelta64]],
 [numpy.unsignedinteger,
 [numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64]]],
 [numpy.inexact,
 [[numpy.floating,
 [numpy.float16, numpy.float32, numpy.float64, numpy.float96]],
 [numpy.complexfloating,
 [numpy.complex64, numpy.complex128, numpy.complex192]]]],
 [numpy.flexible,
 [[numpy.character, [numpy.string_, numpy.unicode_]],
 [numpy.bool_, [numpy.core.records.record]]],
 [numpy.datetime64, numpy.object_]]
]]
```

**Note:** Pandas also defines an additional category `dtype`, which is not integrated into the normal numpy hierarchy and wont show up with the above function.

**Note:** The `include` and `exclude` parameters must be non-string sequences.
Series is equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series’s `str` attribute and generally have names matching the equivalent (scalar) built-in string methods:

```
In [1]: s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [2]: s.str.lower()
Out[2]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

In [3]: s.str.upper()
Out[3]:
0 A
1 B
2 C
3 AABA
4 BACA
5 NaN
6 CABA
7 DOG
8 CAT
dtype: object

In [4]: s.str.len()
Out[4]:
0 1
1 1
2 1
3 4
4 4
5 NaN
6 4
7 3
8 3
10.1 Splitting and Replacing Strings

Methods like `split` return a Series of lists:

```
In [5]: s2 = Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
In [6]: s2.str.split('_')
Out[6]:
0    [a, b, c]
1    [c, d, e]
2        NaN
3    [f, g, h]
dtype: object
```

Easy to expand this to return a DataFrame
```
In [7]: s2.str.split('_').apply(Series)
Out[7]:
         0  1  2
0       a  b  c
1       c  d  e
2  NaN  NaN  NaN
3       f  g  h
```

Elements in the split lists can be accessed using `get` or `[]` notation:
```
In [8]: s2.str.split('_').str.get(1)
Out[8]:
0    b
1    d
2  NaN
3    g
dtype: object
```
```
In [9]: s2.str.split('_').str[1]
Out[9]:
0    b
1    d
2  NaN
3    g
dtype: object
```

Methods like `replace` and `findall` take regular expressions, too:
```
In [10]: s3 = Series(['A', 'B', 'C', 'Aaba', 'Baca',
        ' ', np.nan, 'CABA', 'dog', 'cat'])
In [11]: s3
Out[11]:
0    A
1    B
2    C
3  Aaba
4  Baca
```
In [12]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Out[12]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5 NaN
6 XX-XX BA
7 XX-XX t
8 NaN
dtype: object

Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $:

Consider the following badly formatted financial data
In [13]: dollars = Series(['12', '-$10', '$10,000'])

This does what you’d naively expect:
In [14]: dollars.str.replace('$', '')
Out[14]:
0 12
1 -10
2 10,000
dtype: object

But this doesn’t:
In [15]: dollars.str.replace('-$', '-')
Out[15]:
0 12
1 -$10
2 $10,000
dtype: object

We need to escape the special character (for >1 len patterns)
In [16]: dollars.str.replace(r'-$', r'-')
Out[16]:
0 12
1 -$10
2 $10,000
dtype: object

10.2 Indexing with .str

You can use [] notation to directly index by position locations. If you index past the end of the string, the result will be a NaN.
In [17]: s = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
.........: 'CABA', 'dog', 'cat'])
.........:

In [18]: s.str[0]
Out[18]:
0 A
1 B
2 C
3 A
4 B
5 NaN
6 C
7 d
8 c
dtype: object

In [19]: s.str[1]
Out[19]:
0 NaN
1 NaN
2 NaN
3 a
4 a
5 NaN
6 A
7 o
8 a
dtype: object

10.3 Extracting Substrings

The method `extract` (introduced in version 0.13) accepts regular expressions with match groups. Extracting a regular expression with one group returns a Series of strings.

In [20]: Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)')
Out[20]:
0 a 1
1 b 2
2 NaN NaN
dtype: object

Elements that do not match return NaN. Extracting a regular expression with more than one group returns a DataFrame with one column per group.

In [21]: Series(['a1', 'b2', 'c3']).str.extract('([ab])((\d)')
Out[21]:
0 a 1
1 b 2
2 NaN NaN

dtype: object

Elements that do not match return a row filled with NaN. Thus, a Series of messy strings can be “converted” into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating `get()` to access tuples or `re.match` objects.

The results dtype always is object, even if no match is found and the result only contains NaN.
Named groups like

```python
In [22]: Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)')
Out[22]:
          letter digit
     0       a      1
     1       b      2
     2     NaN    NaN
```

and optional groups like

```python
In [23]: Series(['a1', 'b2', '3']).str.extract('(?P<letter>[ab])?(?P<digit>\d)')
Out[23]:
          letter digit
     0       a      1
     1       b      2
     2     NaN      3
```

can also be used.

10.3.1 Testing for Strings that Match or Contain a Pattern

You can check whether elements contain a pattern:

```python
In [24]: pattern = r'[a-z][0-9]'
In [25]: Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
Out[25]:
0   False
1   False
2   False
3   False
4   False
dtype: bool
```

or match a pattern:

```python
In [26]: Series(['1', '2', '3a', '3b', '03c']).str.match(pattern, as_indexer=True)
Out[26]:
0   False
1   False
2   False
3   False
4   False
dtype: bool
```

The distinction between `match` and `contains` is strictness: `match` relies on strict `re.match`, while `contains` relies on `re.search`.

Warning: In previous versions, `match` was for extracting groups, returning a not-so-convenient `Series` of tuples. The new method `extract` (described in the previous section) is now preferred. This old, deprecated behavior of `match` is still the default. As demonstrated above, use the new behavior by setting `as_indexer=True`. In this mode, `match` is analogous to `contains`, returning a boolean `Series`. The new behavior will become the default behavior in a future release.

Methods like `match`, `contains`, `startswith`, and `endswith` take an extra `na` argument so missing values can be considered True or False:

10.3. Extracting Substrings
In [27]: s4 = Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [28]: s4.str.contains('A', na=False)
Out[28]:
0 True
1 False
2 False
3 True
4 False
5 False
6 True
7 False
8 False
dtype: bool

10.3.2 Creating Indicator Variables

You can extract dummy variables from string columns. For example if they are separated by a `'|'`:

In [29]: s = Series(['a', 'a|b', np.nan, 'a|c'])

In [30]: s.str.get_dummies(sep='|')
Out[30]:
 a b c
0 1 0 0
1 1 1 0
2 0 0 0
3 1 0 1

See also get_dummies().

pandas: powerful Python data analysis toolkit, Release 0.15.1

314 Chapter 10. Working with Text Data
10.4 Method Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cat()</code></td>
<td>Concatenate strings</td>
</tr>
<tr>
<td><code>split()</code></td>
<td>Split strings on delimiter</td>
</tr>
<tr>
<td><code>get()</code></td>
<td>Index into each element (retrieve i-th element)</td>
</tr>
<tr>
<td><code>join()</code></td>
<td>Join strings in each element of the Series with passed separator</td>
</tr>
<tr>
<td><code>contains()</code></td>
<td>Return boolean array if each string contains pattern/regex</td>
</tr>
<tr>
<td><code>replace()</code></td>
<td>Replace occurrences of pattern/regex with some other string</td>
</tr>
<tr>
<td><code>repeat()</code></td>
<td>Duplicate values (s.str.repeat(3) equivalent to x * 3)</td>
</tr>
<tr>
<td><code>pad()</code></td>
<td>Add whitespace to left, right, or both sides of strings</td>
</tr>
<tr>
<td><code>center()</code></td>
<td>Equivalent to pad(side='both')</td>
</tr>
<tr>
<td><code>wrap()</code></td>
<td>Split long strings into lines with length less than a given width</td>
</tr>
<tr>
<td><code>slice()</code></td>
<td>Slice each string in the Series</td>
</tr>
<tr>
<td><code>slice_replace()</code></td>
<td>Replace slice in each string with passed value</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Count occurrences of pattern</td>
</tr>
<tr>
<td><code>startswith()</code></td>
<td>Equivalent to str.startswith(pat) for each element</td>
</tr>
<tr>
<td><code>endswith()</code></td>
<td>Equivalent to str.endswith(pat) for each element</td>
</tr>
<tr>
<td><code>findall()</code></td>
<td>Compute list of all occurrences of pattern/regex for each string</td>
</tr>
<tr>
<td><code>match()</code></td>
<td>Call <code>re.match</code> on each element, returning matched groups as list</td>
</tr>
<tr>
<td><code>extract()</code></td>
<td>Call <code>re.match</code> on each element, as <code>match</code> does, but return matched groups as strings for convenience.</td>
</tr>
<tr>
<td><code>len()</code></td>
<td>Compute string lengths</td>
</tr>
<tr>
<td><code>strip()</code></td>
<td>Equivalent to <code>str.strip</code></td>
</tr>
<tr>
<td><code>rstrip()</code></td>
<td>Equivalent to <code>str.rstrip</code></td>
</tr>
<tr>
<td><code>lstrip()</code></td>
<td>Equivalent to <code>str.lstrip</code></td>
</tr>
<tr>
<td><code>lower()</code></td>
<td>Equivalent to <code>str.lower</code></td>
</tr>
<tr>
<td><code>upper()</code></td>
<td>Equivalent to <code>str.upper</code></td>
</tr>
</tbody>
</table>
11.1 Overview

pandas has an options system that lets you customize some aspects of its behaviour, display-related options being those the user is most likely to adjust.

Options have a full “dotted-style”, case-insensitive name (e.g. display.max_rows). You can get/set options directly as attributes of the top-level options attribute:

```python
In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999

In [4]: pd.options.display.max_rows
Out[4]: 999
```

There is also an API composed of 5 relevant functions, available directly from the pandas namespace, and they are:

- `get_option()` / `set_option()` - get/set the value of a single option.
- `reset_option()` - reset one or more options to their default value.
- `describe_option()` - print the descriptions of one or more options.
- `option_context()` - execute a codeblock with a set of options that revert to prior settings after execution.

Note: developers can check out pandas/core/config.py for more info.

All of the functions above accept a regexp pattern (re.search style) as an argument, and so passing in a substring will work - as long as it is unambiguous:

```python
In [5]: pd.get_option("display.max_rows")
Out[5]: 999

In [6]: pd.set_option("display.max_rows", 101)

In [7]: pd.get_option("display.max_rows")
Out[7]: 101

In [8]: pd.set_option("max_r", 102)

In [9]: pd.get_option("display.max_rows")
Out[9]: 102
```
The following will **not work** because it matches multiple option names, e.g. `display.max_colwidth`, `display.max_rows`, `display.max_columns`:

```python
In [10]: try:
    ....:     pd.get_option("column")
    ....:     except KeyError as e:
    ....:         print(e)
    ....:
'Pattern matched multiple keys'
```

Note: Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.

You can get a list of available options and their descriptions with `describe_option`. When called with no argument `describe_option` will print out the descriptions for all available options.

11.2 Getting and Setting Options

As described above, `get_option()` and `set_option()` are available from the pandas namespace. To change an option, call `set_option('option regex', new_value)`

```python
In [11]: pd.get_option('mode.sim_interactive')
Out[11]: False

In [12]: pd.set_option('mode.sim_interactive', True)
In [13]: pd.get_option('mode.sim_interactive')
Out[13]: True
```

Note: that the option `mode.sim_interactive` is mostly used for debugging purposes.

All options also have a default value, and you can use `reset_option` to do just that:

```python
In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)
In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")
In [18]: pd.get_option("display.max_rows")
Out[18]: 60
```

It's also possible to reset multiple options at once (using a regex):

```python
In [19]: pd.reset_option("^display")
```

height has been deprecated.

line_width has been deprecated, use display.width instead (currently both are identical)

option_context context manager has been exposed through the top-level API, allowing you to execute code with given option values. Option values are restored automatically when you exit the `with` block:
In [20]: with pd.option_context("display.max_rows", 10, "display.max_columns", 5):
 : print(pd.get_option("display.max_rows"))
 : print(pd.get_option("display.max_columns"))
 :
10
5

In [21]: print(pd.get_option("display.max_rows"))
60

In [22]: print(pd.get_option("display.max_columns"))
20

11.3 Setting Startup Options in python/ipython Environment

Using startup scripts for the python/ipython environment to import pandas and set options makes working with pandas more efficient. To do this, create a .py or .ipy script in the startup directory of the desired profile. An example where the startup folder is in a default ipython profile can be found at:

```
$IPYTHONDIR/profile_default/startup
```

More information can be found in the ipython documentation. An example startup script for pandas is displayed below:

```python
import pandas as pd
pd.set_option('display.max_rows', 999)
pd.set_option('precision', 5)
```

11.4 Frequently Used Options

The following is a walkthrough of the more frequently used display options.

`display.max_rows` and `display.max_columns` sets the maximum number of rows and columns displayed when a frame is pretty-printed. Truncated lines are replaced by an ellipsis.

```
In [23]: df=pd.DataFrame(np.random.randn(7,2))
In [24]: pd.set_option('max_rows', 7)
In [25]: df
Out[25]:
    0   1
0 0.4691 0.282863
1 -1.509 1.135632
2 1.212 0.173215
3 0.119 0.044236
4 -0.861 2.104569
5 -0.495 1.071804
6 0.721 0.706771
```

```
In [26]: pd.set_option('max_rows', 5)
In [27]: df
Out[27]:
```

11.3. Setting Startup Options in python/ipython Environment
pandas: powerful Python data analysis toolkit, Release 0.15.1

In [28]: pd.reset_option('max_rows')

display.expand_frame_repr allows for the representation of dataframes to stretch across pages, wrapped over the full column vs row-wise.

In [29]: df = pd.DataFrame(np.random.randn(5, 10))

In [30]: pd.set_option('expand_frame_repr', True)

In [31]: df
Out[31]:
0 0.271860 0.577046 -1.715002 -1.039268 -0.370647 -1.157892 -1.344312
 1.643563 -1.469388 0.357021 0.126401 -0.741121 -1.291773
 -0.013960 -0.362543 0.061542 -0.923061 0.895717 0.805244
 -1.170299 -0.226169 0.410835 0.813850 0.132009 -0.827317

7 0.113648 -0.478427 0.524988
1 0.844885 1.075770 0.109050
2 0.413738 0.276662 -0.472035
3 2.565646 1.431256 1.340309
4 -1.187678 1.130127 -1.436737

In [32]: pd.set_option('expand_frame_repr', False)

In [33]: df
Out[33]:
0 1 2 3 4 5 6 7 8 9
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401 -0.673690 0.113648 -0.478427 0.524988
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892 -1.344312 0.844885 1.075770 -0.109050
2 1.643563 -1.469388 0.357021 -0.741121 -1.291773
3 -0.013960 -0.362543 0.061542 -0.923061 0.895717 0.805244
4 -1.170299 -0.226169 0.410835 0.813850 0.132009 -0.827317

In [34]: pd.reset_option('expand_frame_repr')

display.large_repr lets you select whether to display dataframes that exceed max_columns or max_rows as a truncated frame, or as a summary.

In [35]: df = pd.DataFrame(np.random.randn(10, 10))

In [36]: pd.set_option('max_rows', 5)

In [37]: pd.set_option('large_repr', 'truncate')

In [38]: df
Out[38]:
0 1 2 3 4 5 6 7 8 9
0 -1.039575 0.271860 -0.424972 0.567020 0.276232 -1.087401 -0.673690 0.113648 -0.478427 0.524988
1 0.404705 0.577046 -1.715002 -1.039268 -0.370647 -1.157892 -1.344312 0.844885 1.075770 -0.109050
2 1.643563 -1.469388 0.357021 -0.741121 -1.291773
3 -0.013960 -0.362543 0.061542 -0.923061 0.895717 0.805244
4 -1.170299 -0.226169 0.410835 0.813850 0.132009 -0.827317

Chapter 11. Options and Settings
In [39]: pd.set_option('large_repr', 'info')

In [40]: df
Out[40]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0 10 non-null float64
1 10 non-null float64
2 10 non-null float64
3 10 non-null float64
4 10 non-null float64
5 10 non-null float64
6 10 non-null float64
7 10 non-null float64
8 10 non-null float64
9 10 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes

In [41]: pd.reset_option('large_repr')

In [42]: pd.reset_option('max_rows')

display.max_columnwidth sets the maximum width of columns. Cells of this length or longer will be truncated with an ellipsis.

In [43]: df = pd.DataFrame(np.array([['foo', 'bar', 'bim', 'uncomfortably long string'], ['horse', 'cow', 'banana', 'apple']]))

In [44]: pd.set_option('max_colwidth', 40)

In [45]: df
Out[45]:
foo bar bim uncomfortably long string
horse cow banana apple

In [46]: pd.set_option('max_colwidth', 6)

In [47]: df
display.max_info_columns sets a threshold for when by-column info will be given.

In [49]: df=pd.DataFrame(np.random.randn(10,10))

In [50]: pd.set_option('max_info_columns', 11)

In [51]: df.info()

In [52]: pd.set_option('max_info_columns', 5)

In [53]: df.info()

In [54]: pd.reset_option('max_info_columns')

display.max_info_rows: df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. Note that you can specify the option df.info(null_counts=True) to override on showing a particular frame.

In [55]: df=pd.DataFrame(np.random.choice([0,1,np.nan],size=(10,10)))

In [56]: df

Out[56]:

0 1 2 3 4 5 6 7 8 9
0 0 1 1 0 1 1 0 NaN 1 NaN
1 1 NaN 0 0 1 1 NaN 1 0 1
2 NaN NaN 1 1 0 NaN 0 1 NaN
3 0 1 1 NaN 0 NaN 1 NaN NaN 0
4 0 1 0 0 1 0 0 NaN 0 0
5 0 NaN 1 NaN NaN NaN 1 NaN 0 NaN
6 0 1 0 0 NaN 1 NaN NaN 0 NaN
7 0 NaN 1 1 NaN 1 1 1 1 NaN
8 0 0 NaN 0 NaN 1 0 0 NaN NaN
9 NaN NaN 0 NaN NaN NaN 0 1 1 NaN

In [57]: pd.set_option('max_info_rows', 11)

In [58]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0 8 non-null float64
1 5 non-null float64
2 8 non-null float64
3 7 non-null float64
4 5 non-null float64
5 7 non-null float64
6 6 non-null float64
7 6 non-null float64
8 8 non-null float64
9 3 non-null float64
dtypes: float64(10)
memory usage: 880.0 bytes

In [59]: pd.set_option('max_info_rows', 5)

In [60]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10 entries, 0 to 9
Data columns (total 10 columns):
0 float64
1 float64
2 float64
3 float64
4 float64
5 float64
6 float64
7 float64
8 float64
9 float64
dtypes: float64(10)
memory usage: 880.0 bytes

In [61]: pd.reset_option('max_info_rows')

display.precision sets the output display precision. This is only a suggestion.

In [62]: df=pd.DataFrame(np.random.randn(5,5))

In [63]: pd.set_option('precision',7)

In [64]: df

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2.049028</td>
<td>2.846612</td>
<td>-1.208049</td>
<td>-0.450392</td>
<td>2.423905</td>
</tr>
<tr>
<td>1</td>
<td>0.121108</td>
<td>0.266916</td>
<td>0.843826</td>
<td>-0.222540</td>
<td>2.021981</td>
</tr>
<tr>
<td>2</td>
<td>-0.716789</td>
<td>-2.224485</td>
<td>-1.061137</td>
<td>-0.232825</td>
<td>0.430793</td>
</tr>
<tr>
<td>3</td>
<td>-0.665478</td>
<td>1.829807</td>
<td>-1.406509</td>
<td>1.078248</td>
<td>0.322774</td>
</tr>
<tr>
<td>4</td>
<td>0.200324</td>
<td>0.890024</td>
<td>0.194813</td>
<td>0.351633</td>
<td>0.448881</td>
</tr>
</tbody>
</table>

In [65]: pd.set_option('precision',4)
display.chop_threshold sets at what level pandas rounds to zero when it displays a Series of DataFrame. Note, this does not effect the precision at which the number is stored.

display.colheader_justify controls the justification of the headers. Options are ‘right’, and ‘left’.

In [77]: df
Out[77]:
 A B C
0 0.933 0.3 0.0
1 0.289 0.2 0.0
2 1.325 0.2 0.0
3 0.589 0.7 0.0
4 0.531 0.1 0.0
5 -1.199 0.7 0.0

In [78]: pd.reset_option('colheader_justify')

11.5 List of Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>display.chop_threshold</td>
<td>None</td>
<td>If set to a float value, all float values smaller then the given threshold will be displayed as 0.</td>
</tr>
<tr>
<td>display.colheader_justify</td>
<td>right</td>
<td>Controls the justification of column headers. used by DataFrameFormatter.</td>
</tr>
<tr>
<td>display.column_space</td>
<td>12</td>
<td>No description available.</td>
</tr>
<tr>
<td>display.date_dayfirst</td>
<td>False</td>
<td>When True, prints and parses dates with the day first, eg 20/01/2005</td>
</tr>
<tr>
<td>display.date_yearfirst</td>
<td>False</td>
<td>When True, prints and parses dates with the year first, eg 05/01/02</td>
</tr>
<tr>
<td>display.encoding</td>
<td>UTF-8</td>
<td>Defaults to the detected encoding of the console.</td>
</tr>
</tbody>
</table>
| display.expand_frame_repr| True | Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, \n
display.float_format None The callable should accept a floating point number and return a string with the desired format.

display.height 60 Deprecated. Use display.max_rows instead.

display.large_repr truncate For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated output.

display.line_width 80 Deprecated. Use display.width instead.

display.max_columns 20 max_rows and max_columns are used in __repr__() methods to decide if to_string() or info() is used.

display.max_colwidth 50 The maximum width in characters of a column in the repr of a pandas data structure. When max_colwidth is set to None, the maximum width of a column is not limited.

display.max_info_columns 100 max_info_columns is used in DataFrame.info method to decide if per column information is printed.

display.max_info_rows 1690785 df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows limits this null check only to frames with smaller dimensions than specified.

display.max_rows 60 This sets the maximum number of rows pandas should output when printing out various objects.

display.max_seq_items 100 when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “...” to the resulting string. If set to None, the number of items to be printed is unlimited.

display.memory_usage True This specifies if the memory usage of a DataFrame should be displayed when the df.info() method is invoked.

display.mpl_style None Setting this to ‘default’ will modify reParams used by matplotlib to give plots a more pretty look.

display.multi_sparse True “Sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups).

display.notebook_repr_html True When True, IPython notebook will use html representation for pandas objects (if it is available).

display.pprint_nest_depth 3 Controls the number of nested levels to process when pretty-printing.

display.precision 7 Floating point output precision (number of significant digits). This is only a suggestion.

display.show_dimensions truncate Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only the first max_info_columns columns are printed.

display.width 80 Width of the display in characters. In case python/IPython is running in a terminal this can be increased.

io.excel.xls.writer xlwt The default Excel writer engine for ‘xls’ files.

io.excel.xltx.writer openpyxl The default Excel writer engine for ‘xlsx’ files.

io.hdf.default_format None default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’.

io.hdf.dropna_table True drop ALL nan rows when appending to a table.

mode.chained_assignment warn Raise an exception, warn, or no action if trying to use chained assignment, The default is warn.

mode.sim_interactive False Whether to simulate interactive mode for purposes of testing.

mode.use_inf_as_null False True means treat NaN, NaN, NaN as null (old way), False means None and NaN are

11.5. List of Options 325
11.6 Number Formatting

pandas also allow you to set how numbers are displayed in the console. This option is not set through the `set_options` API.

Use the `set_eng_float_format` function to alter the floating-point formatting of pandas objects to produce a particular format.

For instance:

```
In [79]: import numpy as np

In [80]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)

In [81]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [82]: s/1.e3
Out[82]:
   a   -236.866u
   b    846.974u
   c   -685.597u
   d    609.099u
   e   -303.961u
dtype: float64

In [83]: s/1.e6
Out[83]:
   a   -236.866n
   b    846.974n
   c   -685.597n
   d    609.099n
   e   -303.961n
dtype: float64
```
INDEXING AND SELECTING DATA

The axis labeling information in pandas objects serves many purposes:

- Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display
- Enables automatic and explicit data alignment
- Allows intuitive getting and setting of subsets of the data set

In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area. Expect more work to be invested higher-dimensional data structures (including Panel) in the future, especially in label-based advanced indexing.

Note: The Python and NumPy indexing operators [] and attribute operator . provide quick and easy access to pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy

Warning: In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

See the MultiIndex / Advanced Indexing for MultiIndex and more advanced indexing documentation.
See the cookbook for some advanced strategies

12.1 Different Choices for Indexing

New in version 0.11.0. Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing.

- .loc is strictly label based, will raise KeyError when the items are not found, allowed inputs are:
 - A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
– A list or array of labels ['a', 'b', 'c']
– A slice object with labels 'a': 'f', (note that contrary to usual python slices, both the start and the stop are included!)
– A boolean array

See more at Selection by Label

• .iloc is strictly integer position based (from 0 to length-1 of the axis), will raise IndexError if an indexer is requested and it is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with python/numpy slice semantics). Allowed inputs are:
 – An integer e.g. 5
 – A list or array of integers [4, 3, 0]
 – A slice object with ints 1:7

See more at Selection by Position

• .ix supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. .ix is the most general and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierarchical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing and Advanced Hierarchical.

Getting values from an object with multi-axes selection uses the following notation (using .loc as an example, but applies to .iloc and .ix as well). Any of the axes accessors may be the null slice :. Axes left out of the specification are assumed to be :. (e.g. p.loc['a'] is equiv to p.loc['a', :, :])

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Indexers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td>s.loc[indexer]</td>
</tr>
<tr>
<td>DataFrame</td>
<td>df.loc[row_indexer, column_indexer]</td>
</tr>
<tr>
<td>Panel</td>
<td>p.loc[item_indexer, major_indexer, minor_indexer]</td>
</tr>
</tbody>
</table>

12.2 Deprecations

Beginning with version 0.11.0, it’s recommended that you transition away from the following methods as they may be deprecated in future versions.

• irow
• icol
• iget_value

See the section Selection by Position for substitutes.

12.3 Basics

As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a. __getitem__ for those familiar with implementing class behavior in Python) is selecting out lower-dimensional slices. Thus,
Here we construct a simple time series data set to use for illustrating the indexing functionality:

```
In [1]: dates = date_range('1/1/2000', periods=8)

In [2]: df = DataFrame(randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])

In [3]: df
Out[3]:
   A         B         C         D
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804
2000-01-04  0.721555 -0.706771 -1.039575  0.271860
2000-01-05 -0.424972  0.567020  0.276232 -1.087401
2000-01-06 -0.673690  0.113648 -1.478427  0.524988
2000-01-07  0.404705  0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312  0.844885
```

```
In [4]: panel = Panel({'one' : df, 'two' : df - df.mean()})

In [5]: panel
Out[5]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 8 (major_axis) x 4 (minor_axis)
Items axis: one to two
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00
Minor_axis axis: A to D
```

Note: None of the indexing functionality is time series specific unless specifically stated.

Thus, as per above, we have the most basic indexing using []:

```
In [6]: s = df['A']

In [7]: s[dates[5]]
Out[7]: -0.67369070808837025
```

```
In [8]: panel['two']
Out[8]:
   A         B         C         D
2000-01-01  0.409571  0.113086 -0.610826 -0.936507
2000-01-02  1.152571  0.222735  1.017442 -0.845111
2000-01-03 -0.921390 -1.708620  0.403304  1.270929
2000-01-04  0.662014 -0.310822 -0.141342  0.470985
2000-01-05 -0.484513  0.962970  1.174465 -0.888276
2000-01-06 -0.733231  0.509598 -0.580194  0.724113
2000-01-07  0.345164  0.972995 -0.816769 -0.840143
2000-01-08 -0.430188 -0.761943 -0.446079  1.044010
```

You can pass a list of columns to [] to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner:
In [9]: df
Out[9]:
+-----------+-----------+-----------+-----------+
<table>
<thead>
<tr>
<th>Date</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>1.071804</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
<td>-1.039268</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>-0.370647</td>
<td>-1.157892</td>
<td>-1.344312</td>
<td>0.844885</td>
</tr>
</tbody>
</table>
+-----------+-----------+-----------+-----------+-----------+

In [10]: df[['B', 'A']] = df[['A', 'B']]

In [11]: df
Out[11]:
+-----------+-----------+-----------+-----------+
<table>
<thead>
<tr>
<th>Date</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>-0.282863</td>
<td>0.469112</td>
<td>-1.509059</td>
<td>-1.135632</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-0.173215</td>
<td>1.212112</td>
<td>0.119209</td>
<td>-1.044236</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>-2.104569</td>
<td>-0.861849</td>
<td>-0.494929</td>
<td>1.071804</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>0.721555</td>
<td>0.706771</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
<td>-1.039268</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>-0.370647</td>
<td>-1.157892</td>
<td>-1.344312</td>
<td>0.844885</td>
</tr>
</tbody>
</table>
+-----------+-----------+-----------+-----------+-----------+

You may find this useful for applying a transform (in-place) to a subset of the columns.

12.4 Attribute Access

You may access an index on a `Series`, column on a `DataFrame`, and an item on a `Panel` directly as an attribute:

In [12]: sa = Series([1,2,3],index=list('abc'))

In [13]: dfa = df.copy()

In [14]: sa.b
Out[14]: 2

In [15]: dfa.A
Out[15]:
Freq: D, Name: A, dtype: float64

In [16]: panel.one
Out[16]:
Freq: A, dtype: float64
You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it fails silently, creating a new attribute rather than a new column.

```python
In [17]: sa.a = 5

In [18]: sa
Out[18]:
a  5
b  2
c  3
dtype: int64
```

```python
In [19]: dfa.A = list(range(len(dfa.index)))  # ok if A already exists

In [20]: dfa
Out[20]:
   A   B      C     D
2000-01-01 0  0.469112 -1.509059 -1.135632
2000-01-02 1  1.212112  0.119209 -1.044236
2000-01-03 2 -0.861849 -0.494929  1.071804
2000-01-04 3  0.721555 -1.039575  0.271860
2000-01-05 4 -0.424972  0.276232 -1.087401
2000-01-06 5 -0.673690 -1.478427  0.524988
2000-01-07 6  0.404705 -1.715002 -1.039268
2000-01-08 7 -0.370647 -1.344312  0.844885
```

```python
In [21]: dfa['A'] = list(range(len(dfa.index)))  # use this form to create a new column

In [22]: dfa
Out[22]:
   A   B      C     D
2000-01-01 0  0.469112 -1.509059 -1.135632
2000-01-02 1  1.212112  0.119209 -1.044236
2000-01-03 2 -0.861849 -0.494929  1.071804
2000-01-04 3  0.721555 -1.039575  0.271860
2000-01-05 4 -0.424972  0.276232 -1.087401
2000-01-06 5 -0.673690 -1.478427  0.524988
2000-01-07 6  0.404705 -1.715002 -1.039268
2000-01-08 7 -0.370647 -1.344312  0.844885
```

Warning:
- You can use this access only if the index element is a valid python identifier, e.g. `s.1` is not allowed. See here for an explanation of valid identifiers.
- The attribute will not be available if it conflicts with an existing method name, e.g. `s.min` is not allowed.
- Similarly, the attribute will not be available if it conflicts with any of the following list: `index, major_axis, minor_axis, items, labels`.
- In any of these cases, standard indexing will still work, e.g. `s[‘1’], s[‘min’], and s[‘index’]` will access the corresponding element or column.
- The `Series/Panel` accesses are available starting in 0.13.0.
If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.

12.5 Slicing ranges

The most robust and consistent way of slicing ranges along arbitrary axes is described in the *Selection by Position* section detailing the `.iloc` method. For now, we explain the semantics of slicing using the `[]` operator.

With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:

```python
In [23]: s[:5]
Out[23]:
2000-01-01  -0.282863
2000-01-02  -0.173215
2000-01-03  -2.104569
2000-01-04  -0.706771
2000-01-05   0.567020
Freq: D, Name: A, dtype: float64
```

```python
In [24]: s[::2]
Out[24]:
2000-01-01  -0.282863
2000-01-03  -2.104569
2000-01-05   0.567020
2000-01-07   0.577046
Freq: 2D, Name: A, dtype: float64
```

```python
In [25]: s[::-1]
Out[25]:
2000-01-08  -1.157892
2000-01-07   0.577046
2000-01-06   0.113648
2000-01-05   0.567020
2000-01-04  -0.706771
2000-01-03  -2.104569
2000-01-02  -0.173215
2000-01-01  -0.282863
Freq: -1D, Name: A, dtype: float64
```

Note that setting works as well:

```python
In [26]: s2 = s.copy()
In [27]: s2[:5] = 0
In [28]: s2
Out[28]:
2000-01-01  0.000000
2000-01-02  0.000000
2000-01-03  0.000000
2000-01-04  0.000000
2000-01-05  0.000000
2000-01-06  0.113648
2000-01-07   0.577046
2000-01-08  -1.157892
Freq: D, Name: A, dtype: float64
```

With DataFrame, slicing inside of `[]` slices the rows. This is provided largely as a convenience since it is such a common operation.
In [29]: df[:3]
Out[29]:
 A B C D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-03 -2.104569 -0.861849 -0.494929 1.071804

In [30]: df[::-1]
Out[30]:
 A B C D
2000-01-08 -1.157892 -0.370647 -1.344312 0.844885
2000-01-07 0.577046 0.404705 -1.715002 -1.039268
2000-01-06 0.113648 -0.673690 -1.478427 0.524988
2000-01-05 0.567020 -0.424972 0.276232 -1.087401
2000-01-04 0.706771 0.721555 -1.039575 0.271860
2000-01-03 2.104569 0.861849 -0.494929 1.071804
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632

12.6 Selection By Label

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy

pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol. at least 1 of the labels for which you ask, must be in the index or a KeyError will be raised! When slicing, the start bound is included, AND the stop bound is included. Integers are valid labels, but they refer to the label and not the position.

The `.loc` attribute is the primary access method. The following are valid inputs:

- A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
- A list or array of labels ['a', 'b', 'c']
- A slice object with labels 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!)
- A boolean array

In [31]: s1 = Series(np.random.randn(6),index=list('abcdef'))

In [32]: s1
Out[32]:
a 1.075770
b -0.109050
c 1.643563
d -1.469388
e 0.357021
f -0.674600
dtype: float64

In [33]: s1.loc['c']
Out[33]:
c 1.643563

pandas: powerful Python data analysis toolkit, Release 0.15.1

d -1.469388
e 0.357021
f -0.674600
dtype: float64

In [34]: s1.loc['b']
Out[34]: -0.10904997528022223

Note that setting works as well:

In [35]: s1.loc['c':] = 0

In [36]: s1
Out[36]:
a 1.07577
b 0.00000
c 0.00000
d 0.00000
e 0.00000
f 0.00000
dtype: float64

With a DataFrame

In [37]: df1 = DataFrame(np.random.randn(6,4),
 index=list('abcdef'),
 columns=list('ABCD'))

In [38]: df1
Out[38]:
 A B C D
a -1.776904 -0.968914 -1.294524 0.413738
b 0.276662 -0.472035 -0.013960 -0.362543
c -0.006154 -0.923061 0.895717 0.805244
d -1.206412 2.565646 1.431256 1.340309
e -1.170299 -0.226169 0.410835 0.813850
f 0.132003 -0.827317 -0.076467 -1.187678

In [39]: df1.loc[['a','b','d'],:]
Out[39]:
 A B C D
a -1.776904 -0.968914 -1.294524 0.413738
b 0.276662 -0.472035 -0.013960 -0.362543
d -1.206412 2.565646 1.431256 1.340309

Accessing via label slices

In [40]: df1.loc['d':'','A':'C',:]
Out[40]:
 A B C
a -1.776904 -0.968914 -1.294524 0.413738
b 0.276662 -0.472035 -0.013960 -0.362543
d -1.206412 2.565646 1.431256 1.340309

df1.loc[‘a’]
Out[41]:
 A
a -1.776904

For getting a cross section using a label (equiv to df.xs(‘a’))

In [41]: df1.loc['a']
Out[41]:
 A
a -1.776904
For getting values with a boolean array

```python
In [42]: df1.loc['a']>0
Out[42]:
A  False
B  False
C  False
D  True
Name: a, dtype: bool
```

```python
In [43]: df1.loc[:,df1.loc['a']>0]
Out[43]:
   D
a  0.413738
b -0.362543
c  0.805244
d  1.340309
e  0.813850
f -1.187678
```

For getting a value explicitly (equiv to deprecated `df.get_value('a','A')`)

```python
# this is also equivalent to `''df1.at['a','A']''```
```
In [44]: df1.loc['a','A']
Out[44]: -1.7769037169718671
```

12.7 Selection By Position

**Warning:** Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See [Returning a View versus Copy](#)

pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely python and numpy slicing. These are 0-based indexing. When slicing, the start bounds is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise a `IndexError`.

The `.iloc` attribute is the primary access method. The following are valid inputs:

- An integer e.g. 5
- A list or array of integers `[4, 3, 0]`
- A slice object with ints `1:7`

```python
In [45]: s1 = Series(np.random.randn(5),index=list(range(0,10,2))
```

```python
In [46]: s1
Out[46]:
0 1.130127
2 1.436737
4 1.413681
6 1.607920
8 1.024180
```

12.7. Selection By Position
 dtype: float64

In [47]: s1.iloc[:3]
Out[47]:
0  1.130127
2 -1.436737
4 -1.413681
dtype: float64

In [48]: s1.iloc[3]
Out[48]: 1.6079204745847746

Note that setting works as well:

In [49]: s1.iloc[:3] = 0

In [50]: s1
Out[50]:
0 0.00000
2 0.00000
4 0.00000
6 1.60792
8 1.02418
dtype: float64

With a DataFrame

In [51]: df1 = DataFrame(np.random.randn(6,4),
   ....:     index=list(range(0,12,2)),
   ....:     columns=list(range(0,8,2))
   ....:

In [52]: df1
Out[52]:
     0  2  4  6
0  0.569605  0.875906 -2.211372  0.974466
2 -2.006747 -0.410001 -0.078638  0.545952
4 -1.219217 -1.226825  0.769804 -1.281247
6 -0.727707 -0.121306 -0.097883  0.695775
8  0.341734  0.959726 -1.110336 -0.619976
10 0.149748 -0.732339  0.687738  0.176444

Select via integer slicing

In [53]: df1.iloc[:3]
Out[53]:
     0  2  4  6
0  0.569605  0.875906 -2.211372  0.974466
2 -2.006747 -0.410001 -0.078638  0.545952
4 -1.219217 -1.226825  0.769804 -1.281247

In [54]: df1.iloc[1:5,2:4]
Out[54]:
     2  4  6
0 -0.727707  0.545952
2 -0.078638  0.545952
4  0.769804 -1.281247
6 -0.097883  0.695775
8 -1.110336 -0.619976

Select via integer list
In [55]: df1.iloc[[1,3,5],[1,3]]
Out[55]:
        2  6
   2  -0.410001  0.545952
   6  -0.121306  0.695775
 10  -0.732339  0.176444

For slicing rows explicitly (equiv to deprecated df.irow(slice(1,3))).

In [56]: df1.iloc[1:3,:]
Out[56]:
   0  2  4  6
 2 -2.006747 -0.410001 -0.078638  0.545952
 4 -1.219217 -1.226825  0.769804 -1.281247

For slicing columns explicitly (equiv to deprecated df.icol(slice(1,3))).

In [57]: df1.iloc[:,1:3]
Out[57]:
       2
   0  0.875906
   2 -0.410001
   4 -0.078638
   6  0.545952
   8  0.959726
 10 -0.097883

For getting a scalar via integer position (equiv to deprecated df.get_value(1,1))

# this is also equivalent to ''df1.iat[1,1]''
In [58]: df1.iloc[1,1]
Out[58]: -0.41000056806065832

For getting a cross section using an integer position (equiv to df.xs(1))

In [59]: df1.iloc[1]
Out[59]:
   0  -2.006747
   2  -0.410001
   4  -0.078638
   6   0.545952
Name: 2, dtype: float64

Out of range slice indexes are handled gracefully just as in Python/Numpy.

# these are allowed in python/numpy.
# Only works in Pandas starting from v0.14.0.
In [60]: x = list('abcdef')

In [61]: x
Out[61]: ['a', 'b', 'c', 'd', 'e', 'f']

In [62]: x[4:10]
Out[62]: ['e', 'f']

In [63]: x[8:10]
Out[63]: []

In [64]: s = Series(x)
```python
In [65]: s
Out[65]:
0 a
1 b
2 c
3 d
4 e
 dtype: object

In [66]: s.iloc[4:10]
Out[66]:
4 e
5 f
 dtype: object

In [67]: s.iloc[8:10]
Out[67]: Series([], dtype: object)
```

**Note:** Prior to v0.14.0, `iloc` would not accept out of bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed.

Note that this could result in an empty axis (e.g. an empty DataFrame being returned)

```python
In [68]: dfl = DataFrame(np.random.randn(5,2),columns=list('AB'))
In [69]: dfl
Out[69]:
 A B
0 0.403310 -0.154951
1 0.301624 -2.179861
2 -1.369849 -0.954208
3 1.462696 -1.743161
4 -0.826591 -0.345352

In [70]: dfl.iloc[:,2:3]
Out[70]:
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [71]: dfl.iloc[:,1:3]
Out[71]:
 B
0 -0.154951
1 -2.179861
2 -0.954208
3 -1.743161
4 -0.345352

In [72]: dfl.iloc[4:6]
Out[72]:
 A B
0 0.826591 -0.345352
4 -0.826591 -0.345352
```

A single indexer that is out of bounds will raise an `IndexError`. A list of indexers where any element is out of bounds will raise an `IndexError`
12.8 Setting With Enlargement

New in version 0.13. The `.loc/.ix/[]` operations can perform enlargement when setting a non-existant key for that axis.

In the `Series` case this is effectively an appending operation

```python
In [73]: se = Series([1,2,3])

In [74]: se
Out[74]:
0 1
1 2
2 3
dtype: int64

In [75]: se[5] = 5.

In [76]: se
Out[76]:
0 1
1 2
2 3
5 5
dtype: float64
```

A `DataFrame` can be enlarged on either axis via `.loc`

```python
In [77]: dfi = DataFrame(np.arange(6).reshape(3,2),
 columns=['A','B'])

In [78]: dfi
Out[78]:
 A B
0 0 1
1 2 3
2 4 5

In [79]: dfi.loc[:, 'C'] = dfi.loc[:, 'A']

In [80]: dfi
Out[80]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4
```

This is like an append operation on the `DataFrame`. 
In [81]: dfi.loc[3] = 5
In [82]: dfi
Out[82]:
   A  B  C
0  0  1  0
1  2  3  2
2  4  5  4
3  5  5  5

12.9 Fast scalar value getting and setting

Since indexing with [] must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to use the at and iat methods, which are implemented on all of the data structures.

Similarly to loc, at provides label based scalar lookups, while, iat provides integer based lookups analogously to iloc

In [83]: s.iat[5]
Out[83]: 'f'
In [84]: df.at[dates[5], 'A']
Out[84]: 0.11364840968888545
In [85]: df.iat[3, 0]
Out[85]: -0.70677113363008448

You can also set using these same indexers.

In [86]: df.at[dates[5], 'E'] = 7
In [87]: df.iat[3, 0] = 7

at may enlarge the object in-place as above if the indexer is missing.

In [88]: df.at[dates[-1]+1, 0] = 7

In [89]: df
Out[89]:
   A  B  C  D  E
0  0.282863 0.469112 -1.509059 -1.135632 NaN  NaN
1 -0.173215 1.212112  0.119209 -1.044236 NaN  NaN
2 -2.104569 -0.861849 -0.494929  1.071804 NaN  NaN
3  7.000000 0.721555 -1.344312  0.844885 NaN  NaN
4 -1.157892 -0.370647 -1.344312  0.844885 NaN  NaN
5  0.567020 -0.424972  0.276232 -1.087401 NaN  NaN
6  0.577046 0.404705 -1.715002 -1.039268 NaN  NaN
7 -1.157892 -0.370647 -1.344312  0.844885 NaN  NaN
8  0.567020 -0.424972  0.276232 -1.087401 NaN  NaN
9  0.577046 0.404705 -1.715002 -1.039268 NaN  NaN
10 0.282863 0.469112 -1.509059 -1.135632 NaN  NaN

12.10 Boolean indexing

Another common operation is the use of boolean vectors to filter the data. The operators are: | for or, & for and, and ~ for not. These must be grouped by using parentheses.
Using a boolean vector to index a Series works exactly as in a numpy ndarray:

```
In [90]: s[s > 0]
Out[90]:
0 a
1 b
2 c
3 d
4 e
5 f
dtype: object
```

```
In [91]: s[(s < 0) & (s > -0.5)]
Out[91]: Series([], dtype: object)
```

```
In [92]: s[(s < -1) | (s > 1)]
Out[92]:
0 a
1 b
2 c
3 d
4 e
5 f
dtype: object
```

```
In [93]: s[~(s < 0)]
Out[93]:
0 a
1 b
2 c
3 d
4 e
5 f
dtype: object
```

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example, something derived from one of the columns of the DataFrame):

```
In [94]: df[df['A'] > 0]
Out[94]:
 A B C D E
0 2000-01-04 7.000000 0.721555 -1.039575 0.271860 NaN NaN
1 2000-01-05 0.567020 -0.424972 0.276232 -1.087401 NaN NaN
2 2000-01-06 0.113648 -0.673690 -1.478427 0.524988 7 NaN
3 2000-01-07 0.577046 0.404705 -1.715002 -1.039268 NaN NaN
```

List comprehensions and map method of Series can also be used to produce more complex criteria:

```
In [95]:
df2 = DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
....: 'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
....: 'c' : randn(7)})

only want 'two' or 'three'
In [96]: criterion = df2['a'].map(lambda x: x.startswith('t'))

In [97]: df2[criterion]
Out[97]:
 a b c
0 2 y 0.995761
```


3 three x 2.396780
4 two y 0.014871

# equivalent but slower
In [98]: df2[[x.startswith('t') for x in df2['a']]]
Out[98]:
   a  b  c
  2 two y 0.995761
  3 three x 2.396780
  4 two y 0.014871

# Multiple criteria
In [99]: df2[criterion & (df2['b'] == 'x')]
Out[99]:
   a  b  c
  3 three x 2.39678

Note, with the choice methods Selection by Label, Selection by Position, and Advanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions.

In [100]: df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']
Out[100]:
   b  c
  3 x 2.39678

12.11 Indexing with isin

Consider the isin method of Series, which returns a boolean vector that is true wherever the Series elements exist in the passed list. This allows you to select rows where one or more columns have values you want:

In [101]: s = Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')

In [102]: s
Out[102]:
   4 0
   3 1
   2 2
   1 3
   0 4
dtype: int64

In [103]: s.isin([2, 4, 6])
Out[103]:
   4 False
   3 False
   2 True
   1 False
   0 True
dtype: bool

In [104]: s[s.isin([2, 4, 6])]
Out[104]:
   2 2
   0 4
dtype: int64
The same method is available for Index objects and is useful for the cases when you don’t know which of the sought labels are in fact present:

```python
In [105]: s[s.index.isin([2, 4, 6])]
Out[105]:
 4 0
 2 2
dtype: int64
```

# compare it to the following

```python
In [106]: s[[2, 4, 6]]
Out[106]:
 2 2
 4 0
 6 NaN
dtype: float64
```

In addition to that, MultiIndex allows selecting a separate level to use in the membership check:

```python
In [107]: s_mi = Series(np.arange(6),
....: index=pd.MultiIndex.from_product([0, 1], [\'a\', \'b\', \'c\']))
....:
...
In [108]: s_mi
Out[108]:
 0 a 0
 b 1
 c 2
 1 a 3
 b 4
 c 5
dtype: int32

In [109]: s_mi.iloc[s_mi.index.isin([(1, \'a\'), (2, \'b\'), (0, \'c\')])]
Out[109]:
 0 c 2
 1 a 3
dtype: int32

In [110]: s_mi.iloc[s_mi.index.isin([\'a\', \'c\', \'e\'], level=1)]
Out[110]:
 0 a 0
 c 2
 1 a 3
 c 5
dtype: int32
```

DataFrame also has an isin method. When calling isin, pass a set of values as either an array or dict. If values is an array, isin returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever the element is in the sequence of values.

```python
In [111]: df = DataFrame(\{'vals\': [1, 2, 3, 4], \'ids\': [\'a\', \'b\', \'f\', \'n\'],
....: \'ids2\': [\'a\', \'n\', \'c\', \'n\']
....: }
....:
In [112]: values = [\'a\', \'b\', 1, 3]

In [113]: df.isin(values)
Out[113]:
```
Oftentimes you’ll want to match certain values with certain columns. Just make values a `dict` where the key is the column, and the value is a list of items you want to check for.

```
In [114]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}
```

```
In [115]: df.isin(values)
Out[115]:
 ids ids2 vals
0 True True True
1 True False False
2 False False True
3 False False False
```

Combine DataFrame’s `isin` with the `any()` and `all()` methods to quickly select subsets of your data that meet a given criteria. To select a row where each column meets its own criterion:

```
In [116]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}
In [117]: row_mask = df.isin(values).all(1)
In [118]: df[row_mask]
```

```
 ids ids2 vals
0 a a 1
```

### 12.12 The `where()` Method and Masking

Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection output has the same shape as the original data, you can use the `where` method in `Series` and `DataFrame`.

To return only the selected rows

```
In [119]: s[s > 0]
Out[119]:
3 1
2 2
1 3
0 4
dtype: int64
```

To return a Series of the same shape as the original

```
In [120]: s.where(s > 0)
Out[120]:
4 NaN
3 1
2 2
1 3
0 4
dtype: float64
```
Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. `where` is used under the hood as the implementation. Equivalent is `df.where(df < 0)`

```python
In [121]: df[df < 0]
Out[121]:
A B C D
2000-01-01 -1.236269 NaN -0.487602 -0.082240
2000-01-02 2.182937 NaN NaN NaN
2000-01-03 NaN -0.493662 NaN NaN
2000-01-04 NaN 0.023688 NaN NaN
2000-01-05 NaN -0.251905 2.213588 NaN
2000-01-06 NaN NaN -0.863838 NaN
2000-01-07 NaN NaN NaN -0.988387 NaN
2000-01-08 NaN NaN NaN NaN
```

In addition, `where` takes an optional `other` argument for replacement of values where the condition is False, in the returned copy.

```python
In [122]: df.where(df < 0, -df)
Out[122]:
A B C D
2000-01-01 -1.236269 -0.896171 -0.487602 -0.082240
2000-01-02 0.380396 -0.084844 -0.432390 NaN
2000-01-03 NaN -0.493662 NaN NaN
2000-01-04 -0.132885 -0.600178 -0.082240 NaN
2000-01-05 NaN 2.410179 -1.450520 NaN
2000-01-06 NaN -0.000000 -1.063327 NaN
2000-01-07 NaN -0.000000 -0.094055 NaN
2000-01-08 NaN NaN NaN NaN
```

You may wish to set values based on some boolean criteria. This can be done intuitively like so:

```python
In [123]: s2 = s.copy()
In [124]: s2[s2 < 0] = 0
In [125]: s2
Out[125]:
4 0
3 1
2 2
1 3
0 4
dtype: int64
In [126]: df2 = df.copy()
In [127]: df2[df2 < 0] = 0
In [128]: df2
Out[128]:
A B C D
2000-01-01 0.000000 0.896171 0.000000 0.000000
2000-01-02 0.000000 0.380396 0.084844 0.432390
2000-01-03 1.519970 0.000000 0.600178 0.274230
2000-01-04 0.132885 2.410179 1.450520 0.000000
2000-01-05 0.206053 2.213588 1.063327 0.000000
2000-01-06 1.266143 -0.299368 0.000000 0.408204
2000-01-07 1.048089 -0.000000 0.094055 0.000000
2000-01-08 1.262731 1.289997 0.082423 0.000000
```

12.12. The `where()` Method and Masking
By default, `where` returns a modified copy of the data. There is an optional parameter `inplace` so that the original data can be modified without creating a copy:

```
In [129]: df_orig = df.copy()

In [130]: df_orig.where(df > 0, -df, inplace=True);

In [131]: df_orig
```

```
Out[131]:
A B C D
2000-01-01 1.236269 0.896171 0.487602 0.082240
2000-01-02 2.182937 0.380396 0.084844 0.432390
2000-01-03 1.519970 0.493662 0.600178 0.274230
2000-01-04 0.132885 0.023688 2.410179 1.450520
2000-01-05 0.206053 0.251905 2.213588 1.063327
2000-01-06 1.266143 0.299368 0.863838 0.408204
2000-01-07 1.048089 0.025747 0.988387 0.094055
2000-01-08 1.262731 1.289997 0.082423 0.055758
```

Furthermore, `where` aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analogous to partial setting via `.ix` (but on the contents rather than the axis labels)

```
In [132]: df2 = df.copy()

In [133]: df2[df2[1:4] > 0] = 3

In [134]: df2
```

```
Out[134]:
A B C D
2000-01-01 -1.236269 0.896171 -1.236269 -1.236269
2000-01-02 -2.182937 0.380396 0.084844 0.432390
2000-01-03 3.000000 3.000000 3.000000 3.000000
2000-01-04 3.000000 -0.023688 3.000000 3.000000
2000-01-05 0.206053 -0.251905 -2.213588 1.063327
2000-01-06 1.266143 0.299368 -0.863838 0.408204
2000-01-07 -1.048089 -0.025747 -0.988387 0.094055
2000-01-08 1.262731 1.289997 0.082423 -0.055758
```

New in version 0.13. Where can also accept `axis` and `level` parameters to align the input when performing the where.

```
In [135]: df2 = df.copy()

In [136]: df2.where(df2>0,df2['A'],axis='index')
```

```
Out[136]:
A B C D
2000-01-01 -1.236269 0.896171 -1.236269 -1.236269
2000-01-02 -2.182937 0.380396 0.084844 0.432390
2000-01-03 1.519970 1.519970 0.600178 0.274230
2000-01-04 0.132885 0.132885 2.410179 1.450520
2000-01-05 0.206053 0.206053 0.206053 1.063327
2000-01-06 1.266143 0.299368 1.266143 0.408204
2000-01-07 -1.048089 -1.048089 -1.048089 0.094055
2000-01-08 1.262731 1.289997 0.082423 1.262731
```

This is equivalent (but faster than) the following.

346 Chapter 12. Indexing and Selecting Data
In [137]: df2 = df.copy()

In [138]: df.apply(lambda x, y: x.where(x>0, y), y=df['A'])
Out[138]:
          A         B         C         D
2000-01-01 -1.236269  0.896171 -1.236269 -1.236269
2000-01-02 -2.182937  0.380396  0.084844  0.432390
2000-01-03  1.519970  1.519970  0.600178  0.274230
2000-01-04  0.132885  0.132885  2.410179  1.450520
2000-01-05  0.206053  0.206053  0.206053  1.063327
2000-01-06  1.266143  0.299368  1.266143  0.408204
2000-01-07 -1.048089 -1.048089 -1.048089  0.094055
2000-01-08  1.262731  1.289997  0.082423  1.262731

mask

mask is the inverse boolean operation of where.

In [139]: s.mask(s >= 0)
Out[139]:

        4   3   2   1   0   NaN
0   NaN   NaN   NaN   NaN   NaN
1   NaN   NaN   NaN   NaN   NaN
2   NaN   NaN   NaN   NaN   NaN
3   NaN   NaN   NaN   NaN   NaN
4   NaN   NaN   NaN   NaN   NaN

dtype: float64

In [140]: df.mask(df >= 0)
Out[140]:
          A         B         C         D
2000-01-01 -1.236269 NaN -0.487602 -0.082240
2000-01-02 -2.182937 NaN  NaN  NaN  NaN
2000-01-03  NaN -0.493662 NaN  NaN  NaN
2000-01-04  NaN -0.023688 NaN  NaN  NaN
2000-01-05  NaN -0.251905 -2.213588 NaN  NaN
2000-01-06  NaN  NaN -0.863838 NaN  NaN
2000-01-07 -1.048089 -0.025747 -0.988387 NaN  NaN
2000-01-08  NaN  NaN  NaN -0.055758 NaN

12.13 The query() Method (Experimental)

New in version 0.13. DataFrame objects have a query() method that allows selection using an expression.

You can get the value of the frame where column b has values between the values of columns a and c. For example:

In [141]: n = 10

In [142]: df = DataFrame(rand(n, 3), columns=list('abc'))

In [143]: df
Out[143]:
      a  b  c
0  0.191519  0.622109  0.437728
1  0.785359  0.779976  0.272593
2  0.276464  0.801872  0.958139
3  0.875933  0.357817  0.500995
4  0.683463  0.712702  0.370251
In [144]: df[(df.a < df.b) & (df.b < df.c)]
Out[144]:
   a   b   c
2 0.276464 0.801872 0.958139

# query
In [145]: df.query('(a < b) & (b < c)')
Out[145]:
   a   b   c
2 0.276464 0.801872 0.958139

Do the same thing but fall back on a named index if there is no column with the name a.

In [146]: df = DataFrame(randint(n / 2, size=(n, 2)), columns=list('bc'))
In [147]: df.index.name = 'a'
In [148]: df
Out[148]:
     b  c
a
0   2  3
1   4  1
2   4  0
3   4  1
4   1  4
5   1  4
6   0  1
7   0  0
8   4  0
9   4  2
In [149]: df.query('a < b and b < c')
Out[149]:
   b  c
a
0   2  3

If instead you don’t want to or cannot name your index, you can use the name index in your query expression:

In [150]: df = DataFrame(randint(n, size=(n, 2)), columns=list('bc'))
In [151]: df
Out[151]:
     b  c
0   3  1
1   2  5
2   2  5
3   6  7
4   4  3
5   5  6
6   4  6
In [152]: df.query('index < b < c')
Out[152]:
   b  c
0 1 2
1 2 5
3 6 7

Note: If the name of your index overlaps with a column name, the column name is given precedence. For example,

In [153]: df = DataFrame({'a': randint(5, size=5)})
In [154]: df.index.name = 'a'
In [155]: df.query('a > 2') # uses the column 'a', not the index
Out[155]:
   a
0 3
3 4

You can still use the index in a query expression by using the special identifier 'index':

In [156]: df.query('index > 2')
Out[156]:
   a
   3 4
   4 1

If for some reason you have a column named index, then you can refer to the index as level_0 as well, but at this point you should consider renaming your columns to something less ambiguous.

12.13.1 MultiIndex query() Syntax

You can also use the levels of a DataFrame with a MultiIndex as if they were columns in the frame:

In [157]: import pandas.util.testing as tm
In [158]: n = 10
In [159]: colors = tm.choice(['red', 'green'], size=n)
In [160]: foods = tm.choice(['eggs', 'ham'], size=n)
In [161]: colors
Out[161]:
array(['red', 'green', 'red', 'green', 'red', 'green', 'red', 'green', 'red', 'green'],
dtype='|S5')
In [162]: foods
Out[162]:
array(['ham', 'eggs', 'ham', 'ham', 'ham', 'eggs', 'eggs', 'eggs', 'eggs', 'ham'],
  dtype='|S5')
In [163]: index = MultiIndex.from_arrays([colors, foods], names=['color', 'food'])

In [164]: df = DataFrame(randn(n, 2), index=index)

In [165]: df
Out[165]:
   0     1
color  food
red    ham  0.157622 -0.293555
red    ham -1.270093  0.120949
red    ham -0.193898  1.804172
red    ham -0.234694  0.939908
red    eggs -0.171520 -0.153055
red    eggs -0.363095 -0.067318
red    eggs  1.444721  0.325771
red    eggs -0.855732 -0.697595
green  eggs -0.171520 -0.153055
red    eggs -0.363095 -0.067318

In [166]: df.query('color == "red"')
Out[166]:
   0     1
color  food
red    ham  0.157622 -0.293555
red    ham -1.270093  0.120949
red    ham -0.234694  0.939908
red    eggs -0.363095 -0.067318

If the levels of the MultiIndex are unnamed, you can refer to them using special names:

In [167]: df.index.names = [None, None]

In [168]: df
Out[168]:
   0     1
red  ham  0.157622 -0.293555
red  ham -1.270093  0.120949
red  ham -0.234694  0.939908
green  eggs -0.171520 -0.153055
green  eggs -0.363095 -0.067318
green  eggs  1.444721  0.325771
green  eggs -0.855732 -0.697595
red    eggs -0.363095 -0.067318

In [169]: df.query('ilevel_0 == "red"')
Out[169]:
   0     1
red  ham  0.157622 -0.293555
red  ham -1.270093  0.120949
red  ham -0.234694  0.939908
green  eggs -0.363095 -0.067318

The convention is ilevel_0, which means “index level 0” for the 0th level of the index.
12.13.2 query() Use Cases

A use case for `query()` is when you have a collection of `DataFrame` objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you're interested in querying.

```python
In [170]: df = DataFrame(rand(n, 3), columns=list('abc'))

In [171]: df
Out[171]:
 a b c
0 0.972113 0.046532 0.917354
1 0.158930 0.943383 0.763162
2 0.053878 0.254082 0.927973
3 0.838312 0.156925 0.690776
4 0.366946 0.937473 0.613365
5 0.699350 0.502946 0.711111
6 0.134386 0.828932 0.742846
7 0.457034 0.079103 0.373047
8 0.933636 0.418725 0.234212
9 0.572485 0.572111 0.416893

In [172]: df2 = DataFrame(rand(n + 2, 3), columns=df.columns)

In [173]: df2
Out[173]:
 a b c
0 0.625883 0.220362 0.622059
1 0.477672 0.974342 0.772985
2 0.027139 0.221022 0.120328
3 0.175274 0.429462 0.657769
4 0.565899 0.569035 0.654196
5 0.368558 0.952385 0.196770
6 0.849930 0.960458 0.381118
7 0.330936 0.260923 0.665491
8 0.181795 0.376800 0.014259
9 0.339135 0.401351 0.467574
10 0.652106 0.997192 0.517462
11 0.403612 0.058447 0.045196

In [174]: expr = '0.0 <= a <= c <= 0.5'

In [175]: map(lambda frame: frame.query(expr), [df, df2])
Out[175]:
[Empty DataFrame
 Columns: [a, b, c]
Index: [], a b c
2 0.027139 0.221022 0.120328
9 0.339135 0.401351 0.467574]
```

12.13.3 query() Python versus pandas Syntax Comparison

Full numpy-like syntax

```python
In [176]: df = DataFrame(randint(n, size=(n, 3)), columns=list('abc'))

In [177]: df
```

12.13. The query() Method (Experimental)
Out[177]:
   a  b  c
0  5  3  8
1  8  8  1
2  3  6  8
3  9  1  5
4  8  4  1
5  1  1  2
6  3  4  2
7  1  9  4
8  0  0  2
9  1  2  5

In [178]: df.query('(a < b) & (b < c)')
Out[178]:
   a  b  c
2  3  6  8
9  1  2  5

Slightly nicer by removing the parentheses (by binding making comparison operators bind tighter than &/|)

In [180]: df.query('a < b & b < c')
Out[180]:
   a  b  c
2  3  6  8
9  1  2  5

Use English instead of symbols

In [181]: df.query('a < b and b < c')
Out[181]:
   a  b  c
2  3  6  8
9  1  2  5

Pretty close to how you might write it on paper

In [182]: df.query('a < b < c')
Out[182]:
   a  b  c
2  3  6  8
9  1  2  5

12.13.4 The in and not in operators

query() also supports special use of Python's in and not in comparison operators, providing a succinct syntax for calling the isin method of a Series or DataFrame.

# get all rows where columns "a" and "b" have overlapping values
In [183]: df = DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaaabbbcccc'), 'c': randint(5, size=12), 'd': randint(9, size=12)})
In [184]: df
Out[184]:
   a  b  c  d
0  a  a  1  7
1  a  a  0  0
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8
6  d  b  1  3
7  d  b  1  2
8  e  c  4  4
9  e  c  3  7
10 f  c  2  7
11 f  c  0  0

In [185]: df.query('a in b')
Out[185]:
   a  b  c  d
0  a  a  1  7
1  a  a  0  0
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8

# How you'd do it in pure Python
In [186]: df[df.a.isin(df.b)]
Out[186]:
   a  b  c  d
0  a  a  1  7
1  a  a  0  0
2  b  a  0  2
3  b  a  2  8
4  c  b  0  4
5  c  b  0  8

In [187]: df.query('a not in b')
Out[187]:
   a  b  c  d
 6  d  b  1  3
 7  d  b  1  2
 8  e  c  4  4
 9  e  c  3  7
10 f  c  2  7
11 f  c  0  0

# pure Python
In [188]: df[~df.a.isin(df.b)]
Out[188]:
   a  b  c  d
 6  d  b  1  3
 7  d  b  1  2
 8  e  c  4  4
 9  e  c  3  7
10 f  c  2  7
11 f  c  0  0

12.13. The query() Method (Experimental)
You can combine this with other expressions for very succinct queries:

```python
rows where cols a and b have overlapping values and col c’s values are less than col d’s
In [189]: df.query('a in b and c < d')
Out[189]:
 a b c d
0 a a 1 7
1 b a 0 2
2 b a 2 8
3 c b 0 4
4 c b 0 8

pure Python
In [190]: df[df.b.isin(df.a) & (df.c < df.d)]
Out[190]:
 a b c d
0 a a 1 7
1 b a 0 2
2 b a 2 8
3 c b 0 4
4 c b 0 8
5 d b 1 3
6 d b 1 2
7 e c 3 7
8 f c 2 7
9 f c 0 0
```

Note: Note that `in` and `not in` are evaluated in Python, since `numexpr` has no equivalent of this operation. However, **only the `in/not in` expression itself** is evaluated in vanilla Python. For example, in the expression

```python
df.query('a in b + c + d')
```

`(b + c + d)` is evaluated by `numexpr` and **then** the `in` operation is evaluated in plain Python. In general, any operations that can be evaluated using `numexpr` will be.

### 12.13.5 Special use of the `==` operator with `list` objects

Comparing a list of values to a column using `==/!=` works similarly to `in/not in`

```python
In [191]: df.query('b == ["a", "b", "c"]')
Out[191]:
 a b c d
0 a a 1 7
1 a a 0 0
2 b a 0 2
3 b a 2 8
4 c b 0 4
5 c b 0 8
6 d b 1 3
7 d b 1 2
8 e c 4 4
9 e c 3 7
10 f c 2 7
11 f c 0 0
```

# pure Python

```python
In [192]: df[df.b.isin(['a', 'b', 'c'])]
```
Out[192]:
    a  b  c  d
  0  a  a  1  7
  1  a  a  0  0
  2  b  a  0  2
  3  b  a  2  8
  4  c  b  0  4
  5  c  b  0  8
  6  d  b  1  3
  7  d  b  1  2
  8  e  c  4  4
  9  e  c  3  7
 10  f  c  2  7
 11  f  c  0  0

In [193]: df.query('c == [1, 2]')
Out[193]:
    a  b  c  d
  0  a  a  1  7
  3  b  a  2  8
  6  d  b  1  3
  7  d  b  1  2
 10  f  c  2  7

In [194]: df.query('c != [1, 2]')
Out[194]:
    a  b  c  d
  1  a  a  0  0
  2  b  a  0  2
  4  c  b  0  4
  5  c  b  0  8
  8  e  c  4  4
  9  e  c  3  7
 11  f  c  0  0

# using in/not in
In [195]: df.query('[1, 2] in c')
Out[195]:
    a  b  c  d
  0  a  a  1  7
  3  b  a  2  8
  6  d  b  1  3
  7  d  b  1  2
 10  f  c  2  7

In [196]: df.query('[1, 2] not in c')
Out[196]:
    a  b  c  d
  1  a  a  0  0
  2  b  a  0  2
  4  c  b  0  4
  5  c  b  0  8
  8  e  c  4  4
  9  e  c  3  7
 11  f  c  0  0

# pure Python
In [197]: df[df.c.isin([1, 2])]
12.13.6 Boolean Operators

You can negate boolean expressions with the word `not` or the `~` operator.

```python
In [198]: df = DataFrame(rand(n, 3), columns=list('abc'))
In [199]: df['bools'] = rand(len(df)) > 0.5
In [200]: df.query('~bools')
Out[200]:
 a b c bools
0 0.39 0.04 0.17 False
2 0.58 0.89 0.43 False
3 0.08 0.22 0.69 False
5 0.88 0.22 0.28 False
6 0.99 0.86 0.10 False

In [201]: df.query('not bools')
Out[201]:
 a b c bools
0 0.39 0.04 0.17 False
2 0.58 0.89 0.43 False
3 0.08 0.22 0.69 False
5 0.88 0.22 0.28 False
6 0.99 0.86 0.10 False

In [202]: df.query('not bools') == df[~df.bools]
Out[202]:
 a b c bools
0 True True True True
2 True True True True
3 True True True True
5 True True True True
6 True True True True

Of course, expressions can be arbitrarily complex too

short query syntax
In [203]: shorter = df.query('a < b < c and (not bools) or bools > 2')

equivalent in pure Python
In [204]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)]

In [205]: shorter
Out[205]:
 a b c bools
3 0.08 0.22 0.69 False

In [206]: longer
```
Out[206]:
   a    b    c  bools
3  0.078368  0.224708  0.697626  False

In[207]: shorter == longer
Out[207]:
   a    b    c  bools
3   True  True  True  True

12.13.7 Performance of query()

DataFrame.query() using numexpr is slightly faster than Python for large frames

Note: You will only see the performance benefits of using the numexpr engine with DataFrame.query() if your frame has more than approximately 200,000 rows

12.13. The query() Method (Experimental)
This plot was created using a DataFrame with 3 columns each containing floating point values generated using numpy.random.randn().

12.14 Duplicate Data

If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: duplicated and drop_duplicates. Each takes as an argument the columns to use to identify duplicated rows.

- duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.
- drop_duplicates removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, but each method has a take_last parameter that indicates the last observed row should be taken instead.

```python
In [208]: df2 = DataFrame({'a' : ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
 : 'b' : ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
 : 'c' : np.random.randn(7)})

In [209]: df2.duplicated(['a','b'])
Out[209]:
0 False
1 False
2 False
3 False
4 True
5 True
6 False
dtype: bool

In [210]: df2.drop_duplicates(['a','b'])
Out[210]:
 a b c
0 one x 0.932713
1 one y -0.393510
2 two y -0.548454
3 three x 1.130736
4 six x -1.233298

In [211]: df2.drop_duplicates(['a','b'], take_last=True)
Out[211]:
 a b c
0 one y -0.393510
1 one y 0.932713
2 two y -0.548454
3 three x 1.130736
4 six x -1.233298

12.15 Dictionary-like get() method

Each of Series, DataFrame, and Panel have a get method which can return a default value.
In [212]: s = Series([1,2,3], index=['a','b','c'])

In [213]: s.get('a') # equivalent to s['a']
Out[213]: 1

In [214]: s.get('x', default=-1)
Out[214]: -1

12.16 The `select()` Method

Another way to extract slices from an object is with the `select` method of Series, DataFrame, and Panel. This method should be used only when there is no more direct way. `select` takes a function which operates on labels along axis and returns a boolean. For instance:

In [215]: df.select(lambda x: x == 'A', axis=1)
Out[215]:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.454389</td>
<td>0.036249</td>
<td>0.378125</td>
<td>0.075871</td>
<td>-0.677097</td>
<td>1.482845</td>
<td>0.272681</td>
<td>-0.459059</td>
</tr>
</tbody>
</table>

12.17 The `lookup()` Method

Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the `lookup` method allows for this and returns a numpy array. For instance,

In [216]: dflookup = DataFrame(np.random.rand(20,4), columns=['A','B','C','D'])

In [217]: dflookup.lookup(list(range(0,10,2)), ['B','C','A','B','D'])
Out[217]: array([0.012 , 0.3551, 0.3261, 0.4702, 0.3107])

12.18 Index objects

The pandas `Index` class and its subclasses can be viewed as implementing an *ordered multiset*. Duplicates are allowed. However, if you try to convert an `Index` object with duplicate entries into a `set`, an exception will be raised.

`Index` also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create an `Index` directly is to pass a list or other sequence to `Index`:

In [218]: index = Index(['e', 'd', 'a', 'b'])

In [219]: index
Out[219]: Index(['e', 'd', 'a', 'b'], dtype='object')

In [220]: 'd' in index
Out[220]: True
You can also pass a name to be stored in the index:

```
In [221]: index = Index(['e', 'd', 'a', 'b'], name='something')
```

```
In [222]: index.name
Out[222]: 'something'
```

The name, if set, will be shown in the console display:

```
In [223]: index = Index(list(range(5)), name='rows')
In [224]: columns = Index(['A', 'B', 'C'], name='cols')
In [225]: df = DataFrame(np.random.randn(5, 3), index=index, columns=columns)
In [226]: df
Out[226]:
   cols  A    B    C
  rows
    0  0.603791  0.388713  0.544331
    1 -0.152978  1.929541  0.202138
    2  0.024972  0.117533 -0.184740
    3  1.054144 -0.736061 -0.785352
    4 -1.362549 -0.063514  0.487562
```

```
In [227]: df['A']
Out[227]:
   rows
    0  0.603791
    1 -0.152978
    2  0.024972
    3  1.054144
    4 -1.362549
Name: A, dtype: float64
```

12.18.1 Setting metadata

New in version 0.13.0. Indexes are “mostly immutable”, but it is possible to set and change their metadata, like the index name (or, for MultiIndex, levels and labels).

You can use the rename, set_names, set_levels, and set_labels to set these attributes directly. They default to returning a copy; however, you can specify inplace=True to have the data change in place.

See Advanced Indexing for usage of MultiIndexes.

```
In [228]: ind = Index([1, 2, 3])
```

```
In [229]: ind.rename("apple")
Out[229]: Int64Index([1, 2, 3], dtype='int64')
```

```
In [230]: ind
Out[230]: Int64Index([1, 2, 3], dtype='int64')
```

```
In [231]: ind.set_names(['apple'], inplace=True)
```

```
In [232]: ind.name = "bob"
```
In [233]: ind
Out[233]: Int64Index([1, 2, 3], dtype='int64')

New in version 0.15.0. set_names, set_levels, and set_labels also take an optional level' argument

In [234]: index = MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])

In [235]: index
Out[235]:
MultiIndex(levels=[[0, 1, 2], [u'one', u'two']],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=[u'first', u'second'])

In [236]: index.levels[1]
Out[236]: Index([u'one', u'two'], dtype='object')

In [237]: index.set_levels(['a', 'b'], level=1)
Out[237]:
MultiIndex(levels=[[0, 1, 2], [u'a', u'b']],
labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
names=[u'first', u'second'])

12.18.2 Set operations on Index objects

Warning: In 0.15.0. the set operations + and − were deprecated in order to provide these for numeric type operations on certain index types. + can be replace by .union() or |, and − by .difference().

The two main operations are union (|), intersection (&) These can be directly called as instance methods or used via overloaded operators. Difference is provided via the .difference() method.

In [238]: a = Index(['c', 'b', 'a'])

In [239]: b = Index(['c', 'e', 'd'])

In [240]: a | b
Out[240]: Index([u'a', u'b', u'c', u'd', u'e'], dtype='object')

In [241]: a & b
Out[241]: Index([u'c'], dtype='object')

In [242]: a.difference(b)
Out[242]: Index([u'a', u'b'], dtype='object')

Also available is the sym_diff (^) operation, which returns elements that appear in either idx1 or idx2 but not both. This is equivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1)), with duplicates dropped.

In [243]: idx1 = Index([1, 2, 3, 4])

In [244]: idx2 = Index([2, 3, 4, 5])

In [245]: idx1.sym_diff(idx2)
Out[245]: Int64Index([1, 5], dtype='int64')

In [246]: idx1 ^ idx2
Out[246]: Int64Index([1, 5], dtype='int64')

12.18. Index objects
12.19 Set / Reset Index

Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done so. There are a couple of different ways.

12.19.1 Set an index

DataFrame has a set_index method which takes a column name (for a regular Index) or a list of column names (for a MultiIndex), to create a new, indexed DataFrame:

In [247]: data
Out[247]:
 a b c d
0 bar one z 1
1 bar two y 2
2 foo one x 3
3 foo two w 4

In [248]: indexed1 = data.set_index('c')

In [249]: indexed1
Out[249]:
 c
 a b d
 z bar one z 1
 y bar two y 2
 x foo one x 3
 w foo two w 4

In [250]: indexed2 = data.set_index(['a', 'b'])

In [251]: indexed2
Out[251]:
 a b
 c d
 z bar one z 1
 y bar two y 2
 x foo one x 3
 w foo two w 4

The append keyword option allow you to keep the existing index and append the given columns to a MultiIndex:

In [252]: frame = data.set_index('c', drop=False)

In [253]: frame
Out[253]:
 c
 a b
 z bar one z 1
 y bar two y 2
 x foo one x 3
 w foo two w 4

Other options in set_index allow you not drop the index columns or to add the index in-place (without creating a new object):
In [255]: data.set_index('c', drop=False)
Out[255]:
 a b c d
 c
 z bar one z 1
 y bar two y 2
 x foo one x 3
 w foo two w 4

In [256]: data.set_index(['a', 'b'], inplace=True)
In [257]: data
Out[257]:
 c d
 a b
 bar one z 1
 two y 2
 foo one x 3
 two w 4

12.19.2 Reset the index

As a convenience, there is a new function on DataFrame called reset_index which transfers the index values into the DataFrame’s columns and sets a simple integer index. This is the inverse operation to set_index

In [258]: data
Out[258]:
 c d
 a b
 bar one z 1
 two y 2
 foo one x 3
 two w 4

In [259]: data.reset_index()
Out[259]:
 a b c d
 0 bar one z 1
 1 bar two y 2
 2 foo one x 3
 3 foo two w 4

The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the ones stored in the names attribute.

You can use the level keyword to remove only a portion of the index:

In [260]: frame
Out[260]:
 c d
 c a b
 z bar one z 1
 y bar two y 2
 x foo one x 3
 w foo two w 4

In [261]: frame.reset_index(level=1)
Out[261]:
 a b c d
 0 bar one z 1
 1 bar two y 2
 2 foo one x 3
 3 foo two w 4
reset_index takes an optional parameter drop which if true simply discards the index, instead of putting index values in the DataFrame’s columns.

Note: The reset_index method used to be called delevel which is now deprecated.

12.19.3 Adding an ad hoc index

If you create an index yourself, you can just assign it to the index field:

```python
data.index = index
```

12.20 Returning a view versus a copy

When setting values in a pandas object, care must be taken to avoid what is called chained indexing. Here is an example.

```python
In [262]: dfmi = DataFrame([list('abcd'),
                   ....: list('efgh'),
                   ....: list('ijkl'),
                   ....: list('mnop')],
                   ....: columns=MultiIndex.from_product([['one','two'],
                                                     ['first','second']]))
```

```python
In [263]: dfmi
Out[263]:
          one    two
      first  second  first  second
 0     a     b     c     d
 1     e     f     g     h
 2     i     j     k     l
 3     m     n     o     p
```

Compare these two access methods:

```python
In [264]: dfmi['one']['second']
Out[264]:
0    b
1    f
2    j
3    n
Name: second, dtype: object
```

```python
In [265]: dfmi.loc[:,('one','second')]
Out[265]:
0    b
1    f
```
These both yield the same results, so which should you use? It is instructive to understand the order of operations on these and why method 2 (.loc) is much preferred over method 1 (chained []).

dfmi[‘one’] selects the first level of the columns and returns a data frame that is singly-indexed. Then another python operation **dfmi_with_one[‘second’]** selects the series indexed by ‘second’ happens. This is indicated by the variable **dfmi_with_one** because pandas sees these operations as separate events. e.g. separate calls to __getitem__, so it has to treat them as linear operations, they happen one after another.

Contrast this to **df.loc[:,(‘one’,’second’)]** which passes a nested tuple of (slice(None),(‘one’,’second’)) to a single call to __getitem__. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantly faster, and allows one to index both axes if so desired.

12.20.1 Why does the assignment when using chained indexing fail!

So, why does this show the SettingWithCopy warning / and possibly not work when you do chained indexing and assignment:

```python
dfmi[‘one’][‘second’] = value
```

Since the chained indexing is 2 calls, it is possible that either call may return a copy of the data because of the way it is sliced. Thus when setting, you are actually setting a copy, and not the original frame data. It is impossible for pandas to figure this out because their are 2 separate python operations that are not connected.

The SettingWithCopy warning is a ‘heuristic’ to detect this (meaning it tends to catch most cases but is simply a lightweight check). Figuring this out for real is way complicated.

The .loc operation is a single python operation, and thus can select a slice (which still may be a copy), but allows pandas to assign that slice back into the frame after it is modified, thus setting the values as you would think.

The reason for having the SettingWithCopy warning is this. Sometimes when you slice an array you will simply get a view back, which means you can set it no problem. However, even a single dtyped array can generate a copy if it is sliced in a particular way. A multi-dtyped DataFrame (meaning it has say float and object data), will almost always yield a copy. Whether a view is created is dependent on the memory layout of the array.

12.20.2 Evaluation order matters

Furthermore, in chained expressions, the order may determine whether a copy is returned or not. If an expression will set values on a copy of a slice, then a SettingWithCopy exception will be raised (this raise/warn behavior is new starting in 0.13.0)

You can control the action of a chained assignment via the option **mode.chained_assignment**, which can take the values ['raise','warn',None], where showing a warning is the default.
This however is operating on a copy and will not work.

```python
>>> pd.set_option('mode.chained_assignment','warn')
>>> dfb[dfb.a.str.startswith('o')]['c'] = 42
Traceback (most recent call last)
...
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
```

A chained assignment can also crop up in setting in a mixed dtype frame.

Note: These setting rules apply to all of `.loc/.iloc/.ix`

This is the correct access method

```python
In [268]: dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})

In [269]: dfc.loc[0,'A'] = 11

In [270]: dfc
Out[270]:
   A  B
0  11 1
1  bbb 2
2  ccc 3
```

This *can* work at times, but is not guaranteed, and so should be avoided

```python
In [271]: dfc = dfc.copy()

In [272]: dfc['A'][0] = 111

In [273]: dfc
Out[273]:
   A  B
0  111 1
1  bbb 2
2  ccc 3
```

This will **not** work at all, and so should be avoided

```python
>>> pd.set_option('mode.chained_assignment','raise')
>>> dfc.loc[0]['A'] = 1111
Traceback (most recent call last)
...
SettingWithCopyException:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
```

Warning: The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertently reported.
This section covers indexing with a MultiIndex and more advanced indexing features.

See the Indexing and Selecting Data for general indexing documentation.

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy

Warning: In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

See the cookbook for some advanced strategies

13.1 Hierarchical indexing (MultiIndex)

Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).

In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with the all of the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.

See the cookbook for some advanced strategies

13.1.1 Creating a MultiIndex (hierarchical index) object

The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis labels in pandas objects. You can think of MultiIndex an array of tuples where each tuple is unique. A MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays), an array of tuples (using MultiIndex.from_tuples), or a crossed set of iterables (using MultiIndex.from_product). The Index constructor will attempt to return a MultiIndex when it is passed a list of tuples. The following examples demo different ways to initialize MultiIndexes.

In [2]: tuples = list(zip(*arrays))
In [3]: tuples
Out[3]:
[('bar', 'one'),
 ('bar', 'two'),
 ('baz', 'one'),
 ('baz', 'two'),
 ('foo', 'one'),
 ('foo', 'two'),
 ('qux', 'one'),
 ('qux', 'two')]

In [4]: index = MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [5]: index
Out[5]:
MultiIndex(levels=[[u'bar', u'baz', u'foo', u'qux'], [u'one', u'two']],
 labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
 names=['first', 'second'])

In [6]: s = Series(randn(8), index=index)

In [7]: s
Out[7]:
first second
bar one 0.469112
 two -0.282863
baz one -1.509059
 two -1.135632
foo one 1.212112
 two -0.173215
qux one 0.119209
 two -1.044236
dtype: float64

When you want every pairing of the elements in two iterables, it can be easier to use the
MultiIndex.from_product function:

In [8]: iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]

In [9]: MultiIndex.from_product(iterables, names=['first', 'second'])
Out[9]:
MultiIndex(levels=[[u'bar', u'baz', u'foo', u'qux'], [u'one', u'two']],
 labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
 names=['first', 'second'])

As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automati-
cally:

In [10]: arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
 np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]

In [11]: s = Series(randn(8), index=arrays)

In [12]: s
Out[12]:
bar one -0.861849
 two -2.104569

All of the MultiIndex constructors accept a names argument which stores string names for the levels themselves. If no names are provided, None will be assigned:

```
In [15]: df.index.names
Out[15]: FrozenList([None, None])
```

This index can back any axis of a pandas object, and the number of levels of the index is up to you:

```
In [16]: df = DataFrame(randn(3, 8), index=['A', 'B', 'C'], columns=index)

In [17]: df
Out[17]:
   first  second
   bar    baz    foo    qux
A 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299
B 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127
C -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466
```

```
In [18]: DataFrame(randn(6, 6), index=index[:6], columns=index[:6])
Out[18]:
   first  second
   bar    baz    foo    qux
first second  one  two  one  two  one  two  one  two
A 0.410001 -0.078638 0.545952 -1.219217 -1.226825 0.769804
   -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734
   0.955726 -1.110336 -0.619976 0.149748 -0.732339 0.687738
   0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849
   -0.954208 1.462696 -1.743161 -0.826591 -0.345352 1.314232
   0.690579 0.995761 2.396780 0.014871 3.357427 -0.317441
```

We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes.
It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis:

```
In [19]: Series(randn(8), index=tuples)
Out[19]:
(bar, one) -1.236269
(bar, two)  0.896171
(baz, one) -0.487602
(baz, two) -0.082240
(foo, one) -2.182937
(foo, two)  0.380396
(qux, one)  0.084844
(qux, two)  0.432390
dtype: float64
```

The reason that the MultiIndex matters is that it can allow you to do grouping, selection, and reshaping operations as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However, when loading data from a file, you may wish to generate your own MultiIndex when preparing the data set.

Note that how the index is displayed by be controlled using the multi_sparse option in pandas.set_printoptions:

```
In [20]: pd.set_option('display.multi_sparse', False)
```

```
In [21]: df
Out[21]:
first bar bar baz baz foo foo qux 
second one two one two one two one
A  0.895717  0.805244 -1.206412  2.565646  1.431256  1.340309 -1.170299
B  0.410835  0.813850  0.132003 -0.827317 -0.076467 -1.187678  1.130127
C -1.413681  1.607920  1.024180  0.569605  0.875906 -2.211372  0.974466
first qux
second two
A -0.226169
B -1.436737
C -2.006747
```

```
In [22]: pd.set_option('display.multi_sparse', True)
```

13.1.2 Reconstructing the level labels

The method get_level_values will return a vector of the labels for each location at a particular level:

```
In [23]: index.get_level_values(0)
Out[23]: Index([u'bar', u'bar', u'baz', u'baz', u'foo', u'foo', u'qux', u'qux'], dtype='object')
```

```
In [24]: index.get_level_values('second')
Out[24]: Index([u'one', u'two', u'one', u'two', u'one', u'two', u'one', u'two'], dtype='object')
```

13.1.3 Basic indexing on axis with MultiIndex

One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous way to selecting a column in a regular DataFrame:
In [25]: df['bar']
Out[25]:
 second one two
A 0.895717 0.805244
B 0.410835 0.813850
C -1.413681 1.607920

In [26]: df['bar', 'one']
Out[26]:
A 0.895717
B 0.410835
C -1.413681
Name: (bar, one), dtype: float64

In [27]: df['bar']['one']
Out[27]:
A 0.895717
B 0.410835
C -1.413681
Name: one, dtype: float64

In [28]: s['qux']
Out[28]:
one -1.039575
two 0.271860
dtype: float64

See Cross-section with hierarchical index for how to select on a deeper level.

13.1.4 Data alignment and using reindex

Operations between differently-indexed objects having MultiIndex on the axes will work as you expect; data alignment will work the same as an Index of tuples:

In [29]: s + s[:-2]
Out[29]:
bar one -1.723698
two -4.209138
baz one -0.989859
two 2.143608
foo one 1.443110
two -1.413542
qux one NaN
two NaN
dtype: float64

In [30]: s + s[::2]
Out[30]:
bar one -1.723698
two NaN
baz one -0.989859
two NaN
foo one 1.443110
two NaN
qux one 2.079150
two NaN
dtype: float64

13.1. Hierarchical indexing (MultiIndex)
reindex can be called with another MultiIndex or even a list or array of tuples:

```python
In [31]: s.reindex(index[:3])
Out[31]:
first  second
bar   one   -0.861849
       two   -2.104569
baz   one   -0.494929
dtype: float64

In [32]: s.reindex([('foo', 'two'), ('bar', 'one'), ('qux', 'one'), ('baz', 'one')])
Out[32]:
foo  two   -0.706771
bar  one   -0.861849
qux  one   -1.039575
baz  one   -0.494929
dtype: float64
```

13.2 Advanced indexing with hierarchical index

Syntactically integrating MultiIndex in advanced indexing with `.loc/.ix` is a bit challenging, but we've made every effort to do so. For example the following works as you would expect:

```python
In [33]: df = df.T
In [34]: df
Out[34]:
   A    B    C
first second
bar   one  0.895717  0.410835 -1.413681
two   0.805244  0.813850  1.607920
baz   one -1.206412  0.132003  1.024180
two   2.565646 -0.827317  0.569605
foo   one  1.431256 -0.076467  0.875906
two   1.340309 -1.187678 -2.211372
qux   one -1.170299  1.130127  0.974466
two   -0.226169 -1.436737 -2.006747

In [35]: df.loc['bar']
Out[35]:
   A    B    C
second
one   0.895717  0.410835 -1.413681
two   0.805244  0.813850  1.607920

In [36]: df.loc['bar', 'two']
Out[36]:
   A
one  0.805244
two  0.813850
C   1.607920
Name: (bar, two), dtype: float64
```

“Partial” slicing also works quite nicely.

```python
In [37]: df.loc['baz':'foo']
Out[37]:
   A    B    C
```

372 Chapter 13. MultiIndex / Advanced Indexing
You can slice with a ‘range’ of values, by providing a slice of tuples.

```
In [38]: df.loc[('baz', 'two'):('qux', 'one')]
Out[38]:
   A    B    C
first second
baz two  2.565646 -0.827317  0.569605
foo one  1.431256 -0.076467  0.875906
two 1.340309 -1.187678 -2.211372
qux one -1.170299  1.130127  0.974466
```

```
In [39]: df.loc[('baz', 'two'):('foo')]
Out[39]:
   A    B    C
first second
baz two  2.565646 -0.827317  0.569605
foo one  1.431256 -0.076467  0.875906
two 1.340309 -1.187678 -2.211372
```

Passing a list of labels or tuples works similar to reindexing:

```
In [40]: df.ix[[('bar', 'two'), ('qux', 'one')]]
Out[40]:
   A    B    C
first second
bar two  0.805244  0.813850  1.607920
qux one -1.170299  1.130127  0.974466
```

13.2.1 Using slicers

New in version 0.14.0. In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see *Selection by Label*, including slices, lists of labels, labels, and boolean indexers.

You can use `slice(None)` to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as `slice(None)`.

As usual, both sides of the slicers are included as this is label indexing.

Warning: You should specify all axes in the `.loc` specifier, meaning the indexer for the index and for the columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex for the rows.

You should do this:

```
df.loc[({slice('A1','A3')},:)]
```

rather than this:

```
df.loc[({slice('A1','A3')},:)]
```
Warning: You will need to make sure that the selection axes are fully lexsorted!

In [41]: def mklbl(prefix,n):
 ...: return ['%s%s' % (prefix,i) for i in range(n)]
 ...:

In [42]: miindex = MultiIndex.from_product([mklbl('A',4),
 ...: mklbl('B',2),
 ...: mklbl('C',4),
 ...: mklbl('D',2)])
 ...:

In [43]: micolumns = MultiIndex.from_tuples((('a','foo'),('a','bar'),
 ...: ('b','foo'),('b','bah')),
 ...: names=['lvl0', 'lvl1'])
 ...:

In [44]: dfmi = DataFrame(np.arange(len(miindex)*len(micolumns)).reshape((len(miindex),len(micolumns))),
 ...: index=miindex,
 ...: columns=micolumns).sortlevel().sortlevel(axis=1)
 ...:

In [45]: dfmi
Out[45]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
 D1 5 4 7 6
 C1 D0 9 8 11 10
 D1 13 12 15 14
 C2 D0 17 16 19 18
 D1 21 20 23 22
 C3 D0 25 24 27 26

A3 B1 C0 D1 229 228 231 230
 C1 D0 233 232 235 234
 D1 237 236 239 238
 C2 D0 241 240 243 242
 D1 245 244 247 246
 C3 D0 249 248 251 250
 D1 253 252 255 254

[64 rows x 4 columns]

Basic multi-index slicing using slices, lists, and labels.

In [46]: dfmi.loc[(slice('A1','A3'),slice(None), ['C1','C3'])),:]
Out[46]:
lvl0 a b
lvl1 bar foo bah foo
A1 B0 C1 D0 73 72 75 74
 D1 77 76 79 78
 C3 D0 89 88 91 90
 D1 93 92 95 94
 B1 C1 D0 105 104 107 106
 D1 109 108 111 110
 C3 D0 121 120 123 122

You can use a `pd.IndexSlice` to have a more natural syntax using : rather than using `slice(None)`

In [47]:
 idx = pd.IndexSlice

In [48]:
 dfmi.loc[idx[:,:,[‘C1’,’C3’]],idx[:,:,’foo’]]

Out[48]:
 lvl0 a b
 lvl1 foo foo
 A0 B0 C1 D0 8 10
 D1 12 14
 C3 D0 24 26
 D1 28 30
 B1 C1 D0 40 42
 D1 44 46
 C3 D0 56 58

 A3 B0 C1 D1 204 206
 C3 D0 216 218
 D1 220 222
 B1 C1 D0 232 234
 D1 236 238
 C3 D0 248 250
 D1 252 254
 [32 rows x 2 columns]

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

In [49]:
 dfmi.loc[‘A1’,(slice(None),’foo’)]

Out[49]:
 lvl0 a b
 lvl1 foo foo
 B0 C0 D0 64 66
 D1 68 70
 C1 D0 72 74
 D1 76 78
 C2 D0 80 82
 D1 84 86
 C3 D0 88 90

 B1 C0 D1 100 102
 C1 D0 104 106
 D1 108 110
 C2 D0 112 114
 D1 116 118
 C3 D0 120 122
 D1 124 126
 [16 rows x 2 columns]
In [50]: dfmi.loc[idx[:,:,[‘C1’,’C3’]],idx[:,’foo’]]
Out[50]:
lvl0 a b
lvl1 foo foo
A0 B0 C1 D0 8 10
 D1 12 14
 C3 D0 24 26
 D1 28 30
B1 C1 D0 40 42
 D1 44 46
 C3 D0 56 58
 ...
A3 B0 C1 D1 204 206
 C3 D0 216 218
 D1 220 222
B1 C1 D0 232 234
 D1 236 238
C3 D0 248 250
 D1 252 254

[32 rows x 2 columns]

Using a boolean indexer you can provide selection related to the values.

In [51]: mask = dfmi[‘a’,’foo’]>200

In [52]: dfmi.loc[idx[mask,:,:,[‘C1’,’C3’]],idx[:,’foo’]]
Out[52]:
lvl0 a b
lvl1 foo foo
A3 B0 C1 D1 204 206
 C3 D0 216 218
 D1 220 222
B1 C1 D0 232 234
 D1 236 238
C3 D0 248 250
 D1 252 254

You can also specify the axis argument to .loc to interpret the passed slicers on a single axis.

In [53]: dfmi.loc(axis=0)[:,:,[‘C1’,’C3’]]
Out[53]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C1 D0 9 8 11 10
 D1 13 12 15 14
 C3 D0 25 24 27 26
 D1 29 28 31 30
B1 C1 D0 41 40 43 42
 D1 45 44 47 46
 C3 D0 57 56 59 58
 ...
A3 B0 C1 D1 205 204 207 206
 C3 D0 217 216 219 218
 D1 221 220 223 222
B1 C1 D0 233 232 235 234
 D1 237 236 239 238
C3 D0 249 248 251 250
Furthermore you can set the values using these methods.

In [54]: df2 = dfmi.copy()

In [55]: df2.loc(axis=0)[:,:,['C1','C3']] = -10

In [56]: df2

Out[56]:

<table>
<thead>
<tr>
<th>lv10</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>lv11</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td>A0</td>
<td>B0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>-10</td>
</tr>
</tbody>
</table>

[64 rows x 4 columns]

You can use a right-hand-side of an alignable object as well.

In [57]: df2 = dfmi.copy()

In [58]: df2.loc[idx[:,:,['C1','C3']],:] = df2*1000

In [59]: df2

Out[59]:

<table>
<thead>
<tr>
<th>lv10</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>lv11</td>
<td>bar</td>
<td>foo</td>
</tr>
<tr>
<td>A0</td>
<td>B0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>D1</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>-10</td>
</tr>
<tr>
<td></td>
<td>D0</td>
<td>-10</td>
</tr>
</tbody>
</table>

[64 rows x 4 columns]
13.2.2 Cross-section

The `xs` method of `DataFrame` additionally takes a level argument to make selecting data at a particular level of a MultiIndex easier.

```
In [60]: df
Out[60]:
   A    B    C
first second
bar one  0.895717  0.410835 -1.413681
two  0.805244  0.813850  1.607920
baz one  -1.206412  0.132003  1.024180
two  2.565646 -0.827317  0.569605
foo one  1.431256 -0.076467  0.875906
two  1.340309 -1.187678 -2.211372
qux one -1.170299  1.130127  0.974466
two  2.565646 -0.827317  0.569605

In [61]: df.xs('one', level='second')
Out[61]:
   A    B    C
first
bar one  0.895717  0.410835 -1.413681
baz one -1.206412  0.132003  1.024180
foo one  1.431256 -0.076467  0.875906
qux one -1.170299  1.130127  0.974466

# using the slicers (new in 0.14.0)
In [62]: df.loc[(slice(None),'one'),:]
Out[62]:
   A    B    C
first second
bar one  0.895717  0.410835 -1.413681
baz one -1.206412  0.132003  1.024180
foo one  1.431256 -0.076467  0.875906
qux one -1.170299  1.130127  0.974466

In [63]: df = df.T

In [64]: df.xs('one', level='second', axis=1)
Out[64]:
   A    B    C
first second
bar one  0.895717  0.410835 -1.413681
baz one -1.206412  0.132003  1.024180
foo one  1.431256 -0.076467  0.875906
qux one -1.170299  1.130127  0.974466

In [65]: df.loc[:,(slice(None),'one')]
Out[65]:
   first   second
bar one  0.895717  -1.206412
baz one  0.410835   0.132003
foo one  1.431256  -0.076467
qux one  1.130127   0.974466

xs() also allows selection with multiple keys
In [66]: df.xs(('one', 'bar'), level=('second', 'first'), axis=1)
Out[66]:
first   bar
second  one
A      0.895717
B      0.410835
C     -1.413681

# using the slicers (new in 0.14.0)
In [67]: df.loc[:, ('bar', 'one')]
Out[67]:
A  0.895717
B  0.410835
C -1.413681
Name: (bar, one), dtype: float64

New in version 0.13.0. You can pass drop_level=False to xs() to retain the level that was selected
In [68]: df.xs('one', level='second', axis=1, drop_level=False)
Out[68]:
first  bar  baz  foo  qux
second one one one one
A  0.895717 -1.206412 1.431256 -1.170299
B  0.410835  0.132003 -0.076467  1.130127
C -1.413681  1.024180  0.875906  0.974466

versus the result with drop_level=True (the default value)
In [69]: df.xs('one', level='second', axis=1, drop_level=True)
Out[69]:
first  bar  baz  foo  qux
A  0.895717 -1.206412 1.431256 -1.170299
B  0.410835  0.132003 -0.076467  1.130127
C -1.413681  1.024180  0.875906  0.974466

13.2.3 Advanced reindexing and alignment

The parameter level has been added to the reindex and align methods of pandas objects. This is useful to broadcast values across a level. For instance:

In [70]: midx = MultiIndex(levels=[['zero', 'one'], ['x','y']],
    labels=[[1,1,0,0],[1,0,1,0]])

In [71]: df = DataFrame(randn(4,2), index=midx)

In [72]: df
Out[72]:
   y
one  1.519970 -0.493662
     0.600178  0.274230
zero  0.132885 -0.023688
     2.410179  1.450520

In [73]: df2 = df.mean(level=0)

In [74]: df2
Out[74]:
   y
one  0.759886  0.094117
zero -0.213051  0.607742

13.2. Advanced indexing with hierarchical index
0 1
zero 1.271532 0.713416
one 1.060074 -0.109716

In [75]: df2.reindex(df.index, level=0)
Out[75]:
   0  1
one y 1.060074 -0.109716
   x 1.060074 -0.109716
zero y 1.271532 0.713416
   x 1.271532 0.713416

# aligning
In [76]: df_aligned, df2_aligned = df.align(df2, level=0)

In [77]: df_aligned
Out[77]:
   0  1
one y 1.519970 -0.493662
   x 0.600178  0.274230
zero y 0.132885 -0.023688
   x 2.410179  1.450520

In [78]: df2_aligned
Out[78]:
   0  1
one y 1.060074 -0.109716
   x 1.060074 -0.109716
zero y 1.271532 0.713416
   x 1.271532 0.713416

13.2.4 Swapping levels with swaplevel()

The swaplevel function can switch the order of two levels:

In [79]: df[:5]
Out[79]:
   0  1
one y 1.519970 -0.493662
   x 0.600178  0.274230
zero y 0.132885 -0.023688
   x 2.410179  1.450520

In [80]: df[:5].swaplevel(0, 1, axis=0)
Out[80]:
   0  1
y one 1.519970 -0.493662
   x 0.600178  0.274230
y zero 0.132885 -0.023688
   x 2.410179  1.450520

13.2.5 Reordering levels with reorder_levels()

The reorder_levels function generalizes the swaplevel function, allowing you to permute the hierarchical index levels in one step:
In [81]: df[:5].reorder_levels([1,0], axis=0)
Out[81]:
   0   1
y one 1.519970 -0.493662
x one 0.600178 0.274230
y zero 0.132885 -0.023688
x zero 2.410179 1.450520

13.3 The need for sortedness with MultiIndex

Caveat emptor: the present implementation of MultiIndex requires that the labels be sorted for some of the slicing / indexing routines to work correctly. You can think about breaking the axis into unique groups, where at the hierarchical level of interest, each distinct group shares a label, but no two have the same label. However, the MultiIndex does not enforce this; you are responsible for ensuring that things are properly sorted. There is an important new method sortlevel to sort an axis within a MultiIndex so that its labels are grouped and sorted by the original ordering of the associated factor at that level. Note that this does not necessarily mean the labels will be sorted lexicographically!

In [82]: import random; random.shuffle(tuples)

In [83]: s = Series(randn(8), index=MultiIndex.from_tuples(tuples))

In [84]: s
Out[84]:
bar one  0.206053
baz two -0.251905
qux one -2.213588
baz one  1.063327
foo two  1.266143
bar two  0.299368
qux two -0.863838
foo one  0.408204
dtype: float64

In [85]: s.sortlevel(0)
Out[85]:
bar one  0.206053
two 0.299368
baz one  1.063327
two -0.251905
foo one  0.408204
two 1.266143
qux one -2.213588
two -0.863838
dtype: float64

In [86]: s.sortlevel(1)
Out[86]:
bar one  0.206053
baz one  1.063327
foo one  0.408204
qux one -2.213588
bar two  0.299368
baz two -0.251905
foo two  1.266143
Note, you may also pass a level name to `sortlevel` if the MultiIndex levels are named.

```python
In [87]: s.index.set_names(['L1', 'L2'], inplace=True)
```

```python
In [88]: s.sortlevel(level='L1')
```

```python
Out[88]:
L1 L2
bar one 0.206053
two 0.299368
baz one 1.063327
two -0.251905
foo one 0.408204
two 1.266143
qux one -2.213588
two -0.863838
dtype: float64
```

```python
In [89]: s.sortlevel(level='L2')
```

```python
Out[89]:
L1 L2
bar one 0.206053
baz one 1.063327
foo one 0.408204
qux one -2.213588
bar two 0.299368
baz two -0.251905
foo two 1.266143
qux two -0.863838
dtype: float64
```

Some indexing will work even if the data are not sorted, but will be rather inefficient and will also return a copy of the data rather than a view:

```python
In [90]: s['qux']
```

```python
Out[90]:
L2
one -2.213588
two -0.863838
dtype: float64
```

```python
In [91]: s.sortlevel(1)['qux']
```

```python
Out[91]:
L2
one -2.213588
two -0.863838
dtype: float64
```

On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex:

```python
In [92]: df.T.sortlevel(1, axis=1)
```

```python
Out[92]:
 x y y
zero 2.410179 0.600178 0.132885 1.519970
one 1.450520 0.274230 -0.023688 -0.493662
```
The `MultiIndex` object has code to **explicitly check the sort depth**. Thus, if you try to index at a depth at which the index is not sorted, it will raise an exception. Here is a concrete example to illustrate this:

```
In [93]: tuples = [('a', 'a'), ('a', 'b'), ('b', 'a'), ('b', 'b')]
In [94]: idx = MultiIndex.from_tuples(tuples)
In [95]: idx.lexsort_depth
Out[95]: 2
In [96]: reordered = idx[[1, 0, 3, 2]]
In [97]: reordered.lexsort_depth
Out[97]: 1
In [98]: s = Series(randn(4), index=reordered)
In [99]: s.ix['a':'a']
Out[99]:
 a b
 -1.048089
 a -0.025747
 dtype: float64
```

However:

```
>>> s.ix[('a', 'b'):('b', 'a')]
KeyError: Key length (3) was greater than MultiIndex lexsort depth (2)
```

### 13.4 Take Methods

Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides the `take` method that retrieves elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index positions. `take` will also accept negative integers as relative positions to the end of the object.

```
In [100]: index = Index(randint(0, 1000, 10))
In [101]: index
Out[101]: Int64Index([214, 502, 712, 567, 786, 175, 993, 133, 758, 329], dtype='int64')
In [102]: positions = [0, 9, 3]
In [103]: index[positions]
Out[103]: Int64Index([214, 329, 567], dtype='int64')
In [104]: index.take(positions)
Out[104]: Int64Index([214, 329, 567], dtype='int64')
In [105]: ser = Series(randn(10))
In [106]: ser.iloc[positions]
Out[106]:
 0 -0.179666
 9 1.824375
 3 0.392149
 dtype: float64
```
For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.

```python
In [108]: frm = DataFrame(randn(5, 3))

In [109]: frm.take([1, 4, 3])
Out[109]:
0 1 2
1 -1.237881 0.106854 -1.276829
4 0.629675 -1.425966 1.857704
3 0.979542 -1.633678 0.615855
```

It is important to note that the `take` method on pandas objects are not intended to work on boolean indices and may return unexpected results.

```python
In [111]: arr = randn(10)

In [112]: arr.take([False, False, True, True])
Out[112]: array([-1.1935, -1.1935, 0.6775, 0.6775])

In [113]: arr[[0, 1]]
Out[113]: array([-1.1935, 0.6775])
```

Finally, as a small note on performance, because the `take` method handles a narrower range of inputs, it can offer performance that is a good deal faster than fancy indexing.
13.5 Float64Index

### Note:
As of 0.14.0, Float64Index is backed by a native float64 dtype array. Prior to 0.14.0, Float64Index was backed by an object dtype array. Using a float64 dtype in the backend speeds up arithmetic operations by about 30x and boolean indexing operations on the Float64Index itself are about 2x as fast.

New in version 0.13.0. By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values in index creation. This enables a pure label-based slicing paradigm that makes [], .ix, .loc for scalar indexing and slicing work exactly the same.

```python
In [117]: indexf = Index([1.5, 2, 3, 4.5, 5])

In [118]: indexf
Out[118]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')

In [119]: sf = Series(range(5), index=indexf)

In [120]: sf
Out[120]:
1.5 0
2.0 1
3.0 2
4.5 3
5.0 4
dtype: int32

Scalar selection for [], .ix, .loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

```python
In [121]: sf[3]
Out[121]: 2

In [122]: sf[3.0]
Out[122]: 2

In [123]: sf.ix[3]
Out[123]: 2

In [124]: sf.ix[3.0]
Out[124]: 2

In [125]: sf.loc[3]
Out[125]: 2

In [126]: sf.loc[3.0]
Out[126]: 2

The only positional indexing is via iloc

```python
In [127]: sf.iloc[3]
Out[127]: 3

A scalar index that is not found will raise KeyError

Slicing is ALWAYS on the values of the index, for [], .ix, .loc and ALWAYS positional with iloc

```
In [128]: sf[2:4]
Out[128]:
2  1
3  2
dtype: int32

In [129]: sf.ix[2:4]
Out[129]:
2  1
3  2
dtype: int32

In [130]: sf.loc[2:4]
Out[130]:
2  1
3  2
dtype: int32

In [131]: sf.iloc[2:4]
Out[131]:
3  2
4  3
dtype: int32

In float indexes, slicing using floats is allowed

In [132]: sf[2.1:4.6]
Out[132]:
3  2
4  3
dtype: int32

In [133]: sf.loc[2.1:4.6]
Out[133]:
3  2
4  3
dtype: int32

In non-float indexes, slicing using floats will raise a TypeError

In [1]: Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)

In [1]: Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type (Int64Index)

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.

In [3]: Series(range(5))[3.0]
Out[3]: 3

Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like indexing scheme, but the data is recorded as floats. This could for example be millisecond offsets.

In [134]: dfir = concat([DataFrame(randn(5,2),
.....:             index=np.arange(5) * 250.0,
.....:             columns=list('AB')),
.....: DataFrame(randn(6,2),
.....:             index=np.arange(4,10) * 250.1,}
columns=list('AB'))

In [135]: dfir
Out[135]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.997289</td>
<td>-1.693316</td>
</tr>
<tr>
<td>250.0</td>
<td>-0.179129</td>
<td>-1.598062</td>
</tr>
<tr>
<td>500.0</td>
<td>0.936914</td>
<td>0.912560</td>
</tr>
<tr>
<td>750.0</td>
<td>-1.003401</td>
<td>1.632781</td>
</tr>
<tr>
<td>1000.0</td>
<td>-0.724626</td>
<td>0.178219</td>
</tr>
<tr>
<td>1000.4</td>
<td>0.310610</td>
<td>-0.108002</td>
</tr>
<tr>
<td>1250.5</td>
<td>-0.974226</td>
<td>-1.147708</td>
</tr>
<tr>
<td>1500.6</td>
<td>-2.281374</td>
<td>0.760010</td>
</tr>
<tr>
<td>1750.7</td>
<td>-0.742532</td>
<td>1.533318</td>
</tr>
<tr>
<td>2000.8</td>
<td>2.495362</td>
<td>-0.432771</td>
</tr>
<tr>
<td>2250.9</td>
<td>-0.068954</td>
<td>0.043520</td>
</tr>
</tbody>
</table>

Selection operations then will always work on a value basis, for all selection operators.

In [136]: dfir[0:1000.4]
Out[136]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.997289</td>
<td>-1.693316</td>
</tr>
<tr>
<td>250.0</td>
<td>-0.179129</td>
<td>-1.598062</td>
</tr>
<tr>
<td>500.0</td>
<td>0.936914</td>
<td>0.912560</td>
</tr>
<tr>
<td>750.0</td>
<td>-1.003401</td>
<td>1.632781</td>
</tr>
<tr>
<td>1000.0</td>
<td>-0.724626</td>
<td>0.178219</td>
</tr>
<tr>
<td>1000.4</td>
<td>0.310610</td>
<td>-0.108002</td>
</tr>
</tbody>
</table>

In [137]: dfir.loc[0:1001,'A']
Out[137]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.997289</td>
</tr>
<tr>
<td>250.0</td>
<td>-0.179129</td>
</tr>
<tr>
<td>500.0</td>
<td>0.936914</td>
</tr>
<tr>
<td>750.0</td>
<td>-1.003401</td>
</tr>
<tr>
<td>1000.0</td>
<td>-0.724626</td>
</tr>
<tr>
<td>1000.4</td>
<td>0.310610</td>
</tr>
</tbody>
</table>

In [138]: dfir.loc[1000.4]
Out[138]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.310610</td>
</tr>
<tr>
<td>B</td>
<td>-0.108002</td>
</tr>
</tbody>
</table>

You could then easily pick out the first 1 second (1000 ms) of data then.

In [139]: dfir[0:1000]
Out[139]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.997289</td>
<td>-1.693316</td>
</tr>
<tr>
<td>250</td>
<td>-0.179129</td>
<td>-1.598062</td>
</tr>
<tr>
<td>500</td>
<td>0.936914</td>
<td>0.912560</td>
</tr>
<tr>
<td>750</td>
<td>-1.003401</td>
<td>1.632781</td>
</tr>
<tr>
<td>1000</td>
<td>-0.724626</td>
<td>0.178219</td>
</tr>
</tbody>
</table>

Of course if you need integer based selection, then use iloc

13.5. Float64Index
In [140]: dfir.iloc[0:5]
Out [140]:
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0.997289</td>
</tr>
<tr>
<td>250</td>
<td></td>
<td>-0.179129</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>0.936914</td>
</tr>
<tr>
<td>750</td>
<td></td>
<td>-1.003401</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>-0.724626</td>
</tr>
</tbody>
</table>
14.1 Statistical functions

14.1.1 Percent Change

Series, DataFrame, and Panel all have a method `pct_change` to compute the percent change over a given number of periods (using `fill_method` to fill NA/null values before computing the percent change).

```python
In [1]: ser = Series(randn(8))

In [2]: ser.pct_change()
Out[2]:
 0 NaN
 1 -1.602976
 2 4.334938
 3 -0.247456
 4 -2.067345
 5 -1.142903
 6 -1.688214
 7 -9.759729
dtype: float64

In [3]: df = DataFrame(randn(10, 4))

In [4]: df.pct_change(periods=3)
Out[4]:
 0 1 2 3
0 NaN NaN NaN NaN
1 NaN NaN NaN NaN
2 NaN NaN NaN NaN
3 -0.218320 -1.054001 1.987147 -0.510183
4 -0.439121 -1.816454 0.649715 -4.822809
5 -0.127833 -3.042065 -5.866604 -1.776977
6 -2.596833 -1.959538 -2.111697 -3.798900
7 -0.117826 -2.169058 0.036094 -0.067696
8 2.492606 -1.357320 -1.205802 -1.558697
9 -1.012977 2.324558 -1.003744 -0.371806
```

14.1.2 Covariance

The `Series` object has a method `cov` to compute covariance between series (excluding NA/null values).
In [5]: s1 = Series(randn(1000))
In [6]: s2 = Series(randn(1000))
In [7]: s1.cov(s2)
Out[7]: 0.006801088174310993

Analogously, DataFrame has a method `cov` to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.

**Note:** Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.

In [8]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [9]: frame.cov()
Out[9]:
   a  b  c  d  e
a 1.000882 -0.003177 -0.002698 -0.006889 0.031912
b -0.003177 1.024721 0.000191 0.009212 0.000857
c -0.002698 0.000191 0.950735 -0.031743 -0.005087
d -0.006889 0.009212 -0.031743 1.002983 -0.047952
e 0.031912 0.000857 -0.005087 -0.047952 1.042487

DataFrame.cov also supports an optional `min_periods` keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.

In [10]: frame = DataFrame(randn(20, 3), columns=['a', 'b', 'c'])
In [11]: frame.ix[:5, 'a'] = np.nan
In [12]: frame.ix[5:10, 'b'] = np.nan
In [13]: frame.cov()
Out[13]:
   a  b  c
a 1.210090 -0.430629 0.018002
b -0.430629 1.240960 0.347188
c 0.018002 0.347188 1.301149

In [14]: frame.cov(min_periods=12)
Out[14]:
   a  b  c
a 1.210090 NaN 0.018002
b NaN 1.240960 0.347188
c 0.018002 0.347188 1.301149

### 14.1.3 Correlation

Several methods for computing correlations are provided:
<table>
<thead>
<tr>
<th>Method name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pearson</td>
<td>Standard correlation coefficient</td>
</tr>
<tr>
<td>kendall</td>
<td>Kendall Tau correlation coefficient</td>
</tr>
<tr>
<td>spearman</td>
<td>Spearman rank correlation coefficient</td>
</tr>
</tbody>
</table>

All of these are currently computed using pairwise complete observations.

**Note:** Please see the *caveats* associated with this method of calculating correlation matrices in the *covariance section*.

```
In [15]: frame = DataFrame(randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [16]: frame.ix[::2] = np.nan

Series with Series
In [17]: frame['a'].corr(frame['b'])
Out[17]: 0.013479040400098801

In [18]: frame['a'].corr(frame['b'], method='spearman')
Out[18]: -0.0072898851595406388

Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]:
 a b c d e
 a 1.0000000 -0.0492694 -0.0422390 -0.0285249
 b -0.0492694 1.0000000 -0.0111387 -0.0542692
 c -0.0422390 -0.0111387 1.0000000 0.0185867
 d -0.0285249 -0.0542692 0.0185867 1.0000000
 e

Note that non-numeric columns will be automatically excluded from the correlation calculation.

Like `cov`, `corr` also supports the optional `min_periods` keyword:

```
In [20]: frame = DataFrame(randn(20, 3), columns=['a', 'b', 'c'])
In [21]: frame.ix[:5, 'a'] = np.nan
In [22]: frame.ix[5:10, 'b'] = np.nan

In [23]: frame.corr()
Out[23]:
      a         b         c
    a  1.000000  -0.0765200  0.1600923
    b -0.0765200  1.0000000  0.1359671
    c  0.1600923  0.1359671  1.0000000

In [24]: frame.corr(min_periods=12)
Out[24]:
      a         b         c
    a  1.0000000   NaN       0.1600923
    b   NaN     1.0000000  0.1359671
    c  0.1600923  0.1359671  1.0000000
```

A related method `corrwith` is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.

14.1. Statistical functions 391
In [25]: index = [‘a’, ‘b’, ‘c’, ‘d’, ‘e’]

In [26]: columns = [‘one’, ‘two’, ‘three’, ‘four’]

In [27]: df1 = DataFrame(randn(5, 4), index=index, columns=columns)

In [28]: df2 = DataFrame(randn(4, 4), index=index[:4], columns=columns)

In [29]: df1.corrwith(df2)
Out[29]:
one -0.125501
two -0.493244
three 0.344056
four 0.004183
dtype: float64

In [30]: df2.corrwith(df1, axis=1)
Out[30]:
a -0.675817
b 0.458296
c 0.190809
d -0.186275
e NaN
dtype: float64

14.1.4 Data ranking

The rank method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:

In [31]: s = Series(np.random.randn(5), index=list(‘abcde’))

In [32]: s[‘d’] = s[‘b’] # so there’s a tie

In [33]: s.rank()
Out[33]:
a 5.0
b 2.5
c 1.0
d 2.5
e 4.0
dtype: float64

rank is also a DataFrame method and can rank either the rows (axis=0) or the columns (axis=1). NaN values are excluded from the ranking.

In [34]: df = DataFrame(np.random.randn(10, 6))

In [36]: df
Out[36]:
 0 1 2 3 4 5
0 -0.904948 -1.163537 -1.457187 0.135463 -1.457187 0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2 0.401965 1.460840 1.256057 1.308127 1.256057 0.876004
3 0.205954 0.369552 -0.669304 0.038378 -0.669304 1.140296
4 -0.477586 -0.730705 -1.129149 -0.601463 -1.129149 -0.211196
5 -1.092970 -0.689246 0.908114 0.204848 NaN 0.463347
6 0.376892 0.959292 0.095572 -0.593740 NaN -0.069180
7 -1.002601 1.957794 -0.120708 0.094214 NaN -1.467422
8 -0.547231 0.664402 -0.519424 -0.073254 NaN -1.263544
9 -0.250277 -0.237428 -1.056443 0.419477 NaN 1.375064

In [37]: df.rank(1)
Out[37]:
 0 1 2 3 4 5
0 4 3 1.5 5 1.5 6
1 2 6 4.5 1 4.5 3
2 1 6 3.5 5 3.5 2
3 4 5 1.5 3 1.5 6
4 5 3 1.5 4 1.5 6
5 1 2 5.0 3 NaN 4
6 4 5 3.0 1 NaN 2
7 2 5 3.0 4 NaN 1
8 2 5 3.0 4 NaN 1
9 2 3 1.0 4 NaN 5

rank optionally takes a parameter ascending which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank.

rank supports different tie-breaking methods, specified with the method parameter:

- **average**: average rank of tied group
- **min**: lowest rank in the group
- **max**: highest rank in the group
- **first**: ranks assigned in the order they appear in the array

14.2 Moving (rolling) statistics / moments

For working with time series data, a number of functions are provided for computing common moving or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis. All of these methods are in the pandas namespace, but otherwise they can be found in pandas.stats.moments.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rolling_count</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>rolling_sum</td>
<td>Sum of values</td>
</tr>
<tr>
<td>rolling_mean</td>
<td>Mean of values</td>
</tr>
<tr>
<td>rolling_median</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>rolling_min</td>
<td>Minimum</td>
</tr>
<tr>
<td>rolling_max</td>
<td>Maximum</td>
</tr>
<tr>
<td>rolling_std</td>
<td>Unbiased standard deviation</td>
</tr>
<tr>
<td>rolling_var</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>rolling_skew</td>
<td>Unbiased skewness (3rd moment)</td>
</tr>
<tr>
<td>rolling_kurt</td>
<td>Unbiased kurtosis (4th moment)</td>
</tr>
<tr>
<td>rolling_quantile</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>rolling_apply</td>
<td>Generic apply</td>
</tr>
<tr>
<td>rolling_cov</td>
<td>Unbiased covariance (binary)</td>
</tr>
<tr>
<td>rolling_corr</td>
<td>Correlation (binary)</td>
</tr>
<tr>
<td>rolling_window</td>
<td>Moving window function</td>
</tr>
</tbody>
</table>
Generally these methods all have the same interface. The binary operators (e.g. `rolling_corr`) take two Series or DataFrames. Otherwise, they all accept the following arguments:

- **window**: size of moving window
- **min_periods**: threshold of non-null data points to require (otherwise result is NA)
- **freq**: optionally specify a frequency string or `DateOffset` to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argument `time_rule` was used instead of `freq` that referred to the legacy time rule constants
- **how**: optionally specify method for down or re-sampling. Default is `is min` for `rolling_min`, max for `rolling_max`, median for `rolling_median`, and mean for all other rolling functions. See `DataFrame.resample()`'s `how` argument for more information.

These functions can be applied to ndarrays or Series objects:

```
In [38]: ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
In [39]: ts = ts.cumsum()
In [40]: ts.plot(style='k--')
Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0xad33b4ac>
In [41]: rolling_mean(ts, 60).plot(style='k')
Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0xad33b4ac>
```

![Plot of time series and rolling mean](image)

They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame’s columns:

```
In [42]: df = DataFrame(randn(1000, 4), index=ts.index, 
                   columns=['A', 'B', 'C', 'D'])
In [43]: df = df.cumsum()
```
The `rolling_apply` function takes an extra `func` argument and performs generic rolling computations. The `func` argument should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute the mean absolute deviation on a rolling basis:

```python
In [45]: mad = lambda x: np.fabs(x - x.mean()).mean()
In [46]: rolling_apply(ts, 60, mad).plot(style='k')
Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0xacceef8c>
```
The `rolling_window` function performs a generic rolling window computation on the input data. The weights used in the window are specified by the `win_type` keyword. The list of recognized types are:

- boxcar
- triang
- blackman
- hamming
- bartlett
- parzen
- bohman
- blackmanharris
- nuttall
- barthann
- kaiser (needs beta)
- gaussian (needs std)
- general_gaussian (needs power, width)
- slepian (needs width).

In [47]: ser = Series(randn(10), index=date_range('1/1/2000', periods=10))

In [48]: rolling_window(ser, 5, 'triang')
Out[48]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -1.037870
2000-01-06 -0.767705
2000-01-07 -0.383197
2000-01-08 -0.395513
2000-01-09 -0.558440
2000-01-10 -0.672416
Freq: D, dtype: float64

Note that the boxcar window is equivalent to rolling_mean.

In [49]: rolling_window(ser, 5, 'boxcar')
Out[49]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64

In [50]: rolling_mean(ser, 5)
Out[50]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64

For some windowing functions, additional parameters must be specified:

In [51]: rolling_window(ser, 5, 'gaussian', std=0.1)
Out[51]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -1.309989
2000-01-06 -1.153000
2000-01-07 0.606382
2000-01-08 -0.681101
2000-01-09 -0.289724
2000-01-10 -0.996632
Freq: D, dtype: float64

By default the labels are set to the right edge of the window, but a center keyword is available so the labels can be set at the center. This keyword is available in other rolling functions as well.

In [52]: rolling_window(ser, 5, 'boxcar')
Out[52]:
2000-01-01 NaN
2000-01-02 NaN

14.2. Moving (rolling) statistics / moments 397
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64

In [53]: rolling_window(ser, 5, 'boxcar', center=True)
Out[53]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 -0.841164
2000-01-04 -0.779948
2000-01-05 -0.565487
2000-01-06 -0.502815
2000-01-07 -0.553755
2000-01-08 -0.472211
2000-01-09 NaN
2000-01-10 NaN
Freq: D, dtype: float64

In [54]: rolling_mean(ser, 5, center=True)
Out[54]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 -0.841164
2000-01-04 -0.779948
2000-01-05 -0.565487
2000-01-06 -0.502815
2000-01-07 -0.553755
2000-01-08 -0.472211
2000-01-09 NaN
2000-01-10 NaN
Freq: D, dtype: float64

Note: In rolling sum mode (mean=False) there is no normalization done to the weights. Passing custom weights of [1, 1, 1] will yield a different result than passing weights of [2, 2, 2], for example. When passing a win_type instead of explicitly specifying the weights, the weights are already normalized so that the largest weight is 1.

In contrast, the nature of the rolling mean calculation (mean=True) is such that the weights are normalized with respect to each other. Weights of [1, 1, 1] and [2, 2, 2] yield the same result.

14.2.1 Binary rolling moments

rolling_cov and rolling_corr can compute moving window statistics about two Series or any combination of DataFrame/Series or DataFrame/DataFrame. Here is the behavior in each case:

- two Series: compute the statistic for the pairing.
- DataFrame/Series: compute the statistics for each column of the DataFrame with the passed Series, thus returning a DataFrame.
• **DataFrame/DataFrame**: by default compute the statistic for matching column names, returning a DataFrame. If the keyword argument `pairwise=True` is passed then computes the statistic for each pair of columns, returning a **Panel** whose **items** are the dates in question (see the next section).

For example:

```python
In [55]: df2 = df[:20]
In [56]: rolling_corr(df2, df2['B'], window=5)
Out[56]:
       A       B       C       D
2000-01-01 NaN   NaN   NaN   NaN
2000-01-02 NaN   NaN   NaN   NaN
2000-01-03 NaN   NaN   NaN   NaN
2000-01-04 NaN   NaN   NaN   NaN
2000-01-05 -0.262853 1.00 0.334449 0.193380
2000-01-06 -0.083745 1.00 -0.521587 -0.556126
2000-01-07 -0.292940 1.00 -0.658532 -0.458128
...     ...     ...     ...     ...
2000-01-14 0.519499 1.00 -0.687277 0.193380
2000-01-15 0.048982 1.00 0.167669 -0.061463
2000-01-16 0.217190 1.00 0.167564 -0.326034
2000-01-17 0.641180 1.00 -0.164780 -0.111487
2000-01-18 0.130422 1.00 0.322833 0.632383
2000-01-19 0.317278 1.00 0.384528 0.813656
2000-01-20 0.293598 1.00 0.159538 0.742381
[20 rows x 4 columns]
```

14.2.2 Computing rolling pairwise covariances and correlations

In financial data analysis and other fields it's common to compute covariance and correlation matrices for a collection of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done by passing the `pairwise` keyword argument, which in the case of DataFrame inputs will yield a **Panel** whose **items** are the dates in question. In the case of a single DataFrame argument the `pairwise` argument can even be omitted:

Note: Missing values are ignored and each entry is computed using the pairwise complete observations. Please see the covariance section for caveats associated with this method of calculating covariance and correlation matrices.

```python
In [57]: covs = rolling_cov(df[['B','C','D']], df[['A','B','C']], 50, pairwise=True)
In [58]: covs[df.index[-50]]
Out[58]:
       A       B       C       D
    B 2.667506 1.671711 1.938634
    C 8.513843 1.938634 10.556436
    D -7.714737 -1.434529 -7.082653
In [59]: correls = rolling_corr(df, 50)
In [60]: correls[df.index[-50]]
Out[60]:
       A       B       C       D
    A 1.000000 0.604221 0.767429 -0.776170
    B 0.604221 1.000000 0.461484 -0.381148
```

14.2. Moving (rolling) statistics / moments
You can efficiently retrieve the time series of correlations between two columns using ix indexing:

```
In [61]: correls.ix[:, 'A', 'C'].plot()
Out[61]: <matplotlib.axes._subplots.AxesSubplot at 0xaccb030c>
```

14.3 Expanding window moment functions

A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with all the data available up to that point in time. As these calculations are a special case of rolling statistics, they are implemented in pandas such that the following two calls are equivalent:

```
In [62]: rolling_mean(df, window=len(df), min_periods=1)[:5]
Out[62]:
         A         B         C         D
2000-01-01 -1.388345  3.317290  0.344542 -0.036968
2000-01-02 -1.123132  3.622300  1.675867  0.595300
2000-01-03 -0.628502  3.626503  2.455240  1.060158
2000-01-04 -0.768740  3.888917  2.451354  1.281874
2000-01-05 -0.824034  4.108035  2.556112  1.140723

In [63]: expanding_mean(df)[:5]
Out[63]:
```
Like the `rolling_` functions, the following methods are included in the `pandas` namespace or can be located in `pandas.stats.moments`.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>expanding_count</code></td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td><code>expanding_sum</code></td>
<td>Sum of values</td>
</tr>
<tr>
<td><code>expanding_mean</code></td>
<td>Mean of values</td>
</tr>
<tr>
<td><code>expanding_median</code></td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td><code>expanding_min</code></td>
<td>Minimum</td>
</tr>
<tr>
<td><code>expanding_max</code></td>
<td>Maximum</td>
</tr>
<tr>
<td><code>expanding_std</code></td>
<td>Unbiased standard deviation</td>
</tr>
<tr>
<td><code>expanding_var</code></td>
<td>Unbiased variance</td>
</tr>
<tr>
<td><code>expanding_skew</code></td>
<td>Unbiased skewness (3rd moment)</td>
</tr>
<tr>
<td><code>expanding_kurt</code></td>
<td>Unbiased kurtosis (4th moment)</td>
</tr>
<tr>
<td><code>expanding_quantile</code></td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td><code>expanding_apply</code></td>
<td>Generic apply</td>
</tr>
<tr>
<td><code>expanding_cov</code></td>
<td>Unbiased covariance (binary)</td>
</tr>
<tr>
<td><code>expanding_corr</code></td>
<td>Correlation (binary)</td>
</tr>
</tbody>
</table>

Aside from not having a `window` parameter, these functions have the same interfaces as their `rolling_` counterpart. Like above, the parameters they all accept are:

- `min_periods`: threshold of non-null data points to require. Defaults to minimum needed to compute statistic. No NaNs will be output once `min_periods` non-null data points have been seen.
- `freq`: optionally specify a frequency string or `DateOffset` to pre-conform the data to. Note that prior to pandas v0.8.0, a keyword argument `time_rule` was used instead of `freq` that referred to the legacy time rule constants.

Note: The output of the `rolling_` and `expanding_` functions do not return a NaN if there are at least `min_periods` non-null values in the current window. This differs from `cumsum`, `cumprod`, `cummax`, and `cummin`, which return NaN in the output wherever a NaN is encountered in the input.

An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as the increasing window size decreases the relative impact of an individual data point. As an example, here is the expanding mean output for the previous time series dataset:

```python
In [64]: ts.plot(style='k--')
Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0xad3e5b8c>

In [65]: expanding_mean(ts).plot(style='k')
Out[65]: <matplotlib.axes._subplots.AxesSubplot at 0xad3e5b8c>
```
14.4 Exponentially weighted moment functions

A related set of functions are exponentially weighted versions of several of the above statistics. A number of expanding EW (exponentially weighted) functions are provided:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ewma</td>
<td>EW moving average</td>
</tr>
<tr>
<td>ewmvar</td>
<td>EW moving variance</td>
</tr>
<tr>
<td>ewmstd</td>
<td>EW moving standard deviation</td>
</tr>
<tr>
<td>ewmcov</td>
<td>EW moving covariance</td>
</tr>
<tr>
<td>ewmcorr</td>
<td>EW moving correlation</td>
</tr>
</tbody>
</table>

In general, a weighted moving average is calculated as

\[y_t = \frac{\sum_{i=0}^{t} w_i x_{t-i}}{\sum_{i=0}^{t} w_i}, \]

where \(x_t \) is the input at \(y_t \) is the result.

The EW functions support two variants of exponential weights: The default, \(\text{adjust} = \text{True} \), uses the weights \(w_i = (1 - \alpha)^i \). When \(\text{adjust} = \text{False} \) is specified, moving averages are calculated as

\[
\begin{align*}
 y_0 &= x_0 \\
 y_t &= (1 - \alpha)y_{t-1} + \alpha x_t,
\end{align*}
\]

which is equivalent to using weights

\[
 w_i = \begin{cases}
 \alpha(1 - \alpha)^i & \text{if } i < t \\
 (1 - \alpha)^i & \text{if } i = t.
 \end{cases}
\]
Note: These equations are sometimes written in terms of $\alpha' = 1 - \alpha$, e.g.

$$y_t = \alpha' y_{t-1} + (1 - \alpha') x_t.$$

One must have $0 < \alpha \leq 1$, but rather than pass α directly, it’s easier to think about either the span, center of mass (com) or halflife of an EW moment:

$$\alpha = \begin{cases}
\frac{2}{s + 1}, & s = \text{span} \\
\frac{1}{1 + c}, & c = \text{center of mass} \\
1 - \exp \frac{\log 0.5}{h}, & h = \text{halflife}
\end{cases}$$

One must specify precisely one of the three to the EW functions. Span corresponds to what is commonly called a “20-day EW moving average” for example. Center of mass has a more physical interpretation. For example, span = 20 corresponds to com = 9.5. Halflife is the period of time for the exponential weight to reduce to one half.

Here is an example for a univariate time series:

In [66]: plt.close('all')
In [67]: ts.plot(style='k--')
Out[67]: <matplotlib.axes._subplots.AxesSubplot at 0xacacd84c>
In [68]: ewma(ts, span=20).plot(style='k')
Out[68]: <matplotlib.axes._subplots.AxesSubplot at 0xacacd84c>

All the EW functions have a min_periods argument, which has the same meaning it does for all the expanding_ and rolling_ functions: no output values will be set until at least min_periods non-null values are encountered in the (expanding) window. (This is a change from versions prior to 0.15.0, in which the min_periods argument affected only the min_periods consecutive entries starting at the first non-null value.)
All the EW functions also have an `ignore_na` argument, which determines how intermediate null values affect the calculation of the weights. When `ignore_na=False` (the default), weights are calculated based on absolute positions, so that intermediate null values affect the result. When `ignore_na=True` (which reproduces the behavior in versions prior to 0.15.0), weights are calculated by ignoring intermediate null values. For example, assuming `adjust=True`, if `ignore_na=False`, the weighted average of 3, NaN, 5 would be calculated as

$$\frac{(1 - \alpha)^2 \cdot 3 + 1 \cdot 5}{(1 - \alpha)^2 + 1}$$

Whereas if `ignore_na=True`, the weighted average would be calculated as

$$\frac{(1 - \alpha) \cdot 3 + 1 \cdot 5}{(1 - \alpha) + 1}$$

The `ewmvar`, `ewmstd`, and `ewmcov` functions have a `bias` argument, specifying whether the result should contain biased or unbiased statistics. For example, if `bias=True`, `ewmvar(x)` is calculated as `ewmvar(x) = ewma(x**2) - ewma(x)**2`; whereas if `bias=False` (the default), the biased variance statistics are scaled by debiasing factors

$$\frac{\left(\sum_{i=0}^{t} w_i\right)^2}{\left(\sum_{i=0}^{t} w_i\right)^2 - \sum_{i=0}^{t} w_i^2}$$

(For $w_i = 1$, this reduces to the usual $N/(N - 1)$ factor, with $N = t + 1$.) See http://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_variance for further details.
WORKING WITH MISSING DATA

In this section, we will discuss missing (also referred to as NA) values in pandas.

Note: The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons. It differs from the MaskedArray approach of, for example, scikits.timeseries. We are hopeful that NumPy will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas.

See the *cookbook* for some advanced strategies

15.1 Missing data basics

15.1.1 When / why does data become missing?

Some might quibble over our usage of *missing*. By “missing” we simply mean *null* or “not present for whatever reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing.

In pandas, one of the most common ways that missing data is *introduced* into a data set is by reindexing. For example

```python
In [1]: df = DataFrame(randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
...: columns=['one', 'two', 'three'])
...:
In [2]: df['four'] = 'bar'
In [3]: df['five'] = df['one'] > 0
In [4]: df
Out[4]:
   one   two   three  four  five
a  0.2621  0.0362  0.1847   bar  True
b -0.2551 -0.2710  1.2884   bar  False
c  0.2946 -1.1658  0.8469   bar  True
d -0.6856  0.6091 -0.3039   bar  False
e  0.6256 -0.0593  0.2497   bar  True

In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
In [6]: df2
Out[6]:
   one   two   three  four  five
a  0.2621  0.0362  0.1847   bar  True
b -0.2551 -0.2710  1.2884   bar  False
c  0.2946 -1.1658  0.8469   bar  True
d -0.6856  0.6091 -0.3039   bar  False
e  0.6256 -0.0593  0.2497   bar  True
g -1.1658  0.6091 -0.3039   bar  False
h  0.6256  0.0362  0.1847   bar  True
```
15.1.2 Values considered “missing”

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python None will arise and we wish to also consider that “missing” or “null”.

Prior to version v0.10.0 inf and -inf were also considered to be “null” in computations. This is no longer the case by default; use the mode.use_inf_as_null option to recover it. To make detecting missing values easier (and across different array dtypes), pandas provides the isnull() and notnull() functions, which are also methods on Series objects:

```python
In [7]: df2['one']
Out[7]:
a  0.262136
b  NaN
  NaN
  NaN
  NaN
  NaN
c -0.255069 -0.271020  1.288393
  bar False
  NaN NaN NaN NaN
  NaN
  NaN
e  0.294633 -1.165787  0.846974
  bar True
f -0.685597  0.609099 -0.303961
  bar False
  NaN NaN NaN NaN
  NaN
g  NaN NaN NaN NaN
  NaN
h  0.625555 -0.059268  0.249698
  bar True
Name: one, dtype: float64

In [8]: isnull(df2['one'])
Out[8]:
a  False
b  True
  False
  False
  False
  False
c False
  True
  False
  False
  False
e False
  True
  False
  True
f  False
  True
  False
  True
g  True
  False
  True
  False
h  True
  False
  True
  False
Name: one, dtype: bool

In [9]: df2['four'].notnull()
Out[9]:
a  True
b  False
  True
c True
  True
d False
  True
e True
  True
f True
g False
  True
h True
Name: four, dtype: bool
```
Summary: NaN and None (in object arrays) are considered missing by the isnull and notnull functions. inf and -inf are no longer considered missing by default.

15.2 Datetimes

For datetime64[ns] types, NaT represents missing values. This is a pseudo-native sentinel value that can be represented by numpy in a singular dtype (datetime64[ns]). pandas objects provide intercompatibility between NaT and NaN.

In [10]: df2 = df.copy()

In [11]: df2['timestamp'] = Timestamp('20120101')

In [12]: df2
Out[12]:
 one two three four five timestamp
 --- ---- ----- ---- --- --------
 a 0.262136 0.036220 0.184735 bar True 2012-01-01
 c -0.255069 -0.271020 1.288393 bar False 2012-01-01
 e 0.294633 -1.165787 0.846974 bar True 2012-01-01
 f -0.685597 0.609099 -0.303961 bar False 2012-01-01
 h 0.625555 -0.059268 0.249698 bar True 2012-01-01

In [13]: df2.ix[['a','c','h'],['one','timestamp']] = np.nan

In [14]: df2
Out[14]:
 one two three four five timestamp
 --- ---- ----- ---- --- --------
 a NaN 0.036220 0.184735 bar True NaT
 c NaN -0.271020 1.288393 bar False NaT
 e 0.294633 -1.165787 0.846974 bar True NaT
 f -0.685597 0.609099 -0.303961 bar False NaT
 h NaN -0.059268 0.249698 bar True NaT

In [15]: df2.get_dtype_counts()
Out[15]:
bool 1
datetime64[ns] 1
float64 3
object 1
dtype: int64

15.3 Inserting missing data

You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based on the dtype.

For example, numeric containers will always use NaN regardless of the missing value type chosen:

In [16]: s = Series([1, 2, 3])

In [17]: s.loc[0] = None

In [18]: s
Out[18]:
0 NaN
Name: 0, dtype: object
Likewise, datetime containers will always use NaT.

For object containers, pandas will use the value given:

```
In [19]: s = Series(["a", "b", "c"])
In [20]: s.loc[0] = None
In [21]: s.loc[1] = np.nan

In [22]: s
Out[22]:
0   None
1   NaN
2    c
```

dtype: object

15.4 Calculations with missing data

Missing values propagate naturally through arithmetic operations between pandas objects.

```
In [23]: a
Out[23]:
   one   two
a   NaN  0.036220
c   NaN -0.271020
e  0.294633 -1.165787
f -0.685597  0.609099
h -0.685597 -0.059268

In [24]: b
Out[24]:
   one   two   three
a   NaN  0.036220   0.184735
c   NaN -0.271020  1.288393
e  0.294633 -1.165787  0.846974
f -0.685597  0.609099 -0.303961
h   NaN  0.059268   0.249698

In [25]: a + b
Out[25]:
   one   three   two
a   NaN    NaN  0.072439
c   NaN    NaN -0.542039
e  0.589266 NaN -2.331574
f -1.371195 NaN  1.218198
h   NaN    NaN -0.118536
```

The descriptive statistics and computational methods discussed in the data structure overview (and listed here and here) are all written to account for missing data. For example:

- When summing data, NA (missing) values will be treated as zero
- If the data are all NA, the result will be NA
• Methods like `cumsum` and `cumprod` ignore NA values, but preserve them in the resulting arrays

```python
In [26]: df
Out[26]:
   one   two   three
  a  NaN  0.036220  0.184735
  c  NaN  0.271020  1.288393
  e   0.294633  1.165787  0.846974
  f  -0.685597  0.609099  0.303961
  h  NaN  -0.059268  0.249698

In [27]: df['one'].sum()
Out[27]: -0.39096437337883205

In [28]: df.mean(1)
Out[28]:
   a    0.110477
   c    0.508687
   e   -0.008060
   f   -0.126820
   h    0.095215
dtype: float64

In [29]: df.cumsum()
Out[29]:
   one   two   three
  a  NaN  0.036220  0.184735
  c  NaN -0.234800  1.473128
  e  0.294633 -1.400587  2.320102
  f -0.390964 -0.791488  2.016141
  h  NaN -0.850756  2.265839
```

15.4.1 NA values in GroupBy

NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example.

15.5 Cleaning / filling missing data

pandas objects are equipped with various data manipulation methods for dealing with missing data.

15.5.1 Filling missing values: `fillna`

The `fillna` function can “fill in” NA values with non-null data in a couple of ways, which we illustrate:

Replace NA with a scalar value

```python
In [30]: df2
Out[30]:
   one   two   three   four   five      timestamp
  a  NaN  0.036220  0.184735    bar    True    NaT
  c  NaN  0.271020  1.288393    bar    False   NaT
  e  0.294633 -1.165787  0.846974    bar    True  2012-01-01
  f -0.685597  0.609099 -0.303961    bar    False  2012-01-01
  h  NaN  -0.059268  0.249698    bar    True    NaT
```

15.5. Cleaning / filling missing data
In [31]: df2.fillna(0)
Out[31]:
 one two three four five timestamp
a 0.000000 0.036220 0.184735 bar True 1970-01-01
b 0.000000 -0.271020 1.288393 bar False 1970-01-01
c 0.294633 -1.165787 0.846974 bar True 2012-01-01
d -0.685597 0.609099 -0.303961 bar False 2012-01-01
e 0.000000 -0.059268 0.249698 bar True 1970-01-01
f 0.000000 0.600000 0.200000 bar True 1970-01-01

In [32]: df2['four'].fillna('missing')
Out[32]:
a bar
b bar
c bar
d bar
e bar
f bar
g bar
Name: four, dtype: object

Fill gaps forward or backward

Using the same filling arguments as reindexing, we can propagate non-null values forward or backward:

In [33]: df
Out[33]:
 one two three
a NaN 0.036220 0.184735
b NaN -0.271020 1.288393
c NaN -0.271020 1.288393
d NaN 0.609099 -0.303961
e NaN 0.609099 -0.303961
f NaN 0.609099 -0.303961
h NaN 0.609099 -0.303961

In [34]: df.fillna(method='pad')
Out[34]:
 one two three
a NaN 0.036220 0.184735
b NaN -0.271020 1.288393
c NaN -0.271020 1.288393
d NaN 0.609099 -0.303961
e NaN 0.609099 -0.303961
f NaN 0.609099 -0.303961
h NaN 0.609099 -0.303961

Limit the amount of filling

If we only want consecutive gaps filled up to a certain number of data points, we can use the limit keyword:

In [35]: df
Out[35]:
 one two three
a NaN 0.036220 0.184735
b NaN -0.271020 1.288393
c NaN NaN NaN
d NaN NaN NaN
e NaN NaN NaN
f NaN NaN NaN
g NaN NaN NaN
h NaN 0.059268 0.249698

In [36]: df.fillna(method='pad', limit=1)
Out[36]:
 one two three
a NaN 0.036220 0.184735
b NaN -0.271020 1.288393
c NaN NaN NaN
d NaN NaN NaN
e NaN NaN NaN
f NaN NaN NaN
g NaN NaN NaN
h NaN 0.059268 0.249698
To remind you, these are the available filling methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad / ffill</td>
<td>Fill values forward</td>
</tr>
<tr>
<td>bfill / backfill</td>
<td>Fill values backward</td>
</tr>
</tbody>
</table>

With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time point.

The `ffill()` function is equivalent to `fillna(method='ffill')` and `bfill()` is equivalent to `fillna(method='bfill')`

15.5.2 Filling with a PandasObject

New in version 0.12. You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.

```
In [37]: dff = DataFrame(np.random.randn(10,3),columns=list('ABC'))
```

```
In [38]: dff.iloc[3:5,0] = np.nan
```

```
In [39]: dff.iloc[4:6,1] = np.nan
```

```
In [40]: dff.iloc[5:8,2] = np.nan
```

```
In [41]: dff
Out[41]:
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.103949</td>
<td>-1.087532</td>
<td>1.998044</td>
</tr>
<tr>
<td>1</td>
<td>-0.244548</td>
<td>0.136235</td>
<td>0.886313</td>
</tr>
<tr>
<td>2</td>
<td>-1.350722</td>
<td>-0.886348</td>
<td>-1.013316</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>-0.388231</td>
<td>-2.314394</td>
</tr>
<tr>
<td>4</td>
<td>NaN</td>
<td>NaN</td>
<td>0.399555</td>
</tr>
<tr>
<td>5</td>
<td>-1.765956</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>6</td>
<td>0.992312</td>
<td>0.744086</td>
<td>NaN</td>
</tr>
<tr>
<td>7</td>
<td>-1.054874</td>
<td>-0.179642</td>
<td>NaN</td>
</tr>
<tr>
<td>8</td>
<td>1.585014</td>
<td>1.906684</td>
<td>0.104050</td>
</tr>
<tr>
<td>9</td>
<td>0.174068</td>
<td>-0.439461</td>
<td>-0.741343</td>
</tr>
</tbody>
</table>
```

```
In [42]: dff.fillna(dff.mean())
```

```
In [43]: dff.fillna(dff.mean()[:, :2])
```

15.5. Cleaning / filling missing data
Out[43]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.103949</td>
<td>-1.087532</td>
<td>1.998044</td>
</tr>
<tr>
<td>1</td>
<td>-0.244548</td>
<td>0.136235</td>
<td>0.886313</td>
</tr>
<tr>
<td>2</td>
<td>-1.350722</td>
<td>-0.886348</td>
<td>-1.013316</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>-0.388231</td>
<td>-2.314394</td>
</tr>
<tr>
<td>4</td>
<td>NaN</td>
<td>-0.024276</td>
<td>0.399555</td>
</tr>
<tr>
<td>5</td>
<td>-1.765956</td>
<td>-0.024276</td>
<td>-0.097299</td>
</tr>
<tr>
<td>6</td>
<td>0.992312</td>
<td>0.744086</td>
<td>-0.097299</td>
</tr>
<tr>
<td>7</td>
<td>-1.054874</td>
<td>-0.179642</td>
<td>-0.097299</td>
</tr>
<tr>
<td>8</td>
<td>1.585014</td>
<td>1.906684</td>
<td>0.104050</td>
</tr>
<tr>
<td>9</td>
<td>0.174068</td>
<td>-0.439461</td>
<td>-0.741343</td>
</tr>
</tbody>
</table>

New in version 0.13. Same result as above, but is aligning the ‘fill’ value which is a Series in this case.

In [44]: dff.where(notnull(dff),dff.mean(),axis='columns')
Out[44]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.103949</td>
<td>-1.087532</td>
<td>1.998044</td>
</tr>
<tr>
<td>1</td>
<td>-0.244548</td>
<td>0.136235</td>
<td>0.886313</td>
</tr>
<tr>
<td>2</td>
<td>-1.350722</td>
<td>-0.886348</td>
<td>-1.013316</td>
</tr>
<tr>
<td>3</td>
<td>-0.070095</td>
<td>-0.388231</td>
<td>-2.314394</td>
</tr>
<tr>
<td>4</td>
<td>-0.070095</td>
<td>-0.024276</td>
<td>0.399555</td>
</tr>
<tr>
<td>5</td>
<td>-1.765956</td>
<td>-0.024276</td>
<td>-0.097299</td>
</tr>
<tr>
<td>6</td>
<td>0.992312</td>
<td>0.744086</td>
<td>-0.097299</td>
</tr>
<tr>
<td>7</td>
<td>-1.054874</td>
<td>-0.179642</td>
<td>-0.097299</td>
</tr>
<tr>
<td>8</td>
<td>1.585014</td>
<td>1.906684</td>
<td>0.104050</td>
</tr>
<tr>
<td>9</td>
<td>0.174068</td>
<td>-0.439461</td>
<td>-0.741343</td>
</tr>
</tbody>
</table>

15.5.3 Dropping axis labels with missing data: dropna

You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the `dropna` method:

In [45]: df
Out[45]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>two</th>
<th>three</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>NaN</td>
<td>0.036220</td>
<td>0.184735</td>
</tr>
<tr>
<td>c</td>
<td>NaN</td>
<td>-0.271020</td>
<td>1.288393</td>
</tr>
<tr>
<td>e</td>
<td>NaN</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>f</td>
<td>NaN</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>h</td>
<td>NaN</td>
<td>-0.059268</td>
<td>0.249698</td>
</tr>
</tbody>
</table>

In [46]: df.dropna(axis=0)
Out[46]:

Empty DataFrame
Columns: [one, two, three]
Index: []

In [47]: df.dropna(axis=1)
Out[47]:

<table>
<thead>
<tr>
<th></th>
<th>two</th>
<th>three</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.036220</td>
<td>0.184735</td>
</tr>
<tr>
<td>c</td>
<td>-0.271020</td>
<td>1.288393</td>
</tr>
<tr>
<td>e</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>f</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>h</td>
<td>-0.059268</td>
<td>0.249698</td>
</tr>
</tbody>
</table>
Series.dropna is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options than Series.dropna, which can be examined in the API.

15.5.4 Interpolation

New in version 0.13.0. Both Series and Dataframe objects have an \texttt{interpolate} method that, by default, performs linear interpolation at missing datapoints.

\texttt{In [49]: ts}
\texttt{Out[49]}:
2000-01-31 0.469112
2000-02-29 NaN
2000-03-31 NaN
2000-04-28 NaN
2000-05-31 NaN
...
2007-11-30 -5.485119
2007-12-31 -6.854968
2008-01-31 -7.809176
2008-02-29 -6.346480
2008-03-31 -8.089641
2008-04-30 -8.916232
Freq: BM, Length: 100

\texttt{In [50]: ts.count()}
\texttt{Out[50]}: 61

\texttt{In [51]: ts.interpolate().count()}
\texttt{Out[51]}: 100

\texttt{In [52]: plt.figure()}
\texttt{Out[52]}: <matplotlib.figure.Figure at 0xa8b55aec>

\texttt{In [53]: ts.interpolate().plot()}
\texttt{Out[53]}: <matplotlib.axes._subplots.AxesSubplot at 0xa8aeb88c>
Index aware interpolation is available via the `method` keyword:

```
In [54]: ts2
Out[54]:
2000-01-31    0.469112
2000-02-29     NaN
2002-07-31   -5.689738
2005-01-31     NaN
2008-04-30   -8.916232
dtype: float64
```

```
In [55]: ts2.interpolate()
Out[55]:
2000-01-31    0.469112
2000-02-29   -2.610313
2002-07-31   -5.689738
2005-01-31   -7.302985
2008-04-30   -8.916232
dtype: float64
```

```
In [56]: ts2.interpolate(method='time')
Out[56]:
2000-01-31    0.469112
2000-02-29   -2.610313
2002-07-31   -5.689738
2005-01-31   -7.095568
2008-04-30   -8.916232
dtype: float64
```

For a floating-point index, use `method='values'`:

```
In [57]: ser
Out[57]:
0   0
```
You can also interpolate with a DataFrame:

```python
In [60]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
                   'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})

In [61]: df
Out[61]:
   A   B
0  1.0  0.25
1  2.1  NaN
2  NaN  NaN
3  4.7  4.00
4  5.6  12.20
5  6.8  14.40
```

The `method` argument gives access to fancier interpolation methods. If you have scipy installed, you can set pass the name of a 1-d interpolation routine to `method`. You’ll want to consult the full scipy interpolation documentation and reference guide for details. The appropriate interpolation method will depend on the type of data you are working with. For example, if you are dealing with a time series that is growing at an increasing rate, `method='quadratic'` may be appropriate. If you have values approximating a cumulative distribution function, then `method='pchip'` should work well.

Warning: These methods require scipy.

```python
In [62]: df.interpolate()
Out[62]:
   A   B
0  1.0  0.25
1  2.1  1.50
2  3.4  2.75
3  4.7  4.00
4  5.6  12.20
5  6.8  14.40
```

```python
In [63]: df.interpolate(method='barycentric')
Out[63]:
   A   B
0  1.00  0.250
1  15.5
```

15.5. Cleaning / filling missing data
In [64]: df.interpolate(method='pchip')
Out[64]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000000</td>
<td>0.250000</td>
</tr>
<tr>
<td>1</td>
<td>2.100000</td>
<td>1.130135</td>
</tr>
<tr>
<td>2</td>
<td>3.429309</td>
<td>2.337586</td>
</tr>
<tr>
<td>3</td>
<td>4.700000</td>
<td>4.000000</td>
</tr>
<tr>
<td>4</td>
<td>5.600000</td>
<td>12.200000</td>
</tr>
<tr>
<td>5</td>
<td>6.800000</td>
<td>14.400000</td>
</tr>
</tbody>
</table>

When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:

In [65]: df.interpolate(method='spline', order=2)
Out[65]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000000</td>
<td>0.250000</td>
</tr>
<tr>
<td>1</td>
<td>2.100000</td>
<td>-0.428598</td>
</tr>
<tr>
<td>2</td>
<td>3.404545</td>
<td>1.206900</td>
</tr>
<tr>
<td>3</td>
<td>4.700000</td>
<td>4.000000</td>
</tr>
<tr>
<td>4</td>
<td>5.600000</td>
<td>12.200000</td>
</tr>
<tr>
<td>5</td>
<td>6.800000</td>
<td>14.400000</td>
</tr>
</tbody>
</table>

In [66]: df.interpolate(method='polynomial', order=2)
Out[66]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000000</td>
<td>0.250000</td>
</tr>
<tr>
<td>1</td>
<td>2.100000</td>
<td>-4.161538</td>
</tr>
<tr>
<td>2</td>
<td>3.547059</td>
<td>-2.911538</td>
</tr>
<tr>
<td>3</td>
<td>4.700000</td>
<td>4.000000</td>
</tr>
<tr>
<td>4</td>
<td>5.600000</td>
<td>12.200000</td>
</tr>
<tr>
<td>5</td>
<td>6.800000</td>
<td>14.400000</td>
</tr>
</tbody>
</table>

Compare several methods:

In [67]: np.random.seed(2)

In [68]: ser = Series(np.arange(1, 10.1, .25)**2 + np.random.randn(37))

In [69]: bad = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29])

In [70]: ser[bad] = np.nan

In [71]: methods = ['linear', 'quadratic', 'cubic']

In [72]: df = DataFrame({m: ser.interpolate(method=m) for m in methods})

In [73]: plt.figure()
Out[73]: <matplotlib.figure.Figure at 0xa925e2cc>

In [74]: df.plot()
Out[74]: <matplotlib.axes._subplots.AxesSubplot at 0xa8766a0>
Another use case is interpolation at new values. Suppose you have 100 observations from some distribution. And let’s suppose that you’re particularly interested in what’s happening around the middle. You can mix pandas’ `reindex` and `interpolate` methods to interpolate at the new values.

```
In [75]: ser = Series(np.sort(np.random.uniform(size=100)))

# interpolate at new_index
In [76]: new_index = ser.index | Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])

In [77]: interp_s = ser.reindex(new_index).interpolate(method='pchip')

In [78]: interp_s[49:51]
```

```
Out[78]:
49.00  0.471410
49.25  0.476841
49.50  0.481780
49.75  0.485998
50.00  0.489266
50.25  0.491814
50.50  0.493995
50.75  0.495763
51.00  0.497074
dtype: float64
```

Like other pandas fill methods, `interpolate` accepts a `limit` keyword argument. Use this to limit the number of consecutive interpolations, keeping NaN values for interpolations that are too far from the last valid observation:

```
In [79]: ser = Series([1, 3, np.nan, np.nan, np.nan, 11])

In [80]: ser.interpolate(limit=2)
```

```
Out[80]:
0   1
1   3
2   5
```
15.5.5 Replacing Generic Values

Often times we want to replace arbitrary values with other values. New in v0.8 is the replace method in Series/DataFrame that provides an efficient yet flexible way to perform such replacements.

For a Series, you can replace a single value or a list of values by another value:

In [81]: ser = Series([0., 1., 2., 3., 4.])

In [82]: ser.replace(0, 5)
Out[82]:
0 5
1 1
2 2
3 3
4 4
dtype: float64

You can replace a list of values by a list of other values:

In [83]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
Out[83]:
0 4
1 3
2 2
3 1
4 0
dtype: float64

You can also specify a mapping dict:

In [84]: ser.replace({0: 10, 1: 100})
Out[84]:
0 10
1 100
2 2
3 3
4 4
dtype: float64

For a DataFrame, you can specify individual values by column:

In [85]: df = DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]})

In [86]: df.replace({'a': 0, 'b': 5}, 100)
Out[86]:
a b
0 100 100
1 1 6
2 2 7
3 3 8
4 4 9
Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:

```python
In [87]: ser.replace([1, 2, 3], method='pad')
Out[87]:
0 0
1 0
2 0
3 0
4 4
dtype: float64
```

15.5.6 String/Regular Expression Replacement

Note: Python strings prefixed with the `r` character such as `r'hello world'` are so-called “raw” strings. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., `r'\' == '\`. You should read about them if this is unclear.

Replace the `.` with `nan` (str -> str)

```python
In [88]: d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', nan, 'd']}
In [89]: df = DataFrame(d)
In [90]: df.replace('.', nan)
Out[90]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
```

Now do it with a regular expression that removes surrounding whitespace (regex -> regex)

```python
In [91]: df.replace(r'[\s*\.]', nan, regex=True)
Out[91]:
a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d
```

Replace a few different values (list -> list)

```python
In [92]: df.replace(['a', '.'], ['b', nan])
Out[92]:
a b c
0 0 b b
1 1 b b
2 2 NaN NaN
3 3 NaN d
```

list of regex -> list of regex

```python
In [93]: df.replace([r'\.', r'(a)'], ['dot', '\1stuff'], regex=True)
Out[93]:
a b c
0 0 {stuff {stuff
```

15.5. Cleaning / filling missing data
Only search in column `'b'` (dict -> dict)

In [94]: df.replace({'b': '.'}, {'b': nan})
Out[94]:
 a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d

Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict)

In [95]: df.replace({'b': r'\s*\.\s*'}, {'b': nan}, regex=True)
Out[95]:
 a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d

You can pass nested dictionaries of regular expressions that use `regex=True`

In [96]: df.replace({'b': {r'\s*\.\s*': nan}}, regex=True)
Out[96]:
 a b c
0 0 a a
1 1 b b
2 2 . NaN
3 3 . d

or you can pass the nested dictionary like so

In [97]: df.replace(regex={'b': {r'\s*\.\s*': nan}})
Out[97]:
 a b c
0 0 a a
1 1 b b
2 2 NaN NaN
3 3 NaN d

You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well

In [98]: df.replace({'b': r'\s*(\.\s*)', 'b': r'\1ty'}, regex=True)
Out[98]:
 a b c
0 0 a a
1 1 b b
2 2 .ty NaN
3 3 .ty d

You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex)

In [99]: df.replace([r'\s*\.\s*', r'a|b'], nan, regex=True)
Out[99]:
a b c
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN d

All of the regular expression examples can also be passed with the `to_replace` argument as the `regex` argument. In this case the `value` argument must be passed explicitly by name or `regex` must be a nested dictionary. The previous example, in this case, would then be

```python
In [100]: df.replace(regex=[r'\s*\.\s*', r'a|b'], value=nan)
Out[100]:
     a  b  c
0  0  NaN NaN
1  1  NaN NaN
2  2  NaN NaN
3  3  NaN  d
```

This can be convenient if you do not want to pass `regex=True` every time you want to use a regular expression.

Note: Anywhere in the above `replace` examples that you see a regular expression a compiled regular expression is valid as well.

15.5.7 Numeric Replacement

Similar to `DataFrame.fillna`

```python
In [101]: df = DataFrame(randn(10, 2))
In [102]: df[rand(df.shape[0]) > 0.5] = 1.5
In [103]: df.replace(1.5, nan)
Out[103]:
    0  1
0 -0.844214 -1.021415
1  0.432396 -0.323580
2  0.423825  0.799180
3  1.262614  0.751965
4  NaN   NaN
5  NaN   NaN
6 -0.498174 -1.060799
7  0.591667 -0.183257
8  1.019855 -1.482465
9  NaN   NaN
```

Replacing more than one value via lists works as well

```python
In [104]: df00 = df.values[0, 0]
In [105]: df.replace({1.5, df00}, {nan, ‘a’})
Out[105]:
     0  1
0   a  -1.021415
1  0.4323957 -0.323580
2  0.4238247  0.799180
3  1.262614  0.751965
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

4 NaN NaN
5 NaN NaN
6 -0.498174 -1.060799
7 0.591667 -0.183257
8 1.019855 -1.482465
9 NaN NaN

In [106]: df[1].dtype
Out[106]: dtype('float64')

You can also operate on the DataFrame in place

In [107]: df.replace(1.5, nan, inplace=True)

Warning: When replacing multiple bool or datetime64 objects, the first argument to replace (to_replace) must match the type of the value being replaced type. For example,

s = Series([True, False, True])
s.replace({'a string': 'new value', True: False}) # raises

TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

will raise a TypeError because one of the dict keys is not of the correct type for replacement. However, when replacing a single object such as,

In [108]: s = Series([True, False, True])

In [109]: s.replace('a string', 'another string')
Out[109]:
0 True
1 False
2 True
dtype: bool

the original NDFrame object will be returned untouched. We’re working on unifying this API, but for backwards compatibility reasons we cannot break the latter behavior. See GH6354 for more details.

15.6 Missing data casting rules and indexing

While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we’ve established some “casting rules” when reindexing will cause missing data to be introduced into, say, a Series or DataFrame. Here they are:

<table>
<thead>
<tr>
<th>data type</th>
<th>Cast to</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>float</td>
</tr>
<tr>
<td>boolean</td>
<td>object</td>
</tr>
<tr>
<td>float</td>
<td>no cast</td>
</tr>
<tr>
<td>object</td>
<td>no cast</td>
</tr>
</tbody>
</table>

For example:

In [110]: s = Series(randn(5), index=[0, 2, 4, 6, 7])

In [111]: s > 0
Out[111]:
0 True
Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated:

In [116]: reindexed = s.reindex(list(range(8))).fillna(0)

In [117]: reindexed[crit]

ValueError Traceback (most recent call last)
<ipython-input-117-2da204ed1ac7> in <module>()
----> 1 reindexed[crit]
/home/joris/scipy/pandas/pandas/core/series.pyc in __getitem__(self, key)
 543 key = list(key)
 544
<---> 545 if _is_bool_indexer(key):
/home/joris/scipy/pandas/pandas/core/common.pyc in _is_bool_indexer(key)
 2054 if not lib.is_bool_array(key):
 2055 if isnull(key).any():
<---> 2056 raise ValueError('cannot index with vector containing '
 2057 'NA / NaN values')
 2058 return False

ValueError: cannot index with vector containing NA / NaN values

However, these can be filled in using fillna and it will work fine:

In [118]: reindexed[crit.fillna(False)]
Out[118]:
0 0.126504
In [119]: reindexed[crit.fillna(True)]
Out[119]:
0 0.126504
1 0.000000
2 0.696198
3 0.000000
4 0.697416
5 0.000000
6 0.601516
7 0.003659
dtype: float64
GROUP BY: SPLIT-APPLY-COMBINE

By “group by” we are referring to a process involving one or more of the following steps:

- **Splitting** the data into groups based on some criteria
- **Applying** a function to each group independently
- **Combining** the results into a data structure

Of these, the split step is the most straightforward. In fact, in many situations you may wish to split the data set into groups and do something with those groups yourself. In the apply step, we might wish to one of the following:

- **Aggregation**: computing a summary statistic (or statistics) about each group. Some examples:
 - Compute group sums or means
 - Compute group sizes / counts

- **Transformation**: perform some group-specific computations and return a like-indexed. Some examples:
 - Standardizing data (zscore) within group
 - Filling NAs within groups with a value derived from each group

- **Filtration**: discard some groups, according to a group-wise computation that evaluates True or False. Some examples:
 - Discarding data that belongs to groups with only a few members
 - Filtering out data based on the group sum or mean

- Some combination of the above: GroupBy will examine the results of the apply step and try to return a sensibly combined result if it doesn’t fit into either of the above two categories

Since the set of object instance method on pandas data structures are generally rich and expressive, we often simply want to invoke, say, a DataFrame function on each group. The name GroupBy should be quite familiar to those who have used a SQL-based tool (or *itertools*), in which you can write code like:

```sql
SELECT Column1, Column2, mean(Column3), sum(Column4)
FROM SomeTable
GROUP BY Column1, Column2
```

We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy functionality then provide some non-trivial examples / use cases.

See the *cookbook* for some advanced strategies.
16.1 Splitting an object into groups

Pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. To create a GroupBy object (more on what the GroupBy object is later), you do the following:

```python
>>> grouped = obj.groupby(key)
>>> grouped = obj.groupby(key, axis=1)
>>> grouped = obj.groupby([key1, key2])
```

The mapping can be specified many different ways:

- A Python function, to be called on each of the axis labels
- A list or NumPy array of the same length as the selected axis
- A dict or Series, providing a label -> group name mapping
- For DataFrame objects, a string indicating a column to be used to group. Of course `df.groupby('A')` is just syntactic sugar for `df.groupby(df['A'])`, but it makes life simpler
- A list of any of the above things

Collectively we refer to the grouping objects as the keys. For example, consider the following DataFrame:

```python
In [1]: df = DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
...: 'foo', 'bar', 'foo', 'foo'],
...: 'B' : ['one', 'one', 'two', 'three',
...: 'two', 'two', 'one', 'three'],
...: 'C' : randn(8), 'D' : randn(8)})
...:
```

```python
In [2]: df
Out[2]:
```
```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>foo</td>
<td>one</td>
<td>0.469112</td>
<td>-0.861849</td>
</tr>
<tr>
<td>1</td>
<td>bar</td>
<td>one</td>
<td>-0.282863</td>
<td>-2.104569</td>
</tr>
<tr>
<td>2</td>
<td>foo</td>
<td>two</td>
<td>-1.509059</td>
<td>-0.494929</td>
</tr>
<tr>
<td>3</td>
<td>bar</td>
<td>three</td>
<td>-1.135632</td>
<td>1.071804</td>
</tr>
<tr>
<td>4</td>
<td>foo</td>
<td>two</td>
<td>1.212112</td>
<td>0.721555</td>
</tr>
<tr>
<td>5</td>
<td>bar</td>
<td>two</td>
<td>-0.173215</td>
<td>-0.706771</td>
</tr>
<tr>
<td>6</td>
<td>foo</td>
<td>one</td>
<td>0.119209</td>
<td>-1.039575</td>
</tr>
<tr>
<td>7</td>
<td>foo</td>
<td>three</td>
<td>-1.044236</td>
<td>0.271860</td>
</tr>
</tbody>
</table>
```

We could naturally group by either the A or B columns or both:

```python
In [3]: grouped = df.groupby('A')
In [4]: grouped = df.groupby(['A', 'B'])
```

These will split the DataFrame on its index (rows). We could also split by the columns:

```python
In [5]: def get_letter_type(letter):
...:     if letter.lower() in 'aeiou':
...:         return 'vowel'
...:     else:
...:         return 'consonant'
...:
In [6]: grouped = df.groupby(get_letter_type, axis=1)
```
Starting with 0.8, pandas Index objects now supports duplicate values. If a non-unique index is used as the group key in a groupby operation, all values for the same index value will be considered to be in one group and thus the output of aggregation functions will only contain unique index values:

```
In [7]: lst = [1, 2, 3, 1, 2, 3]
In [8]: s = Series([1, 2, 3, 10, 20, 30], lst)
In [9]: grouped = s.groupby(level=0)
In [10]: grouped.first()
Out[10]:
   1  1
   2  2
   3  3
   dtype: int64
In [11]: grouped.last()
Out[11]:
   1 10
   2 20
   3 30
   dtype: int64
In [12]: grouped.sum()
Out[12]:
   1 11
   2 22
   3 33
   dtype: int64
```

Note that no splitting occurs until it's needed. Creating the GroupBy object only verifies that you've passed a valid mapping.

Note: Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though can't be guaranteed to be the most efficient). You can get quite creative with the label mapping functions.

16.1.1 GroupBy object attributes

The `groups` attribute is a dict whose keys are the computed unique groups and corresponding values being the axis labels belonging to each group. In the above example we have:

```
In [13]: df.groupby('A').groups
Out[13]: {'bar': [1L, 3L, 5L], 'foo': [0L, 2L, 4L, 6L, 7L]}

In [14]: df.groupby(get_letter_type, axis=1).groups
Out[14]: {'consonant': ['B', 'C', 'D'], 'vowel': ['A']}
```

Calling the standard Python `len` function on the GroupBy object just returns the length of the `groups` dict, so it is largely just a convenience:

```
In [15]: grouped = df.groupby(['A', 'B'])
In [16]: grouped.groups
Out[16]:
   (‘bar’, ‘one’): [1L],
```

16.1. Splitting an object into groups
In [17]: len(grouped)
Out[17]: 6

By default the group keys are sorted during the groupby operation. You may however pass `sort=False` for potential speedups:

In [18]: df2 = DataFrame({'X': ['B', 'B', 'A', 'A'], 'Y': [1, 2, 3, 4]})

In [19]: df2.groupby(['X'], sort=True).sum()
Out[19]:
Y
X
A 7
B 3

In [20]: df2.groupby(['X'], sort=False).sum()
Out[20]:
Y
X
B 3
A 7

`GroupBy` will tab complete column names (and other attributes)

In [21]: df
Out[21]:
 gender height weight
0 2000-01-01 male 42.849980 157.500553
1 2000-01-02 male 49.607315 177.340407
2 2000-01-03 male 56.293531 171.524640
3 2000-01-04 female 48.421077 144.251986
4 2000-01-05 male 46.556882 152.526206
5 2000-01-06 female 68.448851 168.272968
6 2000-01-07 male 70.757698 136.431469
7 2000-01-08 female 58.909500 176.499753
8 2000-01-09 female 76.435631 174.094104
9 2000-01-10 male 45.306120 177.540920

In [22]: gb = df.groupby('gender')

In [23]: gb.

In [24]: s
Out[24]:

16.1.2 GroupBy with MultiIndex

With `hierarchically-indexed data`, it’s quite natural to group by one of the levels of the hierarchy.

In [24]: s
Out[24]:
first second
bar one -0.575247
 two 0.254161
baz one -1.143704
 two 0.215897
foo one 1.193555
 two -0.077118
qux one -0.408530
 two -0.862495
dtype: float64

In [25]: grouped = s.groupby(level=0)

In [26]: grouped.sum()
Out[26]:
first
bar -0.321085
baz -0.927807
foo 1.116437
qux -1.271025
dtype: float64

If the MultiIndex has names specified, these can be passed instead of the level number:

In [27]: s.groupby(level='second').sum()
Out[27]:
second
one -0.933926
two -0.469555
dtype: float64

The aggregation functions such as sum will take the level parameter directly. Additionally, the resulting index will be named according to the chosen level:

In [28]: s.sum(level='second')
Out[28]:
second
one -0.933926
two -0.469555
dtype: float64

Also as of v0.6, grouping with multiple levels is supported.

In [29]: s
Out[29]:
first second third
bar doo one 1.346061
 two 1.511763
baz bee one 1.627081
 two -0.990582
foo bop one -0.441652
 two 1.211526
qux bop one 0.268520
 two 0.024580
dtype: float64

In [30]: s.groupby(level=['first','second']).sum()
Out[30]:
first second
16.1. Splitting an object into groups
bar doo 2.857824
baz bee 0.636499
foo bop 0.769873
qux bop 0.293100
dtype: float64

More on the sum function and aggregation later.

16.1.3 DataFrame column selection in GroupBy

Once you have created the GroupBy object from a DataFrame, for example, you might want to do something different for each of the columns. Thus, using [] similar to getting a column from a DataFrame, you can do:

```python
In [31]: grouped = df.groupby(['A'])
In [32]: grouped_C = grouped['C']
In [33]: grouped_D = grouped['D']
```

This is mainly syntactic sugar for the alternative and much more verbose:

```python
In [34]: df['C'].groupby(df['A'])
Out[34]: <pandas.core.groupby.SeriesGroupBy object at 0xa1b7eecc>
```

Additionally this method avoids recomputing the internal grouping information derived from the passed key.

16.2 Iterating through groups

With the GroupBy object in hand, iterating through the grouped data is very natural and functions similarly to `itertools.groupby`:

```python
In [35]: grouped = df.groupby('A')
In [36]: for name, group in grouped:
   ....:     print(name)
   ....:     print(group)
   ....:
bar
   A    B    C    D
   1   bar  one -0.042379 -0.089329
   3   bar  three -0.009920 -0.945867
   5   bar  two  0.495767  1.956030
foo
   A    B    C    D
   0   foo  one  -0.919854 -1.131345
   2   foo  two   1.247642  0.337863
   4   foo  two   0.290213  -0.932132
   6   foo  one   0.362949  0.017587
   7   foo  three  1.548106  -0.016692
```

In the case of grouping by multiple keys, the group name will be a tuple:

```python
In [37]: for name, group in df.groupby(['A', 'B']):
   ....:     print(name)
   ....:     print(group)
   ....:
```
('bar', 'one')
A B C D
1 bar one -0.042379 -0.089329
('bar', 'three')
A B C D
3 bar three -0.009920 -0.945867
('bar', 'two')
A B C D
5 bar two 0.495767 1.956030
('foo', 'one')
A B C D
0 foo one -0.919854 -1.131345
6 foo one 0.362949 0.017587
('foo', 'three')
A B C D
7 foo three 1.548106 -0.016692
('foo', 'two')
A B C D
2 foo two 1.247642 0.337863
4 foo two 0.290213 -0.932132

It's standard Python-fu but remember you can unpack the tuple in the for loop statement if you wish: for (k1, k2), group in grouped:

16.3 Aggregation

Once the GroupBy object has been created, several methods are available to perform a computation on the grouped data.

An obvious one is aggregation via the aggregate or equivalently agg method:

In [38]: grouped = df.groupby('A')

In [39]: grouped.aggregate(np.sum)
Out[39]:

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>0.443469</td>
<td>0.920834</td>
</tr>
<tr>
<td>foo</td>
<td>2.529056</td>
<td>-1.724719</td>
</tr>
</tbody>
</table>

In [40]: grouped = df.groupby(['A', 'B'])

In [41]: grouped.aggregate(np.sum)
Out[41]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>one</td>
<td>-0.042379</td>
<td>-0.089329</td>
</tr>
<tr>
<td></td>
<td>three</td>
<td>-0.009920</td>
<td>-0.945867</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>0.495767</td>
<td>1.956030</td>
</tr>
<tr>
<td>foo</td>
<td>one</td>
<td>-0.556905</td>
<td>-1.131345</td>
</tr>
<tr>
<td></td>
<td>three</td>
<td>1.548106</td>
<td>-0.016692</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>0.290213</td>
<td>-0.932132</td>
</tr>
</tbody>
</table>

As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In the case of multiple keys, the result is a MultiIndex by default, though this can be changed by using the as_index option:
In [42]: grouped = df.groupby(['A', 'B'], as_index=False)

In [43]: grouped.aggregate(np.sum)
Out[43]:
 A B C D
0 bar one -0.042379 -0.089329
1 bar three -0.009920 -0.945867
2 bar two 0.495767 1.956030
3 foo one -0.556905 -1.113758
4 foo three 1.548106 -0.016692
5 foo two 1.537855 -0.594269

In [44]: df.groupby('A', as_index=False).sum()
Out[44]:
 A C D
0 bar 0.443469 0.920834
1 foo 2.529056 -1.724719

Note that you could use the reset_index DataFrame function to achieve the same result as the column names are stored in the resulting MultiIndex:

In [45]: df.groupby(['A', 'B']).sum().reset_index()
Out[45]:
 A B C D
0 bar one -0.042379 -0.089329
1 bar three -0.009920 -0.945867
2 bar two 0.495767 1.956030
3 foo one -0.556905 -1.113758
4 foo three 1.548106 -0.016692
5 foo two 1.537855 -0.594269

dtype: int64

Another simple aggregation example is to compute the size of each group. This is included in GroupBy as the size method. It returns a Series whose index are the group names and whose values are the sizes of each group.

In [46]: grouped.size()
Out[46]:
 A B
bar one 1
 three 1
 two 1
foo one 2
 three 1
 two 2
dtype: int64

In [47]: grouped.describe()
Out[47]:
 C D
count 1.000000 1.000000
mean -0.042379 -0.089329
std NaN NaN
min -0.042379 -0.089329
25% -0.042379 -0.089329
50% -0.042379 -0.089329
75% -0.042379 -0.089329

5 mean 0.768928 -0.297134
std 0.677005 0.898022
min 0.290213 -0.932132
25% 0.529570 -0.614633
50% 0.768928 -0.297134
75% 1.008285 0.020364
max 1.247642 0.337863

[48 rows x 2 columns]

Note: Aggregation functions will not return the groups that you are aggregating over if they are named columns, when `as_index=True`, the default. The grouped columns will be the indices of the returned object.

Passing `as_index=False` will return the groups that you are aggregating over, if they are named columns.

Aggregating functions are ones that reduce the dimension of the returned objects, for example: `mean`, `sum`, `size`, `count`, `std`, `var`, `sem`, `describe`, `first`, `last`, `nth`, `min`, `max`. This is what happens when you do for example `DataFrame.sum()` and get back a Series.

`nth` can act as a reducer or a filter, see [here](#).

16.3.1 Applying multiple functions at once

With grouped Series you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame:

```python
In [48]: grouped = df.groupby('A')

In [49]: grouped['C'].agg([np.sum, np.mean, np.std])
Out[49]:
       sum     mean    std
A
bar  0.443469  0.147823  0.301765
foo  2.529056  0.505811  0.966450
```

If a dict is passed, the keys will be used to name the columns. Otherwise the function’s name (stored in the function object) will be used.

```python
In [50]: grouped['D'].agg({'result1' : np.sum,
                       'result2' : np.mean})
Out[50]:
       result2   result1
A
bar   0.306945   0.920834
foo  -0.344944  -1.724719
```

On a grouped DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:

```python
In [51]: grouped.agg([np.sum, np.mean, np.std])
Out[51]:
       C        D
      sum     mean    std    sum     mean    std
A
bar  0.443469  0.147823  0.301765  0.920834  0.306945  1.490982
foo  2.529056  0.505811  0.966450 -1.724719 -0.344944  0.645875
```

Passing a dict of functions has different behavior by default, see the next section.
16.3.2 Applying different functions to DataFrame columns

By passing a dict to `aggregate` you can apply a different aggregation to the columns of a DataFrame:

```python
In [52]: grouped.agg({'C' : np.sum,
                  ....:                       'D' : lambda x: np.std(x, ddof=1)})
Out[52]:
          C       D
    A    0.443469  1.490982
    foo  2.529056  0.645875
```

The function names can also be strings. In order for a string to be valid it must be either implemented on GroupBy or available via dispatching:

```python
In [53]: grouped.agg({'C' : 'sum', 'D' : 'std'})
Out[53]:
          C       D
    A    0.443469  1.490982
    foo  2.529056  0.645875
```

16.3.3 Cython-optimized aggregation functions

Some common aggregations, currently only `sum`, `mean`, `std`, and `sem`, have optimized Cython implementations:

```python
In [54]: df.groupby('A').sum()
Out[54]:
          C       D
    A    0.443469  0.920834
    foo  2.529056 -1.724719
```

```python
In [55]: df.groupby(['A', 'B']).mean()
Out[55]:
          C       D
    A B
    one -0.042379 -0.089329
    three -0.009920 -0.945867
    two  0.495767  1.956030
    foo one -0.278452 -0.556879
    three 1.548106 -0.016692
    two  0.768928 -0.297134
```

Of course `sum` and `mean` are implemented on pandas objects, so the above code would work even without the special versions via dispatching (see below).

16.4 Transformation

The `transform` method returns an object that is indexed the same (same size) as the one being grouped. Thus, the passed transform function should return a result that is the same size as the group chunk. For example, suppose we wished to standardize the data within each group:
In [56]: index = date_range('10/1/1999', periods=1100)

In [57]: ts = Series(np.random.normal(0.5, 2, 1100), index)

In [58]: ts = rolling_mean(ts, 100, 100).dropna()

In [59]: ts.head()
Out[59]:
2000-01-08 0.779333
2000-01-09 0.778852
2000-01-10 0.786476
2000-01-11 0.782797
2000-01-12 0.798110
Freq: D, dtype: float64

In [60]: ts.tail()
Out[60]:
2002-09-30 0.660294
2002-10-01 0.631095
2002-10-02 0.673601
2002-10-03 0.709213
2002-10-04 0.719369
Freq: D, dtype: float64

In [61]: key = lambda x: x.year

In [62]: zscore = lambda x: (x - x.mean()) / x.std()

In [63]: transformed = ts.groupby(key).transform(zscore)

We would expect the result to now have mean 0 and standard deviation 1 within each group, which we can easily check:

Original Data
In [64]: grouped = ts.groupby(key)

In [65]: grouped.mean()
Out[65]:
2000 0.442441
2001 0.526246
2002 0.459365
dtype: float64

In [66]: grouped.std()
Out[66]:
2000 0.131752
2001 0.210945
2002 0.128753
dtype: float64

Transformed Data
In [67]: grouped_trans = transformed.groupby(key)

In [68]: grouped_trans.mean()
Out[68]:
2000 -7.561268e-17
2001 -4.194514e-16
2002 -1.362729e-16

16.4. Transformation
In [69]: grouped_trans.std()
Out[69]:
2000 1
2001 1
2002 1
dtype: float64

We can also visually compare the original and transformed data sets.

In [70]: compare = DataFrame({'Original': ts, 'Transformed': transformed})
In [71]: compare.plot()
Out[71]: <matplotlib.axes._subplots.AxesSubplot at 0xa186ad6c>

Another common data transform is to replace missing data with the group mean.

In [72]: data_df
Out[72]:
 A B C
0 1.539708 -1.166480 0.533026
1 1.302092 -0.505754 NaN
2 -0.371983 1.104803 -0.651520
3 -1.309622 1.118697 -1.161657
4 -1.924296 0.396437 0.812436
5 0.815643 0.367816 -0.469478
6 -0.030651 1.376106 -0.645129
..
993 0.012359 0.554602 -1.976159
994 0.042312 -1.628835 1.013822
995 -0.093110 0.683847 -0.774753
996 -0.185043 1.438572 NaN

Chapter 16. Group By: split-apply-combine
In [73]: countries = np.array(['US', 'UK', 'GR', 'JP'])

In [74]: key = countries[np.random.randint(0, 4, 1000)]

In [75]: grouped = data_df.groupby(key)

Non-NA count in each group
In [76]: grouped.count()

Out[76]:
 A B C
GR 209 217 189
JP 240 255 217
UK 216 231 193
US 239 250 217

In [77]: f = lambda x: x.fillna(x.mean())

In [78]: transformed = grouped.transform(f)

We can verify that the group means have not changed in the transformed data and that the transformed data contains no NAs.

In [79]: grouped_trans = transformed.groupby(key)

In [80]: grouped.mean() # original group means

Out[80]:
 A B C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603

In [81]: grouped_trans.mean() # transformation did not change group means

Out[81]:
 A B C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603

In [82]: grouped.count() # original has some missing data points

Out[82]:
 A B C
GR 209 217 189
JP 240 255 217
UK 216 231 193
US 239 250 217

In [83]: grouped_trans.count() # counts after transformation

Out[83]:
 A B C
GR 228 228 228
In [84]: grouped_trans.size() # Verify non-NA count equals group size
Out[84]:
GR 228
JP 267
UK 247
US 258
dtype: int64

Note: Some functions when applied to a groupby object will automatically transform the input, returning an object of the same shape as the original. Passing `as_index=False` will not affect these transformation methods.

For example: `fillna`, `ffill`, `bfill`, `shift`.

In [85]: grouped.ffill()
Out[85]:
 A B C
0 1.539708 -1.166480 0.533026
1 1.302092 -0.505754 0.533026
2 -0.371983 1.104803 -0.651520
3 -1.309622 1.118697 -1.161657
4 -1.924296 0.396437 0.812436
5 0.815643 0.367816 -0.469478
6 -0.030651 1.376106 -0.645129
...
993 0.012359 0.554602 -1.976159
994 0.042312 -1.628835 1.013822
995 0.093110 0.683847 -0.774753
996 0.185043 1.438572 -0.774753
997 0.394469 0.642343 0.011374
998 1.174126 1.857148 -0.774753
999 0.234564 0.517098 0.393534
[1000 rows x 3 columns]

16.5 Filtration

New in version 0.12. The `filter` method returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.

In [86]: sf = Series([1, 1, 2, 3, 3, 3])

In [87]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[87]:
3 3
4 3
5 3
dtype: int64

The argument of `filter` must be a function that, applied to the group as a whole, returns `True` or `False`.

Another useful operation is filtering out elements that belong to groups with only a couple members.
In [88]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc'))

In [89]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[89]:
 A B
0 2 b
1 3 b
2 4 b
3 5 b

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

In [90]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[90]:
 A B
0 NaN NaN
1 NaN NaN
2 2 b
3 3 b
4 4 b
5 5 b
6 NaN NaN
7 NaN NaN

For dataframes with multiple columns, filters should explicitly specify a column as the filter criterion.

In [91]: dff['C'] = np.arange(8)

In [92]: dff.groupby('B').filter(lambda x: len(x['C']) > 2)
Out[92]:
 A B C
0 0 a 0
1 1 a 1
2 2 b 2
3 3 b 3
4 4 b 4
5 5 b 5

Note: Some functions when applied to a groupby object will act as a filter on the input, returning a reduced shape of the original (and potentially eliminating groups), but with the index unchanged. Passing as_index=False will not affect these transformation methods.

For example: head, tail.

In [93]: dff.groupby('B').head(2)
Out[93]:
 A B C
0 0 a 0
1 1 a 1
2 2 b 2
3 3 b 3
4 4 b 4
5 5 b 5
16.6 Dispatching to instance methods

When doing an aggregation or transformation, you might just want to call an instance method on each data group. This is pretty easy to do by passing lambda functions:

In [94]: grouped = df.groupby('A')

In [95]: grouped.agg(lambda x: x.std())
Out[95]:
 B C D
A
 bar NaN 0.301765 1.490982
 foo NaN 0.966450 0.645875

But, it’s rather verbose and can be untidy if you need to pass additional arguments. Using a bit of metaprogramming cleverness, GroupBy now has the ability to “dispatch” method calls to the groups:

In [96]: grouped.std()
Out[96]:
 C D
A
 bar 0.301765 1.490982
 foo 0.966450 0.645875

What is actually happening here is that a function wrapper is being generated. When invoked, it takes any passed arguments and invokes the function with any arguments on each group (in the above example, the std function). The results are then combined together much in the style of agg and transform (it actually uses apply to infer the gluing, documented next). This enables some operations to be carried out rather succinctly:

In [97]: tsdf = DataFrame(randn(1000, 3),
 index=date_range('1/1/2000', periods=1000),
 columns=['A', 'B', 'C'])

In [98]: tsdf.ix[::2] = np.nan

In [99]: grouped = tsdf.groupby(lambda x: x.year)

In [100]: grouped.fillna(method='pad')
Out[100]:
 A B C
2000-01-01 NaN NaN NaN
2000-01-02 -0.353501 -0.080957 -0.876864
2000-01-03 -0.353501 -0.080957 -0.876864
2000-01-04 0.050976 0.044273 -0.559849
2000-01-05 0.050976 0.044273 -0.559849
2000-01-06 0.030091 0.186460 -0.680149
2000-01-07 0.030091 0.186460 -0.680149

2002-09-20 2.310215 0.157482 -0.064476
2002-09-21 2.310215 0.157482 -0.064476
2002-09-22 0.005011 0.053897 -1.026922
2002-09-23 0.005011 0.053897 -1.026922
2002-09-24 -0.456542 -1.849051 1.559856
2002-09-25 -0.456542 -1.849051 1.559856
2002-09-26 1.123162 0.354660 1.128135

[1000 rows x 3 columns]
In this example, we chopped the collection of time series into yearly chunks then independently called `fillna` on the groups. New in version 0.14.1. The `nlargest` and `nsmallest` methods work on `Series` style groupbys:

```python
In [101]: s = Series([9, 8, 7, 5, 19, 1, 4.2, 3.3])
In [102]: g = Series(list('abababab'))
In [103]: gb = s.groupby(g)
In [104]: gb.nlargest(3)
Out[104]:
   a 4  19.0
     0  9.0
     2  7.0
   b 1  8.0
     3  5.0
     7  3.3
dtype: float64
In [105]: gb.nsmallest(3)
Out[105]:
   a 6  4.2
     2  7.0
     0  9.0
   b 5  1.0
     7  3.3
     3  5.0
dtype: float64
```

16.7 Flexible apply

Some operations on the grouped data might not fit into either the aggregate or transform categories. Or, you may simply want GroupBy to infer how to combine the results. For these, use the `apply` function, which can be substituted for both `aggregate` and `transform` in many standard use cases. However, `apply` can handle some exceptional use cases, for example:

```python
In [106]: df
Out[106]:
     A  B      C      D
0  foo  one -0.919854 -1.131345
1  bar  one -0.042379 -0.089329
2  foo  two  1.247642  0.337863
3  bar  three -0.009920 -0.945867
4  foo  two  0.290213 -0.932132
5  bar  two  0.495767  1.956030
6  foo  one  0.362949  0.017587
7  foo  three  1.548106 -0.016692

In [107]: grouped = df.groupby('A')
# could also just call .describe()
In [108]: grouped['C'].apply(lambda x: x.describe())
Out[108]:
     A
bar
count   3.000000
        mean   0.147823
```

16.7. Flexible apply 441
The dimension of the returned result can also change:

```
In [109]: grouped = df.groupby('A')['C']

In [110]: def f(group):
    .....:     return DataFrame({'original' : group,
    .....:                           'demeaned' : group - group.mean()})

In [111]: grouped.apply(f)
```

apply on a Series can operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame

```
In [112]: def f(x):
    .....:     return Series([ x, x**2 ], index = ['x', 'x^s'])

In [113]: s
```

```
Out[113]:
          x  x^s  
0       9.0   81.00
1       8.0   64.00
2       7.0   49.00
3       5.0   25.00
```
Note: apply can act as a reducer, transformer, or filter function, depending on exactly what is passed to apply. So depending on the path taken, and exactly what you are grouping. Thus the grouped columns(s) may be included in the output as well as set the indices.

Warning: In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group.

In [115]: d = DataFrame({"a": ["x", "y"], "b": [1, 2]})

In [116]: def identity(df):
 print df
 return df

In [117]: d.groupby("a").apply(identity)

In [118]: df

Out[118]:
 A B C D
0 foo one -0.919854 -1.131345
1 bar one -0.042379 -0.089329
2 foo two 1.247642 0.337863
3 bar three -0.009920 -0.945867
4 foo two 0.290213 -0.932132
5 bar two 0.495767 1.956030
6 foo one 0.362949 0.017587
7 foo three 1.548106 -0.016692

16.8 Other useful features

16.8.1 Automatic exclusion of “nuisance” columns

Again consider the example DataFrame we’ve been looking at:

Supposed we wished to compute the standard deviation grouped by the A column. There is a slight problem, namely that we don’t care about the data in column B. We refer to this as a “nuisance” column. If the passed aggregation
function can’t be applied to some columns, the troublesome columns will be (silently) dropped. Thus, this does not pose any problems:

```
In [119]: df.groupby('A').std()
Out[119]:
       C     D
A
  bar  0.301765  1.490982
  foo  0.966450  0.645875
```

16.8.2 NA group handling

If there are any NaN values in the grouping key, these will be automatically excluded. So there will never be an “NA group”. This was not the case in older versions of pandas, but users were generally discarding the NA group anyway (and supporting it was an implementation headache).

16.8.3 Grouping with ordered factors

Categorical variables represented as instance of pandas’s `Categorical` class can be used as group keys. If so, the order of the levels will be preserved:

```
In [120]: data = Series(np.random.randn(100))
In [121]: factor = qcut(data, [0, .25, .5, .75, 1.])
In [122]: data.groupby(factor).mean()
Out[122]:
     [-2.617, -0.684]  -1.331461
     (-0.684, -0.0232]  -0.272816
     (-0.0232, 0.541]   0.263607
     (0.541, 2.369]   1.166038
dtype: float64
```

16.8.4 Grouping with a Grouper specification

You may need to specify a bit more data to properly group. You can use the `pd.Grouper` to provide this local control.

```
In [123]: import datetime as DT
In [124]: df = DataFrame({
            'Branch' : 'A A A A A A A B'.split(),
            'Buyer' : 'Carl Mark Carl Carl Joe Joe Joe Carl'.split(),
            'Quantity': [1,3,5,1,8,1,9,3],
            'Date' : [
                DT.datetime(2013,1,1,13,0),
                DT.datetime(2013,1,1,13,5),
                DT.datetime(2013,10,1,20,0),
                DT.datetime(2013,10,2,10,0),
                DT.datetime(2013,10,1,20,0),
                DT.datetime(2013,10,2,10,0),
                DT.datetime(2013,12,2,12,0),
                DT.datetime(2013,12,3,14,0),
            ]})
```

444 Chapter 16. Group By: split-apply-combine
......:

In [125]: df
Out[125]:
 Branch Buyer Date Quantity
0 A Carl 2013-01-01 13:00:00 1
1 A Mark 2013-01-01 13:05:00 3
2 A Carl 2013-10-01 20:00:00 5
3 A Carl 2013-10-02 10:00:00 1
4 A Joe 2013-10-01 20:00:00 8
5 A Joe 2013-10-02 10:00:00 1
6 A Joe 2013-12-02 12:00:00 9
7 B Carl 2013-12-02 14:00:00 3

Groupby a specific column with the desired frequency. This is like resampling.

In [126]: df.groupby([pd.Grouper(freq='1M', key='Date'), 'Buyer']).sum()
Out[126]:
 Quantity
Date Buyer
2013-01-31 Carl 1
 Mark 3
2013-10-31 Carl 6
 Joe 9
2013-12-31 Carl 3
 Joe 9

You have an ambiguous specification in that you have a named index and a column that could be potential groupers.

In [127]: df = df.set_index('Date')
In [128]: df['Date'] = df.index + pd.offsets.MonthEnd(2)

In [129]: df.groupby([pd.Grouper(freq='6M',key='Date'), 'Buyer']).sum()
Out[129]:
 Quantity
Date Buyer
2013-02-28 Carl 1
 Mark 3
2014-02-28 Carl 9
 Joe 18

In [130]: df.groupby([pd.Grouper(freq='6M', level='Date'), 'Buyer']).sum()
Out[130]:
 Quantity
Date Buyer
2013-01-31 Carl 1
 Mark 3
2014-01-31 Carl 9
 Joe 18

16.8.5 Taking the first rows of each group

Just like for a DataFrame or Series you can call head and tail on a groupby:

In [131]: df = DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])

In [132]: df

16.8. Other useful features
Out[132]:
 A B
0 1 2
1 1 4
2 5 6

In [133]: g = df.groupby('A')

In [134]: g.head(1)
Out[134]:
 A B
0 1 2
2 5 6

In [135]: g.tail(1)
Out[135]:
 A B
1 1 4
2 5 6

This shows the first or last n rows from each group.

Warning: Before 0.14.0 this was implemented with a fall-through apply, so the result would incorrectly respect
the as_index flag:

```python
>>> g.head(1): # was equivalent to g.apply(lambda x: x.head(1))
   A  B
A
1 0 1 2
5 2 5 6
```

16.8.6 Taking the nth row of each group

To select from a DataFrame or Series the nth item, use the nth method. This is a reduction method, and will return a
single row (or no row) per group if you pass an int for n:

In [136]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [137]: g = df.groupby('A')

In [138]: g.nth(0)
Out[138]:
 B
A
1 NaN
5 6

In [139]: g.nth(-1)
Out[139]:
 B
A
1 4
5 6

In [140]: g.nth(1)
If you want to select the nth not-null item, use the `dropna` keyword. For a DataFrame this should be either 'any' or 'all' just like you would pass to `dropna`, for a Series this just needs to be truthy.

```python
# nth(0) is the same as g.first()
In [141]: g.nth(0, dropna='any')
Out[141]:
   B
  A
  1  4
  5  6

In [142]: g.first()
Out[142]:
   B
  A
  1  4
  5  6

# nth(-1) is the same as g.last()
In [143]: g.nth(-1, dropna='any')  # NaNs denote group exhausted when using dropna
Out[143]:
   B
  A
  1  4
  5  6

In [144]: g.last()
Out[144]:
   B
  A
  1  4
  5  6

In [145]: g.B.nth(0, dropna=True)
Out[145]:
   A
  1  4
  5  6
Name: B, dtype: float64
```

As with other methods, passing `as_index=False`, will achieve a filtration, which returns the grouped row.

```python
In [146]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [147]: g = df.groupby('A', as_index=False)

In [148]: g.nth(0)
Out[148]:
   A  B
  0  1 NaN
  2  5  6

In [149]: g.nth(-1)
Out[149]:
   A  B
```

16.8. Other useful features
1 1 4
2 5 6

You can also select multiple rows from each group by specifying multiple nth values as a list of ints.

In [150]: business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B')

In [151]: df = DataFrame(1, index=business_dates, columns=['a', 'b'])

get the first, 4th, and last date index for each month
In [152]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[152]:
 a b
2014-04-01 1 1
2014-04-04 1 1
2014-05-01 1 1
2014-05-06 1 1
2014-05-30 1 1
2014-06-02 1 1
2014-06-05 1 1
2014-06-30 1 1

16.8.7 Enumerate group items

New in version 0.13.0. To see the order in which each row appears within its group, use the cumcount method:

In [153]: df = pd.DataFrame(list('aabba'), columns=['A'])

In [154]: df
Out[154]:
 A
0 a
1 a
2 a
3 b
4 b
5 a

In [155]: df.groupby('A').cumcount()
Out[155]:
 0
0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64

In [156]: df.groupby('A').cumcount(ascending=False) # kwarg only
Out[156]:
 0
0 3
1 2
2 1
3 1
4 0
5 0
dtype: int64

16.8.8 Plotting

Groupby also works with some plotting methods. For example, suppose we suspect that some features in a DataFrame `my` differ by group, in this case, the values in column 1 where the group is “B” are 3 higher on average.

```python
In [157]: np.random.seed(1234)
In [158]: df = DataFrame(np.random.randn(50, 2))
In [159]: df['g'] = np.random.choice(['A', 'B'], size=50)
In [160]: df.loc[df['g'] == 'B', 1] += 3

We can easily visualize this with a boxplot:

```python
In [161]: df.groupby('g').boxplot()
```

![Boxplot Example](image)

The result of calling `boxplot` is a dictionary whose keys are the values of our grouping column `g` (“A” and “B”). The values of the resulting dictionary can be controlled by the `return_type` keyword of `boxplot`. See the [visualization documentation](https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html) for more.

**Warning:** For historical reasons, `df.groupby("g").boxplot()` is not equivalent to `df.boxplot(by="g")`. See [here](https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html) for an explanation.

16.8. Other useful features
16.9 Examples

16.9.1 Regrouping by factor

Regroup columns of a DataFrame according to their sum, and sum the aggregated ones.

In [162]: df = pd.DataFrame({'a':[1,0,0], 'b':[0,1,0], 'c':[1,0,0], 'd':[2,3,4]})

In [163]: df
Out[163]:
   a  b  c  d
0  1  0  1  2
1  0  1  0  3
2  0  0  0  4

In [164]: df.groupby(df.sum(), axis=1).sum()
Out[164]:
   0  1  2
0  2  2
1  1  3
2  0  4

16.9.2 Returning a Series to propagate names

Group DataFrame columns, compute a set of metrics and return a named Series. The Series name is used as the name for the column index. This is especially useful in conjunction with reshaping operations such as stacking in which the column index name will be used as the name of the inserted column:

In [165]: df = pd.DataFrame({'a':[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],
......: 'b':[0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1],
......: 'c':[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
......: 'd':[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1],
......: })

In [166]: def compute_metrics(x):
......: result = {'b_sum': x['b'].sum(), 'c_mean': x['c'].mean()}
......: return pd.Series(result, name='metrics')
......:

In [167]: result = df.groupby('a').apply(compute_metrics)

In [168]: result
Out[168]:
   metrics      b_sum  c_mean
      a
    0  2  0.5
    1  2  0.5
    2  2  0.5

In [169]: result.stack()
Out[169]:
   a metrics
0  b_sum  2.0
   c_mean  0.5
<table>
<thead>
<tr>
<th></th>
<th>b_sum</th>
<th>c_mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

dtype: float64
pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

### 17.1 Concatenating objects

The `concat` function (in the main pandas namespace) does all of the heavy lifting of performing concatenation operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other axes. Note that I say “if any” because there is only a single possible axis of concatenation for Series.

Before diving into all of the details of `concat` and what it can do, here is a simple example:

```python
In [1]: df = DataFrame(np.random.randn(10, 4))

In [2]: df
Out[2]:
 0 1 2 3
0 0.469112 -0.282863 -1.509059 -1.135632
1 1.212112 -0.173215 0.119209 -1.044236
2 -0.861849 -2.104569 -0.494929 1.071804
3 0.721555 -0.706771 -1.039575 0.271860
4 -0.424972 0.567020 0.276232 -1.087401
5 -0.673690 0.113648 -1.478427 0.524988
6 0.404705 0.577046 -1.715002 -1.039268
7 -0.370647 -1.157892 -1.344312 0.844885
8 1.075770 -0.109050 1.643563 -1.469388
9 0.357021 -0.674600 -1.776904 -0.968914

break it into pieces
In [3]: pieces = [df[:3], df[3:7], df[7:]]

In [4]: concatenated = concat(pieces)

In [5]: concatenated
Out[5]:
 0 1 2 3
0 0.469112 -0.282863 -1.509059 -1.135632
1 1.212112 -0.173215 0.119209 -1.044236
2 -0.861849 -2.104569 -0.494929 1.071804
3 0.721555 -0.706771 -1.039575 0.271860
4 -0.424972 0.567020 0.276232 -1.087401
5 -0.673690 0.113648 -1.478427 0.524988
6 0.404705 0.577046 -1.715002 -1.039268
```
Like its sibling function on ndarrays, `numpy.concatenate`, `pandas.concat` takes a list or dict of homogeneously-typed objects and concatenates them with some configurable handling of “what to do with the other axes”:

```python
concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
 keys=None, levels=None, names=None, verify_integrity=False)
```

- **objs**: list or dict of Series, DataFrame, or Panel objects. If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below)
- **axis**: {0, 1, ...}, default 0. The axis to concatenate along
- **join**: {'inner', 'outer'}, default ‘outer’. How to handle indexes on other axis(es). Outer for union and inner for intersection
- **join_axes**: list of Index objects. Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic
- **keys**: sequence, default None. Construct hierarchical index using the passed keys as the outermost level If multiple levels passed, should contain tuples.
- **levels**: list of sequences, default None. If keys passed, specific levels to use for the resulting MultiIndex. Otherwise they will be inferred from the keys
- **names**: list, default None. Names for the levels in the resulting hierarchical index
- **verify_integrity**: boolean, default False. Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation
- **ignore_index**: boolean, default False. If True, do not use the index values on the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information.

Without a little bit of context and example many of these arguments don’t make much sense. Let’s take the above example. Suppose we wanted to associate specific keys with each of the pieces of the chopped up DataFrame. We can do this using the `keys` argument:

```python
In [6]: concatenated = concat(pieces, keys=['first', 'second', 'third'])
In [7]: concatenated
```

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
</tr>
<tr>
<td>1</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
</tr>
<tr>
<td>2</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
<td>1.071804</td>
</tr>
<tr>
<td>second</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
<tr>
<td>3</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
<tr>
<td>4</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
</tr>
<tr>
<td>5</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
<td>-1.039268</td>
</tr>
<tr>
<td>6</td>
<td>-0.370647</td>
<td>-1.157892</td>
<td>-1.344312</td>
<td>0.844885</td>
</tr>
<tr>
<td>third</td>
<td>1.075770</td>
<td>-0.109050</td>
<td>1.643563</td>
<td>-1.469388</td>
</tr>
<tr>
<td>8</td>
<td>0.357021</td>
<td>-0.674600</td>
<td>-1.776904</td>
<td>-0.968914</td>
</tr>
<tr>
<td>9</td>
<td>0.844885</td>
<td>1.075770</td>
<td>-1.157892</td>
<td>-1.344312</td>
</tr>
</tbody>
</table>

As you can see (if you’ve read the rest of the documentation), the resulting object’s index has a hierarchical index. This means that we can now do stuff like select out each chunk by key:
In [8]: concatenated.ix['second']
Out[8]:
   0  1  2  3
3  0.721555 -0.706771 -1.039575  0.271860
4 -0.424972  0.567020  0.276232 -1.087401
5 -0.673690  0.113648 -1.478427  0.524988
6  0.404705  0.577046 -1.715002 -1.039268

It’s not a stretch to see how this can be very useful. More detail on this functionality below.

**Note:** It is worth noting however, that `concat` (and therefore `append`) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension.

    frames = [ process_your_file(f) for f in files ]
    result = pd.concat(frames)

### 17.1.1 Set logic on the other axes

When gluing together multiple DataFrames (or Panels or...), for example, you have a choice of how to handle the other axes (other than the one being concatenated). This can be done in three ways:

- Take the (sorted) union of them all, `join='outer'`. This is the default option as it results in zero information loss.
- Take the intersection, `join='inner'`.
- Use a specific index (in the case of DataFrame) or indexes (in the case of Panel or future higher dimensional objects), i.e. the `join_axes` argument

Here is an example of each of these methods. First, the default `join='outer'` behavior:

In [9]: from pandas.util.testing import rands_array
In [10]: df = DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'],
                   index=rands_array(5, 10))
In [11]: df
Out[11]:
   a    b    c    d
YpIua -1.294524  0.413738  0.276662 -0.472035
HpwKq -0.013960 -0.362543 -0.006154 -0.923061
2HQRv  0.895717  0.805244 -1.206412  2.565646
VSDol  1.431256  1.340309 -1.170299 -0.226169
DQeX6  0.410835  0.813850  0.132003 -0.827317
xplCd -0.076467 -1.187678  1.130127 -1.436737
VMkkM  1.431681  1.607920  1.024180  0.569605
vyR6D  0.875906 -2.211372  0.974466 -2.006747
xUE69 -0.410001 -0.078638  0.545952 -1.219217
UoniI -1.226825  0.769804 -1.281247 -0.727707
In [12]: concat([df.ix[:, :7, ['a', 'b']], df.ix[2:-2, ['c']]],
          df.ix[-7:, ['d']]), axis=1
Out[12]:
   a    b    c    d
YpIua -1.294524  0.413738  0.276662 -0.472035
HpwKq -0.013960 -0.362543 -0.006154 -0.923061
2HQRv  0.895717  0.805244 -1.206412  2.565646
VSDol  1.431256  1.340309 -1.170299 -0.226169
DQeX6  0.410835  0.813850  0.132003 -0.827317
xplCd -0.076467 -1.187678  1.130127 -1.436737
VMkkM  1.431681  1.607920  1.024180  0.569605
vyR6D  0.875906 -2.211372  0.974466 -2.006747
xUE69 -0.410001 -0.078638  0.545952 -1.219217
UoniI -1.226825  0.769804 -1.281247 -0.727707

**17.1. Concatenating objects**
Note that the row indexes have been unioned and sorted. Here is the same thing with `join='inner'`:

```python
In [13]: concat([df.ix[:7, ['a', 'b']], df.ix[2:-2, ['c']],
 : df.ix[-7:, ['d']]], axis=1, join='inner')
```

```
Out[13]:
 a b c d
VSDol 1.431256 1.340309 -1.170299 -0.226169
DQeX6 0.410835 0.813850 0.132003 -0.827317
xplCd -0.076467 -1.187678 1.130127 -1.436737
VMkkM -1.413681 1.607920 1.024180 0.569605
```

Lastly, suppose we just wanted to reuse the exact index from the original DataFrame:

```python
In [14]: concat([df.ix[:7, ['a', 'b']], df.ix[2:-2, ['c']],
 : df.ix[-7:, ['d']]], axis=1, join_axes=[df.index])
```

```
Out[14]:
 a b c d
YpIua -1.294524 0.413738 NaN NaN
HpwKq -0.013960 -0.362543 NaN NaN
2HQRv 0.895717 0.805244 -1.206412 NaN
VSDol 1.431256 1.340309 -1.170299 -0.226169
DQeX6 0.410835 0.813850 0.132003 -0.827317
xplCd -0.076467 -1.187678 1.130127 -1.436737
VMkkM -1.413681 1.607920 1.024180 0.569605
vyR6D NaN NaN 0.974466 -2.006747
xUE69 NaN NaN NaN -0.727707
```

### 17.1.2 Concatenating using `append`

A useful shortcut to `concat` are the `append` instance methods on Series and DataFrame. These methods actually predated `concat`. They concatenate along `axis=0`, namely the index:

```python
In [15]: s = Series(randn(10), index=np.arange(10))
In [16]: s1 = s[:5] # note we're slicing with labels here, so 5 is included
In [17]: s2 = s[6:]
In [18]: s1.append(s2)
```

```
Out[18]:
0 0.690579
1 0.995761
2 2.396780
3 0.014871
```
In the case of DataFrame, the indexes must be disjoint but the columns do not need to be:

```python
In [19]: df = DataFrame(randn(6, 4), index=date_range('1/1/2000', periods=6),
 : columns=['A', 'B', 'C', 'D'])
 :

In [20]: df1 = df.ix[:3]
In [21]: df2 = df.ix[3:, :3]

In [22]: df1
Out[22]:
 A B C D
2000-01-01 -2.182937 0.380396 0.084844 0.43239
2000-01-02 1.519970 -0.493662 0.600178 0.27423
2000-01-03 0.132885 -0.023688 2.410179 1.45052

In [23]: df2
Out[23]:
 A B C
2000-01-04 0.206053 -0.251905 -2.213588
2000-01-05 1.266143 0.299368 -0.863838
2000-01-06 -1.048089 -0.025747 -0.988387

In [24]: df1.append(df2)
Out[24]:
 A B C D
2000-01-01 -2.182937 0.380396 0.084844 0.432390
2000-01-02 1.519970 -0.493662 0.600178 0.274230
2000-01-03 0.132885 -0.023688 2.410179 1.450520
2000-01-04 0.206053 -0.251905 -2.213588 1.063327
2000-01-05 1.266143 0.299368 -0.863838 0.408204
2000-01-06 -1.048089 -0.025747 -0.988387 0.094055
```

`append` may take multiple objects to concatenate:

```python
In [25]: df1 = df.ix[:2]
In [26]: df2 = df.ix[2:4]
In [27]: df3 = df.ix[4:]

In [28]: df1.append([df2,df3])
Out[28]:
 A B C D
2000-01-01 -2.182937 0.380396 0.084844 0.432390
2000-01-02 1.519970 -0.493662 0.600178 0.274230
2000-01-03 0.132885 -0.023688 2.410179 1.450520
2000-01-04 0.206053 -0.251905 -2.213588 1.063327
2000-01-05 1.266143 0.299368 -0.863838 0.408204
2000-01-06 -1.048089 -0.025747 -0.988387 0.094055
```
17.1.3 Ignoring indexes on the concatenation axis

For DataFrames which don’t have a meaningful index, you may wish to append them and ignore the fact that they may have overlapping indexes:

In [29]: df1 = DataFrame(randn(6, 4), columns=['A', 'B', 'C', 'D'])
In [30]: df2 = DataFrame(randn(3, 4), columns=['A', 'B', 'C', 'D'])
In [31]: df1
Out[31]:
     A    B     C    D
0  1.26  1.29  0.08  0.56
1  0.54  0.49  0.36 -0.35
2 -2.48 -0.28  0.03  0.11
3  1.13  0.77  1.47 -0.64
4  1.28  0.78 -1.07  0.44
5  2.35  0.58  0.22 -0.74

In [32]: df2
Out[32]:
     A    B     C    D
0  0.76  1.73  0.96 -0.85
1 -1.34  1.85 -1.33  1.68
2 -1.72  0.89  0.23  0.90

To do this, use the ignore_index argument:

In [33]: concat([df1, df2], ignore_index=True)
Out[33]:
     A    B    C    D
0  1.26  1.29  0.08  0.56
1  0.54  0.49  0.36 -0.35
2 -2.48 -0.28  0.03  0.11
3  1.13  0.77  1.47 -0.64
4  1.28  0.78 -1.07  0.44
5  2.35  0.58  0.22 -0.74
6  0.76  1.73  0.96 -0.85
7 -1.34  1.85 -1.33  1.68
8 -1.72  0.89  0.23  0.90

This is also a valid argument to DataFrame.append:

In [34]: df1.append(df2, ignore_index=True)
Out[34]:
     A    B    C    D
0  1.26  1.29  0.08  0.56
1  0.54  0.49  0.36 -0.35
2 -2.48 -0.28  0.03  0.11
3  1.13  0.77  1.47 -0.64
4  1.28  0.78 -1.07  0.44
5  2.35  0.58  0.22 -0.74
6  0.76  1.73  0.96 -0.85
### 17.1.4 Concatenating with mixed ndims

You can concatenate a mix of Series and DataFrames. The Series will be transformed to DataFrames with the column name as the name of the Series.

```python
In [35]: df1 = DataFrame(randn(6, 4), columns=['A', 'B', 'C', 'D'])
In [36]: s1 = Series(randn(6), name='foo')
In [37]: concat([df1, s1], axis=1)
Out[37]:
 A B C D foo
0 1.171216 0.520260 -1.197071 -1.066969 -0.496922
1 -0.303421 -0.858447 0.306996 -0.028665 0.306389
2 0.384316 1.574159 1.588931 0.476720 -2.290613
3 0.473424 -0.242861 -0.014805 -0.284319 -1.134623
4 0.650776 -1.461665 -1.137707 -0.891060 -1.561819
5 -0.693921 1.613616 0.464000 0.227371 -0.260838
```

If unnamed Series are passed they will be numbered consecutively.

```python
In [38]: s2 = Series(randn(6))
In [39]: concat([df1, s2, s2, s2], axis=1)
Out[39]:
 A B C D 0 1 2
0 1.171216 0.520260 -1.197071 -1.066969 0.281957 0.281957 0.281957
1 -0.303421 -0.858447 0.306996 -0.028665 1.523962 1.523962 1.523962
2 0.384316 1.574159 1.588931 0.476720 -0.902937 -0.902937 -0.902937
3 0.473424 -0.242861 -0.014805 -0.284319 0.068159 0.068159 0.068159
4 0.650776 -1.461665 -1.137707 -0.891060 -0.057873 -0.057873 -0.057873
5 -0.693921 1.613616 0.464000 0.227371 -0.368204 -0.368204 -0.368204
```

Passing `ignore_index=True` will drop all name references.

```python
In [40]: concat([df1, s1], axis=1, ignore_index=True)
Out[40]:
 0 1 2 3 4
0 1.171216 -1.197071 -1.066969 0.281957 0.281957
1 -0.303421 0.306996 -0.028665 1.523962 1.523962
2 0.384316 1.588931 0.476720 -0.902937 -0.902937
3 0.473424 -0.242861 -0.014805 0.068159 0.068159
4 0.650776 -1.137707 -0.891060 -0.057873 -0.057873
5 -0.693921 1.613616 0.464000 0.227371 0.227371
```

### 17.1.5 More concatenating with group keys

Let’s consider a variation on the first example presented:

```python
In [41]: df = DataFrame(np.random.randn(10, 4))
In [42]: df
Out[42]:
```

#### 17.1. Concatenating objects
# break it into pieces
In [43]: pieces = [df.ix[:, [0, 1]], df.ix[:, [2]], df.ix[:, [3]]]

In [44]: result = concat(pieces, axis=1, keys=['one', 'two', 'three'])

In [45]: result
Out[45]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>two</th>
<th>three</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.144073</td>
<td>0.861209</td>
<td>0.800193</td>
</tr>
<tr>
<td>1</td>
<td>-1.069094</td>
<td>-1.099248</td>
<td>0.009750</td>
</tr>
<tr>
<td>2</td>
<td>0.661084</td>
<td>0.379319</td>
<td>-0.008434</td>
</tr>
<tr>
<td>3</td>
<td>-1.056652</td>
<td>0.533946</td>
<td>-1.226970</td>
</tr>
<tr>
<td>4</td>
<td>-0.507516</td>
<td>-0.230096</td>
<td>0.394500</td>
</tr>
<tr>
<td>5</td>
<td>-1.652499</td>
<td>1.488753</td>
<td>-0.896484</td>
</tr>
<tr>
<td>6</td>
<td>1.146000</td>
<td>1.487349</td>
<td>0.604603</td>
</tr>
<tr>
<td>7</td>
<td>0.597701</td>
<td>0.563700</td>
<td>-1.057909</td>
</tr>
<tr>
<td>8</td>
<td>1.375020</td>
<td>-0.928797</td>
<td>-0.86853</td>
</tr>
<tr>
<td>9</td>
<td>0.377953</td>
<td>0.493672</td>
<td>-2.461467</td>
</tr>
</tbody>
</table>

You can also pass a dict to `concat` in which case the dict keys will be used for the `keys` argument (unless other keys are specified):

In [46]: pieces = {'one': df.ix[:, [0, 1]], 'two': df.ix[:, [2]], 'three': df.ix[:, [3]]}

In [47]: concat(pieces, axis=1)
Out[47]:

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.144073</td>
<td>0.861209</td>
<td>0.800193</td>
</tr>
<tr>
<td>1</td>
<td>-1.069094</td>
<td>-1.099248</td>
<td>0.009750</td>
</tr>
<tr>
<td>2</td>
<td>0.661084</td>
<td>0.379319</td>
<td>-0.008434</td>
</tr>
<tr>
<td>3</td>
<td>-1.056652</td>
<td>0.533946</td>
<td>-1.226970</td>
</tr>
<tr>
<td>4</td>
<td>-0.507516</td>
<td>-0.230096</td>
<td>0.394500</td>
</tr>
<tr>
<td>5</td>
<td>-1.652499</td>
<td>1.488753</td>
<td>-0.896484</td>
</tr>
<tr>
<td>6</td>
<td>1.146000</td>
<td>1.487349</td>
<td>0.604603</td>
</tr>
<tr>
<td>7</td>
<td>0.597701</td>
<td>0.563700</td>
<td>-1.057909</td>
</tr>
<tr>
<td>8</td>
<td>1.375020</td>
<td>-0.928797</td>
<td>-0.86853</td>
</tr>
<tr>
<td>9</td>
<td>0.377953</td>
<td>0.493672</td>
<td>-2.461467</td>
</tr>
</tbody>
</table>

In [48]: concat(pieces, keys=['three', 'two'])
Out[48]:

<table>
<thead>
<tr>
<th></th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Chapter 17. Merge, join, and concatenate
The MultiIndex created has levels that are constructed from the passed keys and the columns of the DataFrame pieces:

```python
In [49]: result.columns.levels
Out[49]: FrozenList([['one', 'two', 'three'], [0, 1, 2, 3]])
```

If you wish to specify other levels (as will occasionally be the case), you can do so using the `levels` argument:

```python
In [50]: result = concat(pieces, axis=1, keys=['one', 'two', 'three'],
 levels=[['three', 'two', 'one', 'zero']],
 names=['group_key'])
```

```python
In [51]: result
Out[51]:
 group_key one two three
 0 -1.144073 0.861209 0.800193 0.782098
 1 -1.069094 -1.099248 0.255269 0.009750
 2 0.661084 0.379319 -0.008434 1.952541
 3 -1.056652 0.533946 -1.226970 0.040403
 4 -0.507516 -0.230096 0.394500 -1.934370
 5 -0.421209 -0.320902 0.604603 2.121453
 6 0.276871 0.211135 -0.896484 0.576897
 7 0.715406 0.662566 -0.308853 -1.553902
 8 1.375020 -0.928797 -2.461467 -1.057909
 9 0.377953 0.493672 -2.461467 -1.553902
```

```python
In [52]: result.columns.levels
Out[52]: FrozenList([['three', 'two', 'one', 'zero'], [0, 1, 2, 3]])
```

Yes, this is fairly esoteric, but is actually necessary for implementing things like GroupBy where the order of a categorical variable is meaningful.

### 17.1.6 Appending rows to a DataFrame

While not especially efficient (since a new object must be created), you can append a single row to a DataFrame by passing a Series or dict to `append`, which returns a new DataFrame as above.

```python
In [53]: df = DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
```
In [54]: df
Out [54]:
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.015523</td>
<td>-1.833722</td>
<td>1.771740</td>
</tr>
<tr>
<td>1</td>
<td>0.049307</td>
<td>-0.521493</td>
<td>-3.201750</td>
</tr>
<tr>
<td>2</td>
<td>0.146111</td>
<td>1.903247</td>
<td>-0.747169</td>
</tr>
<tr>
<td>3</td>
<td>0.393876</td>
<td>1.861468</td>
<td>0.936527</td>
</tr>
<tr>
<td>4</td>
<td>-2.655452</td>
<td>1.219492</td>
<td>0.062297</td>
</tr>
<tr>
<td>5</td>
<td>-1.184357</td>
<td>-0.558081</td>
<td>0.077849</td>
</tr>
<tr>
<td>6</td>
<td>-1.035260</td>
<td>-0.438229</td>
<td>0.503703</td>
</tr>
<tr>
<td>7</td>
<td>-1.139050</td>
<td>0.660342</td>
<td>0.464794</td>
</tr>
</tbody>
</table>

In [55]: s = df.xs(3)

In [56]: df.append(s, ignore_index=True)
Out [56]:
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.015523</td>
<td>-1.833722</td>
<td>1.771740</td>
</tr>
<tr>
<td>1</td>
<td>0.049307</td>
<td>-0.521493</td>
<td>-3.201750</td>
</tr>
<tr>
<td>2</td>
<td>0.146111</td>
<td>1.903247</td>
<td>-0.747169</td>
</tr>
<tr>
<td>3</td>
<td>0.393876</td>
<td>1.861468</td>
<td>0.936527</td>
</tr>
<tr>
<td>4</td>
<td>-2.655452</td>
<td>1.219492</td>
<td>0.062297</td>
</tr>
<tr>
<td>5</td>
<td>-1.184357</td>
<td>-0.558081</td>
<td>0.077849</td>
</tr>
<tr>
<td>6</td>
<td>-1.035260</td>
<td>-0.438229</td>
<td>0.503703</td>
</tr>
<tr>
<td>7</td>
<td>-1.139050</td>
<td>0.660342</td>
<td>0.464794</td>
</tr>
<tr>
<td>8</td>
<td>0.393876</td>
<td>1.861468</td>
<td>0.936527</td>
</tr>
</tbody>
</table>

You should use `ignore_index` with this method to instruct DataFrame to discard its index. If you wish to preserve the index, you should construct an appropriately-indexed DataFrame and append or concatenate those objects.

You can also pass a list of dicts or Series:

In [57]: df = DataFrame(np.random.randn(5, 4),
                       columns=['foo', 'bar', 'baz', 'qux'])

In [58]: dicts = [{'foo': 1, 'bar': 2, 'baz': 3, 'peekaboo': 4},
               {'foo': 5, 'bar': 6, 'baz': 7, 'peekaboo': 8}]

In [59]: result = df.append(dicts, ignore_index=True)

In [60]: result
Out [60]:
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>baz</td>
<td>foo</td>
<td>peekaboo</td>
<td>qux</td>
</tr>
<tr>
<td>0</td>
<td>0.683758</td>
<td>-0.643834</td>
<td>-0.649593</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>-1.290493</td>
<td>0.787872</td>
<td>1.032814</td>
<td>NaN</td>
</tr>
<tr>
<td>2</td>
<td>-0.223762</td>
<td>1.397431</td>
<td>-0.276487</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>-0.135950</td>
<td>-0.730327</td>
<td>-0.478905</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>-1.298915</td>
<td>-2.819487</td>
<td>0.281151</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>2.000000</td>
<td>3.000000</td>
<td>1.000000</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6.000000</td>
<td>7.000000</td>
<td>5.000000</td>
<td>8</td>
</tr>
</tbody>
</table>

17.2 Database-style DataFrame joining/merging

pandas has full-featured, high performance in-memory join operations idiomatically very similar to relational databases like SQL. These methods perform significantly better (in some cases well over an order of magnitude better)
than other open source implementations (like `base::merge.data.frame` in R). The reason for this is careful algorithmic design and internal layout of the data in DataFrame.

See the *cookbook* for some advanced strategies.

Users who are familiar with SQL but new to pandas might be interested in a *comparison with SQL*.

pandas provides a single function, `merge`, as the entry point for all standard database join operations between DataFrame objects:

```python
merge(left, right, how='left', on=None, left_on=None, right_on=None,
 left_index=False, right_index=False, sort=True,
 suffixes=('_x', '_y'), copy=True)
```

Here’s a description of what each argument is for:

- **left**: A DataFrame object
- **right**: Another DataFrame object
- **on**: Columns (names) to join on. Must be found in both the left and right DataFrame objects. If not passed and `left_index` and `right_index` are `False`, the intersection of the columns in the DataFrames will be inferred to be the join keys
- **left_on**: Columns from the left DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- **right_on**: Columns from the right DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- **left_index**: If `True`, use the index (row labels) from the left DataFrame as its join key(s). In the case of a DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the right DataFrame
- **right_index**: Same usage as `left_index` for the right DataFrame
- **how**: One of ‘left’, ‘right’, ‘outer’, ‘inner’. Defaults to ‘inner’. See below for more detailed description of each method
- **sort**: Sort the result DataFrame by the join keys in lexicographical order. Defaults to `True`, setting to `False` will improve performance substantially in many cases
- **suffixes**: A tuple of string suffixes to apply to overlapping columns. Defaults to ('_x', '_y').
- **copy**: Always copy data (default `True`) from the passed DataFrame objects, even when reindexing is not necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where copying can be avoided are somewhat pathological but this option is provided nonetheless.

The return type will be the same as `left`. If `left` is a `DataFrame` and `right` is a subclass of `DataFrame`, the return type will still be `DataFrame`

`merge` is a function in the pandas namespace, and it is also available as a DataFrame instance method, with the calling DataFrame being implicitly considered the left object in the join.

The related `DataFrame.join` method, uses `merge` internally for the index-on-index and index-on-column(s) joins, but `joins on indexes` by default rather than trying to join on common columns (the default behavior for `merge`). If you are joining on index, you may wish to use `DataFrame.join` to save yourself some typing.

### 17.2.1 Brief primer on merge methods (relational algebra)

Experienced users of relational databases like SQL will be familiar with the terminology used to describe join operations between two SQL-table like structures (DataFrame objects). There are several cases to consider which are very
important to understand:

- **one-to-one** joins: for example when joining two DataFrame objects on their indexes (which must contain unique values)
- **many-to-one** joins: for example when joining an index (unique) to one or more columns in a DataFrame
- **many-to-many** joins: joining columns on columns.

**Note:** When joining columns on columns (potentially a many-to-many join), any indexes on the passed DataFrame objects will be discarded.

It is worth spending some time understanding the result of the **many-to-many** join case. In SQL / standard relational algebra, if a key combination appears more than once in both tables, the resulting table will have the **Cartesian product** of the associated data. Here is a very basic example with one unique key combination:

```python
In [61]: left = DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
In [62]: right = DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [63]: left
Out[63]:
 key lval
0 foo 1
1 foo 2

In [64]: right
Out[64]:
 key rval
0 foo 4
1 foo 5

In [65]: merge(left, right, on='key')
Out[65]:
 key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
```

Here is a more complicated example with multiple join keys:

```python
In [66]: left = DataFrame({'key1': ['foo', 'foo', 'bar'], 'key2': ['one', 'two', 'one'], 'lval': [1, 2, 3]})
.....:

In [67]: right = DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'], 'key2': ['one', 'one', 'one', 'two'], 'rval': [4, 5, 6, 7]})
.....:

In [68]: merge(left, right, how='outer')
Out[68]:
 key1 key2 lval rval
0 foo one 1 4
1 foo one 1 5
2 foo two 2 NaN
3 bar one 3 6
```

Chapter 17. Merge, join, and concatenate
In [69]: merge(left, right, how='inner')
Out[69]:
   key1  key2  lval  rval
0   foo   one     1     4
1   foo   one     1     5
2   bar   one     3     6

The `how` argument to `merge` specifies how to determine which keys are to be included in the resulting table. If a key combination does not appear in either the left or right tables, the values in the joined table will be `NaN`. Here is a summary of the `how` options and their SQL equivalent names:

<table>
<thead>
<tr>
<th>Merge method</th>
<th>SQL Join Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>left</td>
<td>LEFT OUTER JOIN</td>
<td>Use keys from left frame only</td>
</tr>
<tr>
<td>right</td>
<td>RIGHT OUTER JOIN</td>
<td>Use keys from right frame only</td>
</tr>
<tr>
<td>outer</td>
<td>FULL OUTER JOIN</td>
<td>Use union of keys from both frames</td>
</tr>
<tr>
<td>inner</td>
<td>INNER JOIN</td>
<td>Use intersection of keys from both frames</td>
</tr>
</tbody>
</table>

### 17.2.2 Joining on index

`DataFrame.join` is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame. Here is a very basic example:

In [70]: df = DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [71]: df1 = df.ix[1:, ['A', 'B']]

In [72]: df2 = df.ix[:5, ['C', 'D']]

In [73]: df1
Out[73]:
   A       B
0 1 2.77282 -0.390201
1 2 1.004168 -1.377627
2 3 0.162565 -0.067785
3 4 -2.006481  0.301016
4 5 -2.400634 -0.280853
5 6  0.863937  0.252462
6 7 -2.338595 -0.374279

In [74]: df2
Out[74]:
   C       D
0 1 5.37770  0.555759
1 2 1.207122  0.178690
2 3 0.499281 -1.405256
3 4 -1.260006  1.132896
4 5  0.059117  1.138469
5 6  0.025653 -1.386071

In [75]: df1.join(df2)
Out[75]:
   A       B       C       D
0 1 2.77282 -0.390201  1.207122  0.178690
1 2 1.004168 -1.377627  0.499281 -1.405256
2 3 0.162565 -0.067785 -1.260006 -1.132896

17.2. Database-style DataFrame joining/merging
4 -2.006481 0.301016 0.059117 1.138469
5 -2.400634 -0.280853 0.025653 -1.386071
6 0.863937 0.252462 NaN NaN
7 -2.338595 -0.374279 NaN NaN

In [76]: df1.join(df2, how='outer')
Out[76]:
   A    B   C    D
0 NaN NaN -1.537770 0.555759
1 -2.277282 -0.390201 1.207122 0.178690
2 -1.004168 -1.377627 0.499281 -1.405256
3 0.162565 -0.067785 1.260006 -1.132896
4 -2.006481 0.301016 0.059117 1.138469
5 -2.400634 -0.280853 0.025653 -1.386071
6 0.863937 0.252462 NaN NaN
7 -2.338595 -0.374279 NaN NaN

In [77]: df1.join(df2, how='inner')
Out[77]:
   A    B   C    D
1 -2.277282 -0.390201 1.207122 0.178690
2 -1.004168 -1.377627 0.499281 -1.405256
3 0.162565 -0.067785 1.260006 -1.132896
4 -2.006481 0.301016 0.059117 1.138469
5 -2.400634 -0.280853 0.025653 -1.386071
6 0.863937 0.252462 NaN NaN
7 -2.338595 -0.374279 NaN NaN

The data alignment here is on the indexes (row labels). This same behavior can be achieved using merge plus additional arguments instructing it to use the indexes:

In [78]: merge(df1, df2, left_index=True, right_index=True, how='outer')
Out[78]:
   A    B   C    D
0 NaN NaN -1.537770 0.555759
1 -2.277282 -0.390201 1.207122 0.178690
2 -1.004168 -1.377627 0.499281 -1.405256
3 0.162565 -0.067785 1.260006 -1.132896
4 -2.006481 0.301016 0.059117 1.138469
5 -2.400634 -0.280853 0.025653 -1.386071
6 0.863937 0.252462 NaN NaN
7 -2.338595 -0.374279 NaN NaN

17.2.3 Joining key columns on an index

join takes an optional on argument which may be a column or multiple column names, which specifies that the passed DataFrame is to be aligned on that column in the DataFrame. These two function calls are completely equivalent:

left.join(right, on=key_or_keys)
merge(left, right, left_on=key_or_keys, right_index=True,
     how='left', sort=False)

Obviously you can choose whichever form you find more convenient. For many-to-one joins (where one of the DataFrame’s is already indexed by the join key), using join may be more convenient. Here is a simple example:

In [79]: df[‘key’] = [‘foo’, ‘bar’] * 4

In [80]: to_join = DataFrame(randn(2, 2), index=[‘bar’, ‘foo’],
In [81]: df
Out[81]:
   A  B  C  D     key
0 -1.106952 -0.937731 -1.537770 0.555759  foo
1 -2.277282 -0.390201  1.207122 0.178690  bar
2 -1.004168 -1.377627  0.499281 -1.405256  foo
3  0.162565 -0.067785 -1.260006 -1.132896  bar
4 -2.006481  0.301016  0.059117  1.138469  foo
5 -4.00634  -0.280853  0.025653 -1.386071  bar
6  0.863937  0.252462  1.500571  1.053202  foo
7 -2.338595 -0.374279 -2.359958 -1.157886  bar

In [82]: to_join
Out[82]:
   j1    j2
bar  -0.551865  1.592673
foo   1.559318  1.562443

In [83]: df.join(to_join, on='key')
Out[83]:
   A  B  C  D     key  j1    j2
0 -1.106952 -0.937731 -1.537770 0.555759  foo  1.559318  1.562443
1 -2.277282 -0.390201  1.207122 0.178690  bar -0.551865  1.592673
2 -1.004168 -1.377627  0.499281 -1.405256  foo  1.559318  1.562443
3  0.162565 -0.067785 -1.260006 -1.132896  bar -0.551865  1.592673
4 -2.006481  0.301016  0.059117  1.138469  foo  1.559318  1.562443
5 -4.00634  -0.280853  0.025653 -1.386071  bar -0.551865  1.592673
6  0.863937  0.252462  1.500571  1.053202  foo  1.559318  1.562443
7 -2.338595 -0.374279 -2.359958 -1.157886  bar -0.551865  1.592673

In [84]: merge(df, to_join, left_on='key', right_index=True,
           how='left', sort=False)
Out[84]:
   A  B  C  D     key  j1    j2
0 -1.106952 -0.937731 -1.537770 0.555759  foo  1.559318  1.562443
1 -2.277282 -0.390201  1.207122 0.178690  bar -0.551865  1.592673
2 -1.004168 -1.377627  0.499281 -1.405256  foo  1.559318  1.562443
3  0.162565 -0.067785 -1.260006 -1.132896  bar -0.551865  1.592673
4 -2.006481  0.301016  0.059117  1.138469  foo  1.559318  1.562443
5 -4.00634  -0.280853  0.025653 -1.386071  bar -0.551865  1.592673
6  0.863937  0.252462  1.500571  1.053202  foo  1.559318  1.562443
7 -2.338595 -0.374279 -2.359958 -1.157886  bar -0.551865  1.592673

To join on multiple keys, the passed DataFrame must have a MultiIndex:

In [85]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
                           ['one', 'two', 'three']],
                       labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
                               [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
                       names=['first', 'second'])

In [86]: to_join = DataFrame(np.random.randn(10, 3), index=index,
                         columns=['j_one', 'j_two', 'j_three'])

To join on multiple keys, the passed DataFrame must have a MultiIndex:

In [87]: df = DataFrame(np.random.randn(10, 4),
                        index=index,
                        columns=['A', 'B', 'C', 'D'])

In [88]: df.join(to_join, on=['first', 'second'])
# a little relevant example with NAs

```python
In [87]: key1 = ['bar', 'bar', 'bar', 'foo', 'foo', 'baz', 'baz', 'qux',
....: 'qux', 'snap']
....:

In [88]: key2 = ['two', 'one', 'three', 'one', 'two', 'one', 'two', 'two',
....: 'three', 'one']
....:

In [89]: data = np.random.randn(len(key1))

In [90]: data = DataFrame({'key1' : key1, 'key2' : key2,
....: 'data' : data})
....:

In [91]: data
Out[91]:
 data key1 key2
0 -1.11 bar two
1 -0.06 bar one
2 -0.49 bar three
3 1.68 foo one
4 0.11 foo two
5 0.89 baz two
6 0.14 qux two
7 -1.59 qux three
8 0.16 snap one
```

```python
In [92]: to_join
```

```python
 j_one j_two j_three
first second
foo one 0.763264 0.162027 -0.902704
two -1.256860 0.563637 -2.417312
three 1.106010 -0.199234 0.458265
bar one -1.256860 0.563637 -2.417312
two 0.972827 0.041293 1.129659
baz two 0.869262 -0.445645 -0.217503
three -1.420361 -0.015601 -1.150641
qux one -0.798334 -0.557697 0.381353
two 1.337122 -1.531095 1.331458
three -0.571329 -0.026671 -1.085663
```

Now this can be joined by passing the two key column names:

```python
In [93]: data.join(to_join, on=['key1', 'key2'])
```

```python
 data key1 key2 j_one j_two j_three
0 -1.11 bar two 0.972827 0.041293 1.129659
1 -0.06 bar one -1.256860 0.563637 -2.417312
2 -0.49 bar three NaN NaN NaN
3 1.68 foo one 0.763264 0.162027 -0.902704
4 0.11 foo two -1.256860 0.563637 -2.417312
5 0.89 baz two 0.869262 -0.445645 -0.217503
6 0.14 qux two 1.337122 -1.531095 1.331458
7 -1.59 qux three -0.571329 -0.026671 -1.085663
8 0.16 snap one NaN NaN NaN
```
The default for DataFrame.join is to perform a left join (essentially a “VLOOKUP” operation, for Excel users), which uses only the keys found in the calling DataFrame. Other join types, for example inner join, can be just as easily performed:

```ipython
In [94]: data.join(to_join, on=['key1', 'key2'], how='inner')
```

```
Out[94]:
 data key1 key2 j_one j_two j_three
0 -1.114738 bar two 0.972827 0.041293 1.129659
1 -0.058216 bar one 1.255680 0.563637 2.417312
3 1.685148 foo one 0.763264 0.162027 0.458265
4 0.898435 baz two 0.086926 0.445645 0.217503
7 -0.148217 qux two 1.337122 -1.531095 1.331458
8 -1.596070 qux three -0.571329 0.026671 1.085663
```

As you can see, this drops any rows where there was no match.

### 17.2.4 Overlapping value columns

The merge suffixes argument takes a tuple of list of strings to append to overlapping column names in the input DataFrames to disambiguate the result columns:

```ipython
In [95]: left = DataFrame({'key': ['foo', 'foo'], 'value': [1, 2]})
In [96]: right = DataFrame({'key': ['foo', 'foo'], 'value': [4, 5]})
In [97]: merge(left, right, on='key', suffixes=['_left', '_right'])
```

```
key value_left value_right
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5
```

DataFrame.join has lsuffix and rsuffix arguments which behave similarly.

### 17.2.5 Merging Ordered Data

New in v0.8.0 is the ordered_merge function for combining time series and other ordered data. In particular it has an optional fill_method keyword to fill/interpolate missing data:

```ipython
In [98]: A
Out[98]:
 group key lvalue
 0 0.0000 a a 1
 1 5.0000 a c 2
 2 10.0000 a e 3
 3 14.0000 b a 1
 4 18.0000 b c 2
 5 20.0000 b e 3
In [99]: B
Out[99]:
 key rvalue
 0 0.0000 a a 1
 1 5.0000 a e 3
 2 10.0000 b a 1
 3 12.0000 b c 2
 4 15.0000 b e 3
 5 20.0000 b e 3
```

17.2. Database-style DataFrame joining/merging
In [100]: ordered_merge(A, B, fill_method='ffill', left_by='group')
Out[100]:
    group key lvalue rvalue
0     a    a    1    NaN
1     a    b    1    1
2     a    c    2    2
3     a    d    2    3
4     a    e    3    3
5     b    a    1    NaN
6     b    b    1    1
7     b    c    2    2
8     b    d    2    3
9     b    e    3    3

17.2.6 Joining multiple DataFrame or Panel objects

A list or tuple of DataFrames can also be passed to DataFrame.join to join them together on their indexes. The same is true for Panel.join.

In [101]: df1 = df.ix[:, ['A', 'B']]
In [102]: df2 = df.ix[:, ['C', 'D']]
In [103]: df3 = df.ix[:, ['key']]
In [104]: df1
Out[104]:
   A    B
0 -1.106952 -0.937731
1 -2.277282 -0.390201
2 -1.004168 -1.377627
3  0.162565 -0.067785
4 -2.006481  0.301016
5 -2.400634 -0.280853
6  0.863937  0.252462
7 -2.338595 -0.374279
In [105]: df1.join([df2, df3])
Out[105]:
   A    B    C    D key
0 -1.106952 -0.937731 -1.537770  0.555759  foo
1 -2.277282 -0.390201  1.207122  0.178690  bar
2 -1.004168 -1.377627  0.499281 -1.405256  foo
3  0.162565 -0.067785 -1.260006 -1.132896  bar
4 -2.006481  0.301016  0.059117  1.138469  foo
5 -2.400634 -0.280853  0.025653 -1.386071  bar
6  0.863937  0.252462  1.500571  1.053202  foo
7 -2.338595 -0.374279 -2.359958 -1.157886  bar
17.2.7 Merging together values within Series or DataFrame columns

Another fairly common situation is to have two like-indexed (or similarly indexed) Series or DataFrame objects and wanting to “patch” values in one object from values for matching indices in the other. Here is an example:

```
In [106]: df1 = DataFrame([[nan, 3., 5.], [-4.6, np.nan, nan],
 [nan, 7., nan]])
In [107]: df2 = DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4.]],
 index=[1, 2])
```

For this, use the `combine_first` method:

```
In [108]: df1.combine_first(df2)
Out[108]:
 0 1 2
0 NaN 3.0 5.0
1 -4.6 NaN -8.2
2 -5.0 7.0 4.0
```

Note that this method only takes values from the right DataFrame if they are missing in the left DataFrame. A related method, `update`, alters non-NA values inplace:

```
In [109]: df1.update(df2)
```

```
In [110]: df1
Out[110]:
 0 1 2
0 NaN 3.0 5.0
1 -42.6 NaN -8.2
2 -5.0 1.6 4.0
```

17.3 Merging with Multi-indexes

17.3.1 Joining a single Index to a Multi-index

New in version 0.14.0. You can join a singly-indexed DataFrame with a level of a multi-indexed DataFrame. The level will match on the name of the index of the singly-indexed frame against a level name of the multi-indexed frame.

```
In [111]: household = DataFrame(dict(household_id = [1,2,3],
 male = [0,1,0],
 wealth = [196087.3,316478.7,294750]),
 columns = ['household_id','male','wealth']
).set_index('household_id')
In [112]: household
Out[112]:
 household_id male wealth
Household_id 1 0 196087.3
 2 1 316478.7
 3 0 294750.0
```

```
In [113]: portfolio = DataFrame(dict(household_id = [1,2,3,3,3,4],
```

```
In [114]: portfolio
Out[114]:
 household_id male wealth
Household_id 1 0 196087.3
 2 1 316478.7
 3 0 294750.0
```
asset_id = ["nl0000301109","nl0000289783","gb00b03mlx29", "gb00b03mlx29","lu0197800237","nl0000289965",np.nan],
name = ["ABN Amro","Robeco","Royal Dutch Shell","Royal Dutch Shell", "AAB Eastern Europe Equity Fund","Postbank BioTech Fonds", np.nan],
share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),
columns = [‘household_id’,’asset_id’,’name’,’share’]
).set_index([‘household_id’,’asset_id’])

In [114]: portfolio
Out[114]:

<table>
<thead>
<tr>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>household_id</td>
<td>asset_id</td>
</tr>
<tr>
<td>1</td>
<td>nl0000301109</td>
</tr>
<tr>
<td>2</td>
<td>nl0000289783</td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
</tr>
<tr>
<td>4</td>
<td>gb00b03mlx29</td>
</tr>
<tr>
<td>5</td>
<td>lu0197800237</td>
</tr>
<tr>
<td>6</td>
<td>nl0000289965</td>
</tr>
</tbody>
</table>

In [115]: household.join(portfolio, how=’inner’)  
Out[115]:

<table>
<thead>
<tr>
<th>male</th>
<th>wealth</th>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>household_id</td>
<td>asset_id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>nl0000301109</td>
<td>0 196087.3</td>
<td>ABN Amro</td>
</tr>
<tr>
<td>2</td>
<td>nl0000289783</td>
<td>1 316478.7</td>
<td>Robeco</td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
<td>1 316478.7</td>
<td>Royal Dutch Shell</td>
</tr>
<tr>
<td>4</td>
<td>gb00b03mlx29</td>
<td>0 294750.0</td>
<td>Royal Dutch Shell</td>
</tr>
<tr>
<td>5</td>
<td>gb00b03mlx29</td>
<td>0 294750.0</td>
<td>AAB Eastern Europe Equity Fund</td>
</tr>
<tr>
<td>6</td>
<td>gb00b03mlx29</td>
<td>0 294750.0</td>
<td>Postbank BioTech Fonds</td>
</tr>
</tbody>
</table>

This is equivalent but less verbose and more memory efficient / faster than this.

merge(household.reset_index(),  
      portfolio.reset_index(),  
on=’household_id’,  
how=’inner’  
).set_index([‘household_id’,’asset_id’])

17.3.2 Joining with two multi-indexes

This is not Implemented via join at-the-moment, however it can be done using the following.

In [116]: household = DataFrame(dict(household_id = [1,2,2,3,3,3,4],  
                                     asset_id = ["nl0000301109","nl0000301109","gb00b03mlx29", "gb00b03mlx29","lu0197800237","nl0000289965",np.nan],  
                                     share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),
                                 columns = [‘household_id’,’asset_id’])

472 Chapter 17. Merge, join, and concatenate
In [117]: household

Out[117]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>asset_id</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>nl0000301109</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>nl0000301109</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>lu0197800237</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>nl0000289965</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>NaN</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

In [118]: log_return = DataFrame(dict(asset_id = ["gb00b03mlx29", "gb00b03mlx29", "gb00b03mlx29", "lu0197800237", "lu0197800237"],
                                  t = [233, 234, 235, 180, 181],
                                  log_return = [.09604978, -.06524096, .03532373, .03025441, .036997]),

In [119]: log_return

Out[119]:

<table>
<thead>
<tr>
<th>asset_id</th>
<th>t</th>
<th>log_return</th>
</tr>
</thead>
<tbody>
<tr>
<td>gb00b03mlx29</td>
<td>233</td>
<td>0.096050</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>-0.065241</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>0.035324</td>
</tr>
<tr>
<td>lu0197800237</td>
<td>180</td>
<td>0.030254</td>
</tr>
<tr>
<td></td>
<td>181</td>
<td>0.036997</td>
</tr>
</tbody>
</table>

In [120]: merge(household.reset_index(),
          log_return.reset_index(),
          on=['asset_id'],
          how='inner').set_index(["household_id","asset_id","t"])

Out[120]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>asset_id</th>
<th>t</th>
<th>share</th>
<th>log_return</th>
</tr>
</thead>
<tbody>
<tr>
<td>gb00b03mlx29</td>
<td>233</td>
<td>0.60</td>
<td>0.096050</td>
<td>0.096050</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>0.60</td>
<td>-0.065241</td>
<td>-0.065241</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>0.60</td>
<td>0.035324</td>
<td>0.035324</td>
</tr>
<tr>
<td>gb00b03mlx29</td>
<td>233</td>
<td>0.15</td>
<td>0.096050</td>
<td>0.096050</td>
</tr>
<tr>
<td></td>
<td>234</td>
<td>0.15</td>
<td>-0.065241</td>
<td>-0.065241</td>
</tr>
<tr>
<td></td>
<td>235</td>
<td>0.15</td>
<td>0.035324</td>
<td>0.035324</td>
</tr>
<tr>
<td>lu0197800237</td>
<td>180</td>
<td>0.60</td>
<td>0.030254</td>
<td>0.030254</td>
</tr>
<tr>
<td></td>
<td>181</td>
<td>0.60</td>
<td>0.036997</td>
<td>0.036997</td>
</tr>
</tbody>
</table>
18.1 Reshaping by pivoting DataFrame objects

Data is often stored in CSV files or databases in so-called “stacked” or “record” format:

```
In [1]: df
Out[1]:
 date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
3 2000-01-03 B -1.135632
4 2000-01-04 B 1.212112
5 2000-01-05 B -0.173215
6 2000-01-03 C 0.119209
7 2000-01-04 C -1.044236
8 2000-01-05 C -0.861849
9 2000-01-03 D -2.104569
10 2000-01-04 D -0.494929
11 2000-01-05 D 1.071804
```

For the curious here is how the above DataFrame was created:

```python
import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):
 N, K = frame.shape
 data = {'value': frame.values.ravel('F'),
 'variable': np.asarray(frame.columns).repeat(N),
 'date': np.tile(np.asarray(frame.index), K)}
 return DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())
```

To select out everything for variable A we could do:

```
In [2]: df[df['variable'] == 'A']
Out[2]:
 date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
```

But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and an index of dates identifies individual observations. To reshape the data into this form, use the `pivot` function:
In [3]: df.pivot(index='date', columns='variable', values='value')
Out[3]:
   variable  A  B  C  D
date
2000-01-03  0.469112 -1.135632  0.119209 -2.104569
2000-01-04  -0.282863  1.212112 -1.044236 -0.494929
2000-01-05  -1.509059 -0.173215 -0.861849  1.071804

If the `values` argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to `pivot`, then the resulting “pivoted” DataFrame will have `hierarchical columns` whose topmost level indicates the respective value column:

In [4]: df['value2'] = df['value'] * 2
In [5]: pivoted = df.pivot('date', 'variable')
In [6]: pivoted
Out[6]:
   value  value2  
variable
A   B  C  D  A  B
date
2000-01-03  0.469112 -1.135632  0.119209 -2.104569  0.938225 -2.271265
2000-01-04  -0.282863  1.212112 -1.044236 -0.494929  -0.565727  2.424224
2000-01-05  -1.509059 -0.173215 -0.861849  1.071804  -3.018117  -0.346429

You of course can then select subsets from the pivoted DataFrame:

In [7]: pivoted['value2']
Out[7]:
   variable  
date
A   B  C  D
2000-01-03  0.469112 -1.135632  0.119209 -2.104569
2000-01-04  -0.282863  1.212112 -1.044236 -0.494929
2000-01-05  -1.509059 -0.173215 -0.861849  1.071804

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

18.2 Reshaping by stacking and unstacking

Closely related to the `pivot` function are the related `stack` and `unstack` functions currently available on Series and DataFrame. These functions are designed to work together with MultiIndex objects (see the section on hierarchical indexing). Here are essentially what these functions do:

- **stack**: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
- **unstack**: inverse operation from `stack`: “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.

The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:
In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
  'foo', 'foo', 'qux', 'qux'],
  ['one', 'two', 'one', 'two',
  'one', 'two', 'one', 'two']]))

In [9]: index = MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [10]: df = DataFrame(randn(8, 2), index=index, columns=['A', 'B'])

In [11]: df2 = df[:4]

In [12]: df2
Out[12]:
   A     B
first second
bar one  0.721555 -0.706771
   two -1.039575  0.271860
baz one -0.424972  0.567020
   two  0.276232 -1.087401

The stack function “compresses” a level in the DataFrame’s columns to produce either:

- A Series, in the case of a simple column Index
- A DataFrame, in the case of a MultiIndex in the columns

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:

In [13]: stacked = df2.stack()

In [14]: stacked
Out[14]:
   A     B
first second
bar one  A  0.721555
   B -0.706771
   two A -1.039575
   B  0.271860
baz one A -0.424972
   B  0.567020
   two A  0.276232
   B -1.087401
dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of stack is unstack, which by default unstacks the last level:

In [15]: stacked.unstack()
Out[15]:
   A     B
first second
bar one  0.721555 -0.706771
   two -1.039575  0.271860
baz one -0.424972  0.567020
   two  0.276232 -1.087401

In [16]: stacked.unstack(1)
Out[16]:
   A     B
second one  0.721555 -0.706771
   two -1.039575  0.271860
   one -0.424972  0.567020
   two  0.276232 -1.087401

18.2. Reshaping by stacking and unstacking 477
first
bar  A  0.721555  -1.039575  
     B  -0.706771  0.271860  
baz  A  -0.424972  0.276232  
     B  0.567020  -1.087401  

In [17]: stacked.unstack(0)
Out[17]:
first bar baz
second
one  A  0.721555  -0.424972  
     B  -0.706771  0.567020  
two  A  -1.039575  0.276232  
     B  0.271860  -1.087401  

If the indexes have names, you can use the level names instead of specifying the level numbers:

In [18]: stacked.unstack('second')
Out[18]:
second one two
first bar baz

Notice that the stack and unstack methods implicitly sort the index levels involved. Hence a call to stack and then unstack, or vice versa, will result in a sorted copy of the original DataFrame or Series:

In [19]: index = MultiIndex.from_product([[[2,1], ['a', 'b']]])

In [20]: df = DataFrame(randn(4), index=index, columns=['A'])

In [21]: df
Out[21]:
   A
  2 a -0.370647
   b -1.157892
  1 a -1.344312
   b  0.844885

In [22]: all(df.unstack().stack() == df.sort())
Out[22]: True

while the above code will raise a TypeError if the call to sort is removed.

18.2.1 Multiple Levels

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.

In [23]: columns = MultiIndex.from_tuples([
            ('A', 'cat', 'long'), ('B', 'cat', 'long'),
            ('A', 'dog', 'short'), ('B', 'dog', 'short')
        ],
        names=['exp', 'animal', 'hair_length']
    )
In [24]: df = DataFrame(randn(4, 4), columns=columns)

In [25]: df
Out[25]:
exp  A   B  A   B
animal     cat    cat  dog  dog
hair_length long  long  short  short
0   1.075770 -0.109050 1.643563 -1.469388
1   0.357021 -0.674600 -1.776904 -0.968914
2 -1.294524  0.413738  0.276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061

In [26]: df.stack(level=['animal', 'hair_length'])
Out[26]:
exp  A   B
animal hair_length
0  cat  long  1.075770 -0.109050
    dog  short  1.643563 -1.469388
1  cat  long   0.357021 -0.674600
    dog  short  -1.776904  -0.968914
2  cat  long  -1.294524  0.413738
    dog  short   0.276662  -0.472035
3  cat  long  -0.013960 -0.362543
    dog  short  -0.006154  -0.923061

The list of levels can contain either level names or level numbers (but not a mixture of the two).

# df.stack(level=['animal', 'hair_length'])
# from above is equivalent to:
In [27]: df.stack(level=[1, 2])
Out[27]:
exp  A   B
animal hair_length
0  cat  long  1.075770 -0.109050
    dog  short  1.643563 -1.469388
1  cat  long   0.357021 -0.674600
    dog  short  -1.776904  -0.968914
2  cat  long  -1.294524  0.413738
    dog  short   0.276662  -0.472035
3  cat  long  -0.013960 -0.362543
    dog  short  -0.006154  -0.923061

18.2.2 Missing Data

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling sortlevel, of course). Here is a more complex example:

In [28]: columns = MultiIndex.from_tuples((('A', 'cat'), ('B', 'dog'),
                                            ('B', 'cat'), ('A', 'dog')),
                                            names=['exp', 'animal'])

In [29]: index = MultiIndex.from_product(((‘bar’, ‘baz’, ‘foo’, ‘qux’), (‘one’, ‘two’)),
                                           names=['first', 'second'])

18.2. Reshaping by stacking and unstacking
In [30]: df = DataFrame(randn(8, 4), index=index, columns=columns)

In [31]: df2 = df.ix[[0, 1, 2, 4, 5, 7]]

In [32]: df2
Out[32]:
exp    A    B    A
animal cat  dog  cat  dog
first  second
bar one  0.895717  0.805244 -1.206412  2.565646
   two  1.431256  1.340309 -1.170299 -0.226169
baz one  0.410835  0.813850  0.132003 -0.827317
   two -1.413681  1.607920  1.024180  0.569605
foo one  0.875906 -2.211372  0.974466 -2.006747
   two  0.875906 -2.211372  0.974466 -2.006747
qux two  0.769804 -1.281247 -0.727707

As mentioned above, stack can be called with a level argument to select which level in the columns to stack:

In [33]: df2.stack('exp')
Out[33]:
exp    A    B
animal    cat  dog
first  second
bar one  0.895717 -1.206412  2.565646
   two  1.431256 -0.226169  1.340309
baz one  0.410835  0.132003 -0.827317
   two -1.413681  1.024180  0.569605
foo one -2.211372  0.974466 -2.006747
   two  0.875906  0.974466 -2.211372
qux two  0.769804  0.769804

In [34]: df2.stack('animal')
Out[34]:
exp    A    B
animal    cat  dog
first  second
bar one  A  0.895717  2.565646
   B -1.206412  0.805244
   two A  1.431256 -0.226169
      B -1.170299  1.340309
baz one  A  0.410835 -0.827317
      B  0.132003  0.813850
foo one  A -1.413681  0.569605
      B  1.024180  1.607920
   two A  0.875906 -2.006747
      B  0.974466 -2.211372
qux two  A -1.226825 -0.727707
      B -1.281247  0.769804

18.2.3 With a MultiIndex

Unstacking when the columns are a MultiIndex is also careful about doing the right thing:
In [35]: df[:3].unstack(0)
Out[35]:
exp  A  B  A
    animal  cat  dog  cat  dog
    first  bar  baz  bar  baz  baz  bar
second
one  0.895717  0.410835  0.81385  -1.206412  0.132003  2.565646
two  1.431256  NaN    1.340309 NaN  -1.170299 NaN  -0.226169

In [36]: df2.unstack(1)
Out[36]:
exp  A  B  A
    animal  cat  dog  cat  dog
    second  one  two  one  two  one  two  one
    first  bar  0.895717  1.431256  0.805244  1.340309  -1.206412  1.340309  -1.170299  2.565646
    baz  0.410835  NaN    0.813850 NaN  -1.170299 NaN  0.132003  -0.827317
    foo -1.413681  0.875906  1.607920  -2.211372  1.024180  0.974466  0.569605
    qux NaN  -1.226825 NaN  0.769804 NaN  0.569605 NaN  -1.281247 NaN

18.3 Reshaping by Melt

The melt() function is useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are “unpivoted” to the row axis, leaving just two non-identifier columns, “variable” and “value”. The names of those columns can be customized by supplying the var_name and value_name parameters.

For instance,

In [37]: cheese = DataFrame({'first' : ['John', 'Mary'],
                          ........:   'last' : ['Doe', 'Bo'],
                          ........:   'height' : [5.5, 6.0],
                          ........:   'weight' : [130, 150]})

In [38]: cheese
Out[38]:
  first  height  last  weight
0  John     5.5  Doe    130
1  Mary     6.0  Bo     150

18.3. Reshaping by Melt
In [39]: melt(cheese, id_vars=['first', 'last'])
Out[39]:
   first  last  variable  value
0  John  Doe  height     5.5
1   Mary  Bo  height     6.0
2  John  Doe  weight    130.0
3   Mary  Bo  weight    150.0

In [40]: melt(cheese, id_vars=['first', 'last'], var_name='quantity')
Out[40]:
   first  last  quantity  value
0  John  Doe   height     5.5
1   Mary  Bo   height     6.0
2  John  Doe  weight    130.0
3   Mary  Bo  weight    150.0

Another way to transform is to use the `wide_to_long` panel data convenience function.


In [42]: dft["id"] = dft.index

In [43]: dft
Out[43]:
0      a      d    2.5   3.2 -0.121306 0
1      b      e    1.2   1.3 -0.097883 1
2      c      f    0.7   0.1  0.695775 2

In [44]: pd.wide_to_long(dft, ["A", "B"], i="id", j="year")
Out[44]:
   X  A  B
id year
0 1970 -0.121306  a  2.5
1 1970 -0.097883  b  1.2
2 1970  0.695775  c  0.7
0 1980 -0.121306  d  3.2
1 1980 -0.097883  e  1.3
2 1980  0.695775  f  0.1

18.4 Combining with stats and GroupBy

It should be no shock that combining `pivot`/`stack`/`unstack` with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.

In [45]: df
Out[45]:
   exp  A  B
animal  cat  dog  cat  dog
first  second
```
bar one 0.895717 0.805244 -1.206412 2.565646
 two 1.431256 1.340309 -1.170299 -0.226169
baz one 0.410835 0.813850 0.132003 -0.827317
 two -0.076467 -1.187678 1.130127 -1.436737
foo one -1.413681 1.607920 1.024180 0.569605
 two 0.875906 -2.211372 0.974466 -2.006747
qux one -0.410001 -0.078638 0.545952 -1.219217
 two -1.226825 0.769804 -1.281247 -0.727707

In [46]: df.stack().mean(1).unstack()
Out[46]:
animal cat dog
 first second
bar one -0.155347 1.685445
 two 0.130479 0.557070
baz one 0.271419 -0.006733
 two -0.526830 -1.312207
foo one -0.194750 1.088763
 two 0.925186 -2.109060
qux one 0.067976 -0.648927
 two -1.254036 0.021048

same result, another way
In [47]: df.groupby(level=1, axis=1).mean()
Out[47]:
animal cat dog
 first second
bar one -0.155347 1.685445
 two 0.130479 0.557070
baz one 0.271419 -0.006733
 two -0.526830 -1.312207
foo one -0.194750 1.088763
 two 0.925186 -2.109060
qux one 0.067976 -0.648927
 two -1.254036 0.021048

In [48]: df.stack().groupby(level=1).mean()
Out[48]:
exp A B
second
one 0.071448 0.455513
two -0.424186 -0.204486

In [49]: df.mean().unstack(0)
Out[49]:
exps A B
animal
 cat 0.060843 0.018596
dog -0.413580 0.232430

18.5 Pivot tables and cross-tabulations

The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. See the cookbook for some advanced strategies

It takes a number of arguments
```
• data: A DataFrame object
• values: a column or a list of columns to aggregate
• index: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
• columns: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
• aggfunc: function to use for aggregation, defaulting to numpy.mean

Consider a data set like this:

In [50]: import datetime

In [51]: df = DataFrame({'A' : ['one', 'one', 'two', 'three'] * 6,
       ....:   'B' : ['A', 'B', 'C'] * 8,
       ....:   'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
       ....:   'D' : np.random.randn(24),
       ....:   'E' : np.random.randn(24),
       ....:   'F' : [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
       ....:   [datetime.datetime(2013, i, 15) for i in range(1, 13)]
       ....: )

In [52]: df
Out[52]:
     A  B  C    D          E    F
0  one  A  foo  0.341734 -0.317441 2013-01-01
1  one  B  foo  0.959726 -1.236269 2013-02-01
2  two  C  foo -1.110336  0.896171 2013-03-01
3 three  A  bar -0.619976 -0.487602 2013-04-01
4  one  B  bar  0.149748  0.082240 2013-05-01
5  one  C  bar -0.732339 -2.182937 2013-06-01
6  two  A  foo  0.687738  0.380396 2013-07-01
... ... ... ...     ... ... ...
17 one  C  bar -0.345352  0.26053  2013-06-15
18 two  A  foo  1.314232 -0.251905 2013-07-15
19 three  B  foo  0.690579 -2.213588 2013-08-15
20 one  C  foo  0.995761  1.063327 2013-09-15
21 one  A  bar  2.396780  1.266143 2013-10-15
22 two  B  bar  0.014871  0.299368 2013-11-15
23 three  C  bar  3.357427 -0.863838 2013-12-15

[24 rows x 6 columns]

We can produce pivot tables from this data very easily:

In [53]: pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[53]:
     C    bar    foo
A  B
one A  1.120915 -0.514058
     B  -0.338421  0.002759
     C  0.110336  0.62053
three A -1.181568  NaN
      B  NaN  0.433512
      C  0.588783  NaN
two A  NaN  1.000985
      B  0.158248  NaN
      C  NaN  0.176180
In [54]: pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)
Out[54]:
A    one    three    two
C   bar    foo    bar    foo    bar    foo
B   A  2.241830 -1.028115 -2.363137 NaN  NaN  2.001971
    B -0.676843  0.005518  NaN  0.867024  0.316495 NaN
    C -1.077692  1.399070  1.177566 NaN  NaN  0.352360

In [55]: pivot_table(df, values=['D', 'E'], index=['B'], columns=['A', 'C'], aggfunc=np.sum)
Out[55]:
    D     E
A one  three  two  one
C bar  foo    bar    foo    bar    foo
B   A  2.241830 -1.028115 -2.363137 NaN  NaN  2.001971  2.786113
    B -0.676843  0.005518  NaN  0.867024  0.316495 NaN  1.368280
    C -1.077692  1.399070  1.177566 NaN  NaN  0.352360 -1.976883

The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:

In [56]: pivot_table(df, index=['A', 'B'], columns=['C'])
Out[56]:
    D    E
C   bar    foo    bar    foo
A one  B  A  1.120915 -0.514058  1.393057 -0.021605
    B -0.338421  0.002759  0.684140 -0.551692
    C -0.538846  0.699535 -0.988442  0.747859
three B  NaN  0.961289  NaN
    C  0.588783  -0.131830  NaN
two  B  NaN  1.000985  NaN  0.064245
    C  0.158248  -0.097147  NaN
    C  0.176180  0.436241  NaN

Also, you can use Grouper for index and columns keywords. For detail of Grouper, see Grouping with a Grouper specification.

In [57]: pivot_table(df, values='D', index=Grouper(freq='M', key='F'), columns=['C'])
Out[57]:
    D    E
F  2013-01-31 NaN  0.514058
    2013-02-28 NaN  0.002759
    2013-03-31 NaN  0.176180
    2013-04-30 -1.181568 NaN
    2013-05-31 -0.338421 NaN

18.5. Pivot tables and cross-tabulations 485
You can render a nice output of the table omitting the missing values by calling `to_string` if you wish:

```
In [58]: table = pivot_table(df, index=['A', 'B'], columns=['C'])
In [59]: print(table.to_string(na_rep=''))

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bar</td>
<td>foo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.120915</td>
<td>-0.514058</td>
<td>1.393057</td>
<td>-0.021605</td>
</tr>
<tr>
<td>C</td>
<td>-0.338421</td>
<td>0.002759</td>
<td>0.684140</td>
<td>-0.551692</td>
</tr>
<tr>
<td>one</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-0.538846</td>
<td>0.699535</td>
<td>-0.988442</td>
<td>0.747859</td>
</tr>
<tr>
<td>C</td>
<td>1.181568</td>
<td>0.961289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>three</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.433512</td>
<td>0.002759</td>
<td>0.684140</td>
<td>-0.551692</td>
</tr>
<tr>
<td>C</td>
<td>0.588783</td>
<td>0.002759</td>
<td>0.684140</td>
<td>-0.551692</td>
</tr>
<tr>
<td>two</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.158248</td>
<td>-0.097147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.176180</td>
<td>0.436241</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Note that `pivot_table` is also available as an instance method on DataFrame.

### 18.5.1 Cross tabulations

Use the `crosstab` function to compute a cross-tabulation of two (or more) factors. By default `crosstab` computes a frequency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments:

- `index`: array-like, values to group by in the rows
- `columns`: array-like, values to group by in the columns
- `values`: array-like, optional, array of values to aggregate according to the factors
- `aggfunc`: function, optional, If no values array is passed, computes a frequency table
- `rownames`: sequence, default None, must match number of row arrays passed
- `colnames`: sequence, default None, if passed, must match number of column arrays passed
- `margins`: boolean, default False, Add row/column margins (subtotals)

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified.

For example:

```
In [60]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
In [61]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
In [62]: b = np.array([one, one, two, one, two, one], dtype=object)
In [63]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
```
In [64]: crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
Out[64]:
       one  two
   c    dull  shiny  dull  shiny
   a
   bar  1  0  0  1
   foo  2  1  1  0

18.5.2 Adding margins (partial aggregates)

If you pass margins=True to pivot_table, special All columns and rows will be added with partial group aggregates across the categories on the rows and columns:

In [65]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
Out[65]:
          D          E
   C       bar  foo  All       bar  foo  All
   A       B
   one A  1.804346  1.210272  1.569879  0.179483  0.418374  0.858005
           B  0.690376  1.353355  0.898998  1.083825  0.968138  1.101401
           C  0.273641  0.418926  0.771139  1.689271  0.446140  1.422136
   three A  0.794212   NaN   2.049040   NaN   2.049040
             B  NaN  0.363548  0.363548   NaN  1.625237  1.625237
             C  3.915454  NaN   3.915454  1.035215   NaN  1.035215
   two A  NaN  0.442998  0.442998   NaN  0.447104  0.447104
             B  0.202765  NaN  0.202765  0.560757   NaN  0.560757
             C  NaN  1.819408  1.819408   NaN  0.650439  0.650439
   All  1.556886  0.952552  1.246608  1.250924  0.899904  1.059389

18.6 Tiling

The cut function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:

In [66]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
In [67]: cut(ages, bins=3)
Out[67]:
[(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60]
Categories (3, object): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60]]

If the bins keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

In [68]: cut(ages, bins=[0, 18, 35, 70])
Out[68]:
[(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]]
Categories (3, object): [(0, 18] < (18, 35] < (35, 70]]

18.7 Computing indicator / dummy variables

To convert a categorical variable into a “dummy” or “indicator” DataFrame, for example a column in a DataFrame (a Series) which has k distinct values, can derive a DataFrame containing k columns of 1s and 0s:
In [69]: df = DataFrame({'key': list('bbacab'), 'data1': range(6)})

In [70]: get_dummies(df['key'])
Out[70]:
   a  b  c
0  0  1  0
1  0  1  0
2  1  0  0
3  0  0  1
4  1  0  0
5  0  1  0

Sometimes it’s useful to prefix the column names, for example when merging the result with the original DataFrame:

In [71]: dummies = get_dummies(df['key'], prefix='key')

In [72]: dummies
Out[72]:
   key_a  key_b  key_c
0     0      1      0
1     0      1      0
2     1      0      0
3     0      0      1
4     1      0      0
5     0      1      0

In [73]: df[['data1']].join(dummies)
Out[73]:
data1  key_a  key_b  key_c
0      0      0      1      0
1      1      0      1      0
2      2      1      0      0
3      3      0      0      1
4      4      1      0      0
5      5      0      1      0

This function is often used along with discretization functions like `cut`:

In [74]: values = randn(10)

In [75]: values
Out[75]:
array([ 0.4082, -1.0481, -0.0257, -0.9884, 0.0941, 1.2627, 1.29 ,
          0.0824, -0.0558, 0.5366])

In [76]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [77]: get_dummies(cut(values, bins))
Out[77]:
   (0, 0.2]  (0.2, 0.4]  (0.4, 0.6]  (0.6, 0.8]  (0.8, 1]
0      0        0      1       0       0
1      0        0      0       0       0
2      0        0      0       0       0
3      0        0      0       0       0
4      1        0      0       0       0
5      0        0      0       0       0
6      0        0      0       0       0
7      1        0      0       0       0
8      0        0      0       0       0
See also `Series.str.get_dummies`. New in version 0.15.0. `get_dummies()` also accepts a DataFrame. By default all categorical variables (categorical in the statistical sense, those with `object` or `categorical` dtype) are encoded as dummy variables.

```
In [78]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
 'C': [1, 2, 3]})
```

```
In [79]: pd.get_dummies(df)
Out[79]:
 C A_a A_b B_b B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0
```

All non-object columns are included untouched in the output.

You can control the columns that are encoded with the `columns` keyword.

```
In [80]: pd.get_dummies(df, columns=['A'])
```

```
Out[80]:
 B C A_a A_b
0 c 1 1 0
1 c 2 0 1
2 b 3 1 0
```

Notice that the `B` column is still included in the output, it just hasn’t been encoded. You can drop `B` before calling `get_dummies` if you don’t want to include it in the output.

As with the Series version, you can pass values for the `prefix` and `prefix_sep`. By default the column name is used as the prefix, and `_` as the prefix separator. You can specify `prefix` and `prefix_sep` in 3 ways

- string: Use the same value for `prefix` or `prefix_sep` for each column to be encoded
- list: Must be the same length as the number of columns being encoded.
- dict: Mapping column name to prefix

```
In [81]: simple = pd.get_dummies(df, prefix='new_prefix')
```

```
In [82]: simple
Out[82]:
 C new_prefix_a new_prefix_b new_prefix_b new_prefix_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0
```

```
In [83]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])
```

```
In [84]: from_list
Out[84]:
 C from_A_a from_A_b from_B_b from_B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0
```

```
In [85]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})
```

```
In [86]: from_dict
```

18.7. Computing indicator / dummy variables
18.8 Factorizing values

To encode 1-d values as an enumerated type use `factorize`:

```
In [87]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
```

```
In [88]: x
Out[88]:
0 A
1 A
2 NaN
3 B
4 3.14
5 inf
dtype: object
```

```
In [89]: labels, uniques = pd.factorize(x)
```

```
In [90]: labels
Out[90]:
array([0, 0, -1, 1, 2, 3])
```

```
In [91]: uniques
Out[91]: Index(['A', 'B', 3.14, inf], dtype='object')
```

Note that `factorize` is similar to `numpy.unique`, but differs in its handling of NaN:

```
In [92]: pd.factorize(x, sort=True)
Out[92]:
(array([2, 2, -1, 3, 0, 1]),
 Index(['3.14', 'inf', 'A', 'B'], dtype='object'))
```

```
In [93]: np.unique(x, return_inverse=True)[::-1]
Out[93]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))
```

Note: The following `numpy.unique` will fail under Python 3 with a `TypeError` because of an ordering bug. See also Here

```
In [92]: pd.factorize(x, sort=True)
Out[92]:
(array([2, 2, -1, 3, 0, 1]),
 Index(['3.14', 'inf', 'A', 'B'], dtype='object'))
```

Note: If you just want to handle one column as a categorical variable (like R’s factor), you can use `df['cat_col'] = pd.Categorical(df['col'])` or `df['cat_col'] = df['col'].astype("category")`. For full docs on Categorical, see the Categorical introduction and the API documentation. This feature was introduced in version 0.15.
pandas has proven very successful as a tool for working with time series data, especially in the financial data analysis space. With the 0.8 release, we have further improved the time series API in pandas by leaps and bounds. Using the new NumPy datetime64 dtype, we have consolidated a large number of features from other Python libraries like scikits.timeseries as well as created a tremendous amount of new functionality for manipulating time series data.

In working with time series data, we will frequently seek to:

- generate sequences of fixed-frequency dates and time spans
- conform or convert time series to a particular frequency
- compute “relative” dates based on various non-standard time increments (e.g. 5 business days before the last business day of the year), or “roll” dates forward or backward

pandas provides a relatively compact and self-contained set of tools for performing the above tasks.

Create a range of dates:

```python
72 hours starting with midnight Jan 1st, 2011
In [1]: rng = date_range('1/1/2011', periods=72, freq='H')

In [2]: rng[:5]
Out[2]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01 00:00:00, ..., 2011-01-01 04:00:00]
Length: 5, Freq: H, Timezone: None
```

Index pandas objects with dates:

```python
In [3]: ts = Series(randn(len(rng)), index=rng)

In [4]: ts.head()
Out[4]:
2011-01-01 00:00:00 0.469112
2011-01-01 01:00:00 -0.282863
2011-01-01 02:00:00 -1.509059
2011-01-01 03:00:00 -1.135632
2011-01-01 04:00:00 1.212112
Freq: H, dtype: float64
```

Change frequency and fill gaps:

```python
to 45 minute frequency and forward fill
In [5]: converted = ts.asfreq('45Min', method='pad')
```

```python
```

```python
```
In [6]: converted.head()
Out[6]:
2011-01-01 00:00:00 0.469112
2011-01-01 00:45:00 0.469112
2011-01-01 01:30:00 -0.282863
2011-01-01 02:15:00 -1.509059
2011-01-01 03:00:00 -1.135632
Freq: 45T, dtype: float64

Resample:

# Daily means
In [7]: ts.resample('D', how='mean')
Out[7]:
2011-01-01 -0.319569
2011-01-02 -0.337703
2011-01-03 0.117258
Freq: D, dtype: float64

19.1 Time Stamps vs. Time Spans

Time-stamped data is the most basic type of timeseries data that associates values with points in time. For pandas objects it means using the points in time to create the index

In [8]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2),
           datetime(2012, 5, 3)]
In [9]: ts = Series(np.random.randn(3), dates)
In [10]: type(ts.index)
Out[10]: pandas.tseries.index.DatetimeIndex
In [11]: ts
Out[11]:
2012-05-01 -0.410001
2012-05-02 -0.078638
2012-05-03 0.545952
dtype: float64

However, in many cases it is more natural to associate things like change variables with a time span instead.

For example:

In [12]: periods = PeriodIndex([Period('2012-01'), Period('2012-02'),
                          Period('2012-03'))
In [13]: ts = Series(np.random.randn(3), periods)
In [14]: type(ts.index)
Out[14]: pandas.tseries.period.PeriodIndex
In [15]: ts
Out[15]:
2012-01 -1.219217
2012-02 -1.226825
2012-03 0.769804
Freq: M, dtype: float64
Starting with 0.8, pandas allows you to capture both representations and convert between them. Under the hood, pandas represents timestamps using instances of `Timestamp` and sequences of timestamps using instances of `DatetimeIndex`. For regular time spans, pandas uses `Period` objects for scalar values and `PeriodIndex` for sequences of spans. Better support for irregular intervals with arbitrary start and end points are forthcoming in future releases.

### 19.2 Converting to Timestamps

To convert a Series or list-like object of date-like objects e.g. strings, epochs, or a mixture, you can use the `to_datetime` function. When passed a Series, this returns a Series (with the same index), while a list-like is converted to a `DatetimeIndex`:

```
In [16]: to_datetime(Series(['Jul 31, 2009', '2010-01-10', None]))
Out[16]:
0 2009-07-31
1 2010-01-10
2 NaT
dtype: datetime64[ns]
```

```
In [17]: to_datetime(['2005/11/23', '2010.12.31'])
Out[17]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2005-11-23, 2010-12-31]
Length: 2, Freq: None, Timezone: None
```

If you use dates which start with the day first (i.e. European style), you can pass the `dayfirst` flag:

```
In [18]: to_datetime(['04-01-2012 10:00'], dayfirst=True)
Out[18]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-01-04 10:00:00]
Length: 1, Freq: None, Timezone: None
```

```
In [19]: to_datetime(['14-01-2012', '01-14-2012'], dayfirst=True)
Out[19]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-01-14, 2012-01-14]
Length: 2, Freq: None, Timezone: None
```

**Warning:** You see in the above example that `dayfirst` isn’t strict, so if a date can’t be parsed with the day being first it will be parsed as if `dayfirst` were False.

**Note:** Specifying a `format` argument will potentially speed up the conversion considerably and on versions later then 0.13.0 explicitly specifying a format string of ‘%Y%m%d’ takes a faster path still.

### 19.2.1 Invalid Data

Pass `coerce=True` to convert invalid data to NaT (not a time):

```
In [20]: to_datetime(['2009-07-31', 'asd'])
Out[20]: array(['2009-07-31', 'asd'], dtype=object)
```

```
In [21]: to_datetime(['2009-07-31', 'asd'], coerce=True)
```

---

**19.2. Converting to Timestamps**

493
Take care, `to_datetime` may not act as you expect on mixed data:

```
In [22]: to_datetime([1, '1'])
Out[22]: array([1, '1'], dtype=object)
```

### 19.2.2 Epoch Timestamps

It's also possible to convert integer or float epoch times. The default unit for these is nanoseconds (since these are how Timestamps are stored). However, often epochs are stored in another unit which can be specified:

Typical epoch stored units

```
In [23]: to_datetime([1349720105, 1349806505, 1349892905, ...
.....: 1349979305, 1350065705], unit='s')
.....:
Out[23]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-10-08 18:15:05, ..., 2012-10-12 18:15:05]
Length: 5, Freq: None, Timezone: None
```

```
In [24]: to_datetime([1349720105100, 1349720105200, 1349720105300, ...
.....: 1349720105400, 1349720105500], unit='ms')
.....:
Out[24]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-10-08 18:15:05.100000, ..., 2012-10-08 18:15:05.500000]
Length: 5, Freq: None, Timezone: None
```

These work, but the results may be unexpected.

```
In [25]: to_datetime([1])
Out[25]:
<class 'pandas.tseries.index.DatetimeIndex'>
[1970-01-01 00:00:01.000000001]
Length: 1, Freq: None, Timezone: None
```

```
In [26]: to_datetime([1, 3.14], unit='s')
Out[26]:
<class 'pandas.tseries.index.DatetimeIndex'>
[1970-01-01 00:00:01, 1970-01-01 00:00:03.140000]
Length: 2, Freq: None, Timezone: None
```

**Note:** Epoch times will be rounded to the nearest nanosecond.

### 19.3 Generating Ranges of Timestamps

To generate an index with time stamps, you can use either the DatetimeIndex or Index constructor and pass in a list of datetime objects:
In [27]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]

In [28]: index = DatetimeIndex(dates)

In [29]: index  # Note the frequency information
Out[29]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-01, ..., 2012-05-03]
Length: 3, Freq: None, Timezone: None

In [30]: index = Index(dates)

In [31]: index  # Automatically converted to DatetimeIndex
Out[31]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-01, ..., 2012-05-03]
Length: 3, Freq: None, Timezone: None

Practically, this becomes very cumbersome because we often need a very long index with a large number of
timestamps. If we need timestamps on a regular frequency, we can use the pandas functions `date_range` and
`bdate_range` to create timestamp indexes.

In [32]: index = date_range('2000-1-1', periods=1000, freq='M')

In [33]: index
Out[33]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2000-01-31, ..., 2083-04-30]
Length: 1000, Freq: M, Timezone: None

In [34]: index = bdate_range('2012-1-1', periods=250)

In [35]: index
Out[35]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-01-02, ..., 2012-12-14]
Length: 250, Freq: B, Timezone: None

Convenience functions like `date_range` and `bdate_range` utilize a variety of frequency aliases. The default
frequency for `date_range` is a calendar day while the default for `bdate_range` is a business day

In [36]: start = datetime(2011, 1, 1)

In [37]: end = datetime(2012, 1, 1)

In [38]: rng = date_range(start, end)

In [39]: rng
Out[39]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01, ..., 2012-01-01]
Length: 366, Freq: D, Timezone: None

In [40]: rng = bdate_range(start, end)

In [41]: rng
Out[41]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-03, ..., 2011-12-30]
date_range and bdate_range makes it easy to generate a range of dates using various combinations of parameters like start, end, periods, and freq:

In [42]: date_range(start, end, freq='BM')
Out[42]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-31, ..., 2011-12-30]
Length: 12, Freq: BM, Timezone: None

In [43]: date_range(start, end, freq='W')
Out[43]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-02, ..., 2012-01-01]
Length: 53, Freq: W-SUN, Timezone: None

In [44]: bdate_range(end=end, periods=20)
Out[44]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-12-05, ..., 2011-12-30]
Length: 20, Freq: B, Timezone: None

In [45]: bdate_range(start=start, periods=20)
Out[45]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-03, ..., 2011-01-28]
Length: 20, Freq: B, Timezone: None

The start and end dates are strictly inclusive. So it will not generate any dates outside of those dates if specified.

### 19.4 DatetimeIndex

One of the main uses for DatetimeIndex is as an index for pandas objects. The DatetimeIndex class contains many timeseries related optimizations:

- A large range of dates for various offsets are pre-computed and cached under the hood in order to make generating subsequent date ranges very fast (just have to grab a slice)
- Fast shifting using the shift and tshift method on pandas objects
- Unioning of overlapping DatetimeIndex objects with the same frequency is very fast (important for fast data alignment)
- Quick access to date fields via properties such as year, month, etc.
- Regularization functions like snap and very fast asof logic

DatetimeIndex objects has all the basic functionality of regular Index objects and a smorgasbord of advanced timeseries-specific methods for easy frequency processing.

**See Also:**

*Reindexing methods*

**Note:** While pandas does not force you to have a sorted date index, some of these methods may have unexpected or incorrect behavior if the dates are unsorted. So please be careful.
DatetiemeIndex can be used like a regular index and offers all of its intelligent functionality like selection, slicing, etc.

```python
In [46]: rng = date_range(start, end, freq='BM')
In [47]: ts = Series(randn(len(rng)), index=rng)
In [48]: ts.index
Out[48]: <class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-31, ..., 2011-12-30]
Length: 12, Freq: BM, Timezone: None
```

```python
In [49]: ts[:5].index
Out[49]: <class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-31, ..., 2011-05-31]
Length: 5, Freq: BM, Timezone: None
```

```python
In [50]: ts[::2].index
Out[50]: <class 'pandas.tseries.index.DatetimeIndex'>
Length: 6, Freq: 2BM, Timezone: None
```

### 19.4.1 DatetimeIndex Partial String Indexing

You can pass in dates and strings that parse to dates as indexing parameters:

```python
In [51]: ts['1/31/2011']
Out[51]: -1.2812473076599529
```

```python
In [52]: ts[datetime(2011, 12, 25):]
Out[52]:
2011-12-30 0.687738
Freq: BM, dtype: float64
```

```python
In [53]: ts['10/31/2011':'12/31/2011']
Out[53]:
2011-10-31 0.149748
2011-11-30 -0.732339
2011-12-30 0.687738
Freq: BM, dtype: float64
```

To provide convenience for accessing longer time series, you can also pass in the year or year and month as strings:

```python
In [54]: ts['2011']
Out[54]:
2011-01-31 -1.281247
2011-02-28 -0.727707
2011-03-31 -0.121306
2011-04-29 -0.097883
2011-05-31 0.695775
2011-06-30 0.341734
2011-07-29 0.959726
2011-08-31 -1.110336
2011-09-30 -0.619976
2011-10-31 0.149748
```

19.4. DatetiemIndex
This type of slicing will work on a DataFrame with a `DateTimeIndex` as well. Since the partial string selection is a form of label slicing, the endpoints will be included. This would include matching times on an included date. Here's an example:

In [56]:

dft = DataFrame(randn(100000,1),columns=['A'],index=date_range('20130101',periods=100000,freq='T'))

In [57]:
df

Out [57]:

    A
2013-01-01 00:00:00  0.176444
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...                   ...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00  1.252450
2013-03-11 10:36:00  0.046611
2013-03-11 10:37:00  0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00  0.841669

[100000 rows x 1 columns]

In [58]:
dft['2013']

Out [58]:

    A
2013-01-01 00:00:00  0.176444
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...                   ...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00  1.252450
2013-03-11 10:36:00  0.046611
2013-03-11 10:37:00  0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00  0.841669

[100000 rows x 1 columns]

This starts on the very first time in the month, and includes the last date & time for the month
In [59]: dft['2013-1':'2013-2']
Out[59]:
   A
2013-01-01  00:00:00  0.176444
2013-01-01  00:01:00  0.403310
2013-01-01  00:02:00 -0.154951
2013-01-01  00:03:00  0.301624
2013-01-01  00:04:00 -2.179861
2013-01-01  00:05:00 -1.369849
2013-01-01  00:06:00 -0.954208
... ...
2013-02-28  23:53:00  0.103114
2013-02-28  23:54:00 -1.303422
2013-02-28  23:55:00  0.451943
2013-02-28  23:56:00  0.220534
2013-02-28  23:57:00 -1.624220
2013-02-28  23:58:00  0.093915
2013-02-28  23:59:00 -1.087454
[84960 rows x 1 columns]

This specifies a stop time that includes all of the times on the last day

In [60]: dft['2013-1':'2013-2-28']
Out[60]:
   A
2013-01-01  00:00:00  0.176444
2013-01-01  00:01:00  0.403310
2013-01-01  00:02:00 -0.154951
2013-01-01  00:03:00  0.301624
2013-01-01  00:04:00 -2.179861
2013-01-01  00:05:00 -1.369849
2013-01-01  00:06:00 -0.954208
... ...
2013-02-28  23:53:00  0.103114
2013-02-28  23:54:00 -1.303422
2013-02-28  23:55:00  0.451943
2013-02-28  23:56:00  0.220534
2013-02-28  23:57:00 -1.624220
2013-02-28  23:58:00  0.093915
2013-02-28  23:59:00 -1.087454
[84960 rows x 1 columns]

This specifies an exact stop time (and is not the same as the above)

In [61]: dft['2013-1':'2013-2-28 00:00:00']
Out[61]:
   A
2013-01-01  00:00:00  0.176444
2013-01-01  00:01:00  0.403310
2013-01-01  00:02:00 -0.154951
2013-01-01  00:03:00  0.301624
2013-01-01  00:04:00 -2.179861
2013-01-01  00:05:00 -1.369849
2013-01-01  00:06:00 -0.954208
... ...
2013-02-27  23:54:00  0.897051
2013-02-27  23:55:00  0.309703
2013-02-27  23:56:00  0.451943
2013-02-27  23:57:00  0.220534
2013-02-27  23:58:00 -1.624220
2013-02-27  23:59:00  0.093915
2013-02-27  23:59:00 -1.087454
[84960 rows x 1 columns]  

19.4. DatetimeIndex
We are stopping on the included end-point as its part of the index

```python
In [62]: dft['2013-1-15':'2013-1-15 12:30:00']
```

```json
Out[62]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-15 00:00:00</td>
<td>0.501288</td>
</tr>
<tr>
<td>2013-01-15 00:01:00</td>
<td>-0.605198</td>
</tr>
<tr>
<td>2013-01-15 00:02:00</td>
<td>0.215146</td>
</tr>
<tr>
<td>2013-01-15 00:03:00</td>
<td>0.924732</td>
</tr>
<tr>
<td>2013-01-15 00:04:00</td>
<td>-2.228519</td>
</tr>
<tr>
<td>2013-01-15 00:05:00</td>
<td>1.517331</td>
</tr>
<tr>
<td>2013-01-15 00:06:00</td>
<td>-1.188774</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2013-01-15 12:24:00</td>
<td>1.358314</td>
</tr>
<tr>
<td>2013-01-15 12:25:00</td>
<td>-0.737727</td>
</tr>
<tr>
<td>2013-01-15 12:26:00</td>
<td>1.838323</td>
</tr>
<tr>
<td>2013-01-15 12:27:00</td>
<td>-0.774090</td>
</tr>
<tr>
<td>2013-01-15 12:28:00</td>
<td>0.622261</td>
</tr>
<tr>
<td>2013-01-15 12:29:00</td>
<td>-0.631649</td>
</tr>
<tr>
<td>2013-01-15 12:30:00</td>
<td>0.193284</td>
</tr>
</tbody>
</table>

[751 rows x 1 columns]
```

**Warning:** The following selection will raise a *KeyError*; otherwise this selection methodology would be inconsistent with other selection methods in pandas (as this is not a *slice*, nor does it resolve to one)

```python
dft['2013-1-15 12:30:00']
```

To select a single row, use `.loc`

```python
In [63]: dft.loc['2013-1-15 12:30:00']
```

```json
Out[63]:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

Name: 2013-01-15 12:30:00, dtype: float64
```

### 19.4.2 Datetime Indexing

Indexing a `DateTimeIndex` with a partial string depends on the “accuracy” of the period, in other words how specific the interval is in relation to the frequency of the index. In contrast, indexing with datetime objects is exact, because the objects have exact meaning. These also follow the semantics of including both endpoints.

These datetime objects are specific hours, minutes, and seconds even though they were not explicitly specified (they are 0).

```python
In [64]: dft[datetime(2013, 1, 1):datetime(2013,2,28)]
```

```json
Out[64]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:00</td>
<td>0.176444</td>
</tr>
</tbody>
</table>
```
2013-01-01 00:01:00  0.403310
2013-01-01 00:02:00  -0.154951
2013-01-01 00:03:00  0.301624
2013-01-01 00:04:00  -2.179861
2013-01-01 00:05:00  -1.369849
2013-01-01 00:06:00  -0.954208
...  
2013-02-27 23:54:00  0.897051
2013-02-27 23:55:00  -0.309230
2013-02-27 23:56:00  1.944713
2013-02-27 23:57:00  0.369265
2013-02-27 23:58:00  0.053071
2013-02-27 23:59:00  -0.019734
2013-02-28 00:00:00  1.388189

[83521 rows x 1 columns]

With no defaults.

**In [65]:** dft[datetime(2013, 1, 1, 10, 12, 0):datetime(2013, 2, 28, 10, 12, 0)]

**Out [65]:**

A
2013-01-01 10:12:00  -0.246733
2013-01-01 10:13:00  -1.429225
2013-01-01 10:14:00  -1.265339
2013-01-01 10:15:00  0.710986
2013-01-01 10:16:00  -0.818200
2013-01-01 10:17:00  0.543542
2013-01-01 10:18:00  1.577713
...  
2013-02-28 10:06:00  0.311249
2013-02-28 10:07:00  2.366080
2013-02-28 10:08:00  -0.490372
2013-02-28 10:09:00  0.373340
2013-02-28 10:10:00  0.638442
2013-02-28 10:11:00  1.330135
2013-02-28 10:12:00  -0.945450

[83521 rows x 1 columns]

### 19.4.3 Truncating & Fancy Indexing

A `truncat` convenience function is provided that is equivalent to slicing:

**In [66]:** ts.truncate(before='10/31/2011', after='12/31/2011')

**Out [66]:**

```
2011-10-31 0.149748
2011-11-30 -0.732339
2011-12-30 0.687738
Freq: BM, dtype: float64
```

Even complicated fancy indexing that breaks the DatetimeIndex’s frequency regularity will result in a DatetimeIndex (but frequency is lost):

**In [67]:** ts[[0, 2, 6]].index

**Out [67]:**

```
<class 'pandas.tseries.index.DatetimeIndex'>
```
19.4.4 Time/Date Components

There are several time/date properties that one can access from `Timestamp` or a collection of timestamps like a `DateTimeIndex`.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>The year of the datetime</td>
</tr>
<tr>
<td>month</td>
<td>The month of the datetime</td>
</tr>
<tr>
<td>day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>hour</td>
<td>The hour of the datetime</td>
</tr>
<tr>
<td>minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>date</td>
<td>Returns datetime.date</td>
</tr>
<tr>
<td>time</td>
<td>Returns datetime.time</td>
</tr>
<tr>
<td>dayofyear</td>
<td>The ordinal day of year</td>
</tr>
<tr>
<td>weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>dayofweek</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>weekday</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>quarter</td>
<td>Quarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc.</td>
</tr>
<tr>
<td>is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td>is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
</tbody>
</table>

Furthermore, if you have a `Series` with datetimelike values, then you can access these properties via the `.dt` accessor, see the docs

19.5 DateOffset objects

In the preceding examples, we created DatetimeIndex objects at various frequencies by passing in frequency strings like ‘M’, ‘W’, and ‘BM to the `freq` keyword. Under the hood, these frequency strings are being translated into an instance of pandas `DateOffset`, which represents a regular frequency increment. Specific offset logic like “month”, “business day”, or “one hour” is represented in its various subclasses.
<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateOffset</td>
<td>Generic offset class, defaults to 1 calendar day</td>
</tr>
<tr>
<td>BDay</td>
<td>business day (weekday)</td>
</tr>
<tr>
<td>CDay</td>
<td>custom business day (experimental)</td>
</tr>
<tr>
<td>Week</td>
<td>one week, optionally anchored on a day of the week</td>
</tr>
<tr>
<td>WeekOfMonth</td>
<td>the x-th day of the y-th week of each month</td>
</tr>
<tr>
<td>LastWeekOfMonth</td>
<td>the x-th day of the last week of each month</td>
</tr>
<tr>
<td>MonthEnd</td>
<td>calendar month end</td>
</tr>
<tr>
<td>MonthBegin</td>
<td>calendar month begin</td>
</tr>
<tr>
<td>BMonthEnd</td>
<td>business month end</td>
</tr>
<tr>
<td>BMonthBegin</td>
<td>business month begin</td>
</tr>
<tr>
<td>CBMonthEnd</td>
<td>custom business month end</td>
</tr>
<tr>
<td>CBMonthBegin</td>
<td>custom business month begin</td>
</tr>
<tr>
<td>QuarterEnd</td>
<td>calendar quarter end</td>
</tr>
<tr>
<td>QuarterBegin</td>
<td>calendar quarter begin</td>
</tr>
<tr>
<td>BQuarterEnd</td>
<td>business quarter end</td>
</tr>
<tr>
<td>BQuarterBegin</td>
<td>business quarter begin</td>
</tr>
<tr>
<td>FY5253Quarter</td>
<td>retail (aka 52-53 week) quarter</td>
</tr>
<tr>
<td>YearEnd</td>
<td>calendar year end</td>
</tr>
<tr>
<td>YearBegin</td>
<td>calendar year begin</td>
</tr>
<tr>
<td>BYearEnd</td>
<td>business year end</td>
</tr>
<tr>
<td>BYearBegin</td>
<td>business year begin</td>
</tr>
<tr>
<td>FY5253</td>
<td>retail (aka 52-53 week) year</td>
</tr>
<tr>
<td>Hour</td>
<td>one hour</td>
</tr>
<tr>
<td>Minute</td>
<td>one minute</td>
</tr>
<tr>
<td>Second</td>
<td>one second</td>
</tr>
<tr>
<td>Milli</td>
<td>one millisecond</td>
</tr>
<tr>
<td>Micro</td>
<td>one microsecond</td>
</tr>
</tbody>
</table>

The basic `DateOffset` takes the same arguments as `dateutil.relativedelta`, which works like:

```
In [68]: d = datetime(2008, 8, 18, 9, 0)
In [69]: d + relativedelta(months=4, days=5)
Out[69]: datetime.datetime(2008, 12, 23, 9, 0)
```

We could have done the same thing with `DateOffset`:

```
In [70]: from pandas.tseries.offsets import *
In [71]: d + DateOffset(months=4, days=5)
Out[71]: Timestamp('2008-12-23 09:00:00')
```

The key features of a `DateOffset` object are:

- it can be added / subtracted to/from a datetime object to obtain a shifted date
- it can be multiplied by an integer (positive or negative) so that the increment will be applied multiple times
- it has `rollforward` and `rollback` methods for moving a date forward or backward to the next or previous “offset date”

Subclasses of `DateOffset` define the `apply` function which dictates custom date increment logic, such as adding business days:

```python
class BDay(DateOffset):
 """DateOffset increments between business days""
```

19.5. `DateOffset` objects
def apply(self, other):
...

In [72]: d - 5 * BDay()
Out[72]: Timestamp('2008-08-11 09:00:00')

In [73]: d + BMonthEnd()
Out[73]: Timestamp('2008-08-29 09:00:00')

The `rollforward` and `rollback` methods do exactly what you would expect:

In [74]: d
Out[74]: datetime.datetime(2008, 8, 18, 9, 0)

In [75]: offset = BMonthEnd()

In [76]: offset.rollforward(d)
Out[76]: Timestamp('2008-08-29 09:00:00')

In [77]: offset.rollback(d)
Out[77]: Timestamp('2008-07-31 09:00:00')

It’s definitely worth exploring the pandas.tseries.offsets module and the various docstrings for the classes. These operations (apply, rollforward and rollback) preserves time (hour, minute, etc) information by default. To reset time, use `normalize=True` keyword when create offset instance. If `normalize=True`, result is normalized after the function is applied.

In [78]: day = Day()

In [79]: day.apply(Timestamp('2014-01-01 09:00'))
Out[79]: Timestamp('2014-01-02 09:00:00')

In [80]: day = Day(normalize=True)

In [81]: day.apply(Timestamp('2014-01-01 09:00'))
Out[81]: Timestamp('2014-01-02 00:00:00')

In [83]: hour = Hour()

In [84]: hour.apply(Timestamp('2014-01-01 22:00'))
Out[84]: Timestamp('2014-01-01 23:00:00')

19.5.1 Parametric offsets

Some of the offsets can be “parameterized” when created to result in different behavior. For example, the `Week` offset for generating weekly data accepts a `weekday` parameter which results in the generated dates always lying on a particular day of the week:
In [87]: d
datetime.datetime(2008, 8, 18, 9, 0)

In [88]: d + Week()
Timestamp('2008-08-25 09:00:00')

In [89]: d + Week(weekday=4)
Timestamp('2008-08-22 09:00:00')

In [90]: (d + Week(weekday=4)).weekday()
4

In [91]: d - Week()
Timestamp('2008-08-11 09:00:00')

normalize option will be effective for addition and subtraction.

In [92]: d + Week(normalize=True)
Timestamp('2008-08-25 00:00:00')

In [93]: d - Week(normalize=True)
Timestamp('2008-08-11 00:00:00')

Another example is parameterizing YearEnd with the specific ending month:

In [94]: d + YearEnd()
Timestamp('2008-12-31 09:00:00')

In [95]: d + YearEnd(month=6)
Timestamp('2009-06-30 09:00:00')

19.5.2 Custom Business Days (Experimental)

The CDay or CustomBusinessDay class provides a parametric BusinessDay class which can be used to create customized business day calendars which account for local holidays and local weekend conventions.

In [96]: from pandas.tseries.offsets import CustomBusinessDay

# As an interesting example, let’s look at Egypt where
# a Friday-Saturday weekend is observed.
In [97]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

# They also observe International Workers’ Day so let’s
# add that for a couple of years
In [98]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]

In [99]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)

In [100]: dt = datetime(2013, 4, 30)

In [101]: dt + 2 * bday_egypt
Timestamp('2013-05-05 00:00:00')

In [102]: dts = date_range(dt, periods=5, freq=bday_egypt)

In [103]: Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'.split()))

19.5. DateOffset objects
As of v0.14 holiday calendars can be used to provide the list of holidays. See the `holiday calendar` section for more information.

```python
In [104]: from pandas.tseries.holiday import USFederalHolidayCalendar

In [105]: bday_us = CustomBusinessDay(calendar=USFederalHolidayCalendar())

Friday before MLK Day
In [106]: dt = datetime(2014, 1, 17)

Tuesday after MLK Day (Monday is skipped because it’s a holiday)
In [107]: dt + bday_us
Out[107]: Timestamp('2014-01-21 00:00:00')
```

Monthly offsets that respect a certain holiday calendar can be defined in the usual way.

```python
In [108]: from pandas.tseries.offsets import CustomBusinessMonthBegin

In [109]: bmth_us = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())

Skip new years
In [110]: dt = datetime(2013, 12, 17)

In [111]: dt + bmth_us
Out[111]: Timestamp('2014-01-02 00:00:00')

Define date index with custom offset
In [112]: from pandas import DatetimeIndex

In [113]: DatetimeIndex(start='2010-01-01', end='2012-01-01', freq=bmth_us)
Out[113]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2010-01-04, ..., 2011-12-01]
Length: 24, Freq: CBMS, Timezone: None
```

**Note:** The frequency string ‘C’ is used to indicate that a CustomBusinessDay DateOffset is used, it is important to note that since CustomBusinessDay is a parameterised type, instances of CustomBusinessDay may differ and this is not detectable from the ‘C’ frequency string. The user therefore needs to ensure that the ‘C’ frequency string is used consistently within the user’s application.

**Note:** This uses the `numpy.busdaycalendar` API introduced in Numpy 1.7 and therefore requires Numpy 1.7.0 or newer.

**Warning:** There are known problems with the timezone handling in Numpy 1.7 and users should therefore use this experimental(!) feature with caution and at their own risk. To the extent that the `datetime64` and `busdaycalendar` APIs in Numpy have to change to fix the timezone issues, the behaviour of the `CustomBusinessDay` class may have to change in future versions.
## 19.5.3 Offset Aliases

A number of string aliases are given to useful common time series frequencies. We will refer to these aliases as *offset aliases* (referred to as *time rules* prior to v0.8.0).

<table>
<thead>
<tr>
<th>Alias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>business day frequency</td>
</tr>
<tr>
<td>C</td>
<td>custom business day frequency</td>
</tr>
<tr>
<td>D</td>
<td>calendar day frequency</td>
</tr>
<tr>
<td>W</td>
<td>weekly frequency</td>
</tr>
<tr>
<td>M</td>
<td>month end frequency</td>
</tr>
<tr>
<td>BM</td>
<td>business month end frequency</td>
</tr>
<tr>
<td>CBM</td>
<td>custom business month end frequency</td>
</tr>
<tr>
<td>MS</td>
<td>month start frequency</td>
</tr>
<tr>
<td>BMS</td>
<td>business month start frequency</td>
</tr>
<tr>
<td>CBMS</td>
<td>custom business month start frequency</td>
</tr>
<tr>
<td>Q</td>
<td>quarter end frequency</td>
</tr>
<tr>
<td>BQ</td>
<td>business quarter end frequency</td>
</tr>
<tr>
<td>QS</td>
<td>quarter start frequency</td>
</tr>
<tr>
<td>BQS</td>
<td>business quarter start frequency</td>
</tr>
<tr>
<td>A</td>
<td>year end frequency</td>
</tr>
<tr>
<td>BA</td>
<td>business year end frequency</td>
</tr>
<tr>
<td>AS</td>
<td>year start frequency</td>
</tr>
<tr>
<td>BAS</td>
<td>business year start frequency</td>
</tr>
<tr>
<td>H</td>
<td>hourly frequency</td>
</tr>
<tr>
<td>T</td>
<td>minutely frequency</td>
</tr>
<tr>
<td>S</td>
<td>secondly frequency</td>
</tr>
<tr>
<td>L</td>
<td>millisecond</td>
</tr>
<tr>
<td>U</td>
<td>microsecond</td>
</tr>
<tr>
<td>N</td>
<td>nanosecond</td>
</tr>
</tbody>
</table>

## 19.5.4 Combining Aliases

As we have seen previously, the alias and the offset instance are fungible in most functions:

```python
In [114]: date_range(start, periods=5, freq='B')
Out[114]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-03, ..., 2011-01-07]
Length: 5, Freq: B, Timezone: None
```

```python
In [115]: date_range(start, periods=5, freq=BDay())
Out[115]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-03, ..., 2011-01-07]
Length: 5, Freq: B, Timezone: None
```

You can combine together day and intraday offsets:

```python
In [116]: date_range(start, periods=10, freq='2h20min')
Out[116]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01 00:00:00, ..., 2011-01-01 21:00:00]
Length: 10, Freq: 140T, Timezone: None
```

### 19.5. DateOffset objects
In [117]: date_range(start, periods=10, freq='1D10U')
Out[117]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2011-01-01 00:00:00, ..., 2011-01-10 00:00:00.000090]
Length: 10, Freq: 86400000010U, Timezone: None

19.5.5 Anchored Offsets

For some frequencies you can specify an anchoring suffix:

<table>
<thead>
<tr>
<th>Alias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-SUN</td>
<td>weekly frequency (sundays). Same as ‘W’</td>
</tr>
<tr>
<td>W-MON</td>
<td>weekly frequency (mondays)</td>
</tr>
<tr>
<td>W-TUE</td>
<td>weekly frequency (tuesdays)</td>
</tr>
<tr>
<td>W-WED</td>
<td>weekly frequency (wednesdays)</td>
</tr>
<tr>
<td>W-THU</td>
<td>weekly frequency (thursdays)</td>
</tr>
<tr>
<td>W-FRI</td>
<td>weekly frequency (fridays)</td>
</tr>
<tr>
<td>W-SAT</td>
<td>weekly frequency (saturdays)</td>
</tr>
<tr>
<td>(B)Q(S)-DEC</td>
<td>quarterly frequency, year ends in December. Same as ‘Q’</td>
</tr>
<tr>
<td>(B)Q(S)-JAN</td>
<td>quarterly frequency, year ends in January</td>
</tr>
<tr>
<td>(B)Q(S)-FEB</td>
<td>quarterly frequency, year ends in February</td>
</tr>
<tr>
<td>(B)Q(S)-MAR</td>
<td>quarterly frequency, year ends in March</td>
</tr>
<tr>
<td>(B)Q(S)-APR</td>
<td>quarterly frequency, year ends in April</td>
</tr>
<tr>
<td>(B)Q(S)-MAY</td>
<td>quarterly frequency, year ends in May</td>
</tr>
<tr>
<td>(B)Q(S)-JUN</td>
<td>quarterly frequency, year ends in June</td>
</tr>
<tr>
<td>(B)Q(S)-JUL</td>
<td>quarterly frequency, year ends in July</td>
</tr>
<tr>
<td>(B)Q(S)-AUG</td>
<td>quarterly frequency, year ends in August</td>
</tr>
<tr>
<td>(B)Q(S)-SEP</td>
<td>quarterly frequency, year ends in September</td>
</tr>
<tr>
<td>(B)Q(S)-OCT</td>
<td>quarterly frequency, year ends in October</td>
</tr>
<tr>
<td>(B)Q(S)-NOV</td>
<td>quarterly frequency, year ends in November</td>
</tr>
<tr>
<td>(B)A(S)-DEC</td>
<td>annual frequency, anchored end of December. Same as ‘A’</td>
</tr>
<tr>
<td>(B)A(S)-JAN</td>
<td>annual frequency, anchored end of January</td>
</tr>
<tr>
<td>(B)A(S)-FEB</td>
<td>annual frequency, anchored end of February</td>
</tr>
<tr>
<td>(B)A(S)-MAR</td>
<td>annual frequency, anchored end of March</td>
</tr>
<tr>
<td>(B)A(S)-APR</td>
<td>annual frequency, anchored end of April</td>
</tr>
<tr>
<td>(B)A(S)-MAY</td>
<td>annual frequency, anchored end of May</td>
</tr>
<tr>
<td>(B)A(S)-JUN</td>
<td>annual frequency, anchored end of June</td>
</tr>
<tr>
<td>(B)A(S)-JUL</td>
<td>annual frequency, anchored end of July</td>
</tr>
<tr>
<td>(B)A(S)-AUG</td>
<td>annual frequency, anchored end of August</td>
</tr>
<tr>
<td>(B)A(S)-SEP</td>
<td>annual frequency, anchored end of September</td>
</tr>
<tr>
<td>(B)A(S)-OCT</td>
<td>annual frequency, anchored end of October</td>
</tr>
<tr>
<td>(B)A(S)-NOV</td>
<td>annual frequency, anchored end of November</td>
</tr>
</tbody>
</table>

These can be used as arguments to date_range, bdate_range, constructors for DatetimeIndex, as well as various other timeseries-related functions in pandas.

19.5.6 Legacy Aliases

Note that prior to v0.8.0, time rules had a slightly different look. pandas will continue to support the legacy time rules for the time being but it is strongly recommended that you switch to using the new offset aliases.
As you can see, legacy quarterly and annual frequencies are business quarter and business year ends. Please also note the legacy time rule for milliseconds `ms` versus the new offset alias for month start `MS`. This means that offset alias parsing is case sensitive.

### 19.5.7 Holidays / Holiday Calendars

Holidays and calendars provide a simple way to define holiday rules to be used with CustomBusinessDay or in other analysis that requires a predefined set of holidays. The AbstractHolidayCalendar class provides all the necessary methods to return a list of holidays and only rules need to be defined in a specific holiday calendar class. Further, `start_date` and `end_date` class attributes determine over what date range holidays are generated. These should be overwritten on the AbstractHolidayCalendar class to have the range apply to all calendar subclasses. USFederalHolidayCalendar is the only calendar that exists and primarily serves as an example for developing other calendars.

For holidays that occur on fixed dates (e.g., US Memorial Day or July 4th) an observance rule determines when that holiday is observed if it falls on a weekend or some other non-observed day. Defined observance rules are:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nearest_workday</td>
<td>move Saturday to Friday and Sunday to Monday</td>
</tr>
<tr>
<td>sunday_to_monday</td>
<td>move Sunday to following Monday</td>
</tr>
<tr>
<td>next_monday_or_tuesday</td>
<td>move Saturday to Monday and Sunday/Monday to Tuesday</td>
</tr>
<tr>
<td>previous_friday</td>
<td>move Saturday and Sunday to previous Friday</td>
</tr>
<tr>
<td>next_monday</td>
<td>move Saturday and Sunday to following Monday</td>
</tr>
</tbody>
</table>

An example of how holidays and holiday calendars are defined:
In [118]: from pandas.tseries.holiday import Holiday, USMemorialDay, 
.....: AbstractHolidayCalendar, nearest_workday, MO 
.....:

In [119]: class ExampleCalendar(AbstractHolidayCalendar):
.....:     rules = [
.....:         USMemorialDay,
.....:         Holiday('July 4th', month=7, day=4, observance=nearest_workday),
.....:         Holiday('Columbus Day', month=10, day=1, 
.....:             offset=DateOffset(weekday=MO(2))), #same as 2*Week(weekday=2)
.....:     ]
.....:

In [120]: cal = ExampleCalendar()

In [121]: cal.holidays(datetime(2012, 1, 1), datetime(2012, 12, 31))
Out[121]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-28, ..., 2012-10-08]
Length: 3, Freq: None, Timezone: None

Using this calendar, creating an index or doing offset arithmetic skips weekends and holidays (i.e., Memorial Day/July 4th).

In [122]: DatetimeIndex(start='7/1/2012', end='7/10/2012', 
.....:     freq=CDay(calendar=cal)).to_pydatetime()
.....:
Out[122]:
array([datetime.datetime(2012, 7, 2, 0, 0),
        datetime.datetime(2012, 7, 3, 0, 0),
        datetime.datetime(2012, 7, 5, 0, 0),
        datetime.datetime(2012, 7, 6, 0, 0),
        datetime.datetime(2012, 7, 9, 0, 0),
        datetime.datetime(2012, 7, 10, 0, 0)], dtype=object)

In [123]: offset = CustomBusinessDay(calendar=cal)

In [124]: datetime(2012, 5, 25) + offset
Out[124]: Timestamp('2012-05-29 00:00:00')

In [125]: datetime(2012, 7, 3) + offset
Out[125]: Timestamp('2012-07-05 00:00:00')

In [126]: datetime(2012, 7, 3) + 2 * offset
Out[126]: Timestamp('2012-07-06 00:00:00')

In [127]: datetime(2012, 7, 6) + offset
Out[127]: Timestamp('2012-07-09 00:00:00')

Ranges are defined by the start_date and end_date class attributes of AbstractHolidayCalendar. The defaults are below.

In [128]: AbstractHolidayCalendar.start_date
Out[128]: Timestamp('1970-01-01 00:00:00')

In [129]: AbstractHolidayCalendar.end_date
Out[129]: Timestamp('2030-12-31 00:00:00')

These dates can be overwritten by setting the attributes as datetime/Timestamp/string.
In [130]: AbstractHolidayCalendar.start_date = datetime(2012, 1, 1)

In [131]: AbstractHolidayCalendar.end_date = datetime(2012, 12, 31)

In [132]: cal.holidays()
Out[132]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-05-28, ..., 2012-10-08]
Length: 3, Freq: None, Timezone: None

Every calendar class is accessible by name using the `get_calendar` function which returns a holiday class instance. Any imported calendar class will automatically be available by this function. Also, `HolidayCalendarFactory` provides an easy interface to create calendars that are combinations of calendars or calendars with additional rules.

In [133]: from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory,
   .....: USLaborDay
   .....:

In [134]: cal = get_calendar('ExampleCalendar')

In [135]: cal.rules
Out[135]:
[Holiday: MemorialDay (month=5, day=24, offset=<DateOffset: kwds={'weekday': MO(+1)})],
Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at 0x9fcfaa04>),
Holiday: Columbus Day (month=10, day=1, offset=<DateOffset: kwds={'weekday': MO(+2)})]

In [136]: new_cal = HolidayCalendarFactory('NewExampleCalendar', cal, USLaborDay)

In [137]: new_cal.rules
Out[137]:
[Holiday: Labor Day (month=9, day=1, offset=<DateOffset: kwds={'weekday': MO(+1)})],
Holiday: Columbus Day (month=10, day=1, offset=<DateOffset: kwds={'weekday': MO(+2)})],
Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at 0x9fcfaa04>),
Holiday: MemorialDay (month=5, day=24, offset=<DateOffset: kwds={'weekday': MO(+1)})]

19.6 Time series-related instance methods

19.6.1 Shifting / lagging

One may want to `shift` or `lag` the values in a TimeSeries back and forward in time. The method for this is `shift`, which is available on all of the pandas objects. In `DataFrame`, `shift` will currently only shift along the `index` and in `Panel` along the `major_axis`.

In [138]: ts = ts[:5]

In [139]: ts.shift(1)
Out[139]:
2011-01-31   NaN
2011-02-28  -1.281247
2011-03-31  -0.727707
2011-04-29  -0.121306
2011-05-31  -0.097883
Freq: BM, dtype: float64

The shift method accepts an `freq` argument which can accept a `DateOffset` class or other `timedelta`-like object or also an `offset alias`:
In [140]: ts.shift(5, freq=datetools.bday)
Out[140]:
2011-02-07  -1.281247
2011-03-07  -0.727707
2011-04-07  -0.121306
2011-05-06  -0.097883
2011-06-07   0.695775
dtype: float64

In [141]: ts.shift(5, freq='BM')
Out[141]:
2011-06-30  -1.281247
2011-07-29  -0.727707
2011-08-31  -0.121306
2011-09-30  -0.097883
2011-10-31   0.695775
Freq: BM, dtype: float64

Rather than changing the alignment of the data and the index, DataFrame and TimeSeries objects also have a shift convenience method that changes all the dates in the index by a specified number of offsets:

In [142]: ts.tshift(5, freq='D')
Out[142]:
2011-02-05  -1.281247
2011-03-05  -0.727707
2011-04-05  -0.121306
2011-05-04  -0.097883
2011-06-05   0.695775
dtype: float64

Note that with tshift, the leading entry is no longer NaN because the data is not being realigned.

19.6.2 Frequency conversion

The primary function for changing frequencies is the asfreq function. For a DatetimeIndex, this is basically just a thin, but convenient wrapper around reindex which generates a date_range and calls reindex.

In [143]: dr = date_range('1/1/2010', periods=3, freq=3 * datetools.bday)
In [144]: ts = Series(randn(3), index=dr)
In [145]: ts
Out[145]:
2010-01-01  -0.659574
2010-01-06   1.494522
2010-01-11  -0.778425
Freq: 3B, dtype: float64

In [146]: ts.asfreq(BDay())
Out[146]:
2010-01-01  -0.659574
2010-01-04    NaN
2010-01-05    NaN
2010-01-06   1.494522
2010-01-07    NaN
2010-01-08    NaN
2010-01-11  -0.778425
Freq: B, dtype: float64

`asfreq` provides a further convenience so you can specify an interpolation method for any gaps that may appear after the frequency conversion

```
In [147]: ts.asfreq(BDay(), method='pad')
Out[147]:
2010-01-01 -0.659574
2010-01-04 -0.659574
2010-01-05 -0.659574
2010-01-06 1.494522
2010-01-07 1.494522
2010-01-08 1.494522
2010-01-11 -0.778425
Freq: B, dtype: float64
```

### 19.6.3 Filling forward / backward

Related to `asfreq` and `reindex` is the `fillna` function documented in the [missing data section](#).

### 19.6.4 Converting to Python datetimes

`DatetimeIndex` can be converted to an array of Python native `datetime.datetime` objects using the `to_pydatetime` method.

### 19.7 Up- and downsampling

With 0.8, pandas introduces simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications.

See some [cookbook examples](#) for some advanced strategies

```
In [148]: rng = date_range('1/1/2012', periods=100, freq='S')
In [149]: ts = Series(randint(0, 500, len(rng)), index=rng)
In [150]: ts.resample('5Min', how='sum')
Out[150]:
2012-01-01 25103
Freq: 5T, dtype: int32
```

The `resample` function is very flexible and allows you to specify many different parameters to control the frequency conversion and resampling operation.

The `how` parameter can be a function name or numpy array function that takes an array and produces aggregated values:

```
In [151]: ts.resample('5Min') # default is mean
Out[151]:
2012-01-01 251.03
Freq: 5T, dtype: float64

In [152]: ts.resample('5Min', how='ohlc')
```
Out[152]:
open  high  low  close
2012-01-01  308  460    9   205

In[153]: ts.resample('5Min', how=np.max)
Out[153]:
2012-01-01  460
Freq: 5T, dtype: int32

Any function available via dispatching can be given to the how parameter by name, including sum, mean, std, sem, max, min, median, first, last, ohlc.

For downsampling, closed can be set to ‘left’ or ‘right’ to specify which end of the interval is closed:

In[154]: ts.resample('5Min', closed='right')
Out[154]:
2011-12-31 23:55:00  308.000000
2012-01-01  00:00:00  250.454545
Freq: 5T, dtype: float64

In[155]: ts.resample('5Min', closed='left')
Out[155]:
2012-01-01  251.03
Freq: 5T, dtype: float64

For upsampling, the fill_method and limit parameters can be specified to interpolate over the gaps that are created:

In[156]: ts[:2].resample('250L')
Out[156]:
2012-01-01 00:00:00  308
2012-01-01 00:00:00.250000 NaN
2012-01-01 00:00:00.500000 NaN
2012-01-01 00:00:00.750000 NaN
2012-01-01 00:00:01  204
Freq: 250L, dtype: float64

In[157]: ts[:2].resample('250L', fill_method='pad')
Out[157]:
2012-01-01 00:00:00  308
2012-01-01 00:00:00.250000  308
2012-01-01 00:00:00.500000  308
2012-01-01 00:00:00.750000  308
2012-01-01 00:00:01  204
Freq: 250L, dtype: int32

In[158]: ts[:2].resample('250L', fill_method='pad', limit=2)
Out[158]:
2012-01-01 00:00:00  308
2012-01-01 00:00:00.250000  308
2012-01-01 00:00:00.500000  308
2012-01-01 00:00:00.750000 NaN
2012-01-01 00:00:01  204
Freq: 250L, dtype: float64

Parameters like label and loffset are used to manipulate the resulting labels. label specifies whether the result is labeled with the beginning or the end of the interval. loffset performs a time adjustment on the output labels.
The `axis` parameter can be set to 0 or 1 and allows you to resample the specified axis for a DataFrame. `kind` can be set to ‘timestamp’ or ‘period’ to convert the resulting index to/from time-stamp and time-span representations. By default `resample` retains the input representation. `convention` can be set to ‘start’ or ‘end’ when resampling period data (detail below). It specifies how low frequency periods are converted to higher frequency periods.

Note that 0.8 marks a watershed in the timeseries functionality in pandas. In previous versions, resampling had to be done using a combination of `date_range`, `groupby` with `asof`, and then calling an aggregation function on the grouped object. This was not nearly convenient or performant as the new pandas timeseries API.

19.8 Time Span Representation

Regular intervals of time are represented by `Period` objects in pandas while sequences of `Period` objects are collected in a `PeriodIndex`, which can be created with the convenience function `period_range`.

19.8.1 Period

A `Period` represents a span of time (e.g., a day, a month, a quarter, etc). It can be created using a frequency alias:

```
In [162]: Period('2012', freq='A-DEC')
Out[162]: Period('2012', 'A-DEC')
```

```
In [163]: Period('2012-1-1', freq='D')
Out[163]: Period('2012-01-01', 'D')
```

```
In [164]: Period('2012-1-1 19:00', freq='H')
Out[164]: Period('2012-01-01 19:00', 'H')
```

Unlike time stamped data, pandas does not support frequencies at multiples of DateOffsets (e.g., ‘3Min’) for periods. Adding and subtracting integers from periods shifts the period by its own frequency.

```
In [165]: p = Period('2012', freq='A-DEC')
```

```
In [166]: p + 1
Out[166]: Period('2013', 'A-DEC')
```

```
In [167]: p - 3
Out[167]: Period('2009', 'A-DEC')
```
If `Period` freq is daily or higher (D, H, T, S, L, U, N), offsets and timedelta-like can be added if the result can have same freq. Otherwise, `ValueError` will be raised.

```python
In [168]: p = Period('2014-07-01 09:00', freq='H')

In [169]: p + Hour(2)
Out[169]: Period('2014-07-01 11:00', 'H')

In [170]: p + timedelta(minutes=120)
Out[170]: Period('2014-07-01 11:00', 'H')

In [171]: p + np.timedelta64(7200, 's')
Out[171]: Period('2014-07-01 11:00', 'H')

In [1]: p + Minute(5)
Traceback
...
ValueError: Input has different freq from Period(freq=H)
```

If `Period` has other freqs, only the same offsets can be added. Otherwise, `ValueError` will be raised.

```python
In [172]: p = Period('2014-07', freq='M')

In [173]: p + MonthEnd(3)
Out[173]: Period('2014-10', 'M')

In [1]: p + MonthBegin(3)
Traceback
...
ValueError: Input has different freq from Period(freq=M)
```

Taking the difference of `Period` instances with the same frequency will return the number of frequency units between them:

```python
In [174]: Period('2012', freq='A-DEC') - Period('2002', freq='A-DEC')
Out[174]: 10L
```

### 19.8.2 `PeriodIndex` and `period_range`

Regular sequences of `Period` objects can be collected in a `PeriodIndex`, which can be constructed using the `period_range` convenience function:

```python
In [175]: prng = period_range('1/1/2011', '1/1/2012', freq='M')

In [176]: prng
Out[176]: <class 'pandas.tseries.period.PeriodIndex'>
[2011-01, ..., 2012-01]
Length: 13, Freq: M
```

The `PeriodIndex` constructor can also be used directly:

```python
In [177]: PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M')
Out[177]: <class 'pandas.tseries.period.PeriodIndex'>
[2011-01, ..., 2011-03]
Length: 3, Freq: M
```
Just like `DatetimeIndex`, a `PeriodIndex` can also be used to index pandas objects:

```python
In [178]: ps = Series(randn(len(prng)), prng)

In [179]: ps
Out[179]:
2011-01 -0.253355
2011-02 -1.426908
2011-03 1.548971
2011-04 -0.088718
2011-05 -1.771348
2011-06 -0.984789
2011-07 -1.584789
2011-08 -0.288786
2011-09 -2.029806
2011-10 -0.761200
2011-11 -1.603608
2011-12 1.756171
2012-01 0.256502
Freq: M, dtype: float64
```

`PeriodIndex` supports addition and subtraction as the same rule as `Period`.

```python
In [180]: idx = period_range('2014-07-01 09:00', periods=5, freq='H')

In [181]: idx
Out[181]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-07-01 09:00, ..., 2014-07-01 13:00]
Length: 5, Freq: H

In [182]: idx + Hour(2)
Out[182]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-07-01 11:00, ..., 2014-07-01 15:00]
Length: 5, Freq: H

In [183]: idx = period_range('2014-07', periods=5, freq='M')

In [184]: idx
Out[184]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-07, ..., 2014-11]
Length: 5, Freq: M

In [185]: idx + MonthEnd(3)
Out[185]:
<class 'pandas.tseries.period.PeriodIndex'>
[2014-10, ..., 2015-02]
Length: 5, Freq: M
```

### 19.8.3 PeriodIndex Partial String Indexing

You can pass in dates and strings to `Series` and `DataFrame` with `PeriodIndex`, as the same manner as `DatetimeIndex`. For details, refer to [DatetimeIndex Partial String Indexing](#).
In [187]: ps[datetime(2011, 12, 25):]
Out[187]:
2011-12  1.756171
2012-01  0.256502
Freq: M, dtype: float64

In [188]: ps['10/31/2011':'12/31/2011']
Out[188]:
2011-10 -0.761200
2011-11 -1.603608
2011-12  1.756171
Freq: M, dtype: float64

Passing string represents lower frequency than PeriodIndex returns partial sliced data.

In [189]: ps['2011']
Out[189]:
2011-01 -0.253355
2011-02 -1.426908
2011-03  1.548971
2011-04 -0.088718
2011-05 -1.771348
2011-06 -0.989328
2011-07 -1.584789
2011-08 -0.288786
2011-09 -2.029806
2011-10 -0.761200
2011-11 -1.603608
2011-12  1.756171
Freq: M, dtype: float64

In [190]: dfp = DataFrame(randn(600,1), columns=[‘A’],
                   index=period_range(’2013-01-01 9:00’, periods=600, freq=’T’))

In [191]: dfp
Out[191]:
          A
2013-01-01 09:00  0.020601
2013-01-01 09:01 -0.411719
2013-01-01 09:02  2.079413
2013-01-01 09:03 -1.077911
2013-01-01 09:04  1.548971
2013-01-01 09:05 -0.989328
2013-01-01 09:06 -0.089851
2013-01-01 09:07  0.711329
2013-01-01 09:08 -1.340038
2013-01-01 09:09  1.315461
2013-01-01 09:10  2.396188
2013-01-01 09:11 -0.501527
2013-01-01 09:12 -3.171938
2013-01-01 09:13  0.142019
2013-01-01 09:14  0.606998
...   ...
2013-01-01 18:53 -1.340038
2013-01-01 18:54  1.315461
2013-01-01 18:55  2.396188
2013-01-01 18:56 -0.501527
2013-01-01 18:57 -3.171938
2013-01-01 18:58  0.142019
2013-01-01 18:59  0.606998

[600 rows x 1 columns]

In [192]: dfp[’2013-01-01 10H’]
Out[192]:
As the same as `DatetimeIndex`, the endpoints will be included in the result. Below example slices data starting from 10:00 to 11:59.

```python
In [193]: dfp['2013-01-01 10H':'2013-01-01 11H']
Out[193]:
 A
2013-01-01 10:00 -0.745396
2013-01-01 10:01 0.141880
2013-01-01 10:02 -1.077754
2013-01-01 10:03 -1.301174
2013-01-01 10:04 -0.269628
2013-01-01 10:05 -0.456347
2013-01-01 10:06 0.157766
...
2013-01-01 11:53 0.168057
2013-01-01 11:54 -0.214306
2013-01-01 11:55 -0.069739
2013-01-01 11:56 -1.511809
2013-01-01 11:57 0.307021
2013-01-01 11:58 1.449776
2013-01-01 11:59 0.782537
[120 rows x 1 columns]
```

### 19.8.4 Frequency Conversion and Resampling with `PeriodIndex`

The frequency of `Periods` and `PeriodIndex` can be converted via the `asfreq` method. Let's start with the fiscal year 2011, ending in December:

```python
In [194]: p = Period('2011', freq='A-DEC')

In [195]: p
Out[195]: Period('2011', 'A-DEC')
```

We can convert it to a monthly frequency. Using the `how` parameter, we can specify whether to return the starting or ending month:

```python
In [196]: p.asfreq('A', how='end')
Out[196]: Period('2011-12', 'A')
```

```python
In [197]: p.asfreq('A', how='start')
Out[197]: Period('2011-11', 'A')
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

In [196]: p.asfreq('M', how='start')
Out[196]: Period('2011-01', 'M')

In [197]: p.asfreq('M', how='end')
Out[197]: Period('2011-12', 'M')

The shorthands ‘s’ and ‘e’ are provided for convenience:

In [198]: p.asfreq('M', 's')
Out[198]: Period('2011-01', 'M')

In [199]: p.asfreq('M', 'e')
Out[199]: Period('2011-12', 'M')

Converting to a “super-period” (e.g., annual frequency is a super-period of quarterly frequency) automatically returns the super-period that includes the input period:

In [200]: p = Period('2011-12', freq='M')

In [201]: p.asfreq('A-NOV')
Out [201]: Period('2012', 'A-NOV')

Note that since we converted to an annual frequency that ends the year in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common to economics, business, and other fields. Many organizations define quarters relative to the month in which their fiscal year start and ends. Thus, first quarter of 2011 could start in 2010 or a few months into 2011. Via anchored frequencies, pandas works all quarterly frequencies Q-JAN through Q-DEC.

Q-DEC define regular calendar quarters:

In [202]: p = Period('2012Q1', freq='Q-DEC')

In [203]: p.asfreq('D', 's')
Out [203]: Period('2012-01-01', 'D')

In [204]: p.asfreq('D', 'e')
Out [204]: Period('2012-03-31', 'D')

Q-MAR defines fiscal year end in March:

In [205]: p = Period('2011Q4', freq='Q-MAR')

In [206]: p.asfreq('D', 's')
Out [206]: Period('2011-01-01', 'D')

In [207]: p.asfreq('D', 'e')
Out [207]: Period('2011-03-31', 'D')

19.9 Converting between Representations

Timestamped data can be converted to PeriodIndex-ed data using to_period and vice-versa using to_timestamp:

In [208]: rng = date_range('1/1/2012', periods=5, freq='M')

In [209]: ts = Series(randn(len(rng)), index=rng)
In [210]: ts
Out[210]:
2012-01-31 -0.016142
2012-02-29 0.865782
2012-03-31 0.246439
2012-04-30 -1.199736
2012-05-31 0.407620
Freq: M, dtype: float64

In [211]: ps = ts.to_period()

In [212]: ps
Out[212]:
2012-01 -0.016142
2012-02 0.865782
2012-03 0.246439
2012-04 -1.199736
2012-05 0.407620
Freq: M, dtype: float64

In [213]: ps.to_timestamp()
Out[213]:
2012-01-01 -0.016142
2012-02-01 0.865782
2012-03-01 0.246439
2012-04-01 -1.199736
2012-05-01 0.407620
Freq: MS, dtype: float64

Remember that 's' and 'e' can be used to return the timestamps at the start or end of the period:

In [214]: ps.to_timestamp('D', how='s')
Out[214]:
2012-01-01 -0.016142
2012-02-01 0.865782
2012-03-01 0.246439
2012-04-01 -1.199736
2012-05-01 0.407620
Freq: MS, dtype: float64

Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

In [215]: prng = period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [216]: ts = Series(randn(len(prng)), prng)

In [217]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [218]: ts.head()
Out[218]:
1990-03-01 09:00 -2.470970
1990-06-01 09:00 -0.929915
1990-09-01 09:00  1.385889
1990-12-01 09:00 -1.830966
1991-03-01 09:00  0.328505
Freq: H, dtype: float64
19.10 Representing out-of-bounds spans

If you have data that is outside of the Timestamp bounds, see Timestamp limitations, then you can use a PeriodIndex and/or Series of Periods to do computations.

```python
In [219]: span = period_range('1215-01-01', '1381-01-01', freq='D')
```

```python
In [220]: span
Out[220]:
```
<class 'pandas.tseries.period.PeriodIndex'>
[1215-01-01, ..., 1381-01-01]
Length: 60632, Freq: D
```

To convert from a int64 based YYYYMMDD representation.

```python
In [221]: s = Series([20121231, 20141130, 99991231])
```

```python
In [222]: s
Out[222]:

0  20121231
1  20141130
2  99991231
dtype: int64
```

```python
In [223]: def conv(x):
.....:     return Period(year = x // 10000, month = x//100 % 100, day = x%100, freq='D')
.....:
```

```python
In [224]: s.apply(conv)
Out[224]:

0  2012-12-31
1  2014-11-30
2  9999-12-31
dtype: object
```

```python
In [225]: s.apply(conv)[2]
Out[225]: Period('9999-12-31', 'D')
```

These can easily be converted to a PeriodIndex

```python
In [226]: span = PeriodIndex(s.apply(conv))
```

```python
In [227]: span
Out[227]:
```
<class 'pandas.tseries.period.PeriodIndex'>
[2012-12-31, ..., 9999-12-31]
Length: 3, Freq: D
```

19.11 Time Zone Handling

Pandas provides rich support for working with timestamps in different time zones using pytz and dateutil libraries. dateutil support is new [in 0.14.1] and currently only supported for fixed offset and tzfile zones. The default library is pytz. Support for dateutil is provided for compatibility with other applications e.g. if you use dateutil in other python packages.
### 19.11.1 Working with Time Zones

By default, pandas objects are time zone unaware:

```python
In [228]: rng = date_range('3/6/2012 00:00', periods=15, freq='D')
```

```python
In [229]: rng.tz is None
Out[229]: True
```

To supply the time zone, you can use the `tz` keyword to `date_range` and other functions. Dateutil time zone strings are distinguished from `pytz` time zones by starting with `dateutil/`.

- In `pytz` you can find a list of common (and less common) time zones using `from pytz import common_timezones, all_timezones`.
- `dateutil` uses the OS time zones so there isn’t a fixed list available. For common zones, the names are the same as `pytz`.

#### # pytz

```python
In [230]: rng_pytz = date_range('3/6/2012 00:00', periods=10, freq='D',
 tz='Europe/London')
```

```python
In [231]: rng_pytz.tz
Out[231]: <DstTzInfo 'Europe/London' LMT-1 day, 23:59:00 STD>
```

### # dateutil

```python
In [232]: rng_dateutil = date_range('3/6/2012 00:00', periods=10, freq='D',
 tz='dateutil/Europe/London')
```

```python
In [233]: rng_dateutil.tz
Out[233]: tzfile('/usr/share/zoneinfo/Europe/London')
```

### # dateutil - utc special case

```python
In [234]: rng_utc = date_range('3/6/2012 00:00', periods=10, freq='D',
 tz=dateutil.tz.tzutc())
```

```python
In [235]: rng_utc.tz
Out[235]: tzutc()
```

Note that the UTC timezone is a special case in `dateutil` and should be constructed explicitly as an instance of `dateutil.tz.tzutc`. You can also construct other timezones explicitly first, which gives you more control over which time zone is used:

#### # pytz

```python
In [236]: tz_pytz = pytz.timezone('Europe/London')
```

```python
In [237]: rng_pytz = date_range('3/6/2012 00:00', periods=10, freq='D',
 tz=tz_pytz)
```

```python
In [238]: rng_pytz.tz == tz_pytz
Out[238]: True
```

#### # dateutil

```python
In [239]: tz_dateutil = dateutil.tz.gettz('Europe/London')
```

```python
In [240]: rng_dateutil = date_range('3/6/2012 00:00', periods=10, freq='D',
 tz=tz_dateutil)
```
Timestamps, like Python’s `datetime.datetime` object can be either time zone naive or time zone aware. Naive time series and DatetimeIndex objects can be localized using `tz_localize`:

```python
In [242]: ts = Series(randn(len(rng)), rng)
In [243]: ts_utc = ts.tz_localize('UTC')
```

```python
In [244]: ts_utc
Out[244]:
2012-03-06 00:00:00+00:00 0.758606
2012-03-07 00:00:00+00:00 2.190827
2012-03-08 00:00:00+00:00 0.706087
2012-03-09 00:00:00+00:00 1.798831
2012-03-10 00:00:00+00:00 1.228481
2012-03-11 00:00:00+00:00 -0.179494
2012-03-12 00:00:00+00:00 0.634073
2012-03-13 00:00:00+00:00 0.262123
2012-03-14 00:00:00+00:00 1.928233
2012-03-15 00:00:00+00:00 0.322573
2012-03-16 00:00:00+00:00 -0.711113
2012-03-17 00:00:00+00:00 1.444272
2012-03-18 00:00:00+00:00 -0.352268
2012-03-19 00:00:00+00:00 0.213008
2012-03-20 00:00:00+00:00 -0.619340
Freq: D, dtype: float64
```

Again, you can explicitly construct the timezone object first. You can use the `tz_convert` method to convert pandas objects to convert tz-aware data to another time zone:

```python
In [245]: ts_utc.tz_convert('US/Eastern')
```

```python
Out[245]:
2012-03-05 19:00:00-05:00 0.758606
2012-03-06 19:00:00-05:00 2.190827
2012-03-07 19:00:00-05:00 0.706087
2012-03-08 19:00:00-05:00 1.798831
2012-03-09 19:00:00-05:00 1.228481
2012-03-10 19:00:00-05:00 -0.179494
2012-03-11 20:00:00-04:00 0.634073
2012-03-12 20:00:00-04:00 0.262123
2012-03-13 20:00:00-04:00 1.928233
2012-03-14 20:00:00-04:00 0.322573
2012-03-15 20:00:00-04:00 -0.711113
2012-03-16 20:00:00-04:00 1.444272
2012-03-17 20:00:00-04:00 -0.352268
2012-03-18 20:00:00-04:00 0.213008
2012-03-19 20:00:00-04:00 -0.619340
Freq: D, dtypes: float64
```

**Warning:** Be wary of conversions between libraries. For some zones `pytz` and `dateutil` have different definitions of the zone. This is more of a problem for unusual timezones than for “standard” zones like `US/Eastern`. 

---

Chapter 19. Time Series / Date functionality
Warning: Be aware that a timezone definition across versions of timezone libraries may not be considered equal. This may cause problems when working with stored data that is localized using one version and operated on with a different version. See here for how to handle such a situation.

Warning: It is incorrect to pass a timezone directly into the `datetime.datetime` constructor (e.g., `datetime.datetime(2011, 1, 1, tz=timezone('US/Eastern'))`). Instead, the datetime needs to be localized using the the localize method on the timezone.

Under the hood, all timestamps are stored in UTC. Scalar values from a DatetimeIndex with a time zone will have their fields (day, hour, minute) localized to the time zone. However, timestamps with the same UTC value are still considered to be equal even if they are in different time zones:

```python
In [246]: rng_eastern = rng_utc.tz_convert('US/Eastern')
In [247]: rng_berlin = rng_utc.tz_convert('Europe/Berlin')
In [248]: rng_eastern[5]
Out[248]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', offset='D')
In [249]: rng_berlin[5]
Out[249]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', offset='D')
Out[250]: True
```

Like Series, DataFrame, and DatetimeIndex, Timestamps can be converted to other time zones using `tz_convert`:

```python
In [251]: rng_eastern[5]
Out[251]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', offset='D')
In [252]: rng_berlin[5]
Out[252]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', offset='D')
In [253]: rng_eastern[5].tz_convert('Europe/Berlin')
Out[253]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin')
```

Localization of Timestamps functions just like DatetimeIndex and TimeSeries:

```python
In [254]: rng[5]
Out[254]: Timestamp('2012-03-11 00:00:00', offset='D')
In [255]: rng[5].tz_localize('Asia/Shanghai')
Out[255]: Timestamp('2012-03-11 00:00:00+0800', tz='Asia/Shanghai')
```

Operations between TimeSeries in different time zones will yield UTC TimeSeries, aligning the data on the UTC timestamps:

```python
In [256]: eastern = ts_utc.tz_convert('US/Eastern')
In [257]: berlin = ts_utc.tz_convert('Europe/Berlin')
In [258]: result = eastern + berlin
In [259]: result
Out[259]:
2012-03-06 00:00:00+00:00 1.517212
2012-03-07 00:00:00+00:00 4.381654
2012-03-08 00:00:00+00:00 1.412174
```

19.11. Time Zone Handling
2012-03-09 00:00:00+00:00  3.597662
2012-03-10 00:00:00+00:00  2.456962
2012-03-11 00:00:00+00:00 -0.358988
2012-03-12 00:00:00+00:00  1.268146
2012-03-13 00:00:00+00:00  0.524245
2012-03-14 00:00:00+00:00  3.856466
2012-03-15 00:00:00+00:00  0.645146
2012-03-16 00:00:00+00:00 -1.422226
2012-03-17 00:00:00+00:00  2.888544
2012-03-18 00:00:00+00:00 -0.704537
2012-03-19 00:00:00+00:00  0.426017
2012-03-20 00:00:00+00:00 -1.238679
Freq: D, dtype: float64

In [260]: result.index
Out[260]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2012-03-06, ..., 2012-03-20]
Length: 15, Freq: D, Timezone: UTC

To remove timezone from tz-aware DatetimeIndex, use tz_localize(None) or tz_convert(None).
z_localize(None) will remove timezone holding local time representations. tz_convert(None) will remove timezone after converting to UTC time.

In [261]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
In [262]: didx
Out[262]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-08-01 09:00:00-04:00, ..., 2014-08-01 18:00:00-04:00]
Length: 10, Freq: H, Timezone: US/Eastern

In [263]: didx.tz_localize(None)
Out[263]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-08-01 09:00:00, ..., 2014-08-01 18:00:00]
Length: 10, Freq: H, Timezone: None

In [264]: didx.tz_convert(None)
Out[264]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-08-01 13:00:00, ..., 2014-08-01 22:00:00]
Length: 10, Freq: H, Timezone: None

# tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
In [265]: didx.tz_convert('UTC').tz_localize(None)
Out[265]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-08-01 13:00:00, ..., 2014-08-01 22:00:00]
Length: 10, Freq: H, Timezone: None

19.11.2 Ambiguous Times when Localizing

In some cases, localize cannot determine the DST and non-DST hours when there are duplicates. This often happens when reading files or database records that simply duplicate the hours. Passing ambiguous='infer' (infer_dst argument in prior releases) into tz_localize will attempt to determine the right offset. Below the top example will fail as it contains ambiguous times and the bottom will infer the right offset.
In [266]: rng_hourly = DatetimeIndex(['11/06/2011 00:00', '11/06/2011 01:00',
.....:  '11/06/2011 01:00', '11/06/2011 02:00',
.....:  '11/06/2011 03:00'])

# This will fail as there are ambiguous times
In [267]: rng_hourly.tz_localize('US/Eastern')
---------------------------------------------------------------------------
AmbiguousTimeError: Cannot infer dst time from Timestamp('2011-11-06 01:00:00'), try using the 'ambiguous' argument

In [268]: rng_hourly_eastern = rng_hourly.tz_localize('US/Eastern', ambiguous='infer')

In [269]: rng_hourly_eastern.tolist()
Out[269]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In addition to 'infer', there are several other arguments supported. Passing an array-like of bools or 0s/1s where True represents a DST hour and False a non-DST hour, allows for distinguishing more than one DST transition (e.g., if you have multiple records in a database each with their own DST transition). Or passing ‘NaT’ will fill in transition times with not-a-time values. These methods are available in the DatetimeIndex constructor as well as tz_localize.

In [270]: rng_hourly_dst = np.array([1, 1, 0, 0, 0])

In [271]: rng_hourly.tz_localize('US/Eastern', ambiguous=rng_hourly_dst).tolist()
Out[271]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In [272]: rng_hourly.tz_localize('US/Eastern', ambiguous='NaT').tolist()
Out[272]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),

19.11. Time Zone Handling
NaT,
NaT,
Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern'))

In [273]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')

In [274]: didx
Out[274]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-08-01 09:00:00-04:00, ..., 2014-08-01 18:00:00-04:00]
Length: 10, Freq: H, Timezone: US/Eastern

In [275]: didx.tz_localize(None)
Out[275]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-08-01 09:00:00, ..., 2014-08-01 18:00:00]
Length: 10, Freq: H, Timezone: None

In [276]: didx.tz_convert(None)
Out[276]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-08-01 13:00:00, ..., 2014-08-01 22:00:00]
Length: 10, Freq: H, Timezone: None

# tz_convert(None) is identical with tz_convert('UTC').tz_localize(None)
In [277]: didx.tz_convert('UTC').tz_localize(None)
Out[277]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-08-01 13:00:00, ..., 2014-08-01 22:00:00]
Length: 10, Freq: H, Timezone: None
Chapter Twenty

Time Deltas

Note: Starting in v0.15.0, we introduce a new scalar type Timedelta, which is a subclass of datetime.timedelta, and behaves in a similar manner, but allows compatibility with np.timedelta64 types as well as a host of custom representation, parsing, and attributes.

Timedeltas are differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. They can be both positive and negative.

20.1 Parsing

You can construct a Timedelta scalar thru various arguments:

# strings
In [1]: Timedelta('1 days')
Out[1]: Timedelta('1 days 00:00:00')

In [2]: Timedelta('1 days 00:00:00')
Out[2]: Timedelta('1 days 00:00:00')

In [3]: Timedelta('1 days 2 hours')
Out[3]: Timedelta('1 days 02:00:00')

In [4]: Timedelta('-1 days 2 min 3us')
Out[4]: Timedelta('-2 days +23:57:59.999997')

# like datetime.timedelta
# note: these MUST be specified as keyword arguments
In [5]: Timedelta(days=1,seconds=1)
Out[5]: Timedelta('1 days 00:00:01')

# integers with a unit
In [6]: Timedelta(1,unit='d')
Out[6]: Timedelta('1 days 00:00:00')

# from a timedelta/np.timedelta64
In [7]: Timedelta(timedelta(days=1,seconds=1))
Out[7]: Timedelta('1 days 00:00:01')

In [8]: Timedelta(np.timedelta64(1,'ms'))
Out[8]: Timedelta('0 days 00:00:00.001000')
# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [9]: Timedelta('-1us')
Out[9]: Timedelta('-1 days +23:59:59.999999')

# a NaT
In [10]: Timedelta('nan')
Out[10]: NaT

In [11]: Timedelta('nat')
Out[11]: NaT

DateOffsets (Day, Hour, Minute, Second, Milli, Micro, Nano) can also be used in construction.

In [12]: Timedelta(Second(2))
Out[12]: Timedelta('0 days 00:00:02')

Further, operations among the scalars yield another scalar Timedelta

In [13]: Timedelta(Day(2)) + Timedelta(Second(2)) + Timedelta('00:00:00.000123')
Out[13]: Timedelta('2 days 00:00:02.000123')

20.1.1 to_timedelta

Warning: Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input.
The arguments to pd.to_timedelta are now (arg,unit='ns',box=True), previously were (arg,box=True,unit='ns') as these are more logical.

Using the top-level pd.to_timedelta, you can convert a scalar, array, list, or Series from a recognized timedelta format/value into a Timedelta type. It will construct Series if the input is a Series, a scalar if the input is scalar-like, otherwise will output a TimedeltaIndex

In [14]: to_timedelta('1 days 06:05:01.00003')
Out[14]: Timedelta('1 days 06:05:01.00003')

In [15]: to_timedelta('15.5us')
Out[15]: Timedelta('0 days 00:00:00.000015')

In [16]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
Out[16]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['1 days 06:05:01.00003', '15.5us', 'nan']
Length: 3, Freq: None

In [17]: to_timedelta(np.arange(5),unit='s')
Out[17]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['00:00:00', '00:00:04']
Length: 5, Freq: None

In [18]: to_timedelta(np.arange(5),unit='d')
Out[18]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
20.2 Operations

You can operate on Series/DataFrames and construct timedelta64[ns] Series thru subtraction operations on datetime64[ns] Series, or Timestamps.

In [19]: s = Series(date_range('2012-1-1', periods=3, freq='D'))

In [20]: td = Series([Timedelta(days=i) for i in range(3)])

In [21]: df = DataFrame(dict(A = s, B = td))

In [22]: df
Out[22]:
   A       B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [23]: df['C'] = df['A'] + df['B']

In [24]: df
Out[24]:
   A       B       C
0 2012-01-01 0 days 2012-01-01
1 2012-01-02 1 days 2012-01-03
2 2012-01-03 2 days 2012-01-05

In [25]: df.dtypes
Out[25]:
A       datetime64[ns]
B      timedelta64[ns]
C       datetime64[ns]
dtype: object

In [26]: s - s.max()
Out[26]:
0   -2 days
1   -1 days
2    0 days
dtype: timedelta64[ns]

In [27]: s - datetime(2011,1,1,3,5)
Out[27]:
0  364 days 20:55:00
1  365 days 20:55:00
2  366 days 20:55:00
dtype: timedelta64[ns]

In [28]: s + timedelta(minutes=5)
Out[28]:
0  2012-01-01 00:05:00
1  2012-01-02 00:05:00
2  2012-01-03 00:05:00
In [29]: s + Minute(5)
Out[29]:
0  2012-01-01 00:05:00
1  2012-01-02 00:05:00
2  2012-01-03 00:05:00
dtype: datetime64[ns]

In [30]: s + Minute(5) + Milli(5)
Out[30]:
0  2012-01-01 00:05:00.005000
1  2012-01-02 00:05:00.005000
2  2012-01-03 00:05:00.005000
dtype: datetime64[ns]

Operations with scalars from a timedelta64[ns] series

In [31]: y = s - s[0]

In [32]: y
Out[32]:
0   0 days
1   1 days
2   2 days
dtype: timedelta64[ns]

Series of timedeltas with NaT values are supported

In [33]: y = s - s.shift()

In [34]: y
Out[34]:
0  NaT
1   1 days
2   1 days
dtype: timedelta64[ns]

Elements can be set to NaT using np.nan analogously to datetimes

In [35]: y[1] = np.nan

In [36]: y
Out[36]:
0  NaT
1  NaT
2   1 days
dtype: timedelta64[ns]

Operands can also appear in a reversed order (a singular object operated with a Series)

In [37]: s.max() - s
Out[37]:
0   2 days
1   1 days
2   0 days
dtype: timedelta64[ns]

In [38]: datetime(2011,1,1,3,5) - s
Out[38]:
0  -365 days +03:05:00  
1  -366 days +03:05:00  
2  -367 days +03:05:00  
dtype: timedelta64[ns]

In [39]: timedelta(minutes=5) + s
Out[39]:
0  2012-01-01 00:05:00
1  2012-01-02 00:05:00
2  2012-01-03 00:05:00

dtype: datetime64[ns]

min, max and the corresponding idxmin, idxmax operations are supported on frames

In [40]: A = s - Timestamp('20120101') - Timedelta('00:05:05')
In [41]: B = s - Series(date_range('2012-1-2', periods=3, freq='D'))
In [42]: df = DataFrame(dict(A=A, B=B))

In [43]: df
Out[43]:
   A         B
0  0 days  +23:54:55  -1 days
1  0 days  +23:54:55  -1 days
2  0 days  +23:54:55  -1 days

In [44]: df.min()
Out[44]:
A  -1 days +23:54:55
B  -1 days +00:00:00

dtype: timedelta64[ns]

In [45]: df.min(axis=1)
Out[45]:
0  -1 days
1  -1 days
2  -1 days

dtype: timedelta64[ns]

In [46]: df.idxmin()
Out[46]:
A   0
B   0

dtype: int64

In [47]: df.idxmax()
Out[47]:
A   2
B   0

dtype: int64

min, max, idxmin, idxmax operations are supported on Series as well. A scalar result will be a Timedelta.

In [48]: df.min().max()
Out[48]: Timedelta('-1 days +23:54:55')

In [49]: df.min(axis=1).min()
You can fillna on timedeltas. Integers will be interpreted as seconds. You can pass a timedelta to get a particular value.

\begin{verbatim}
In [52]: y.fillna(0)
Out[52]:
0  0 days
1  0 days
2  1 days
dtype: timedelta64[ns]

In [53]: y.fillna(10)
Out[53]:
0  0 days  00:00:10
1  0 days  00:00:10
2  1 days  00:00:00
dtype: timedelta64[ns]

In [54]: y.fillna(Timedelta('-1 days, 00:00:05'))
Out[54]:
0 -1 days +00:00:05
1 -1 days +00:00:05
2  1 days  00:00:00
dtype: timedelta64[ns]
\end{verbatim}

You can also negate, multiply and use \texttt{abs} on Timedeltas

\begin{verbatim}
In [55]: td1 = Timedelta('-1 days 2 hours 3 seconds')

In [56]: td1
Out[56]: Timedelta('-2 days +21:59:57')

In [57]: -1 * td1
Out[57]: Timedelta('1 days 02:00:03')

In [58]: - td1
Out[58]: Timedelta('1 days 02:00:03')

In [59]: abs(td1)
Out[59]: Timedelta('1 days 02:00:03')
\end{verbatim}

\section*{20.3 Reductions}

Numeric reduction operation for \texttt{timedelta64[ns]} will return Timedelta objects. As usual NaT are skipped during evaluation.

\begin{verbatim}
In [60]: y2 = Series(to_timedelta(['-1 days +00:00:05','nat', '-1 days +00:00:05','1 days']))

In [61]: y2
Out[61]:
0 -1 days +00:00:05
\end{verbatim}
In [62]: y2.mean()
Out[62]: Timedelta('-1 days +16:00:03.333333')

In [63]: y2.median()
Out[63]: Timedelta('-1 days +00:00:05')

In [64]: y2.quantile(.1)
Out[64]: Timedelta('-1 days +00:00:05')

In [65]: y2.sum()
Out[65]: Timedelta('-1 days +00:00:10')

### 20.4 Frequency Conversion

New in version 0.13. Timedelta Series, TimedeltaIndex, and Timedelta scalars can be converted to other ‘frequencies’ by dividing by another timedelta, or by astyping to a specific timedelta type. These operations yield Series and propagate NaT -> nan. Note that division by the numpy scalar is true division, while astyping is equivalent of floor division.

In [66]: td = Series(date_range('20130101', periods=4)) - Series(date_range('20121201', periods=4))

In [67]: td[2] += timedelta(minutes=5, seconds=3)

In [68]: td[3] = np.nan

In [69]: td
Out[69]:
0  31 days 00:00:00
1  31 days 00:00:00
2  31 days 00:05:03
3   NaT
dtype: timedelta64[ns]

# to days
In [70]: td / np.timedelta64(1, 'D')
Out[70]:
0  31.000000
1  31.000000
2  31.003507
3   NaN
dtype: float64

In [71]: td.astype('timedelta64[D]')
Out[71]:
0  31
1  31
2  31
3   NaN
dtype: float64
To seconds

In [72]: td / np.timedelta64(1,'s')
Out[72]:
0   2678400
1   2678400
2   2678703
3   NaN
dtype: float64

In [73]: td.astype('timedelta64[s]')
Out[73]:
0   2678400
1   2678400
2   2678703
3   NaN
dtype: float64

To months (these are constant months)

In [74]: td / np.timedelta64(1,'M')
Out[74]:
0   1.018501
1   1.018501
2   1.018617
3   NaN
dtype: float64

Dividing or multiplying a timedelta64[ns] Series by an integer or integer Series yields another timedelta64[ns] dtypes Series.

In [75]: td * -1
Out[75]:
0  -31 days +00:00:00
1  -31 days +00:00:00
2  -32 days +23:54:57
3      NaT
dtype: timedelta64[ns]

In [76]: td * Series([1,2,3,4])
Out[76]:
0   31 days 00:00:00
1   62 days 00:00:00
2   93 days 00:15:09
3      NaT
dtype: timedelta64[ns]

20.5 Attributes

You can access various components of the Timedelta or TimedeltaIndex directly using the attributes days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds. These operations can be directly accessed via the .dt property of the Series as well. These return an integer representing that interval (which is signed according to whether the Timedelta is signed).

For a Series

In [77]: td.dt.days
Out[77]:

pandas: powerful Python data analysis toolkit, Release 0.15.1

0  31
1  31
2  31
3  NaN
dtype: float64

In [78]: td.dt.seconds
Out[78]:
0  0
1  0
2  3
3  NaN
dtype: float64

You can access the component field for a scalar Timedelta directly.

In [79]: tds = Timedelta('31 days 5 min 3 sec')

In [80]: tds.days
Out[80]: 31L

In [81]: tds.seconds
Out[81]: 3L

In [82]: (-tds).seconds
Out[82]: 57L

You can use the .components property to access a reduced form of the timedelta. This returns a DataFrame indexed similarly to the Series

In [83]: td.dt.components
Out[83]:
   days  hours  minutes  seconds  milliseconds  microseconds  nanoseconds
0     31      0       0        0            0          0            0
1     31      0       0        0            0          0            0
2     31      0       5        3            0          0            0
3   NaN   NaN   NaN   NaN            NaN        NaN        NaN

Warning: Timedelta scalars (and TimedeltaIndex) component fields are not the same as the component fields on a datetime.timedelta object. For example, .seconds on a datetime.timedelta object returns the total number of seconds combined between hours, minutes and seconds. In contrast, the pandas Timedelta breaks out hours, minutes, microseconds and nanoseconds separately.

# Timedelta accessor
In [84]: tds = Timedelta('31 days 5 min 3 sec')

In [85]: tds.minutes
Out[85]: 5L

In [86]: tds.seconds
Out[86]: 3L

# datetime.timedelta accessor
# this is 5 minutes * 60 + 3 seconds
In [87]: tds.to_pytimedelta().seconds
Out[87]: 303

20.5. Attributes
20.6 TimedeltaIndex

New in version 0.15.0. To generate an index with time delta, you can use either the TimedeltaIndex or the timedelta_range constructor.

Using TimedeltaIndex you can pass string-like, Timedelta, timedelta, or np.timedelta64 objects. Passing np.nan/pd.NaT/nat will represent missing values.

In [88]: TimedeltaIndex(['1 days','1 days, 00:00:05',
    .....:
    np.timedelta64(2,'D'),timedelta(days=2,seconds=2)])
Out[88]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['1 days 00:00:00', ..., '2 days 00:00:02']
Length: 4, Freq: None

Similarly to date_range, you can construct regular ranges of a TimedeltaIndex:

In [89]: timedelta_range(start='1 days',periods=5,freq='D')
Out[89]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['1 days', ..., '5 days']
Length: 5, Freq: <Day>

In [90]: timedelta_range(start='1 days',end='2 days',freq='30T')
Out[90]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['1 days 00:00:00', ..., '2 days 00:00:00']
Length: 49, Freq: <30 * Minutes>

20.6.1 Using the TimedeltaIndex

Similarly to other of the datetime-like indices, DatetimeIndex and PeriodIndex, you can use TimedeltaIndex as the index of pandas objects.

In [91]: s = Series(np.arange(100),
    .....:
    index=timedelta_range('1 days',periods=100,freq='h'))
    .....:

In [92]: s
Out[92]:
1 days 00:00:00  0
1 days 01:00:00  1
1 days 02:00:00  2
1 days 03:00:00  3
1 days 04:00:00  4
...
4 days 22:00:00  94
4 days 23:00:00  95
5 days 00:00:00  96
5 days 01:00:00  97
5 days 02:00:00  98
5 days 03:00:00  99
Freq: <Hour>, Length: 100

Selections work similarly, with coercion on string-likes and slices:
In [93]: s['1 day':'2 day']
Out[93]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
...
2 days 18:00:00 42
2 days 19:00:00 43
2 days 20:00:00 44
2 days 21:00:00 45
2 days 22:00:00 46
2 days 23:00:00 47
Length: 48

In [94]: s['1 day 01:00:00']
Out[94]: 1

In [95]: s[Timedelta('1 day 1h')]
Out[95]: 1

Furthermore you can use partial string selection and the range will be inferred:

In [96]: s['1 day':'1 day 5 hours']
Out[96]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
dtype: int32

20.6.2 Operations

Finally, the combination of TimedeltaIndex with DatetimeIndex allow certain combination operations that are NaT preserving:

In [97]: tdi = TimedeltaIndex(['1 days',pd.NaT,'2 days'])

In [98]: tdi.tolist()
Out[98]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]

In [99]: dti = date_range('20130101',periods=3)

In [100]: dti.tolist()
Out[100]: [Timestamp('2013-01-01 00:00:00', offset='D'),
             Timestamp('2013-01-02 00:00:00', offset='D'),
             Timestamp('2013-01-03 00:00:00', offset='D')]

In [101]: (dti + tdi).tolist()
Out[101]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]

In [102]: (dti - tdi).tolist()
Out[102]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]

20.6. TimedeltaIndex 539
20.6.3 Conversions

Similarly to frequency conversion on a Series above, you can convert these indices to yield another Index.

In [103]: tdi / np.timedelta64(1, 's')
Out[103]: Float64Index([86400.0, nan, 172800.0], dtype='float64')

In [104]: tdi.astype('timedelta64[s]')
Out[104]: Float64Index([86400.0, nan, 172800.0], dtype='float64')

Scalars type ops work as well. These can potentially return a different type of index.

# adding or timedelta and date -> datelike
In [105]: tdi + Timestamp('20130101')
Out[105]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-02, ..., 2013-01-03]
Length: 3, Freq: None, Timezone: None

# subtraction of a date and a timedelta -> datelike
# note that trying to subtract a date from a Timedelta will raise an exception
In [106]: (Timestamp('2012-12-31 00:00:00') - tdi).tolist()
Out[106]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2012-12-30 00:00:00')]

# timedelta + timedelta -> timedelta
In [107]: tdi + Timedelta('10 days')
Out[107]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['11 days', ..., '12 days']
Length: 3, Freq: None

# division can result in a Timedelta if the divisor is an integer
In [108]: tdi / 2
Out[108]:
<class 'pandas.tseries.tdi.TimedeltaIndex'>
['0 days 12:00:00', ..., '1 days 00:00:00']
Length: 3, Freq: None

# or a Float64Index if the divisor is a Timedelta
In [109]: tdi / tdi[0]
Out[109]: Float64Index([1.0, nan, 2.0], dtype='float64')

20.7 Resampling

Similar to timeseries resampling, we can resample with a TimedeltaIndex.

In [110]: s.resample('D')
Out[110]:
1 days    11.5
2 days    35.5
3 days    59.5
4 days    83.5
5 days    97.5
dtype: float64
CHAPTER TWENTYONE

CATEGORICAL DATA

New in version 0.15.

Note: While there was in pandas.Categorical in earlier versions, the ability to use categorical data in Series and DataFrame is new.

This is an introduction to pandas categorical data type, including a short comparison with R’s factor.

Categoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.

In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, ...) are not possible.

All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical order of the values. Internally, the data structure consists of a categories array and an integer array of codes which point to the real value in the categories array.

The categorical data type is useful in the following cases:

- A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see here.

- The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order.

- As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).

See also the API docs on categoricals.

21.1 Object Creation

Categorical Series or columns in a DataFrame can be created in several ways:

By specifying dtype="category" when constructing a Series:

```
In [1]: s = Series(["a","b","c","a"], dtype="category")
In [2]: s
Out[2]:
0 a
```
By converting an existing *Series* or column to a *category* dtype:

```
In [3]: df = DataFrame({"A":["a","b","c","a"]})
In [4]: df["B"] = df["A"].astype('category')
```

```
In [5]: df
Out[5]:
 A B
0 a a
1 b b
2 c c
3 a a
```

By using some special functions:

```
In [6]: df = DataFrame({"value": np.random.randint(0, 100, 20)})
In [7]: labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)]
In [8]: df["group"] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)
In [9]: df.head(10)
Out[9]:
 value group
0 65 60 - 69
1 49 40 - 49
2 56 50 - 59
3 43 40 - 49
4 43 40 - 49
5 91 90 - 99
6 32 30 - 39
7 87 80 - 89
8 36 30 - 39
9 8 0 - 9
```

See documentation for `cut()`.

By passing a `pandas.Categorical` object to a *Series* or assigning it to a *DataFrame*. This is the only possibility to specify differently ordered categories (or no order at all) at creation time and the only reason to use `pandas.Categorical` directly:

```
In [10]: raw_cat = Categorical(["a","b","c","a"], categories=["b","c","d"], ordered=False)
 :
 :
In [11]: s = Series(raw_cat)
```

```
In [12]: s
Out[12]:
0 NaN
1 b
2 c
3 NaN
```
Categorical data has a specific category *dtype*:

```
In [13]: df = DataFrame({"A": ["a","b","c","a"]})

In [14]: df["B"] = raw_cat

In [15]: df
Out[15]:
 A B
0 a NaN
1 b b
2 c c
3 a NaN
```

Note: In contrast to R’s *factor* function, categorical data is not converting input values to strings and categories will end up the same data type as the original values.

Note: In contrast to R’s *factor* function, there is currently no way to assign/change labels at creation time. Use *categories* to change the categories after creation time.

To get back to the original Series or *numpy* array, use `Series.astype(original_dtype)` or `np.asarray(categorical)`:

```
In [17]: s = Series(["a","b","c","a"])

In [18]: s
Out[18]:
 0 a
 1 b
 2 c
 3 a
dtype: object

In [19]: s2 = s.astype('category')

In [20]: s2
Out[20]:
 0 a
 1 b
 2 c
 3 a
dtype: category
Categories (3, object): [a < b < c]

In [21]: s3 = s2.astype('string')

In [22]: s3
```
Out[22]:
0  a
1  b
2  c
3  a
dtype: object

In[23]: np.asarray(s2)
Out[23]: array(['a', 'b', 'c', 'a'], dtype=object)

If you have already codes and categories, you can use the from_codes() constructor to save the factorize step during normal constructor mode:

In[24]: splitter = np.random.choice([0,1], 5, p=[0.5,0.5])
In[25]: s = Series(Categorical.from_codes(splitter, categories=['train', 'test']))

21.2 Description

Using .describe() on categorical data will produce similar output to a Series or DataFrame of type string.

In[26]: cat = Categorical(['a','c','c',np.nan], categories=['b','a','c',np.nan])
In[27]: df = DataFrame({'cat':cat, 's':['a','c','c',np.nan]})
In[28]: df.describe()
Out[28]:
   cat  s
count 3 3
unique 3 2
top  c  c
freq  2  2

In[29]: df['cat'].describe()
Out[29]:
   count 3
   unique 3
top  c
   freq  2
Name: cat, dtype: object

21.3 Working with categories

Categorical data has a categories and an ordered property, which list their possible values and whether the ordering matters or not. These properties are exposed as s.cat.categories and s.cat.ordered. If you don’t manually specify categories and ordering, they are inferred from the passed in values.

In[30]: s = Series(['a','b','c','a'], dtype='category')
In[31]: s.cat.categories
Out[31]: Index(['a', 'b', 'c'], dtype='object')
In[32]: s.cat.ordered
Out[32]: True
It’s also possible to pass in the categories in a specific order:

```
In [33]: s = Series(Categorical(["a","b","c","a"], categories=["c","b","a"]))

In [34]: s.cat.categories
Out[34]: Index(['c', 'b', 'a'], dtype='object')

In [35]: s.cat.ordered
Out[35]: True
```

**Note:** New categorical data is automatically ordered if the passed in values are sortable or a `categories` argument is supplied. This is a difference to R’s `factors`, which are unordered unless explicitly told to be ordered (`ordered=TRUE`). You can of course overwrite that by passing in an explicit `ordered=False`.

### 21.3.1 Renaming categories

Renaming categories is done by assigning new values to the `Series.cat.categories` property or by using the `Categorical.rename_categories()` method:

```
In [36]: s = Series(["a","b","c","a"], dtype="category")

In [37]: s
Out[37]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a < b < c]

In [38]: s.cat.categories = ["Group %s" % g for g in s.cat.categories]

In [39]: s
Out[39]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): [Group a < Group b < Group c]

In [40]: s.cat.rename_categories([1,2,3])
Out[40]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [1 < 2 < 3]
```

**Note:** In contrast to R’s `factor`, categorical data can have categories of other types than string.

**Note:** Be aware that assigning new categories is an inplace operations, while most other operation under `Series.cat` per default return a new Series of dtype `category`.
Categories must be unique or a `ValueError` is raised:

```python
In [41]: try:
 : s.cat.categories = [1,1,1]
 : except ValueError as e:
 : print("ValueError: " + str(e))
 :
ValueError: Categorical categories must be unique
```

### 21.3.2 Appending new categories

Appending categories can be done by using the `Categorical.add_categories()` method:

```python
In [42]: s = s.cat.add_categories([4])
In [43]: s.cat.categories
Out[43]: Index(['Group a', 'Group b', 'Group c', 4], dtype='object')
```

```python
In [44]: s
Out[44]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (4, object): [Group a < Group b < Group c < 4]
```

### 21.3.3 Removing categories

Removing categories can be done by using the `Categorical.remove_categories()` method. Values which are removed are replaced by `np.nan`:

```python
In [45]: s = s.cat.remove_categories([4])
In [46]: s
Out[46]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): [Group a < Group b < Group c]
```

### 21.3.4 Renaming unused categories

Removing unused categories can also be done:

```python
In [47]: s = Series(Categorical(['a','b','a'], categories=['a','b','c','d']))
In [48]: s
Out[48]:
0 a
1 b
```
2  a
dtype: category
Categories (4, object): [a < b < c < d]

In [49]: s.cat.remove_unused_categories()
Out[49]:
  0   a
  1   b
  2   a
dtype: category
Categories (2, object): [a < b]

### 21.3.5 Setting categories

If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the categories to a predefined scale, use `Categorical.set_categories()`.

In [50]: s = Series(['one','two','four', '-'], dtype='category')
In [51]: s
Out[51]:
  0   one
  1   two
  2   four
  3   -
dtype: category
Categories (4, object): [- < four < one < two]

In [52]: s = s.cat.set_categories(['one','two','three','four'])
In [53]: s
Out[53]:
  0   one
  1   two
  2   four
  3     NaN
dtype: category
Categories (4, object): [one < two < three < four]

**Note:** Be aware that `Categorical.set_categories()` cannot know whether some category is omitted intentionally or because it is misspelled or (under Python3) due to a type difference (e.g., numpy's S1 dtype and python strings). This can result in surprising behaviour!

### 21.4 Ordered or not...

If categorical data is ordered (`s.cat.ordered == True`), then the order of the categories has a meaning and certain operations are possible. If the categorical is unordered, a `TypeError` is raised.

In [54]: s = Series(Categorical(['a','b','c','a'], ordered=False))
In [55]: try:
   ...:     s.sort()
   ...: except TypeError as e:

### 21.4. Ordered or not...

547
....:     print("TypeError: " + str(e))
....:
TypeError: Categorical not ordered

In[56]: s = Series(['a','b','c','a'], dtype="category")  # ordered per default!

In[57]: s.sort()

In[58]: s
Out[58]:
0  a
3  a
1  b
2  c
dtype: category
Categories (3, object): [a < b < c]

In[59]: s.min(), s.max()
Out[59]: ('a', 'c')

Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for strings and numeric data:

In[60]: s = Series([1,2,3,1], dtype="category")

In[61]: s.cat.categories = [2,3,1]

In[62]: s
Out[62]:
0  2
1  3
2  1
3  2
dtype: category
Categories (3, int64): [2 < 3 < 1]

In[63]: s.sort()

In[64]: s
Out[64]:
0  2
3  2
1  3
2  1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In[65]: s.min(), s.max()
Out[65]: (2, 1)

Reordering the categories is possible via the Categorical.reorder_categories() and the Categorical.set_categories() methods. For Categorical.reorder_categories(), all old categories must be included in the new categories and no new categories are allowed.

In[66]: s = Series([1,2,3,1], dtype="category")

In[67]: s = s.cat.reorder_categories([2,3,1])

In[68]: s
Out[68]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [69]: s.sort()

In [70]: s
Out[70]:
1 2
2 3
0 1
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [71]: s.min(), s.max()
Out[71]: (2, 1)

Note: Note the difference between assigning new categories and reordering the categories: the first renames categories and therefore the individual values in the Series, but if the first position was sorted last, the renamed value will still be sorted last. Reordering means that the way values are sorted is different afterwards, but not that individual values in the Series are changed.

Note: If the Categorical is not ordered, Series.min() and Series.max() will raise TypeError. Numeric operations like +, -, *, / and operations based on them (e.g. “Series.median()”, which would need to compute the mean between two values if the length of an array is even) do not work and raise a TypeError.

21.5 Comparisons

Comparing Categoricals with other objects is possible in two cases:

- comparing a categorical Series to another categorical Series, when categories and ordered is the same or
- comparing a categorical Series to a scalar.

All other comparisons will raise a TypeError.

In [72]: cat = Series(Categorical([1,2,3], categories=[3,2,1]))

In [73]: cat_base = Series(Categorical([2,2,2], categories=[3,2,1]))

In [74]: cat_base2 = Series(Categorical([2,2,2]))

In [75]: cat
Out[75]:
0 1
1 2
2 3
dtype: category
Categories (3, int64): [3 < 2 < 1]
In [76]: cat_base
Out[76]:
0  2
1  2
2  2
dtype: category
Categories (3, int64): [3 < 2 < 1]

In [77]: cat_base2
Out[77]:
0  2
1  2
2  2
dtype: category
Categories (1, int64): [2]

Comparing to a categorical with the same categories and ordering or to a scalar works:

In [78]: cat > cat_base
Out[78]:
0  True
1  False
2  False
dtype: bool

In [79]: cat > 2
Out[79]:
0  False
1  False
2  True
dtype: bool

This doesn’t work because the categories are not the same:

In [80]: try:
       ...
       ...: cat > cat_base2
       ...
       ...: except TypeError as e:
       ...
       ...: print("TypeError: " + str(e))
       ...
TypeError: Categoricals can only be compared if ’categories’ are the same

Note: Comparisons with Series, np.array or a Categorical with different categories or ordering will raise an TypeError because custom categories ordering could be interpreted in two ways: one with taking in account the ordering and one without. If you want to compare a categorical series with such a type, you need to be explicit and convert the categorical data back to the original values:

In [81]: base = np.array([1,2,3])

In [82]: try:
       ...
       ...: cat > base
       ...
       ...: except TypeError as e:
       ...
       ...: print("TypeError: " + str(e))
       ...
TypeError: Cannot compare a Categorical for op <built-in function gt> with type <type ‘numpy.ndarray’>.
    To compare values, use ’series <op> np.asarray(cat)’.

In [83]: np.asarray(cat) > base
21.6 Operations

Apart from `Series.min()`, `Series.max()` and `Series.mode()`, the following operations are possible with categorical data:

*Series* methods like `Series.value_counts()` will use all categories, even if some categories are not present in the data:

```python
In [84]: s = Series(Categorical(["a","b","c","c"], categories=["c","a","b","d"]))
In [85]: s.value_counts()
Out[85]:
c 2
b 1
a 1
d 0
dtype: int64
```

Groupby will also show “unused” categories:

```python
In [86]: cats = Categorical(["a","b","b","b","c","c","c"], categories=["a","b","c","d"])
In [87]: df = DataFrame({"cats":cats,"values":[1,2,2,2,3,4,5]})
In [88]: df.groupby("cats").mean()
Out[88]:
 values
c 2
b 2
a 1
d NaN
```

Pivot tables:

```python
In [92]: raw_cat = Categorical(["a","a","b","b"], categories=["a","b","c"])
In [93]: df = DataFrame({"A":raw_cat,"B":["c","d","c","d"], "values":[1,2,3,4]})
In [94]: pd.pivot_table(df, values='values', index=['A', 'B'])
Out[94]:
```
21.7 Data munging

The optimized pandas data access methods .loc, .iloc, .ix, .at, and .iat, work as normal, the only difference is the return type (for getting) and that only values already in categories can be assigned.

21.7.1 Getting

If the slicing operation returns either a DataFrame or a column of type Series, the category dtype is preserved.

```
In [95]: idx = Index(["h","i","j","k","l","m","n",])

In [96]: cats = Series(["a","b","b","b","c","c","c"], dtype="category", index=idx)

In [97]: values= [1,2,2,2,3,4,5]

In [98]: df = DataFrame({"cats":cats,"values":values}, index=idx)

In [99]: df.iloc[2:4,:]
Out[99]:
cats values
j b 2
k b 2

In [100]: df.iloc[2:4,:].dtypes
Out[100]:
cats category
values int64
dtype: object

In [101]: df.loc["h":"j","cats"]
Out[101]:
 h a
 i b
 j b
Name: cats, dtype: category
Categories (3, object): [a < b < c]

In [102]: df.ix["h":"j",0:1]
Out[102]:
cats
 h a
 i b
 j b

In [103]: df[df["cats"] == "b"]
Out[103]:
```
An example where the category type is not preserved is if you take one single row: the resulting Series is of dtype object:

```python
get the complete "h" row as a Series
In [104]: df.loc["h", :]
Out[104]:
cats a
values 1
Name: h, dtype: object
```

Returning a single item from categorical data will also return the value, not a categorical of length “1”.

```python
In [105]: df.iat[0,0]
Out[105]: 'a'

In [106]: df["cats"].cat.categories = ["x","y","z"]

In [107]: df.at["h","cats"] # returns a string
Out[107]: 'x'
```

**Note:** This is a difference to R’s `factor` function, where `factor(c(1,2,3))[1]` returns a single value `factor`.

To get a single value Series of type category pass in a list with a single value:

```python
In [108]: df.loc["h","cats"]
Out[108]:
Name: cats, dtype: category
Categories (3, object): [x < y < z]
```

### 21.7.2 Setting

Setting values in a categorical column (or Series) works as long as the value is included in the categories:

```python
In [109]: idx = Index(["h","i","j","k","l","m","n"])

In [110]: cats = Categorical(["a","a","a","a","a","a","a"], categories=["a","b"])

In [111]: values = [1,1,1,1,1,1,1]

In [112]: df = DataFrame({"cats":cats,"values":values}, index=idx)

In [113]: df.iloc[2:4,:] = [["b",2],["b",2]]

In [114]: df
Out[114]:
cats values
h a 1
i a 1
j b 2
k b 2
```

21.7. Data munging
In [115]: try:
   ....:     df.iloc[2:4,:] = ["c",3],["c",3]]
   ....: except ValueError as e:
   ....:     print("ValueError: " + str(e))
   ....:
ValueError: cannot setitem on a Categorical with a new category, set the categories first

Setting values by assigning categorical data will also check that the categories match:

In [116]: df.loc["j":"k","cats"] = Categorical(["a","a"], categories=["a","b"])

In [117]: df
Out[117]:
cats  values
     h  a  1
     i  a  1
     j  a  2
     k  a  2
     l  a  1
     m  a  1
     n  a  1

In [118]: try:
   ....:     df.loc["j":"k","cats"] = Categorical(["b","b"], categories=["a","b","c"])
   ....: except ValueError as e:
   ....:     print("ValueError: " + str(e))
   ....:
ValueError: Cannot set a Categorical with another, without identical categories

Assigning a Categorical to parts of a column of other types will use the values:

In [119]: df = DataFrame({"a":[1,1,1,1,1], "b":["a","a","a","a","a"]})

In [120]: df.loc[1:2,"a"] = Categorical(["b","b"], categories=["a","b"])

In [121]: df.loc[2:3,"b"] = Categorical(["b","b"], categories=["a","b"])

In [122]: df
Out[122]:
a  b
0  1  a
1  b  a
2  b  b
3  1  b
4  1  a

In [123]: df.dtypes
Out[123]:
a  object
b  object
dtype: object
21.7.3 Merging

You can concat two DataFrames containing categorical data together, but the categories of these categoricals need to be the same:

```python
In [124]: cat = Series(["a", "b"], dtype="category")
In [125]: vals = [1, 2]
In [126]: df = DataFrame({"cats": cat, "vals": vals})
In [127]: res = pd.concat([df, df])
```

```bash
Out[128]:
cats vals
0 a 1
1 b 2
0 a 1
1 b 2
```

```python
In [128]: res.dtypes
Out[128]:
cats category
vals int64
dtype: object
```

In this case the categories are not the same and so an error is raised:

```python
In [130]: df_different = df.copy()
In [131]: df_different["cats"].cat.categories = ["c", "d"]
In [132]: try:
.....: pd.concat([df, df_different])
.....: except ValueError as e:
.....: print("ValueError: " + str(e))
```

```
ValueError: incompatible categories in categorical block merge
```

The same applies to `df.append(df_different)`.

21.8 Getting Data In/Out

Writing data (Series, Frames) to a HDF store that contains a category dtype will currently raise NotImplementedError.

Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and ordering). So if you read back the CSV file you have to convert the relevant columns back to category and assign the right categories and categories ordering.

```python
In [133]: s = Series(Categorical(['a', 'b', 'b', 'a', 'a', 'd']))
rename the categories
In [134]: s.cat.categories = ["very good", "good", "bad"]
reorder the categories and add missing categories
```
In [135]: s = s.cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [136]: df = DataFrame({"cats":s, "vals":[1,2,3,4,5,6]})

In [137]: csv = StringIO()

In [138]: df.to_csv(csv)

In [139]: df2 = pd.read_csv(StringIO(csv.getvalue()))

In [140]: df2.dtypes
Out[140]:
    Unnamed: 0  int64
    cats        object
    vals       int64
    dtype: object

In [141]: df2["cats"]
Out[141]:
    0 very good
    1    good
    2    good
    3 very good
    4 very good
    5    bad
Name: cats, dtype: object

# Redo the category
In [142]: df2["cats"] = df2["cats"].astype("category")

In [143]: df2["cats"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"],
                           inplace=True)

In [144]: df2.dtypes
Out[144]:
    Unnamed: 0  int64
    cats        object
    vals       int64
    dtype: object

In [145]: df2["cats"]
Out[145]:
    0 very good
    1    good
    2    good
    3 very good
    4 very good
    5    bad
Name: cats, dtype: category
Categories (5, object): ['very bad < bad < medium < good < very good']

The same holds for writing to a SQL database with to_sql.
21.9 Missing Data

pandas primarily uses the value `np.nan` to represent missing data. It is by default not included in computations. See the Missing Data section

There are two ways a `np.nan` can be represented in categorical data: either the value is not available (“missing value”) or `np.nan` is a valid category.

```python
In [146]: s = Series(["a","b",np.nan,"a"], dtype="category")

only two categories
In [147]: s
Out[147]:
0 a
1 b
2 NaN
3 a
dtype: category
Categories (2, object): [a < b]

In [148]: s2 = Series(["a","b","c","a"], dtype="category")

In [149]: s2.cat.categories = [1,2,np.nan]

three categories, np.nan included
In [150]: s2
Out[150]:
0 1
1 2
2 NaN
3 1
dtype: category
Categories (3, object): [1 < 2 < NaN]
```

**Note**: As integer Series can’t include NaN, the categories were converted to object.

**Note**: Missing value methods like `isnull` and `fillna` will take both missing values as well as `np.nan` categories into account:

```python
In [151]: c = Series(["a","b",np.nan], dtype="category")

In [152]: c.cat.set_categories(["a","b",np.nan], inplace=True)

will be inserted as a NA category:
In [153]: c[0] = np.nan

In [154]: s = Series(c)

In [155]: s
Out[155]:
0 NaN
1 b
2 NaN
dtype: category
Categories (3, object): [a < b < NaN]
```
21.9.1 Differences to R’s `factor`

The following differences to R’s factor functions can be observed:

- R’s `levels` are named `categories`
- R’s `levels` are always of type string, while `categories` in pandas can be of any dtype.
- New categorical data is automatically ordered if the passed in values are sortable or a `categories` argument is supplied. This is a difference to R’s `factors`, which are unordered unless explicitly told to be ordered (`ordered=TRUE`).
- It’s not possible to specify labels at creation time. Use `s.cat.rename_categories(new_labels)` afterwards.
- In contrast to R’s `factor` function, using categorical data as the sole input to create a new categorical series will *not* remove unused categories but create a new categorical series which is equal to the passed in one!

21.10 Gotchas

21.10.1 Memory Usage

The memory usage of a `Categorical` is proportional to the number of categories times the length of the data. In contrast, an `object` dtype is a constant times the length of the data.

```
In [158]: s = Series(['foo','bar']*1000)

object dtype
In [159]: s.nbytes
Out[159]: 8000

category dtype
In [160]: s.astype('category').nbytes
Out[160]: 2008
```

**Note:** If the number of categories approaches the length of the data, the `Categorical` will use nearly (or more) memory than an equivalent `object` dtype representation.
In [161]: s = Series(['foo%04d' % i for i in range(2000)])

# object dtype
In [162]: s.nbytes
Out[162]: 8000

# category dtype
In [163]: s.astype('category').nbytes
Out[163]: 12000

### 21.10.2 Old style constructor usage

In earlier versions than pandas 0.15, a `Categorical` could be constructed by passing in precomputed *codes* (called then *labels*) instead of values with categories. The *codes* were interpreted as pointers to the categories with -1 as *NaN*. This type of constructor usage is replaced by the special constructor `Categorical.from_codes()`.

Unfortunately, in some special cases, using code which assumes the old style constructor usage will work with the current pandas version, resulting in subtle bugs:

```python
>>> cat = Categorical([1,2], [1,2,3])
>>> # old version
>>> cat.get_values()
array([2, 3], dtype=int64)
>>> # new version
>>> cat.get_values()
array([1, 2], dtype=int64)
```

**Warning:** If you used `Categoricals` with older versions of pandas, please audit your code before upgrading and change your code to use the `from_codes()` constructor.

### 21.10.3 `Categorical` is not a `numpy` array

Currently, categorical data and the underlying `Categorical` is implemented as a python object and not as a low-level `numpy` array dtype. This leads to some problems.

`numpy` itself doesn’t know about the new `dtype`:

```python
In [164]: try:
......: np.dtype("category")
......: except TypeError as e:
......: print("TypeError: " + str(e))
......:
TypeError: data type "category" not understood
```

```python
In [165]: dtype = Categorical(["a"]).dtype

In [166]: try:
......: np.dtype(dtype)
......: except TypeError as e:
......: print("TypeError: " + str(e))
......:
TypeError: data type not understood
```

Dtype comparisons work:
In [167]: dtype == np.str_
Out[167]: False

In [168]: np.str_ == dtype
Out[168]: False

Using *numpy* functions on a *Series* of type *category* should not work as *Categoricals* are not numeric data (even in the case that `.categories` is numeric).

In [169]: s = Series(Categorical([1,2,3,4]))

In [170]: try:
       ....: np.sum(s)
       ....: except TypeError as e:
       ....:     print("TypeError: " + str(e))
       ....:
TypeError: Categorical cannot perform the operation sum

**Note:** If such a function works, please file a bug at https://github.com/pydata/pandas!

### 21.10.4 dtype in apply

Pandas currently does not preserve the *dtype* in apply functions: If you apply along rows you get a *Series* of *object* *dtype* (same as getting a row -> getting one element will return a basic type) and applying along columns will also convert to object.

In [171]: df = DataFrame({"a":[1,2,3,4],
       ....:     "b":["a","b","c","d"],
       ....:     "cats":Categorical([1,2,3,2]))})

In [172]: df.apply(lambda row: type(row["cats"]), axis=1)
Out[172]:
0 <type 'long'>
1 <type 'long'>
2 <type 'long'>
3 <type 'long'>
dtype: object

In [173]: df.apply(lambda col: col.dtype, axis=0)
Out[173]:
a    object
b    object
cats  object
dtype: object

### 21.10.5 No Categorical Index

There is currently no index of type *category*, so setting the index to categorical column will convert the categorical data to a “normal” *dtype* first and therefore remove any custom ordering of the categories:

In [174]: cats = Categorical([1,2,3,4], categories=[4,2,3,1])

In [175]: strings = ["a","b","c","d"]
In [176]: values = [4,2,3,1]

In [177]: df = DataFrame({"strings":strings, "values":values}, index=cats)

In [178]: df.index
Out[178]: Int64Index([1, 2, 3, 4], dtype='int64')

# This should sort by categories but does not as there is no CategoricalIndex!
In [179]: df.sort_index()
Out[179]:
strings  values
1   a    4
2   b    2
3   c    3
4   d    1

Note: This could change if a CategoricalIndex is implemented (see https://github.com/pydata/pandas/issues/7629)

### 21.10.6 Side Effects

Constructing a Series from a Categorical will not copy the input Categorical. This means that changes to the Series will in most cases change the original Categorical:

In [182]: cat = Categorical([1,2,3,10], categories=[1,2,3,4,10])

In [183]: s = Series(cat, name="cat")

In [184]: s.iloc[0:2] = 10

In [185]: df = DataFrame(s)

In [186]: df["cat"].cat.categories = [1,2,3,4,5]

Use copy=True to prevent such a behaviour or simply don’t reuse Categoricals:

In [188]: cat = Categorical([1,2,3,10], categories=[1,2,3,4,10])

In [189]: s = Series(cat, name="cat", copy=True)
Out[190]:
[1, 2, 3, 10]
Categories (5, int64): [1 < 2 < 3 < 4 < 10]

In [191]: s.iloc[0:2] = 10

In [192]: cat
Out[192]:
[1, 2, 3, 10]
Categories (5, int64): [1 < 2 < 3 < 4 < 10]

**Note:** This also happens in some cases when you supply a *numpy* array instead of a *Categorical*: using an int array (e.g. `np.array([1,2,3,4])`) will exhibit the same behaviour, while using a string array (e.g. `np.array(["a","b","c","a"])`) will not.
We use the standard convention for referencing the matplotlib API:

```python
In [1]: import matplotlib.pyplot as plt
```

New in version 0.11.0. The plots in this document are made using matplotlib’s ggplot style (new in version 1.4). If your version of matplotlib is 1.3 or lower, setting the `display.mpl_style` to ‘default’ with `pd.options.display.mpl_style = 'default'` to produce more appealing plots. When set, matplotlib’s `rcParams` are changed (globally!) to nicer-looking settings.

We provide the basics in pandas to easily create decent looking plots. See the ecosystem section for visualization libraries that go beyond the basics documented here.

**Note:** All calls to `np.random` are seeded with 123456.

## 22.1 Basic Plotting: `plot`

See the *cookbook* for some advanced strategies.

The `plot` method on Series and DataFrame is just a simple wrapper around `plt.plot()`:

```python
In [2]: ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))
In [3]: ts = ts.cumsum()

In [4]: ts.plot()
Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0xaf420fac>
```
If the index consists of dates, it calls `gcf().autofmt_xdate()` to try to format the x-axis nicely as per above.

On DataFrame, `plot()` is a convenience to plot all of the columns with labels:

```
In [5]: df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))

In [6]: df = df.cumsum()

In [7]: plt.figure(); df.plot();
```
You can plot one column versus another using the x and y keywords in `plot()`:

```python
In [8]: df3 = DataFrame(randn(1000, 2), columns=['B', 'C']).cumsum()

In [9]: df3['A'] = Series(list(range(len(df))))

In [10]: df3.plot(x='A', y='B')
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0xaf36a84c>
```
The `kind` keyword argument of `plot()` accepts a handful of values for plots other than the default Line plot. These include:

- 'bar' or 'barh' for bar plots
- 'hist' for histogram
- 'box' for boxplot
- 'kde' or 'density' for density plots
- 'area' for area plots
- 'scatter' for scatter plots
- 'hexbin' for hexagonal bin plots
- 'pie' for pie plots
In addition to these kinds, there are the `DataFrame.hist()` and `DataFrame.boxplot()` methods, which use a separate interface.

Finally, there are several plotting functions in pandas.tools.plotting that take a `Series` or `DataFrame` as an argument. These include

- Scatter Matrix
- Andrews Curves
- Parallel Coordinates
- Lag Plot
- Autocorrelation Plot
- Bootstrap Plot
- RadViz

Plots may also be adorned with errorbars or tables.

### 22.2.1 Bar plots

For labeled, non-time series data, you may wish to produce a bar plot:

```python
In [11]: plt.figure();

In [12]: df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')
Out[12]: <matplotlib.lines.Line2D at 0xaefe2b4c>
```
Calling a DataFrame’s `plot()` method with `kind='bar'` produces a multiple bar plot:

```python
In [13]: df2 = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd'])
In [14]: df2.plot(kind='bar');
```
To produce a stacked bar plot, pass `stacked=True`:

```python
In [15]: df2.plot(kind='bar', stacked=True);
```
To get horizontal bar plots, pass `kind='barh'`:

```
In [16]: df2.plot(kind='barh', stacked=True);
```
22.2.2 Histograms

New in version 0.15.0. Histogram can be drawn specifying kind='hist'.

```
In [17]: df4 = DataFrame({'a': randn(1000) + 1, 'b': randn(1000),
 'c': randn(1000) - 1}, columns=['a', 'b', 'c'])

In [18]: plt.figure();

In [19]: df4.plot(kind='hist', alpha=0.5)
```

```
Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0xae270a4c>
```
Histogram can be stacked by `stacked=True`. Bin size can be changed by `bins` keyword.

In [20]: plt.figure();

In [21]: df4.plot(kind='hist', stacked=True, bins=20)
Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0xae269aac>
You can pass other keywords supported by matplotlib `hist`. For example, horizontal and cumulative histogram can be drawn by `orientation='horizontal'` and `cumulative='True'`.

```
In [22]: plt.figure();

In [23]: df4['a'].plot(kind='hist', orientation='horizontal', cumulative=True)
Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0xae43ee0c>
```
See the `hist` method and the `matplotlib hist documentation` for more.

The existing interface `DataFrame.hist` to plot histogram still can be used.

```
In [24]: plt.figure();

In [25]: df['A'].diff().hist()
Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0xaecbb56c>
```
DataFrame.hist() plots the histograms of the columns on multiple subplots:

**In [26]:** plt.figure()
**Out[26]:** <matplotlib.figure.Figure at 0xae914cac>

**In [27]:** df.diff().hist(color='k', alpha=0.5, bins=50)
**Out[27]:**
array([[<matplotlib.axes._subplots.AxesSubplot object at 0xaeca77cc>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0xaf2e062c>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0xaf2a172c>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0xaf24ee4c>]], dtype=object)

22.2. Other Plots 575
New in version 0.10.0. The by keyword can be specified to plot grouped histograms:

In [28]: data = Series(randn(1000))

In [29]: data.hist(by=randint(0, 4, 1000), figsize=(6, 4))

Out[29]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0xae8893ec>,
        <matplotlib.axes._subplots.AxesSubplot object at 0xae40b9ec>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0xae3caa2c>,
        <matplotlib.axes._subplots.AxesSubplot object at 0xae3f7dac>]], dtype=object)
22.2.3 Box Plots

Boxplot can be drawn calling a Series and DataFrame.plot with kind='box', or DataFrame.boxplot to visualize the distribution of values within each column. New in version 0.15.0, plot method now supports kind='box' to draw boxplot.

For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).

In [30]: df = DataFrame(rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])

In [31]: df.plot(kind='box')
Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0xae0e2d2c>
Boxplot can be colorized by passing color keyword. You can pass a dict whose keys are boxes, whiskers, medians and caps. If some keys are missing in the dict, default colors are used for the corresponding artists. Also, boxplot has sym keyword to specify fliers style.

When you pass other type of arguments via color keyword, it will be directly passed to matplotlib for all the boxes, whiskers, medians and caps colorization.

The colors are applied to every boxes to be drawn. If you want more complicated colorization, you can get each drawn artists by passing return_type.

In [32]: color = dict(boxes='DarkGreen', whiskers='DarkOrange', 
       ....:      medians='DarkBlue', caps='Gray')
       ....:

In [33]: df.plot(kind='box', color=color, sym='r+')
Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0xae1aee2c>
Also, you can pass other keywords supported by matplotlib `boxplot`. For example, horizontal and custom-positioned boxplot can be drawn by `vert=False` and `positions` keywords.

```python
In [34]: df.plot(kind='box', vert=False, positions=[1, 4, 5, 6, 8])
Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0xade0150c>
```
See the `boxplot` method and the matplotlib boxplot documentation for more.

The existing interface `DataFrame.boxplot` to plot boxplot still can be used.

```
In [35]: df = DataFrame(rand(10,5))

In [36]: plt.figure();

In [37]: bp = df.boxplot()
```
You can create a stratified boxplot using the by keyword argument to create groupings. For instance,

```python
In [38]: df = DataFrame(rand(10,2), columns=['Col1', 'Col2'])
In [39]: df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])
In [40]: plt.figure();
In [41]: bp = df.boxplot(by='X')
```
You can also pass a subset of columns to plot, as well as group by multiple columns:

In [42]: df = DataFrame(rand(10,3), columns=['Col1', 'Col2', 'Col3'])

In [43]: df['X'] = Series(['A','A','A','A','A','B','B','B','B','B'])

In [44]: df['Y'] = Series(['A','B','A','B','A','B','A','B','A','B'])

In [45]: plt.figure();

In [46]: bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
Basically, plot functions return `matplotlib Axes` as a return value. In `boxplot`, the return type can be changed by argument `return_type`, and whether the subplots is enabled (`subplots=True` in `plot` or `by` is specified in `boxplot`).

When `subplots=False`/`by` is None:

- if `return_type` is `'dict'`, a dictionary containing the `matplotlib Lines` is returned. The keys are "boxes", "caps".
  This is the default of `boxplot` in historical reason. Note that `plot(kind='box')` returns `Axes` as default as the same as other plots.

- if `return_type` is `'axes'`, a `matplotlib Axes` containing the boxplot is returned.

- if `return_type` is `'both'` a namedtuple containing the `matplotlib Axes` and `matplotlib Lines` is returned

When `subplots=True`/`by` is some column of the DataFrame:

- A dict of `return_type` is returned, where the keys are the columns of the DataFrame. The plot has a facet for each column of the DataFrame, with a separate box for each value of `by`.

Finally, when calling `boxplot` on a `Groupby` object, a dict of `return_type` is returned, where the keys are the same as the `Groupby` object. The plot has a facet for each key, with each facet containing a box for each column of the DataFrame.
In [47]: np.random.seed(1234)
In [48]: df_box = DataFrame(np.random.randn(50, 2))
In [49]: df_box['g'] = np.random.choice(['A', 'B'], size=50)
In [50]: df_box.loc[df_box['g'] == 'B', 1] += 3
In [51]: bp = df_box.boxplot(by='g')

Boxplot grouped by g

Compare to:
In [52]: bp = df_box.groupby('g').boxplot()
22.2.4 Area Plot

New in version 0.14. You can create area plots with Series.plot and DataFrame.plot by passing kind='area'. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.

When input data contains NaN, it will be automatically filled by 0. If you want to drop or fill by different values, use dataframe.dropna() or dataframe.fillna() before calling plot.

In [53]: df = DataFrame(rand(10, 4), columns=['a', 'b', 'c', 'd'])

In [54]: df.plot(kind='area');
To produce an unstacked plot, pass `stacked=False`. Alpha value is set to 0.5 unless otherwise specified:

```
In [55]: df.plot(kind='area', stacked=False);
```
22.2.5 Scatter Plot

New in version 0.13. You can create scatter plots with DataFrame.plot by passing kind='scatter'. Scatter plot requires numeric columns for x and y axis. These can be specified by x and y keywords each.

In [56]: df = DataFrame(rand(50, 4), columns=['a', 'b', 'c', 'd'])

In [57]: df.plot(kind='scatter', x='a', y='b');
To plot multiple column groups in a single axes, repeat `plot` method specifying target `ax`. It is recommended to specify `color` and `label` keywords to distinguish each groups.

```
In [58]: ax = df.plot(kind='scatter', x='a', y='b',
 : color='DarkBlue', label='Group 1');
 :

In [59]: df.plot(kind='scatter', x='c', y='d',
 : color='DarkGreen', label='Group 2', ax=ax);
 :
```
The keyword `c` may be given as the name of a column to provide colors for each point:

```python
In [60]: df.plot(kind='scatter', x='a', y='b', c='c', s=50);
```
You can pass other keywords supported by matplotlib `scatter`. Below example shows a bubble chart using a dataframe column values as bubble size.

```
In [61]: df.plot(kind='scatter', x='a', y='b', s=df['c']*200);
```
22.2.6 Hexagonal Bin Plot

New in version 0.14. You can create hexagonal bin plots with `DataFrame.plot()` and `kind='hexbin'`. Hexbin plots can be a useful alternative to scatter plots if your data are too dense to plot each point individually.

In [62]: df = DataFrame(randn(1000, 2), columns=[‘a’, ‘b’])

In [63]: df[‘b’] = df[‘b’] + np.arange(1000)

In [64]: df.plot(kind=’hexbin’, x=’a’, y=’b’, gridsize=25)
Out[64]: <matplotlib.axes._subplots.AxesSubplot at 0xad03c82c>

See the `scatter` method and the `matplotlib` `scatter` documentation for more.
A useful keyword argument is `gridsize`; it controls the number of hexagons in the x-direction, and defaults to 100. A larger `gridsize` means more, smaller bins.

By default, a histogram of the counts around each \((x, y)\) point is computed. You can specify alternative aggregations by passing values to the `C` and `reduce_C_function` arguments. `C` specifies the value at each \((x, y)\) point and `reduce_C_function` is a function of one argument that reduces all the values in a bin to a single number (e.g. `mean`, `max`, `sum`, `std`). In this example the positions are given by columns `a` and `b`, while the value is given by column `z`. The bins are aggregated with `numpy`'s `max` function.

```
In [65]: df = DataFrame(randn(1000, 2), columns=['a', 'b'])

In [66]: df['b'] = df['b'] = df['b'] + np.arange(1000)

In [67]: df['z'] = np.random.uniform(0, 3, 1000)

In [68]: df.plot(kind='hexbin', x='a', y='b', C='z', reduce_C_function=np.max,: gridsize=25)
.....:
Out[68]: <matplotlib.axes._subplots.AxesSubplot at 0xaedde6c>
```
See the `hexbin` method and the matplotlib hexbin documentation for more.

### 22.2.7 Pie plot

New in version 0.14. You can create a pie plot with `DataFrame.plot()` or `Series.plot()` with `kind='pie'`. If your data includes any NaN, they will be automatically filled with 0. A `ValueError` will be raised if there are any negative values in your data.

```python
In [69]: series = Series(3 * rand(4), index=['a', 'b', 'c', 'd'], name='series')
In [70]: series.plot(kind='pie', figsize=(6, 6))
Out[70]: <matplotlib.axes._subplots.AxesSubplot at 0xace3308c>
```
For pie plots it’s best to use square figures, one’s with an equal aspect ratio. You can create the figure with equal width and height, or force the aspect ratio to be equal after plotting by calling `ax.set_aspect('equal')` on the returned axes object.

Note that pie plot with DataFrame requires that you either specify a target column by the `y` argument or `subplots=True`. When `y` is specified, pie plot of selected column will be drawn. If `subplots=True` is specified, pie plots for each column are drawn as subplots. A legend will be drawn in each pie plots by default; specify `legend=False` to hide it.

In [71]: df = DataFrame(3 * rand(4, 2), index=['a', 'b', 'c', 'd'], columns=['x', 'y'])

In [72]: df.plot(kind='pie', subplots=True, figsize=(8, 4))
Out[72]:
a array([<matplotlib.axes._subplots.AxesSubplot object at 0xabc8fe4c>,
         <matplotlib.axes._subplots.AxesSubplot object at 0xacbf57ac>], dtype=object)
You can use the `labels` and `colors` keywords to specify the labels and colors of each wedge.

**Warning:** Most pandas plots use the `label` and `color` arguments (not the lack of "s" on those). To be consistent with `matplotlib.pyplot.pie()` you must use `labels` and `colors`.

If you want to hide wedge labels, specify `labels=None`. If `fontsize` is specified, the value will be applied to wedge labels. Also, other keywords supported by `matplotlib.pyplot.pie()` can be used.

```
In [73]: series.plot(kind='pie', labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'],
 autopct='%.2f', fontsize=20, figsize=(6, 6))
```

```
Out[73]: <matplotlib.axes._subplots.AxesSubplot at 0xad330e8c>
```
If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.

In [74]: series = Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2')

In [75]: series.plot(kind='pie', figsize=(6, 6))
Out[75]: <matplotlib.axes._subplots.AxesSubplot at 0xad02230c>
Pandas tries to be pragmatic about plotting DataFrames or Series that contain missing data. Missing values are dropped, left out, or filled depending on the plot type.

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>NaN Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>Leave gaps at NaNs</td>
</tr>
<tr>
<td>Line (stacked)</td>
<td>Fill 0's</td>
</tr>
<tr>
<td>Bar</td>
<td>Fill 0's</td>
</tr>
<tr>
<td>Scatter</td>
<td>Drop NaNs</td>
</tr>
<tr>
<td>Histogram</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Box</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Area</td>
<td>Fill 0's</td>
</tr>
<tr>
<td>KDE</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Hexbin</td>
<td>Drop NaNs</td>
</tr>
<tr>
<td>Pie</td>
<td>Fill 0's</td>
</tr>
</tbody>
</table>

If any of these defaults are not what you want, or if you want to be explicit about how missing values are handled, consider using `fillna()` or `dropna()` before plotting.
22.4 Plotting Tools

These functions can be imported from pandas.tools.plotting and take a Series or DataFrame as an argument.

22.4.1 Scatter Matrix Plot

New in version 0.7.3. You can create a scatter plot matrix using the scatter_matrix method in pandas.tools.plotting:

In [76]: from pandas.tools.plotting import scatter_matrix

In [77]: df = DataFrame(randn(1000, 4), columns=['a', 'b', 'c', 'd'])

In [78]: scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
Out[78]: array([[<matplotlib.axes._subplots.AxesSubplot object at 0xad6718c>,
            <matplotlib.axes._subplots.AxesSubplot object at 0xad2972c>],
           [<matplotlib.axes._subplots.AxesSubplot object at 0xad6994c>,
            <matplotlib.axes._subplots.AxesSubplot object at 0xad2972c>],
           [<matplotlib.axes._subplots.AxesSubplot object at 0xad6994c>,
            <matplotlib.axes._subplots.AxesSubplot object at 0xad2972c>],
           [<matplotlib.axes._subplots.AxesSubplot object at 0xad6994c>,
            <matplotlib.axes._subplots.AxesSubplot object at 0xad2972c>]],
          dtype=object)
22.4.2 Density Plot

New in version 0.8.0. You can create density plots using the Series/DataFrame.plot and setting kind='kde':

In [79]: ser = Series(randn(1000))

In [80]: ser.plot(kind='kde')
Out[80]: <matplotlib.axes._subplots.AxesSubplot at 0xa998e44c>
22.4.3 Andrews Curves

Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures.

Note: The “Iris” dataset is available here.

In [81]: from pandas import read_csv
In [82]: from pandas.tools.plotting import andrews_curves
In [83]: data = read_csv('data/iris.data')
In [84]: plt.figure()
Out[84]: <matplotlib.figure.Figure at 0xa98e26cc>
In [85]: andrews_curves(data, 'Name')
Out[85]: <matplotlib.axes._subplots.AxesSubplot at 0xa98e274c>
22.4.4 Parallel Coordinates

Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together.

```
In [86]: from pandas import read_csv

In [87]: from pandas.tools.plotting import parallel_coordinates

In [88]: data = read_csv('data/iris.data')

In [89]: plt.figure()
Out[89]: <matplotlib.figure.Figure at 0xa97bf6ac>

In [90]: parallel_coordinates(data, 'Name')
Out[90]: <matplotlib.axes._subplots.AxesSubplot at 0xa98100ac>
```
22.4.5 Lag Plot

Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random.

In [91]: from pandas.tools.plotting import lag_plot
In [92]: plt.figure()
Out[92]: <matplotlib.figure.Figure at 0xa95fbf4c>
In [93]: data = Series(0.1 * rand(1000) +
       0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))
In [94]: lag_plot(data)
Out[94]: <matplotlib.axes._subplots.AxesSubplot at 0xa95f3e8c>
22.4.6 Autocorrelation Plot

Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band.

In [95]: from pandas.tools.plotting import autocorrelation_plot

In [96]: plt.figure()
Out[96]: <matplotlib.figure.Figure at 0xa97e038c>

In [97]: data = Series(0.7 * rand(1000) +
    ....:     0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))
    ....:

In [98]: autocorrelation_plot(data)
Out[98]: <matplotlib.axes._subplots.AxesSubplot at 0xa96088cc>
22.4.7 Bootstrap Plot

Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot.

In [99]: from pandas.tools.plotting import bootstrap_plot

In [100]: data = Series(rand(1000))

In [101]: bootstrap_plot(data, size=50, samples=500, color='grey')
Out[101]: <matplotlib.figure.Figure at 0xa987078c>
22.4.8 RadViz

RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently.

Note: The “Iris” dataset is available here.

In [102]: from pandas import read_csv

In [103]: from pandas.tools.plotting import radviz

In [104]: data = read_csv('data/iris.data')

In [105]: plt.figure()
Out[105]: <matplotlib.figure.Figure at 0xa981072c>

In [106]: radviz(data, 'Name')
22.5 Plot Formatting

Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot:

In [107]: plt.figure(); ts.plot(style='k--', label='Series');
For each kind of plot (e.g. line, bar, scatter) any additional arguments keywords are passed along to the corresponding matplotlib function (ax.plot(), ax.bar(), ax.scatter()). These can be used to control additional styling, beyond what pandas provides.

### 22.5.1 Controlling the Legend

You may set the legend argument to False to hide the legend, which is shown by default.

In [108]: df = DataFrame(randn(1000, 4), index=ts.index, columns=list('ABCD'))

In [109]: df = df.cumsum()

In [110]: df.plot(legend=False)
Out[110]: <matplotlib.axes._subplots.AxesSubplot at 0xa892e46c>
22.5.2 Scales

You may pass `logy` to get a log-scale Y axis.

In [111]: ts = Series(randn(1000), index=date_range('1/1/2000', periods=1000))

In [112]: ts = np.exp(ts.cumsum())

In [113]: ts.plot(logy=True)
Out[113]: <matplotlib.axes._subplots.AxesSubplot at 0xa88d5a4c>
See also the `logx` and `loglog` keyword arguments.

### 22.5.3 Plotting on a Secondary Y-axis

To plot data on a secondary y-axis, use the `secondary_y` keyword:

```python
In [114]: df.A.plot()
Out[114]: <matplotlib.axes._subplots.AxesSubplot at 0xa8db64c>
```

```python
In [115]: df.B.plot(secondary_y=True, style='g')
Out[115]: <matplotlib.axes._subplots.AxesSubplot at 0xa84e6c>
```
To plot some columns in a DataFrame, give the column names to the `secondary_y` keyword:

```python
In [116]: plt.figure()
Out[116]: <matplotlib.figure.Figure at 0xa887f82c>

In [117]: ax = df.plot(secondary_y=['A', 'B'])

In [118]: ax.set_ylabel('CD scale')
Out[118]: <matplotlib.text.Text at 0xa7f8cfec>

In [119]: ax.right_ax.set_ylabel('AB scale')
Out[119]: <matplotlib.text.Text at 0xa843f06c>
```
Note that the columns plotted on the secondary y-axis is automatically marked with "(right)" in the legend. To turn off the automatic marking, use the `mark_right=False` keyword:

```python
In [120]: plt.figure()
Out[120]: <matplotlib.figure.Figure at 0xa7f7072c>

In [121]: df.plot(secondary_y=['A', 'B'], mark_right=False)
Out[121]: <matplotlib.axes._subplots.AxesSubplot at 0xa89a502c>
```
22.5.4 Suppressing Tick Resolution Adjustment

pandas includes automatic tick resolution adjustment for regular frequency time-series data. For limited cases where pandas cannot infer the frequency information (e.g., in an externally created `twinx`), you can choose to suppress this behavior for alignment purposes.

Here is the default behavior, notice how the x-axis tick labelling is performed:

```
In [122]: plt.figure()
Out[122]: <matplotlib.figure.Figure at 0xa7d01a4c>

In [123]: df.A.plot()
Out[123]: <matplotlib.axes._subplots.AxesSubplot at 0xa7f0a76c>
```
Using the `x_compat` parameter, you can suppress this behavior:

```python
In [124]: plt.figure()
Out[124]: <matplotlib.figure.Figure at 0xa7c89c4c>

In [125]: df.A.plot(x_compat=True)
Out[125]: <matplotlib.axes._subplots.AxesSubplot at 0xa7c8c24c>
```
If you have more than one plot that needs to be suppressed, the `use` method in `pandas.plot_params` can be used in a `with statement`:

In [126]: import pandas as pd

In [127]: plt.figure()
Out[127]: <matplotlib.figure.Figure at 0xa7be9cac>

In [128]: with pd.plot_params.use('x_compat', True):
       ...
       :   df.A.plot(color='r')
       ...
       :   df.B.plot(color='g')
       ...
       :   df.C.plot(color='b')
       ...
22.5.5 Subplots

Each Series in a DataFrame can be plotted on a different axis with the `subplots` keyword:

```
In [129]: df.plot(subplots=True, figsize=(6, 6));
```
22.5.6 Using Layout and Targetting Multiple Axes

The layout of subplots can be specified by `layout` keyword. It can accept `(rows, columns)`. The `layout` keyword can be used in `hist` and `boxplot` also. If input is invalid, `ValueError` will be raised.

The number of axes which can be contained by `rows x columns` specified by `layout` must be larger than the number of required subplots. If layout can contain more axes than required, blank axes are not drawn. Similar to a numpy array's `reshape` method, you can use `-1` for one dimension to automatically calculate the number of rows or columns needed, given the other.

```
In [130]: df.plot(subplots=True, layout=(3, 2), figsize=(6, 6), sharex=False);
```
The above example is identical to using

```python
In [131]: df.plot(subplots=True, layout=(3, -1), figsize=(6, 6), sharex=False);
```

The required number of columns (2) is inferred from the number of series to plot and the given number of rows (3).

Also, you can pass multiple axes created beforehand as list-like via `ax` keyword. This allows to use more complicated layout. The passed axes must be the same number as the subplots being drawn.

When multiple axes are passed via `ax` keyword, `layout`, `sharex` and `sharey` keywords are ignored. These must be configured when creating axes.

```python
In [132]: fig, axes = plt.subplots(4, 4, figsize=(6, 6));
In [133]: plt.subplots_adjust(wspace=0.5, hspace=0.5);
In [134]: target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]
In [135]: target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]
In [136]: df.plot(subplots=True, ax=target1, legend=False);
In [137]: (-df).plot(subplots=True, ax=target2, legend=False);
```
Another option is passing an `ax` argument to `Series.plot()` to plot on a particular axis:

```python
In [138]: fig, axes = plt.subplots(nrows=2, ncols=2)

In [139]: df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A');

In [140]: df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B');

In [141]: df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C');

In [142]: df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D');
```
22.5.7 Plotting With Error Bars

New in version 0.14. Plotting with error bars is now supported in the `DataFrame.plot()` and `Series.plot()` functions. Horizontal and vertical errorbars can be supplied to the `xerr` and `yerr` keyword arguments to `plot()`. The error values can be specified using a variety of formats.

- As a `DataFrame` or `dict` of errors with column names matching the `columns` attribute of the plotting `DataFrame` or matching the `name` attribute of the `Series`.
- As a `str` indicating which of the columns of plotting `DataFrame` contain the error values.
- As raw values (`list`, `tuple`, or `np.ndarray`). Must be the same length as the plotting `DataFrame/Series`.

Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a $M$ length `Series`, a $M \times 2$ array should be provided indicating lower and upper (or left and right) errors. For a $M \times N$ `DataFrame`, asymmetrical errors should be in a $M \times 2 \times N$ array.

Here is an example of one way to easily plot group means with standard deviations from the raw data.
# Generate the data
In [143]: ix3 = pd.MultiIndex.from_arrays([['a', 'a', 'a', 'a', 'b', 'b', 'b', 'b'], ['foo', 'foo', 'bar', 'bar', 'foo', 'foo', 'bar', 'bar']], names=['letter', 'word'])

In [144]: df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3)

# Group by index labels and take the means and standard deviations for each group
In [145]: gp3 = df3.groupby(level=('letter', 'word'))

In [146]: means = gp3.mean()

In [147]: errors = gp3.std()

In [148]: means
Out[148]:

<table>
<thead>
<tr>
<th></th>
<th>data1</th>
<th>data2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>letter</td>
<td>word</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>bar</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>2.5</td>
</tr>
<tr>
<td>b</td>
<td>bar</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>3.0</td>
</tr>
</tbody>
</table>

In [149]: errors
Out[149]:

<table>
<thead>
<tr>
<th></th>
<th>data1</th>
<th>data2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>letter</td>
<td>word</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>bar</td>
<td>0.707107</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>0.707107</td>
</tr>
<tr>
<td>b</td>
<td>bar</td>
<td>0.707107</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>1.414214</td>
</tr>
</tbody>
</table>

# Plot
In [150]: fig, ax = plt.subplots()

In [151]: means.plot(yerr=errors, ax=ax, kind='bar')
Out[151]: <matplotlib.axes._subplots.AxesSubplot at 0xa5e446ac>
22.5.8 Plotting Tables

New in version 0.14. Plotting with matplotlib table is now supported in `DataFrame.plot()` and `Series.plot()` with a `table` keyword. The `table` keyword can accept `bool`, `DataFrame` or `Series`. The simple way to draw a table is to specify `table=True`. Data will be transposed to meet matplotlib’s default layout.

In [152]: fig, ax = plt.subplots(1, 1)

In [153]: df = DataFrame(rand(5, 3), columns=['a', 'b', 'c'])

In [154]: ax.get_xaxis().set_visible(False)  # Hide Ticks

In [155]: df.plot(table=True, ax=ax)
Out[155]: <matplotlib.axes._subplots.AxesSubplot at 0xa5e0d30c>
Also, you can pass different DataFrame or Series for table keyword. The data will be drawn as displayed in print method (not transposed automatically). If required, it should be transposed manually as below example.

In [156]: fig, ax = plt.subplots(1, 1)

In [157]: ax.get_xaxis().set_visible(False)  # Hide Ticks

In [158]: df.plot(table=np.round(df.T, 2), ax=ax)
Out[158]: <matplotlib.axes._subplots.AxesSubplot at 0xa58cf68c>
Finally, there is a helper function `pandas.tools.plotting.table` to create a table from `DataFrame` and `Series`, and add it to a `matplotlib.Axes`. This function can accept keywords which `matplotlib.table` has.

```python
In [159]: from pandas.tools.plotting import table

In [160]: fig, ax = plt.subplots(1, 1)

In [161]: table(ax, np.round(df.describe(), 2),
 ...: loc='upper right', colWidths=[0.2, 0.2, 0.2])
 ...:
Out[161]: <matplotlib.table.Table at 0xa5d05e4c>

In [162]: df.plot(ax=ax, ylim=(0, 2), legend=None)
Out[162]: <matplotlib.axes._subplots.AxesSubplot at 0xa5d453ec>
```
22.5.9 Colormaps

A potential issue when plotting a large number of columns is that it can be difficult to distinguish some series due to repetition in the default colors. To remedy this, DataFrame plotting supports the use of the `colormap=` argument, which accepts either a Matplotlib colormap or a string that is a name of a colormap registered with Matplotlib. A visualization of the default matplotlib colormaps is available here.

As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing determined by the number of columns in the DataFrame. There is no consideration made for background color, so some colormaps will produce lines that are not easily visible.

To use the cubehelix colormap, we can simply pass `cubehelix` to `colormap=`

```
In [163]: df = DataFrame(randn(1000, 10), index=ts.index)
In [164]: df = df.cumsum()
In [165]: plt.figure()
Out[165]: <matplotlib.figure.Figure at 0xa692c0ac>
```
In [166]: df.plot(colormap='cubehelix')
Out[166]: <matplotlib.axes._subplots.AxesSubplot at 0xa5a7414c>

or we can pass the colormap itself

In [167]: from matplotlib import cm

In [168]: plt.figure()
Out[168]: <matplotlib.figure.Figure at 0xa595244c>

In [169]: df.plot(colormap=cm.cubehelix)
Out[169]: <matplotlib.axes._subplots.AxesSubplot at 0xa59343cc>
Colormaps can also be used other plot types, like bar charts:

```
In [170]: dd = DataFrame(randn(10, 10)).applymap(abs)

In [171]: dd = dd.cumsum()

In [172]: plt.figure()
Out[172]: <matplotlib.figure.Figure at 0xa52389ac>

In [173]: dd.plot(kind='bar', colormap='Greens')
Out[173]: <matplotlib.axes._subplots.AxesSubplot at 0xa522702c>
```
Parallel coordinates charts:

In [174]: plt.figure()
Out[174]: <matplotlib.figure.Figure at 0xa51207ac>

In [175]: parallel_coordinates(data, 'Name', colormap='gist_rainbow')
Out[175]: <matplotlib.axes._subplots.AxesSubplot at 0xa511270c>
Andrews curves charts:

In [176]: plt.figure()
Out[176]: <matplotlib.figure.Figure at 0xa46b33cc>

In [177]: andrews_curves(data, 'Name', colormap='winter')
Out[177]: <matplotlib.axes._subplots.AxesSubplot at 0xa46b3ecc>
22.6 Plotting directly with matplotlib

In some situations it may still be preferable or necessary to prepare plots directly with matplotlib, for instance when a certain type of plot or customization is not (yet) supported by pandas. Series and DataFrame objects behave like arrays and can therefore be passed directly to matplotlib functions without explicit casts.

pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and time support to practically all plot types available in matplotlib. Although this formatting does not provide the same level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points.

Note: The speed up for large data sets only applies to pandas 0.14.0 and later.

In [178]: price = Series(randn(150).cumsum(),
       index=date_range('2000-1-1', periods=150, freq='B'))

In [179]: ma = pd.rolling_mean(price, 20)

In [180]: mstd = pd.rolling_std(price, 20)
In [181]: plt.figure()
Out[181]: <matplotlib.figure.Figure at 0xa4474fcc>

In [182]: plt.plot(price.index, price, 'k')
Out[182]: [<matplotlib.lines.Line2D at 0xa48656cc>]

In [183]: plt.plot(ma.index, ma, 'b')
Out[183]: [<matplotlib.lines.Line2D at 0xa488830c>]

In [184]: plt.fill_between(mstd.index, ma-2*mstd, ma+2*mstd, color='b', alpha=0.2)
Out[184]: <matplotlib.collections.PolyCollection at 0xa4888bcc>

22.7 Trellis plotting interface

Note: The tips data set can be downloaded here. Once you download it execute

```
from pandas import read_csv

Assuming the file 'tips.csv' is in the current working directory

```
from the directory where you downloaded the file.
We import the rplot API:

```
In [185]: import pandas.tools.rplot as rplot
```

### 22.7.1 Examples

RPlot is a flexible API for producing Trellis plots. These plots allow you to arrange data in a rectangular grid by values of certain attributes.

```
In [186]: plt.figure()
Out[186]: <matplotlib.figure.Figure at 0xa40ec02c>

In [187]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [188]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))
In [189]: plot.add(rplot.GeomHistogram())
```

```
In [190]: plot.render(plt.gcf())
Out[190]: <matplotlib.figure.Figure at 0xa40ec02c>
```
In the example above, data from the tips data set is arranged by the attributes ‘sex’ and ‘smoker’. Since both of those attributes can take on one of two values, the resulting grid has two columns and two rows. A histogram is displayed for each cell of the grid.

Example above is the same as previous except the plot is set to kernel density estimation. This shows how easy it is to have different plots for the same Trellis structure.
The plot above shows that it is possible to have two or more plots for the same data displayed on the same Trellis grid cell.

In [202]: plt.figure()
Out[202]: <matplotlib.figure.Figure at 0xa41729ec>

In [203]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [204]: plot.add(rplot.TrellisGrid([‘sex’, ‘smoker’]))
In [205]: plot.add(rplot.GeomScatter())
In [206]: plot.add(rplot.GeomDensity2D())
In [207]: plot.render(plt.gcf())
Out[207]: <matplotlib.figure.Figure at 0xa41729ec>

Above is a similar plot but with 2D kernel density estimation plot superimposed.

In [208]: plt.figure()  
Out[208]: <matplotlib.figure.Figure at 0xa367684c>

In [209]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [210]: plot.add(rplot.TrellisGrid(['sex', '.']))
In [211]: plot.add(rplot.GeomHistogram())
In [212]: plot.render(plt.gcf())
Out[212]: <matplotlib.figure.Figure at 0xa367684c>
It is possible to only use one attribute for grouping data. The example above only uses ‘sex’ attribute. If the second grouping attribute is not specified, the plots will be arranged in a column.

```
In [213]: plt.figure()
Out[213]: <matplotlib.figure.Figure at 0xa3c2d6ec>

In [214]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

In [215]: plot.add(rplot.TrellisGrid(['.', 'smoker']))

In [216]: plot.add(rplot.GeomHistogram())

In [217]: plot.render(plt.gcf())
Out[217]: <matplotlib.figure.Figure at 0xa3c2d6ec>
```
If the first grouping attribute is not specified the plots will be arranged in a row.

In [218]: plt.figure()
Out[218]: <matplotlib.figure.Figure at 0xa37ef4ec>

In [219]: plot = rplot.RPlot(tips_data, x='total_bill', y='tip')
In [220]: plot.add(rplot.TrellisGrid(['.', 'smoker']))
In [221]: plot.add(rplot.GeomHistogram())
In [222]: plot = rplot.RPlot(tips_data, x='tip', y='total_bill')
In [223]: plot.add(rplot.TrellisGrid(['sex', 'smoker']))
In [224]: plot.add(rplot.GeomPoint(size=80.0, colour=rplot.ScaleRandomColour('day'), shape=rplot.ScaleShape('size'), alpha=1.0))
In [225]: plot.render(plt.gcf())
Out[225]: <matplotlib.figure.Figure at 0xa37ef4ec>
As shown above, scatter plots are also possible. Scatter plots allow you to map various data attributes to graphical properties of the plot. In the example above the colour and shape of the scatter plot graphical objects is mapped to ‘day’ and ‘size’ attributes respectively. You use scale objects to specify these mappings. The list of scale classes is given below with initialization arguments for quick reference.

### 22.7.2 Scales

**ScaleGradient(column, colour1, colour2)**

This one allows you to map an attribute (specified by parameter column) value to the colour of a graphical object. The larger the value of the attribute the closer the colour will be to colour2, the smaller the value, the closer it will be to colour1.

**ScaleGradient2(column, colour1, colour2, colour3)**

The same as ScaleGradient but interpolates linearly between three colours instead of two.

**ScaleSize(column, min_size, max_size, transform)**

Map attribute value to size of the graphical object. Parameter min_size (default 5.0) is the minimum size of the graphical object, max_size (default 100.0) is the maximum size and transform is a one argument function that will be used to transform the attribute value (defaults to lambda x: x).
ScaleShape(column)

Map the shape of the object to attribute value. The attribute has to be categorical.

ScaleRandomColour(column)

Assign a random colour to a value of categorical attribute specified by column.
IO TOOLS (TEXT, CSV, HDF5, ...)

The pandas I/O API is a set of top level reader functions accessed like `pd.read_csv()` that generally return a pandas object.

- `read_csv`
- `read_excel`
- `read_hdf`
- `read_sql`
- `read_json`
- `read_msgpack` (experimental)
- `read_html`
- `read_gbq` (experimental)
- `read_stata`
- `read_clipboard`
- `read_pickle`

The corresponding writer functions are object methods that are accessed like `df.to_csv()`

- `to_csv`
- `to_excel`
- `to_hdf`
- `to_sql`
- `to_json`
- `to_msgpack` (experimental)
- `to_html`
- `to_gbq` (experimental)
- `to_stata`
- `to_clipboard`
- `to_pickle`

Here is an informal performance comparison for some of these IO methods.
Note: For examples that use the `StringIO` class, make sure you import it according to your Python version, i.e. `from StringIO import StringIO` for Python 2 and `from io import StringIO` for Python 3.

23.1 CSV & Text files

The two workhorse functions for reading text files (a.k.a. flat files) are `read_csv()` and `read_table()`. They both use the same parsing code to intelligently convert tabular data into a DataFrame object. See the cookbook for some advanced strategies.

They can take a number of arguments:

- `filepath_or_buffer`: Either a string path to a file, URL (including http, ftp, and S3 locations), or any object with a `read` method (such as an open file or `StringIO`).
- `sep` or `delimiter`: A delimiter / separator to split fields on. `read_csv` is capable of inferring the delimiter automatically in some cases by “sniffing.” The separator may be specified as a regular expression; for instance you may use ‘|s*’ to indicate a pipe plus arbitrary whitespace.
- `delim_whitespace`: Parse whitespace-delimited (spaces or tabs) file (much faster than using a regular expression)
- `compression`: decompress ‘gzip’ and ‘bz2’ formats on the fly.
- `dialect`: string or `csv.Dialect` instance to expose more ways to specify the file format
- `dtype`: A data type name or a dict of column name to data type. If not specified, data types will be inferred. (Unsupported with `engine='python'`)
- `header`: row number(s) to use as the column names, and the start of the data. Defaults to 0 if no `names` passed, otherwise None. Explicitly pass `header=0` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if `skip_blank_lines=True` (the default), so header=0 denotes the first line of data rather than the first line of the file.
- `skip_blank_lines`: whether to skip over blank lines rather than interpreting them as NaN values
- `skiprows`: A collection of numbers for rows in the file to skip. Can also be an integer to skip the first `n` rows
- `index_col`: column number, column name, or list of column numbers/names, to use as the `index` (row labels) of the resulting DataFrame. By default, it will number the rows without using any column, unless there is one more data column than there are headers, in which case the first column is taken as the index.
- `names`: List of column names to use as column names. To replace header existing in file, explicitly pass `header=0`.
- `na_values`: optional list of strings to recognize as NaN (missing values), either in addition to or in lieu of the default set.
- `true_values`: list of strings to recognize as `True`
- `false_values`: list of strings to recognize as `False`
- `keep_default_na`: whether to include the default set of missing values in addition to the ones specified in `na_values`
- `parse_dates`: if `True` then index will be parsed as dates (False by default). You can specify more complicated options to parse a subset of columns or a combination of columns into a single date column (list of ints or names, list of lists, or dict) [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column [[1, 3]] -> combine
columns 1 and 3 and parse as a single date column {'foo': [1, 3]} -> parse columns 1, 3 as date and call result 'foo'

- **keep_date_col**: if True, then date component columns passed into `parse_dates` will be retained in the output (False by default).
- **date_parser**: function to use to parse strings into datetime objects. If `parse_dates` is True, it defaults to the very robust `dateutil.parser`. Specifying this implicitly sets `parse_dates` as True. You can also use functions from community supported date converters from `date_converters.py`.
- **dayfirst**: if True then uses the DD/MM international/European date format (This is False by default)
- **thousands**: specifies the thousands separator. If not None, this character will be stripped from numeric dtypes. However, if it is the first character in a field, that column will be imported as a string. In the PythonParser, if not None, then parser will try to look for it in the output and parse relevant data to numeric dtypes. Because it has to essentially scan through the data again, this causes a significant performance hit so only use if necessary.
- **lineterminator**: string (length 1), default None, Character to break file into lines. Only valid with C parser
- **quotechar**: string, The character to used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.
- **quoting**: int, Controls whether quotes should be recognized. Values are taken from `csv.QUOTE_*` values. Acceptable values are 0, 1, 2, and 3 for QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONE, and QUOTE_NONNUMERIC, respectively.
- **skipinitialspace**: boolean, default False, Skip spaces after delimiter
- **escapechar**: string, to specify how to escape quoted data
- **comment**: Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines, fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if `comment='#'`, parsing '#emptyn1,2,3na,b,c' with `header=0` will result in ‘1,2,3’ being treated as the header.
- **nrows**: Number of rows to read out of the file. Useful to only read a small portion of a large file
- **iterator**: If True, return a `TextFileReader` to enable reading a file into memory piece by piece
- **chunksize**: An number of rows to be used to “chunk” a file into pieces. Will cause an `TextFileReader` object to be returned. More on this below in the section on iterating and chunking
- **skip_footer**: number of lines to skip at bottom of file (default 0) (Unsupported with engine='c')
- **converters**: a dictionary of functions for converting values in certain columns, where keys are either integers or column labels
- **encoding**: a string representing the encoding to use for decoding unicode data, e.g. ‘utf-8’ or ‘latin-1’. Full list of Python standard encodings
- **verbose**: show number of NA values inserted in non-numeric columns
- **squeeze**: if True then output with only one column is turned into Series
- **error_bad_lines**: if False then any lines causing an error will be skipped bad lines
- **usecols**: a subset of columns to return, results in much faster parsing time and lower memory usage.
- **mangle_dupe_cols**: boolean, default True, then duplicate columns will be specified as ‘X.0’...’X,N’, rather than ‘X’...’X’
- **tupleize_cols**: boolean, default False, if False, convert a list of tuples to a multi-index of columns, otherwise, leave the column index as a list of tuples
• `float_precision`: string, default None. Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, ‘high’ for the high-precision converter, and ‘round_trip’ for the round-trip converter.

Consider a typical CSV file containing, in this case, some time series data:

```python
In [1]: print(open('foo.csv').read())
date,A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5
```

The default for `read_csv` is to create a DataFrame with simple numbered rows:

```python
In [2]: pd.read_csv('foo.csv')
Out[2]:
 date A B C
0 20090101 a 1 2
1 20090102 b 3 4
2 20090103 c 4 5
```

In the case of indexed data, you can pass the column number or column name you wish to use as the index:

```python
In [3]: pd.read_csv('foo.csv', index_col=0)
Out[3]:
 A B C
date
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5
```

```python
In [4]: pd.read_csv('foo.csv', index_col='date')
Out[4]:
 A B C
date
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5
```

You can also use a list of columns to create a hierarchical index:

```python
In [5]: pd.read_csv('foo.csv', index_col=[0, 'A'])
Out[5]:
 B C
date
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5
```

The `dialect` keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but you can specify either the dialect name or a `csv.Dialect` instance.

Suppose you had data with unenclosed quotes:

```python
In [6]: print(data)
label1,label2,label3
index1,"a,c,e
index2,b,d,f
```

By default, `read_csv` uses the Excel dialect and treats the double quote as the quote character, which causes it to fail when it finds a newline before it finds the closing double quote.
We can get around this using `dialect`:

```
In [7]: dia = csv.excel()

In [8]: dia.quoting = csv.QUOTE_NONE

In [9]: pd.read_csv(StringIO(data), dialect=dia)
```

```
Out[9]:

 label1 label2 label3
index1 a c e
index2 b d f
```

All of the dialect options can be specified separately by keyword arguments:

```
In [10]: data = 'a,b,c~1,2,3~4,5,6'

In [11]: pd.read_csv(StringIO(data), lineterminator='~')
```

```
Out[11]:

 a b c
0 1 2 3
1 4 5 6
```

Another common dialect option is `skipinitialspace`, to skip any whitespace after a delimiter:

```
In [12]: data = 'a, b, c

 1, 2, 3

 4, 5, 6'

In [13]: print(data)

a, b, c
1, 2, 3
4, 5, 6

In [14]: pd.read_csv(StringIO(data), skipinitialspace=True)
```

```
Out[14]:

 a b c
0 1 2 3
1 4 5 6
```

The parsers make every attempt to “do the right thing” and not be very fragile. Type inference is a pretty big deal. So if a column can be coerced to integer dtype without altering the contents, it will do so. Any non-numeric columns will come through as object dtype as with the rest of pandas objects.

### 23.1.1 Specifying column data types

Starting with v0.10, you can indicate the data type for the whole DataFrame or individual columns:

```
In [15]: data = 'a,b,c

 1,2,3

 4,5,6

 7,8,9'

In [16]: print(data)

a, b, c
1, 2, 3
4, 5, 6
7, 8, 9

In [17]: df = pd.read_csv(StringIO(data), dtype=object)

In [18]: df
```

```
Out[18]:

 a b c
0 1 2 3
```
In [19]: df[‘a’][0]
Out[19]: ’1’

In [20]: df = pd.read_csv(StringIO(data), dtype={‘b’: object, ‘c’: np.float64})

In [21]: df.dtypes
Out[21]:
   a     int64
   b    object
   c  float64
    dtype: object

Note:  The dtype option is currently only supported by the C engine. Specifying dtype with engine other than ‘c’ raises a ValueError.

23.1.2 Handling column names

A file may or may not have a header row. pandas assumes the first row should be used as the column names:

In [22]: data = ’a,b,c
   1,2,3
   4,5,6
   7,8,9’

In [23]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [24]: pd.read_csv(StringIO(data), names=[‘foo’, ‘bar’, ‘baz’], header=0)
Out[24]:
   foo  bar  baz
  0 1 2 3
  1 4 5 6
  2 7 8 9

By specifying the names argument in conjunction with header you can indicate other names to use and whether or not to throw away the header row (if any):

In [25]: print(data)
a,b,c
1,2,3
4,5,6
7,8,9

In [26]: pd.read_csv(StringIO(data), names=[’foo’, ’bar’, ’baz’], header=0)
Out[26]:
   foo  bar  baz
  0 1 2 3
  1 4 5 6
  2 7 8 9

In [27]: pd.read_csv(StringIO(data), names=[’foo’, ’bar’, ’baz’], header=None)
Out[27]:
   foo  bar  baz
23.1.3 Filtering columns (usecols)

The `usecols` argument allows you to select any subset of the columns in a file, either using the column names or position numbers:

```python
In [30]: data = 'a,b,c,d\n1,2,3,foo\n4,5,6,bar\n7,8,9,baz'

In [31]: pd.read_csv(StringIO(data))
Out[31]:
 a b c d
0 1 2 3
1 4 5 6 bar
2 7 8 9 baz

In [32]: pd.read_csv(StringIO(data), usecols=['b', 'd'])
Out[32]:
 b d
0 2 foo
1 5 bar
2 8 baz

In [33]: pd.read_csv(StringIO(data), usecols=[0, 2, 3])
Out[33]:
 a c d
0 1 3 foo
1 4 6 bar
2 7 9 baz
```

23.1.4 Ignoring line comments and empty lines

If the `comment` parameter is specified, then completely commented lines will be ignored. By default, completely blank lines will be ignored as well. Both of these are API changes introduced in version 0.15.

```python
In [34]: data = '"a,b,c\n\n# commented line\n1,2,3\n4,5,6"

In [35]: print(data)
a,b,c
1,2,3
```
4,5,6

# commented line
In [36]: pd.read_csv(StringIO(data), comment='#')
Out[36]:
   a  b  c
0  1  2  3
1  4  5  6

If `skip_blank_lines=False`, then `read_csv` will not ignore blank lines:

In [37]: data = 'a,b,c
1,2,3
4,5,6'

In [38]: pd.read_csv(StringIO(data), skip_blank_lines=False)
Out[38]:
   a  b  c
0 NaN NaN NaN
1  1  2  3
2 NaN NaN NaN
3 NaN NaN NaN
4  4  5  6
### Warning
The presence of ignored lines might create ambiguities involving line numbers: the parameter `header` uses row numbers (ignoring commented/empty lines), while `skiprows` uses line numbers (including commented/empty lines):

```python
In [39]: data = '#comment
 na,b,c
 na,B,C
 n1,2,3

In [40]: pd.read_csv(StringIO(data), comment='#', header=1)
Out[40]:
 A B C
0 1 2 3

In [41]: data = 'A,B,C
 #comment
 a,b,c
 1,2,3

In [42]: pd.read_csv(StringIO(data), comment='#', skiprows=2)
Out[42]:
 a b c
0 1 2 3
```

If both `header` and `skiprows` are specified, `header` will be relative to the end of `skiprows`. For example:

```python
In [43]: data = '# empty
 second empty line
 third empty
 X,Y,Z
 1,2,3
 A,B,C
 1,2.,4.
 5.,NaN,10.0

In [44]: print(data)
empty
second empty line
third empty line
X,Y,Z
1,2,3
A,B,C
1,2.,4.
5.,NaN,10.0

In [45]: pd.read_csv(StringIO(data), comment='#', skiprows=4, header=1)
Out[45]:
 A B C
0 1 2 4
1 5 NaN 10
```

### 23.1.5 Dealing with Unicode Data

The `encoding` argument should be used for encoded unicode data, which will result in byte strings being decoded to unicode in the result:

```python
In [46]: data = b'word,length
 träumen,7
 grüße,5'.decode('utf8').encode('latin-1')

In [47]: df = pd.read_csv(BytesIO(data), encoding='latin-1')

In [48]: df
Out[48]:
 word length
0 Träumen 7
1 Grüße 5
```

```python
In [49]: df['word'][1] # 23.1. CSV & Text files
```
Some formats which encode all characters as multiple bytes, like UTF-16, won’t parse correctly at all without specifying the encoding. Full list of Python standard encodings

### 23.1.6 Index columns and trailing delimiters

If a file has one more column of data than the number of column names, the first column will be used as the DataFrame’s row names:

```
In [50]: data = 'a,b,c
4,apple,bat,5.7
8,orange,cow,10'
```

```
In [51]: pd.read_csv(StringIO(data))
Out[51]:
 a b c
0 4 apple bat 5.7
1 8 orange cow 10.0
```

```
In [52]: data = 'index,a,b,c
4,apple,bat,5.7
8,orange,cow,10'
```

```
In [53]: pd.read_csv(StringIO(data), index_col=0)
Out[53]:
 a b c
index
0 4 apple bat 5.7
1 8 orange cow 10.0
```

Ordinarily, you can achieve this behavior using the `index_col` option.

There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing the parser. To explicitly disable the index column inference and discard the last column, pass `index_col=False`:

```
In [54]: data = 'a,b,c
4,apple,bat,
8,orange,cow,'
```

```
In [55]: print(data)
a,b,c
4,apple,bat,
8,orange,cow,
```

```
In [56]: pd.read_csv(StringIO(data))
Out[56]:
 a b c
0 4 apple bat NaN
1 8 orange cow NaN
```

```
In [57]: pd.read_csv(StringIO(data), index_col=False)
Out[57]:
 a b c
0 4 apple bat
1 8 orange cow
```

### 23.1.7 Specifying Date Columns

To better facilitate working with datetime data, `read_csv()` and `read_table()` use the keyword arguments `parse_dates` and `date_parser` to allow users to specify a variety of columns and date/time formats to turn the input text data into `datetime` objects.
The simplest case is to just pass in `parse_dates=True`:

```python
Use a column as an index, and parse it as dates.
In [58]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True)
```

```python
In [59]: df
Out[59]:
 A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5
```

```
These are python datetime objects
In [60]: df.index
Out[60]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2009-01-01, ..., 2009-01-03]
Length: 3, Freq: None, Timezone: None
```

It is often the case that we may want to store date and time data separately, or store various date fields separately. The `parse_dates` keyword can be used to specify a combination of columns to parse the dates and/or times from.

You can specify a list of column lists to `parse_dates`, the resulting date columns will be prepended to the output (so as to not affect the existing column order) and the new column names will be the concatenation of the component column names:

```python
In [61]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900

In [62]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]])
```

```python
In [63]: df
Out[63]:
 1_2 1_3 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
```

By default the parser removes the component date columns, but you can choose to retain them via the `keep_date_col` keyword:

```python
In [64]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]],
 keep_date_col=True)
 ...
```

```python
In [65]: df
Out[65]:
 1_2 1_3 0 1 2 \
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 19990127 19:00:00
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 19990127 20:00:00
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD 19990127 21:00:00
```

23.1. CSV & Text files 649
Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other words, `parse_dates=[1, 2]` indicates that the second and third columns should each be parsed as separate date columns while `parse_dates=[[1, 2]]` means the two columns should be parsed into a single column.

You can also use a dict to specify custom name columns:

```python
In [66]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
In [67]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec)
In [68]: df
Out[68]:
 nominal actual
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:18:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
```

It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column is prepended to the data. The `index_col` specification is based off of this new set of columns rather than the original data columns:

```python
In [69]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
In [70]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec, index_col=0) #index is the nominal column
In [71]: df
Out[71]:
 actual
nominal
1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
1999-01-27 21:18:00 1999-01-27 21:18:00 KORD -0.99
1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
```

Note: `read_csv` has a fast_path for parsing datetime strings in iso8601 format, e.g. “2000-01-01T00:01:02+00:00” and similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly faster, ~20x has been observed.
Note: When passing a dict as the parse_dates argument, the order of the columns prepended is not guaranteed, because dict objects do not impose an ordering on their keys. On Python 2.7+ you may use collections.OrderedDict instead of a regular dict if this matters to you. Because of this, when using a dict for ‘parse_dates’ in conjunction with the index_col argument, it’s best to specify index_col as a column label rather than as an index on the resulting frame.

23.1.8 Specifying method for floating-point conversion

The parameter float_precision can be specified in order to use a specific floating-point converter during parsing with the C engine. The options are the ordinary converter, the high-precision converter, and the round-trip converter (which is guaranteed to round-trip values after writing to a file). For example:

```
In [72]: val = '0.30661019380705471566981359501369297504425048828125'
In [73]: data = 'a,b,c\n1,2,{}'.format(val)
In [74]: abs(pd.read_csv(StringIO(data), engine='c', float_precision=None)['c'][0] - float(val))
Out[74]: 0.0
In [75]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='high')['c'][0] - float(val))
Out[75]: 5.5511151231257827e-17
In [76]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='round_trip')['c'][0] - float(val))
Out[76]: 0.0
```

23.1.9 Date Parsing Functions

Finally, the parser allows you can specify a custom date_parser function to take full advantage of the flexibility of the date parsing API:

```
In [77]: import pandas.io.date_converters as conv
In [78]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
......: date_parser=conv.parse_date_time)
......:
In [79]: df
Out[79]:
 nominal actual 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
```

You can explore the date parsing functionality in date_converters.py and add your own. We would love to turn this module into a community supported set of date/time parsers. To get you started, date_converters.py contains functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second columns. It also contains a generic_parser function so you can curry it with a function that deals with a single date rather than the entire array.
23.1.10 Inferring Datetime Format

If you have `parse_dates` enabled for some or all of your columns, and your datetime strings are all formatted the same way, you may get a large speed up by setting `infer_datetime_format=True`. If set, pandas will attempt to guess the format of your datetime strings, and then use a faster means of parsing the strings. 5-10x parsing speeds have been observed. pandas will fallback to the usual parsing if either the format cannot be guessed or the format that was guessed cannot properly parse the entire column of strings. So in general, `infer_datetime_format` should not have any negative consequences if enabled.

Here are some examples of datetime strings that can be guessed (All representing December 30th, 2011 at 00:00:00)

- “2011/12/30”
- “20111230”
- “20111230 00:00:00”
- “12/30/2011 00:00:00”
- “30/Dec/2011 00:00:00”
- “30/December/2011 00:00:00”

`infer_datetime_format` is sensitive to `dayfirst`. With `dayfirst=True`, it will guess “01/12/2011” to be December 1st. With `dayfirst=False` (default) it will guess “01/12/2011” to be January 12th.

```python
Try to infer the format for the index column
In [80]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
 infer_datetime_format=True)
....:
In [81]: df
Out[81]:
A B C
date
2009-01-01 a 1 2
2009-01-02 b 3 4
2009-01-03 c 4 5
```

23.1.11 International Date Formats

While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For convenience, a `dayfirst` keyword is provided:

```python
In [82]: print(open('tmp.csv').read())
date,value,cat
1/6/2000,5,a
2/6/2000,10,b
3/6/2000,15,c
In [83]: pd.read_csv('tmp.csv', parse_dates=[0])
Out[83]:
 date value cat
0 2000-01-06 5 a
1 2000-02-06 10 b
2 2000-03-06 15 c
In [84]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
Out[84]:
 date value cat
0 2000-01-06 5 a
1 2000-02-06 10 b
2 2000-03-06 15 c
```
23.1.12 Thousand Separators

For large numbers that have been written with a thousands separator, you can set the `thousands` keyword to a string of length 1 so that integers will be parsed correctly:

By default, numbers with a thousands separator will be parsed as strings

```python
In [85]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [86]: df = pd.read_csv('tmp.csv', sep='|')
In [87]: df
Out[87]:
 ID level category
0 Patient1 123,000 x
1 Patient2 23,000 y
2 Patient3 1,234,018 z

In [88]: df.level.dtype
Out[88]: dtype('O')
```

The `thousands` keyword allows integers to be parsed correctly

```python
In [89]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [90]: df = pd.read_csv('tmp.csv', sep='|', thousands=',')
In [91]: df
Out[91]:
 ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z

In [92]: df.level.dtype
Out[92]: dtype('int64')
```

23.1.13 NA Values

To control which values are parsed as missing values (which are signified by NaN), specify a list of strings in `na_values`. If you specify a number (a float, like 5.0 or an integer like 5), the corresponding equivalent values will also imply a missing value (in this case effectively [5.0,5] are recognized as NaN).
To completely override the default values that are recognized as missing, specify `keep_default_na=False`. The default NaN recognized values are `['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '
#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan']`.

```
read_csv(path, na_values=[5])
```

the default values, in addition to 5, 5.0 when interpreted as numbers are recognized as NaN

```
read_csv(path, keep_default_na=False, na_values=[''])
```

only an empty field will be NaN

```
read_csv(path, keep_default_na=False, na_values=['NA', '0'])
```

only NA and 0 as strings are NaN

```
read_csv(path, na_values=['Nope'])
```

the default values, in addition to the string "Nope" are recognized as NaN

### 23.1.14 Infinity

Inf like values will be parsed as `np.inf` (positive infinity), and `-inf` as `-np.inf` (negative infinity). These will ignore the case of the value, meaning Inf, will also be parsed as `np.inf`.

### 23.1.15 Comments

Sometimes comments or meta data may be included in a file:

```python
In [93]: print(open('tmp.csv').read())
ID,level,category
Patient1,123000,x # really unpleasant
Patient2,23000,y # wouldn't take his medicine
Patient3,1234018,z # awesome
```

By default, the parse includes the comments in the output:

```python
In [94]: df = pd.read_csv('tmp.csv')
In [95]: df
Out[95]:
 ID level category
0 Patient1 123000 x # really unpleasant
1 Patient2 23000 y # wouldn’t take his medicine
2 Patient3 1234018 z # awesome
```

We can suppress the comments using the `comment` keyword:

```python
In [96]: df = pd.read_csv('tmp.csv', comment='#')
In [97]: df
Out[97]:
 ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z
```
23.1.16 Returning Series

Using the `squeeze` keyword, the parser will return output with a single column as a `Series`:

```python
In [98]: print(open('tmp.csv').read())
level
Patient1,123000
Patient2,23000
Patient3,1234018

In [99]: output = pd.read_csv('tmp.csv', squeeze=True)

In [100]: output
Out[100]:
Patient1 123000
Patient2 23000
Patient3 1234018
Name: level, dtype: int64

In [101]: type(output)
Out[101]: pandas.core.series.Series
```

23.1.17 Boolean values

The common values `True`, `False`, `TRUE`, and `FALSE` are all recognized as boolean. Sometime you would want to recognize some other values as being boolean. To do this use the `true_values` and `false_values` options:

```python
In [102]: data= 'a,b,c
1,Yes,2
3,No,4'

In [103]: print(data)
a,b,c
1,Yes,2
3,No,4

In [104]: pd.read_csv(StringIO(data))
Out[104]:
 a b c
0 1 Yes 2
1 3 False 4

In [105]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[105]:
 a b c
0 1 True 2
1 3 False 4
```

23.1.18 Handling “bad” lines

Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values filled in the trailing fields. Lines with too many will cause an error by default:

```python
In [27]: data = 'a,b,c\n1,2,3\n4,5,6,7\n8,9,10'

In [28]: pd.read_csv(StringIO(data))

```

23.1. CSV & Text files
CParserError Traceback (most recent call last)
CParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4

You can elect to skip bad lines:

In [29]: pd.read_csv(StringIO(data), error_bad_lines=False)
Skipping line 3: expected 3 fields, saw 4

Out[29]:
   a  b  c
0 1  2  3
1 8  9 10

23.1.19 Quoting and Escape Characters

Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use backslashes; to properly parse this data, you should pass the escapechar option:

In [106]: data = 'a,b
   
   "hello, \"Bob\\", nice to see you",5'
In [107]: print(data)
a,b
"hello, "Bob", nice to see you",5
In [108]: pd.read_csv(StringIO(data), escapechar='\\')
Out[108]:
   a   b
0 hello, "Bob", nice to see you 5

23.1.20 Files with Fixed Width Columns

While read_csv reads delimited data, the read_fwf() function works with data files that have known and fixed column widths. The function parameters to read_fwf are largely the same as read_csv with two extra parameters:

- colspecs: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to]). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data. Default behaviour, if not specified, is to infer.
- widths: A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous.

Consider a typical fixed-width data file:

In [109]: print(open('bar.csv').read())
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3

In order to parse this file into a DataFrame, we simply need to supply the column specifications to the read_fwf function along with the file name:

In [110]:(colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)]
In [111]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0)
In [112]: df
Out[112]:
     1     2     3
0  id8141  360.242940  149.910199  11950.7
1  id1594  444.953632  166.985655  11788.4
2  id1849  364.136849  183.628767  11806.2
3  id1230  413.836124  184.375703  11916.8
4  id1948  502.953953  173.237159  12468.3

Note how the parser automatically picks column names X.<column number> when header=None argument is specified. Alternatively, you can supply just the column widths for contiguous columns:

#Widths are a list of integers
In [113]: widths = [6, 14, 13, 10]

In [114]: df = pd.read_fwf('bar.csv', widths=widths, header=None)

In [115]: df
Out[115]:
     1     2     3
0  id8141  360.242940  149.910199  11950.7
1  id1594  444.953632  166.985655  11788.4
2  id1849  364.136849  183.628767  11806.2
3  id1230  413.836124  184.375703  11916.8
4  id1948  502.953953  173.237159  12468.3

The parser will take care of extra white spaces around the columns so it’s ok to have extra separation between the columns in the file. New in version 0.13.0. By default, read_fwf will try to infer the file’s colspecs by using the first 100 rows of the file. It can do it only in cases when the columns are aligned and correctly separated by the provided delimiter (default delimiter is whitespace).

In [116]: df = pd.read_fwf('bar.csv', header=None, index_col=0)

In [117]: df
Out[117]:
     1     2     3
0  id8141  360.242940  149.910199  11950.7
1  id1594  444.953632  166.985655  11788.4
2  id1849  364.136849  183.628767  11806.2
3  id1230  413.836124  184.375703  11916.8
4  id1948  502.953953  173.237159  12468.3

23.1.21 Files with an “implicit” index column

Consider a file with one less entry in the header than the number of data column:

In [118]: print(open('foo.csv').read())
A,B,C
20090101,a,1,2
20090102,b,3,4
20090103,c,4,5

In this special case, read_csv assumes that the first column is to be used as the index of the DataFrame:

In [119]: pd.read_csv('foo.csv')
Out[119]:

23.1. CSV & Text files

657
Note that the dates weren’t automatically parsed. In that case you would need to do as before:

\begin{verbatim}
In [120]: df = pd.read_csv('foo.csv', parse_dates=True)
In [121]: df.index
Out[121]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2009-01-01, ..., 2009-01-03]
Length: 3, Freq: None, Timezone: None
\end{verbatim}

\subsection*{23.1.22 Reading an index with a MultiIndex}

Suppose you have data indexed by two columns:

\begin{verbatim}
In [122]: print(open('data/mindex_ex.csv').read())
year,indiv,zit,xit
1977,"A",1.2,.6
1977,"B",1.5,.5
1977,"C",1.7,.8
1978,"A",.2,.06
1978,"B",.7,.2
1978,"C",.8,.3
1978,"D",.9,.5
1978,"E",1.4,.9
1979,"C",.2,.15
1979,"D",.14,.05
1979,"E",.5,.15
1979,"F",1.2,.5
1979,"G",3.4,1.9
1979,"H",5.4,2.7
1979,"I",6.4,1.2
\end{verbatim}

The \texttt{index_col} argument to \texttt{read_csv} and \texttt{read_table} can take a list of column numbers to turn multiple columns into a MultiIndex for the index of the returned object:

\begin{verbatim}
In [123]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0,1])
In [124]: df
Out[124]:
  zit  xit
year indiv
1977 A  1.20 0.60
 B  1.50 0.50
 C  1.70 0.80
1978 A  0.20 0.06
 B  0.70 0.20
 C  0.80 0.30
 D  0.90 0.50
 E  1.40 0.90
1979 C  0.20 0.15
 D  0.14 0.05
 E  0.50 0.15
 F  1.20 0.50
\end{verbatim}
G  3.40  1.90
H  5.40  2.70
I  6.40  1.20

In [125]: df.ix[1978]
Out[125]:
    zit  xit
  indiv
    A  0.2  0.06
    B  0.7  0.20
    C  0.8  0.30
    D  0.9  0.50
    E  1.4  0.90

23.1.23 Reading columns with a MultiIndex

By specifying list of row locations for the header argument, you can read in a MultiIndex for the columns. Specifying non-consecutive rows will skip the intervening rows. In order to have the pre-0.13 behavior of tupleizing columns, specify tupleize_cols=True.

In [126]: from pandas.util.testing import makeCustomDataframe as mkdf

In [127]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)

In [128]: df.to_csv('mi.csv')

In [129]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
C3,,C_l3_g0,C_l3_g1,C_l3_g2
R0,R1,,
   R_l0_g0,R_l0_g1,R_l0_g2
   R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2
   R_l0_g2,R_l2_g2,R2C0,R2C1,R2C2
   R_l0_g3,R_l3_g3,R3C0,R3C1,R3C2
   R_l0_g4,R_l4_g4,R4C0,R4C1,R4C2

In [130]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1])
Out[130]:
     C0     C_l0_g0     C_l0_g1     C_l0_g2
     C1     C_l1_g0     C_l1_g1     C_l1_g2
     C2     C_l2_g0     C_l2_g1     C_l2_g2
     C3     C_l3_g0     C_l3_g1     C_l3_g2
     R0     R1
   R_l0_g0 R_l0_g1    ROC0    ROC1    ROC2
   R_l0_g1 R_l0_g1    R1C0    R1C1    R1C2
   R_l0_g2 R_l0_g2    R2C0    R2C1    R2C2
   R_l0_g3 R_l0_g3    R3C0    R3C1    R3C2
   R_l0_g4 R_l0_g4    R4C0    R4C1    R4C2

Starting in 0.13.0, read_csv will be able to interpret a more common format of multi-columns indices.

In [131]: print(open('mi2.csv').read())
,a,a,a,b,c,c
    q,r,s,t,u,v

23.1. CSV & Text files
pandas: powerful Python data analysis toolkit, Release 0.15.1

one, 1, 2, 3, 4, 5, 6
two, 7, 8, 9, 10, 11, 12

In [132]: pd.read_csv('mi2.csv', header=[0, 1], index_col=0)
Out[132]:
a  b  c
q  r  s  t  u  v
one  1  2  3  4  5  6
two  7  8  9  10  11  12

Note: If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(..., index=False)), then any names on the columns index will be lost.

23.1.24 Automatically “sniffing” the delimiter

read_csv is capable of inferring delimited (not necessarily comma-separated) files. YMMV, as pandas uses the csv.Sniffer class of the csv module.

In [133]: print(open('tmp2.sv').read())
:0:1:2:3
0:0.4691122999071863:-0.2828633443286633:-1.5090585031735124:-1.1356323710171934
1:1.2121120250208506:-0.1732146490533086:0.11920871129693428:-1.0442359662799567
2:-0.8618489633477999:-2.1045692188948086:-0.4949292740687813:1.0718038070373377
3:0.7215551622443669:-0.7067711336300845:-1.0395749851146963:0.27185988554282986
4:-0.42497232978883753:0.567020349793672:0.27623201927771873:-1.0874006912859915
5:-0.6736897080883703:0.11364840968888545:-1.4784265524732233:0.5249876671147046
6:0.40470521868023657:0.5770459859204837:-1.7150020161146375:-0.9392684835147725
7:-0.3706468582364464:-1.157892250641999:-1.344311812731667:0.8448851414248841
8:1.0757697837155535:-0.10904997528022223:1.6435630703622062:-1.4693879595399115
9:0.35702056413309086:-0.6746001037299882:-1.776903716971867:-0.968913124473498

In [134]: pd.read_csv('tmp2.sv')
Out[134]:
:0:1:2:3
0 0:0.4691122999071863:-0.2828633443286633:-1.5090585031735124:-1.1356323710171934
1 1:1.2121120250208506:-0.1732146490533086:0.11920871129693428:-1.0442359662799567
2:-0.8618489633477999:-2.1045692188948086:-0.4949292740687813:1.0718038070373377
3:0.7215551622443669:-0.7067711336300845:-1.0395749851146963:0.27185988554282986
4:-0.42497232978883753:0.567020349793672:0.27623201927771873:-1.0874006912859915
5:-0.6736897080883703:0.11364840968888545:-1.4784265524732233:0.5249876671147046
6:0.40470521868023657:0.5770459859204837:-1.7150020161146375:-0.9392684835147725
7:-0.3706468582364464:-1.157892250641999:-1.344311812731667:0.8448851414248841
8:1.0757697837155535:-0.10904997528022223:1.6435630703622062:-1.4693879595399115
9:0.35702056413309086:-0.6746001037299882:-1.776903716971867:-0.968913124473498

23.1.25 Iterating through files chunk by chunk

Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory, such as the following:

In [135]: print(open('tmp.sv').read())
:0|1|2|3
0:0.4691122999071863:-0.2828633443286633:-1.5090585031735124:-1.1356323710171934
1:1.2121120250208506:-0.1732146490533086:0.11920871129693428:-1.0442359662799567
2:-0.8618489633477999:-2.1045692188948086:-0.4949292740687813:1.0718038070373377

660 Chapter 23. IO Tools (Text, CSV, HDF5, ...)
In [136]: table = pd.read_table('tmp.sv', sep='|')

In [137]: table

Out[137]:

<table>
<thead>
<tr>
<th>Unnamed: 0</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-0.673689</td>
<td>0.113648</td>
<td>-1.478427</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>-0.370647</td>
<td>-1.157892</td>
<td>-1.344312</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1.075770</td>
<td>-0.109050</td>
<td>1.643563</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.357021</td>
<td>-0.674600</td>
<td>-1.776904</td>
</tr>
</tbody>
</table>

By specifying a chunksize to read_csv or read_table, the return value will be an iterable object of type TextFileReader:

In [138]: reader = pd.read_table('tmp.sv', sep='|', chunksize=4)

In [139]: reader

Out[139]: <pandas.io.parsers.TextFileReader at 0xa9282dcc>

In [140]: for chunk in reader:
   ....:     print(chunk)
   ....:

<table>
<thead>
<tr>
<th>Unnamed: 0</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
</tr>
</tbody>
</table>

Specifying iterator=True will also return the TextFileReader object:

In [141]: reader = pd.read_table('tmp.sv', sep='|', iterator=True)

In [142]: reader.get_chunk(5)

Out[142]:

<table>
<thead>
<tr>
<th>Unnamed: 0</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
</tr>
</tbody>
</table>

23.1. CSV & Text files
23.1.26 Specifying the parser engine

Under the hood pandas uses a fast and efficient parser implemented in C as well as a python implementation which is currently more feature-complete. Where possible pandas uses the C parser (specified as `engine='c'`), but may fall back to python if C-unsupported options are specified. Currently, C-unsupported options include:

- `sep` other than a single character (e.g. regex separators)
- `skip_header`
- `sep=None` with `delim_whitespace=False`

Specifying any of the above options will produce a `ParserWarning` unless the python engine is selected explicitly using `engine='python'`.

23.1.27 Writing to CSV format

The Series and DataFrame objects have an instance method `to_csv` which allows storing the contents of the object as a comma-separated-values file. The function takes a number of arguments. Only the first is required.

- `path_or_buf`: A string path to the file to write or a StringIO
- `sep`: Field delimiter for the output file (default ",")
- `na_rep`: A string representation of a missing value (default '')
- `float_format`: Format string for floating point numbers
- `cols`: Columns to write (default None)
- `header`: Whether to write out the column names (default True)
- `index`: whether to write row (index) names (default True)
- `index_label`: Column label(s) for index column(s) if desired. If None (default), and `header` and `index` are True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex).
- `mode`: Python write mode, default ‘w’
- `encoding`: a string representing the encoding to use if the contents are non-ASCII, for python versions prior to 3
- `line_terminator`: Character sequence denoting line end (default ‘\n’)
- `quoting`: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL)
- `quotechar`: Character used to quote fields (default ‘”’)
- `doublequote`: Control quoting of `quotechar` in fields (default True)
- `escapechar`: Character used to escape `sep` and `quotechar` when appropriate (default None)
- `chunksize`: Number of rows to write at a time
- `tupleize_cols`: If False (default), write as a list of tuples, otherwise write in an expanded line format suitable for `read_csv`
- `date_format`: Format string for datetime objects
23.1.28 Writing a formatted string

The DataFrame object has an instance method `to_string` which allows control over the string representation of the object. All arguments are optional:

- `buf` default None, for example a StringIO object
- `columns` default None, which columns to write
- `col_space` default None, minimum width of each column.
- `na_rep` default NaN, representation of NA value
- `formatters` default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted string
- `float_format` default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in the DataFrame.
- `sparsify` default True, set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.
- `index_names` default True, will print the names of the indices
- `index` default True, will print the index (ie, row labels)
- `header` default True, will print the column labels
- `justify` default left, will print column headers left- or right-justified

The Series object also has a `to_string` method, but with only the `buf, na_rep, float_format` arguments. There is also a `length` argument which, if set to True, will additionally output the length of the Series.

23.2 JSON

Read and write JSON format files and strings.

23.2.1 Writing JSON

A Series or DataFrame can be converted to a valid JSON string. Use `to_json` with optional parameters:

- `path_or_buf`: the pathname or buffer to write the output This can be None in which case a JSON string is returned
- `orient`:
  - `Series`:
    - default is index
    - allowed values are `{split, records, index}`
  - `DataFrame`:
    - default is columns
    - allowed values are `{split, records, index, columns, values}`
The format of the JSON string

<table>
<thead>
<tr>
<th>split</th>
<th>dict like {index -&gt; [index], columns -&gt; [columns], data -&gt; [values]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>records</td>
<td>list like [[column -&gt; value], ..., [column -&gt; value]]</td>
</tr>
<tr>
<td>index</td>
<td>dict like {index -&gt; {column -&gt; value}}</td>
</tr>
<tr>
<td>columns</td>
<td>dict like {column -&gt; {index -&gt; value}}</td>
</tr>
<tr>
<td>values</td>
<td>just the values array</td>
</tr>
</tbody>
</table>

- `date_format`: string, type of date conversion, ‘epoch’ for timestamp, ‘iso’ for ISO8601.
- `double_precision`: The number of decimal places to use when encoding floating point values, default 10.
- `force_ascii`: force encoded string to be ASCII, default True.
- `date_unit`: The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’ or ‘ns’ for seconds, milliseconds, microseconds and nanoseconds respectively. Default ‘ms’.
- `default_handler`: The handler to call if an object cannot otherwise be converted to a suitable format for JSON. Takes a single argument, which is the object to convert, and returns a serializable object.

Note NaN’s, NaT’s and None will be converted to null and datetime objects will be converted based on the `date_format` and `date_unit` parameters.

```
In [143]: dfj = DataFrame(randn(5, 2), columns=list('AB'))
In [144]: json = dfj.to_json()
In [145]: json
Out[145]: '{"A":{"0":-1.2945235903,"1":0.2766617129,"2":-0.0139597524,"3":-0.0061535699,"4":0.8957173022},"B":{"0":0.4137381054,"1":-0.472034511,"2":-0.3625429925,"3":-0.923060654,"4":0.8052440254}}
```

**Orient Options**

There are a number of different options for the format of the resulting JSON file / string. Consider the following DataFrame and Series:

```
In [146]: dfjo = DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
 columns=list('ABC'), index=list('xyz'))
In [147]: dfjo
Out[147]:
 A B C
x 1 4 7
y 2 5 8
z 3 6 9

In [148]: sjo = Series(dict(x=15, y=16, z=17), name='D')
In [149]: sjo
Out[149]:
 x y
x 15 16
z 17
Name: D, dtype: int64
```

**Column oriented** (the default for DataFrame) serializes the data as nested JSON objects with column labels acting as the primary index:
pandas: powerful Python data analysis toolkit, Release 0.15.1

In [150]: dfjo.to_json(orient="columns")
Out[150]: ’{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}’

Index oriented (the default for Series) similar to column oriented but the index labels are now primary:
In [151]: dfjo.to_json(orient="index")
In [152]: sjo.to_json(orient="index")
Out[152]: ’{"x":15,"y":16,"z":17}’

Record oriented serializes the data to a JSON array of column -> value records, index labels are not included. This is
useful for passing DataFrame data to plotting libraries, for example the JavaScript library d3.js:
In [153]: dfjo.to_json(orient="records")
In [154]: sjo.to_json(orient="records")
Out[154]: ’[15,16,17]’

Value oriented is a bare-bones option which serializes to nested JSON arrays of values only, column and index labels
are not included:
In [155]: dfjo.to_json(orient="values")
Out[155]: ’[[1,4,7],[2,5,8],[3,6,9]]’

Split oriented serializes to a JSON object containing separate entries for values, index and columns. Name is also
included for Series:
In [156]: dfjo.to_json(orient="split")
Out[156]: ’{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,6,9]]}’
In [157]: sjo.to_json(orient="split")
Out[157]: ’{"name":"D","index":["x","y","z"],"data":[15,16,17]}’

Note: Any orient option that encodes to a JSON object will not preserve the ordering of index and column labels
during round-trip serialization. If you wish to preserve label ordering use the split option as it uses ordered containers.

Date Handling
Writing in ISO date format
In [158]: dfd = DataFrame(randn(5, 2), columns=list(’AB’))
In [159]: dfd[’date’] = Timestamp(’20130101’)
In [160]: dfd = dfd.sort_index(1, ascending=False)
In [161]: json = dfd.to_json(date_format=’iso’)

In [162]: json
Out[162]: ’{"date":{"0":"2013-01-01T00:00:00.000Z","1":"2013-01-01T00:00:00.000Z","2":"2013-01-01T00:

Writing in ISO date format, with microseconds
In [163]: json = dfd.to_json(date_format=’iso’, date_unit=’us’)

23.2. JSON

665


Epoch timestamps, in seconds

In [165]: json = dfd.to_json(date_format='epoch', date_unit='s')
In [166]: json
Out[166]: '{"date":{"0":1356998400,"1":1356998400,"2":1356998400,"3":1356998400,"4":1356998400},"B":

Writing to a file, with a date index and a date column

In [167]: dfj2 = dfj.copy()
In [168]: dfj2['date'] = Timestamp('20130101')
In [169]: dfj2['ints'] = list(range(5))
In [170]: dfj2['bools'] = True
In [171]: dfj2.index = date_range('20130101', periods=5)
In [172]: dfj2.to_json('test.json')
In [173]: open('test.json').read()
Out[173]: '{"A":{"0":4},"bools":{"1356998400000":true,"1357084800000":true,"1357171200000":true,"1357257600000":true,"1357344000000":true}}'

Fallback Behavior

If the JSON serializer cannot handle the container contents directly it will fallback in the following manner:

- if a toDict method is defined by the unrecognised object then that will be called and its returned dict will be JSON serialized.
- if a default_handler has been passed to to_json that will be called to convert the object.
- otherwise an attempt is made to convert the object to a dict by parsing its contents. However if the object is complex this will often fail with an OverflowError.

Your best bet when encountering OverflowError during serialization is to specify a default_handler. For example timedelta can cause problems:

In [141]: from datetime import timedelta
In [142]: dftd = DataFrame([timedelta(23), timedelta(seconds=5), 42])
In [143]: dftd.to_json()

---------------------------------------------------------------------------
OverflowError Traceback (most recent call last)
OverflowError: Maximum recursion level reached

which can be dealt with by specifying a simple default_handler:

In [174]: dftd.to_json(default_handler=str)
Out[174]: '{"0":"23 days, 0:00:00","1":"0:00:05","2":42}’

In [175]: def my_handler(obj):
.....: return obj.total_seconds()
.....:

23.2.2 Reading JSON

Reading a JSON string to pandas object can take a number of parameters. The parser will try to parse a DataFrame if typ is not supplied or is None. To explicitly force Series parsing, pass typ=series

- filepath_or_buffer: a VALID JSON string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, S3, and file. For file URLs, a host is expected. For instance, a local file could be file: //localhost/path/to/table.json
- typ: type of object to recover (series or frame), default ‘frame’
- orient:
  - Series:
    - default is index
    - allowed values are {split, records, index}
  - DataFrame
    - default is columns
    - allowed values are {split, records, index, columns, values}

The format of the JSON string

<table>
<thead>
<tr>
<th>split</th>
<th>dict like {index -&gt; [index], columns -&gt; [columns], data -&gt; [values]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>records</td>
<td>list like [{column -&gt; value}, ... , {column -&gt; value}]</td>
</tr>
<tr>
<td>index</td>
<td>dict like {index -&gt; {column -&gt; value}}</td>
</tr>
<tr>
<td>columns</td>
<td>dict like {column -&gt; {index -&gt; value}}</td>
</tr>
<tr>
<td>values</td>
<td>just the values array</td>
</tr>
</tbody>
</table>

- dtype: if True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, default is True, apply only to the data
- convert_axes: boolean, try to convert the axes to the proper dtypes, default is True
- convert_dates: a list of columns to parse for dates; If True, then try to parse date-like columns, default is True
- keep_default_dates: boolean, default True. If parsing dates, then parse the default date-like columns
- numpy: direct decoding to numpy arrays. default is False; Supports numeric data only, although labels may be non-numeric. Also note that the JSON ordering MUST be the same for each term if numpy=True
- precise_float: boolean, default False. Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality
- date_unit: string, the timestamp unit to detect if converting dates. Default None. By default the timestamp precision will be detected, if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force timestamp precision to seconds, milliseconds, microseconds or nanoseconds respectively.

The parser will raise one of ValueError/TypeError/AssertionError if the JSON is not parseable.

If a non-default orient was used when encoding to JSON be sure to pass the same option here so that decoding produces sensible results, see Orient Options for an overview.
Data Conversion

The default of `convert_axes=True, dtype=True, and convert_dates=True` will try to parse the axes, and all of the data into appropriate types, including dates. If you need to override specific dtypes, pass a dict to `dtype`. `convert_axes` should only be set to `False` if you need to preserve string-like numbers (e.g. ‘1’, ‘2’) in an axes.

**Note:** Large integer values may be converted to dates if `convert_dates=True` and the data and / or column labels appear ‘date-like’. The exact threshold depends on the `date_unit` specified.

**Warning:** When reading JSON data, automatic coercing into dtypes has some quirks:
- an index can be reconstructed in a different order from serialization, that is, the returned order is not guaranteed to be the same as before serialization
- a column that was `float` data will be converted to `integer` if it can be done safely, e.g. a column of 1.
- `bool` columns will be converted to `integer` on reconstruction

Thus there are times where you may want to specify specific dtypes via the `dtype` keyword argument.

Reading from a JSON string:

```python
In [176]: pd.read_json(json)
Out[176]:
 A B date
0 -1.206412 2.565646 2013-01-01
1 1.431256 1.340309 2013-01-01
2 -1.170299 -0.226169 2013-01-01
3 0.410835 0.813850 2013-01-01
4 0.132003 -0.827317 2013-01-01
```

Reading from a file:

```python
In [177]: pd.read_json('test.json')
Out[177]:
 A B bools date ints
2013-01-01 -1.294524 0.413738 2013-01-01 0
2013-01-02 0.276662 -0.472035 2013-01-01 1
2013-01-03 -0.013960 -0.362543 2013-01-01 2
2013-01-04 -0.006154 -0.923061 2013-01-01 3
2013-01-05 0.895717 0.805244 2013-01-01 4
```

Don’t convert any data (but still convert axes and dates):

```python
In [178]: pd.read_json('test.json', dtype=object).dtypes
Out[178]:
 A object
 B object
 bools object
 date object
 ints object
dtype: object
```

Specify dtypes for conversion:

```python
In [179]: pd.read_json('test.json', dtype={'A' : 'float32', 'bools' : 'int8'}).dtypes
Out[179]:
 A float32
 B float64
 bools int8
 date datetime64[ns]```
Preserve string indices:

```
In [180]: si = DataFrame(np.zeros((4, 4)),
                   columns=list(range(4)),
                   index=[str(i) for i in range(4)])
......:

In [181]: si
Out[181]:
   0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

In [182]: si.index
Out[182]: Index(['0', '1', '2', '3'], dtype='object')

In [183]: si.columns
Out[183]: Int64Index([0, 1, 2, 3], dtype='int64')

In [184]: json = si.to_json()

In [185]: sij = pd.read_json(json, convert_axes=False)

In [186]: sij
Out[186]:
   0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0

In [187]: sij.index
Out[187]: Index(['0', '1', '2', '3'], dtype='object')

In [188]: sij.columns
Out[188]: Index(['0', '1', '2', '3'], dtype='object')

Dates written in nanoseconds need to be read back in nanoseconds:

```
In [189]: json = dfj2.to_json(date_unit='ns')

Try to parse timestamps as milliseconds -> Won’t Work

In [190]: dfju = pd.read_json(json, date_unit='ms')

In [191]: dfju
Out[191]:
 A B bools date ints
0 1.356998e+18 -1.294524 True 13569984000000000000 0
1 1.357085e+18 0.276662 True 13569984000000000000 1
2 1.357171e+18 -0.013960 True 13569984000000000000 2
3 1.357258e+18 -0.006154 True 13569984000000000000 3
4 1.357344e+18 0.895717 True 13569984000000000000 4

Let pandas detect the correct precision

23.2. JSON
In [192]: dfju = pd.read_json(json)

In [193]: dfju
Out[193]:
 A B bools date ints
2013-01-01 -1.294524 0.413738 True 2013-01-01 0
2013-01-02 0.276662 -0.472035 True 2013-01-01 1
2013-01-03 -0.013960 -0.362543 True 2013-01-01 2
2013-01-04 -0.006154 -0.923061 True 2013-01-01 3
2013-01-05 0.895717 0.805244 True 2013-01-01 4

Or specify that all timestamps are in nanoseconds
In [194]: dfju = pd.read_json(json, date_unit='ns')

In [195]: dfju
Out[195]:
 A B bools date ints
2013-01-01 -1.294524 0.413738 True 2013-01-01 0
2013-01-02 0.276662 -0.472035 True 2013-01-01 1
2013-01-03 -0.013960 -0.362543 True 2013-01-01 2
2013-01-04 -0.006154 -0.923061 True 2013-01-01 3
2013-01-05 0.895717 0.805244 True 2013-01-01 4

The Numpy Parameter

Note: This supports numeric data only. Index and columns labels may be non-numeric, e.g. strings, dates etc.

If numpy=True is passed to read_json an attempt will be made to sniff an appropriate dtype during deserialization and to subsequently decode directly to numpy arrays, bypassing the need for intermediate Python objects.

This can provide speedups if you are deserialising a large amount of numeric data:

In [196]: randfloats = np.random.uniform(-100, 1000, 10000)

In [197]: randfloats.shape = (1000, 10)

In [198]: dffloats = DataFrame(randfloats, columns=list('ABCDEFGHIJ'))

In [199]: jsonfloats = dffloats.to_json()

In [200]: timeit read_json(jsonfloats)
100 loops, best of 3: 10.7 ms per loop

In [201]: timeit read_json(jsonfloats, numpy=True)
100 loops, best of 3: 5.98 ms per loop

The speedup is less noticeable for smaller datasets:

In [202]: jsonfloats = dffloats.head(100).to_json()

In [203]: timeit read_json(jsonfloats)
100 loops, best of 3: 4.06 ms per loop

In [204]: timeit read_json(jsonfloats, numpy=True)
100 loops, best of 3: 3 ms per loop
Warning: Direct numpy decoding makes a number of assumptions and may fail or produce unexpected output if these assumptions are not satisfied:
- data is numeric.
- data is uniform. The dtype is sniffed from the first value decoded. A `ValueError` may be raised, or incorrect output may be produced if this condition is not satisfied.
- labels are ordered. Labels are only read from the first container, it is assumed that each subsequent row/column has been encoded in the same order. This should be satisfied if the data was encoded using `to_json` but may not be the case if the JSON is from another source.

23.2.3 Normalization

New in version 0.13.0. pandas provides a utility function to take a dict or list of dicts and normalize this semi-structured data into a flat table.

```python
In [205]: from pandas.io.json import json_normalize

In [206]: data = [{'state': 'Florida',
            'shortname': 'FL',
            'info': {
                'governor': 'Rick Scott',
                'counties': [{
                    'name': 'Dade',
                    'population': 12345,
                    'info': {
                        'governor': 'Rick Scott',
                        'counties': [{
                                        'name': 'Broward',
                                        'population': 40000,
                                        'info': {
                                            'governor': 'Rick Scott',
                                            'counties': [{
                                                            'name': 'Palm Beach',
                                                            'population': 60000}]}
                                        }]
                    }]
            },
            'counties': [{
                'state': 'Ohio',
                'shortname': 'OH',
                'info': {
                    'governor': 'John Kasich',
                    'counties': [{
                        'name': 'Summit',
                        'population': 1234},
                        'Cuyahoga',
                        'population': 1337}]}
        ]}

In [207]: json_normalize(data, 'counties', [state, shortname, ['info', 'governor']])
```

```plaintext
name population info.governor state shortname
Dade 12345 Rick Scott Florida FL
Broward 40000 Rick Scott Florida FL
Palm Beach 60000 Rick Scott Florida FL
Summit 1234 John Kasich Ohio OH
Cuyahoga 1337 John Kasich Ohio OH
```

23.3 HTML

23.3.1 Reading HTML Content

Warning: We highly encourage you to read the HTML parsing gotchas regarding the issues surrounding the BeautifulSoup4/html5lib/lxml parsers.

New in version 0.12.0. The top-level `read_html()` function can accept an HTML string/file/URL and will parse HTML tables into list of pandas DataFrames. Let’s look at a few examples.
Note: read_html returns a list of DataFrame objects, even if there is only a single table contained in the HTML content

Read a URL with no options

In [208]: url = 'http://www.fdic.gov/bank/individual/failed/banklist.html'

In [209]: dfs = read_html(url)

In [210]: dfs
Out[210]:
```
<table>
<thead>
<tr>
<th>Bank Name</th>
<th>City</th>
<th>ST</th>
<th>CERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontier Bank, FSB D/B/A El Paseo Bank</td>
<td>Palm Desert</td>
<td>CA</td>
<td>34738</td>
</tr>
<tr>
<td>The National Republic Bank of Chicago</td>
<td>Chicago</td>
<td>IL</td>
<td>916</td>
</tr>
<tr>
<td>NBRS Financial</td>
<td>Rising Sun</td>
<td>MD</td>
<td>4862</td>
</tr>
<tr>
<td>GreenChoice Bank, fsb</td>
<td>Chicago</td>
<td>IL</td>
<td>28462</td>
</tr>
<tr>
<td>Eastside Commercial Bank</td>
<td>Conyers</td>
<td>GA</td>
<td>58125</td>
</tr>
<tr>
<td>The Freedom State Bank</td>
<td>Freedom</td>
<td>OK</td>
<td>12483</td>
</tr>
<tr>
<td>Valley Bank</td>
<td>Fort Lauderdale</td>
<td>FL</td>
<td>21793</td>
</tr>
<tr>
<td>Hamilton Bank, NAEn Espanol</td>
<td>Miami</td>
<td>FL</td>
<td>24382</td>
</tr>
<tr>
<td>Sinclair National Bank</td>
<td>Gravette</td>
<td>AR</td>
<td>34248</td>
</tr>
<tr>
<td>Superior Bank, FSB</td>
<td>Hinsdale</td>
<td>IL</td>
<td>32646</td>
</tr>
<tr>
<td>Malta National Bank</td>
<td>Malta</td>
<td>OH</td>
<td>6629</td>
</tr>
<tr>
<td>First Alliance Bank &amp; Trust Co.</td>
<td>Manchester</td>
<td>NH</td>
<td>34264</td>
</tr>
<tr>
<td>National State Bank of Metropolis</td>
<td>Metropolis</td>
<td>IL</td>
<td>3815</td>
</tr>
<tr>
<td>Bank of Honolulu</td>
<td>Honolulu</td>
<td>HI</td>
<td>21029</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Acquiring Institution</th>
<th>Closing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank of Southern California, N.A.</td>
<td>November 7, 2014</td>
</tr>
<tr>
<td>State Bank of Texas</td>
<td>October 24, 2014</td>
</tr>
<tr>
<td>Howard Bank</td>
<td>October 17, 2014</td>
</tr>
<tr>
<td>Providence Bank, LLC</td>
<td>July 25, 2014</td>
</tr>
<tr>
<td>Community & Southern Bank</td>
<td>July 18, 2014</td>
</tr>
<tr>
<td>Alva State Bank & Trust Company</td>
<td>June 27, 2014</td>
</tr>
<tr>
<td>Landmark Bank, National Association</td>
<td>June 20, 2014</td>
</tr>
<tr>
<td>Israel Discount Bank of New York</td>
<td>January 11, 2002</td>
</tr>
<tr>
<td>Delta Trust & Bank</td>
<td>September 7, 2001</td>
</tr>
<tr>
<td>Superior Federal, FSB</td>
<td>July 27, 2001</td>
</tr>
<tr>
<td>North Valley Bank</td>
<td>May 3, 2001</td>
</tr>
<tr>
<td>Southern New Hampshire Bank & Trust</td>
<td>February 2, 2001</td>
</tr>
<tr>
<td>Banterra Bank of Marion</td>
<td>December 14, 2000</td>
</tr>
<tr>
<td>Bank of the Orient</td>
<td>October 13, 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Updated Date</th>
<th>Loss</th>
<th>Share Type</th>
<th>Agreement Terminated Termination Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 7, 2014</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>October 29, 2014</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>November 5, 2014</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>September 22, 2014</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>September 22, 2014</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>July 18, 2014</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>July 28, 2014</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>June 5, 2012</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>February 10, 2004</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>August 19, 2014</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>November 18, 2002</td>
<td>none</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Note: The data from the above URL changes every Monday so the resulting data above and the data below may be slightly different.

Read in the content of the file from the above URL and pass it to read_html as a string

In [211]: with open(file_path, 'r') as f:
 :
 dfs = read_html(f.read())
 :

In [212]: dfs
Out[212]:
[Bank Name City ST CERT |
 0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386
 1 Central Arizona Bank Scottsdale AZ 34527
 2 Sunrise Bank Valdosta GA 58185
 3 Pisgah Community Bank Asheville NC 58701
 4 Douglas County Bank Douglasville GA 21649
 5 Parkway Bank Lenoir NC 57158
 6 Chipola Community Bank Marianna FL 58034

499 Hamilton Bank, NAEs Espanol Miami FL 24382
500 Sinclair National Bank Gravette AR 34248
501 Superior Bank, FSB Hinsdale IL 32646
502 Malta National Bank Malta OH 6629
503 First Alliance Bank & Trust Co. Manchester NH 34264
504 National State Bank of Metropolis Metropolis IL 3815
505 Bank of Honolulu Honolulu HI 21029

 Acquiring Institution Closing Date Updated Date
 0 North Shore Bank, FSB May 31, 2013 May 31, 2013
 1 Western State Bank May 14, 2013 May 20, 2013
 2 Synovus Bank May 10, 2013 May 21, 2013
 3 Capital Bank, N.A. May 10, 2013 May 14, 2013
 4 Hamilton State Bank April 26, 2013 May 16, 2013
 5 CertusBank, National Association April 26, 2013 May 17, 2013
 6 First Federal Bank of Florida April 19, 2013 May 16, 2013

500 Delta Trust & Bank September 7, 2001 February 10, 2004
502 North Valley Bank May 3, 2001 November 18, 2002
503 Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003
504 Banterra Bank of Marion December 14, 2000 March 17, 2005
505 Bank of the Orient October 13, 2000 March 17, 2005

[506 rows x 7 columns]]

You can even pass in an instance of StringIO if you so desire

In [213]: with open(file_path, 'r') as f:
 :
 sio = StringIO(f.read())
In [214]: dfs = read_html(sio)

In [215]: dfs
Out[215]:

<table>
<thead>
<tr>
<th>Bank Name</th>
<th>City</th>
<th>ST</th>
<th>CERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Banks of Wisconsin d/b/a Bank of Kenosha</td>
<td>Kenosha</td>
<td>WI</td>
<td>35386</td>
</tr>
<tr>
<td>1 Central Arizona Bank</td>
<td>Scottsdale</td>
<td>AZ</td>
<td>34527</td>
</tr>
<tr>
<td>2 Sunrise Bank</td>
<td>Valdosta</td>
<td>GA</td>
<td>58185</td>
</tr>
<tr>
<td>3 Pisgah Community Bank</td>
<td>Asheville</td>
<td>NC</td>
<td>58701</td>
</tr>
<tr>
<td>4 Douglas County Bank</td>
<td>Douglasville</td>
<td>GA</td>
<td>21649</td>
</tr>
<tr>
<td>5 Parkway Bank</td>
<td>Lenoir</td>
<td>NC</td>
<td>57158</td>
</tr>
<tr>
<td>6 Chipola Community Bank</td>
<td>Marianna</td>
<td>FL</td>
<td>58034</td>
</tr>
<tr>
<td>499 Hamilton Bank, NAEn Espanol</td>
<td>Miami</td>
<td>FL</td>
<td>24382</td>
</tr>
<tr>
<td>500 Sinclair National Bank</td>
<td>Gravette</td>
<td>AR</td>
<td>34248</td>
</tr>
<tr>
<td>501 Superior Bank, FSB</td>
<td>Hinsdale</td>
<td>IL</td>
<td>32646</td>
</tr>
<tr>
<td>502 Malta National Bank</td>
<td>Malta</td>
<td>OH</td>
<td>6629</td>
</tr>
<tr>
<td>503 First Alliance Bank & Trust Co.</td>
<td>Manchester</td>
<td>NH</td>
<td>34264</td>
</tr>
<tr>
<td>504 National State Bank of Metropolis</td>
<td>Metropolis</td>
<td>IL</td>
<td>3815</td>
</tr>
<tr>
<td>505 Bank of Honolulu</td>
<td>Honolulu</td>
<td>HI</td>
<td>21029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acquiring Institution</th>
<th>Closing Date</th>
<th>Updated Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 North Shore Bank, FSB</td>
<td>May 31, 2013</td>
<td>May 31, 2013</td>
</tr>
<tr>
<td>1 Western State Bank</td>
<td>May 14, 2013</td>
<td>May 20, 2013</td>
</tr>
<tr>
<td>2 Synovus Bank</td>
<td>May 10, 2013</td>
<td>May 21, 2013</td>
</tr>
<tr>
<td>3 Capital Bank, N.A.</td>
<td>May 10, 2013</td>
<td>May 14, 2013</td>
</tr>
<tr>
<td>4 Hamilton State Bank</td>
<td>April 26, 2013</td>
<td>May 16, 2013</td>
</tr>
<tr>
<td>5 CertusBank, National Association</td>
<td>April 26, 2013</td>
<td>May 17, 2013</td>
</tr>
<tr>
<td>6 First Federal Bank of Florida</td>
<td>April 19, 2013</td>
<td>May 16, 2013</td>
</tr>
<tr>
<td>500 Delta Trust & Bank</td>
<td>September 7, 2001</td>
<td>February 10, 2004</td>
</tr>
<tr>
<td>502 North Valley Bank</td>
<td>May 3, 2001</td>
<td>November 18, 2002</td>
</tr>
<tr>
<td>503 Southern New Hampshire Bank & Trust</td>
<td>February 2, 2001</td>
<td>February 18, 2003</td>
</tr>
<tr>
<td>504 Banterra Bank of Marion</td>
<td>December 14, 2000</td>
<td>March 17, 2005</td>
</tr>
<tr>
<td>505 Bank of the Orient</td>
<td>October 13, 2000</td>
<td>March 17, 2005</td>
</tr>
</tbody>
</table>

[506 rows x 7 columns]

Note: The following examples are not run by the IPython evaluator due to the fact that having so many network-accessing functions slows down the documentation build. If you spot an error or an example that doesn’t run, please do not hesitate to report it over on pandas GitHub issues page.

Read a URL and match a table that contains specific text

```python
match = 'Metcalf Bank'
df_list = read_html(url, match=match)
```

Specify a header row (by default `<th>` elements are used to form the column index); if specified, the header row is taken from the data minus the parsed header elements (`<th>` elements).

```python
dfs = read_html(url, header=0)
```

Specify an index column
```python
dfs = read_html(url, index_col=0)

Specify a number of rows to skip
dfs = read_html(url, skiprows=0)

Specify a number of rows to skip using a list (xrange (Python 2 only) works as well)
dfs = read_html(url, skiprows=range(2))

Don’t infer numeric and date types
dfs = read_html(url, infer_types=False)

Specify an HTML attribute
dfs1 = read_html(url, attrs={'id': 'table'})
dfs2 = read_html(url, attrs={'class': 'sortable'})
print(np.array_equal(dfs1[0], dfs2[0]))  # Should be True

Use some combination of the above
dfs = read_html(url, match='Metcalf Bank', index_col=0)

Read in pandas to_html output (with some loss of floating point precision)
df = DataFrame(randn(2, 2))
s = df.to_html(float_format='{0:.40g}'.format)
dfin = read_html(s, index_col=0)

The lxml backend will raise an error on a failed parse if that is the only parser you provide (if you only have a single parser you can provide just a string, but it is considered good practice to pass a list with one string if, for example, the function expects a sequence of strings)
dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])

or

dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')

However, if you have bs4 and html5lib installed and pass None or ['lxml', 'bs4'] then the parse will most likely succeed. Note that as soon as a parse succeeds, the function will return.
dfs = read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml', 'bs4'])

23.3.2 Writing to HTML files

DataFrame objects have an instance method to_html which renders the contents of the DataFrame as an HTML table. The function arguments are as in the method to_string described above.

Note: Not all of the possible options for DataFrame.to_html are shown here for brevity’s sake. See to_html() for the full set of options.

```

```
In [218]: print(df.to_html())  # raw html
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
<td>0.496971</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
<td>1.857977</td>
</tr>
</tbody>
</table>

HTML:

The `columns` argument will limit the columns shown

In [219]: print(df.to_html(columns=[0]))
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
</tr>
</tbody>
</table>

HTML:

`float_format` takes a Python callable to control the precision of floating point values

In [220]: print(df.to_html(float_format='{:0.10f}'.format))
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
</tr>
</thead>

<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.1847438576</td>
<td>0.4969711327</td>
</tr>
<tr>
<th>1</th>
<td>-0.8562396763</td>
<td>1.8579766508</td>
</tr>
</tbody>
</table>

HTML:

`bold_rows` will make the row labels bold by default, but you can turn that off

```python
In [221]: df.to_html(bold_rows=False)
```

```html
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.184744</td>
<td> 0.496971</td>
</tr>
<tr>
<td>1</td>
<td>-0.856240</td>
<td> 1.857977</td>
</tr>
</tbody>
</table>
```

The classes argument provides the ability to give the resulting HTML table CSS classes. Note that these classes are appended to the existing `dataframe` class.

```python
In [222]: df.to_html(classes=['awesome_table_class', 'even_more_awesome_class'])
```

```html
<table border="1" class="dataframe awesome_table_class even_more_awesome_class">
<thead>
<tr style="text-align: right;">
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.184744</td>
<td> 0.496971</td>
</tr>
<tr>
<th>1</th>
<td>-0.856240</td>
<td> 1.857977</td>
</tr>
</tbody>
```

23.3. HTML
Finally, the escape argument allows you to control whether the “<”, “>” and “&” characters escaped in the resulting HTML (by default it is True). So to get the HTML without escaped characters pass escape=False

In [223]: df = DataFrame({'a': list('&<>'), 'b': randn(3)})

Escaped:

In [224]: print(df.to_html())

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>&amp;</td>
<td>-0.474063</td>
</tr>
<tr>
<td>1</td>
<td>&lt;</td>
<td>-0.230305</td>
</tr>
<tr>
<td>2</td>
<td>&gt;</td>
<td>-0.400654</td>
</tr>
</tbody>
</table>

Not escaped:

In [225]: print(df.to_html(escape=False))

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>&amp;</td>
<td>-0.474063</td>
</tr>
<tr>
<td>1</td>
<td>&lt;</td>
<td>-0.230305</td>
</tr>
<tr>
<td>2</td>
<td>&gt;</td>
<td>-0.400654</td>
</tr>
</tbody>
</table>
23.4 Excel files

The `read_excel()` method can read Excel 2003 (.xls) and Excel 2007 (.xlsx) files using the `xlrd` Python module and use the same parsing code as the above to convert tabular data into a DataFrame. See the *cookbook* for some advanced strategies.

Besides `read_excel` you can also read Excel files using the `ExcelFile` class. The following two commands are equivalent:

```python
using the ExcelFile class
xls = pd.ExcelFile('path_to_file.xls')
xls.parse('Sheet1', index_col=None, na_values=['NA'])

using the read_excel function
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
```

The class based approach can be used to read multiple sheets or to introspect the sheet names using the `sheet_names` attribute.

**Note:** The prior method of accessing `ExcelFile` has been moved from `pandas.io.parsers` to the top level namespace starting from pandas 0.12.0.

New in version 0.13. There are now two ways to read in sheets from an Excel file. You can provide either the index of a sheet or its name by passing different values for `sheet_name`.

- Pass a string to refer to the name of a particular sheet in the workbook.
- Pass an integer to refer to the index of a sheet. Indices follow Python convention, beginning at 0.
- The default value is `sheet_name=0`. This reads the first sheet.

Using the sheet name:

```python
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
```

Using the sheet index:

```python
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])
```
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])

Using all default values:

read_excel('path_to_file.xls')

It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read
in those columns. read_excel takes a parse_cols keyword to allow you to specify a subset of columns to parse.

If parse_cols is an integer, then it is assumed to indicate the last column to be parsed.

read_excel('path_to_file.xls', 'Sheet1', parse_cols=2)

If parse_cols is a list of integers, then it is assumed to be the file column indices to be parsed.

read_excel('path_to_file.xls', 'Sheet1', parse_cols=[0, 2, 3])

To write a DataFrame object to a sheet of an Excel file, you can use the to_excel instance method. The arguments
are largely the same as to_csv described above, the first argument being the name of the excel file, and the optional
second argument the name of the sheet to which the DataFrame should be written. For example:

df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')

Files with a .xls extension will be written using xlwt and those with a .xlsx extension will be written using
xlsxwriter (if available) or openpyxl.

The DataFrame will be written in a way that tries to mimic the REPL output. One difference from 0.12.0 is that the
index_label will be placed in the second row instead of the first. You can get the previous behaviour by setting
the merge_cells option in to_excel() to False:

df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)

The Panel class also has a to_excel instance method, which writes each DataFrame in the Panel to a separate sheet.
In order to write separate DataFrames to separate sheets in a single Excel file, one can pass an ExcelWriter.

with ExcelWriter('path_to_file.xlsx') as writer:
    df1.to_excel(writer, sheet_name='Sheet1')
    df2.to_excel(writer, sheet_name='Sheet2')

Note: Wringing a little more performance out of read_excel Internally, Excel stores all numeric data as floats.
Because this can produce unexpected behavior when reading in data, pandas defaults to trying to convert integers to
floats if it doesn’t lose information (1.0 --> 1). You can pass convert_float=False to disable this behavior,
which may give a slight performance improvement.

23.4.1 Excel writer engines

New in version 0.13. pandas chooses an Excel writer via two methods:

1. the engine keyword argument
2. the filename extension (via the default specified in config options)

By default, pandas uses the XlsxWriter for .xlsx and openpyxl for .xlsm files and xlwt for .xls files. If you have multiple engines installed, you can set the default engine through setting the config options
io.excel.xlsx.writer and io.excel.xls.writer. pandas will fall back on openpyxl for .xlsx files
if Xlsxwriter is not available.
To specify which writer you want to use, you can pass an engine keyword argument to `to_excel` and to `ExcelWriter`. The built-in engines are:

- openpyxl: This includes stable support for OpenPyxl 1.6.1 up to but not including 2.0.0, and experimental support for OpenPyxl 2.0.0 and later.
- xlsxwriter
- xlwt

```python
By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods.
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')

By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')

Or via pandas configuration.
from pandas import options
options.io.excel.xlsx.writer = 'xlsxwriter'
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
```

## 23.5 Clipboard

A handy way to grab data is to use the `read_clipboard` method, which takes the contents of the clipboard buffer and passes them to the `read_table` method. For instance, you can copy the following text to the clipboard (CTRL-C on many operating systems):

```
A B C
x 1 4 p
y 2 5 q
z 3 6 r
```

And then import the data directly to a DataFrame by calling:

```python
clipdf = pd.read_clipboard()
```

**In [226]:** clipdf

```
 A B C
0 x 1.0 4.0
1 y 2.0 5.0
2 z 3.0 6.0
```

The `to_clipboard` method can be used to write the contents of a DataFrame to the clipboard. Following which you can paste the clipboard contents into other applications (CTRL-V on many operating systems). Here we illustrate writing a DataFrame into clipboard and reading it back.

**In [227]:** df=pd.DataFrame(randn(5,3))

**In [228]:** df

```
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 0.734129
```
In [229]: df.to_clipboard()

In [230]: pd.read_clipboard()
Out[230]:
    0    1    2
 0 -0.288267 -0.084905  0.004772
 1  1.382989  0.343635 -1.253994
 2 -0.124925  0.212244  0.496654
 3  0.525417  1.238640 -1.210543
 4 -1.175743 -0.172372 -0.734129

We can see that we got the same content back, which we had earlier written to the clipboard.

Note: You may need to install xclip or xsel (with gtk or PyQt4 modules) on Linux to use these methods.

### 23.6 Pickling

All pandas objects are equipped with `to_pickle` methods which use Python's `cPickle` module to save data structures to disk using the pickle format.

In [231]: df
Out[231]:
    0    1    2
 0 -0.288267 -0.084905  0.004772
 1  1.382989  0.343635 -1.253994
 2 -0.124925  0.212244  0.496654
 3  0.525417  1.238640 -1.210543
 4 -1.175743 -0.172372 -0.734129

In [232]: df.to_pickle('foo.pkl')

The `read_pickle` function in the `pandas` namespace can be used to load any pickled pandas object (or any other pickled object) from file:

In [233]: read_pickle('foo.pkl')
Out[233]:
    0    1    2
 0 -0.288267 -0.084905  0.004772
 1  1.382989  0.343635 -1.253994
 2 -0.124925  0.212244  0.496654
 3  0.525417  1.238640 -1.210543
 4 -1.175743 -0.172372 -0.734129

**Warning:** Loading pickled data received from untrusted sources can be unsafe.
See: [http://docs.python.org/2.7/library/pickle.html](http://docs.python.org/2.7/library/pickle.html)

**Warning:** Several internal refactorings, 0.13 (*Series Refactoring*), and 0.15 (*Index Refactoring*), preserve compatibility with pickles created prior to these versions. However, these must be read with `pd.read_pickle`, rather than the default python `pickle.load`. See [this question](http://docs.python.org/2.7/library/pickle.html) for a detailed explanation.

**Note:** These methods were previously `pd.save` and `pd.load`, prior to 0.12.0, and are now deprecated.
23.7 msgpack (experimental)

New in version 0.13.0. Starting in 0.13.0, pandas is supporting the msgpack format for object serialization. This is a lightweight portable binary format, similar to binary JSON, that is highly space efficient, and provides good performance both on the writing (serialization), and reading (deserialization).

**Warning:** This is a very new feature of pandas. We intend to provide certain optimizations in the io of the msgpack data. Since this is marked as an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.

In [234]: df = DataFrame(np.random.rand(5,2),columns=list('AB'))

In [235]: df.to_msgpack('foo.msg')

In [236]: pd.read_msgpack('foo.msg')

Out[236]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.154336</td>
<td>0.710999</td>
</tr>
<tr>
<td>0.398096</td>
<td>0.765220</td>
</tr>
<tr>
<td>0.586749</td>
<td>0.293052</td>
</tr>
<tr>
<td>0.290293</td>
<td>0.710783</td>
</tr>
<tr>
<td>0.988593</td>
<td>0.062106</td>
</tr>
</tbody>
</table>

In [237]: s = Series(np.random.rand(5),index=date_range('20130101',periods=5))

You can pass a list of objects and you will receive them back on deserialization.

In [238]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1,2,3]), s)

In [239]: pd.read_msgpack('foo.msg')

Out[239]:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.154336</td>
<td>0.710999</td>
</tr>
<tr>
<td>0.398096</td>
<td>0.765220</td>
</tr>
<tr>
<td>0.586749</td>
<td>0.293052</td>
</tr>
<tr>
<td>0.290293</td>
<td>0.710783</td>
</tr>
<tr>
<td>0.988593</td>
<td>0.062106</td>
</tr>
<tr>
<td>1.0</td>
<td>0.690810</td>
</tr>
<tr>
<td>2.0</td>
<td>0.235907</td>
</tr>
<tr>
<td>3.0</td>
<td>0.712756</td>
</tr>
<tr>
<td>4.0</td>
<td>0.115999</td>
</tr>
<tr>
<td>5.0</td>
<td>0.023493</td>
</tr>
</tbody>
</table>

Freq: D, dtype: float64

You can pass `iterator=True` to iterate over the unpacked results.

In [240]: for o in pd.read_msgpack('foo.msg',iterator=True):
      print o

      | A      | B      |
|--------|--------|
| 0.154336 | 0.710999 |
| 0.398096 | 0.765220 |
| 0.586749 | 0.293052 |
| 0.290293 | 0.710783 |
| 0.988593 | 0.062106 |

foo

<table>
<thead>
<tr>
<th>[1 2 3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01</td>
</tr>
</tbody>
</table>
You can pass `append=True` to the writer to append to an existing pack.

```python
In [241]: df.to_msgpack('foo.msg', append=True)
```

```python
In [242]: pd.read_msgpack('foo.msg')
Out[242]:
 A B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106
```

Unlike other io methods, `to_msgpack` is available on both a per-object basis, `df.to_msgpack()` and using the top-level `pd.to_msgpack(...)` where you can pack arbitrary collections of python lists, dicts, scalars, while intermixing pandas objects.

```python
In [243]: pd.to_msgpack('foo2.msg', { 'dict' : [{ 'df' : df }, { 'string' : 'foo' }, { 'scalar' : 1. }, { 's' : s }] })
```

```python
In [244]: pd.read_msgpack('foo2.msg')
Out[244]:
{u'dict': ({u'df': A B
 0 0.154336 0.710999
 1 0.398096 0.765220
 2 0.586749 0.293052
 3 0.290293 0.710783
 4 0.988593 0.062106),
 u'string': u'foo'},
 u'scalar': 1.0),
 {u's': 2013-01-01 0.690810
 2013-01-02 0.235907
 2013-01-03 0.712756
 2013-01-04 0.119599
 2013-01-05 0.023493
 Freq: D, dtype: float64})
```

### 23.7.1 Read/Write API

Msgpacks can also be read from and written to strings.
Furthermore you can concatenate the strings to produce a list of the original objects.

```
In [246]: pd.read_msgpack(df.to_msgpack() + s.to_msgpack())
Out[246]:
[A B
 0 0.154336 0.710999
 1 0.398096 0.765220
 2 0.586749 0.293052
 3 0.290293 0.710783
 4 0.988593 0.062106, 2013-01-01 0.690810
 2013-01-02 0.235907
 2013-01-03 0.712756
 2013-01-04 0.119599
 2013-01-05 0.023493
Freq: D, dtype: float64]
```

## 23.8 HDF5 (PyTables)

HDFStore is a dict-like object which reads and writes pandas using the high performance HDF5 format using the excellent PyTables library. See the cookbook for some advanced strategies

```
Warning: As of version 0.15.0, pandas requires PyTables >= 3.0.0. Stores written with prior versions of pandas/PyTables >= 2.3 are fully compatible (this was the previous minimum PyTables required version).
```

```
In [247]: store = HDFStore('store.h5')

In [248]: print(store)
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
Empty

Objects can be written to the file just like adding key-value pairs to a dict:

```
In [249]: np.random.seed(1234)

In [250]: index = date_range('1/1/2000', periods=8)

In [251]: s = Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [252]: df = DataFrame(randn(8, 3), index=index, columns=['A', 'B', 'C'])

In [253]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
       major_axis=date_range('1/1/2000', periods=5),
       minor_axis=['A', 'B', 'C', 'D'])

# store.put('s', s) is an equivalent method
In [254]: store['s'] = s

In [255]: store['df'] = df
```
In [256]: store['wp'] = wp

the type of stored data
In [257]: store.root.wp._v_attrs.pandas_type
Out[257]: 'wide'

In [258]: store
Out[258]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame (shape->[8,3])
/s series (shape->[5])
/wp wide (shape->[2,5,4])

In a current or later Python session, you can retrieve stored objects:

store.get('df') is an equivalent method
In [259]: store['df']
Out[259]:
 A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

dotted (attribute) access provides get as well
In [260]: store.df
Out[260]:
 A B C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
2000-01-04 -0.334077 0.002118 0.405453
2000-01-05 0.289092 1.321158 -1.546906
2000-01-06 -0.202646 -0.655969 0.193421
2000-01-07 0.553439 1.318152 -0.469305
2000-01-08 0.675554 -1.817027 -0.183109

Deletion of the object specified by the key

store.remove('wp') is an equivalent method
In [261]: del store['wp']

In [262]: store
Out[262]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame (shape->[8,3])
/s series (shape->[5])

Closing a Store, Context Manager

In [263]: store.close()

In [264]: store
23.8.1 Read/Write API

HDFStore supports an top-level API using `read_hdf` for reading and `to_hdf` for writing, similar to how `read_csv` and `to_csv` work. (new in 0.11.0)

```python
In [267]: df_tl = DataFrame(dict(A=list(range(5)), B=list(range(5))))
In [268]: df_tl.to_hdf('store_tl.h5','table',append=True)
In [269]: read_hdf('store_tl.h5', 'table', where = ['index>2'])
```

Out[269]:
```
   A  B
3  3  3
4  4  4
```

23.8.2 Fixed Format

Note: This was prior to 0.13.0 the Storer format.

The examples above show storing using `put`, which write the HDF5 to PyTables in a fixed array format, called the fixed format. These types of stores are are not appendable once written (though you can simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety. They also do not support dataframes with non-unique column names. The fixed format stores offer very fast writing and slightly faster reading than table stores. This format is specified by default when using `put` or `to_hdf` or by `format='fixed'` or `format='f'

Warning: A fixed format will raise a TypeError if you try to retrieve using a where.

```python
DataFrame(randn(10,2)).to_hdf('test_fixed.h5','df')
pd.read_hdf('test_fixed.h5','df',where='index>5')
```

TypeError: cannot pass a where specification when reading a fixed format.
this store must be selected in its entirety

23.8.3 Table Format

HDFStore supports another PyTables format on disk, the table format. Conceptually a table is shaped very much like a DataFrame, with rows and columns. A table may be appended to in the same or other ses-
sess. In addition, delete & query type operations are supported. This format is specified by `format='table'` or `format='t'` to append or put or to_hdf New in version 0.13. This format can be set as an option as well `pd.set_option('io.hdf.default_format','table')` to enable `put/append/to_hdf` to by default store in the table format.

```python
In [270]: store = HDFStore('store.h5')

In [271]: df1 = df[0:4]

In [272]: df2 = df[4:]

# append data (creates a table automatically)
In [273]: store.append('df', df1)

In [274]: store.append('df', df2)

In [275]: store
```

```
Out[275]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df     frame_table  (typ->appendable,nrows->8,ncols->3,indexers->[index])

# select the entire object
In [276]: store.select('df')
```

```
Out[276]:
    A       B       C
2000-01-01  0.887163  0.859588 -0.636524
2000-01-02  0.015696 -2.242685  1.150036
2000-01-03  0.991946  0.953324 -2.021255
2000-01-04  0.334077  0.002118  0.405453
2000-01-05  0.289092  1.321158 -1.546906
2000-01-06  0.029708  0.085218  0.540176
2000-01-07  0.654253 -0.515991  0.193421
2000-01-08  0.675554 -1.817027 -0.183109
```

the type of stored data
```
In [277]: store.root.df._v_attrs.pandas_type
```

```
Out[277]: 'frame_table'
```

Note: You can also create a table by passing `format='table'` or `format='t'` to a `put` operation.

23.8.4 Hierarchical Keys

Keys to a store can be specified as a string. These can be in a hierarchical path-name like format (e.g. `foo/bar/bah`), which will generate a hierarchy of sub-stores (or Groups in PyTables parlance). Keys can be specified without the leading '/' and are ALWAYS absolute (e.g. ‘foo’ refers to ‘/foo’). Removal operations can remove everything in the sub-store and BELOW, so be careful.

```python
In [278]: store.put('foo/bar/bah', df)

In [279]: store.append('food/orange', df)

In [280]: store.append('food/apple', df)

In [281]: store
```

```
Out[281]:
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

23.8.5 Storing Mixed Types in a Table

Storing mixed-dtype data is supported. Strings are stored as a fixed-width using the maximum size of the appended column. Subsequent appends will truncate strings at this length.

Passing `min_itemsize={'values': size}` as a parameter to append will set a larger minimum for the string columns. Storing floats, strings, ints, bools, datetime64 are currently supported. For string columns, passing `nan_rep = ‘nan’` to append will change the default nan representation on disk (which converts to/from `np.nan`), this defaults to `nan`.

```
In [285]: df_mixed = DataFrame({'A' : randn(8),
                         ....:
                         'B' : randn(8),
                         ....:
                         'C' : np.array(randn(8),dtype='float32'),
                         ....:
                         'string' : 'string',
                         ....:
                         'int' : 1,
                         ....:
                         'bool' : True,
                         ....:
                         'datetime64' : Timestamp('20010102')),
                         ....:
                         index=list(range(8))})
```

```
In [286]: df_mixed.ix[3:5,['A', 'B', 'string', 'datetime64']] = np.nan
```

```
In [287]: store.append('df_mixed', df_mixed, min_itemsize = {'values': 50})
```

```
In [288]: df_mixed1 = store.select('df_mixed')
```

```
In [289]: df_mixed1
Out[289]:
   A    B    C  bool  datetime64  int   string
0  0.704721 -1.152659 -0.430096  True 2001-01-02   1   string
1 -0.785435  0.631979  0.767369  True 2001-01-02   1   string
2  0.462060  0.039513  0.984920  True 2001-01-02   1   string
3   NaN     NaN  0.270836  True  NaT           1  NaN
4   NaN     NaN  1.391986  True  NaT           1  NaN
5   NaN     NaN  0.079842  True  NaT           1  NaN
6  2.007843  0.152631 -0.399965  True 2001-01-02   1   string
```
In [290]: df_mixed1.get_dtype_counts()
Out[290]:
bool 1
datetime64[ns] 1
float32 1
float64 2
int64 1
object 1
dtype: int64

we have provided a minimum string column size
In [291]: store.root.df_mixed.table
Out[291]:
/df_mixed/table (Table(8,))
 description := {
 "index": Int64Col(shape=(), dflt=0, pos=0),
 "values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1),
 "values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2),
 "values_block_2": Int64Col(shape=(1,), dflt=0, pos=3),
 "values_block_3": Int64Col(shape=(1,), dflt=0, pos=4),
 "values_block_4": BoolCol(shape=(1,), dflt=False, pos=5),
 "values_block_5": StringCol(itemsize=50, shape=(1,), dflt='', pos=6)}
 byteorder := 'little'
 chunkshape := (689,)
 autoindex := True
 colindexes := {
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

23.8.6 Storing Multi-Index DataFrames

Storing multi-index dataframes as tables is very similar to storing/selecting from homogeneous index DataFrames.

In [292]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
......: ['one', 'two', 'three']],
......: labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
......: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
......: names=['foo', 'bar'])

In [293]: df_mi = DataFrame(np.random.randn(10, 3), index=index,
......: columns=['A', 'B', 'C'])

In [294]: df_mi
Out[294]:
 A B C
foo bar
foo one -0.584718 0.816594 -0.081947
 two -0.344766 0.528288 -1.068989
 three -0.511881 0.291205 0.566534
bar one 0.503592 0.285296 0.484288
 two 1.363482 -0.781105 -0.468018
 baz one 1.224574 -1.281108 0.875476
 two 1.710715 -0.450765 0.749164
 three -0.203933 -0.182175 0.680656
two -1.818499 0.047072 0.394844
three -0.248432 -0.617707 -0.682884

In [295]: store.append('df_mi', df_mi)

In [296]: store.select('df_mi')
Out[296]:
 A B C
foo bar
foo one -0.584718 0.816594 -0.081947
two -0.344766 0.528288 -1.068989
three -0.511881 0.291205 0.566534
bar one 0.503592 0.285296 0.484288
two 1.363482 -0.781105 -0.468018
baz two 1.224574 -1.281108 0.875476
three -1.710715 -0.450765 0.749164
qux one -0.203933 -0.182175 0.680656
two -1.818499 0.047072 0.394844
three -0.248432 -0.617707 -0.682884

the levels are automatically included as data columns
In [297]: store.select('df_mi', 'foo=bar')
Out[297]:
 A B C
foo bar
bar one 0.503592 0.285296 0.484288
two 1.363482 -0.781105 -0.468018

23.8.7 Querying a Table

Warning: This query capabilities have changed substantially starting in 0.13.0. Queries from prior version are accepted (with a DeprecationWarning) printed if its not string-like.

select and delete operations have an optional criterion that can be specified to select/delete only a subset of the data. This allows one to have a very large on-disk table and retrieve only a portion of the data.

A query is specified using the Term class under the hood, as a boolean expression.

- index and columns are supported indexers of a DataFrame
- major_axis, minor_axis, and items are supported indexers of the Panel
- if data_columns are specified, these can be used as additional indexers

Valid comparison operators are:
- =, ==, !=, >, >=, <, <=

Valid boolean expressions are combined with:
- |: or
- & : and
- (and) : for grouping

These rules are similar to how boolean expressions are used in pandas for indexing.

Note:
• = will be automatically expanded to the comparison operator ==
• ~ is the not operator, but can only be used in very limited circumstances
• If a list/tuple of expressions is passed they will be combined via &

The following are valid expressions:

- `'index>=date'
- "columns=['A', 'D']"
- "columns in ['A', 'D']"
- 'columns=A'
- 'columns==A'
- "~(columns=['A','B'])"
- 'index>df.index[3] & string="bar"'
- '(index>df.index[3] & index<=df.index[6]) | string="bar"'
- "ts>=Timestamp('2012-02-01')"
- "major_axis>=20130101"

The **indexers** are on the left-hand side of the sub-expression:

- columns, major_axis, ts

The right-hand side of the sub-expression (after a comparison operator) can be:

- functions that will be evaluated, e.g. Timestamp('2012-02-01')
- strings, e.g. "bar"
- date-like, e.g. 20130101, or "20130101"
- lists, e.g. "['A','B']"
- variables that are defined in the local names space, e.g. date

Note: Passing a string to a query by interpolating it into the query expression is not recommended. Simply assign the string of interest to a variable and use that variable in an expression. For example, do this

```python
string = "HolyMoly"
store.select('df', 'index == string')
```

instead of this

```python
string = "HolyMoly"
store.select('df', 'index == $s' % string)
```

The latter will not work and will raise a `SyntaxError`. Note that there’s a single quote followed by a double quote in the `string` variable.

If you *must* interpolate, use the `%r` format specifier

```python
store.select('df', 'index == %r % string')
```

which will quote `string`.

Here are some examples:
In [298]: dfq = DataFrame(randn(10,4), columns=list('ABCD'), index=date_range('20130101',periods=10))

In [299]: store.append('dfq',dfq,format='table',data_columns=True)

Use boolean expressions, with in-line function evaluation.

In [300]: store.select('dfq','index>Timestamp('20130104') & columns=['A', 'B'])
Out[300]:
 A B
0 1.21 0.79
1 -0.85 1.17
2 0.98 -0.12
3 -0.79 -0.47
4 -0.80 -2.12
5 0.33 0.54
6 0.98 -0.12
7 0.79 -0.47
8 0.33 0.54

Use and inline column reference

In [301]: store.select('dfq',where="A>0 or C>0")
Out[301]:
 A B C D
0 0.44 -1.70 0.39 -0.48
1 0.69 0.68 0.24 0.64
2 0.81 1.89 0.64 0.64
3 2.08 1.93 -1.73 0.70
4 0.79 -0.38 0.70 0.70
5 0.98 -0.12 2.36 0.49
6 0.79 -0.05 1.36 -0.32
7 0.33 0.54 -0.74 -0.32

Works with a Panel as well.

In [302]: store.append('wp',wp)

In [303]: store
Out[303]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index],dc->[bar,foo])
/dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D])
/wp wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_axis])
/foo/bar/bah frame (shape->[8,3])

In [304]: store.select('wp', "major_axis>Timestamp('20000102') & minor_axis=['A', 'B']")
Out[304]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B

The columns keyword can be supplied to select a list of columns to be returned, this is equivalent to passing a 'columns=list_of_columns_to_filter':

In [305]: store.select('df', "columns=['A', 'B']")
Out[305]:
 A B
0 0.89 0.86

start and stop parameters can be specified to limit the total search space. These are in terms of the total number of rows in a table.

Note: select will raise a ValueError if the query expression has an unknown variable reference. Usually this means that you are trying to select on a column that is not a data_column.

select will raise a SyntaxError if the query expression is not valid.

Using timedelta64[ns] New in version 0.13. Beginning in 0.13.0, you can store and query using the timedelta64[ns] type. Terms can be specified in the format: <float>(<unit>), where float may be signed (and fractional), and unit can be D, s, ms, us, ns for the timedelta. Here’s an example:

Warning: This requires numpy >= 1.7
In [308]: from datetime import timedelta

In [309]: dftd = DataFrame(dict(A = Timestamp('20130101'), B = [Timestamp('20130101') + timedelta(days=i,seconds=10) for i in range(10)])

In [310]: dftd['C'] = dftd['A']-dftd['B']

In [311]: dftd
Out[311]:
 A B C
0 2013-01-01 2013-01-01 00:00:10 -1 days +23:59:50
1 2013-01-01 2013-01-02 00:00:10 -2 days +23:59:50
2 2013-01-01 2013-01-03 00:00:10 -3 days +23:59:50
3 2013-01-01 2013-01-04 00:00:10 -4 days +23:59:50
4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50

In [312]: store.append('dftd',dftd,data_columns=True)

In [313]: store.select('dftd','C<''-3.5D''')
Out[313]:
 A B C
 4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
 5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
 6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
 7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
 8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
 9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50

23.8.8 Indexing

You can create/modify an index for a table with create_table_index after data is already in the table (after and append/put operation). Creating a table index is highly encouraged. This will speed your queries a great deal when you use a select with the indexed dimension as the where.

Note: Indexes are automagically created (starting 0.10.1) on the indexables and any data columns you specify. This behavior can be turned off by passing index=False to append.

we have automagically already created an index (in the first section)
In [314]: i = store.root.df.table.cols.index.index

In [315]: i.optlevel, i.kind
Out[315]: (6, 'medium')

change an index by passing new parameters
In [316]: store.create_table_index('df', optlevel=9, kind='full')

In [317]: i = store.root.df.table.cols.index.index

In [318]: i.optlevel, i.kind
Out[318]: (9, 'full')
See here for how to create a completely-sorted-index (CSI) on an existing store.

23.8.9 Query via Data Columns

You can designate (and index) certain columns that you want to be able to perform queries (other than the *indexable* columns, which you can always query). For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query. You can specify `data_columns = True` to force all columns to be *data_columns*.

```python
In [319]: df_dc = df.copy()
In [320]: df_dc['string'] = 'foo'
In [321]: df_dc.ix[4:6,'string'] = np.nan
In [322]: df_dc.ix[7:9,'string'] = 'bar'
In [323]: df_dc['string2'] = 'cool'
In [324]: df_dc.ix[1:3,['B','C']] = 1.0
```

```python
In [325]: df_dc
Out[325]:
   A     B     C     string  string2
0  2000-01-01  0.887163  0.859588  -0.636524  foo    cool
1  2000-01-02  0.015696  1.000000  1.000000  foo    cool
2  2000-01-03  0.991946  1.000000  1.000000  foo    cool
3  2000-01-04 -0.334077  0.002118  0.405453  foo    cool
4  2000-01-05  0.289092  1.321158 -1.546906   NaN    cool
5  2000-01-06 -0.202646 -0.655969  0.193421   NaN    cool
6  2000-01-07  0.553439  1.318152 -0.469305  foo    cool
7  2000-01-08  0.675554 -1.817027 -0.183109  bar    cool
```

on-disk operations

```python
In [326]: store.append('df_dc', df_dc, data_columns = ['B', 'C', 'string', 'string2'])
```

```python
In [327]: store.select('df_dc', [ Term('B>0') ])
Out[327]:
   A     B     C     string  string2
0  2000-01-01  0.887163  0.859588  -0.636524  foo    cool
1  2000-01-02  0.015696  1.000000  1.000000  foo    cool
2  2000-01-03  0.991946  1.000000  1.000000  foo    cool
3  2000-01-04 -0.334077  0.002118  0.405453  foo    cool
4  2000-01-05  0.289092  1.321158 -1.546906   NaN    cool
5  2000-01-06 -0.202646 -0.655969  0.193421   NaN    cool
6  2000-01-07  0.553439  1.318152 -0.469305  foo    cool
```

getting creative

```python
In [328]: store.select('df_dc', 'B > 0 & C > 0 & string == foo')
Out[328]:
   A     B     C     string  string2
0  2000-01-02  0.015696  1.000000  1.000000  foo    cool
1  2000-01-03  0.991946  1.000000  1.000000  foo    cool
2  2000-01-04 -0.334077  0.002118  0.405453  foo    cool
```

this is in-memory version of this type of selection

```python
In [329]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')]
Out[329]:
   A     B     C     string  string2
0  2000-01-02  0.015696  1.000000  1.000000  foo    cool
1  2000-01-03  0.991946  1.000000  1.000000  foo    cool
2  2000-01-04 -0.334077  0.002118  0.405453  foo    cool
```
There is some performance degradation by making lots of columns into data columns, so it is up to the user to designate these. In addition, you cannot change data columns (nor indexables) after the first append/put operation (Of course you can simply read in the data and create a new table!)

23.8.10 Iterator

Starting in 0.11.0, you can pass, iterator=True or chunksize=number_in_a_chunk to select and select_as_multiple to return an iterator on the results. The default is 50,000 rows returned in a chunk.

```python
In [331]: for df in store.select('df', chunksize=3):
    print(df)
```

```
A   B       C
2000-01-01 0.887163 0.859588 -0.636524
2000-01-02 0.015696 -2.242685 1.150036
2000-01-03 0.991946 0.953324 -2.021255
```

Note: New in version 0.12.0. You can also use the iterator with read_hdf which will open, then automatically close the store when finished iterating.

```python
for df in read_hdf('store.h5','df', chunksize=3):
    print(df)
```
Note, that the chunksize keyword applies to the source rows. So if you are doing a query, then the chunksize will subdivide the total rows in the table and the query applied, returning an iterator on potentially unequal sized chunks.

Here is a recipe for generating a query and using it to create equal sized return chunks.

```
In [332]: dfeq = DataFrame({'number': np.arange(1,11)})

In [333]: dfeq
Out[333]:
   number
0     1
1     2
2     3
3     4
4     5
5     6
6     7
7     8
8     9
9    10

In [334]: store.append('dfeq', dfeq, data_columns=['number'])

In [335]: def chunks(l, n):
   return [l[i:i+n] for i in range(0, len(l), n)]

In [336]: evens = [2,4,6,8,10]

In [337]: coordinates = store.select_as_coordinates('dfeq','number=evens')

In [338]: for c in chunks(coordinates, 2):
   print store.select('dfeq',where=c)

   number
   1  2
   3  4
   number
   5  6
   7  8
   number
   9 10
```

23.8.11 Advanced Queries

Select a Single Column

To retrieve a single indexable or data column, use the method `select_column`. This will, for example, enable you to get the index very quickly. These return a Series of the result, indexed by the row number. These do not currently accept the where selector.

```
In [339]: store.select_column('df_dc', 'index')
Out[339]:
0 2000-01-01
1 2000-01-02
2 2000-01-03
3 2000-01-04
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

In [340]: store.select_column('df_dc', 'string')
Out[340]:
0 foo
1 foo
2 foo
3 foo
4 NaN
5 NaN
6 foo
7 bar
dtype: object

Selecting coordinates

Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index of the resulting locations. These coordinates can also be passed to subsequent where operations.

In [341]: df_coord = DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000))
In [342]: store.append('df_coord', df_coord)
In [343]: c = store.select_as_coordinates('df_coord','index>20020101')
In [344]: c.summary()
Out[344]: u'Int64Index: 268 entries, 732 to 999'

In [345]: store.select('df_coord', where=c)
Out[345]:
0 1
2002-01-02 -0.667994 -0.368175
2002-01-03 0.020119 -0.823208
2002-01-04 -0.165481 0.720866
2002-01-05 1.295919 -0.527767
2002-01-06 -0.463393 -0.150792
2002-01-07 1.139341 -0.954387
2002-01-08 0.051837 -0.147048
...
2002-09-20 0.058626 -0.489107
2002-09-21 -0.356873 -0.437071
2002-09-22 -0.243534 -0.093778
2002-09-23 -0.615983 0.414649
2002-09-24 0.202096 -0.297561
2002-09-25 0.681661 0.538311
2002-09-26 -0.614051 0.769058
[268 rows x 2 columns]

Selecting using a where mask

Sometime your query can involve creating a list of rows to select. Usually this mask would be a resulting index from an indexing operation. This example selects the months of a datetimeindex which are 5.

23.8. HDF5 (PyTables)
In [346]: df_mask = DataFrame(np.random.randn(1000,2),index=date_range('20000101',periods=1000))

In [347]: store.append('df_mask',df_mask)

In [348]: c = store.select_column('df_mask','index')

In [349]: where = c[DatetimeIndex(c).month==5].index

In [350]: store.select('df_mask',where=where)
Out[350]:
 0 1
2000-05-01 -0.098554 -0.280782
2000-05-02 0.739851 1.627182
2000-05-03 0.030132 -0.145601
2000-05-04 0.227530 1.048856
2000-05-05 1.773939 1.116887
2000-05-06 1.081251 1.509416
2000-05-07 -0.498694 -0.913155
...
2000-05-25 -0.497252 0.348099
2000-05-26 -1.287350 -1.488122
2000-05-27 -0.726220 0.507747
2000-05-28 0.189871 0.980528
2000-05-29 0.555156 0.369371
2000-05-30 -0.637441 -3.434819
2000-05-31 -0.070283 -0.278044

[93 rows x 2 columns]

Storer Object

If you want to inspect the stored object, retrieve via get_storer. You could use this programmatically to say get the number of rows in an object.

In [351]: store.get_storer('df_dc').nrows
Out[351]: 8

23.8.12 Multiple Table Queries

New in 0.10.1 are the methods append_to_multiple and select_as_multiple, that can perform appending/selecting from multiple tables at once. The idea is to have one table (call it the selector table) that you index most/all of the columns, and perform your queries. The other table(s) are data tables with an index matching the selector table’s index. You can then perform a very fast query on the selector table, yet get lots of data back. This method is similar to having a very wide table, but enables more efficient queries.

The append_to_multiple method splits a given single DataFrame into multiple tables according to d, a dictionary that maps the table names to a list of ‘columns’ you want in that table. If None is used in place of a list, that table will have the remaining unspecified columns of the given DataFrame. The argument selector defines which table is the selector table (which you can make queries from). The argument dropna will drop rows from the input DataFrame to ensure tables are synchronized. This means that if a row for one of the tables being written to is entirely np.NaN, that row will be dropped from all tables.

If dropna is False, THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES. Remember that entirely np.Nan rows are not written to the HDFStore, so if you choose to call dropna=False, some tables may have more rows than others, and therefore select_as_multiple may not work or it may return unexpected results.
In [352]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
.....:
 columns=['A', 'B', 'C', 'D', 'E', 'F'])
.....:
In [353]: df_mt['foo'] = 'bar'
In [354]: df_mt.ix[1, ('A', 'B')] = np.nan
you can also create the tables individually
In [355]: store.append_to_multiple({'df1_mt': ['A', 'B'], 'df2_mt': None},
.....:
 df_mt, selector='df1_mt')
.....:
In [356]: store
Out[356]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df1_mt frame_table (typ->appendable,nrows->7,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->5,ncols->5,indexers->[index])
/df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_mask frame_table (typ->appendable,nrows->1000,ncols->5,indexers->[index])
/df_dc frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_dc frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mask frame_table (typ->appendable,nrows->1000,ncols->5,indexers->[index])
/df_mixed frame_table (typ->appendable,nrows->9,ncols->5,indexers->[index])
/dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index])
/dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index])
/dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index])
/dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index])
/wp wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_axis])
/foo/bar/bah frame (shape->[8,3])

individual tables were created
In [357]: store.select('df1_mt')
Out[357]:
 A B
2000-01-01 -0.816310 1.282296
2000-01-03 0.684353 -1.755306
2000-01-04 -1.315814 1.455079
2000-01-05 -0.027564 0.046757
2000-01-06 -0.416244 -0.821168
2000-01-07 0.665090 1.084344
2000-01-08 0.607460 0.790907

In [358]: store.select('df2_mt')
Out[358]:
 C D E F foo
2000-01-01 -1.521825 -0.428670 -1.550209 0.826839 bar
2000-01-03 1.236974 -1.328279 0.662291 1.894976 bar
2000-01-04 -0.746478 0.851039 1.415686 -0.929096 bar
2000-01-05 -1.452287 1.575492 -0.197377 -0.219901 bar
2000-01-06 1.190342 2.115021 0.148762 1.073931 bar
2000-01-07 -0.709897 -2.022441 0.714697 0.318215 bar
2000-01-08 0.852225 0.096696 -0.379903 0.929313 bar

as a multiple
In [359]: store.select_as_multiple(['df1_mt', 'df2_mt'], where=['A>0', 'B>0'],
.....:
 selector='df1_mt')
.....:
23.8.13 Delete from a Table

You can delete from a table selectively by specifying a `where`. In deleting rows, it is important to understand the PyTables deletes rows by erasing the rows, then moving the following data. Thus deleting can potentially be a very expensive operation depending on the orientation of your data. This is especially true in higher dimensional objects (Panel and Panel4D). To get optimal performance, it’s worthwhile to have the dimension you are deleting be the first of the indexables.

Data is ordered (on the disk) in terms of the indexables. Here’s a simple use case. You store panel-type data, with dates in the `major_axis` and ids in the `minor_axis`. The data is then interleaved like this:

- `date_1`
 - `id_1`
 - `id_2`
 - .
 - `id_n`

- `date_2`
 - `id_1`
 - .
 - `id_n`

It should be clear that a delete operation on the `major_axis` will be fairly quick, as one chunk is removed, then the following data moved. On the other hand a delete operation on the `minor_axis` will be very expensive. In this case it would almost certainly be faster to rewrite the table using a `where` that selects all but the missing data.

```python
# returns the number of rows deleted
In [360]: store.remove('wp', 'major_axis>20000102')
Out[360]: 12
```

```python
In [361]: store.select('wp')
Out[361]: <class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-02 00:00:00
Minor_axis axis: A to D
```

Please note that HDF5 DOES NOT RECLAIM SPACE in the h5 files automatically. Thus, repeatedly deleting (or removing nodes) and adding again WILL TEND TO INCREASE THE FILE SIZE. To clean the file, use ptrepack (see below).

23.8.14 Compression

PyTables allows the stored data to be compressed. This applies to all kinds of stores, not just tables.

- Pass `complevel=int` for a compression level (1-9, with 0 being no compression, and the default)
• Pass `complib=lib` where `lib` is any of `zlib`, `bzip2`, `lzo`, `blosc` for whichever compression library you prefer.

HDFStore will use the file based compression scheme if no overriding `complib` or `complevel` options are provided. `blosc` offers very fast compression, and is my most used. Note that `lzo` and `bzip2` may not be installed (by Python) by default.

Compression for all objects within the file

```python
• store_compressed = HDFStore('store_compressed.h5', complevel=9, complib='blosc')
```

Or on-the-fly compression (this only applies to tables). You can turn off file compression for a specific table by passing `complevel=0`

```python
• store.append('df', df, complib='zlib', complevel=5)
```

ptrepack

PyTables offers better write performance when tables are compressed after they are written, as opposed to turning on compression at the very beginning. You can use the supplied PyTables utility `ptrepack`. In addition, `ptrepack` can change compression levels after the fact.

```bash
• ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5
```

Furthermore `ptrepack in.h5 out.h5` will `repack` the file to allow you to reuse previously deleted space. Alternatively, one can simply remove the file and write again, or use the `copy` method.

23.8.15 Notes & Caveats

- Once a table is created its items (Panel) / columns (DataFrame) are fixed; only exactly the same columns can be appended

- If a row has `np.nan` for EVERY COLUMN (having a `nan` in a string, or a `NaT` in a datetime-like column counts as having a value), then those rows WILL BE DROPPED IMPLICITLY. This limitation may be addressed in the future.

- HDFStore is not-threadsafe for writing. The underlying PyTables only supports concurrent reads (via threading or processes). If you need reading and writing at the same time, you need to serialize these operations in a single thread in a single process. You will corrupt your data otherwise. See the issue (:2397) for more information.

- If you use locks to manage write access between multiple processes, you may want to use `fsync()` before releasing write locks. For convenience you can use `store.flush(fsync=True)` to do this for you.

- PyTables only supports fixed-width string columns in tables. The sizes of a string based indexing column (e.g. `columns` or `minor_axis`) are determined as the maximum size of the elements in that axis or by passing the parameter

- Be aware that timezones (e.g. `pytz.timezone('US/Eastern')`) are not necessarily equal across timezone versions. So if data is localized to a specific timezone in the HDFStore using one version of a timezone library and that data is updated with another version, the data will be converted to UTC since these timezones are not considered equal. Either use the same version of timezone library or use `tz_convert` with the updated timezone definition.

Warning: PyTables will show a `NaturalNameWarning` if a column name cannot be used as an attribute selector. Generally identifiers that have spaces, start with numbers, or `_`, or have – embedded are not considered natural. These types of identifiers cannot be used in a `where` clause and are generally a bad idea.
23.8.16 DataTypes

HDFStore will map an object dtype to the PyTables underlying dtype. This means the following types are known to work:

- **floating**: float64, float32, float16 *(using np.nan to represent invalid values)*
- **integer**: int64, int32, int8, uint64, uint32, uint8
- **bool**
- **datetime64[ns]** *(using NaT to represent invalid values)*
- **object**: strings *(using np.nan to represent invalid values)*

Currently, unicode and datetime columns (represented with a dtype of object), **WILL FAIL**. In addition, even though a column may look like a datetime64[ns], if it contains np.nan, this **WILL FAIL**. You can try to convert datetimelike columns to proper datetime64[ns] columns, that possibly contain NaT to represent invalid values. (Some of these issues have been addressed and these conversion may not be necessary in future versions of pandas)

```python
In [362]: import datetime

In [363]: df = DataFrame(dict(datelike=Series([datetime.datetime(2001, 1, 1),
                                          ......:
                                          datetime.datetime(2001, 1, 2), np.nan])))

In [364]: df
Out[364]:
   datelike
0  2001-01-01
1  2001-01-02
2      NaT

In [365]: df.dtypes
Out[365]:
   datelike    datetime64[ns]
dtype: object

# to convert
In [366]: df['datelike'] = Series(df['datelike'].values, dtype='M8[ns]')

In [367]: df
Out[367]:
   datelike
0  2001-01-01
1  2001-01-02
2      NaT

In [368]: df.dtypes
Out[368]:
   datelike    datetime64[ns]
dtype: object
```

23.8.17 String Columns

min_itemsize
The underlying implementation of HDFStore uses a fixed column width (itemsize) for string columns. A string column itemsize is calculated as the maximum of the length of data (for that column) that is passed to the HDFStore, in the first append. Subsequent appends, may introduce a string for a column larger than the column can hold, an Exception will be raised (otherwise you could have a silent truncation of these columns, leading to loss of information). In the future we may relax this and allow a user-specified truncation to occur.

Pass min_itemsize on the first table creation to a-priori specify the minimum length of a particular string column. min_itemsize can be an integer, or a dict mapping a column name to an integer. You can pass values as a key to allow all indexables or data_columns to have this min_itemsize.

Starting in 0.11.0, passing a min_itemsize dict will cause all passed columns to be created as data_columns automatically.

Note: If you are not passing any data_columns, then the min_itemsize will be the maximum of the length of any string passed.

In [369]: dfs = DataFrame(dict(A = 'foo', B = 'bar'),index=list(range(5)))

In [370]: dfs
Out[370]:
 A B
0 foo bar
1 foo bar
2 foo bar
3 foo bar
4 foo bar

A and B have a size of 30
In [371]: store.append('dfs', dfs, min_itemsize = 30)

In [372]: store.get_storer('dfs').table
Out[372]:
/dfs/table (Table(5,)) ''
description := {
 "index": Int64Col(shape=(), dflt=0, pos=0),
 "values_block_0": StringCol(itemsize=30, shape=(2,), dflt='', pos=1)
}
byteorder := 'little'
chunkshape := (963,)
autoindex := True
colindexes := {
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

A is created as a data_column with a size of 30
B is size is calculated
In [373]: store.append('dfs2', dfs, min_itemsize = { 'A' : 30 })

In [374]: store.get_storer('dfs2').table
Out[374]:
/dfs2/table (Table(5,)) ''
description := {
 "index": Int64Col(shape=(), dflt=0, pos=0),
 "values_block_0": StringCol(itemsize=3, shape=(1,), dflt='', pos=1),
 "A": StringCol(itemsize=30, shape=(), dflt='', pos=2)
}
byteorder := 'little'
chunkshape := (1598,)
autoindex := True
colindexes := {
String columns will serialize a `np.nan` (a missing value) with the `nan_rep` string representation. This defaults to the string value `nan`. You could inadvertently turn an actual `nan` value into a missing value.

In [375]: dfss = DataFrame(dict(A = ['foo','bar','nan']))

In [376]: dfss
Out[376]:
 A
0 foo
1 bar
2 nan

In [377]: store.append('dfss', dfss)

In [378]: store.select('dfss')
Out[378]:
 A
0 foo
1 bar
2 NaN

here you need to specify a different nan rep
In [379]: store.append('dfss2', dfss, nan_rep='_nan_')

In [380]: store.select('dfss2')
Out[380]:
 A
0 foo
1 bar
2 nan

23.8.18 External Compatibility

`HDFStore` write table format objects in specific formats suitable for producing loss-less round trips to pandas objects. For external compatibility, `HDFStore` can read native PyTables format tables. It is possible to write an `HDFStore` object that can easily be imported into R using the `rhdf5` library. Create a table format store like this:

In [381]: store_export = HDFStore('export.h5')

In [382]: store_export.append('df_dc', df_dc, data_columns=df_dc.columns)

In [383]: store_export
Out[383]:
<class 'pandas.io.pytables.HDFStore'>
File path: export.h5
/df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[A,B,C,string,string2])

23.8.19 Backwards Compatibility

0.10.1 of `HDFStore` can read tables created in a prior version of pandas, however query terms using the prior (undocumented) methodology are unsupported. `HDFStore` will issue a warning if you try to use a legacy-format file.
a legacy store
In [384]: legacy_store = HDFStore(legacy_file_path,'r')

In [385]: legacy_store
Out[385]:
<class 'pandas.io.pytables.HDFStore'>
File path: /home/joris/scipy/pandas/doc/source/_static/legacy_0.10.h5
/a series (shape->[30])
/b frame (shape->[30,4])
/df1_mixed frame_table [0.10.0] (typ->appendable,nrows->30,ncols->11,indexers->[index])
/pl_mixed wide_table [0.10.0] (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis])
/p4d_mixed wide_table [0.10.0] (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis])
/foo/bar wide (shape->[3,30,4])

copy (and return the new handle)
In [386]: new_store = legacy_store.copy('store_new.h5')

In [387]: new_store
Out[387]:
<class 'pandas.io.pytables.HDFStore'>
File path: store_new.h5
/a series (shape->[30])
/b frame (shape->[30,4])
/df1_mixed frame_table (typ->appendable,nrows->30,ncols->11,indexers->[index])
/pl_mixed wide_table (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis])
/p4d_mixed wide_table (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis])
/foo/bar wide (shape->[3,30,4])

In [388]: new_store.close()

23.8.20 Performance

- Tables come with a writing performance penalty as compared to regular stores. The benefit is the ability to append/delete and query (potentially very large amounts of data). Write times are generally longer as compared with regular stores. Query times can be quite fast, especially on an indexed axis.

- You can pass chunksize=<int> to append, specifying the write chunksize (default is 50000). This will significantly lower your memory usage on writing.

- You can pass expectedrows=<int> to the first append, to set the TOTAL number of expected rows that PyTables will expected. This will optimize read/write performance.

- Duplicate rows can be written to tables, but are filtered out in selection (with the last items being selected; thus a table is unique on major, minor pairs)

- A PerformanceWarning will be raised if you are attempting to store types that will be pickled by PyTables (rather than stored as endemic types). See Here for more information and some solutions.

23.8.21 Experimental

HDFStore supports Panel4D storage.
In [389]: p4d = Panel4D({'l1' : wp })

In [390]: p4d
Out[390]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 1 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: l1 to l1
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

In [391]: store.append('p4d', p4d)

In [392]: store
Out[392]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df1_mt frame_table (typ->appendable,nrows->7,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->7,ncols->5,indexers->[index])
/df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
/dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D])
/dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index])
/ds frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A,B])
/dfss frame_table (typ->appendable,nrows->3,ncols->5,indexers->[index])
/dfss2 frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index])
/dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index])
/wp wide_table (typ->appendable,nrows->40,ncols->2,indexers->[items,major_axis,minor_axis])
/dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D])
/dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index])
/foo/bar/bah frame (shape->[8,3])

These, by default, index the three axes items, major_axis, minor_axis. On an AppendableTable it is possible to setup with the first append a different indexing scheme, depending on how you want to store your data. This cannot be changed after table creation.

In [393]: store.append('p4d2', p4d, axes=['labels', 'major_axis', 'minor_axis'])

In [394]: store
Out[394]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df1_mt frame_table (typ->appendable,nrows->7,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->7,ncols->5,indexers->[index])
/df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
/dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D])
/dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index])
/foo/bar/bah frame (shape->[8,3])
In [395]: store.select('p4d2', [Term('labels=l1'), Term('items=Item1'), Term('minor_axis=A_big_strings')])
Out[395]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 0 (labels) x 1 (items) x 0 (major_axis) x 0 (minor_axis)
Labels axis: None
Items axis: Item1 to Item1
Major_axis axis: None
Minor_axis axis: None

23.9 SQL Queries

The pandas.io.sql module provides a collection of query wrappers to both facilitate data retrieval and to reduce dependency on DB-specific API. Database abstraction is provided by SQLAlchemy if installed, in addition you will need a driver library for your database. New in version 0.14.0. If SQLAlchemy is not installed, a fallback is only provided for sqlite (and for mysql for backwards compatibility, but this is deprecated and will be removed in a future version). This mode requires a Python database adapter which respect the Python DB-API.

See also some cookbook examples for some advanced strategies.

The key functions are:

read_sql_table(table_name, con[, schema, ...]) Read SQL database table into a DataFrame.
read_sql_query(sql, con[, index_col, ...]) Read SQL query into a DataFrame.
read_sql(sql, con[, index_col, ...]) Read SQL query or database table into a DataFrame.
DataFrame.to_sql(name, con[, flavor, ...]) Write records stored in a DataFrame to a SQL database.

23.9.1 pandas.read_sql_table

pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None)

Read SQL database table into a DataFrame.

Given a table name and an SQLAlchemy engine, returns a DataFrame. This function does not support DBAPI connections.

Parameters

table_name : string
Name of SQL table in database

con : SQLAlchemy engine
Sqlite DBAPI connection mode not supported

schema : string, default None
Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default).
index_col : string, optional

Column to set as index

coerce_float : boolean, default True

Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision.

parse_dates : list or dict

- List of column names to parse as dates
- Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

columns : list

List of column names to select from sql table

chunksize : int, default None

If specified, return an iterator where chunksize is the number of rows to include in each chunk.

Returns DataFrame

See Also:

read_sql_query Read SQL query into a DataFrame.

read_sql

23.9.2 pandas.read_sql_query

pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None)

Read SQL query into a DataFrame.

Returns a DataFrame corresponding to the result set of the query string. Optionally provide an index_col parameter to use one of the columns as the index, otherwise default integer index will be used.

Parameters sql : string

SQL query to be executed

con : SQLAlchemy engine or sqlite3 DBAPI2 connection

Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

index_col : string, optional

Column name to use as index for the returned DataFrame object.

coerce_float : boolean, default True

Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets
params: list, tuple or dict, optional

List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249's paramstyle, is supported. Eg. for psycopg2, uses `%{name}`s so use params={'name': 'value'}

parse_dates: list or dict

- List of column names to parse as dates
- Dict of `{column_name: format string}` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of `{column_name: arg dict}`, where the arg dict corresponds to the keyword arguments of `pandas.to_datetime()` Especially useful with databases without native Datetime support, such as SQLite

chunksize: int, default None

If specified, return an iterator where `chunksize` is the number of rows to include in each chunk.

Returns: DataFrame

See Also:

- `read_sql_table` Read SQL database table into a DataFrame

23.9.3 pandas.read_sql

```python
pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None)
```

Read SQL query or database table into a DataFrame.

Parameters

- `sql`: string
 SQL query to be executed or database table name.
- `con`: SQLAlchemy engine or DBAPI2 connection (fallback mode)
 Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
- `index_col`: string, optional
 Column name to use as index for the returned DataFrame object.
- `coerce_float`: boolean, default True
 Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets
- `params`: list, tuple or dict, optional
 List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses `%{name}`s so use params={'name': 'value'}
parse_dates: list or dict

- List of column names to parse as dates
- Dict of `{column_name: format string}` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
- Dict of `{column_name: arg dict}`, where the arg dict corresponds to the keyword arguments of `pandas.to_datetime()` Especially useful with databases without native Datetime support, such as SQLite

columns: list

List of column names to select from sql table (only used when reading a table).

chunksize: int, default None

If specified, return an iterator where `chunksize` is the number of rows to include in each chunk.

Returns DataFrame

See Also:

- `read_sql_table` Read SQL database table into a DataFrame
- `read_sql_query` Read SQL query into a DataFrame

Notes

This function is a convenience wrapper around `read_sql_table` and `read_sql_query` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query).

23.9.4 pandas.DataFrame.to_sql

DataFrame.to_sql(name, con, flavor='sqlite', schema=None, if_exists='fail', index=True, index_label=None, chunksize=None)

Write records stored in a DataFrame to a SQL database.

Parameters

- **name**: string

 Name of SQL table

- **con**: SQLAlchemy engine or DBAPI2 connection (legacy mode)

 Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

- **flavor**: {'sqlite', 'mysql'}, default 'sqlite'

 The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is depreciated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

- **schema**: string, default None

 Specify the schema (if database flavor supports this). If None, use default schema.

- **if_exists**: {'fail', 'replace', 'append'}, default 'fail'
• fail: If table exists, do nothing.
• replace: If table exists, drop it, recreate it, and insert data.
• append: If table exists, insert data. Create if does not exist.

index: boolean, default True

Write DataFrame index as a column.

index_label: string or sequence, default None

Column label for index column(s). If None is given (default) and **index** is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize: int, default None

If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

Note: The function **read_sql()** is a convenience wrapper around **read_sql_table()** and **read_sql_query()** (and for backward compatibility) and will delegate to specific function depending on the provided input (database table name or sql query).

In the following example, we use the SQLite SQL database engine. You can use a temporary SQLite database where data are stored in “memory”.

To connect with SQLAlchemy you use the **create_engine()** function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For more information on **create_engine()** and the URI formatting, see the examples below and the SQLAlchemy documentation.

```python
In [396]: from sqlalchemy import create_engine

# Create your connection.
In [397]: engine = create_engine('sqlite:///memory:)

# Create your connection.
In [397]: engine = create_engine('sqlite:///memory:)
```

23.9.5 Writing DataFrames

Assuming the following data is in a DataFrame **data**, we can insert it into the database using **to_sql()**.

<table>
<thead>
<tr>
<th>id</th>
<th>Date</th>
<th>Col_1</th>
<th>Col_2</th>
<th>Col_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2012-10-18</td>
<td>X</td>
<td>25.7</td>
<td>True</td>
</tr>
<tr>
<td>42</td>
<td>2012-10-19</td>
<td>Y</td>
<td>-12.4</td>
<td>False</td>
</tr>
<tr>
<td>63</td>
<td>2012-10-20</td>
<td>Z</td>
<td>5.73</td>
<td>True</td>
</tr>
</tbody>
</table>

```python
In [398]: data.to_sql('data', engine)
```

With some databases, writing large DataFrames can result in errors due to packet size limitations being exceeded. This can be avoided by setting the **chunksize** parameter when calling **to_sql**. For example, the following writes **data** to the database in batches of 1000 rows at a time:

```python
In [399]: data.to_sql('data_chunked', engine, chunksize=1000)
```

Note: Due to the limited support for timedelta’s in the different database flavors, columns with type **timedelta64** will be written as integer values as nanoseconds to the database and a warning will be raised.

23.9. SQL Queries

713
23.9.6 Reading Tables

`read_sql_table()` will read a database table given the table name and optionally a subset of columns to read.

Note: In order to use `read_sql_table()`, you **must** have the SQLAlchemy optional dependency installed.

```python
In [400]: pd.read_sql_table('data', engine)
Out[400]:
   index  id       Date  Col_1  Col_2  Col_3
0       0   26 2010-10-18     X  27.50  True
1       1   42 2010-10-19    Y -12.50 False
2       2   63 2010-10-20    Z  5.73  True
```

You can also specify the name of the column as the DataFrame index, and specify a subset of columns to be read.

```python
In [401]: pd.read_sql_table('data', engine, index_col='id')
Out[401]:
    index       Date  Col_1  Col_2  Col_3
   id
26   0  2010-10-18     X  27.50  True
42   1  2010-10-19    Y -12.50 False
63   2  2010-10-20    Z  5.73  True
```

```python
In [402]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2'])
Out[402]:
     Col_1  Col_2
0      X  27.50
1      Y -12.50
2      Z  5.73
```

And you can explicitly force columns to be parsed as dates:

```python
In [403]: pd.read_sql_table('data', engine, parse_dates=['Date'])
Out[403]:
   index  id       Date  Col_1  Col_2  Col_3
0       0   26 2010-10-18     X  27.50  True
1       1   42 2010-10-19    Y -12.50 False
2       2   63 2010-10-20    Z  5.73  True
```

If needed you can explicitly specify a format string, or a dict of arguments to pass to `pandas.to_datetime()`:

```python
def read_sql_table('data', engine, parse_dates={
    'Date': '
pd.read_sql_table('data', engine, parse_dates={
    'Date': {'format': '%Y-%m-%d %H:%M:%S'}})
```

You can check if a table exists using `has_table()`.

23.9.7 Schema support

New in version 0.15.0. Reading from and writing to different schema’s is supported through the `schema` keyword in the `read_sql_table()` and `to_sql()` functions. Note however that this depends on the database flavor (sqlite does not have schema’s). For example:
df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')

23.9.8 Querying

You can query using raw SQL in the `read_sql_query()` function. In this case you must use the SQL variant appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language constructs, which are database-agnostic.

```
In [404]: pd.read_sql_query('SELECT * FROM data', engine)
Out[404]:
   index  id  Date       Col_1       Col_2       Col_3
0    0   26 2010-10-18 00:00:00.000000   X  27.50        1
1    1  42  2010-10-19 00:00:00.000000   Y -12.50        0
2    2  63  2010-10-20 00:00:00.000000   Z   5.73        1
```

Of course, you can specify a more “complex” query.

```
In [405]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;", engine)
Out[405]:
   id  Col_1  Col_2
0  42     Y  -12.5
```

The `read_sql_query()` function supports a `chunksize` argument. Specifying this will return an iterator through chunks of the query result:

```
In [406]: df = pd.DataFrame(np.random.randn(20, 3), columns=list('abc'))
In [407]: df.to_sql('data_chunks', engine, index=False)
In [408]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks", engine, chunksize=5):
......:     print(chunk)
......:
   a     b     c
0  0.811031 -0.356817  1.047085
1  0.664705 -0.086919  0.416905
2 -0.764381 -0.287229 -0.089351
3 -1.035115  0.489131 -0.253340
4 -1.948100 -0.116556  0.800597
   a     b     c
0 -0.796154 -0.382952 -0.397373
1 -0.717627  0.156995 -0.344718
2 -0.171208  0.538116  0.226388
3  1.541729  0.205256  1.998065
4  0.953591 -2.073479 -0.115926
   a     b     c
0  1.391070  0.303013  1.093347
1 -0.101000 -0.695400  0.402493
2 -1.507639  0.089575  0.658822
3 -1.037627  0.603273  0.262554
4 -0.979586  2.132387  0.892485
   a     b     c
0  1.996474  0.231425  0.980070
1 -0.184784  0.430744  0.076357
2 -0.606393  1.167908 -0.909902
3 -0.149792  0.248038 -0.332245
4  1.209697 -0.292483 -0.731596
```

23.9. SQL Queries
You can also run a plain query without creating a dataframe with `execute()`. This is useful for queries that don’t return values, such as INSERT. This is functionally equivalent to calling `execute` on the SQLAlchemy engine or db connection object. Again, you must use the SQL syntax variant appropriate for your database.

```python
from pandas.io import sql
sql.execute('SELECT * FROM table_name', engine)
sql.execute('INSERT INTO table_name VALUES(?, ?, ?)', engine, params=[('id', 1, 12.2, True)])
```

23.9.9 Engine connection examples

To connect with SQLAlchemy you use the `create_engine()` function to create an engine object from database URI. You only need to create the engine once per database you are connecting to.

```python
from sqlalchemy import create_engine

engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')

engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')

engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')

engine = create_engine('mssql+pyodbc://mydsn')

# sqlite://<hostname>/<dbname>
# where <dbname> is relative:
engine = create_engine('sqlite://foo.db')

# or absolute, starting with a slash:
engine = create_engine('sqlite:///absolute/path/to/foo.db')
```

For more information see the examples the SQLAlchemy documentation

23.9.10 Sqlite fallback

The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which respect the Python DB-API.

You can create connections like so:

```python
import sqlite3
con = sqlite3.connect(':memory:)
```

And then issue the following queries:

```python
data.to_sql('data', cnx)
pd.read_sql_query("SELECT * FROM data", con)
```

23.10 Google BigQuery (Experimental)

New in version 0.13.0. The `pandas.io.gbq` module provides a wrapper for Google’s BigQuery analytics web service to simplify retrieving results from BigQuery tables using SQL-like queries. Result sets are parsed into a pandas DataFrame with a shape and data types derived from the source table. Additionally, DataFrames can be appended to existing BigQuery tables if the destination table is the same shape as the DataFrame.

For specifics on the service itself, see [here](#)
As an example, suppose you want to load all data from an existing BigQuery table: `test_dataset.test_table` into a DataFrame using the `read_gbq()` function.

```python
# Insert your BigQuery Project ID Here
# Can be found in the Google web console
projectid = "xxxxxxxx"

data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table', project_id = projectid)
```

You will then be authenticated to the specified BigQuery account via Google's OAuth2 mechanism. In general, this is as simple as following the prompts in a browser window which will be opened for you. Should the browser not be available, or fail to launch, a code will be provided to complete the process manually. Additional information on the authentication mechanism can be found here.

You can define which column from BigQuery to use as an index in the destination DataFrame as well as a preferred column order as follows:

```python
data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table',
                          index_col='index_column_name',
                          col_order=['col1', 'col2', 'col3'],
                          project_id = projectid)
```

Finally, you can append data to a BigQuery table from a pandas DataFrame using the `to_gbq()` function. This function uses the Google streaming API which requires that your destination table exists in BigQuery. Given the BigQuery table already exists, your DataFrame should match the destination table in column order, structure, and data types. DataFrame indexes are not supported. By default, rows are streamed to BigQuery in chunks of 10,000 rows, but you can pass other chunk values via the `chunksize` argument. You can also see the progress of your post via the `verbose` flag which defaults to `True`. The HTTP response code of Google BigQuery can be successful (`200`) even if the append failed. For this reason, if there is a failure to append to the table, the complete error response from BigQuery is returned which can be quite long given it provides a status for each row. You may want to start with smaller chunks to test that the size and types of your dataframe match your destination table to make debugging simpler.

```python
df = pandas.DataFrame({
    'string_col_name': ['hello'],
    'integer_col_name': [1],
    'boolean_col_name': [True]
})
df.to_gbq('my_dataset.my_table', project_id = projectid)
```

The BigQuery SQL query language has some oddities, see here.

While BigQuery uses SQL-like syntax, it has some important differences from traditional databases both in functionality, API limitations (size and quantity of queries or uploads), and how Google charges for use of the service. You should refer to Google documentation often as the service seems to be changing and evolving. BigQuery is best for analyzing large sets of data quickly, but it is not a direct replacement for a transactional database.

You can access the management console to determine project id’s by:

```bash
https://code.google.com/apis/console/b/0/?noredirect
```

Warning: To use this module, you will need a valid BigQuery account. See `https://cloud.google.com/products/big-query` for details on the service.

23.11 STATA Format

New in version 0.12.0.
23.11.1 Writing to STATA format

The method to_stata() will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata 12).

```python
In [409]: df = DataFrame(randn(10, 2), columns=list('AB'))
In [410]: df.to_stata('stata.dta')
```

Stata data files have limited data type support; only strings with 244 or fewer characters, int8, int16, int32 and float64 can be stored in .dta files. Stata reserves certain values to represent missing data. Furthermore, when a value is encountered outside of the permitted range, the data type is upcast to the next larger size. For example, int8 values are restricted to lie between -127 and 100, and so variables with values above 100 will trigger a conversion to int16. nan values in floating points data types are stored as the basic missing data type (. in Stata). It is not possible to indicate missing data values for integer data types.

The Stata writer gracefully handles other data types including int64, bool, uint8, uint16, uint32 and float32 by upcasting to the smallest supported type that can represent the data. For example, data with a type of uint8 will be cast to int8 if all values are less than 100 (the upper bound for non-missing int8 data in Stata), or, if values are outside of this range, the data is cast to int16.

Warning: Conversion from int64 to float64 may result in a loss of precision if int64 values are larger than 2^{53}.

Warning: StataWriter' and to_stata() only support fixed width strings containing up to 244 characters, a limitation imposed by the version 115 dta file format. Attempting to write Stata dta files with strings longer than 244 characters raises a ValueError.

23.11.2 Reading from STATA format

The top-level function read_stata will read a dta format file and return a DataFrame: The class StataReader will read the header of the given dta file at initialization. Its method data() will read the observations, converting them to a DataFrame which is returned:

```python
In [411]: pd.read_stata('stata.dta')
```

Currently the index is retrieved as a column on read back.

The parameter convert_categoricals indicates whether value labels should be read and used to create a Categorical variable from them. Value labels can also be retrieved by the function variable_labels, which requires data to be called before (see pandas.io.stata.StataReader).

The parameter convert_missing indicates whether missing value representations in Stata should be preserved. If False (the default), missing values are represented as np.nan. If True, missing values are represented using
StataMissingValue objects, and columns containing missing values will have `dtype` set to `object`.

The StataReader supports .dta Formats 104, 105, 108, 113-115 and 117. Alternatively, the function `read_stata()` can be used.

Note: Setting `preserve_dtypes=False` will upcast all integer data types to `int64` and all floating point data types to `float64`. By default, the Stata data types are preserved when importing.

23.12 Performance Considerations

This is an informal comparison of various IO methods, using pandas 0.13.1.

In [3]: df = DataFrame(randn(1000000,2),columns=list('AB'))
 Int64Index: 1000000 entries, 0 to 999999
 Data columns (total 2 columns):
 A 1000000 non-null values
 B 1000000 non-null values
 dtypes: float64(2)

Writing

In [14]: %timeit test_sql_write(df)
1 loops, best of 3: 6.24 s per loop

In [15]: %timeit test_hdf_fixed_write(df)
1 loops, best of 3: 237 ms per loop

In [26]: %timeit test_hdf_fixed_write_compress(df)
1 loops, best of 3: 245 ms per loop

In [16]: %timeit test_hdf_table_write(df)
1 loops, best of 3: 901 ms per loop

In [27]: %timeit test_hdf_table_write_compress(df)
1 loops, best of 3: 952 ms per loop

In [17]: %timeit test_csv_write(df)
1 loops, best of 3: 3.44 s per loop

Reading

In [18]: %timeit test_sql_read()
1 loops, best of 3: 766 ms per loop

In [19]: %timeit test_hdf_fixed_read()
10 loops, best of 3: 19.1 ms per loop

In [28]: %timeit test_hdf_fixed_read_compress()
10 loops, best of 3: 36.3 ms per loop

In [20]: %timeit test_hdf_table_read()
10 loops, best of 3: 39 ms per loop

In [29]: %timeit test_hdf_table_read_compress()
10 loops, best of 3: 60.6 ms per loop
In [22]: %timeit test_csv_read()
1 loops, best of 3: 620 ms per loop

Space on disk (in bytes)

<table>
<thead>
<tr>
<th>File Name</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>test.sql</td>
<td>Apr 8</td>
<td>25843712</td>
</tr>
<tr>
<td>test_fixed.hdf</td>
<td>Apr 8</td>
<td>24007368</td>
</tr>
<tr>
<td>test_fixed_compress.hdf</td>
<td>Apr 8</td>
<td>15580682</td>
</tr>
<tr>
<td>test_table.hdf</td>
<td>Apr 8</td>
<td>24458444</td>
</tr>
<tr>
<td>test_table_compress.hdf</td>
<td>Apr 8</td>
<td>16797283</td>
</tr>
<tr>
<td>test.csv</td>
<td>Apr 8</td>
<td>46152810</td>
</tr>
</tbody>
</table>

And here’s the code

```python
import sqlite3
import os
from pandas.io import sql

df = DataFrame(randn(1000000,2),columns=list('AB'))

def test_sql_write(df):
    if os.path.exists('test.sql'):
        os.remove('test.sql')
    sql_db = sqlite3.connect('test.sql')
    sql.write_frame(df, name='test_table', con=sql_db)
    sql_db.close()

def test_sql_read():
    sql_db = sqlite3.connect('test.sql')
    sql.read_frame("select * from test_table", sql_db)
    sql_db.close()

def test_hdf_fixed_write(df):
    df.to_hdf('test_fixed.hdf','test',mode='w')

def test_hdf_fixed_read():
    pd.read_hdf('test_fixed.hdf','test')

def test_hdf_fixed_write_compress(df):
    df.to_hdf('test_fixed_compress.hdf','test',mode='w',complib='blosc')

def test_hdf_fixed_read_compress():
    pd.read_hdf('test_fixed_compress.hdf','test')

def test_hdf_table_write(df):
    df.to_hdf('test_table.hdf','test',mode='w',format='table')

def test_hdf_table_read():
    pd.read_hdf('test_table.hdf','test')

def test_hdf_table_write_compress(df):
    df.to_hdf('test_table_compress.hdf','test',mode='w',complib='blosc',format='table')

def test_hdf_table_read_compress():
    pd.read_hdf('test_table_compress.hdf','test')

def test_csv_write(df):
    df.to_csv('test.csv',mode='w')
```

Chapter 23. IO Tools (Text, CSV, HDF5, ...
```python
def test_csv_read():
    pd.read_csv('test.csv', index_col=0)
```
REMOTE DATA ACCESS

Functions from `pandas.io.data` extract data from various Internet sources into a DataFrame. Currently the following sources are supported:

- Yahoo! Finance
- Google Finance
- St. Louis FED (FRED)
- Kenneth French’s data library
- World Bank

It should be noted, that various sources support different kinds of data, so not all sources implement the same methods and the data elements returned might also differ.

24.1 Yahoo! Finance

```python
In [1]: import pandas.io.data as web
In [2]: import datetime
In [3]: start = datetime.datetime(2010, 1, 1)
In [4]: end = datetime.datetime(2013, 1, 27)
In [5]: f=web.DataReader("F", 'yahoo', start, end)
```

```python
In [6]: f.ix['2010-01-04']
Out[6]:
Open 10.17
High 10.28
Low 10.05
Close 10.28
Volume 60855800.00
Adj Close 9.52
Name: 2010-01-04 00:00:00, dtype: float64
```

24.2 Yahoo! Finance Options

Experimental
The Options class allows the download of options data from Yahoo! Finance.

The `get_all_data` method downloads and caches option data for all expiry months and provides a formatted DataFrame with a hierarchical index, so it’s easy to get to the specific option you want.

```
In [7]: from pandas.io.data import Options
In [8]: aapl = Options('aapl', 'yahoo')
In [9]: data = aapl.get_all_data()
In [10]: data.iloc[0:5, 0:5]
Out[10]:
          Last    Bid    Ask  Chg  PctChg
   Strike  Expiry   Type Symbol          
27.86  2015-01-17 call AAPL150117C00027860  81.05    81.05  81.30  0.50  +0.62%
      put AAPL150117P00027860    0.02  0.00  0.02  0.00   0.00%
28.57  2015-01-17 call AAPL150117C00028570  80.45    80.30  80.60  0.25  +0.31%
      put AAPL150117P00028570    0.01  0.00  0.02  0.00   0.00%
29.29  2015-01-17 call AAPL150117C00029290  78.70    78.30  80.95  0.00   0.00%

#Show the $100 strike puts at all expiry dates:
In [11]: data.loc[(100, slice(None), 'put'),:].iloc[0:5, 0:5]
Out[11]:
          Last    Bid    Ask  Chg  PctChg
   Strike  Expiry   Type Symbol          
  100  2014-11-14 put AAPL141114P00100000  0.07    0.05  0.07  0.00   0.00%
      2014-11-22 put AAPL141122P00100000  0.13    0.13  0.14  -0.03  -18.75%
      2014-11-28 put AAPL141128P00100000  0.18    0.16  0.19  -0.03  -14.29%
      2014-12-05 put AAPL141205P00100000  0.28    0.24  0.29  -0.04  -12.50%
      2014-12-12 put AAPL141212P00100000  0.38    0.35  0.39  -0.09  -19.15%

#Show the volume traded of $100 strike puts at all expiry dates:
In [12]: data.loc[(100, slice(None), 'put'), 'Vol'].head()
Out[12]:
          Strike  Expiry   Type Symbol  Vol
  100  2014-11-14 put AAPL141114P00100000  671
      2014-11-22 put AAPL141122P00100000  3239
      2014-11-28 put AAPL141128P00100000   119
      2014-12-05 put AAPL141205P00100000    12
      2014-12-12 put AAPL141212P00100000    22
Name: Vol, dtype: int64
```

If you don’t want to download all the data, more specific requests can be made.

```
In [13]: import datetime
In [14]: expiry = datetime.date(2016, 1, 1)
In [15]: data = aapl.get_call_data(expiry=expiry)
In [16]: data.iloc[0:5, 0:5]
Out[16]:
          Last    Bid    Ask  Chg  PctChg
   Strike  Expiry   Type Symbol          
  34.29  2016-01-15 call AAPL160115C00034290  74.25    72.1  76.95  0.00   0.00%
  35.71  2016-01-15 call AAPL160115C00035710  72.65    70.6  75.00  0.00   0.00%
  37.14  2016-01-15 call AAPL160115C00037140  72.55    69.5  74.00  0.00   0.00%
  38.57  2016-01-15 call AAPL160115C00038570  58.35    68.0  72.70  0.00   0.00%
```
Note that if you call `get_all_data` first, this second call will happen much faster, as the data is cached.

If a given expiry date is not available, data for the next available expiry will be returned (January 15, 2015 in the above example).

Available expiry dates can be accessed from the `expiry_dates` property.

```python
In [17]: aapl.expiry_dates
Out[17]:
[datetime.date(2014, 11, 14),
 datetime.date(2014, 11, 22),
 datetime.date(2014, 11, 28),
 datetime.date(2014, 12, 5),
 datetime.date(2014, 12, 12),
 datetime.date(2014, 12, 20),
 datetime.date(2015, 1, 17),
 datetime.date(2015, 2, 20),
 datetime.date(2015, 4, 17),
 datetime.date(2015, 7, 17),
 datetime.date(2016, 1, 15),
 datetime.date(2017, 1, 20)]
```

```python
In [18]: data = aapl.get_call_data(expiry=aapl.expiry_dates[0])
```

```python
In [19]: data.iloc[0:5, 0:5]
Out[19]:
<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Type</th>
<th>Symbol</th>
<th>Last</th>
<th>Bid</th>
<th>Ask</th>
<th>Chg</th>
<th>PctChg</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00080000</td>
<td>29.05</td>
<td>28.70</td>
<td>29.30</td>
<td>0.30</td>
<td>+1.04%</td>
</tr>
<tr>
<td>84</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00084000</td>
<td>24.80</td>
<td>24.70</td>
<td>25.20</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
<tr>
<td>85</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00085000</td>
<td>24.05</td>
<td>23.90</td>
<td>24.05</td>
<td>0.06</td>
<td>+2.87%</td>
</tr>
<tr>
<td>86</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00086000</td>
<td>22.76</td>
<td>22.75</td>
<td>23.25</td>
<td>0.50</td>
<td>+2.87%</td>
</tr>
<tr>
<td>87</td>
<td>2014-11-14</td>
<td>call</td>
<td>AAPL141114C00087000</td>
<td>21.74</td>
<td>21.90</td>
<td>22.10</td>
<td>0.00</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
```

A list-like object containing dates can also be passed to the `expiry` parameter, returning options data for all expiry dates in the list.

```python
In [20]: data = aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3])
```

```python
In [21]: data.iloc[0:5, 0:5]
Out[21]:
<table>
<thead>
<tr>
<th>Strike</th>
<th>Expiry</th>
<th>Type</th>
<th>Symbol</th>
<th>Last</th>
<th>Bid</th>
<th>Ask</th>
<th>Chg</th>
<th>PctChg</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>2014-11-22</td>
<td>call</td>
<td>AAPL141122C000109000</td>
<td>1.48</td>
<td>1.46</td>
<td>1.50</td>
<td>0.01</td>
<td>+0.68%</td>
</tr>
<tr>
<td>110</td>
<td>2014-11-22</td>
<td>call</td>
<td>AAPL141122C000109000</td>
<td>1.79</td>
<td>1.77</td>
<td>1.82</td>
<td>0.03</td>
<td>+1.70%</td>
</tr>
<tr>
<td>109</td>
<td>2014-11-22</td>
<td>call</td>
<td>AAPL141114C00110000</td>
<td>0.55</td>
<td>0.55</td>
<td>0.57</td>
<td>-0.02</td>
<td>-3.33%</td>
</tr>
<tr>
<td>109</td>
<td>2014-11-22</td>
<td>call</td>
<td>AAPL141122C00110000</td>
<td>1.02</td>
<td>1.01</td>
<td>1.04</td>
<td>-0.02</td>
<td>-1.92%</td>
</tr>
<tr>
<td>110</td>
<td>2014-11-22</td>
<td>call</td>
<td>AAPL141122C00110000</td>
<td>1.32</td>
<td>1.30</td>
<td>1.35</td>
<td>0.02</td>
<td>+1.54%</td>
</tr>
</tbody>
</table>
```

The `month` and `year` parameters can be used to get all options data for a given month.

24.3 Google Finance

```python
In [22]: import pandas.io.data as web
```

```python
In [23]: import datetime
```
In [24]: start = datetime.datetime(2010, 1, 1)
In [25]: end = datetime.datetime(2013, 1, 27)
In [26]: f=web.DataReader("F", ‘google’, start, end)
In [27]: f.ix[‘2010-01-04’]
Out[27]:
Open 10.17
High 10.28
Low 10.05
Close 10.28
Volume 60855796
Name: 2010-01-04 00:00:00, dtype: object

24.4 FRED

In [28]: import pandas.io.data as web
In [29]: import datetime
In [30]: start = datetime.datetime(2010, 1, 1)
In [31]: end = datetime.datetime(2013, 1, 27)
In [32]: gdp=web.DataReader("GDP", "fred", start, end)
In [33]: gdp.ix[‘2013-01-01’]
Out[33]:
GDP 16502.4
Name: 2013-01-01 00:00:00, dtype: float64

Multiple series:
In [34]: inflation = web.DataReader(["CPIAUCSL", "CPILFESL"], "fred", start, end)
In [35]: inflation.head()
Out[35]:
 CPIAUCSL CPILFESL
DATE 2010-01-01 217.466 220.543
 2010-02-01 217.251 220.662
 2010-03-01 217.305 220.753
 2010-04-01 217.376 220.817
 2010-05-01 217.299 221.026

24.5 Fama/French

Dataset names are listed at Fama/French Data Library.
In [36]: import pandas.io.data as web
In [37]: ip=web.DataReader("5_Industry_Portfolios", "famafrench")
24.6 World Bank

pandas users can easily access thousands of panel data series from the World Bank’s World Development Indicators by using the `wb` I/O functions.

24.6.1 Indicators

Either from exploring the World Bank site, or using the search function included, every world bank indicator is accessible.

For example, if you wanted to compare the Gross Domestic Products per capita in constant dollars in North America, you would use the search function:

```python
In [1]: from pandas.io import wb

In [2]: wb.search('gdp.*capita.*const').iloc[:,:2]
```

```plaintext
id  name
3242  GDP per Capita, constant US$, millions
5143  GDP per capita (constant 2005 US$)
5145  GDP per capita (constant LCU)
5147  GDP per capita, PPP (constant 2005 international..."
```

Then you would use the `download` function to acquire the data from the World Bank’s servers:

```python
In [3]: dat = wb.download(indicator='NY.GDP.PCAP.KD', country=['US', 'CA', 'MX'], start=2005, end=2008)

In [4]: print(dat)
```

<table>
<thead>
<tr>
<th>country</th>
<th>year</th>
<th>NY.GDP.PCAP.KD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>2005</td>
<td>36005.5004978584</td>
</tr>
<tr>
<td>Canada</td>
<td>2006</td>
<td>36182.913439757</td>
</tr>
<tr>
<td>Canada</td>
<td>2007</td>
<td>35785.9691872849</td>
</tr>
<tr>
<td>Germany</td>
<td>2005</td>
<td>35087.8925933298</td>
</tr>
<tr>
<td>Mexico</td>
<td>2005</td>
<td>7666.69796097264</td>
</tr>
<tr>
<td>Mexico</td>
<td>2006</td>
<td>7961.9681458178</td>
</tr>
<tr>
<td>Mexico</td>
<td>2007</td>
<td>8119.21298908649</td>
</tr>
<tr>
<td>Mexico</td>
<td>2008</td>
<td>8113.1021980083</td>
</tr>
<tr>
<td>United States</td>
<td>2005</td>
<td>42516.3934699993</td>
</tr>
<tr>
<td>United States</td>
<td>2006</td>
<td>43228.11147107</td>
</tr>
<tr>
<td>United States</td>
<td>2007</td>
<td>43635.5852068142</td>
</tr>
<tr>
<td>United States</td>
<td>2008</td>
<td>43069.5819857208</td>
</tr>
</tbody>
</table>

The resulting dataset is a properly formatted `DataFrame` with a hierarchical index, so it is easy to apply `.groupby` transformations to it:
In [6]: dat[‘NY.GDP.PCAP.KD’].groupby(level=0).mean()
Out[6]:
country
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
</tr>
<tr>
<td>Mexico</td>
</tr>
<tr>
<td>United States</td>
</tr>
</tbody>
</table>
dtype: float64

Now imagine you want to compare GDP to the share of people with cellphone contracts around the world.

In [7]: wb.search(‘cell.*%’).iloc[:,:2]
Out[7]:
<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>3990</td>
<td>IT.CEL.SETS.FE.ZS Mobile cellular telephone users, female (% of ...</td>
</tr>
<tr>
<td>3991</td>
<td>IT.CEL.SETS.MA.ZS Mobile cellular telephone users, male (% of po...</td>
</tr>
<tr>
<td>4027</td>
<td>IT.MOB.COV.ZS Population coverage of mobile cellular telepho...</td>
</tr>
</tbody>
</table>

Notice that this second search was much faster than the first one because pandas now has a cached list of available data series.

In [13]: ind = [‘NY.GDP.PCAP.KD’, ‘IT.MOB.COV.ZS’]
In [14]: dat = wb.download(indicator=ind, country=‘all’, start=2011, end=2011).dropna()
In [15]: dat.columns = [‘gdp’, ‘cellphone’]
In [16]: print(dat.tail())
<table>
<thead>
<tr>
<th>country</th>
<th>year</th>
<th>gdp</th>
<th>cellphone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swaziland</td>
<td>2011</td>
<td>2413.952853</td>
<td>94.9</td>
</tr>
<tr>
<td>Tunisia</td>
<td>2011</td>
<td>3687.340170</td>
<td>100.0</td>
</tr>
<tr>
<td>Uganda</td>
<td>2011</td>
<td>405.332501</td>
<td>100.0</td>
</tr>
<tr>
<td>Zambia</td>
<td>2011</td>
<td>767.911290</td>
<td>62.0</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>2011</td>
<td>419.236086</td>
<td>72.4</td>
</tr>
</tbody>
</table>

Finally, we use the statsmodels package to assess the relationship between our two variables using ordinary least squares regression. Unsurprisingly, populations in rich countries tend to use cellphones at a higher rate:

In [17]: import numpy as np
In [18]: import statsmodels.formula.api as smf
In [19]: mod = smf.ols("cellphone ~ np.log(gdp)", dat).fit()
In [20]: print(mod.summary())

OLS Regression Results
==
Dep. Variable: cellphone R-squared: 0.297
Model: OLS Adj. R-squared: 0.274
Method: Least Squares F-statistic: 13.08
Date: Thu, 25 Jul 2013 Prob (F-statistic): 0.00105
Time: 15:24:42 Log-Likelihood: -139.16
No. Observations: 33 AIC: 282.3
Df Residuals: 31 BIC: 285.3
Df Model: 1
==
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
|------|---------|---|------|-------------------|
| Intercept | 16.5110 | 19.071 | 0.866 | 0.393 | -22.384 | 55.406 |
| np.log(gdp) | 9.9333 | 2.747 | 3.616 | 0.001 | 4.331 | 15.535 |

==
Omnibus:	36.054	Durbin-Watson:	2.071
Prob(Omnibus):	0.000	Jarque-Bera (JB):	119.133
Skew:	-2.314	Prob(JB):	1.35e-26
Kurtosis:	11.077	Cond. No.	45.8
24.6.2 Country Codes

New in version 0.15.1. The `country` argument accepts a string or list of mixed two or three character ISO country codes, as well as dynamic World Bank exceptions to the ISO standards.

For a list of the the hard-coded country codes (used solely for error handling logic) see `pandas.io.wb.country_codes`.

24.6.3 Problematic Country Codes & Indicators

Note: The World Bank’s country list and indicators are dynamic. As of 0.15.1, `wb.download()` is more flexible. To achieve this, the warning and exception logic changed.

The world bank converts some country codes, in their response, which makes error checking by pandas difficult. Retired indicators still persist in the search.

Given the new flexibility of 0.15.1, improved error handling by the user may be necessary for fringe cases.

To help identify issues:

There are at least 4 kinds of country codes:

1. Standard (2/3 digit ISO) - returns data, will warn and error properly.
2. Non-standard (WB Exceptions) - returns data, but will falsely warn.
3. Blank - silently missing from the response.
4. Bad - causes the entire response from WB to fail, always exception inducing.

There are at least 3 kinds of indicators:

1. Current - Returns data.
2. Retired - Appears in search results, yet won’t return data.
3. Bad - Will not return data.

Use the `errors` argument to control warnings and exceptions. Setting errors to ignore or warn, won’t stop failed responses. (ie, 100% bad indicators, or a single “bad” (#4 above) country code).

See docstrings for more info.
25.1 Cython (Writing C extensions for pandas)

For many use cases writing pandas in pure python and numpy is sufficient. In some computationally heavy applications however, it can be possible to achieve sizeable speed-ups by offloading work to cython.

This tutorial assumes you have refactored as much as possible in python, for example trying to remove for loops and making use of numpy vectorization, it’s always worth optimising in python first.

This tutorial walks through a “typical” process of cythonizing a slow computation. We use an example from the cython documentation but in the context of pandas. Our final cythonized solution is around 100 times faster than the pure python.

25.1.1 Pure python

We have a DataFrame to which we want to apply a function row-wise.

```
In [1]: df = DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'})
```

```
In [2]: df
Out[2]:
   N     a     b     x
0  585  0.469112 -0.218470  x
1  841 -0.282863 -0.061645  x
2  251 -1.509059 -0.723780  x
3  972 -1.135632  0.551225  x
4  181  1.212112 -0.497767  x
5  458 -0.173215  0.837519  x
6  159  0.119209  1.103245  x
   ...   ...   ...   ...
993 190  0.131892  0.290162  x
994  931  0.342097  0.215341  x
995  374 -1.512743  0.874737  x
996  246  0.933753  1.120790  x
997  157 -0.308013  0.198768  x
998  977 -0.079915  1.757555  x
999  770 -1.010589 -1.115680  x
[1000 rows x 4 columns]
```

Here’s the function in pure python:
In [3]: def f(x):
 ...: return x * (x - 1)
 ...:

In [4]: def integrate_f(a, b, N):
 ...: s = 0
 ...: dx = (b - a) / N
 ...: for i in range(N):
 ...: s += f(a + i * dx)
 ...: return s * dx
 ...:

We achieve our result by by using apply (row-wise):

In [5]: %timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
1 loops, best of 3: 293 ms per loop

But clearly this isn’t fast enough for us. Let’s take a look and see where the time is spent during this operation (limited
to the most time consuming four calls) using the prun ipython magic function:

In [6]: %prun -l 4 df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)

By far the majority of time is spend inside either integrate_f or f, hence we’ll concentrate our efforts cythonizing
these two functions.

Note: In python 2 replacing the range with its generator counterpart (xrange) would mean the range line would
vanish. In python 3 range is already a generator.

25.1.2 Plain cython

First we’re going to need to import the cython magic function to ipython:

In [7]: %load_ext cythonmagic

Now, let’s simply copy our functions over to cython as is (the suffix is here to distinguish between function versions):

In [8]: %cython
...: def f_plain(x):
 ...: return x * (x - 1)
 ...:
...: def integrate_f_plain(a, b, N):
 ...: s = 0
 ...: dx = (b - a) / N
 ...: for i in range(N):
 ...: s += f_plain(a + i * dx)
 ...: return s * dx
 ...:
Note: If you're having trouble pasting the above into your ipython, you may need to be using bleeding edge ipython for paste to play well with cell magics.

In [9]: %timeit df.apply(lambda x: integrate_f_plain(x['a'], x['b'], x['N']), axis=1)
1 loops, best of 3: 202 ms per loop

Already this has shaved a third off, not too bad for a simple copy and paste.

25.1.3 Adding type

We get another huge improvement simply by providing type information:

In [10]: %%cython
.....: cdef double f_typed(double x) except[2] -2:
.....: return x * (x - 1)
.....: cpdef double integrate_f_typed(double a, double b, int N):
.....: cdef int i
.....: cdef double s, dx
.....: s = 0
.....: dx = (b - a) / N
.....: for i in range(N):
.....: s += f_typed(a + i * dx)
.....: return s * dx

In [11]: %timeit df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 35.4 ms per loop

Now, we’re talking! It’s now over ten times faster than the original python implementation, and we haven’t really modified the code. Let’s have another look at what’s eating up time:

In [12]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), axis=1)
58351 function calls (56338 primitive calls) in 0.078 seconds

Ordered by: internal time
List reduced from 102 to 4 due to restriction <4>

<table>
<thead>
<tr>
<th>ncalls</th>
<th>tottime</th>
<th>percall</th>
<th>cumtime</th>
<th>percall</th>
<th>filename:lineno(function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>0.007</td>
<td>0.000</td>
<td>0.052</td>
<td>0.000</td>
<td>series.py:506(getitem)</td>
</tr>
<tr>
<td>6000</td>
<td>0.007</td>
<td>0.000</td>
<td>0.026</td>
<td>0.000</td>
<td>pandas.lib.values_from_object</td>
</tr>
<tr>
<td>3000</td>
<td>0.007</td>
<td>0.000</td>
<td>0.017</td>
<td>0.000</td>
<td>internals.py:3507(get_values)</td>
</tr>
<tr>
<td>3000</td>
<td>0.006</td>
<td>0.000</td>
<td>0.039</td>
<td>0.000</td>
<td>index.py:1402(get_value)</td>
</tr>
</tbody>
</table>

25.1.4 Using ndarray

It’s calling series... a lot! It’s creating a Series from each row, and get-ting from both the index and the series (three times for each row). Function calls are expensive in python, so maybe we could minimise these by cythonizing the apply part.

Note: We are now passing ndarrays into the cython function, fortunately cython plays very nicely with numpy.
In [13]: %%cython
 : cimport numpy as np
 : import numpy as np
 : cdef double f_typed(double x) except?-2:
 : return x * (x - 1)
 : cpdef double integrate_f_typed(double a, double b, int N):
 : cdef int i
 : cdef double s, dx
 : s = 0
 : dx = (b - a) / N
 : for i in range(N):
 : s += f_typed(a + i * dx)
 : return s * dx
 : cpdef np.ndarray[double] apply_integrate_f(np.ndarray col_a, np.ndarray col_b, np.ndarray col_N):
 : assert (col_a.dtype == np.float and col_b.dtype == np.float and col_N.dtype == np.int)
 : cdef Py_ssize_t i, n = len(col_N)
 : assert (len(col_a) == len(col_b) == n)
 : cdef np.ndarray[double] res = np.empty(n)
 : for i in range(len(col_a)):
 : res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
 : return res

The implementation is simple, it creates an array of zeros and loops over the rows, applying our integrate_f_typed, and putting this in the zeros array.

Warning: In 0.13.0 since Series has internally been refactored to no longer sub-class ndarray but instead subclass NDFrame, you can not pass a Series directly as a ndarray typed parameter to a cython function. Instead pass the actual ndarray using the .values attribute of the Series. Prior to 0.13.0

apply_integrate_f(df['a'], df['b'], df['N'])

Use .values to get the underlying ndarray

apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)

Note: Loops like this would be extremely slow in python, but in Cython looping over numpy arrays is fast.

In [14]: %timeit apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
 1000 loops, best of 3: 1.81 ms per loop

We've gotten another big improvement. Let’s check again where the time is spent:

In [15]: %prun -l 4 apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
 39 function calls in 0.004 seconds

Ordered by: internal time
List reduced from 15 to 4 due to restriction <4>

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.003 0.003 0.003 0.003 _cython_magic_0aac91cb9ef835aac54feefb9e6a.apply_integrate_f
3 0.000 0.000 0.000 0.000 frame.py:1757(__getitem__)
1 0.000 0.000 0.004 0.004 <string>:1(<module>)
3 0.000 0.000 0.000 0.000 index.py:882(__contains__)
As one might expect, the majority of the time is now spent in apply_integrate_f, so if we wanted to make anymore efficiencies we must continue to concentrate our efforts here.

25.1.5 More advanced techniques

There is still scope for improvement, here’s an example of using some more advanced cython techniques:

```python
In [16]: %%cython
    ....: cimport cython
    ....: cimport numpy as np
    ....: import numpy as np
    ....: cdef double f_typed(double x) except -2:
    ....:     return x * (x - 1)
    ....: cdef double integrate_f_typed(double a, double b, int N):
    ....:     cdef int i
    ....:     cdef double s, dx
    ....:     s = 0
    ....:     dx = (b - a) / N
    ....:     for i in range(N):
    ....:         s += f_typed(a + i * dx)
    ....:     return s * dx
    ....: @cython.boundscheck(False)
    ....: @cython.wraparound(False)
    ....:     cdef Py_ssize_t i, n = len(col_N)
    ....:     assert len(col_a) == len(col_b) == n
    ....:     cdef np.ndarray[double] res = np.empty(n)
    ....:     for i in range(n):
    ....:         res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
    ....:     return res

In [17]: %timeit apply_integrate_f_wrap(df['a'].values, df['b'].values, df['N'].values)
1000 loops, best of 3: 1.6 ms per loop
```

Even faster, with the caveat that a bug in our cython code (an off-by-one error, for example) might cause a segfault because memory access isn’t checked.

25.1.6 Further topics

- Loading C modules into cython.

Read more in the cython docs.

25.2 Expression Evaluation via eval() (Experimental)

New in version 0.13. The top-level function pandas.eval() implements expression evaluation of Series and DataFrame objects.

Note: To benefit from using eval() you need to install numexpr. See the recommended dependencies section for more details.
The point of using `eval()` for expression evaluation rather than plain Python is two-fold: 1) large DataFrame objects are evaluated more efficiently and 2) large arithmetic and boolean expressions are evaluated all at once by the underlying engine (by default `numexpr` is used for evaluation).

Note: You should not use `eval()` for simple expressions or for expressions involving small DataFrames. In fact, `eval()` is many orders of magnitude slower for smaller expressions/objects than plain ol’ Python. A good rule of thumb is to only use `eval()` when you have a DataFrame with more than 10,000 rows.

`eval()` supports all arithmetic expressions supported by the engine in addition to some extensions available only in pandas.

Note: The larger the frame and the larger the expression the more speedup you will see from using `eval()`.

25.2.1 Supported Syntax

These operations are supported by `pandas.eval()`:

- Arithmetic operations except for the left shift (`<<`) and right shift (`>>`) operators, e.g., `df + 2 * pi / s ** 4 % 42 - the_golden_ratio`
- Comparison operations, including chained comparisons, e.g., `2 < df < df2`
- Boolean operations, e.g., `df < df2 and df3 < df4 or not df_bool`
- List and tuple literals, e.g., `[1, 2]` or `(1, 2)`
- Attribute access, e.g., `df.a`
- Subscript expressions, e.g., `df[0]`
- Simple variable evaluation, e.g., `pd.eval('df')` (this is not very useful)

This Python syntax is **not** allowed:

- Expressions
 - Function calls
 - `is/is not` operations
 - `if` expressions
 - `lambda` expressions
 - `list/set/dict` comprehensions
 - Literal `dict` and `set` expressions
 - `yield` expressions
 - Generator expressions
 - Boolean expressions consisting of only scalar values
- Statements
 - Neither simple nor compound statements are allowed. This includes things like `for`, `while`, and `if`.
25.2.2 eval() Examples

`pandas.eval()` works well with expressions containing large arrays.

First let’s create a few decent-sized arrays to play with:

```python
In [18]: import pandas as pd
In [19]: from pandas import DataFrame, Series
In [20]: from numpy.random import randn
In [21]: import numpy as np
In [22]: nrows, ncols = 20000, 100
In [23]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols)) for _ in range(4)]
```

Now let’s compare adding them together using plain ol’ Python versus `eval()`:

```python
In [24]: %timeit df1 + df2 + df3 + df4
   10 loops, best of 3: 19.4 ms per loop
In [25]: %timeit pd.eval('df1 + df2 + df3 + df4')
   100 loops, best of 3: 14.4 ms per loop
```

Now let’s do the same thing but with comparisons:

```python
In [26]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
   10 loops, best of 3: 67 ms per loop
In [27]: %timeit pd.eval('(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)')
   10 loops, best of 3: 26.7 ms per loop
```

`eval()` also works with unaligned pandas objects:

```python
In [28]: s = Series(randn(50))
In [29]: %timeit df1 + df2 + df3 + df4 + s
   10 loops, best of 3: 82.1 ms per loop
In [30]: %timeit pd.eval('df1 + df2 + df3 + df4 + s')
   10 loops, best of 3: 60.8 ms per loop
```

Note: Operations such as

1 `and` 2 # would parse to 1 & 2, but should evaluate to 2
3 `or` 4 # would parse to 3 | 4, but should evaluate to 3
~1 # this is okay, but slower when using eval

should be performed in Python. An exception will be raised if you try to perform any boolean/bitwise operations with scalar operands that are not of type `bool` or `np.bool_`. Again, you should perform these kinds of operations in plain Python.
25.2.3 The DataFrame.eval method (Experimental)

New in version 0.13. In addition to the top level pandas.eval() function you can also evaluate an expression in the “context” of a DataFrame.

In [31]: df = DataFrame(randn(5, 2), columns=['a', 'b'])

In [32]: df.eval('a + b')
Out[32]:
 0 -0.246747
 1 0.867786
 2 -1.626063
 3 -1.134978
 4 -1.027798
 dtype: float64

Any expression that is a valid pandas.eval() expression is also a valid DataFrame.eval() expression, with the added benefit that you don’t have to prefix the name of the DataFrame to the column(s) you’re interested in evaluating.

In addition, you can perform assignment of columns within an expression. This allows for formulaic evaluation. Only a single assignment is permitted. The assignment target can be a new column name or an existing column name, and it must be a valid Python identifier.

In [33]: df = DataFrame(dict(a=range(5), b=range(5, 10)))

In [34]: df.eval('c = a + b')
In [35]: df.eval('d = a + b + c')
In [36]: df.eval('a = 1')

In [37]: df
Out[37]:
 a b c d
 0 0 5 5 10
 1 1 6 7 14
 2 2 7 9 18
 3 3 8 11 22
 4 4 9 13 26

The equivalent in standard Python would be

In [38]: df = DataFrame(dict(a=range(5), b=range(5, 10)))

In [39]: df['c'] = df.a + df.b
In [40]: df['d'] = df.a + df.b + df.c
In [41]: df['a'] = 1

In [42]: df
Out[42]:
 a b c d
 0 0 5 5 10
 1 1 6 7 14
 2 2 7 9 18
 3 3 8 11 22
 4 4 9 13 26
25.2.4 Local Variables

In pandas version 0.14 the local variable API has changed. In pandas 0.13.x, you could refer to local variables the same way you would in standard Python. For example,

```python
df = DataFrame(randn(5, 2), columns=[‘a’, ‘b’])
newcol = randn(len(df))
df.eval(‘b + newcol’)  
```

```
UndefinedVariableError: name ‘newcol’ is not defined
```

As you can see from the exception generated, this syntax is no longer allowed. You must explicitly reference any local variable that you want to use in an expression by placing the `@` character in front of the name. For example,

```python
In [43]: df = DataFrame(randn(5, 2), columns=list(‘ab’))
In [44]: newcol = randn(len(df))
In [45]: df.eval(‘b + @newcol’)  
```

```
Out[45]:
0 -0.173926
1 2.493083
2 -0.881831
3 -0.691045
4 1.334703
  dtype: float64
```

```
In [46]: df.query(‘b < @newcol’)  
```

```
Out[46]:
   a   b
0 0.863987 -0.115998
2 -2.621419 -1.297879
```

If you don’t prefix the local variable with `@`, pandas will raise an exception telling you the variable is undefined.

When using `DataFrame.eval()` and `DataFrame.query()`, this allows you to have a local variable and a `DataFrame` column with the same name in an expression.

```python
In [47]: a = randn()  
In [48]: df.query('@a < a')  
```

```
Out[48]:
   a   b
0 0.863987 -0.115998
```

```
In [49]: df.loc[a < df.a]  # same as the previous expression  
```

```
Out[49]:
   a   b
0 0.863987 -0.115998
```

With `pandas.eval()` you cannot use the `@` prefix at all, because it isn’t defined in that context. `pandas` will let you know this if you try to use `@` in a top-level call to `pandas.eval()`. For example,

```python
In [50]: a, b = 1, 2  
In [51]: pd.eval(’@a + b’)  
```

```
File “<string>”, line unknown
SyntaxError: The ‘@’ prefix is not allowed in top-level eval calls, please refer to your variables by name without the ‘@’ prefix
```
In this case, you should simply refer to the variables like you would in standard Python.

```python
In [52]: pd.eval('a + b')
Out[52]: 3
```

25.2.5 `pandas.eval()` Parsers

There are two different parsers and two different engines you can use as the backend.

The default `pandas` parser allows a more intuitive syntax for expressing query-like operations (comparisons, conjunctions and disjunctions). In particular, the precedence of the `&` and `|` operators is made equal to the precedence of the corresponding boolean operations `and` and `or`.

For example, the above conjunction can be written without parentheses. Alternatively, you can use the `python` parser to enforce strict Python semantics.

```python
In [53]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'
In [54]: x = pd.eval(expr, parser='python')
In [55]: expr_no_parens = 'df1 > 0 & df2 > 0 & df3 > 0 & df4 > 0'
In [56]: y = pd.eval(expr_no_parens, parser='pandas')
In [57]: np.all(x == y)
Out[57]: True
```

The same expression can be “anded” together with the word `and` as well:

```python
In [58]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'
In [59]: x = pd.eval(expr, parser='python')
In [60]: expr_with_ands = 'df1 > 0 and df2 > 0 and df3 > 0 and df4 > 0'
In [61]: y = pd.eval(expr_with_ands, parser='pandas')
In [62]: np.all(x == y)
Out[62]: True
```

The `and` and `or` operators here have the same precedence that they would in vanilla Python.

25.2.6 `pandas.eval()` Backends

There’s also the option to make `eval()` operate identical to plain ol’ Python.

Note: Using the `python` engine is generally not useful, except for testing other evaluation engines against it. You will achieve no performance benefits using `eval()` with `engine='python'` and in fact may incur a performance hit.

You can see this by using `pandas.eval()` with the `python` engine. It is a bit slower (not by much) than evaluating the same expression in Python.

```python
In [63]: %timeit df1 + df2 + df3 + df4
100 loops, best of 3: 20.4 ms per loop
```
In [64]: %timeit pd.eval('df1 + df2 + df3 + df4', engine='python')
10 loops, best of 3: 21 ms per loop

25.2.7 pandas.eval() Performance

eval() is intended to speed up certain kinds of operations. In particular, those operations involving complex expressions with large DataFrame/Series objects should see a significant performance benefit. Here is a plot showing the running time of pandas.eval() as function of the size of the frame involved in the computation. The two lines are two different engines.

Note: Operations with smallish objects (around 15k-20k rows) are faster using plain Python:

This plot was created using a DataFrame with 3 columns each containing floating point values generated using numpy.random.randn().
Expressions that would result in an object dtype or involve datetime operations (because of NaT) must be evaluated in Python space. The main reason for this behavior is to maintain backwards compatibility with versions of numpy < 1.7. In those versions of numpy a call to ndarray.astype(str) will truncate any strings that are more than 60 characters in length. Second, we can’t pass object arrays to numexpr thus string comparisons must be evaluated in Python space.

The upshot is that this only applies to object-dtype’d expressions. So, if you have an expression—for example

```python
In [65]: df = DataFrame({'strings': np.repeat(list('cba'), 3),
                      'nums': np.repeat(range(3), 3)})

In [66]: df
Out[66]:
    nums strings
   0   0   c
   1   0   c
   2   0   c
   3   1   b
   4   1   b
   5   1   b
   6   2   a
   7   2   a
   8   2   a

In [67]: df.query('strings == "a" and nums == 1')
Out[67]:
Empty DataFrame
Columns: [nums, strings]
Index: []
```

the numeric part of the comparison (nums == 1) will be evaluated by numexpr.

In general, DataFrame.query()/pandas.eval() will evaluate the subexpressions that can be evaluated by numexpr and those that must be evaluated in Python space transparently to the user. This is done by inferring the result type of an expression from its arguments and operators.
SPARSE DATA STRUCTURES

We have implemented “sparse” versions of Series, DataFrame, and Panel. These are not sparse in the typical “mostly 0”. You can view these objects as being “compressed” where any data matching a specific value (NaN/missing by default, though any value can be chosen) is omitted. A special SparseIndex object tracks where data has been “sparsified”. This will make much more sense in an example. All of the standard pandas data structures have a to_sparse method:

In [1]: ts = Series(randn(10))

In [2]: ts[2:-2] = np.nan

In [3]: sts = ts.to_sparse()

In [4]: sts
Out[4]:
0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.861849
9 -2.104569
dtype: float64
BlockIndex
Block locations: array([0, 8])
Block lengths: array([2, 2])

The to_sparse method takes a kind argument (for the sparse index, see below) and a fill_value. So if we had a mostly zero Series, we could convert it to sparse with fill_value=0:

In [5]: ts.fillna(0).to_sparse(fill_value=0)
Out[5]:
0 0.469112
1 -0.282863
2 0.000000
3 0.000000
4 0.000000
5 0.000000
6 0.000000
7 0.000000
8 -0.861849
9 -2.104569
The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame:

```python
In [6]: df = DataFrame(randn(10000, 4))
In [7]: df.ix[:9998] = np.nan
In [8]: sdf = df.to_sparse()
In [9]: sdf
Out[9]:
          0    1    2    3
0    NaN  NaN  NaN  NaN
1    NaN  NaN  NaN  NaN
2    NaN  NaN  NaN  NaN
3    NaN  NaN  NaN  NaN
4    NaN  NaN  NaN  NaN
5    NaN  NaN  NaN  NaN
6    NaN  NaN  NaN  NaN
...  ...  ...  ...  ...
9993  NaN  NaN  NaN  NaN
9994  NaN  NaN  NaN  NaN
9995  NaN  NaN  NaN  NaN
9996  NaN  NaN  NaN  NaN
9997  NaN  NaN  NaN  NaN
9998  NaN  NaN  NaN  NaN
9999  0.280249 -1.648493 1.490865 -0.890819
[10000 rows x 4 columns]
```

```python
In [10]: sdf.density
Out[10]: 0.0001
```

As you can see, the density (\% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly identical to their dense counterparts.

Any sparse object can be converted back to the standard dense form by calling `to_dense`:

```python
In [11]: sts.to_dense()
Out[11]:
          0     1     2     3
0  0.469112 NaN   NaN   NaN
1 -0.282863 NaN   NaN   NaN
2  NaN     0.280249 NaN   NaN
3  NaN     NaN     1.648493 NaN
4  NaN     NaN     NaN   -1.490865
5  NaN     NaN     NaN   0.890819
6  NaN     NaN     NaN  -2.104569
7  NaN     NaN     NaN  -0.861849
8  NaN     NaN     NaN  -0.861849
9  NaN     NaN     NaN   2.104569
dtype: float64
```
26.1 SparseArray

SparseArray is the base layer for all of the sparse indexed data structures. It is a 1-dimensional ndarray-like object storing only values distinct from the fill_value:

In [12]: arr = np.random.randn(10)
In [14]: sparr = SparseArray(arr)
In [15]: sparr
Out[15]:

Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9])

Like the indexed objects (SparseSeries, SparseDataFrame, SparsePanel), a SparseArray can be converted back to a regular ndarray by calling to_dense:

In [16]: sparr.to_dense()
Out[16]:
array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,
 nan, 0.6060, 1.3342])

26.2 SparseList

SparseList is a list-like data structure for managing a dynamic collection of SparseArrays. To create one, simply call the SparseList constructor with a fill_value (defaulting to NaN):

In [17]: spl = SparseList()
In [18]: spl
Out[18]:<pandas.sparse.list.SparseList object at 0x9f955e0c>

The two important methods are append and to_array. append can accept scalar values or any 1-dimensional sequence:

In [19]: spl.append(np.array([1., nan, nan, 2., 3.]))
In [20]: spl.append(5)
In [21]: spl.append(sparr)
In [22]: spl
Out[22]:<pandas.sparse.list.SparseList object at 0x9f955e0c>

[1.0, nan, nan, 2.0, 3.0]
Fill: nan
IntIndex
Indices: array([0, 3, 4])

[5.0]
Fill: nan
IntIndex
Indices: array([0])

[-1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.145297113733, nan, 0.606027190513, 1.33421134013]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9])

As you can see, all of the contents are stored internally as a list of memory-efficient SparseArray objects. Once you’ve accumulated all of the data, you can call to_array to get a single SparseArray with all the data:

```
In [23]: spl.to_array()
Out[23]:
[1.0, nan, nan, 2.0, 3.0, 5.0, -1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.145297113733, nan, 0.606027190513, 1.33421134013]
Fill: nan
IntIndex
Indices: array([ 0, 3, 4, 5, 6, 7, 11, 12, 14, 15])
```

26.3 SparseIndex objects

Two kinds of SparseIndex are implemented, block and integer. We recommend using block as it’s more memory efficient. The integer format keeps an arrays of all of the locations where the data are not equal to the fill value. The block format tracks only the locations and sizes of blocks of data.
CAVEATS AND GOTCHAS

27.1 Using If/Truth Statements with pandas

pandas follows the numpy convention of raising an error when you try to convert something to a bool. This happens in a if or when using the boolean operations, and, or, or not. It is not clear what the result of

```python
>>> if Series([False, True, False]):
    ...
```

should be. Should it be True because it’s not zero-length? False because there are False values? It is unclear, so instead, pandas raises a ValueError:

```python
>>> if pd.Series([False, True, False]):
    print("I was true")
Traceback
    ...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

If you see that, you need to explicitly choose what you want to do with it (e.g., use any(), all() or empty). or, you might want to compare if the pandas object is None

```python
>>> if pd.Series([False, True, False]) is not None:
    print("I was not None")
>>> I was not None
```

or return if any value is True.

```python
>>> if pd.Series([False, True, False]).any():
    print("I am any")
>>> I am any
```

To evaluate single-element pandas objects in a boolean context, use the method .bool():

```python
In [1]: Series([True]).bool()
Out[1]: True

In [2]: Series([False]).bool()
Out[2]: False

In [3]: DataFrame([[True]]).bool()
Out[3]: True

In [4]: DataFrame([[False]]).bool()
Out[4]: False
```
27.1.1 Bitwise boolean

Bitwise boolean operators like == and != will return a boolean Series, which is almost always what you want anyways.

```python
>>> s = pd.Series(range(5))
>>> s == 4
0 False
1 False
2 False
3 False
4  True
dtype: bool
```

See boolean comparisons for more examples.

27.1.2 Using the in operator

Using the Python in operator on a Series tests for membership in the index, not membership among the values.

If this behavior is surprising, keep in mind that using in on a Python dictionary tests keys, not values, and Series are dict-like. To test for membership in the values, use the method isin():

For DataFrames, likewise, in applies to the column axis, testing for membership in the list of column names.

27.2 NaN, Integer NA values and NA type promotions

27.2.1 Choice of NA representation

For lack of NA (missing) support from the ground up in NumPy and Python in general, we were given the difficult choice between either

- A masked array solution: an array of data and an array of boolean values indicating whether a value
- Using a special sentinel value, bit pattern, or set of sentinel values to denote NA across the dtypes

For many reasons we chose the latter. After years of production use it has proven, at least in my opinion, to be the best decision given the state of affairs in NumPy and Python in general. The special value NaN (Not-A-Number) is used everywhere as the NA value, and there are API functions isnull and notnull which can be used across the dtypes to detect NA values.

However, it comes with it a couple of trade-offs which I most certainly have not ignored.

27.2.2 Support for integer NA

In the absence of high performance NA support being built into NumPy from the ground up, the primary casualty is the ability to represent NAs in integer arrays. For example:

```python
In [5]: s = Series([1, 2, 3, 4, 5], index=list('abcde'))

In [6]: s
Out[6]:
a  1
b  2
c  3
```
In [7]: s.dtype
Out[7]: dtype('int64')

In [8]: s2 = s.reindex(['a', 'b', 'c', 'f', 'u'])

In [9]: s2
Out[9]:
 a 1
 b 2
 c 3
 f NaN
 u NaN

In [10]: s2.dtype
Out[10]: dtype('float64')

This trade-off is made largely for memory and performance reasons, and also so that the resulting Series continues to be “numeric”. One possibility is to use dtype=object arrays instead.

27.2.3 NA type promotions

When introducing NAs into an existing Series or DataFrame via `reindex` or some other means, boolean and integer types will be promoted to a different dtype in order to store the NAs. These are summarized by this table:

<table>
<thead>
<tr>
<th>Typeclass</th>
<th>Promotion dtype for storing NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>floating</td>
<td>no change</td>
</tr>
<tr>
<td>object</td>
<td>no change</td>
</tr>
<tr>
<td>integer</td>
<td>cast to float64</td>
</tr>
<tr>
<td>boolean</td>
<td>cast to object</td>
</tr>
</tbody>
</table>

While this may seem like a heavy trade-off, in practice I have found very few cases where this is an issue in practice. Some explanation for the motivation here in the next section.

27.2.4 Why not make NumPy like R?

Many people have suggested that NumPy should simply emulate the NA support present in the more domain-specific statistical programming language R. Part of the reason is the NumPy type hierarchy:

<table>
<thead>
<tr>
<th>Typeclass</th>
<th>Dtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>numpy.floating</td>
<td>float16, float32, float64, float128</td>
</tr>
<tr>
<td>numpy.integer</td>
<td>int8, int16, int32, int64</td>
</tr>
<tr>
<td>numpy.unsignedInteger</td>
<td>uint8, uint16, uint32, uint64</td>
</tr>
<tr>
<td>numpy.object</td>
<td>object_</td>
</tr>
<tr>
<td>numpy.bool</td>
<td>bool_</td>
</tr>
<tr>
<td>numpy.character</td>
<td>string_, unicode_</td>
</tr>
</tbody>
</table>

The R language, by contrast, only has a handful of built-in data types: integer, numeric (floating-point), character, and boolean. NA types are implemented by reserving special bit patterns for each type to be used as the missing value. While doing this with the full NumPy type hierarchy would be possible, it would be a more substantial trade-off (especially for the 8- and 16-bit data types) and implementation undertaking.
An alternate approach is that of using masked arrays. A masked array is an array of data with an associated boolean mask denoting whether each value should be considered NA or not. I am personally not in love with this approach as I feel that overall it places a fairly heavy burden on the user and the library implementer. Additionally, it exacts a fairly high performance cost when working with numerical data compared with the simple approach of using NaN. Thus, I have chosen the Pythonic “practicality beats purity” approach and traded integer NA capability for a much simpler approach of using a special value in float and object arrays to denote NA, and promoting integer arrays to floating when NAs must be introduced.

27.3 Integer indexing

Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter more than integer locations. Therefore, with an integer axis index only label-based indexing is possible with the standard tools like .ix. The following code will generate exceptions:

```python
s = Series(range(5))
s[-1]
df = DataFrame(np.random.randn(5, 4))
df
df.ix[-2:]
```

This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the API change was made to stop “falling back” on position-based indexing).

27.4 Label-based slicing conventions

27.4.1 Non-monotonic indexes require exact matches

27.4.2 Endpoints are inclusive

Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in pandas is inclusive. The primary reason for this is that it is often not possible to easily determine the “successor” or next element after a particular label in an index. For example, consider the following Series:

```python
In [11]: s = Series(randn(6), index=list('abcdef'))
In [12]: s
Out[12]:
   a   -0.345411
   b    1.721799
   c    0.171342
   d    1.222367
   e    1.228721
   f    0.549175
dtype: float64
```

Suppose we wished to slice from c to e, using integers this would be

```python
In [13]: s[2:5]
Out[13]:
   c    0.171342
   d    1.222367
```
However, if you only had 'c' and 'e', determining the next element in the index can be somewhat complicated. For example, the following does not work:

```
$s.ix['c':'e'+1]$
```

A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the design decision to make label-based slicing include both endpoints:

```
In [14]: $s.ix['c':'e']$
```

```
Out[14]:
c   0.171342
   1.222367
d   1.228721
dtype: float64
```

This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect label-based slicing to behave exactly in the way that standard Python integer slicing works.

27.5 Miscellaneous indexing gotchas

27.5.1 Reindex versus ix gotchas

Many users will find themselves using the `ix` indexing capabilities as a concise means of selecting data from a pandas object:

```
In [15]: $df = DataFrame(randn(6, 4), columns=['one', 'two', 'three', 'four'],
   ....: index=list('abcdef'))$
```

```
In [16]: $df$
```

```
Out[16]:
          one     two     three     four
   a -1.982099 -0.366112 -0.228622 -1.663680
   b  0.527377 -1.428764 -0.177802  0.382121
   c -0.049456  0.556557  0.993878 -0.433240
   d -0.077343  1.052958  1.528472  0.644673
   e -1.261108  1.265039  0.424791  0.385124
   f -1.176251 -0.074802 -0.384239  1.075475
```

```
In [17]: $df.ix[['b', 'c', 'e']]$
```

```
Out[17]:
          one     two     three     four
   b  0.527377 -1.428764 -0.177802  0.382121
   c -0.049456  0.556557  0.993878 -0.433240
   e -1.261108  1.265039  0.424791  0.385124
```

This is, of course, completely equivalent in this case to using the `reindex` method:

```
In [18]: $df.reindex(['b', 'c', 'e'])$
```

```
Out[18]:
          one     two     three     four
   b  0.527377 -1.428764 -0.177802  0.382121
   c -0.049456  0.556557  0.993878 -0.433240
   e -1.261108  1.265039  0.424791  0.385124
```
Some might conclude that `ix` and `reindex` are 100% equivalent based on this. This is indeed true except in the case of integer indexing. For example, the above operation could alternately have been expressed as:

```
In [19]: df.ix[[1, 2, 4]]
Out[19]:
    one  two  three  four
b -1.428764 -0.177802 0.382121
   0.527377
   -0.049456 0.993878 -0.433240
c -1.261108 0.424791 0.385124
e
```

If you pass `[1, 2, 4]` to `reindex` you will get another thing entirely:

```
In [20]: df.reindex([1, 2, 4])
Out[20]:
     one  two  three  four
1  NaN  NaN  NaN  NaN
2  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN
   1.265039 0.424791 0.385124
```

So it’s important to remember that `reindex` is strict label indexing only. This can lead to some potentially surprising results in pathological cases where an index contains, say, both integers and strings:

```
In [21]: s = Series([1, 2, 3], index=['a', 0, 1])
In [22]: s
Out[22]:
   a   1
   0   2
   1   3
   dtype: int64
In [23]: s.ix[[0, 1]]
Out[23]:
   0  2
   1  3
dtype: int64
In [24]: s.reindex([0, 1])
Out[24]:
   0  2
   1  3
dtype: int64
```

Because the index in this case does not contain solely integers, `ix` falls back on integer indexing. By contrast, `reindex` only looks for the values passed in the index, thus finding the integers 0 and 1. While it would be possible to insert some logic to check whether a passed sequence is all contained in the index, that logic would exact a very high cost in large data sets.

27.5.2 Reindex potentially changes underlying Series dtype

The use of `reindex_like` can potentially change the `dtype` of a `Series`.

```
series = pandas.Series([1, 2, 3])
x = pandas.Series([True])
x.dtype
x = pandas.Series([True]).reindex_like(series)
x.dtype
```

Chapter 27. Caveats and Gotchas

752
This is because `reindex_like` silently inserts NaNs and the dtype changes accordingly. This can cause some issues when using numpy ufuncs such as `numpy.logical_and`.

See the [this old issue](#) for a more detailed discussion.

27.6 Timestamp limitations

27.6.1 Minimum and maximum timestamps

Since pandas represents timestamps in nanosecond resolution, the timespan that can be represented using a 64-bit integer is limited to approximately 584 years:

In [25]: begin = Timestamp.min

In [26]: begin
Out[26]: Timestamp('1677-09-22 00:12:43.145225')

In [27]: end = Timestamp.max

In [28]: end

See [here](#) for ways to represent data outside these bound.

27.7 Parsing Dates from Text Files

When parsing multiple text file columns into a single date column, the new date column is prepended to the data and then `index_col` specification is indexed off of the new set of columns rather than the original ones:

In [29]: print(open('tmp.csv').read())

KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900

In [30]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}

In [31]: df = read_csv('tmp.csv', header=None,
.....: parse_dates=date_spec,
.....: keep_date_col=True,
.....: index_col=0)

index_col=0 refers to the combined column "nominal" and not the original
first column of 'KORD' strings

In [32]: df
Out[32]:
 actual 0 1 2 3
nominal
1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 19990127 19:00:00 18:56:00
1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 19990127 20:00:00 19:56:00
1999-01-27 21:00:00 1999-01-27 20:56:00 KORD 19990127 21:00:00 20:56:00
27.8 Differences with NumPy

For Series and DataFrame objects, `var` normalizes by \(N-1 \) to produce unbiased estimates of the sample variance, while NumPy’s `var` normalizes by \(N \), which measures the variance of the sample. Note that `cov` normalizes by \(N-1 \) in both pandas and NumPy.

27.9 Thread-safety

As of pandas 0.11, pandas is not 100% thread safe. The known issues relate to the `DataFrame.copy` method. If you are doing a lot of copying of DataFrame objects shared among threads, we recommend holding locks inside the threads where the data copying occurs.

See this link for more information.

27.10 HTML Table Parsing

There are some versioning issues surrounding the libraries that are used to parse HTML tables in the top-level pandas `io` function `read_html`.

Issues with lxml

- **Benefits**
 - `lxml` is very fast
 - `lxml` requires Cython to install correctly.
- **Drawbacks**
 - `lxml` does not make any guarantees about the results of its parse unless it is given strictly valid markup.
 - In light of the above, we have chosen to allow you, the user, to use the `lxml` backend, but **this backend will use html5lib if lxml fails to parse**
 - It is therefore highly recommended that you install both BeautifulSoup4 and html5lib, so that you will still get a valid result (provided everything else is valid) even if `lxml` fails.

Issues with BeautifulSoup4 using lxml as a backend

- The above issues hold here as well since BeautifulSoup4 is essentially just a wrapper around a parser backend.

Issues with BeautifulSoup4 using html5lib as a backend
• Benefits

– html5lib is far more lenient than lxml and consequently deals with *real-life markup* in a much saner way rather than just, e.g., dropping an element without notifying you.

– html5lib *generates valid HTML5 markup from invalid markup automatically*. This is extremely important for parsing HTML tables, since it guarantees a valid document. However, that does NOT mean that it is “correct”, since the process of fixing markup does not have a single definition.

– html5lib is pure Python and requires no additional build steps beyond its own installation.

• Drawbacks

– The biggest drawback to using html5lib is that it is slow as molasses. However consider the fact that many tables on the web are not big enough for the parsing algorithm runtime to matter. It is more likely that the bottleneck will be in the process of reading the raw text from the URL over the web, i.e., IO (input-output). For very large tables, this might not be true.

Issues with using Anaconda

• Anaconda ships with lxml version 3.2.0; the following workaround for Anaconda was successfully used to deal with the versioning issues surrounding lxml and BeautifulSoup4.

Note: Unless you have both:

• A strong restriction on the upper bound of the runtime of some code that incorporates `read_html()`

• Complete knowledge that the HTML you will be parsing will be 100% valid at all times

then you should install html5lib and things will work swimmingly without you having to muck around with conda. If you want the best of both worlds then install both html5lib and lxml. If you do install lxml then you need to perform the following commands to ensure that lxml will work correctly:

```bash
# remove the included version
conda remove lxml

# install the latest version of lxml
pip install 'git+git://github.com/lxml/lxml.git'

# install the latest version of beautifulsoup4
pip install 'bzr+lp:beautifulsoup4'
```

Note that you need bzr and git installed to perform the last two operations.

27.11 Byte-Ordering Issues

Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. A common symptom of this issue is an error like

```
Traceback
...
ValueError: Big-endian buffer not supported on little-endian compiler
```

To deal with this issue you should convert the underlying NumPy array to the native system byte order *before* passing it to Series/DataFrame/Panel constructors using something similar to the following:
In [33]: x = np.array(list(range(10)), '>i4') # big endian
In [34]: newx = x.byteswap().newbyteorder() # force native byteorder
In [35]: s = Series(newx)

See the NumPy documentation on byte order for more details.
Note: This is all highly experimental. I would like to get more people involved with building a nice RPy2 interface for pandas.

If your computer has R and rpy2 (> 2.2) installed (which will be left to the reader), you will be able to leverage the below functionality. On Windows, doing this is quite an ordeal at the moment, but users on Unix-like systems should find it quite easy. rpy2 evolves in time, and is currently reaching its release 2.3, while the current interface is designed for the 2.2.x series. We recommend to use 2.2.x over other series unless you are prepared to fix parts of the code, yet the rpy2-2.3.0 introduces improvements such as a better R-Python bridge memory management layer so it might be a good idea to bite the bullet and submit patches for the few minor differences that need to be fixed.

if installing for the first time
hg clone http://bitbucket.org/lgautier/rpy2

cd rpy2
hg pull
hg update version_2.2.x
sudo python setup.py install

Note: To use R packages with this interface, you will need to install them inside R yourself. At the moment it cannot install them for you.

Once you have done installed R and rpy2, you should be able to import pandas.rpy.common without a hitch.

28.1 Transferring R data sets into Python

The load_data function retrieves an R data set and converts it to the appropriate pandas object (most likely a DataFrame):

In [1]: import pandas.rpy.common as com

In [2]: infert = com.load_data('infert')

In [3]: infert.head()

Out[3]:
 education age parity induced case spontaneous stratum pooled.stratum
0 0-5yrs 26 6 1 1 2 1 3
1 0-5yrs 42 1 1 1 0 2 1
2 0-5yrs 39 6 2 1 0 3 4
28.2 Converting DataFrames into R objects

New in version 0.8. Starting from pandas 0.8, there is experimental support to convert DataFrames into the equivalent R object (that is, `data.frame`):

```python
In [4]: from pandas import DataFrame

In [5]: df = DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]},
                   index=['one', 'two', 'three'])

In [6]: r_dataframe = com.convert_to_r_dataframe(df)

In [7]: print(type(r_dataframe))
<class 'rpy2.robjects.vectors.DataFrame'>

In [8]: print(r_dataframe)
   A  B  C
one 1  4  7
two 2  5  8
three 3  6  9

The DataFrame's index is stored as the `rownames` attribute of the `data.frame` instance.

You can also use `convert_to_r_matrix` to obtain a `Matrix` instance, but bear in mind that it will only work with homogeneously-typed DataFrames (as R matrices bear no information on the data type):

```python
In [9]: r_matrix = com.convert_to_r_matrix(df)

In [10]: print(type(r_matrix))
<class 'rpy2.robjects.vectors.Matrix'>

In [11]: print(r_matrix)
 A B C
one 1 4 7
two 2 5 8
three 3 6 9
```

28.3 Calling R functions with pandas objects

28.4 High-level interface to R estimators
Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. This is encouraging because it means pandas is not only helping users to handle their data tasks but also that it provides a better starting point for developers to build powerful and more focused data tools. The creation of libraries that complement pandas’ functionality also allows pandas development to remain focused around it’s original requirements.

This is an in-exhaustive list of projects that build on pandas in order to provide tools in the PyData space.

We’d like to make it easier for users to find these project, if you know of other substantial projects that you feel should be on this list, please let us know.

29.1 Statistics and Machine Learning

29.1.1 Statsmodels

Statsmodels is the prominent python “statistics and econometrics library” and it has a long-standing special relationship with pandas. Statsmodels provides powerful statistics, econometrics, analysis and modeling functionality that is out of pandas’ scope. Statsmodels leverages pandas objects as the underlying data container for computation.

29.1.2 sklearn-pandas

Use pandas DataFrames in your scikit-learn ML pipeline.

29.2 Visualization

29.2.1 Bokeh

Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients.

29.2.2 yhat/ggplot

Hadley Wickham’s ggplot2 is a foundational exploratory visualization package for the R language. Based on “The Grammar of Graphics” it provides a powerful, declarative and extremely general way to generate bespoke plots of
any kind of data. It's really quite incredible. Various implementations to other languages are available, but a faithful implementation for python users has long been missing. Although still young (as of Jan-2014), the yhat/ggplot project has been progressing quickly in that direction.

29.2.3 Seaborn

Although pandas has quite a bit of “just plot it” functionality built-in, visualization and in particular statistical graphics is a vast field with a long tradition and lots of ground to cover. The Seaborn project builds on top of pandas and matplotlib to provide easy plotting of data which extends to more advanced types of plots than those offered by pandas.

29.2.4 Vincent

The Vincent project leverages Vega (that in turn, leverages d3) to create plots. It has great support for pandas data objects.

29.3 IDE

29.3.1 IPython

IPython is an interactive command shell and distributed computing environment. IPython Notebook is a web application for creating IPython notebooks. An IPython notebook is a JSON document containing an ordered list of input/output cells which can contain code, text, mathematics, plots and rich media. IPython notebooks can be converted to a number of open standard output formats (HTML, HTML presentation slides, LaTeX, PDF, ReStructuredText, Markdown, Python) through ‘Download As’ in the web interface and ipython nbconvert in a shell.

Pandas DataFrames implement _repr_html_ methods which are utilized by IPython Notebook for displaying (abbreviated) HTML tables. (Note: HTML tables may or may not be compatible with non-HTML IPython output formats.)

29.3.2 quantopian/qgrid

qgrid is “an interactive grid for sorting and filtering DataFrames in IPython Notebook” built with SlickGrid.

29.3.3 Spyder

Spyder is a cross-platform Qt-based open-source Python IDE with editing, testing, debugging, and introspection features. Spyder can now introspect and display Pandas DataFrames and show both “column wise min/max and global min/max coloring.”

29.4 API

29.4.1 quandl/Python

Quandl API for Python wraps the Quandl REST API to return Pandas DataFrames with timeseries indexes.
29.5 Domain Specific

29.5.1 Geopandas

Geopandas extends pandas data objects to include geographic information which support geometric operations. If your work entails maps and geographical coordinates, and you love pandas, you should take a close look at Geopandas.

29.5.2 xray

xray brings the labeled data power of pandas to the physical sciences by providing N-dimensional variants of the core pandas data structures. It aims to provide a pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which pandas excels.

29.6 Out-of-core

29.6.1 Blaze

Blaze provides a standard API for doing computations with various in-memory and on-disk backends: NumPy, Pandas, SQLAlchemy, MongoDB, PyTables, PySpark.
COMPARISON WITH R / R LIBRARIES

Since pandas aims to provide a lot of the data manipulation and analysis functionality that people use R for, this page was started to provide a more detailed look at the R language and its many third party libraries as they relate to pandas. In comparisons with R and CRAN libraries, we care about the following things:

- **Functionality / flexibility**: what can/cannot be done with each tool
- **Performance**: how fast are operations. Hard numbers/benchmarks are preferable
- **Ease-of-use**: Is one tool easier/harder to use (you may have to be the judge of this, given side-by-side code comparisons)

This page is also here to offer a bit of a translation guide for users of these R packages.

### 30.1 Base R

#### 30.1.1 Slicing with R’s `c`

R makes it easy to access data.frame columns by name

```r
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
```

or by integer location

```r
df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]
```

Selecting multiple columns by name in pandas is straightforward

```
In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))

In [2]: df[['a', 'c']]
Out[2]:
 a c
0 -1.039575 -0.424972
1 0.567020 -1.087401
2 -0.673690 -1.478427
3 0.524988 0.577046
4 -1.715002 -0.370647
5 -1.157892 0.844885
6 1.075770 1.643563
7 -1.469388 -0.674600
8 -1.776904 -1.294524
```
9 0.413738 -0.472035

In [3]: df.loc[:, ['a', 'c']]
Out[3]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.039575</td>
<td>-0.424972</td>
</tr>
<tr>
<td>1</td>
<td>0.567020</td>
<td>-1.087401</td>
</tr>
<tr>
<td>2</td>
<td>-0.673690</td>
<td>-1.478427</td>
</tr>
<tr>
<td>3</td>
<td>0.524988</td>
<td>0.577046</td>
</tr>
<tr>
<td>4</td>
<td>-1.715002</td>
<td>-0.370647</td>
</tr>
<tr>
<td>5</td>
<td>-1.157892</td>
<td>0.844885</td>
</tr>
<tr>
<td>6</td>
<td>1.075770</td>
<td>1.643563</td>
</tr>
<tr>
<td>7</td>
<td>-1.469388</td>
<td>-0.674600</td>
</tr>
<tr>
<td>8</td>
<td>-1.77904</td>
<td>-1.294524</td>
</tr>
<tr>
<td>9</td>
<td>0.413738</td>
<td>-0.472035</td>
</tr>
</tbody>
</table>

Selecting multiple noncontiguous columns by integer location can be achieved with a combination of the `iloc` indexer attribute and `numpy.r_`.

In [4]: named = list('abcdefg')

In [5]: n = 30

In [6]: columns = named + np.arange(len(named), n).tolist()

In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns)

In [8]: df.iloc[:, np.r_[10, 24:30]]
Out[8]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.013960</td>
<td>-0.362543</td>
<td>-0.006154</td>
<td>-0.923061</td>
<td>0.895717</td>
<td>0.805244</td>
<td>-1.206412</td>
</tr>
<tr>
<td>1</td>
<td>0.545952</td>
<td>-1.219217</td>
<td>-1.226825</td>
<td>0.769804</td>
<td>-1.281247</td>
<td>-0.727707</td>
<td>-0.121306</td>
</tr>
<tr>
<td>2</td>
<td>2.396780</td>
<td>0.014871</td>
<td>3.357427</td>
<td>-0.317441</td>
<td>-1.236269</td>
<td>0.896171</td>
<td>-0.487602</td>
</tr>
<tr>
<td>3</td>
<td>-0.988387</td>
<td>0.094055</td>
<td>1.262731</td>
<td>1.289997</td>
<td>0.082423</td>
<td>-0.055758</td>
<td>0.536580</td>
</tr>
<tr>
<td>4</td>
<td>-1.340896</td>
<td>1.846883</td>
<td>-1.328865</td>
<td>1.682706</td>
<td>-1.717693</td>
<td>0.888782</td>
<td>0.228440</td>
</tr>
<tr>
<td>5</td>
<td>0.464000</td>
<td>0.227371</td>
<td>-0.496922</td>
<td>0.306389</td>
<td>-2.290613</td>
<td>-1.134623</td>
<td>-1.561819</td>
</tr>
<tr>
<td>6</td>
<td>-0.507516</td>
<td>-0.230096</td>
<td>0.394500</td>
<td>-1.934370</td>
<td>-1.652499</td>
<td>1.488753</td>
<td>-0.896484</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>23</td>
<td>-0.083272</td>
<td>-0.273955</td>
<td>-0.772369</td>
<td>-1.242807</td>
<td>-0.386336</td>
<td>-0.182486</td>
<td>0.164816</td>
</tr>
<tr>
<td>24</td>
<td>2.071413</td>
<td>-1.364763</td>
<td>1.122066</td>
<td>0.066847</td>
<td>1.751987</td>
<td>0.419071</td>
<td>-1.118283</td>
</tr>
<tr>
<td>25</td>
<td>0.306609</td>
<td>0.359986</td>
<td>1.211905</td>
<td>0.850427</td>
<td>1.559457</td>
<td>-0.88463</td>
<td>1.508808</td>
</tr>
<tr>
<td>26</td>
<td>-1.179240</td>
<td>0.238923</td>
<td>1.756671</td>
<td>-0.747571</td>
<td>0.543625</td>
<td>-0.159609</td>
<td>-0.051458</td>
</tr>
<tr>
<td>27</td>
<td>0.025645</td>
<td>0.932436</td>
<td>-1.694531</td>
<td>-0.182236</td>
<td>-1.072710</td>
<td>0.467674</td>
<td>-0.072673</td>
</tr>
<tr>
<td>28</td>
<td>0.439086</td>
<td>0.812684</td>
<td>-0.128932</td>
<td>-0.142506</td>
<td>-1.137207</td>
<td>0.462001</td>
<td>-0.159466</td>
</tr>
<tr>
<td>29</td>
<td>-0.909806</td>
<td>-0.312006</td>
<td>0.383630</td>
<td>-0.631606</td>
<td>1.321415</td>
<td>-0.004799</td>
<td>-2.008210</td>
</tr>
</tbody>
</table>

...  

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2.565646</td>
<td>1.431256</td>
<td>1.340309</td>
<td>0.875906</td>
<td>-2.211372</td>
<td>0.974466</td>
<td>-2.006747</td>
</tr>
<tr>
<td>8</td>
<td>-0.097883</td>
<td>0.695775</td>
<td>0.341734</td>
<td>-1.743161</td>
<td>-0.826591</td>
<td>-0.345352</td>
<td>1.314232</td>
</tr>
<tr>
<td>9</td>
<td>-0.082240</td>
<td>-2.182937</td>
<td>0.380396</td>
<td>1.266143</td>
<td>0.299368</td>
<td>-0.863838</td>
<td>0.408204</td>
</tr>
<tr>
<td>10</td>
<td>-0.489682</td>
<td>0.369374</td>
<td>-0.034571</td>
<td>0.221471</td>
<td>-0.744471</td>
<td>0.758527</td>
<td>1.729689</td>
</tr>
<tr>
<td>11</td>
<td>0.901805</td>
<td>1.171216</td>
<td>0.520260</td>
<td>0.650776</td>
<td>-1.461665</td>
<td>-1.137707</td>
<td>-0.891060</td>
</tr>
<tr>
<td>12</td>
<td>-0.260838</td>
<td>0.281957</td>
<td>1.523962</td>
<td>-0.008434</td>
<td>1.952541</td>
<td>-1.056652</td>
<td>0.533946</td>
</tr>
<tr>
<td>13</td>
<td>0.576897</td>
<td>1.146000</td>
<td>1.487349</td>
<td>2.015523</td>
<td>-1.833722</td>
<td>1.771740</td>
<td>-0.670027</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>23</td>
<td>0.065624</td>
<td>0.307665</td>
<td>-1.898358</td>
<td>1.389045</td>
<td>-0.873585</td>
<td>-0.699862</td>
<td>0.812477</td>
</tr>
<tr>
<td>24</td>
<td>1.010694</td>
<td>0.877138</td>
<td>-0.611561</td>
<td>-1.040389</td>
<td>-0.796211</td>
<td>0.241596</td>
<td>0.385922</td>
</tr>
<tr>
<td>25</td>
<td>-0.617855</td>
<td>0.536164</td>
<td>2.175585</td>
<td>1.872601</td>
<td>-2.513465</td>
<td>-0.139184</td>
<td>0.810491</td>
</tr>
</tbody>
</table>

764 Chapter 30. Comparison with R / R libraries
30.1.2 aggregate

In R you may want to split data into subsets and compute the mean for each. Using a data.frame called \texttt{df} and splitting it into groups \texttt{by1} and \texttt{by2}:

\begin{verbatim}
df <- data.frame(
  v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
  v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
  by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
  by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
\end{verbatim}

The \texttt{groupby()} method is similar to base R \texttt{aggregate} function.

\textbf{In [9]}: \texttt{df = pd.DataFrame({
  ... 'v1': [1,3,5,7,8,3,5,np.nan,4,5,7,9],
  ... 'v2': [11,33,55,77,88,33,55,NA,44,55,77,99],
  ... 'by1': ['red', 'blue', 1, 2, np.nan, 'big', 1, 2, 'red', 1, NA, 12],
  ... 'by2': ['wet', 'dry', 99, 95, np.nan, 'damp', 95, 99, 'red', 99, NA, NA],
  ... np.nan]
... })

\textbf{In [10]}: \texttt{g = df.groupby(['by1','by2'])}

\textbf{In [11]}: \texttt{g[['v1','v2']].mean()}
\textbf{Out[11]}:

\begin{verbatim}
   by1  by2
1  95    5  55
   99   5  55
2  95    7  77
   99  NaN NaN
\end{verbatim}
**30.1.3 match / `%in%`**

A common way to select data in R is using `%in%` which is defined using the function `match`. The operator `%in%` is used to return a logical vector indicating if there is a match or not:

```r
s <- 0:4
sic(2,4)
```

The `isin()` method is similar to R `%in%` operator:

```r
In [12]: s = pd.Series(np.arange(5),dtype=np.float32)
In [13]: s.isin([2,4])
Out[13]:
0 False
1 False
2 True
3 False
4 True
dtype: bool
```

The `match` function returns a vector of the positions of matches of its first argument in its second:

```r
s <- 0:4
match(s,c(2,4))
```

The `apply()` method can be used to replicate this:

```r
In [14]: s = pd.Series(np.arange(5),dtype=np.float32)
In [15]: pd.Series(pd.match(s,[2,4],np.nan))
Out[15]:
0 NaN
1 NaN
2 0
3 NaN
4 1
dtype: float64
```

For more details and examples see *the groupby documentation*.

**30.1.4 tapply**

tapply is similar to `aggregate`, but data can be in a ragged array, since the subclass sizes are possibly irregular. Using a data.frame called `baseball`, and retrieving information based on the array `team`:

```r
baseball <-
data.frame(team = gl(5,5,
labels = paste("Team", LETTERS[1:5])),
player = sample(letters, 25),
```

For more details and examples see *the reshaping documentation*. 
batting.average = runif(25, .200, .400))
tapply(baseball$batting.average, baseball.example$team, max)

In pandas we may use \texttt{pivot\_table()} method to handle this:

In [16]: import random

In [17]: import string

In [18]: baseball = pd.DataFrame(
      ....:     'team': ["team \$d\% (x+1) for x in range(5)\%5, 
      ....:     'player': random.sample(list(string.ascii_lowercase),25), 
      ....:     'batting avg': np.random.uniform(.200, .400, 25) 
      ....:     })

In [19]: baseball.pivot_table(values='batting avg', columns='team', aggfunc=np.max)

Out[19]:
   team
0  team 1  0.394457
0  team 2  0.395730
0  team 3  0.343015
0  team 4  0.388863
0  team 5  0.377379

For more details and examples see \textit{the reshaping documentation}.

\textbf{30.1.5 subset}

New in version 0.13. The \texttt{query()} method is similar to the base R \texttt{subset} function. In R you might want to get the rows of a \texttt{data.frame} where one column’s values are less than another column’s values:

\begin{verbatim}
   df <- data.frame(a=rnorm(10), b=rnorm(10))
   subset(df, a <= b)
   df[df$a <= df$b,]  # note the comma
\end{verbatim}

In pandas, there are a few ways to perform subsetting. You can use \texttt{query()} or pass an expression as if it were an index/slice as well as standard boolean indexing:

In [20]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})

In [21]: df.query('a <= b')
Out[21]:
a   b
0 -1.003455 -0.990738
1  0.083515  0.548796
3 -0.524392  0.904400
4 -0.837804  0.746374
8 -0.507219  0.245479

In [22]: df[df.a <= df.b]
Out[22]:
   a   b
0 -1.003455 -0.990738
1  0.083515  0.548796
3 -0.524392 0.904400
4 -0.837804 0.746374
8 -0.507219 0.245479

In [23]: df.loc[df.a <= df.b]
Out[23]:
   a      b
0 -1.003455 -0.990738
1  0.083515  0.548796
3 -0.524392  0.904400
4 -0.837804  0.746374
8 -0.507219  0.245479

For more details and examples see the query documentation.

30.1.6 with

New in version 0.13. An expression using a data.frame called df in R with the columns a and b would be evaluated using with like so:

```r
df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b # same as the previous expression
```

In pandas the equivalent expression, using the eval() method, would be:

```python
In [24]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [25]: df.eval('a + b')
Out[25]:
 0 1 2 3 4 5 6 7 8 9
dtype: float64

In [26]: df.a + df.b # same as the previous expression
Out[26]:
 0 -0.920205
 1 -0.860236
 2 1.154370
 3 0.188140
 4 -1.163718
 5 0.001397
 6 -0.825694
 7 -1.138198
 8 -1.708034
 9 1.148616
dtype: float64
```

In certain cases eval() will be much faster than evaluation in pure Python. For more details and examples see the eval documentation.
30.2  zoo

30.3  xts

30.4  plyr

*plyr* is an R library for the split-apply-combine strategy for data analysis. The functions revolve around three data structures in R, *a* for arrays, *l* for lists, and *d* for data.frame. The table below shows how these data structures could be mapped in Python.

<table>
<thead>
<tr>
<th>R</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>list</td>
</tr>
<tr>
<td>lists</td>
<td>dictionary or list of objects</td>
</tr>
<tr>
<td>data.frame</td>
<td>dataframe</td>
</tr>
</tbody>
</table>

30.4.1  ddply

An expression using a data.frame called *df* in R where you want to summarize *x* by *month*:

```r
require(plyr)

df <- data.frame(
 x = runif(120, 1, 168),
 y = runif(120, 7, 334),
 z = runif(120, 1.7, 20.7),
 month = rep(c(5,6,7,8),30),
 week = sample(1:4, 120, TRUE)
)

ddply(df, .(month, week), summarize,
 mean = round(mean(x), 2),
 sd = round(sd(x), 2))
```

In pandas the equivalent expression, using the *groupby()* method, would be:

```python
In [27]: df = pd.DataFrame(
...: {'x': np.random.uniform(1., 168., 120),
...: 'y': np.random.uniform(7., 334., 120),
...: 'z': np.random.uniform(1.7, 20.7, 120),
...: 'month': [5,6,7,8]*30,
...: 'week': np.random.randint(1,4, 120)
...: })

In [28]: grouped = df.groupby(['month','week'])

In [29]: print grouped['x'].agg([np.mean, np.std])

<table>
<thead>
<tr>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>month</td>
<td>week</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>
```
For more details and examples see *the groupby documentation*.

30.5 reshape / reshape2

30.5.1 melt.array

An expression using a 3 dimensional array called `a` in R where you want to melt it into a data.frame:

```r
a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))
```

In Python, since `a` is a list, you can simply use list comprehension.

```python
In [30]:
a = np.array(list(range(1,24)) + [np.NAN]).reshape(2,3,4)

In [31]:
pd.DataFrame([tuple(list(x)+[val]) for x, val in np.ndenumerate(a)])
```

```
Out[31]:
 0 1 2 3
0 0 0 0 1
1 0 0 1 2
2 0 0 2 3
3 0 0 3 4
4 0 1 0 5
5 0 1 1 6
6 0 1 2 7
7 0 1 3 NaN
8 0 1 4 NaN
9 0 1 5 NaN
10 0 1 6 NaN
11 0 1 7 NaN
12 0 1 8 NaN
13 0 1 9 NaN
14 0 2 0 NaN
15 0 2 1 NaN
16 0 2 2 NaN
17 0 2 3 NaN
18 0 2 4 NaN
19 0 2 5 NaN
20 0 2 6 NaN
21 0 2 7 NaN
22 0 2 8 NaN
23 0 2 9 NaN
```

30.5.2 melt.list

An expression using a list called `a` in R where you want to melt it into a data.frame:

```r
a <- as.list(c(1:4, NA))
data.frame(melt(a))
```

In Python, this list would be a list of tuples, so `DataFrame()` method would convert it to a dataframe as required.

```python
In [32]:
a = list(enumerate(list(range(1,5)) + [np.NAN]))

In [33]:
pd.DataFrame(a)
```

```
Out[33]:
 0 1 2 3 4
0 0 0 0 0 1
1 0 0 0 1 2
2 0 0 0 2 3
3 0 0 0 3 4
4 0 0 0 4 5
5 0 0 0 5 6
6 0 0 0 6 7
7 0 0 0 7 8
8 0 0 0 8 9
9 0 0 0 9 10
10 0 0 0 10 11
11 0 0 0 11 12
12 0 0 0 12 13
13 0 0 0 13 14
14 0 0 0 14 15
15 0 0 0 15 16
16 0 0 0 16 17
17 0 0 0 17 18
18 0 0 0 18 19
19 0 0 0 19 20
20 0 0 0 20 21
21 0 0 0 21 22
22 0 0 0 22 23
23 0 0 0 23 24
24 0 0 0 24 25
25 0 0 0 25 26
26 0 0 0 26 27
27 0 0 0 27 28
28 0 0 0 28 29
29 0 0 0 29 30
```

[24 rows x 4 columns]
For more details and examples see the Into to Data Structures documentation.

### 30.5.3 melt.data.frame

An expression using a data.frame called cheese in R where you want to reshape the data.frame:

```r
cheese <- data.frame(
 first = c('John', 'Mary'),
 last = c('Doe', 'Bo'),
 height = c(5.5, 6.0),
 weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))
```

In Python, the `melt()` method is the R equivalent:

```
In [34]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
 : 'last' : ['Doe', 'Bo'],
 : 'height' : [5.5, 6.0],
 : 'weight' : [130, 150]})
In [35]: pd.melt(cheese, id_vars=['first', 'last'])
```

```
Out[35]:
 first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
```

```
In [36]: cheese.set_index(['first', 'last']).stack() # alternative way
```

```
Out[36]:
 first last
John Doe height 5.5
 weight 130.0
Mary Bo height 6.0
 weight 150.0
dtype: float64
```

For more details and examples see the reshaping documentation.

### 30.5.4 cast

In R `acast` is an expression using a data.frame called `df` in R to cast into a higher dimensional array:

```r
df <- data.frame(
 x = runif(12, 1, 168),
 y = runif(12, 7, 334),
 z = runif(12, 1.7, 20.7),
 month = rep(c(5,6,7),4),
```

```
```
week = rep(c(1,2), 6)

mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)

In Python the best way is to make use of `pivot_table()`:

In [37]: df = pd.DataFrame({
      ....:     'x': np.random.uniform(1., 168., 12),
      ....:     'y': np.random.uniform(7., 334., 12),
      ....:     'z': np.random.uniform(1.7, 20.7, 12),
      ....:     'month': [5,6,7]*4,
      ....:     'week': [1,2]*6
      ....: })

In [38]: mdf = pd.melt(df, id_vars=['month', 'week'])

In [39]: pd.pivot_table(mdf, values='value', index=['variable','week'],
      ....:                    columns=['month'], aggfunc=np.mean)

Out[39]:

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>month</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>114.001700</td>
<td>132.227290</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>124.669553</td>
<td>147.495706</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>225.636630</td>
<td>301.864228</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>57.692665</td>
<td>215.851669</td>
</tr>
<tr>
<td>z</td>
<td>1</td>
<td>17.793871</td>
<td>7.124644</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>15.068355</td>
<td>13.873974</td>
</tr>
</tbody>
</table>

Similarly for dcast which uses a data.frame called df in R to aggregate information based on Animal and FeedType:

df <- data.frame(
    Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
               'Animal2', 'Animal3'),
    FeedType = c('A', 'B', 'A', 'A', 'B', 'B', 'A'),
    Amount = c(10, 7, 4, 2, 5, 6, 2)
)

dcast(df, Animal ~ FeedType, sum, fill=NaN)
# Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))

Python can approach this in two different ways. Firstly, similar to above using `pivot_table()`:

In [40]: df = pd.DataFrame({
      ....:     'Animal': ['Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
                      'Animal2', 'Animal3'],
      ....:     'FeedType': ['A', 'B', 'A', 'A', 'B', 'B', 'A'],
      ....:     'Amount': [10, 7, 4, 2, 5, 6, 2],
      ....: })

In [41]: df.pivot_table(values='Amount', index='Animal', columns='FeedType', aggfunc='sum')

Out[41]:

<table>
<thead>
<tr>
<th>FeedType</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>
Animal
Animal1 10 5
Animal2 2 13
Animal3 6 NaN

The second approach is to use the `groupby()` method:

```python
In [42]: df.groupby(['Animal','FeedType'])['Amount'].sum()
Out[42]:
Animal FeedType
Animal1 A 10
 B 5
Animal2 A 2
 B 13
Animal3 A 6
Name: Amount, dtype: int64
```

For more details and examples see the reshaping documentation or the groupby documentation.

### 30.5.5 factor

New in version 0.15. pandas has a data type for categorical data.

```python
cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))
```

In pandas this is accomplished with `pd.cut` and `astype("category")`:

```python
In [43]: pd.cut(pd.Series([1,2,3,4,5,6]), 3)
Out[43]:
0 (0.995, 2.667]
1 (0.995, 2.667]
2 (2.667, 4.333]
3 (2.667, 4.333]
4 (4.333, 6]
5 (4.333, 6]
dtype: category
Categories (3, object): [0.995, 2.667] < (2.667, 4.333] < (4.333, 6]]
```

```python
In [44]: pd.Series([1,2,3,2,2,3]).astype("category")
Out[44]:
0 1
1 2
2 3
3 2
4 2
5 3
dtype: category
Categories (3, int64): [1 < 2 < 3]
```

For more details and examples see categorical introduction and the API documentation. There is also a documentation regarding the differences to R’s factor.
CHAPTER
THIRTYONE

COMPARISON WITH SQL

Since many potential pandas users have some familiarity with SQL, this page is meant to provide some examples of how various SQL operations would be performed using pandas.

If you’re new to pandas, you might want to first read through 10 Minutes to pandas to familiarize yourself with the library.

As is customary, we import pandas and numpy as follows:

```
In [1]: import pandas as pd
In [2]: import numpy as np
```

Most of the examples will utilize the tips dataset found within pandas tests. We’ll read the data into a DataFrame called tips and assume we have a database table of the same name and structure.

```
In [3]: url = 'https://raw.github.com/pydata/pandas/master/pandas/tests/data/tips.csv'
In [4]: tips = pd.read_csv(url)
In [5]: tips.head()
```

```
Out[5]:
 total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
```

### 31.1 SELECT

In SQL, selection is done using a comma-separated list of columns you’d like to select (or a * to select all columns):

```
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
```

With pandas, column selection is done by passing a list of column names to your DataFrame:

```
In [6]: tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
Out[6]:
 total_bill tip smoker time
0 16.99 1.01 No Dinner
1 10.34 1.66 No Dinner
```
Calling the DataFrame without the list of column names would display all columns (akin to SQL’s `*`).

### 31.2 WHERE

Filtering in SQL is done via a WHERE clause.

```sql
SELECT *
FROM tips
WHERE time = 'Dinner'
LIMIT 5;
```

DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.

In [7]: `tips[tips['time'] == 'Dinner'].head(5)`

Out[7]:

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
<tr>
<td>1</td>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
<tr>
<td>2</td>
<td>21.01</td>
<td>3.50</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
<tr>
<td>3</td>
<td>23.68</td>
<td>3.31</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
<tr>
<td>4</td>
<td>24.59</td>
<td>3.61</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
</tbody>
</table>

The above statement is simply passing a Series of True/False objects to the DataFrame, returning all rows with True.

In [8]: `is_dinner = tips['time'] == 'Dinner'`

In [9]: `is_dinner.value_counts()`

Out[9]:

```
True 176
False 68
dtype: int64
```

In [10]: `tips[is_dinner].head(5)`

Out[10]:

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
<tr>
<td>1</td>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
<tr>
<td>2</td>
<td>21.01</td>
<td>3.50</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
<tr>
<td>3</td>
<td>23.68</td>
<td>3.31</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
<tr>
<td>4</td>
<td>24.59</td>
<td>3.61</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
</tr>
</tbody>
</table>

Just like SQL’s OR and AND, multiple conditions can be passed to a DataFrame using | (OR) and & (AND).

-- tips of more than $5.00 at Dinner meals
```
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
```

# tips of more than $5.00 at Dinner meals
In [11]: `tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]`

Out[11]:

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
</table>

---
23   39.42   7.58   Male    No  Sat  Dinner  4
44   30.40   5.60   Male    No  Sun  Dinner  4
47   32.40   6.00   Male    No  Sun  Dinner  4
52   34.81   5.20   Female  No  Sun  Dinner  4
59   48.27   6.73   Male    No  Sat  Dinner  4
116  29.93   5.07   Male    No  Sun  Dinner  4
155  29.85   5.14   Female  No  Sun  Dinner  5
170  50.81  10.00   Male    Yes  Sat  Dinner  3
172   7.25   5.15   Male    Yes  Sun  Dinner  2
181  23.33   5.65   Male    Yes  Sun  Dinner  2
183  23.17   6.50   Male    Yes  Sun  Dinner  4
211  25.89   5.16   Male    Yes  Sat  Dinner  4
212  48.33   9.00   Male    No   Sat  Dinner  4
214  28.17   6.50   Male    Yes  Sun  Dinner  4
239  29.03   5.92   Male    No   Sat  Dinner  3

-- tips by parties of at least 5 diners OR bill total was more than $45
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;

# tips by parties of at least 5 diners OR bill total was more than $45
In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]
Out[12]:
            total_bill  tip   sex smoker  day  time size
      59  48.270000  6.730000   Male    No  Sat  Dinner  4
     125  29.800000  4.200000  Female  No  Thur  Lunch  6
     141  34.300000  6.700000   Male    No  Thur  Lunch  6
     142  41.190000  5.000000   Male    No  Thur  Lunch  5
     143  27.050000  5.000000  Female  No  Thur  Lunch  6
     155  29.850000  5.140000  Female  No  Sun  Dinner  5
     156  48.170000  5.000000   Male    No  Sun  Dinner  6
     170  50.810000 10.000000   Male    Yes  Sat  Dinner  3
     182  45.350000  3.500000   Male    Yes  Sun  Dinner  3
     185  20.690000  5.000000   Male    No   Sun  Dinner  5
     187  30.460000  2.000000   Male    Yes  Sun  Dinner  5
     212  48.330000  9.000000   Male    No   Sat  Dinner  4
     216  28.150000  3.000000   Male    Yes  Sat  Dinner  5

NULL checking is done using the `notnull()` and `isnull()` methods.

                          'col2': ['F', np.NaN, 'G', 'H', 'I']})

In [14]: frame
Out[14]:
     col1 col2
  0   A    F
  1  B   NaN
  2 NaN    G
  3  C    H
  4  D    I

Assume we have a table of the same structure as our DataFrame above. We can see only the records where `col2` IS NULL with the following query:

SELECT *
FROM frame

WHERE col2 IS NULL;

In [15]: frame[frame['col2'].isnull()]
Out[15]:
   col1  col2
1   B   NaN

Getting items where col1 IS NOT NULL can be done with `notnull()`.

SELECT *
FROM frame
WHERE col1 IS NOT NULL;

In [16]: frame[frame['col1'].notnull()]
Out[16]:
   col1  col2
0   A   F
1   B   NaN
3   C   H
4   D   I

31.3 GROUP BY

In pandas, SQL’s GROUP BY operations performed using the similarly named `groupby()` method. `groupby()` typically refers to a process where we’d like to split a dataset into groups, apply some function (typically aggregation), and then combine the groups together.

A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a query getting us the number of tips left by sex:

```
SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female 87
Male 157
*/
```

The pandas equivalent would be:

```
In [17]: tips.groupby('sex').size()
Out[17]:
sex
Female 87
Male 157
dtype: int64
```

Notice that in the pandas code we used `size()` and not `count()`. This is because `count()` applies the function to each column, returning the number of not null records within each.

```
In [18]: tips.groupby('sex').count()
Out[18]:
 total_bill tip smoker day time size
sex
Female 87 87 87 87 87
Male 157 157 157 157 157
```
Alternatively, we could have applied the `count()` method to an individual column:

```
In [19]: tips.groupby('sex')['total_bill'].count()
Out[19]:
sex
Female 87
Male 157
Name: total_bill, dtype: int64
```

Multiple functions can also be applied at once. For instance, say we’d like to see how tip amount differs by day of the week - `agg()` allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to specific columns.

```
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
*/
```

```
In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size})
Out[20]:
 tip day
day
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
```

Grouping by more than one column is done by passing a list of columns to the `groupby()` method.

```
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
 No Fri 4 2.812500
 Sat 45 3.102889
 Sun 57 3.167895
 Thur 45 2.673778
 Yes Fri 15 2.714000
 Sat 42 2.875476
 Sun 19 3.516842
 Thur 17 3.030000
*/
```

```
In [21]: tips.groupby(['smoker', 'day']).agg({'tip': [np.size, np.mean]})
Out[21]:
 tip
size mean
smoker day
No Fri 4 2.812500
 Sat 45 3.102889
 Sun 57 3.167895
 Thur 45 2.673778
Yes Fri 15 2.714000
 Sat 42 2.875476
 Sun 19 3.516842
 Thur 17 3.030000
```
31.4 JOIN

JOINs can be performed with join() or merge(). By default, join() will join the DataFrames on their indices. Each method has parameters allowing you to specify the type of join to perform (LEFT, RIGHT, INNER, FULL) or the columns to join on (column names or indices).

Assume we have two database tables of the same name and structure as our DataFrames. Now let’s go over the various types of JOINs.

31.4.1 INNER JOIN

```python
SELECT *
FROM df1
INNER JOIN df2
 ON df1.key = df2.key;
```

merge() also offers parameters for cases when you’d like to join one DataFrame’s column with another DataFrame’s index.

```
In [24]: pd.merge(df1, indexed_df2, left_on='key', right_index=True)
```

31.4.2 LEFT OUTER JOIN

```
-- show all records from df1
SELECT *
FROM df1
```
**LEFT OUTER JOIN** df2

\[
\text{ON } \text{df1.key} = \text{df2.key};
\]

# show all records from df1

In [27]: pd.merge(df1, df2, on='key', how='left')

Out[27]:

<table>
<thead>
<tr>
<th>key</th>
<th>value_x</th>
<th>value_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.857326</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>1.075416</td>
<td>-0.227314</td>
</tr>
<tr>
<td>2</td>
<td>0.371727</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>1.065735</td>
<td>2.102726</td>
</tr>
<tr>
<td>4</td>
<td>1.065735</td>
<td>-0.092796</td>
</tr>
</tbody>
</table>

### 31.4.3 RIGHT JOIN

-- show all records from df2

SELECT *
FROM df1

**RIGHT OUTER JOIN** df2

\[
\text{ON } \text{df1.key} = \text{df2.key};
\]

# show all records from df2

In [28]: pd.merge(df1, df2, on='key', how='right')

Out[28]:

<table>
<thead>
<tr>
<th>key</th>
<th>value_x</th>
<th>value_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.075416</td>
<td>-0.227314</td>
</tr>
<tr>
<td>1</td>
<td>1.065735</td>
<td>2.102726</td>
</tr>
<tr>
<td>2</td>
<td>1.065735</td>
<td>-0.092796</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>0.094694</td>
</tr>
</tbody>
</table>

### 31.4.4 FULL JOIN

pandas also allows for **FULL JOINs**, which display both sides of the dataset, whether or not the joined columns find a match. As of writing, FULL JOINs are not supported in all RDBMS (MySQL).

-- show all records from both tables

SELECT *
FROM df1

**FULL OUTER JOIN** df2

\[
\text{ON } \text{df1.key} = \text{df2.key};
\]

# show all records from both frames

In [29]: pd.merge(df1, df2, on='key', how='outer')

Out[29]:

<table>
<thead>
<tr>
<th>key</th>
<th>value_x</th>
<th>value_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.857326</td>
<td>NaN</td>
</tr>
<tr>
<td>1</td>
<td>1.075416</td>
<td>-0.227314</td>
</tr>
<tr>
<td>2</td>
<td>0.371727</td>
<td>NaN</td>
</tr>
<tr>
<td>3</td>
<td>1.065735</td>
<td>2.102726</td>
</tr>
<tr>
<td>4</td>
<td>1.065735</td>
<td>-0.092796</td>
</tr>
<tr>
<td>5</td>
<td>NaN</td>
<td>0.094694</td>
</tr>
</tbody>
</table>
31.5 UNION

UNION ALL can be performed using `concat()`.

```python
In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
 'rank': range(1, 4))

In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
 'rank': [1, 4, 5])

SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/
```

```python
In [32]: pd.concat([df1, df2])
Out[32]:
 city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
0 Chicago 1
1 Boston 4
2 Los Angeles 5
```

SQL's UNION is similar to UNION ALL, however UNION will remove duplicate rows.

```sql
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
-- notice that there is only one Chicago record this time
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Boston 4
Los Angeles 5
*/
```

In pandas, you can use `concat()` in conjunction with `drop_duplicates()`.

```python
In [33]: pd.concat([df1, df2]).drop_duplicates()
Out[33]:
 city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
0 Chicago 1
1 Boston 4
2 Los Angeles 5
```
0          Chicago    1
1         San Francisco  2
2       New York City    3
1             Boston    4
2        Los Angeles    5

31.6 UPDATE

31.7 DELETE
32.1 Input/Output

32.1.1 Pickling

```
pandas.read_pickle(path) Load pickled pandas object (or any other pickled object) from the specified file path
```

Warning: Loading pickled data received from untrusted sources can be unsafe. See: http://docs.python.org/2.7/library/pickle.html

**Parameters**
- **path**: string
  - File path

**Returns**
- **unpickled**: type of object stored in file

32.1.2 Flat File

```
pandas.read_table(filepath_or_buffer[, sep, ...]) Read general delimited file into DataFrame
pandas.read_csv(filepath_or_buffer[, sep, dialect, ...]) Read CSV (comma-separated) file into DataFrame
pandas.read_fwf(filepath_or_buffer[, colspecs, widths]) Read a table of fixed-width formatted lines into DataFrame
```
Read general delimited file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

**Parameters**

- `filepath_or_buffer` : string or file handle / StringIO
  
  The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

- `sep` : string, default t (tab-stop)
  
  Delimiter to use. Regular expressions are accepted.

- `engine` : {'c', 'python'}
  
  Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

- `lineterminator` : string (length 1), default None
  
  Character to break file into lines. Only valid with C parser.

- `quotechar` : string (length 1)
  
  The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

- `quoting` : int or csv.QUOTE_* instance, default None
  
  Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

- `skipinitialspace` : boolean, default False
  
  Skip spaces after delimiter.

- `escapechar` : string (length 1), default None
  
  One-character string used to escape delimiter when quoting is QUOTE_NONE.

- `dtype` : Type name or dict of column -> type
  
  Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python')

- `compression` : {'gzip', 'bz2', None}, default None

  Buffer compression method used to read the file. Only supported when `engine='python'`.
For on-the-fly decompression of on-disk data

dialect  : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

header  : int, list of ints

Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

skiprows  : list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

index_col  : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

names  : array-like

List of column names to use. If file contains no header row, then you should explicitly pass header=None

prefix  : string, default None

Prefix to add to column numbers when no header, e.g 'X' for X0, X1, ...

na_values  : list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

true_values  : list

Values to consider as True

false_values  : list

Values to consider as False

keep_default_na  : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to

parse_dates  : boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates.

keep_date_col  : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.
date_parser : function
    Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

dayfirst : boolean, default False
    DD/MM format dates, international and European format

thousands : str, default None
    Thousands separator

comment : str, default None
    Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing ‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header.

decimal : str, default ‘.’
    Character to recognize as decimal point. E.g. use ‘,’ for European data

nrows : int, default None
    Number of rows of file to read. Useful for reading pieces of large files

iterator : boolean, default False
    Return TextFileReader object

chunksize : int, default None
    Return TextFileReader object for iteration

skipfooter : int, default 0
    Number of lines at bottom of file to skip (Unsupported with engine='c')

converters : dict. optional
    Dict of functions for converting values in certain columns. Keys can either be integers or column labels

verbose : boolean, default False
    Indicate number of NA values placed in non-numeric columns

delimiter : string, default None
    Alternative argument name for sep. Regular expressions are accepted.

encoding : string, default None
    Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

squeeze : boolean, default False
    If the parsed data only contains one column then return a Series

na_filter : boolean, default True
    Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file
usecols : array-like

Return a subset of the columns. Results in much faster parsing time and lower memory usage.

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X.0’...'X.N’, rather than ‘X’...'X’

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

infer_datetime_format : boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

Returns result : DataFrame or TextParser

pandas.read_csv

pandas.read_csv(filepath_or_buffer, sep=',', dialect=None, compression=None, doublequote=True, escapechar=None, quoting=0, skipinitialspace=False, lineterminator=None, header='infer', index_col=None, names=None, prefix=None, skiprows=None, skipfooter=None, skip_footer=0, na_values=None, true_values=None, false_values=None, delimiter=None, converters=None, engine=None, delimiter_whitespace=False, as_recarray=False, na_filter=True, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, warn_bad_lines=True, error_bad_lines=True, keep_default_na=True, thousands=None, comment=None, decimal='.', parse_dates=False, keep_date_col=False, dayfirst=False, date_parser=None, memory_map=False, float_precision=None, nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_cols=False, infer_datetime_format=False, skip_blank_lines=True)

Read CSV (comma-separated) file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters filepath_or_buffer : string or file handle / StringIO

The string could be a URL. Valid URL schemes include http, ftp, s3, and file.
For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

sep : string, default ','
Delimiter to use. If sep is None, will try to automatically determine this. Regular expressions are accepted.

engine : {'c', 'python'}

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

lineterminator : string (length 1), default None

Character to break file into lines. Only valid with C parser

quotechar : string (length 1)

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default None

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

skipinitialspace : boolean, default False

Skip spaces after delimiter

escapechar : string (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

dtype : Type name or dict of column -> type

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python')

compression : {'gzip', 'bz2', None}, default None

For on-the-fly decompression of on-disk data

dialect : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

header : int, list of ints

Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

skiprows : list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)
names : array-like
   List of column names to use. If file contains no header row, then you should explicitly
   pass header=None
prefix : string, default None
   Prefix to add to column numbers when no header, e.g 'X' for X0, X1, ...
na_values : list-like or dict, default None
   Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA
   values
true_values : list
   Values to consider as True
false_values : list
   Values to consider as False
keep_default_na : bool, default True
   If na_values are specified and keep_default_na is False the default NaN values are over-
   ridden, otherwise they're appended to
parse_dates : boolean, list of ints or names, list of lists, or dict
   If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a
   separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
   column. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result 'foo' A fast-path
   exists for iso8601-formatted dates.
keep_date_col : boolean, default False
   If True and parse_dates specifies combining multiple columns then keep the original
   columns.
date_parser : function
   Function to use for converting a sequence of string columns to an array of datetime
   instances. The default uses dateutil.parser.parser to do the conversion.
dayfirst : boolean, default False
   DD/MM format dates, international and European format
thousands : str, default None
   Thousands separator
comment : str, default None
   Indicates remainder of line should not be parsed. If found at the beginning of a line, the
   line will be ignored altogether. This parameter must be a single character. Like empty
   lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing
   '#emptyna,b,cn1,2,3' with header=0 will result in 'a,b,c' being treated as the header.
decimal : str, default '
   Character to recognize as decimal point. E.g. use ',' for European data
nrows : int, default None
   Number of rows of file to read. Useful for reading pieces of large files
iterator : boolean, default False
Return TextFileReader object

chunksize : int, default None
Return TextFileReader object for iteration

skipfooter : int, default 0
Number of lines at bottom of file to skip (Unsupported with engine=’c’)

converters : dict, optional
 Dict of functions for converting values in certain columns. Keys can either be integers or column labels

verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns

delimiter : string, default None
Alternative argument name for sep. Regular expressions are accepted.

encoding : string, default None
Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

squeeze : boolean, default False
If the parsed data only contains one column then return a Series

na_filter : boolean, default True
Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

usecols : array-like
Return a subset of the columns. Results in much faster parsing time and lower memory usage.

mangle_dupe_cols : boolean, default True
Duplicate columns will be specified as ‘X.0’...'X.N’, rather than ‘X’...'X'

tupleize_cols : boolean, default False
Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True
Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

warn_bad_lines : boolean, default True
If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

infer_datetime_format : boolean, default False
If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

Returns result : DataFrame or TextParser

pandas.read_fwf

pandas.read_fwf(filepath_or_buffer, colspecs='infer', widths=None, **kwds)

Read a table of fixed-width formatted lines into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters filepath_or_buffer : string or file handle / StringIO

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

colspecs : list of pairs (int, int) or ‘infer’. optional

A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data (default=’infer’).

widths : list of ints. optional

A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

lineterminator : string (length 1), default None

Character to break file into lines. Only valid with C parser

quotechar : string (length 1)

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default None

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

skipinitialspace : boolean, default False

Skip spaces after delimiter

escapechar : string (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

dtype : Type name or dict of column -> type

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine=’python’)

compression : {'gzip', 'bz2', None}, default None

For on-the-fly decompression of on-disk data
**dialect**: string or `csv.Dialect` instance, default None

If None defaults to Excel dialect. Ignored if `sep` longer than 1 char. See `csv.Dialect` documentation for more details.

**header**: int, list of ints

Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no `names` passed, otherwise `None`. Explicitly pass `header=0` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns. E.g. `[0,1,3]`. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if `skip_blank_lines=True`, so `header=0` denotes the first line of data rather than the first line of the file.

**skiprows**: list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

**index_col**: int or sequence or `False`, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider `index_col=False` to force pandas to _not_ use the first column as the index (row names).

**names**: array-like

List of column names to use. If file contains no header row, then you should explicitly pass `header=None`.

**prefix**: string, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

**na_values**: list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values.

**true_values**: list

Values to consider as True.

**false_values**: list

Values to consider as False.

**keep_default_na**: bool, default True

If `na_values` are specified and `keep_default_na` is False the default NaN values are overridden, otherwise they’re appended to.

**parse_dates**: boolean, list of ints or names, list of lists, or dict

If `True` -> try parsing the index. If `[1, 2, 3]` -> try parsing columns 1, 2, 3 each as a separate date column. If `[[1, 3]]` -> combine columns 1 and 3 and parse as a single date column. `{‘foo’ : [1, 3]}` -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates.

**keep_date_col**: boolean, default False

If `True` and `parse_dates` specifies combining multiple columns then keep the original columns.

**date_parser**: function
Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

**dayfirst** : boolean, default False

DD/MM format dates, international and European format

**thousands** : str, default None

Thousands separator

**comment** : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing ‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header.

**decimal** : str, default ‘.’

Character to recognize as decimal point. E.g. use ‘,’ for European data

**nrows** : int, default None

Number of rows of file to read. Useful for reading pieces of large files

**iterator** : boolean, default False

Return TextFileReader object

**chunksize** : int, default None

Return TextFileReader object for iteration

**skipfooter** : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

**converters** : dict. optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

**verbose** : boolean, default False

Indicate number of NA values placed in non-numeric columns

**delimiter** : string, default None

Alternative argument name for sep. Regular expressions are accepted.

**encoding** : string, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

**squeeze** : boolean, default False

If the parsed data only contains one column then return a Series

**na_filter** : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

**usecols** : array-like
Return a subset of the columns. Results in much faster parsing time and lower memory usage.

**mangle_dupe_cols** : boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’

**tupleize_cols** : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

**error_bad_lines** : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

**warn_bad_lines** : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

**infer_datetime_format** : boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

**skip_blank_lines** : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

Returns **result** : DataFrame or TextParser

Also, ‘delimiter’ is used to specify the filler character of the fields if it is not spaces (e.g., ‘~’).

### 32.1.3 Clipboard

**pandas.read_clipboard(**kwargs**)** Read text from clipboard and pass to read_table.

### 32.1.4 Excel

**pandas.ExcelFile.parse([sheetname, header, ...])** Read an Excel table into a pandas DataFrame

**ExcelFile.parse([sheetname, header, ...])** Read an Excel table into DataFrame
pandas.read_excel

`pandas.read_excel(io, sheetname=0, **kwds)`
Read an Excel table into a pandas DataFrame

**Parameters**
- `io`: string, file-like object, or xlrd workbook.
  - The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be `file://localhost/path/to/workbook.xlsx`
- `sheetname`: string or int, default 0
  - Name of Excel sheet or the page number of the sheet
- `header`: int, default 0
  - Row to use for the column labels of the parsed DataFrame
- `skiprows`: list-like
  - Rows to skip at the beginning (0-indexed)
- `skip_footer`: int, default 0
  - Rows at the end to skip (0-indexed)
- `index_col`: int, default None
  - Column to use as the row labels of the DataFrame. Pass None if there is no such column
- `parse_cols`: int or list, default None
  - If None then parse all columns,
  - If int then indicates last column to be parsed
  - If list of ints then indicates list of column numbers to be parsed
  - If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)
- `na_values`: list-like, default None
  - List of additional strings to recognize as NA/NaN
- `keep_default_na`: bool, default True
  - If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to
- `verbose`: boolean, default False
  - Indicate number of NA values placed in non-numeric columns
- `engine`: string, default None
  - If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd
- `convert_float`: boolean, default True
  - Convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally
- `has_index_names`: boolean, default False
True if the cols defined in index_col have an index name and are not in the header. Index
name will be placed on a separate line below the header.

Returns parsed : DataFrame

DataFrame from the passed in Excel file

pandas.ExcelFile.parse

ExcelFile.parse(sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None,
parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, chunksize=None, convert_float=True, has_index_names=False, **kwds)

Read an Excel table into DataFrame

Parameters sheetname : string or integer

Name of Excel sheet or the page number of the sheet

header : int, default 0

Row to use for the column labels of the parsed DataFrame

skiprows : list-like

Rows to skip at the beginning (0-indexed)

skip_footer : int, default 0

Rows at the end to skip (0-indexed)

index_col : int, default None

Column to use as the row labels of the DataFrame. Pass None if there is no such column

parse_cols : int or list, default None

• If None then parse all columns
• If int then indicates last column to be parsed
• If list of ints then indicates list of column numbers to be parsed
• If string then indicates comma separated list of column names and column ranges (e.g.
  “A:E” or “A,C,E:F”)

parse_dates : boolean, default False

Parse date Excel values,

date_parser : function default None

Date parsing function

na_values : list-like, default None

List of additional strings to recognize as NA/NaN

thousands : str, default None

Thousands separator

chunksize : int, default None

Size of file chunk to read for lazy evaluation.

convert_float : boolean, default True
convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally.

**has_index_names**: boolean, default False
True if the cols defined in index_col have an index name and are not in the header

**Returns**  
**parsed**: DataFrame
Dataframe parsed from the Excel file

### 32.1.5 JSON

**read_json**([path_or_buf, orient, typ, dtype, ...])  
Convert a JSON string to pandas object

**pandas.read_json**

Convert a JSON string to pandas object

**Parameters**  
**filepath_or_buffer**: a valid JSON string or file-like
The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file:///localhost/path/to/table.json

**orient**
- **Series**
  - default is ‘index’
  - allowed values are: {‘split’, ‘records’, ‘index’}
  - The Series index must be unique for orient ‘index’.
- **DataFrame**
  - default is ‘columns’
  - allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’}
  - The DataFrame index must be unique for orients ‘index’ and ‘columns’.
  - The DataFrame columns must be unique for orients ‘index’, ‘columns’, and ‘records’.
- The format of the JSON string
  - split : dict like {index -> [index], columns -> [columns], data -> [values]}
  - records : list like [{column -> value}, ... , {column -> value}]
  - index : dict like {index -> {column -> value}}
  - columns : dict like {column -> {index -> value}}
  - values : just the values array

**typ**: type of object to recover (series or frame), default ‘frame’

**dtype**: boolean or dict, default True
If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data.

**convert_axes** : boolean, default True

Try to convert the axes to the proper dtypes.

**convert_dates** : boolean, default True

List of columns to parse for dates; If True, then try to parse datelike columns default is True

**keep_default_dates** : boolean, default True.

If parsing dates, then parse the default datelike columns

**numpy** : boolean, default False

Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.

**precise_float** : boolean, default False.

Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality

**date_unit** : string, default None

The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.

Returns **result** : Series or DataFrame

### 32.1.6 HTML

**read_html**(io, match, flavor, header, ...) Read HTML tables into a list of DataFrame objects.

**pandas.read_html**

**pandas.read_html**(io, match='.+', flavor=None, header=None, index_col=None, skiprows=None, infer_types=None, attrs=None, parse_dates=False, tupleize_cols=False, thousands=',', encoding=None)

Read HTML tables into a list of DataFrame objects.

**Parameters**

**io** : str or file-like

A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts the http, ftp and file url protocols. If you have a URL that starts with ‘https’ you might try removing the ‘s’.

**match** : str or compiled regular expression, optional

The set of tables containing text matching this regex or string will be returned. Unless the HTML is extremely simple you will probably need to pass a non-empty string here. Defaults to ‘.+’ (match any non-empty string). The default value will return all tables contained on a page. This value is converted to a regular expression so that there is consistent behavior between Beautiful Soup and lxml.

**flavor** : str or None, container of strings
The parsing engine to use. ‘bs4’ and ‘html5lib’ are synonymous with each other, they are both there for backwards compatibility. The default of None tries to use lxml to parse and if that fails it falls back on bs4 + html5lib.

header : int or list-like or None, optional

The row (or list of rows for a MultiIndex) to use to make the columns headers.

index_col : int or list-like or None, optional

The column (or list of columns) to use to create the index.

skiprows : int or list-like or slice or None, optional

0-based. Number of rows to skip after parsing the column integer. If a sequence of integers or a slice is given, will skip the rows indexed by that sequence. Note that a single element sequence means ‘skip the nth row’ whereas an integer means ‘skip n rows’.

infer_types : None, optional

This has no effect since 0.15.0. It is here for backwards compatibility.

attrs : dict or None, optional

This is a dictionary of attributes that you can pass to use to identify the table in the HTML. These are not checked for validity before being passed to lxml or Beautiful Soup. However, these attributes must be valid HTML table attributes to work correctly. For example,

\[
\text{attrs} = \{\text{'id': 'table'}\}
\]

is a valid attribute dictionary because the ‘id’ HTML tag attribute is a valid HTML attribute for any HTML tag as per this document.

\[
\text{attrs} = \{\text{'asdf': 'table'}\}
\]

is not a valid attribute dictionary because ‘asdf’ is not a valid HTML attribute even if it is a valid XML attribute. Valid HTML 4.01 table attributes can be found here. A working draft of the HTML 5 spec can be found here. It contains the latest information on table attributes for the modern web.

parse_dates : bool, optional

See read_csv() for more details.

tupleize_cols : bool, optional

If False try to parse multiple header rows into a MultiIndex, otherwise return raw tuples. Defaults to False.

thousands : str, optional

Separator to use to parse thousands. Defaults to ‘,’.

encoding : str or None, optional

The encoding used to decode the web page. Defaults to None. ‘None’ preserves the previous encoding behavior, which depends on the underlying parser library (e.g., the parser library will try to use the encoding provided by the document).

Returns dfs : list of DataFrames
See Also:

pandas.read_csv

Notes

Before using this function you should read the *gotchas about the HTML parsing libraries*.

Expect to do some cleanup after you call this function. For example, you might need to manually assign column names if the column names are converted to NaN when you pass the `header=0` argument. We try to assume as little as possible about the structure of the table and push the idiosyncrasies of the HTML contained in the table to the user.

This function searches for `<table>` elements and only for `<tr>` and `<th>` rows and `<td>` elements within each `<tr>` or `<th>` element in the table. `<td>` stands for “table data”.

Similar to `read_csv()` the `header` argument is applied after `skiprows` is applied.

This function will *always* return a list of `DataFrame` or it will fail, e.g., it will *not* return an empty list.

Examples

See the *read_html documentation in the IO section of the docs* for some examples of reading in HTML tables.

### 32.1.7 HDFStore: PyTables (HDF5)

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read_hdf</code></td>
<td>read from the store, close it if we opened it</td>
</tr>
<tr>
<td><code>HDFStore.put</code></td>
<td>Store object in HDFStore</td>
</tr>
<tr>
<td><code>HDFStore.append</code></td>
<td>Append to Table in file. Node must already exist and be Table</td>
</tr>
<tr>
<td><code>HDFStore.get</code></td>
<td>Retrieve pandas object stored in file</td>
</tr>
<tr>
<td><code>HDFStore.select</code></td>
<td>Retrieve pandas object stored in file, optionally based on where criteria</td>
</tr>
</tbody>
</table>

**pandas.read_hdf**

```
pandas.read_hdf(path_or_buf, key, **kwargs)
```

Retrieve pandas object stored in file, optionally based on where criteria

**Parameters**

- **path_or_buf** : path (string), or buffer to read from
- **key** : group identifier in the store
- **where** : list of Term (or convertable) objects, optional
- **start** : optional, integer (defaults to None), row number to start selection
- **stop** : optional, integer (defaults to None), row number to stop selection
- **columns** : optional, a list of columns that if not None, will limit the return columns
**iterator** : optional, boolean, return an iterator, default False

**chunksize** : optional, nrows to include in iteration, return an iterator

**auto_close** : optional, boolean, should automatically close the store when finished, default is False

**Returns**  The selected object

### pandas.HDFStore.put

HDFStore.put(key, value, format=None, append=False, **kwargs)

Store object in HDFStore

**Parameters**

- **key** : object
  - **value** : {Series, DataFrame, Panel}
  - **format** : ‘fixed(f)’|table(t)’, default is ‘fixed’
    - **fixed(f)** [Fixed format] Fast writing/reading. Not-appendable, nor searchable
    - **table(t)** [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
  - **append** : boolean, default False
    - This will force Table format, append the input data to the existing.
  - **encoding** : default None, provide an encoding for strings
  - **dropna** : boolean, default True, do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’

### pandas.HDFStore.append

HDFStore.append(key, value, format=None, append=True, columns=None, dropna=None, **kwargs)

Append to Table in file. Node must already exist and be Table format.

**Parameters**

- **key** : object
  - **value** : {Series, DataFrame, Panel, Panel4D}
  - **format** : ‘table’ is the default
    - **table(t)** [table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
  - **append** : boolean, default True, append the input data to the existing
  - **data_columns** : list of columns to create as data columns, or True to use all columns
  - **min_itemsize** : dict of columns that specify minimum string sizes
  - **nan_rep** : string to use as string nan represenation
  - **chunksize** : size to chunk the writing
  - **expectedrows** : expected TOTAL row size of this table
**encoding**: default None, provide an encoding for strings

**dropna**: boolean, default True, do not write an ALL nan row to
the store settable by the option `io.hdf.dropna_table`

Notes

---

Does *not* check if data being appended overlaps with existing
data in the table, so be careful

**pandas.HDFStore.get**

HDFStore.get(key)
Retrieve pandas object stored in file

**Parameters**

- **key**: object

**Returns**

- **obj**: type of object stored in file

**pandas.HDFStore.select**

HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False, **kwargs)
Retrieve pandas object stored in file, optionally based on where criteria

**Parameters**

- **key**: object
- **where**: list of Term (or convertible) objects, optional
- **start**: integer (defaults to None), row number to start selection
- **stop**: integer (defaults to None), row number to stop selection
- **columns**: a list of columns that if not None, will limit the return
  columns
- **iterator**: boolean, return an iterator, default False
- **chunksize**: nrows to include in iteration, return an iterator
- **auto_close**: boolean, should automatically close the store when
  finished, default is False

**Returns**

The selected object

### 32.1.8 SQL

- **read_sql_table**(table_name, con[, schema, ...]) Read SQL database table into a DataFrame.
- **read_sql_query**(sql, con[, index_col, ...]) Read SQL query into a DataFrame.
- **read_sql**(sql, con[, index_col, ...]) Read SQL query or database table into a DataFrame.
**pandas.read_sql_table**

```python
pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None)
```

Read SQL database table into a DataFrame.

Given a table name and an SQLAlchemy engine, returns a DataFrame. This function does not support DBAPI connections.

**Parameters**

- **table_name**: string
  - Name of SQL table in database

- **con**: SQLAlchemy engine
  - Sqlite DBAPI connection mode not supported

- **schema**: string, default None
  - Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default).

- **index_col**: string, optional
  - Column to set as index

- **coerce_float**: boolean, default True
  - Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision.

- **parse_dates**: list or dict
  - List of column names to parse as dates
  - Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
  - Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

- **columns**: list
  - List of column names to select from sql table

- **chunksize**: int, default None
  - If specified, return an iterator where chunksize is the number of rows to include in each chunk.

**Returns**

DataFrame

**See Also:**

- **read_sql_query**: Read SQL query into a DataFrame.

- **read_sql**
pandas.read_sql_query

```python
def pandas.read_sql_query(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None):
 Read SQL query into a DataFrame.
 Returns a DataFrame corresponding to the result set of the query string. Optionally provide an index_col parameter to use one of the columns as the index, otherwise default integer index will be used.

 Parameters
 sql : string
 SQL query to be executed
 con : SQLAlchemy engine or sqlite3 DBAPI2 connection
 Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
 index_col : string, optional
 Column name to use as index for the returned DataFrame object.
 coerce_float : boolean, default True
 Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets
 params : list, tuple or dict, optional
 List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}
 parse_dates : list or dict
 • List of column names to parse as dates
 • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
 • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite
 chunksize : int, default None
 If specified, return an iterator where chunksize is the number of rows to include in each chunk.

 Returns
 DataFrame

 See Also:
 read_sql_table Read SQL database table into a DataFrame
 read_sql
```

806 Chapter 32. API Reference
pandas.read_sql

pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None)

Read SQL query or database table into a DataFrame.

Parameters

sql : string
    SQL query to be executed or database table name.

con : SQLAlchemy engine or DBAPI2 connection (fallback mode)
    Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

index_col : string, optional
    column name to use as index for the returned DataFrame object.

coerce_float : boolean, default True
    Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

params : list, tuple or dict, optional
    List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}

parse_dates : list or dict
    - List of column names to parse as dates
    - Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
    - Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

columns : list
    List of column names to select from sql table (only used when reading a table).

chunksize : int, default None
    If specified, return an iterator where chunksize is the number of rows to include in each chunk.

Returns

DataFrame

See Also:

read_sql_table Read SQL database table into a DataFrame
read_sql_query Read SQL query into a DataFrame
Notes

This function is a convenience wrapper around `read_sql_table` and `read_sql_query` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query).

32.1.9 Google BigQuery

```
read_gbq(query[, project_id, index_col, ...]) Load data from Google BigQuery.
to_gbq(dataframe, destination_table[, ...]) Write a DataFrame to a Google BigQuery table.
```

**pandas.io.gbq.read_gbq**

```
pandas.io.gbq.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False)
```

Load data from Google BigQuery.

**THIS IS AN EXPERIMENTAL LIBRARY**

The main method a user calls to execute a Query in Google BigQuery and read results into a pandas DataFrame using the v2 Google API client for Python. Documentation for the API is available at https://developers.google.com/api-client-library/python/. Authentication to the Google BigQuery service is via OAuth 2.0 using the product name ‘pandas GBQ’.

**Parameters**

- `query`: str
  SQL-Like Query to return data values
- `project_id`: str
  Google BigQuery Account project ID.
- `index_col`: str (optional)
  Name of result column to use for index in results DataFrame
- `col_order`: list(str) (optional)
  List of BigQuery column names in the desired order for results DataFrame
- `reauth`: boolean (default False)
  Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

**Returns**

- `df`: DataFrame
  DataFrame representing results of query

**pandas.io.gbq.to_gbq**

```
pandas.io.gbq.to_gbq(dataframe, destination_table, project_id=None, chunksize=10000, verbose=True, reauth=False)
```

Write a DataFrame to a Google BigQuery table.

**THIS IS AN EXPERIMENTAL LIBRARY**

If the table exists, the dataframe will be written to the table using the defined table schema and column types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks data into a default chunk size of 10,000. Failures return the complete error response which can be quite long depending on
the size of the insert. There are several important limitations of the Google streaming API which are detailed at:

Parameters dataframe : DataFrame

DataFrame to be written

destination_table : string

Name of table to be written, in the form 'dataset.tablename'

project_id : str

Google BigQuery Account project ID.

chunksize : int (default 10000)

Number of rows to be inserted in each chunk from the dataframe.

verbose : boolean (default True)

Show percentage complete

reauth : boolean (default False)

Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

32.1.10 STATA

pandas.read_stata

pandas.read_stata(filepath_or_buffer[, ...]) Read Stata file into DataFrame

Parameters filepath_or_buffer : string or file-like object

Path to .dta file or object implementing a binary read() functions

convert_dates : boolean, defaults to True

Convert date variables to DataFrame time values

convert_categoricals : boolean, defaults to True

Read value labels and convert columns to Categorical/Factor variables

encoding : string, None or encoding

Encoding used to parse the files. Note that Stata doesn’t support unicode. None defaults to cp1252.

index : identifier of index column

identifier of column that should be used as index of the DataFrame

convert_missing : boolean, defaults to False

Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are
returned with object data types and missing values are represented by StataMissingValue objects.

**preserve_dtypes**: boolean, defaults to True

Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64)

**columns**: list or None

Columns to retain. Columns will be returned in the given order. None returns all columns

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StataReader.data</td>
<td>Reads observations from Stata file, converting them into a dataframe</td>
</tr>
<tr>
<td>StataReader.data_label</td>
<td>Returns data label of Stata file</td>
</tr>
<tr>
<td>StataReader.value_labels</td>
<td>Returns a dict, associating each variable name a dict, associating</td>
</tr>
<tr>
<td>StataReader.variable_labels</td>
<td>Returns variable labels as a dict, associating each variable name</td>
</tr>
<tr>
<td>StataWriter.write_file</td>
<td></td>
</tr>
</tbody>
</table>

**pandas.io.stata.StataReader.data**

StataReader.data(convert_dates=True, convert_categoricals=True, index=None, convert_missing=False, preserve_dtypes=True, columns=None)

Reads observations from Stata file, converting them into a dataframe

**Parameters**

- **convert_dates**: boolean, defaults to True
  Convert date variables to DataFrame time values

- **convert_categoricals**: boolean, defaults to True
  Read value labels and convert columns to Categorical/Factor variables

- **index**: identifier of index column
  identifier of column that should be used as index of the DataFrame

- **convert_missing**: boolean, defaults to False
  Flag indicating whether to convert missing values to their Stata representation. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects.

- **preserve_dtypes**: boolean, defaults to True
  Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64)

- **columns**: list or None
  Columns to retain. Columns will be returned in the given order. None returns all columns

**Returns**

- **y**: DataFrame instance

**pandas.io.stata.StataReader.data_label**

StataReader.data_label()

Returns data label of Stata file
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.io.stata.StataReader.value_labels

StataReader.value_labels()
Returns a dict, associating each variable name with a dict, associating each value its corresponding label

pandas.io.stata.StataReader.variable_labels

StataReader.variable_labels()
Returns variable labels as a dict, associating each variable name with corresponding label

pandas.io.stata.StataWriter.write_file

StataWriter.write_file()

32.2 General functions

32.2.1 Data manipulations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>melt(frame[, id_vars, value_vars, var_name, ...])</td>
<td>“Un pivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.</td>
</tr>
<tr>
<td>pivot(index, columns, values)</td>
<td>Produce ‘pivot’ table based on 3 columns of this DataFrame.</td>
</tr>
<tr>
<td>pivot_table(*args, **kwargs)</td>
<td>Create a spreadsheet-style pivot table as a DataFrame. The levels in the index and columns are the unique values from the values parameter.</td>
</tr>
<tr>
<td>crosstab(*args, **kwargs)</td>
<td>Compute a simple cross-tabulation of two (or more) factors.</td>
</tr>
<tr>
<td>cut(x, bins[, right, labels, retbins, ...])</td>
<td>Return indices of half-open bins to which each value of x belongs.</td>
</tr>
<tr>
<td>qcut(x, q[, labels, retbins, precision])</td>
<td>Quantile-based discretization function.</td>
</tr>
<tr>
<td>merge(left, right[, how, on, left_on, ...])</td>
<td>Merge DataFrame objects by performing a database-style join operation by left and right.</td>
</tr>
<tr>
<td>concat(objs[, axis, join, join_axes, ...])</td>
<td>Concatenate pandas objects along a particular axis with optional set logic along the other axes.</td>
</tr>
<tr>
<td>get_dummies(values[, prefix, prefix_sep, ...])</td>
<td>Convert input values as an enumerated type or categorical variable</td>
</tr>
<tr>
<td>factorize(values[, sort, order, na_sentinel])</td>
<td>Encode input values as an enumerated type or categorical variable</td>
</tr>
</tbody>
</table>

pandas.melt

pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)
“Un pivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “un pivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

Parameters

- frame : DataFrame
  - id_vars : tuple, list, or ndarray, optional
    Column(s) to use as identifier variables.
  - value_vars : tuple, list, or ndarray, optional
    Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
  - var_name : scalar
    Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’.
value_name: scalar, default ‘value’
Name to use for the ‘value’ column.

col_level: int or string, optional
If columns are a MultiIndex then use this level to melt.

See Also:
pivot_table, DataFrame.pivot

Examples

```python
>>> import pandas as pd
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
... 'B': {0: 1, 1: 3, 2: 5},
... 'C': {0: 2, 1: 4, 2: 6}})
>>> df
 A B C
0 a 1 2
1 b 3 4
2 c 5 6

>>> pd.melt(df, id_vars=['A'], value_vars=['B'])
 A variable value
 0 a B 1
 1 b B 3
 2 c B 5

>>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C'])
 A variable value
 0 a B 1
 1 b B 3
 2 c B 5
 3 a C 2
 4 b C 4
 5 c C 6

The names of ‘variable’ and ‘value’ columns can be customized:

```python
>>> pd.melt(df, id_vars=['A'], value_vars=['B'],
...          var_name='myVarname', value_name='myValname')
  A myVarname  myValname
  0     a     B     1
  1     b     B     3
  2     c     B     5

If you have multi-index columns:

```python
>>> df.columns = [list('ABC'), list('DEF')]
>>> df
 A B C
 D E F
 0 a 1 2
 1 b 3 4
 2 c 5 6

>>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B'])
 A variable value
 0 a B 1
 1 b B 3
 2 c B 5
```
```python
pd.melt(df, id_vars=['A', 'D'], value_vars=['B', 'E'])
```

<table>
<thead>
<tr>
<th>(A, D)</th>
<th>variable_0</th>
<th>variable_1</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>B</td>
<td>E</td>
</tr>
</tbody>
</table>

### pandas.pivot

`pandas.pivot(index, columns, values)`

Produce 'pivot' table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values.

**Parameters**
- `index`: ndarray
  - Labels to use to make new frame’s index
- `columns`: ndarray
  - Labels to use to make new frame’s columns
- `values`: ndarray
  - Values to use for populating new frame’s values

**Returns**
- DataFrame

**Notes**

Obviously, all 3 of the input arguments must have the same length

### pandas.pivot_table

`pandas.pivot_table(*args, **kwargs)`

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.

**Parameters**
- `data`: DataFrame
- `values`: column to aggregate, optional
- `index`: a column, Grouper, array which has the same length as data, or list of them.
  - Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- `columns`: a column, Grouper, array which has the same length as data, or list of them.
  - Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- `aggfunc`: function, default numpy.mean, or list of functions
  - If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)
- `fill_value`: scalar, default None

### 32.2. General functions
Value to replace missing values with

**margins** : boolean, default False

Add all row / columns (e.g. for subtotal / grand totals)

**dropna** : boolean, default True

Do not include columns whose entries are all NaN

**rows** : kwarg only alias of index [deprecated]

**cols** : kwarg only alias of columns [deprecated]

**Returns** table : DataFrame

**Examples**

```python
>>> df
 A B C D
0 foo one small 1
1 foo one large 2
2 foo one large 2
3 foo two small 3
4 foo two small 3
5 bar one large 4
6 bar one small 5
7 bar two small 6
8 bar two large 7

>>> table = pivot_table(df, values='D', index=['A', 'B'],
 columns=['C'], aggfunc=np.sum)

>>> table
 small large
 foo one 1 4
 two 6 NaN
 bar one 5 4
 two 6 7
```

**pandas.crosstab**

**pandas.crosstab(*args, **kwargs)**

Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed

**Parameters**

- **index** : array-like, Series, or list of arrays/Series
  Values to group by in the rows

- **columns** : array-like, Series, or list of arrays/Series
  Values to group by in the columns

- **values** : array-like, optional
  Array of values to aggregate according to the factors

- **aggfunc** : function, optional
  If no values array is passed, computes a frequency table

- **rownames** : sequence, default None
If passed, must match number of row arrays passed

**colnames**: sequence, default None

If passed, must match number of column arrays passed

**margins**: boolean, default False

Add row/column margins (subtotals)

**dropna**: boolean, default True

Do not include columns whose entries are all NaN

**rows**: kwarg only alias of index [deprecated]

**cols**: kwarg only alias of columns [deprecated]

**Returns**  
**crosstab**: DataFrame

**Notes**

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified

**Examples**

```python
>>> a
array([foo, foo, foo, foo, bar, bar,
 bar, bar, foo, foo, foo], dtype=object)
```

```python
>>> b
array([one, one, one, two, one, one,
 one, two, two, two, one], dtype=object)
```

```python
>>> c
array([dull, dull, shiny, dull, dull, shiny,
 shiny, dull, shiny, shiny, shiny], dtype=object)
```

```python
>>> crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
```

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>dull</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>shiny</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

**pandas.cut**

**pandas.cut**(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

Return indices of half-open bins to which each value of x belongs.

**Parameters**  
**x**: array-like

Input array to be binned. It has to be 1-dimensional.

**bins**: int or sequence of scalars

If bins is an int, it defines the number of equal-width bins in the range of x. However, in this case, the range of x is extended by .1% on each side to include the min or max values of x. If bins is a sequence it defines the bin edges allowing for non-uniform bin width. No extension of the range of x is done in this case.
**right**: bool, optional

Indicates whether the bins include the rightmost edge or not. If right == True (the default), then the bins [1,2,3,4] indicate (1,2], (2,3], (3,4].

**labels**: array or boolean, default None

Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins.

**retbins**: bool, optional

Whether to return the bins or not. Can be useful if bins is given as a scalar.

**precision**: int

The precision at which to store and display the bins labels

**include_lowest**: bool

Whether the first interval should be left-inclusive or not.

**Returns out**: Categorical or Series or array of integers if labels is False

The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned.

**bins**: ndarray of floats

Returned only if retbins is True.

**Notes**

The cut function can be useful for going from a continuous variable to a categorical variable. For example, cut could convert ages to groups of age ranges.

Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Categorical object.

**Examples**

```python
good, medium, bad
Categories (3, object): [good < medium < bad]
array([1, 1, 1, 1, 1], dtype=int64)
```

**pandas.qcut**

`pandas.qcut(x, q, labels=“None”, retbins=False, precision=3)`

Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point.
**Parameters**

- **x**: ndarray or Series
- **q**: integer or array of quantiles
  
  Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, 0.25, 0.5, 0.75, 1] for quartiles
- **labels**: array or boolean, default None
  
  Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins.
- **retbins**: bool, optional
  
  Whether to return the bins or not. Can be useful if bins is given as a scalar.
- **precision**: int
  
  The precision at which to store and display the bins labels

**Returns**

- **out**: Categorical or Series or array of integers if labels is False
  
  The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned.
- **bins**: ndarray of floats
  
  Returned only if retbins is True.

**Notes**

Out of bounds values will be NA in the resulting Categorical object

**Examples**

```python
good, medium, bad
array([0, 0, 1, 2, 3], dtype=int64)
```

**pandas.merge**

**pandas.merge**(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('x', 'y'), copy=True)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

**Parameters**

- **left**: DataFrame
- **right**: DataFrame
- **how**: {'left', 'right', 'outer', 'inner'}, default ‘inner’
• left: use only keys from left frame (SQL: left outer join)
• right: use only keys from right frame (SQL: right outer join)
• outer: use union of keys from both frames (SQL: full outer join)
• inner: use intersection of keys from both frames (SQL: inner join)

**on** : label or list

Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.

**left_on** : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns

**right_on** : label or list, or array-like

Field names to join on in right DataFrame or vector/list of vectors per left_on docs

**left_index** : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels

**right_index** : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index

**sort** : boolean, default False

Sort the join keys lexicographically in the result DataFrame

**suffixes** : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively

**copy** : boolean, default True

If False, do not copy data unnecessarily

**Returns**  
merged : DataFrame

The output type will be the same as ‘left’, if it is a subclass of DataFrame.

**Examples**

```python
>>> A
lkey value
0 foo 1
1 bar 2
2 baz 3
3 foo 4

>>> B
rkey value
0 foo 5
1 bar 6
2 qux 7

>>> merge(A, B, left_on='lkey', right_on='rkey', how='outer')
lkey value_x rkey value_y
0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7
```
pandas.concat

**pandas.concat** *(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)*

Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.

**Parameters**

- **objs**: a sequence or mapping of Series, DataFrame, or Panel objects
  
  If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised.

- **axis**: {0, 1, ...}, default 0
  
  The axis to concatenate along.

- **join**: {'inner', 'outer'}, default 'outer'
  
  How to handle indexes on other axis(es).

- **join_axes**: list of Index objects
  
  Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic.

- **verify_integrity**: boolean, default False
  
  Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation.

- **keys**: sequence, default None
  
  If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level.

- **levels**: list of sequences, default None
  
  Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys.

- **names**: list, default None
  
  Names for the levels in the resulting hierarchical index.

- **ignore_index**: boolean, default False
  
  If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the the index values on the other axes are still respected in the join.

- **copy**: boolean, default True
  
  If False, do not copy data unnecessarily.

**Returns**

- **concatenated**: type of objects
Notes

The keys, levels, and names arguments are all optional

pandas.get_dummies

```python
pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None)
```

Convert categorical variable into dummy/indicator variables

**Parameters**

- **data**: array-like, Series, or DataFrame
- **prefix**: string, list of strings, or dict of strings, default None
  - String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, `prefix` can be a dictionary mapping column names to prefixes.
- **prefix_sep**: string, default `_`
  - If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix`.
- **dummy_na**: bool, default False
  - Add a column to indicate NaNs, if False NaNs are ignored.
- **columns**: list-like, default None
  - Column names in the DataFrame to be encoded. If `columns` is None then all the columns with object or category dtype will be converted.

**Returns**

- **dummies**: DataFrame

**Examples**

```python
>>> import pandas as pd
>>> s = pd.Series(list('abca'))

>>> get_dummies(s)
 a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0

>>> s1 = ['a', 'b', np.nan]

>>> get_dummies(s1)
 a b
0 1 0
1 0 1
2 0 0

>>> get_dummies(s1, dummy_na=True)
 a b NaN
0 1 0 0
1 0 1 0
2 0 0 1
```
>>> df = DataFrame({
    'A': ['a', 'b', 'a'],
    'B': ['b', 'a', 'c'],
    'C': [1, 2, 3]
})

>>> get_dummies(df, prefix=['col1', 'col2']):

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>col1_a</td>
<td>col1_b</td>
<td>col2_a</td>
<td>col2_b</td>
<td>col2_c</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

See also `Series.str.get_dummies`.

**pandas.factorize**

`pandas.factorize(values, sort=False, order=None, na_sentinel=-1)`

Encode input values as an enumerated type or categorical variable

**Parameters**
- `values`: ndarray (1-d)
  - Sequence
  - `sort`: boolean, default False
    - Sort by values
  - `order`: deprecated
  - `na_sentinel`: int, default -1
    - Value to mark “not found”

**Returns**
- `labels`: the indexer to the original array
  - `uniques`: ndarray (1-d) or Index
    - the unique values. Index is returned when passed values is Index or Series

note: an array of Periods will ignore sort as it returns an always sorted PeriodIndex

### 32.2.2 Top-level missing data

**isnull(obj)**

Detect missing values (NaN in numeric arrays, None/NaN in object arrays)

**notnull(obj)**

Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

**pandas.isnull**

`pandas.isnull(obj)`

Detect missing values (NaN in numeric arrays, None/NaN in object arrays)

**Parameters**
- `arr`: ndarray or object value
  - Object to check for null-ness

**Returns**
- `isnull`: array-like of bool or bool
  - Array or bool indicating whether an object is null or if an array is given which of the element is null.

**See Also:**
pandas: powerful Python data analysis toolkit, Release 0.15.1

**pandas.notnull** boolean inverse of pandas.isnull

**pandas.notnull**

pandas.

notnull

(obj)

Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

**Parameters**

arr : ndarray or object value

Object to check for not-null-ness

**Returns**

isnull : array-like of bool or bool

Array or bool indicating whether an object is not null or if an array is given which of the element is not null.

**See Also:**

pandas.isnull boolean inverse of pandas.notnull

### 32.2.3 Top-level dealing with datetimelike

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>to_datetime</td>
<td>Convert argument to datetime</td>
</tr>
<tr>
<td>to_timedelta</td>
<td>Convert argument to timedelta</td>
</tr>
<tr>
<td>date_range</td>
<td>Return a fixed frequency datetime index, with day (calendar) as the default</td>
</tr>
<tr>
<td>bdate_range</td>
<td>Return a fixed frequency datetime index, with business day as the default</td>
</tr>
<tr>
<td>period_range</td>
<td>Return a fixed frequency datetime index, with day (calendar) as the default</td>
</tr>
<tr>
<td>timedelta_range</td>
<td>Return a fixed frequency timedelta index, with day as the default</td>
</tr>
</tbody>
</table>

**pandas.to_datetime**

pandas.

to_datetime

(arg[, errors, dayfirst, utc, ...])

Convert argument to datetime

**Parameters**

arg : string, datetime, array of strings (with possible NAs)

errors : {'ignore', 'raise'}, default 'ignore'

Errors are ignored by default (values left untouched)

dayfirst : boolean, default False

If True parses dates with the day first, eg 20/01/2005 Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug).

utc : boolean, default None

Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well)

box : boolean, default True

If True returns a DatetimeIndex, if False returns ndarray of values

format : string, default None

strftime to parse time, eg “%d/%m/%Y”
coerce : force errors to NaT (False by default)
unit : unit of the arg (D,s,ms,us,ns) denote the unit in epoch
(e.g. a unix timestamp), which is an integer/float number

infer_datetime_format: boolean, default False
If no format is given, try to infer the format based on the first datetime string. Provides
a large speed-up in many cases.

Returns ret : datetime if parsing succeeded

Examples

Take separate series and convert to datetime

>>> import pandas as pd
>>> i = pd.date_range('20000101', periods=100)
>>> df = pd.DataFrame(dict(year=i.year, month=i.month, day=i.day))
>>> pd.to_datetime(df.year*10000 + df.month*100 + df.day, format='%Y%m%d')

Or from strings

>>> df = df.astype(str)
>>> pd.to_datetime(df.day + df.month + df.year, format='%d%m%Y')

pandas.to_timedelta

pandas.to_timedelta(arg, unit='ns', box=True, coerce=False)
Convert argument to timedelta

Parameters arg : string, timedelta, array of strings (with possible NAs)
unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number
box : boolean, default True
    If True returns a Timedelta/TimedeltaIndex of the results if False returns a
    np.timedelta64 or ndarray of values of dtype timedelta64[ns]
coerce : force errors to NaT (False by default)

Returns ret : timedelta64/arrays of timedelta64 if parsing succeeded

pandas.date_range

pandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None)
Return a fixed frequency datetime index, with day (calendar) as the default frequency

Parameters start : string or datetime-like, default None
    Left bound for generating dates
end : string or datetime-like, default None
    Right bound for generating dates
periods : integer or None, default None

If None, must specify start and end

freq : string or DateOffset, default ‘D’ (calendar daily)
Frequency strings can have multiples, e.g. ‘5H’

tz : string or None
Time zone name for returning localized DatetimeIndex, for example
Asia/Hong_Kong

normalize : bool, default False
Normalize start/end dates to midnight before generating date range

name : str, default None
Name of the resulting index

closed : string or None, default None
Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

Returns rng : DatetimeIndex

Notes

2 of start, end, or periods must be specified

pandas.bdate_range

pandas.bdate_range(start=None, end=None, periods=None, freq='B', tz=None, normalize=True, name=None, closed=None)
Return a fixed frequency datetime index, with business day as the default frequency

Parameters start : string or datetime-like, default None
Left bound for generating dates

dend : string or datetime-like, default None
Right bound for generating dates

periods : integer or None, default None
If None, must specify start and end

freq : string or DateOffset, default ‘B’ (business daily)
Frequency strings can have multiples, e.g. ‘5H’

tz : string or None
Time zone name for returning localized DatetimeIndex, for example Asia/Beijing

normalize : bool, default False
Normalize start/end dates to midnight before generating date range

name : str, default None
Name for the resulting index

closed : string or None, default None
Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

Returns rng : DatetimeIndex

Notes

2 of start, end, or periods must be specified

pandas.period_range

pandas.period_range(start=None, end=None, periods=None, freq='D', name=None)

Return a fixed frequency datetime index, with day (calendar) as the default frequency

Parameters start:

end:

periods : int, default None
    Number of periods in the index

df : str, default ‘D’
    Frequency alias

name : str, default None
    Name for the resulting PeriodIndex

Returns prng : PeriodIndex

pandas.timedelta_range

pandas.timedelta_range(start=None, end=None, periods=None, freq='D', name=None, closed=None)

Return a fixed frequency timedelta index, with day as the default frequency

Parameters start:

end:

periods : integer or None, default None
    If None, must specify start and end

freq : str or DateOffset, default ‘D’ (calendar daily)
    Frequency strings can have multiples, e.g. ‘5H’

name : str, default None
    Name of the resulting index

closed : string or None, default None
    Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)
Returns  \texttt{rng} : TimedeltaIndex

Notes

2 of start, end, or periods must be specified

32.2.4 Top-level evaluation

\begin{verbatim}
\texttt{eval(expr[, parser, engine, truediv, ...])}  Evaluate a Python expression as a string using various backends.
\end{verbatim}

\texttt{pandas.eval}

\texttt{pandas.eval} \texttt{(expr, parser='pandas', engine='numexpr', truediv=True, local_dict=None, global_dict=None, resolvers=(), level=0, target=None)}

Evaluate a Python expression as a string using various backends.

The following arithmetic operations are supported: +, -, *, /, **, %, // (python engine only) along with the following boolean operations: | (or), & (and), and ~ (not). Additionally, the 'pandas' parser allows the use of \texttt{and}, \texttt{or}, and \texttt{not} with the same semantics as the corresponding bitwise operators. \texttt{Series} and \texttt{DataFrame} objects are supported and behave as they would with plain ol' Python evaluation.

Parameters  \texttt{expr} : str or unicode

The expression to evaluate. This string cannot contain any Python statements, only Python expressions.

\texttt{parser} : string, default 'pandas', {'pandas', 'python'}

The parser to use to construct the syntax tree from the expression. The default of 'pandas' parses code slightly different than standard Python. Alternatively, you can parse an expression using the 'python' parser to retain strict Python semantics. See the \texttt{enhancing performance} documentation for more details.

\texttt{engine} : string, default 'numexpr', {'python', 'numexpr'}

The engine used to evaluate the expression. Supported engines are

\begin{itemize}
  \item 'numexpr' : \texttt{This default engine evaluates pandas objects using numexpr} for large speed ups in complex expressions with large frames.
  \item 'python' : \texttt{Performs operations as if you had eval'd in top level python. This engine is generally not that useful.}
\end{itemize}

More backends may be available in the future.

\texttt{truediv} : bool, optional

Whether to use true division, like in Python >= 3

\texttt{local_dict} : dict or None, optional

A dictionary of local variables, taken from locals() by default.

\texttt{global_dict} : dict or None, optional

A dictionary of global variables, taken from globals() by default.

\texttt{resolvers} : list of dict-like or None, optional
A list of objects implementing the \_\_getitem\_\_ special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the query() method to inject the index and columns variables that refer to their respective DataFrame instance attributes.

**level** : int, optional

The number of prior stack frames to traverse and add to the current scope. Most users will not need to change this parameter.

**target** : a target object for assignment, optional, default is None

essentially this is a passed in resolver

**Returns** ndarray, numeric scalar, DataFrame, Series

**See Also:**

pandas.DataFrame.query, pandas.DataFrame.eval

**Notes**

The dtype of any objects involved in an arithmetic \% operation are recursively cast to float64.

See the *enhancing performance* documentation for more details.

## 32.2.5 Standard moving window functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rolling_count</td>
<td>Rolling count of number of non-NaN observations inside provided window.</td>
</tr>
<tr>
<td>rolling_sum</td>
<td>Moving sum.</td>
</tr>
<tr>
<td>rolling_median</td>
<td>Moving mean.</td>
</tr>
<tr>
<td>rolling_var</td>
<td>O(N log(window)) implementation using skip list</td>
</tr>
<tr>
<td>rolling_std</td>
<td>Numerically stable implementation using Welford’s method.</td>
</tr>
<tr>
<td>rolling_min</td>
<td>Moving standard deviation.</td>
</tr>
<tr>
<td>rolling_max</td>
<td>Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs.</td>
</tr>
<tr>
<td>rolling_corr</td>
<td>Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs.</td>
</tr>
<tr>
<td>rolling_corr_pairwise</td>
<td>Moving sample correlation.</td>
</tr>
<tr>
<td>rolling_cov</td>
<td>Depreciated.</td>
</tr>
<tr>
<td>rolling_skew</td>
<td>Unbiased moving covariance.</td>
</tr>
<tr>
<td>rolling_kurt</td>
<td>Unbiased moving skewness.</td>
</tr>
<tr>
<td>rolling_apply</td>
<td>Unbiased moving kurtosis.</td>
</tr>
<tr>
<td>rolling_quantile</td>
<td>Generic moving function application.</td>
</tr>
<tr>
<td>rolling_window</td>
<td>Moving quantile.</td>
</tr>
<tr>
<td>rolling_window</td>
<td>Applies a moving window of type window_type and size window on the data.</td>
</tr>
</tbody>
</table>

**pandas.rolling_count**

pandas.rolling_count (arg, window[, freq=None, center=False, how=None])

Rolling count of number of non-NaN observations inside provided window.

**Parameters**

- **arg** : DataFrame or numpy ndarray-like
- **window** : int

Size of the moving window. This is the number of observations used for calculating the statistic.
**freq**: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center**: boolean, default False

Whether the label should correspond with center of window

**how**: string, default ‘mean’

Method for down- or re-sampling

**Returns**  **rolling_count**: type of caller

**Notes**

The **freq** keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of **resample()** (i.e. using the **mean**).

**pandas.rolling_sum**

**pandas.rolling_sum**(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)

Moving sum.

**Parameters**  **arg**: Series, DataFrame

**window**: int

Size of the moving window. This is the number of observations used for calculating the statistic.

**min_periods**: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

**freq**: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center**: boolean, default False

Set the labels at the center of the window.

**how**: string, default ‘None’

Method for down- or re-sampling

**Returns**  **y**: type of input argument

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting **center=True**.

The **freq** keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of **resample()** (i.e. using the **mean**).
pandas.rolling_mean

```python
pandas.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
```

Moving mean.

**Parameters**

- **arg**: Series, DataFrame
- **window**: int
  - Size of the moving window. This is the number of observations used for calculating the statistic.
- **min_periods**: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
  - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **center**: boolean, default False
  - Set the labels at the center of the window.
- **how**: string, default ‘None’
  - Method for down- or re-sampling

**Returns**

- **y**: type of input argument

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.rolling_median

```python
pandas.rolling_median(arg, window, min_periods=None, freq=None, center=False, how='median', **kwargs)
```

O(N log(window)) implementation using skip list

Moving median.

**Parameters**

- **arg**: Series, DataFrame
- **window**: int
  - Size of the moving window. This is the number of observations used for calculating the statistic.
- **min_periods**: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
Set the labels at the center of the window.

how : string, default ‘median’
Method for down- or re-sampling

Returns  y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.rolling_var

pandas.rolling_var(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
Numerically stable implementation using Welford’s method.
Moving variance.

Parameters  arg : Series, DataFrame

window : int
Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
Set the labels at the center of the window.

how : string, default ‘None’
Method for down- or re-sampling

ddf : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is $N - ddof$, where $N$ represents the number of elements.

Returns  y : type of input argument
Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.rolling_std

```python
pandas.rolling_std(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
```

Moving standard deviation.

**Parameters**

- `arg` : Series, DataFrame
- `window` : int
  Size of the moving window. This is the number of observations used for calculating the statistic.
- `min_periods` : int, default None
  Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq` : string or DateOffset object, optional (default None)
  Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- `center` : boolean, default False
  Set the labels at the center of the window.
- `how` : string, default ‘None’
  Method for down- or re-sampling
- `ddof` : int, default 1
  Delta Degrees of Freedom. The divisor used in calculations is \( N - ddof \), where \( N \) represents the number of elements.

**Returns**

- `y` : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.rolling_min

```python
pandas.rolling_min(arg, window, min_periods=None, freq=None, center=False, how='min', **kwargs)
```

Moving min of 1d array of dtype=\text{float64} along axis=0 ignoring NaNs. Moving minimum.
Parameters  

**arg** : Series, DataFrame

**window** : int
   Size of the moving window. This is the number of observations used for calculating the statistic.

**min_periods** : int, default None
   Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
   Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False
   Set the labels at the center of the window.

**how** : string, default ‘min’
   Method for down- or re-sampling

Returns  

**y** : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**pandas.rolling_max**

```python
pandas.rolling_max(arg, window, min_periods=None, freq=None, center=False, how='max', **kwargs)
```

Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs. Moving maximum.

Parameters  

**arg** : Series, DataFrame

**window** : int
   Size of the moving window. This is the number of observations used for calculating the statistic.

**min_periods** : int, default None
   Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
   Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False
   Set the labels at the center of the window.

**how** : string, default ‘max’
Method for down- or re-sampling

Returns y: type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

**pandas.rolling_corr**

pandas.rolling_corr (arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None)

Moving sample correlation.

Parameters arg1: Series, DataFrame, or ndarray

arg2: Series, DataFrame, or ndarray, optional
if not supplied then will default to arg1 and produce pairwise output

window: int
Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods: int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq: string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center: boolean, default False
Set the labels at the center of the window.

how: string, default ‘None’
Method for down- or re-sampling

pairwise: bool, default False
If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns y: type depends on inputs

DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
DataFrame / Series -> Computes result for each column Series / Series -> Series
Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

**pandas.rolling_corr_pairwise**

pandas.rolling_corr_pairwise (df1, df2=None, window=None, min_periods=None, freq=None, center=False)

Deprecated. Use rolling_corr(..., pairwise=True) instead.

Pairwise moving sample correlation

Parameters

df1 : DataFrame

df2 : DataFrame

window : int
    Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
    Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
    Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
    Set the labels at the center of the window.

how : string, default ‘None’
    Method for down- or re-sampling

Returns

y : Panel whose items are df1.index values

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

**pandas.rolling_cov**

pandas.rolling_cov (arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None, ddof=1)

Unbiased moving covariance.
**Parameters**

arg1 : Series, DataFrame, or ndarray

arg2 : Series, DataFrame, or ndarray, optional
    if not supplied then will default to arg1 and produce pairwise output

window : int
    Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
    Minimum number of observations in window required to have a value (otherwise result is NA).

ddf : int, default 1
    Delta Degrees of Freedom. The divisor used in calculations is \( N - ddf \), where \( N \) represents the number of elements.

freq : string or DateOffset object, optional (default None)
    Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
    Set the labels at the center of the window.

how : string, default ‘None’
    Method for down- or re-sampling

pairwise : bool, default False
    If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns

y : type depends on inputs
    DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
    DataFrame / Series -> Computes result for each column Series / Series -> Series

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**pandas.rolling_skew**

```
pandas.rolling_skew(arg, window, min_periods=None, freq=None, center=False, how=None, **kwattrs)
```

Unbiased moving skewness.

**Parameters**

arg : Series, DataFrame

window : int
pandas: powerful Python data analysis toolkit, Release 0.15.1

Size of the moving window. This is the number of observations used for calculating the statistic.

**min_periods** : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False
Set the labels at the center of the window.

**how** : string, default ‘None’
Method for down- or re-sampling

Returns **y** : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**pandas.rolling_kurt**

Pandas rolling kurtosis.

Parameters

arg : Series, DataFrame

**window** : int
Size of the moving window. This is the number of observations used for calculating the statistic.

**min_periods** : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False
Set the labels at the center of the window.

**how** : string, default ‘None’
Method for down- or re-sampling

Returns **y** : type of input argument
Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**pandas.rolling_apply**

```python
pandas.rolling_apply(arg, window, func, min_periods=None, freq=None, center=False, args=(), kwargs={})
```

Generic moving function application.

**Parameters**

- `arg` : Series, DataFrame
  - `window` : int
    - Size of the moving window. This is the number of observations used for calculating the statistic.
  - `func` : function
    - Must produce a single value from an ndarray input
  - `min_periods` : int, default None
    - Minimum number of observations in window required to have a value (otherwise result is NA).
  - `freq` : string or DateOffset object, optional (default None)
    - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
  - `center` : boolean, default False
    - Whether the label should correspond with center of window
  - `args` : tuple
    - Passed on to func
  - `kwargs` : dict
    - Passed on to func

**Returns**

- `y` : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).
pandas.rolling_quantile

**pandas.rolling_quantile** *(arg, window, quantile, min_periods=None, freq=None, center=False)*

Moving quantile.

**Parameters**

- **arg**: Series, DataFrame
- **window**: int
  - Size of the moving window. This is the number of observations used for calculating the statistic.
- **quantile**: float
  - $0 \leq quantile \leq 1$
- **min_periods**: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
  - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **center**: boolean, default False
  - Whether the label should correspond with center of window

**Returns**

- **y**: type of input argument

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.rolling_window

**pandas.rolling_window** *(arg, window=None, win_type=None, min_periods=None, freq=None, center=False, mean=True, axis=0, how=None, **kwargs)*

Applies a moving window of type `window_type` and size `window` on the data.

**Parameters**

- **arg**: Series, DataFrame
- **window**: int or ndarray
  - Weighting window specification. If the window is an integer, then it is treated as the window length and `win_type` is required
- **win_type**: str, default None
  - Window type (see Notes)
- **min_periods**: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False

Whether the label should correspond with center of window

**mean** : boolean, default True

If True computes weighted mean, else weighted sum

**axis** : {0, 1}, default 0

**how** : string, default ‘mean’

Method for down- or re-sampling

**Returns**  
y : type of input argument

**Notes**

The recognized window types are:

- `boxcar`
- `triang`
- `blackman`
- `hamming`
- `bartlett`
- `parzen`
- `bohman`
- `blackmanharris`
- `nuttall`
- `barthann`
- `kaiser` (needs beta)
- `gaussian` (needs std)
- `general_gaussian` (needs power, width)
- `slepian` (needs width).

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

### 32.2.6 Standard expanding window functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>expanding_count(arg[, freq])</code></td>
<td>Expanding count of number of non-NaN observations.</td>
</tr>
<tr>
<td><code>expanding_sum(arg[, min_periods[, freq]])</code></td>
<td>Expanding sum.</td>
</tr>
<tr>
<td><code>expanding_mean(arg[, min_periods[, freq]])</code></td>
<td>Expanding mean.</td>
</tr>
</tbody>
</table>
Table 32.17 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expanding_median</td>
<td>O(N log(window)) implementation using skip list</td>
</tr>
<tr>
<td>expanding_var</td>
<td>Numerically stable implementation using Welford’s method.</td>
</tr>
<tr>
<td>expanding_std</td>
<td>Expanding standard deviation.</td>
</tr>
<tr>
<td>expanding_min</td>
<td>Moving min of 1d array of dtype=64 along axis=0 ignoring NaNs.</td>
</tr>
<tr>
<td>expanding_max</td>
<td>Moving max of 1d array of dtype=64 along axis=0 ignoring NaNs.</td>
</tr>
<tr>
<td>expanding_corr</td>
<td>Expanding sample correlation.</td>
</tr>
<tr>
<td>expanding_corr_pairwise</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>expanding_cov</td>
<td>Unbiased expanding covariance.</td>
</tr>
<tr>
<td>expanding_skew</td>
<td>Unbiased expanding skewness.</td>
</tr>
<tr>
<td>expanding_kurt</td>
<td>Unbiased expanding kurtosis.</td>
</tr>
<tr>
<td>expanding_apply</td>
<td>Generic expanding function application.</td>
</tr>
<tr>
<td>expanding_quantile</td>
<td>Expanding quantile.</td>
</tr>
</tbody>
</table>

**pandas.expanding_count**

pandas.expanding_count (arg, freq=None)
Expanding count of number of non-NaN observations.

**Parameters**
- **arg**: DataFrame or numpy ndarray-like
- **freq**: string or DateOffset object, optional (default None)
  - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**Returns**
- expanding_count : type of caller

**Notes**

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

**pandas.expanding_sum**

pandas.expanding_sum (arg, min_periods=1, freq=None, **kwargs)
Expanding sum.

**Parameters**
- **arg**: Series, DataFrame
- **min_periods**: int, default None
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
  - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**Returns**
- y : type of input argument

**pandas.expanding_mean**

pandas.expanding_mean (arg, min_periods=1, freq=None, **kwargs)
Expanding mean.
Parameters  

**arg** : Series, DataFrame

**min_periods** : int, default None
  Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
  Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns  

**y** : type of input argument

### pandas.expanding_median

`pandas.expanding_median(arg, min_periods=1, freq=None, **kwargs)`

O(N log(window)) implementation using skip list

Expanding median.

Parameters  

**arg** : Series, DataFrame

**min_periods** : int, default None
  Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
  Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns  

**y** : type of input argument

### pandas.expanding_var

`pandas.expanding_var(arg, min_periods=1, freq=None, **kwargs)`

Numerically stable implementation using Welford’s method.

Expanding variance.

Parameters  

**arg** : Series, DataFrame

**min_periods** : int, default None
  Minimum number of observations in window required to have a value (otherwise result is NA).

**freq** : string or DateOffset object, optional (default None)
  Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**ddof** : int, default 1
  Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

Returns  

**y** : type of input argument
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.expanding_std

pandas.expanding_std(arg, min_periods=1, freq=None, **kwargs)
Expanding standard deviation.

Parameters
arg : Series, DataFrame

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result
is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a fre-
quency string or DateOffset object.

ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is \( N - \text{ddof} \), where \( N \)
represents the number of elements.

Returns
y : type of input argument

pandas.expanding_min

pandas.expanding_min(arg, min_periods=1, freq=None, **kwargs)
Moving min of 1d array of dtype=float64 along axis=0 ignoring NaNs. Expanding minimum.

Parameters
arg : Series, DataFrame

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result
is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a fre-
quency string or DateOffset object.

Returns
y : type of input argument

pandas.expanding_max

pandas.expanding_max(arg, min_periods=1, freq=None, **kwargs)
Moving max of 1d array of dtype=float64 along axis=0 ignoring NaNs. Expanding maximum.

Parameters
arg : Series, DataFrame

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result
is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a fre-
quency string or DateOffset object.

Returns
y : type of input argument
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.expanding_corr

pandas.expanding_corr (arg1, arg2=None, min_periods=1, freq=None, pairwise=None)
Expanding sample correlation.

Parameters
arg1 : Series, DataFrame, or ndarray
    if not supplied then will default to arg1 and produce pairwise output

arg2 : Series, DataFrame, or ndarray, optional

min_periods : int, default None
    Minimum number of observations in window required to have a value (otherwise result
    is NA).

freq : string or DateOffset object, optional (default None)
    Frequency to conform the data to before computing the statistic. Specified as a fre-
    quency string or DateOffset object.

pairwise : bool, default False
    If False then only matching columns between arg1 and arg2 will be used and the output
    will be a DataFrame. If True then all pairwise combinations will be calculated and the
    output will be a Panel in the case of DataFrame inputs. In the case of missing elements,
    only complete pairwise observations will be used.

Returns
y : type depends on inputs
    DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
    DataFrame / Series -> Computes result for each column Series / Series -> Series

pandas.expanding_corr_pairwise

pandas.expanding_corr_pairwise (df1, df2=None, min_periods=1, freq=None)

Deprecated. Use expanding_corr(..., pairwise=True) instead.

Pairwise expanding sample correlation

Parameters
df1 : DataFrame

df2 : DataFrame

min_periods : int, default None
    Minimum number of observations in window required to have a value (otherwise result
    is NA).

freq : string or DateOffset object, optional (default None)
    Frequency to conform the data to before computing the statistic. Specified as a fre-
    quency string or DateOffset object.

Returns
y : Panel whose items are df1.index values

pandas.expanding_cov

pandas.expanding_cov (arg1, arg2=None, min_periods=1, freq=None, pairwise=None, ddof=1)
Unbiased expanding covariance.
Parameters  

arg1: Series, DataFrame, or ndarray

arg2: Series, DataFrame, or ndarray, optional

if not supplied then will default to arg1 and produce pairwise output

min_periods: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

pairwise: bool, default False

If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

ddf: int, default 1

Delta Degrees of Freedom. The divisor used in calculations is $N - ddf$, where $N$ represents the number of elements.

Returns  
y: type depends on inputs

DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
DataFrame / Series -> Computes result for each column Series / Series -> Series

pandas.expanding_skew

pandas.expanding_skew(arg, min_periods=1, freq=None, **kwargs)

Unbiased expanding skewness.

Parameters  

arg: Series, DataFrame

min_periods: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq: string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns  
y: type of input argument

pandas.expanding_kurt

pandas.expanding_kurt(arg, min_periods=1, freq=None, **kwargs)

Unbiased expanding kurtosis.

Parameters  

arg: Series, DataFrame

min_periods: int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).
freq : string or DateOffset object, optional (default None)
    Frequency to conform the data to before computing the statistic. Specified as a fre-
    quency string or DateOffset object.

Returns y : type of input argument

pandas.expanding_apply

pandas.expanding_apply(arg, func, min_periods=1, freq=None, args=(), kwargs={})
    Generic expanding function application.

Parameters arg : Series, DataFrame
    func : function
        Must produce a single value from an ndarray input
    min_periods : int, default None
        Minimum number of observations in window required to have a value (otherwise result
        is NA).
    freq : string or DateOffset object, optional (default None)
        Frequency to conform the data to before computing the statistic. Specified as a fre-
        quency string or DateOffset object.
    args : tuple
        Passed on to func
    kwargs : dict
        Passed on to func

Returns y : type of input argument

Notes

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is
done with the default parameters of resample() (i.e. using the mean).

pandas.expanding_quantile

pandas.expanding_quantile(arg, quantile, min_periods=1, freq=None)
    Expanding quantile.

Parameters arg : Series, DataFrame
    quantile : float
        0 <= quantile <= 1
    min_periods : int, default None
        Minimum number of observations in window required to have a value (otherwise result
        is NA).
    freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**Returns** y : type of input argument

**Notes**

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

### 32.2.7 Exponentially-weighted moving window functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ewma(arg[, com, span, halflife, ...])</code></td>
<td>Exponentially-weighted moving average</td>
</tr>
<tr>
<td><code>ewmstd(arg[, com, span, halflife, ...])</code></td>
<td>Exponentially-weighted moving std</td>
</tr>
<tr>
<td><code>ewmvar(arg[, com, span, halflife, ...])</code></td>
<td>Exponentially-weighted moving variance</td>
</tr>
<tr>
<td><code>ewmcorr(arg1[, arg2, com, span, halflife, ...])</code></td>
<td>Exponentially-weighted moving correlation</td>
</tr>
<tr>
<td><code>ewmcov(arg1[, arg2, com, span, halflife, ...])</code></td>
<td>Exponentially-weighted moving covariance</td>
</tr>
</tbody>
</table>

**pandas.ewma**

`pandas.ewma(arg, com=None, span=None, halflife=None, min_periods=0, freq=None, adjust=True, how=None, ignore_na=False)`

Exponentially-weighted moving average

**Parameters**

**arg** : Series, DataFrame

- **com** : float, optional
  
  Center of mass: $\alpha = 1/(1 + \text{com})$.

- **span** : float, optional
  
  Specify decay in terms of span, $\alpha = 2/(\text{span} + 1)$.

- **halflife** : float, optional
  
  Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/\text{halflife})$.

- **min_periods** : int, default 0
  
  Minimum number of observations in window required to have a value (otherwise result is NA).

- **freq** : None or string alias / date offset object, default=None
  
  Frequency to conform to before computing statistic.

- **adjust** : boolean, default True
  
  Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weights (viewing EWMA as a moving average).

- **how** : string, default ‘mean’
  
  Method for down- or re-sampling.

- **ignore_na** : boolean, default False
  
  Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior.
Returns y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter \( s \), we have that the decay parameter \( \alpha \) is related to the span as \( \alpha = 2/(s + 1) = 1/(1 + c) \)

where \( c \) is the center of mass. Given a span, the associated center of mass is \( c = (s - 1)/2 \)

So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights \((1-\alpha)^{\ast}(n-1), \ldots, 1-\alpha, 1\).

When adjust is False, weighted averages are calculated recursively as: 
weighted_average[0] = arg[0];
weighted_average[i] = (1-\alpha)*weighted_average[i-1] + \alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of \([x, \text{None}, y]\) are \((1-\alpha)^{\ast}2\) and \(1\) (if adjust is True), and \((1-\alpha)^{\ast}2\) and \(\alpha\) (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of \([x, \text{None}, y]\) are \(1-\alpha\) and \(1\) (if adjust is True), and \(1-\alpha\) and \(\alpha\) (if adjust is False).

pandas.ewmstd

```python
pandas.ewmstd(arg, com=None, span=None, halflife=None, min_periods=0, bias=False, ignore_na=False, adjust=True)
```

Exponentially-weighted moving std

Parameters arg : Series, DataFrame

com : float, optional

Center of mass: \( \alpha = 1/(1 + \text{com}) \),

span : float, optional

Specify decay in terms of span, \( \alpha = 2/(\text{span} + 1) \)

halflife : float, optional

Specify decay in terms of halflife, \( \alpha = 1 - \exp(\log(0.5)/\text{halflife}) \)

min_periods : int, default 0

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : None or string alias / date offset object, default=None

Frequency to conform to before computing statistic

adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’
Method for down- or re-sampling

**ignore_na** : boolean, default False

Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior.

**bias** : boolean, default False

Use a standard estimation bias correction

**Returns**  
y : type of input argument

**Notes**

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter $s$, we have that the decay parameter $\alpha$ is related to the span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where $c$ is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights $(1-\alpha)^{(n-1)}$, $(1-\alpha)^{(n-2)}$, ..., $1-\alpha$, 1.

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = $(1-\alpha)\times$weighted_average[i-1] + $\alpha\times$arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are $(1-\alpha)^2$ and 1 (if adjust is True), and $(1-\alpha)^2$ and $\alpha$ (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-$\alpha$ and 1 (if adjust is True), and 1-$\alpha$ and $\alpha$ (if adjust is False).

**pandas.ewmvar**

$pandas.ewmvar (arg, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, how=None, ignore_na=False, adjust=True)$

Exponentially-weighted moving variance

**Parameters**  
arg : Series, DataFrame

com : float, optional

Center of mass: $\alpha = 1/(1 + com)$.

span : float, optional

Specify decay in terms of span, $\alpha = 2/(span + 1)$

halflife : float, optional

Specify decay in terms of halflife, $\alpha = 1 - \exp(log(0.5)/halflife)$

min_periods : int, default 0

Minimum number of observations in window required to have a value (otherwise result is NA).
freq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic
adjust : boolean, default True
Divide by decaying adjustment factor in beginning periods to account for imbalance in
relative weightings (viewing EWMA as a moving average)
how : string, default ‘mean’
Method for down- or re-sampling
ignore_na : boolean, default False
Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0
behavior
bias : boolean, default False
Use a standard estimation bias correction

Returns  y : type of input argument

Notes
Either center of mass or span must be specified
EWMA is sometimes specified using a “span” parameter $s$, we have that the decay parameter $\alpha$ is related to the
span as $\alpha = 2/(s + 1) = 1/(1 + c)$
where $c$ is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$
So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights
(1-$\alpha$)**(n-1), (1-$\alpha$)**(n-2), ..., 1-$\alpha$, 1.

When adjust is False, weighted averages are calculated recursively as:
weighted_average[0] = arg[0];
weighted_average[i] = (1-$\alpha$)*weighted_average[i-1] + $\alpha$*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of $x$ and
$y$ used in calculating the final weighted average of $[x, None, y]$ are (1-$\alpha$)**2 and 1 (if adjust is True), and
(1-$\alpha$)**2 and $\alpha$ (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example,
the weights of $x$ and $y$ used in calculating the final weighted average of $[x, None, y]$ are 1-$\alpha$ and 1 (if adjust
is True), and 1-$\alpha$ and $\alpha$ (if adjust is False).

pandas.ewmcorr

pandas.ewmcorr (arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, freq=None,
            pairwise=None, how=None, ignore_na=False, adjust=True)
Exponentially-weighted moving correlation

Parameters  arg1 : Series, DataFrame, or ndarray
            arg2 : Series, DataFrame, or ndarray, optional
                    if not supplied then will default to arg1 and produce pairwise output
            com : float, optional
Center of mass: $\alpha = 1/(1 + com)$.

span : float, optional
Specify decay in terms of span, $\alpha = 2/(\text{span} + 1)$

halflife : float, optional
Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/\text{halflife})$

min_periods : int, default 0
Minimum number of observations in window required to have a value (otherwise result is NA).

defreq : None or string alias / date offset object, default=None
Frequency to conform to before computing statistic

adjust : boolean, default True
Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’
Method for down- or re-sampling

ignore_na : boolean, default False
Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior

pairwise : bool, default False
If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter $\alpha$ is related to the span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where c is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1.

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False).
When `ignore_na` is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False).

**pandas.ewmcov**

**pandas.ewmcov** *(arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, pairwise=None, how=None, ignore_na=False, adjust=True)*

Exponentially-weighted moving covariance

**Parameters**

- **arg1** : Series, DataFrame, or ndarray
- **arg2** : Series, DataFrame, or ndarray, optional
  - If not supplied then will default to `arg1` and produce pairwise output
- **com** : float, optional
  - Center of mass: \( \alpha = 1/(1 + com) \)
- **span** : float, optional
  - Specify decay in terms of span, \( \alpha = 2/(span + 1) \)
- **halflife** : float, optional
  - Specify decay in terms of halflife, \( \alpha = 1 - \exp(\log(0.5)/\text{halflife}) \)
- **min_periods** : int, default 0
  - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq** : None or string alias / date offset object, default=None
  - Frequency to conform to before computing statistic
- **adjust** : boolean, default True
  - Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)
- **how** : string, default ‘mean’
  - Method for down- or re-sampling
- **ignore_na** : boolean, default False
  - Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior
- **pairwise** : bool, default False
  - If False then only matching columns between `arg1` and `arg2` will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

**Returns**

- **y** : type of input argument
Notes

Either center of mass or span must be specified.

EWMA is sometimes specified using a “span” parameter $s$, we have that the decay parameter $\alpha$ is related to the span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where $c$ is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights (1-$\alpha$)**(n-1), (1-$\alpha$)**(n-2), ..., 1-$\alpha$, 1.

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-$\alpha$)*weighted_average[i-1] + $\alpha$*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of $x$ and $y$ used in calculating the final weighted average of $[x, None, y]$ are (1-$\alpha$)**2 and 1 (if adjust is True), and (1-$\alpha$)**2 and $\alpha$ (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of $x$ and $y$ used in calculating the final weighted average of $[x, None, y]$ are 1-$\alpha$ and 1 (if adjust is True), and 1-$\alpha$ and $\alpha$ (if adjust is False).

32.3 Series

32.3.1 Constructor

Series([data, index, dtype, name, copy, ...]) One-dimensional ndarray with axis labels (including time series).

pandas.Series

class pandas.Series (data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)
One-dimensional ndarray with axis labels (including time series).

Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).

Operations between Series (+, -, /, *) align values based on their associated index values— they need not be the same length. The result index will be the sorted union of the two indexes.

Parameters

data : array-like, dict, or scalar value
  Contains data stored in Series

index : array-like or Index (1d)
  Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to np.arange(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.

dtype : numpy.dtype or None
  If None, dtype will be inferred

copy : boolean, default False
Copy input data

## Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td>at</td>
<td></td>
</tr>
<tr>
<td>axes</td>
<td></td>
</tr>
<tr>
<td>base</td>
<td>return the base object if the memory of the underlying data is shared</td>
</tr>
<tr>
<td>blocks</td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td>data</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>dtype</td>
<td>return the dtype object of the underlying data</td>
</tr>
<tr>
<td>dtypes</td>
<td>return the dtype object of the underlying data</td>
</tr>
<tr>
<td>empty</td>
<td>True if NDFrame is entirely empty [no items]</td>
</tr>
<tr>
<td>flags</td>
<td></td>
</tr>
<tr>
<td>ftype</td>
<td>return if the data is sparseldense</td>
</tr>
<tr>
<td>ftypes</td>
<td>return if the data is sparseldense</td>
</tr>
<tr>
<td>iat</td>
<td></td>
</tr>
<tr>
<td>iloc</td>
<td></td>
</tr>
<tr>
<td>imag</td>
<td></td>
</tr>
<tr>
<td>is_time_series</td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td>itemsize</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>nbytes</td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td>ndim</td>
<td>return the number of dimensions of the underlying data, by definition 1</td>
</tr>
<tr>
<td>real</td>
<td></td>
</tr>
<tr>
<td>shape</td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td>size</td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td>strides</td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td>values</td>
<td>Return Series as ndarray</td>
</tr>
</tbody>
</table>

### pandas.Series.T

`Series.T`
return the transpose, which is by definition self

### pandas.Series.at

`Series.at`

### pandas.Series.axes

`Series.axes`

### pandas.Series.base

`Series.base`
return the base object if the memory of the underlying data is shared
pandas.Series.blocks

Series.blocks
Internal property, property synonym for as_blocks()

pandas.Series.data

Series.data
return the data pointer of the underlying data

pandas.Series.dtype

Series.dtype
return the dtype object of the underlying data

pandas.Series.dtypes

Series.dtypes
return the dtype object of the underlying data

pandas.Series.empty

Series.empty
True if NDFrame is entirely empty [no items]

pandas.Series.flags

Series.flags

pandas.Series.ftype

Series.ftype
return if the data is sparse|dense

pandas.Series.ftypes

Series.ftypes
return if the data is sparse|dense

pandas.Series.iat

Series.iat

pandas.Series.iloc

Series.iloc
pandas.Series.imag

Series.imag

pandas.Series.is_time_series

Series.is_time_series

pandas.Series.itemsize

Series.itemsize

return the size of the dtype of the item of the underlying data

pandas.Series.ix

Series.ix

pandas.Series.loc

Series.loc

pandas.Series.nbytes

Series.nbytes

return the number of bytes in the underlying data

pandas.Series.ndim

Series.ndim

return the number of dimensions of the underlying data, by definition 1

pandas.Series.real

Series.real

pandas.Series.shape

Series.shape

return a tuple of the shape of the underlying data

pandas.Series.size

Series.size

return the number of elements in the underlying data
pandas.Series.strides

pandas.Series.strides
return the strides of the underlying data

Series.values

Series.values
Return Series as ndarray

Returns arr : numpy.ndarray

cat

dt

is_copy

str

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td>add(other[, level, fill_value, axis])</td>
<td>Binary operator add with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names</td>
</tr>
<tr>
<td>align(other[, join, axis, level, copy, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>all([axis, out])</td>
<td>Returns True if all elements evaluate to True.</td>
</tr>
<tr>
<td>any([axis, out])</td>
<td>Returns True if any of the elements of a evaluate to True.</td>
</tr>
<tr>
<td>append(to_append[, verify_integrity])</td>
<td>Concatenate two or more Series. The indexes must not overlap</td>
</tr>
<tr>
<td>apply(func[, convert_dtype, args])</td>
<td>Invoke function on values of Series. Can be ufunc (a NumPy function</td>
</tr>
<tr>
<td>argmax([axis, out, skipna])</td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td>argmin([axis, out, skipna])</td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td>argsort([axis, kind, order])</td>
<td>Overrides ndarray.argsort.</td>
</tr>
<tr>
<td>as_blocks()</td>
<td>Convert the frame to a dict of dtype -&gt; Constructor Types that each has</td>
</tr>
<tr>
<td>as_matrix([columns])</td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td>asfreq(freq[, method, how, normalize])</td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td>asof(where)</td>
<td>Return last good (non-NaN) value in TimeSeries if value is NaN for</td>
</tr>
<tr>
<td>asof_time(time[, asof])</td>
<td>Select values at particular time of day (e.g.</td>
</tr>
<tr>
<td>autocorr()</td>
<td>Lag-1 autocorrelation</td>
</tr>
<tr>
<td>between(left, right[, inclusive])</td>
<td>Return boolean Series equivalent to left &lt;= series &lt;= right. NA values</td>
</tr>
<tr>
<td>between_time(start_time, end_time[, ...])</td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM)</td>
</tr>
<tr>
<td>bfill([axis, inplace, limit, downcast])</td>
<td>Synonym for NDFrame.fillna(method=’bfill’)</td>
</tr>
<tr>
<td>bool()</td>
<td>Return the bool of a single element PandasObject</td>
</tr>
<tr>
<td>clip([lower, upper, out])</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td>clip_lower(threshold)</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td>clip_upper(threshold)</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td>combine(other, func[, fill_value])</td>
<td>Perform elementwise binary operation on two Series using given function</td>
</tr>
<tr>
<td>combine_first(other)</td>
<td>Combine Series values, choosing the calling Series’s values</td>
</tr>
<tr>
<td>compound([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td>compress(condition[, axis, out])</td>
<td>Return selected slices of an array along given axis as a Series</td>
</tr>
<tr>
<td>consolidate([inplace])</td>
<td>Compute NDFrame with “consolidated” internals (data of each dtyle</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>convert_objects([convert_dates, ...])</code></td>
<td>Attempt to infer better dtype for object columns</td>
</tr>
<tr>
<td><code>copy([deep])</code></td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td><code>corr([other], method, min_periods)</code>)</td>
<td>Compute correlation with other Series, excluding missing values</td>
</tr>
<tr>
<td><code>count([level])</code></td>
<td>Return number of non-NA/null observations in the Series</td>
</tr>
<tr>
<td><code>cov([other], min_periods)</code>)</td>
<td>Compute covariance with Series, excluding missing values</td>
</tr>
<tr>
<td><code>cummax([axis, dtype, out, skipna])</code>)</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin([axis, dtype, out, skipna])</code>)</td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td><code>cumprod([axis, dtype, out, skipna])</code>)</td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td><code>cumsum([axis, dtype, out, skipna])</code>)</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>describe([percentile_width, percentiles, ...])</code>)</td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>diff([periods])</code>)</td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>div([other], level, fill_value, axis)</code>)</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>divide([other], level, fill_value, axis)</code>)</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>dot([other])</code>)</td>
<td>Matrix multiplication with DataFrame or inner-product with Series</td>
</tr>
<tr>
<td><code>drop(labels[, axis, level, inplace])</code>)</td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td><code>drop_duplicates([take_last, inplace])</code>)</td>
<td>Return Series with duplicate values removed</td>
</tr>
<tr>
<td><code>dropna([axis, inplace])</code>)</td>
<td>Return Series without null values</td>
</tr>
<tr>
<td><code>duplicated([take_last])</code>)</td>
<td>Return boolean Series denoting duplicate values</td>
</tr>
<tr>
<td><code>eq([other])</code>)</td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the</td>
</tr>
<tr>
<td><code>factorize([sort, na_sentinel])</code>)</td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>ffill([axis, inplace, limit, downcast])</code>)</td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td><code>fillna([value, method, axis, inplace, ...])</code>)</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter([items, like, regex, axis])</code>)</td>
<td>Restrict the info axis to set of items or wildcard</td>
</tr>
<tr>
<td><code>first([offset])</code>)</td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td><code>first_valid_index()</code>)</td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td><code>floordiv([other], level, fill_value, axis)</code>)</td>
<td>Binary operator floordiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>from_array(arr[, index, name, dtype, copy, ...])</code>)</td>
<td>Read delimited file into Series</td>
</tr>
<tr>
<td><code>from_csv(path[, sep, parse_dates, header, ...])</code>)</td>
<td>Read delimited file into Series</td>
</tr>
<tr>
<td><code>get(key[, default])</code>)</td>
<td>Get item from object for given key (DataFrame column, Panel slice,</td>
</tr>
<tr>
<td><code>get_dtypes()</code>)</td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td><code>get_ftypes()</code>)</td>
<td>Return the counts of ftypes in this object</td>
</tr>
<tr>
<td><code>get_value(label[, takeable])</code>)</td>
<td>Quickly retrieve single value at passed index label</td>
</tr>
<tr>
<td><code>get_values()</code>)</td>
<td>same as values (but handles sparseness conversions); is a view</td>
</tr>
<tr>
<td><code>groupby([by, axis, level, as_index, sort, ...])</code>)</td>
<td>Group series using mapper (dict or key function, apply given function</td>
</tr>
<tr>
<td><code>gt([other])</code>)</td>
<td>return the first element of the underlying data as a python scalar</td>
</tr>
<tr>
<td><code>hasnans()</code></td>
<td>return if I have any nans; enables various perf speedups</td>
</tr>
<tr>
<td><code>head([n])</code>)</td>
<td>Returns first n rows</td>
</tr>
<tr>
<td><code>hist([by, ax, grid, xlabels, xrot, ...])</code>)</td>
<td>Draw histogram of the input series using matplotlib</td>
</tr>
<tr>
<td><code>idmax([axis, out, skipna])</code>)</td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td><code>idmin([axis, out, skipna])</code>)</td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td><code>ikey(i, axis)</code>)</td>
<td>Return the i-th value or values in the Series by location</td>
</tr>
<tr>
<td><code>igraph([i, axis])</code>)</td>
<td>Return the i-th value or values in the Series by location</td>
</tr>
<tr>
<td><code>interpolate([method, axis, limit, inplace, ...])</code>)</td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>irow(i, axis)</code>)</td>
<td>Return the i-th value or values in the Series by location</td>
</tr>
<tr>
<td><code>isin(values)</code>)</td>
<td>Return a boolean Series showing whether each element</td>
</tr>
<tr>
<td><code>isnull()</code>)</td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td><code>item()</code>)</td>
<td>return the first element of the underlying data as a python scalar</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Lazily iterate over (index, value) tuples</td>
</tr>
</tbody>
</table>
### Table 32.21 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>iterkv</code>(*args, *<em>kwargs)</em></td>
<td>iteritems alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td>Alias for index</td>
</tr>
<tr>
<td><code>kurt</code>(axis, skipna, level)</td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>kurtosis</code>(axis, skipna, level)</td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>last</code>(offset)</td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td><code>last_valid_index()</code></td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td><code>le</code>(other)</td>
<td></td>
</tr>
<tr>
<td><code>load</code>(path)</td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>lt</code>(other)</td>
<td></td>
</tr>
<tr>
<td><code>mad</code>(axis, skipna, level)</td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>map</code>(arg[, na_action])</td>
<td>Map values of Series using input correspondence (which can be</td>
</tr>
<tr>
<td><code>max</code>(axis, skipna, level)</td>
<td>Returns copy whose values are replaced with nan if the</td>
</tr>
<tr>
<td><code>mean</code>(axis, skipna, level)</td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>median</code>(axis, skipna, level)</td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>min</code>(axis, skipna, level)</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>mod</code>(other[, level, fill_value, axis])</td>
<td>Binary operator mod with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>mode()</code></td>
<td>Returns the mode(s) of the dataset.</td>
</tr>
<tr>
<td><code>mul</code>(other[, level, fill_value, axis])</td>
<td>Binary operator mul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>multiply</code>(other[, level, fill_value, axis])</td>
<td>Binary operator mul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>ne</code>(other)</td>
<td></td>
</tr>
<tr>
<td><code>nlargest</code>(n[, take_last])</td>
<td>Return the largest n elements.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>Return the indices of the elements that are non-zero</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>nsmallest</code>(n[, take_last])</td>
<td>Return the smallest n elements.</td>
</tr>
<tr>
<td><code>nunique</code>(dropna)</td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>order</code>(na_last, ascending, kind)</td>
<td>Sorts Series object, by value, maintaining index-value link.</td>
</tr>
<tr>
<td><code>pct_change</code>(periods, fill_method, limit, freq)</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>plot</code>(data[, kind, ax, figsize, use_index, ...])</td>
<td>Make plots of Series using matplotlib / pylab.</td>
</tr>
<tr>
<td><code>pop</code>(item)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow</code>(other[, level, fill_value, axis])</td>
<td>Binary operator pow with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>prod</code>(axis, skipna, level)</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>product</code>(axis, skipna, level)</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>ptp</code>(axis, out)</td>
<td></td>
</tr>
<tr>
<td><code>put</code>(*args, **kwargs)</td>
<td>return a ndarray with the values put</td>
</tr>
<tr>
<td><code>quantile</code>(q)</td>
<td>Return value at the given quantile, a la numpy.percentile.</td>
</tr>
<tr>
<td><code>radd</code>(other[, level, fill_value, axis])</td>
<td>Binary operator radd with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>rank</code>(method, na_option, ascending, pct)</td>
<td>Compute data ranks (1 through n).</td>
</tr>
<tr>
<td><code>ravel</code>(order)</td>
<td>Return the flattened underlying data as an ndarray.</td>
</tr>
<tr>
<td><code>rdiv</code>(other[, level, fill_value, axis])</td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>reindex</code>([index])</td>
<td>Conform Series to new index with optional filling logic, placing</td>
</tr>
<tr>
<td><code>reindex_axis</code>(labels[, axis])</td>
<td>for compatibility with higher dims</td>
</tr>
<tr>
<td><code>reindex_like</code>(other[, method, copy, limit])</td>
<td>return an object with matching indicies to myself</td>
</tr>
<tr>
<td><code>rename</code>([index])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>rename_axis</code>(mapper[, axis, copy, inplace])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>reorder_levels</code>(order)</td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>repeat</code>(reps)</td>
<td>return a new Series with the values repeated reps times</td>
</tr>
<tr>
<td><code>replaced</code>(to_replace, value, inplace)</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td><code>resample</code>(rule[, how, axis, fill_method, ...])</td>
<td>Convenience method for frequency conversion and resampling of regular time-series</td>
</tr>
<tr>
<td><code>reset_index</code>([level, drop, name, inplace])</td>
<td>Analogous to the pandas.DataFrame.reset_index() function, see</td>
</tr>
</tbody>
</table>
Table 32.21 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reshape(*args, **kwargs)</code></td>
<td>Return an ndarray with the values shape</td>
</tr>
<tr>
<td><code>rfloordiv(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>rfloordiv</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>rmod(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>rmod</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>rmul(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>rmul</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>round([decimals, out])</code></td>
<td>Return a with each element rounded to the given number of decimals.</td>
</tr>
<tr>
<td><code>rpow(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>rpow</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>rsub(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>rsub</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>rtruediv(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>rtruediv</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>save(path)</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>searchsorted(v[, side, sorter])</code></td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td><code>select(crit[, axis])</code></td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>sem([axis, skipna, level, ddof])</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>set_axis(axis, labels)</code></td>
<td>Public version of <code>axis</code> assignment</td>
</tr>
<tr>
<td><code>set_value(label, value[, takeable])</code></td>
<td>Quickly set single value at passed label.</td>
</tr>
<tr>
<td><code>shift([periods, freq, axis])</code></td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td><code>skew([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>slice_shift([periods, axis])</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort([axis, ascending, kind, na_position, ...])</code></td>
<td>Sort values and index labels by value.</td>
</tr>
<tr>
<td><code>sort_index([ascending])</code></td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>sortlevel([level, ascending, sort_remaining])</code></td>
<td>Sort Series with MultiIndex by chosen level. Data will be</td>
</tr>
<tr>
<td><code>squeeze()</code></td>
<td>Squeeze length 1 dimensions</td>
</tr>
<tr>
<td><code>std([axis, skipna, level, ddof])</code></td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>sub(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>sub</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>subtract(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>sub</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>sum([axis, skipna, level, numeric_only])</code></td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td><code>swapaxes(axis1, axis2[, copy])</code></td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>swaplevel(i, j[, copy])</code></td>
<td>Swap levels i and j in a MultiIndex</td>
</tr>
<tr>
<td><code>tail([n])</code></td>
<td>Returns last n rows</td>
</tr>
<tr>
<td><code>take(indices[, axis, convert, is_copy])</code></td>
<td>Return Series corresponding to requested indices</td>
</tr>
<tr>
<td><code>to_clipboard([excel, sep])</code></td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
<tr>
<td><code>to_csv(path[, index, sep, na_rep, ...])</code></td>
<td>Write Series to a comma-separated values (csv) file</td>
</tr>
<tr>
<td><code>to_dict()</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td><code>to_dict()</code></td>
<td>Convert Series to dict</td>
</tr>
<tr>
<td><code>to_frame(name)</code></td>
<td>Convert Series to DataFrame</td>
</tr>
<tr>
<td><code>to_hdf(path_or_buf, key, **kwargs)</code></td>
<td>Activate the HDFStore</td>
</tr>
<tr>
<td><code>to_json([path_or_buf, orient, date_format, ...])</code></td>
<td>Convert the object to a JSON string</td>
</tr>
<tr>
<td><code>to_msgpack([path_or_buf])</code></td>
<td>Convert the object to a JSON string</td>
</tr>
<tr>
<td><code>to_period([freq, copy])</code></td>
<td>Convert TimSeries from DatetimeIndex to PeriodIndex with desired</td>
</tr>
<tr>
<td><code>to_pickle(path)</code></td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_sparse(kind, fill_value)</code></td>
<td>Convert Series to SparseSeries</td>
</tr>
<tr>
<td><code>to_sql(name, con[, flavor, schema, ...])</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_string([buf, na_rep, float_format, ...])</code></td>
<td>Render a string representation of the Series</td>
</tr>
<tr>
<td><code>to_timestamp([freq, how, copy])</code></td>
<td>Cast to datetimeindex of timestamps, at beginning of period</td>
</tr>
<tr>
<td><code>tolist()</code></td>
<td>Convert Series to a nested list</td>
</tr>
<tr>
<td><code>transpose()</code></td>
<td>Return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>truediv(other[, level, fill_value, axis])</code></td>
<td>Binary operator <code>truediv</code> with support to substitute a <code>fill_value</code> for missing data</td>
</tr>
<tr>
<td><code>truncates([before, after, axis, copy])</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
<tr>
<td><code>tshift([periods, freq, axis])</code></td>
<td>Shift the time index, using the index’s frequency if available</td>
</tr>
<tr>
<td><code>tz_convert(tz[, axis, level, copy])</code></td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td><code>tz_localize(*args, **kwargs)</code></td>
<td>Localize tz-naive TimeSeries to target time zone</td>
</tr>
</tbody>
</table>

Continued on
Table 32.21 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>unique()</code></td>
<td>Return array of unique values in the object.</td>
</tr>
<tr>
<td><code>unstack([level])</code></td>
<td>Unstack, a.k.a.</td>
</tr>
<tr>
<td><code>update(other)</code></td>
<td>Modify Series in place using non-NA values from passed</td>
</tr>
<tr>
<td><code>valid([inplace])</code></td>
<td></td>
</tr>
<tr>
<td><code>value_counts([normalize, sort, ascending, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>var(axis, skipna, level, ddof)</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td><code>view([dtype])</code></td>
<td></td>
</tr>
<tr>
<td><code>where(cond, other, inplace, axis, level, ...)</code></td>
<td>Return an object of same shape as self and whose corresponding</td>
</tr>
<tr>
<td><code>xs(key[, axis, level, copy, drop_level])</code></td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
</tbody>
</table>

**pandas.Series.abs**

Series.abs()

Return an object with absolute value taken. Only applicable to objects that are all numeric

**Returns**

abs: type of caller

**pandas.Series.add**

Series.add(other, level=None, fill_value=None, axis=0)

Binary operator add with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

result : Series

**pandas.Series.add_prefix**

Series.add_prefix(prefix)

Concatenate prefix string with panel items names.

**Parameters**

prefix : string

**Returns**

with_prefix : type of caller

**pandas.Series.add_suffix**

Series.add_suffix(suffix)

Concatenate suffix string with panel items names

**Parameters**

suffix : string

**Returns**

with_suffix : type of caller
**pandas.Series.align**

`Series.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)`

Align two object on their axes with the specified join method for each axis.

**Parameters**
- `other`: DataFrame or Series
- `join`: {'outer', 'inner', 'left', 'right'}, default 'outer'
- `axis`: allowed axis of the other object, default None
  - Align on index (0), columns (1), or both (None)
- `level`: int or level name, default None
  - Broadcast across a level, matching Index values on the passed MultiIndex level
- `copy`: boolean, default True
  - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
- `fill_value`: scalar, default np.NaN
  - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- `method`: str, default None
- `limit`: int, default None
- `fill_axis`: {0, 1}, default 0
  - Filling axis, method and limit

**Returns**
- `(left, right)`: (type of input, type of other)
  - Aligned objects

**pandas.Series.all**

`Series.all(axis=None, out=None)`

Returns True if all elements evaluate to True.

Refer to `numpy.all` for full documentation.

See Also:
- `numpy.all` equivalent function

**pandas.Series.any**

`Series.any(axis=None, out=None)`

Returns True if any of the elements of `a` evaluate to True.

Refer to `numpy.any` for full documentation.

See Also:
- `numpy.any` equivalent function
pandas.Series.append

```python
Series.append(to_append, verify_integrity=False)
```

Concatenate two or more Series. The indexes must not overlap

**Parameters**

- **to_append** : Series or list/tuple of Series
- **verify_integrity** : boolean, default False
  
  If True, raise Exception on creating index with duplicates

**Returns**

- **appended** : Series

pandas.Series.apply

```python
Series.apply(func, convert_dtype=True, args=(), **kwds)
```

Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values

**Parameters**

- **func** : function
  
  - **convert_dtype** : boolean, default True
    
    Try to find better dtype for elementwise function results. If False, leave as dtype=object
  - **args** : tuple
    
    Positional arguments to pass to function in addition to the value

**Additional keyword arguments will be passed as keywords to the function**

**Returns**

- **y** : Series or DataFrame if func returns a Series

See Also:

- Series.map For element-wise operations

pandas.Series.argmax

```python
Series.argmax(axis=None, out=None, skipna=True)
```

Index of first occurrence of maximum of values.

**Parameters**

- **skipna** : boolean, default True
  
  Exclude NA/null values

**Returns**

- **idxmax** : Index of maximum of values

See Also:

- DataFrame.idxmax, numpy.ndarray.argmax

Notes

This method is the Series version of ndarray.argmax.
**pandas.Series.argmin**

Series.argmin(axis=None, out=None, skipna=True)

Index of first occurrence of minimum of values.

- **Parameters**
  - skipna : boolean, default True
    - Exclude NA/null values

- **Returns**
  - idxmin : Index of minimum of values

**See Also:**

DataFrame.idxmin, numpy.ndarray.argmin

**Notes**

This method is the Series version of ndarray.argmin.

**pandas.Series.argsort**

Series.argsort(axis=0, kind='quicksort', order=None)

Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values.

- **Parameters**
  - axis : int (can only be zero)
  - kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort'
    - Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm
  - order : ignored

- **Returns**
  - argsorted : Series, with -1 indicated where nan values are present

**See Also:**

numpy.ndarray.argsort

**pandas.Series.as_blocks**

Series.as_blocks()

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

- **Parameters**
  - columns : array-like
    - Specific column order

- **Returns**
  - values : a list of Object

**NOTE**: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)
pandas.Series.as_matrix

Series.as_matrix(columns=None)
Convert the frame to its Numpy-array representation.

Parameters  
columns: list, optional, default: None
If None, return all columns, otherwise, returns specified columns.

Returns  
values: ndarray
If the caller is heterogeneous and contains booleans or objects, the result will be of
dtype=object. See Notes.

See Also:
pandas.DataFrame.values

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.
The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes
(even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you
are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8,
dtype will be upcase to int32.
This method is provided for backwards compatibility. Generally, it is recommended to use ‘.values’.

pandas.Series.asfreq

Series.asfreq(freq=None, method=None, how=None, normalize=False)
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill
method to pad/backfill missing values.

Parameters  
freq: DateOffset object, or string
method: {'backfill', 'ffill', ‘pad’, ‘bfill’, None}
how: {'start', ‘end’}, default end
normalize: bool, default False

Returns  
converted: type of caller

Notes

For PeriodIndex only, see PeriodIndex.asfreq
Whether to reset output index to midnight

pandas.Series.asof

Series.asof(where)
Return last good (non-NaN) value in TimeSeries if value is NaN for requested date.
If there is no good value, NaN is returned.
Parameters  where : date or array of dates

Returns  value or NaN

Notes

Dates are assumed to be sorted

pandas.Series.astype

Series.astype (dtype, copy=True, raise_on_error=True)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters  dtype : numpy.dtype or Python type
raised_on_error : raise on invalid input

Returns  casted : type of caller

pandas.Series.at_time

Series.at_time (time, asof=False)
Select values at particular time of day (e.g. 9:30AM)

Parameters  time : datetime.time or string

Returns  values_at_time : type of caller

pandas.Series.autocorr

Series.autocorr ()
Lag-1 autocorrelation

Returns  autocorr : float

pandas.Series.between

Series.between (left, right, inclusive=True)
Return boolean Series equivalent to left <= series <= right. NA values will be treated as False

Parameters  left : scalar
Left boundary
right : scalar
Right boundary

Returns  is_between : Series
pandas.Series.between_time

**Series.between_time** *(start_time, end_time, include_start=True, include_end=True)*
Select values between particular times of the day (e.g., 9:00-9:30 AM)

- **Parameters**
  - *start_time*: datetime.time or string
  - *end_time*: datetime.time or string
  - *include_start*: boolean, default True
  - *include_end*: boolean, default True

- **Returns**
  - *values_between_time*: type of caller

pandas.Series.bfill

**Series.bfill**(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.Series.bool

**Series.bool()**
Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False
Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

pandas.Series.clip

**Series.clip**(lower=None, upper=None, out=None)
Trim values at input threshold(s)

- **Parameters**
  - *lower*: float, default None
  - *upper*: float, default None

- **Returns**
  - *clipped*: Series

pandas.Series.clip_lower

**Series.clip_lower**(threshold)
Return copy of the input with values below given value truncated

- **Returns**
  - *clipped*: same type as input

See Also:

clip

pandas.Series.clip_upper

**Series.clip_upper**(threshold)
Return copy of input with values above given value truncated

- **Returns**
  - *clipped*: same type as input
See Also:

clip

pandas.Series.combine

Series.combine(other, func, fill_value=nan)
Perform elementwise binary operation on two Series using given function with optional fill value when an
index is missing from one Series or the other

Parameters

other : Series or scalar value

func : function

fill_value : scalar value

Returns

result : Series

pandas.Series.combine_first

Series.combine_first(other)
Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two
indexes

Parameters

other : Series

Returns

y : Series

pandas.Series.compound

Series.compound(axis=None, skipna=None, level=None, **kwargs)
Return the compound percentage of the values for the requested axis

Parameters

axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use
only numeric data

Returns

compounded : scalar or Series (if level specified)

pandas.Series.compress

Series.compress(condition, axis=0, out=None, **kwargs)
Return selected slices of an array along given axis as a Series

See Also:

numpy.ndarray.compress
**pandas.Series.consolidate**

Series.consolidate(inplace=False)

Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user.

**Parameters**

- **inplace**: boolean, default False
  
  If False return new object, otherwise modify existing object

**Returns**

- **consolidated**: type of caller

**pandas.Series.convert_objects**

Series.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)

Attempt to infer better dtype for object columns

**Parameters**

- **convert_dates**: if True, attempt to soft convert dates, if ‘coerce’, force conversion (and non-convertibles get NaT)
- **convert_numeric**: if True attempt to coerce to numbers (including strings), non-convertibles get NaN
- **convert_timedeltas**: if True, attempt to soft convert timedeltas, if ‘coerce’, force conversion (and non-convertibles get NaT)
- **copy**: Boolean, if True, return copy even if no copy is necessary
  
  (e.g. no conversion was done), default is True. It is meant for internal use, not to be confused with inplace kw.

**Returns**

- **converted**: asm as input object

**pandas.Series.copy**

Series.copy(deep=True)

Make a copy of this object

**Parameters**

- **deep**: boolean or string, default True
  
  Make a deep copy, i.e. also copy data

**Returns**

- **copy**: type of caller

**pandas.Series.corr**

Series.corr(other, method='pearson', min_periods=None)

Compute correlation with other Series, excluding missing values

**Parameters**

- **other**: Series
- **method**: {'pearson', 'kendall', 'spearman'}
  
  - pearson: standard correlation coefficient
  - kendall: Kendall Tau correlation coefficient
• spearman : Spearman rank correlation

**min_periods** : int, optional

Minimum number of observations needed to have a valid result

Returns **correlation** : float

### pandas.Series.count

**Series.count (level=**None**)**

Return number of non-NA/null observations in the Series

Parameters **level** : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series

Returns **nobs** : int or Series (if level specified)

### pandas.Series.cov

**Series.cov (other, min_periods=**None**)**

Compute covariance with Series, excluding missing values

Parameters **other** : Series

**min_periods** : int, optional

Minimum number of observations needed to have a valid result

Returns **covariance** : float

Normalized by N-1 (unbiased estimator).

### pandas.Series.cummax

**Series.cummax (axis=None, dtype=None, out=None, skipna=True, **kwargs)**

Return cumulative max over requested axis.

Parameters **axis** : {index (0)}

**skipna** : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns **max** : scalar

### pandas.Series.cummin

**Series.cummin (axis=None, dtype=None, out=None, skipna=True, **kwargs)**

Return cumulative min over requested axis.

Parameters **axis** : {index (0)}

**skipna** : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns **min** : scalar
pandas.Series.cumprod

Series.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)

Return cumulative prod over requested axis.

Parameters  axis : {index (0)}

    skipna : boolean, default True

    Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns  prod : scalar

pandas.Series.cumsum

Series.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs)

Return cumulative sum over requested axis.

Parameters  axis : {index (0)}

    skipna : boolean, default True

    Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns  sum : scalar

pandas.Series.describe

Series.describe(percentile_width=None, percentiles=None, include=None, exclude=None)

Generate various summary statistics, excluding NaN values.

Parameters  percentile_width : float, deprecated

    The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

percentiles : array-like, optional

    The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

include, exclude : list-like, ‘all’, or None (default)

    Specify the form of the returned result. Either:

        • None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.

        • A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])

        • If include is the string ‘all’, the output column-set will match the input one.

Returns  summary : NDFrame of summary statistics

See Also:

DataFrame.select_dtypes
Notes

The output DataFrame index depends on the requested dtypes:
For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.

For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.

For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.

If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

The include, exclude arguments are ignored for Series.

**pandas.Series.diff**

*pandas.Series.diff(periods=1)*

1st discrete difference of object

- **Parameters**
  - *periods*: int, default 1
    - Periods to shift for forming difference

- **Returns**
  - *diffed*: Series

**pandas.Series.div**

*pandas.Series.div(other, level=None, fill_value=None, axis=0)*

Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

- **Parameters**
  - *other*: Series or scalar value
  - *fill_value*: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - *level*: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
  - *result*: Series

**pandas.Series.divide**

*pandas.Series.divide(other, level=None, fill_value=None, axis=0)*

Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

- **Parameters**
  - *other*: Series or scalar value
  - *fill_value*: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - *level*: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  result : Series

**pandas.Series.dot**

Series.dot(other)
Matrix multiplication with DataFrame or inner-product with Series objects

Parameters  other : Series or DataFrame

Returns  dot_product : scalar or Series

**pandas.Series.drop**

Series.drop(labels, axis=0, level=None, inplace=False, **kwargs)
Return new object with labels in requested axis removed

Parameters  labels : single label or list-like

axis : int or axis name

level : int or level name, default None

For MultiIndex

inplace : bool, default False

If True, do operation inplace and return None.

Returns  dropped : type of caller

**pandas.Series.drop_duplicates**

Series.drop_duplicates(take_last=False, inplace=False)
Return Series with duplicate values removed

Parameters  take_last : boolean, default False

Take the last observed index in a group. Default first

inplace : boolean, default False

If True, performs operation inplace and returns None.

Returns  deduplicated : Series

**pandas.Series.dropna**

Series.dropna(axis=0, inplace=False, **kwargs)
Return Series without null values

Returns  valid : Series

inplace : boolean, default False

Do operation in place.
pandas.Series.duplicated

Series.duplicated(take_last=False)
Return boolean Series denoting duplicate values

Parameters
take_last : boolean, default False
Take the last observed index in a group. Default first

Returns
duplicated : Series

pandas.Series.eq

Series.eq(other)

pandas.Series.equals

Series.equals(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Series.factorize

Series.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters
sort : boolean, default False
Sort by values

na_sentinel: int, default -1
Value to mark “not found”

Returns
labels : the indexer to the original array
uniques : the unique Index

pandas.Series.ffill

Series.ffill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='ffill')

pandas.Series.fillna

Series.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)
Fill NA/NaN values using the specified method

Parameters
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

value : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

axis : {0, 1}, default 0
- 0: fill column-by-column
- 1: fill row-by-row

inplace : boolean, default False
If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None
Maximum size gap to forward or backward fill

downcast : dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : same type as caller

See Also:
reindex, asfreq

pandas.Series.filter

Series.filter(items=None, like=None, regex=None, axis=None)
Restrict the info axis to set of items or wildcard

Parameters items : list-like
List of info axis to restrict to (must not all be present)

like : string
Keep info axis where “arg in col == True”

regex : string (regular expression)
Keep info axis with re.search(regex, col) == True

axis : int or None
The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with []. For example, df = DataFrame({‘a’: [1, 2, 3, 4]}); df[‘a’]. So, the DataFrame columns are the info axis.

Notes
Arguments are mutually exclusive, but this is not checked for
**pandas.Series.first**

Series.\texttt{first}(offset)

Convenience method for subsetting initial periods of time series data based on a date offset

- **Parameters**
  - \texttt{offset}: string, DateOffset, dateutil.relativedelta

- **Returns**
  - \texttt{subset}: type of caller

**Examples**

ts.last(‘10D’) -> First 10 days

**pandas.Series.first_valid_index**

Series.\texttt{first_valid_index}()

Return label for first non-NA/null value

**pandas.Series.floordiv**

Series.\texttt{floordiv}(other, level=None, fill_value=None, axis=0)

Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs

- **Parameters**
  - \texttt{other}: Series or scalar value
  - \texttt{fill\_value}: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - \texttt{level}: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
  - \texttt{result}: Series

**pandas.Series.from_array**

\texttt{classmethod Series.from_array}(arr, index=None, name=None, dtype=None, copy=False, fast-path=False)

**pandas.Series.from_csv**

\texttt{classmethod Series.from_csv}(path, sep=',', \texttt{parse\_dates=True}, header=None, \texttt{index\_col=0}, encoding=None, \texttt{infer\_datetime\_format=False})

Read delimited file into Series

- **Parameters**
  - \texttt{path}: string file path or file handle / StringIO
  - \texttt{sep}: string, default ‘,’
    - Field delimiter
  - \texttt{parse\_dates}: boolean, default True
    - Parse dates. Different default from read_table
header : int, default 0
    Row to use at header (skip prior rows)
index_col : int or sequence, default 0
    Column to use for index. If a sequence is given, a MultiIndex is used. Different default
    from read_table
encoding : string, optional
    a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
infer_datetime_format: boolean, default False
    If True and parse_dates is True for a column, try to infer the datetime format based on
    the first datetime string. If the format can be inferred, there often will be a large parsing
    speed-up.

    Returns y : Series

pandas.Series.ge

Series.ge(other)

pandas.Series.get

Series.get(key, default=None)
    Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not
    found
    Parameters key : object
    Returns value : type of items contained in object

pandas.Series.get_dtype_counts

Series.get_dtype_counts()
    Return the counts of dtypes in this object

pandas.Series.get_ftype_counts

Series.get_ftype_counts()
    Return the counts of ftypes in this object

pandas.Series.get_value

Series.get_value(label, takeable=False)
    Quickly retrieve single value at passed index label
    Parameters index : label
    takeable : interpret the index as indexers, default False
    Returns value : scalar value
pandas.Series.get_values

Series.get_values()
same as values (but handles sparseness conversions); is a view

pandas.Series.groupby

Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns

Parameters
  by : mapping function / list of functions, dict, Series, or tuple /
list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups
  axis : int, default 0
  level : int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels
  as_index : boolean, default True
For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output
  sort : boolean, default True
Sort group keys. Get better performance by turning this off
  group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces
  squeeze : boolean, default False
reduce the dimensionality of the return type if possible, otherwise return a consistent type

Returns
  GroupBy object

Examples

# DataFrame result >>> data.groupby(func, axis=0).mean()
# DataFrame result >>> data.groupby([’col1’, ‘col2’])[’col3’].mean()
# DataFrame with hierarchical index >>> data.groupby([’col1’, ‘col2’]).mean()

pandas.Series.gt

Series.gt(other)
**pandas.Series.hasnans**

```python
Series.hasnans()
```

return if I have any nans; enables various perf speedups

**pandas.Series.head**

```python
Series.head(n=5)
```

Returns first n rows

**pandas.Series.hist**

```python
Series.hist(by=None, ax=None, grid=True, xlabels=None, xrot=None, ylabels=None, yrot=None, figsize=None, bins=10, **kwds)
```

Draw histogram of the input series using matplotlib

**Parameters**

- **by**: object, optional
  
  If passed, then used to form histograms for separate groups

- **ax**: matplotlib axis object
  
  If not passed, uses gca()

- **grid**: boolean, default True
  
  Whether to show axis grid lines

- **xlabels**: int, default None
  
  If specified changes the x-axis label size

- **xrot**: float, default None
  
  rotation of x axis labels

- **ylabels**: int, default None
  
  If specified changes the y-axis label size

- **yrot**: float, default None
  
  rotation of y axis labels

- **figsize**: tuple, default None
  
  figure size in inches by default

- **bins**: integer, default 10
  
  Number of histogram bins to be used

- **kwds**: keywords
  
  To be passed to the actual plotting function

**Notes**

See matplotlib documentation online for more on this
**pandas.Series.idxmax**

Series. **idxmax** (axis=None, out=None, skipna=True)
Index of first occurrence of maximum of values.

**Parameters**
- **skipna**: boolean, default True  
  Exclude NA/null values

**Returns**
- **idxmax**: Index of maximum of values

**See Also:**
- DataFrame.idxmax, numpy.ndarray.argmax

**Notes**
This method is the Series version of numpy.ndarray.argmax.

**pandas.Series.idxmin**

Series. **idxmin** (axis=None, out=None, skipna=True)
Index of first occurrence of minimum of values.

**Parameters**
- **skipna**: boolean, default True  
  Exclude NA/null values

**Returns**
- **idxmin**: Index of minimum of values

**See Also:**
- DataFrame.idxmin, numpy.ndarray.argmin

**Notes**
This method is the Series version of numpy.ndarray.argmin.

**pandas.Series.iget**

Series. **iget** (i, axis=0)
Return the i-th value or values in the Series by location

**Parameters**
- **i**: int, slice, or sequence of integers

**Returns**
- **value**: scalar (int) or Series (slice, sequence)

**pandas.Series.iget_value**

Series. **iget_value** (i, axis=0)
Return the i-th value or values in the Series by location

**Parameters**
- **i**: int, slice, or sequence of integers

**Returns**
- **value**: scalar (int) or Series (slice, sequence)
**pandas.Series.interpolate**

`Series.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)`

Interpolate values according to different methods.

**Parameters**

- **method** : {'linear', 'time', 'index', 'values', 'nearest', 'zero',
  'slinear', 'quadratic', 'cubic', 'bkrogh', 'polynomial', 'spline', 'piecewise_polynomial', 'pchip'}

- 'linear': ignore the index and treat the values as equally spaced. default  
- 'time': interpolation works on daily and higher resolution data to interpolate given length of interval  
- 'index', 'values': use the actual numerical values of the index  
- 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'bkrogh', ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both 'polynomial' and 'spline' require that you also specify and order (int) e.g. df.interpolate(method='polynomial', order=4)  
- 'bkrogh', 'piecewise_polynomial', 'spline', and 'pchip' are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior:  

- **axis** : {0, 1}, default 0  
  - 0: fill column-by-column  
  - 1: fill row-by-row

- **limit** : int, default None.  
  Maximum number of consecutive NaNs to fill.

- **inplace** : bool, default False  
  Update the NDFrame in place if possible.

- **downcast** : optional, ‘infer’ or None, defaults to None  
  Downcast dtypes if possible.

**Returns**  
Series or DataFrame of same shape interpolated at the NaNs

**See Also:**
reindex, replace, fillna

**Examples**

# Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 2 2 3 3 dtype: float64
pandas.Series.irow

`Series.irow(i, axis=0)`
Return the i-th value or values in the Series by location

**Parameters**
- **i**: int, slice, or sequence of integers
- **axis**: `0`

**Returns**
- **value**: scalar (int) or Series (slice, sequence)

pandas.Series.isin

`Series.isin(values)`
Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.

**Parameters**
- **values**: list-like
  - The sequence of values to test. Passing in a single string will raise a `TypeError`. Instead, turn a single string into a list of one element.

**Returns**
- **isin**: Series (bool dtype)

**Raises**
- **TypeError**
  - If `values` is a string

**See Also**:
- `pandas.DataFrame.isin`

**Examples**

```python
>>> s = pd.Series(list('abc'))
>>> s.isin(['a', 'c', 'e'])
0 True
1 False
2 True
dtype: bool
```

Passing a single string as `s.isin('a')` will raise an error. Use a list of one element instead:

```python
>>> s.isin(['a'])
0 True
1 False
2 False
dtype: bool
```

pandas.Series.isnull

`Series.isnull()`
Return a boolean same-sized object indicating if the values are null

**See Also**:
- `notnull` boolean inverse of isnull
pandas.Series.item

Series.item()
    return the first element of the underlying data as a python scalar

pandas.Series.iteritems

Series.iteritems()
    Lazily iterate over (index, value) tuples

pandas.Series.iterkv

Series.iterkv(*args, **kwargs)
    iteritems alias used to get around 2to3. Deprecated

pandas.Series.keys

Series.keys()
    Alias for index

pandas.Series.kurt

Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
    Return unbiased kurtosis over requested axis Normalized by N-1

    Parameters
    axis : {index (0)}
    skipna : boolean, default True
        Exclude NA/null values. If an entire row/column is NA, the result will be NA
    level : int or level name, default None
        If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
        a scalar
    numeric_only : boolean, default None
        Include only float, int, boolean data. If None, will attempt to use everything, then use
        only numeric data

    Returns
    kurt : scalar or Series (if level specified)

pandas.Series.kurtosis

Series.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
    Return unbiased kurtosis over requested axis Normalized by N-1

    Parameters
    axis : {index (0)}
    skipna : boolean, default True
        Exclude NA/null values. If an entire row/column is NA, the result will be NA
    level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only** : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
**kurt** : scalar or Series (if level specified)

**pandas.Series.last**

*Series*.last(offset)

Convenience method for subsetting final periods of time series data based on a date offset

**Parameters**  
**offset** : string, DateOffset, dateutil.relativedelta

**Returns**  
**subset** : type of caller

**Examples**

ts.last('5M') -> Last 5 months

**pandas.Series.last_valid_index**

*Series*.last_valid_index()

Return label for last non-NA/null value

**pandas.Series.le**

*Series*.le(other)

**pandas.Series.load**

*Series*.load(path)

Deprecated. Use read_pickle instead.

**pandas.Series.lt**

*Series*.lt(other)

**pandas.Series.mad**

*Series*.mad(axis=None, skipna=None, level=None, **kwargs)

Return the mean absolute deviation of the values for the requested axis

**Parameters**  
**axis** : {index (0)}

**skipna** : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use
only numeric data

Returns  mad : scalar or Series (if level specified)

pandas.Series.map

Series.map (arg, na_action=None)
Map values of Series using input correspondence (which can be a dict, Series, or function)

Parameters  arg : function, dict, or Series
na_action : {None, ‘ignore’}
If ‘ignore’, propagate NA values

Returns  y : Series
same index as caller

Examples

>>> x
one  1
two  2
three 3

>>> y
1   foo
2   bar
3   baz

>>> x.map(y)
one   foo
two   bar
three  baz

pandas.Series.mask

Series.mask (cond)
Returns copy whose values are replaced with nan if the inverted condition is True

Parameters  cond : boolean NDFrame or array

Returns  wh: same as input
**pandas.Series.max**

`Series.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the maximum of the values in the object. If you want the index of the maximum, use `idxmax`. This is the equivalent of the `numpy.ndarray` method `argmax`.

**Parameters**

- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

- **max**: scalar or Series (if level specified)

**pandas.Series.mean**

`Series.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the mean of the values for the requested axis

**Parameters**

- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

- **mean**: scalar or Series (if level specified)

**pandas.Series.median**

`Series.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the median of the values for the requested axis

**Parameters**

- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**Returns**

- **median**: scalar or Series (if level specified)
**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
**median**: scalar or Series (if level specified)

### pandas.Series.min

**Series.min**(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use `idxmin`. This is the equivalent of the numpy.ndarray method `argmin`.

**Parameters**  
**axis**: {index (0)}

**skipna**: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
**min**: scalar or Series (if level specified)

### pandas.Series.mod

**Series.mod**(other, level=None, fill_value=None, axis=0)

Binary operator mod with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
**other**: Series or scalar value

**fill_value**: None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

**level**: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
**result**: Series

### pandas.Series.mode

**Series.mode**()

Returns the mode(s) of the dataset.

Empty if nothing occurs at least 2 times. Always returns Series even if only one value.

**Parameters**  
**sort**: bool, default True

If True, will lexicographically sort values, if False skips sorting. Result ordering when `sort=False` is not defined.
pandas.Series.mul

Series.mul(other, level=None, fill_value=None, axis=0)
Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

Parameters

other: Series or scalar value

fill_value: None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result: Series

pandas.Series.multiply

Series.multiply(other, level=None, fill_value=None, axis=0)
Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

Parameters

other: Series or scalar value

fill_value: None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result: Series

pandas.Series.ne

Series.ne(other)

pandas.Series.nlargest

Series.nlargest(n=5, take_last=False)
Return the largest n elements.

Parameters

n: int
Return this many descending sorted values

take_last: bool
Where there are duplicate values, take the last duplicate

Returns

top_n: Series
The n largest values in the Series, in sorted order
See Also:
Series.nsmallest

Notes

Faster than `.order(ascending=False).head(n)` for small `n` relative to the size of the Series object.

Examples

```python
>>> import pandas as pd
>>> import numpy as np

>>> s = pd.Series(np.random.randn(1e6))
>>> s.nlargest(10) # only sorts up to the N requested
```

pandas.Series.nonzero

Series.nonzero()

Return the indices of the elements that are non-zero

This method is equivalent to calling `numpy.nonzero` on the series data. For compatibility with NumPy, the return value is the same (a tuple with an array of indices for each dimension), but it will always be a one-item tuple because series only have one dimension.

See Also:
numpy.nonzero

Examples

```python
>>> s = pd.Series([0, 3, 0, 4])
>>> s.nonzero()
(array([1, 3]),)

>>> s.iloc[s.nonzero()[0]]
1 3
3 4
dtype: int64
```

pandas.Series.notnull

Series.notnull()

Return a boolean same-sized object indicating if the values are not null

See Also:

isnull boolean inverse of notnull
pandas.Series.nsmallest

Series.nsmallest(n=5, take_last=False)
Return the smallest n elements.

Parameters
n : int
    Return this many ascending sorted values

take_last : bool
    Where there are duplicate values, take the last duplicate

Returns
bottom_n : Series
    The n smallest values in the Series, in sorted order

See Also:
Series.nlargest

Notes

Faster than .order().head(n) for small n relative to the size of the Series object.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(1e6))
>>> s.nsmallest(10)  # only sorts up to the N requested

pandas.Series.nunique

Series.nunique(dropna=True)
Return number of unique elements in the object.
Excludes NA values by default.

Parameters
dropna : boolean, default True
    Don’t include NaN in the count.

Returns
unique : int

pandas.Series.order

Series.order(na_last=None, ascending=True, kind='quicksort', na_position='last', inplace=False)
Sorts Series object, by value, maintaining index-value link. This will return a new Series by default. Series.sort is the equivalent but as an inplace method.

Parameters
na_last : boolean (optional, default=True) (DEPRECATED; use na_position)
    Put NaN’s at beginning or end

ascending : boolean, default True
Sort ascending. Passing False sorts descending

**kind** : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort'

Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm

**na_position** : {'first', 'last'} (optional, default='last')

‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

**inplace** : boolean, default False

Do operation in place.

**Returns**

*y* : Series

See Also:

*Series.sort*

---

**pandas.Series.pct_change**

Series.pct_change(*periods=1, fill_method='pad', limit=None, freq=None, **kwds*)

Percent change over given number of periods.

**Parameters**

**periods** : int, default 1

Periods to shift for forming percent change

**fill_method** : str, default ‘pad’

How to handle NAs before computing percent changes

**limit** : int, default None

The number of consecutive NAs to fill before stopping

**freq** : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

**Returns**

*chg* : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

---

**pandas.Series.plot**

Series.plot(*data, kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds*)

Make plots of Series using matplotlib / pylab.

**Parameters**

**data** : Series

**kind** : str

• ‘line’ : line plot (default)
• 'bar' : vertical bar plot
• 'barh' : horizontal bar plot
• 'hist' : histogram
• 'box' : boxplot
• 'kde' : Kernel Density Estimation plot
• 'density' : same as 'kde'
• 'area' : area plot
• 'pie' : pie plot

ax : matplotlib axes object
    If not passed, uses gca()

figsize : a tuple (width, height) in inches

use_index : boolean, default True
    Use index as ticks for x axis

title : string
    Title to use for the plot

grid : boolean, default None (matlab style default)
    Axis grid lines

legend : False/True/'reverse'
    Place legend on axis subplots

style : list or dict
    matplotlib line style per column

logx : boolean, default False
    Use log scaling on x axis

logy : boolean, default False
    Use log scaling on y axis

loglog : boolean, default False
    Use log scaling on both x and y axes

xticks : sequence
    Values to use for the xticks

yticks : sequence
    Values to use for the yticks

xlim : 2-tuple/list

ylim : 2-tuple/list

rot : int, default None
    Rotation for ticks

fontsize : int, default None
Font size for ticks

colormap : str or matplotlib colormap object, default None
    Colormap to select colors from. If string, load colormap with that name from matplotlib.
colorbar : boolean, optional
    If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)
position : float
    Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
layout : tuple (optional)
    (rows, columns) for the layout of the plot
table : boolean, Series or DataFrame, default False
    If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.
yerr : DataFrame, Series, array-like, dict and str
    See *Plotting with Error Bars* for detail.
xerr : same types as yerr.
label : label argument to provide to plot
secondary_y : boolean or sequence of ints, default False
    If True then y-axis will be on the right
mark_right : boolean, default True
    When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend
kwds : keywords
    Options to pass to matplotlib plotting method

Returns  axes : matplotlib.AxesSubplot or np.array of them

Notes

•See matplotlib documentation online for more on this subject
•If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

pandas.Series.pop

Series.pop(item)
    Return item and drop from frame. Raise KeyError if not found.
**pandas.Series.pow**

Series\_.pow\( (\text{other, level=None, fill_value=None, axis=0}) \)

Binary operator `pow` with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
  - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
- **level**: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**
- **result**: Series

**pandas.Series.prod**

Series\_.prod\( (\text{axis=None, skipna=None, level=None, numeric_only=None, **kwargs}) \)

Return the product of the values for the requested axis

**Parameters**
- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **prod**: scalar or Series (if level specified)

**pandas.Series.product**

Series\_.product\( (\text{axis=None, skipna=None, level=None, numeric_only=None, **kwargs}) \)

Return the product of the values for the requested axis

**Parameters**
- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **prod**: scalar or Series (if level specified)
pandas.Series.ptp

Series.ptp(axis=None, out=None)

pandas.Series.put

Series.put(*args, **kwargs)
return a ndarray with the values put

See Also:
numpy.ndarray.put

pandas.Series.quantile

Series.quantile(q=0.5)
Return value at the given quantile, a la numpy.percentile.

Parameters  q : float or array-like, default 0.5 (50% quantile)
0 <= q <= 1, the quantile(s) to compute

Returns  quantile : float or Series
if q is an array, a Series will be returned where the index is q and the values are the quantiles.

Examples

```python
>>> s = Series([1, 2, 3, 4])
>>> s.quantile(.5)
2.5
>>> s.quantile([.25, .5, .75])
0.25 1.75
0.50 2.50
0.75 3.25
dtype: float64
```

pandas.Series.radd

Series.radd(other, level=None, fill_value=None, axis=0)
Binary operator radd with support to substitute a fill_value for missing data in one of the inputs

Parameters  other: Series or scalar value
fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  result : Series
pandas.Series.rank

Series.rank(method='average', na_option='keep', ascending=True, pct=False)
Compute data ranks (1 through n). Equal values are assigned a rank that is the average of the ranks of those values

**Parameters**

- **method** : {'average', 'min', 'max', 'first', 'dense'}
  - average: average rank of group
  - min: lowest rank in group
  - max: highest rank in group
  - first: ranks assigned in order they appear in the array
  - dense: like ‘min’, but rank always increases by 1 between groups
- **na_option** : {'keep'}
  - keep: leave NA values where they are
- **ascending** : boolean, default True
  - False for ranks by high (1) to low (N)
- **pct** : boolean, default False
  - Computes percentage rank of data

**Returns**

- **ranks** : Series

pandas.Series.ravel

Series.ravel(order='C')
Return the flattened underlying data as an ndarray

**See Also:**

numpy.ndarray.ravel

pandas.Series.rdiv

Series.rdiv(other, level=None, fill_value=None, axis=0)
Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**

- **other** : Series or scalar value
  - fill_value : None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - level : int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

- **result** : Series
**pandas.Series.reindex**

Series.reindex(index=None, **kwargs)

Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

**Parameters**

- **index**: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
  Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **copy**: boolean, default True
  Return a new object, even if the passed indexes are the same
- **level**: int or name
  Broadcast across a level, matching Index values on the passed MultiIndex level
- **fill_value**: scalar, default np.NaN
  Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- **limit**: int, default None
  Maximum size gap to forward or backward fill

**Returns**

reindexed : Series

**Examples**

```python
>>> df.reindex(index=[date1, date2, date3], columns=[‘A’, ‘B’, ‘C’])
```

**pandas.Series.reindex_axis**

Series.reindex_axis(labels, axis=0, **kwargs)

for compatibility with higher dims

**pandas.Series.reindex_like**

Series.reindex_like(other, method=None, copy=True, limit=None)

return an object with matching indicies to myself

**Parameters**

- **other**: Object
- **method**: string or None
- **copy**: boolean, default True
- **limit**: int, default None
  Maximum size gap to forward or backward fill

**Returns**

reindexed : same as input
Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

**pandas.Series.rename**

Series.rename(index=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters**

- **index**: dict-like or function, optional
  Transformation to apply to that axis values

- **copy**: boolean, default True
  Also copy underlying data

- **inplace**: boolean, default False
  Whether to return a new Series. If True then value of copy is ignored.

**Returns**

renamed: Series (new object)

**pandas.Series.rename_axis**

Series.rename_axis(mapper, axis=0, copy=True, inplace=False)
Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters**

- **mapper**: dict-like or function, optional

- **axis**: int or string, default 0

- **copy**: boolean, default True
  Also copy underlying data

- **inplace**: boolean, default False

**Returns**

renamed: type of caller

**pandas.Series.reorder_levels**

Series.reorder_levels(order)
Rearrange index levels using input order. May not drop or duplicate levels

**Parameters**

- **order**: list of int representing new level order.
  (reference level by number or key)

- **axis**: where to reorder levels

**Returns**

type of caller (new object)
pandas.Series.repeat

Series.repeat(reps)
return a new Series with the values repeated reps times

See Also:
numpy.ndarray.repeat

pandas.Series.replace

Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
Replace values given in 'to_replace' with 'value'.

Parameters to_replace : str, regex, list, dict, Series, numeric, or None

- str or regex:
  - str: string exactly matching to_replace will be replaced with value
  - regex: regexes matching to_replace will be replaced with value
- list of str, regex, or numeric:
  - First, if to_replace and value are both lists, they must be the same length.
  - Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
  - str and regex rules apply as above.
- dict:
  - Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column 'a' for the value 'b' and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
  - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
- None:
  - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.
limit : int, default None
   Maximum size gap to forward or backward fill
regex : bool or same types as to_replace, default False
   Whether to interpret to_replace and/or value as regular expressions. If this is True
   then to_replace must be a string. Otherwise, to_replace must be None because this
   parameter will be interpreted as a regular expression or a list, dict, or array of regular
   expressions.
method : string, optional, {'pad', 'ffill', 'bfill'}
   The method to use when for replacement, when to_replace is a list.
Returns  filled : NDFrame
Raises   AssertionError
   • If regex is not a bool and to_replace is not None.
   TypeError
   • If to_replace is a dict and value is not a list, dict, ndarray, or Series
   • If to_replace is None and regex is not compilable into a regular expression or is a list,
     dict, ndarray, or Series.
   ValueError
   • If to_replace and value are lists or ndarrays, but they are not the same length.
See Also:
NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

• Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub
  are the same.
• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a
  regular expression matching floating point numbers and expect the columns in your frame that have
  a numeric dtype to be matched. However, if those floating point numbers are strings, then you can
  do this.
• This method has a lot of options. You are encouraged to experiment and play with this method to
  gain intuition about how it works.

pandas.Series.resample

Series.resample (rule, how=None, axis=0, fill_method=None, closed=None, label=None, convent-
ion='start', kind=None, loffset=None, limit=None, base=0)
Convenience method for frequency conversion and resampling of regular time-series data.
Parameters  rule : string
   the offset string or object representing target conversion
   how : string
   method for down- or re-sampling, default to ‘mean’ for downsampling
axis : int, optional, default 0
fill_method : string, default None
  fill_method for upsampling
closed : {‘right’, ‘left’}
  Which side of bin interval is closed
label : {‘right’, ‘left’}
  Which bin edge label to label bucket with
convention : {‘start’, ‘end’, ‘s’, ‘e’}
kind : “period”/”timestamp”
loffset : timedelta
  Adjust the resampled time labels
limit : int, default None
  Maximum size gap to when reindexing with fill_method
base : int, default 0
  For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.Series.reset_index

Series.reset_index(level=None, drop=False, name=None, inplace=False)
  Analogous to the pandas.DataFrame.reset_index() function, see docstring there.
  Parameters level : int, str, tuple, or list, default None
    Only remove the given levels from the index. Removes all levels by default
drop : boolean, default False
  Do not try to insert index into dataframe columns
name : object, default None
  The name of the column corresponding to the Series values
inplace : boolean, default False
  Modify the Series in place (do not create a new object)
  Returns resetted : DataFrame, or Series if drop == True

pandas.Series.reshape

Series.reshape(*args, **kwargs)
  return an ndarray with the values shape if the specified shape matches exactly the current shape, then return self (for compat)
  See Also:
  numpy.ndarray.take
pandas.Series.rfloordiv

Series.rfloordiv(other, level=None, fill_value=None, axis=0)
Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters  
other: Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  
result : Series

pandas.Series.rmod

Series.rmod(other, level=None, fill_value=None, axis=0)
Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs

Parameters  
other: Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  
result : Series

pandas.Series.rmul

Series.rmul(other, level=None, fill_value=None, axis=0)
Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs

Parameters  
other: Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  
result : Series

pandas.Series.round

Series.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.
Refer to numpy.around for full documentation.
See Also:

`numpy.around` equivalent function

**pandas.Series.rpow**

`Series.rpow` *(other, level=None, fill_value=None, axis=0)*

Binary operator `rpow` with support to substitute a `fill_value` for missing data in one of the inputs

**Parameters**

`other` : Series or scalar value

`fill_value` : None or float scalar value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

`level` : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

`result` : Series

**pandas.Series.rsub**

`Series.rsub` *(other, level=None, fill_value=None, axis=0)*

Binary operator `rsub` with support to substitute a `fill_value` for missing data in one of the inputs

**Parameters**

`other` : Series or scalar value

`fill_value` : None or float scalar value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

`level` : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

`result` : Series

**pandas.Series.rtruediv**

`Series.rtruediv` *(other, level=None, fill_value=None, axis=0)*

Binary operator `rtruediv` with support to substitute a `fill_value` for missing data in one of the inputs

**Parameters**

`other` : Series or scalar value

`fill_value` : None or float scalar value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

`level` : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

`result` : Series
pandas.Series.save

Series.save(path)
   Deprecated. Use to_pickle instead

pandas.Series.searchsorted

Series.searchsorted(v, side='left', sorter=None)
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted Series self such that, if the corresponding elements in v were inserted before the indices, the order of self would be preserved.

Parameters  
   v : array_like
      Values to insert into a.
   side : {'left', 'right'}, optional
      If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of v).
   sorter : 1-D array_like, optional
      Optional array of integer indices that sort self into ascending order. They are typically the result of np.argsort.

Returns  
   indices : array of ints
      Array of insertion points with the same shape as v.

See Also:
Series.sort, Series.order, numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

Examples

>>> x = pd.Series([1, 2, 3])
>>> x
0 1  
1 2  
2 3  
dtype: int64
>>> x.searchsorted(4)
array([3])
>>> x.searchsorted([0, 4])
array([0, 3])
>>> x.searchsorted([1, 3], side='left')
array([0, 2])
>>> x.searchsorted([1, 3], side='right')
array([1, 3])
>>> x.searchsorted([1, 2], side='right', sorter=[0, 2, 1])
array([1, 3])

**pandas.Series.select**

Series.select (crit, axis=0)

Return data corresponding to axis labels matching criteria

Parameters
- **crit**: function
  - To be called on each index (label). Should return True or False
- **axis**: int

Returns
- **selection**: type of caller

**pandas.Series.sem**

Series.sem (axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- **sem**: scalar or Series (if level specified)

**pandas.Series.set_axis**

Series.set_axis (axis, labels)

public version of axis assignment

**pandas.Series.set_value**

Series.set_value (label, value, takeable=False)

Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index

Parameters
- **label**: object
  - Partial indexing with MultiIndex not allowed
- **value**: object
Scalar value

**takeable** : interpret the index as indexers, default False

**Returns**  **series** : Series

If label is contained, will be reference to calling Series, otherwise a new object

**pandas.Series.shift**

```python
Series.shift (periods=1, freq=None, axis=0, **kwds)
```
Shift index by desired number of periods with an optional time freq

**Parameters**  **periods** : int

Number of periods to move, can be positive or negative

**freq** : DateOffset, timedelta, or time rule string, optional

Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes.

**Returns**  **shifted** : same type as caller

**Notes**

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

**pandas.Series.skew**

```python
Series.skew (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```
Return unbiased skew over requested axis Normalized by N-1

**Parameters**  **axis** : {index (0)}

**skipna** : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level** : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only** : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  **skew** : scalar or Series (if level specified)

**pandas.Series.slice_shift**

```python
Series.slice_shift (periods=1, axis=0, **kwds)
```
Equivalent to *shift* without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

**Parameters**  **periods** : int
Number of periods to move, can be positive or negative

**Returns** shifted : same type as caller

**Notes**

While the `slice_shift` is faster than `shift`, you may pay for it later during alignment.

**pandas.Series.sort**

```python
Series.sort (axis=0, ascending=True, kind='quicksort', na_position='last', inplace=True)
```

Sort values and index labels by value. This is an inplace sort by default. Series.order is the equivalent but returns a new Series.

**Parameters**

- **axis** : int (can only be zero)
- **ascending** : boolean, default True
  - Sort ascending. Passing False sorts descending
- **kind** : {'mergesort', 'quicksort', 'heapsort'}, default ‘quicksort’
  - Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm
- **na_position** : {'first', 'last'} (optional, default='last')
  - ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end
- **inplace** : boolean, default True
  - Do operation in place.

**See Also:**

Series.order

**pandas.Series.sort_index**

```python
Series.sort_index (ascending=True)
```

Sort object by labels (along an axis)

**Parameters**

- **ascending** : boolean or list, default True
  - Sort ascending vs. descending. Specify list for multiple sort orders

**Returns** sorted_obj : Series

**Examples**

```python
>>> result1 = s.sort_index(ascending=False)
>>> result2 = s.sort_index(ascending=[1, 0])
```
pandas.Series.sortlevel

Series.sortlevel(level=0, ascending=True, sort_remaining=True)
Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

Parameters  
level : int or level name, default None
ascending : bool, default True

Returns  
sorted : Series

pandas.Series.squeeze

Series.squeeze()
squeeze length 1 dimensions

pandas.Series.std

Series.std(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters  
axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns  
std : scalar or Series (if level specified)

pandas.Series.sub

Series.sub(other, level=None, fill_value=None, axis=0)
Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters  
other : Series or scalar value
fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  
result : Series
**pandas.Series.subtract**

`Series.subtract(other, level=None, fill_value=None, axis=0)`  
Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
- `other`: Series or scalar value  
- `fill_value`: None or float value, default None (NaN)  
  Fill missing (NaN) values with this value. If both Series are missing, the result will be missing  
- `level`: int or name  
  Broadcast across a level, matching Index values on the passed MultiIndex level  

**Returns**  
- `result`: Series

**pandas.Series.sum**

`Series.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`  
Return the sum of the values for the requested axis

**Parameters**  
- `axis`: {index (0)}  
- `skipna`: boolean, default True  
  Exclude NA/null values. If an entire row/column is NA, the result will be NA  
- `level`: int or level name, default None  
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar  
- `numeric_only`: boolean, default None  
  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
- `sum`: scalar or Series (if level specified)

**pandas.Series.swapaxes**

`Series.swapaxes(axis1, axis2, copy=True)`  
Interchange axes and swap values axes appropriately

**Returns**  
- `y`: same as input

**pandas.Series.swaplevel**

`Series.swaplevel(i, j, copy=True)`  
Swap levels i and j in a MultiIndex

**Parameters**  
- `i, j`: int, string (can be mixed)  
  Level of index to be swapped. Can pass level name as string.

**Returns**  
- `swapped`: Series
pandas.Series.tail

Series.tail(n=5)
Returns last n rows

pandas.Series.take

Series.take(indices, axis=0, convert=True, is_copy=False)
return Series corresponding to requested indices

Parameters indices: list / array of ints
convert: translate negative to positive indices (default)

Returns taken: Series

See Also:
numpy.ndarray.take

pandas.Series.to_clipboard

Series.to_clipboard(excel=None, sep=None, **kwargs)
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters excel: boolean, defaults to True
if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard
sep: optional, defaults to tab
other keywords are passed to to_csv

Notes

Requirements for your platform

• Linux: xclip, or xsel (with gtk or PyQt4 modules)
• Windows: none
• OS X: none

pandas.Series.to_csv

Series.to_csv(path, index=True, sep=',', na_rep='', float_format=None, header=False, index_label=None, mode='w', nanRep=None, encoding=None, date_format=None)
Write Series to a comma-separated values (csv) file

Parameters path: string file path or file handle / StringIO. If None is provided
the result is returned as a string.
na_rep: string, default ‘’
Missing data representation
**float_format** : string, default None
Format string for floating point numbers

**header** : boolean, default False
Write out series name

**index** : boolean, default True
Write row names (index)

**index_label** : string or sequence, default None
Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if the
DataFrame uses MultiIndex.

**mode** : Python write mode, default ‘w’

**sep** : character, default ‘,’
Field delimiter for the output file.

**encoding** : string, optional
A string representing the encoding to use if the contents are non-ascii, for python
versions prior to 3

**date_format** : string, default None
Format string for datetime objects.

```python
pandas.Series.to_dense
```

**Series.to_dense()**
Return dense representation of NDFrame (as opposed to sparse)

```python
pandas.Series.to_dict
```

**Series.to_dict()**
Convert Series to {label -> value} dict

Returns **value_dict** : dict

```python
pandas.Series.to_frame
```

**Series.to_frame (name=None)**
Convert Series to DataFrame

Parameters **name** : object, default None
The passed name should substitute for the series name (if it has one).

Returns **data_frame** : DataFrame
pandas.Series.to_hdf

Series.to_hdf(path_or_buf, key, **kwargs)
activate the HDFStore

Parameters  path_or_buf : the path (string) or buffer to put the store
  
  key : string
  identifier for the group in the store

  mode : optional, {'a', 'w', 'r', 'r+'}, default 'a'
  'r'  Read-only; no data can be modified.
  'w'  Write; a new file is created (an existing file with the same name would be deleted).
  'a'  Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
  'r+'  It is similar to 'a', but the file must already exist.

  format : {'fixed(f)|table(t)'}, default is 'fixed'
  fixed(f)  [Fixed format] Fast writing/reading. Not-appendable, nor searchable
  table(t)  [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

  append : boolean, default False
  For Table formats, append the input data to the existing

  complevel : int, 1-9, default 0
  If a complib is specified compression will be applied where possible

  complib : {'zlib', 'bzzip2', 'lzo', 'blosc', None}, default None
  If complevel is > 0 apply compression to objects written in the store wherever possible

  fletcher32 : bool, default False
  If applying compression use the fletcher32 checksum

pandas.Series.to_json

Series.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)
Convert the object to a JSON string.

Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters  path_or_buf : the path or buffer to write the result string
  if this is None, return a StringIO of the converted string

  orient : string
  • Series
- default is ‘index’
- allowed values are: {'split', 'records', 'index'}

- DataFrame
- default is ‘columns’
- allowed values are: {'split', 'records', 'index', 'columns', 'values'}

- The format of the JSON string
- split : dict like {index -> [index], columns -> [columns], data -> [values]}
- records : list like [{column -> value}, ... , {column -> value}]
- index : dict like {index -> {column -> value}}
- columns : dict like {column -> {index -> value}}
- values : just the values array

**date_format** : {'epoch', 'iso'}
Type of date conversion. epoch = epoch milliseconds, iso = ISO8601, default is epoch.

**double_precision** : The number of decimal places to use when encoding floating point values, default 10.

**force_ascii** : force encoded string to be ASCII, default True.

**date_unit** : string, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

**default_handler** : callable, default None
Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

**Returns** same type as input object with filtered info axis

**pandas.Series.to_msgpack**

Series.to_msgpack(path_or_buf=None, **kwargs)
msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

**Parameters**

- **path** : string File path, buffer-like, or None
  if None, return generated string

- **append** : boolean whether to append to an existing msgpack
  (default is False)

- **compress** : type of compressor (zlib or blosc), default to None (no compression)
**pandas.Series.to_period**

Series.to_period(freq=None, copy=True)

Convert TimeSeries from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)

Parameters
freq : string, default

Returns
  ts : TimeSeries with PeriodIndex

**pandas.Series.to_pickle**

Series.to_pickle(path)

Pickle (serialize) object to input file path

Parameters
  path : string

File path

**pandas.Series.to_sparse**

Series.to_sparse(kind='block', fill_value=None)

Convert Series to SparseSeries

Parameters
  kind : {‘block’, ‘integer’}
  fill_value : float, defaults to NaN (missing)

Returns
  sp : SparseSeries

**pandas.Series.to_sql**

Series.to_sql(name, con, flavor='sqlite', schema=None, if_exists='fail', index=True, index_label=None, chunksize=None)

Write records stored in a DataFrame to a SQL database.

Parameters
name : string
  Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
  Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’
  The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

schema : string, default None
  Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’
  • fail: If table exists, do nothing.
  • replace: If table exists, drop it, recreate it, and insert data.
• append: If table exists, insert data. Create if does not exist.

index : boolean, default True
  Write DataFrame index as a column.

index_label : string or sequence, default None
  Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None
  If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

pandas.Series.to_string

Series.to_string (buf=None, na_rep='NaN', float_format=None, length=False, dtype=False, name=False)
Render a string representation of the Series

Parameters
buf : StringIO-like, optional
  buffer to write to
na_rep : string, optional
  string representation of NAN to use, default ‘NaN’
float_format : one-parameter function, optional
  formatter function to apply to columns’ elements if they are floats default None
length : boolean, default False
  Add the Series length
dtype : boolean, default False
  Add the Series dtype
name : boolean, default False
  Add the Series name (which may be None)

Returns
formatted : string (if not buffer passed)

pandas.Series.to_timestamp

Series.to_timestamp (freq=None, how='start', copy=True)
Cast to datetimeindex of timestamps, at beginning of period

Parameters
freq : string, default frequency of PeriodIndex
  Desired frequency
how : {'s', 'e', 'start', 'end'}
  Convention for converting period to timestamp; start of period vs. end

Returns
ts : TimeSeries with DatetimeIndex
pandas.Series.tolist

`Series.tolist()`  
Convert Series to a nested list

pandas.Series.transpose

`Series.transpose()`  
return the transpose, which is by definition self

pandas.Series.truediv

`Series.truediv(other, level=None, fill_value=None, axis=0)`  
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
- **other**: Series or scalar value
  - **fill_value**: None or float value, default None (NaN)  
    Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - **level**: int or name  
    Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
- **result**: Series

pandas.Series.truncate

`Series.truncate(before=None, after=None, axis=None, copy=True)`  
Truncates a sorted NDFrame before and/or after some particular dates.

**Parameters**  
- **before**: date  
  Truncate before date
- **after**: date  
  Truncate after date
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,  
  return a copy of the truncated section

**Returns**  
- **truncated**: type of caller

pandas.Series.tshift

`Series.tshift(periods=1, freq=None, axis=0, **kwds)`  
Shift the time index, using the index’s frequency if available

**Parameters**  
- **periods**: int  
  Number of periods to move, can be positive or negative
freq : DateOffset, timedelta, or time rule string, default None

Increment to use from datetools module or time rule (e.g. ‘EOM’)

axis : int or basestring

Corresponds to the axis that contains the Index

Returns shifted : NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown

pandas.Series.tz_convert

Series.tz_convert (tz, axis=0, level=None, copy=True)

Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters tz : string or pytz.timezone object

axis : the axis to convert

level : int, str, default None

If axis is a MultiIndex, convert a specific level. Otherwise must be None

copy : boolean, default True

Also make a copy of the underlying data

pandas.Series.tz_localize

Series.tz_localize (*args, **kwargs)

Localize tz-naive TimeSeries to target time zone

Parameters tz : string or pytz.timezone object

axis : the axis to localize

level : int, str, default None

If axis is a MultiIndex, localize a specific level. Otherwise must be None

copy : boolean, default True

Also make a copy of the underlying data

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

- ‘infer’ will attempt to infer fall dst-transition hours based on order
- bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
- ‘NaT’ will return NaT where there are ambiguous times
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

infer_dst : boolean, default False (DEPRECATED)

Attempt to infer fall dst-transition hours based on order
pandas.Series.unique

Series.unique()  
Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values.

Returns uniques: ndarray

pandas.Series.unstack

Series.unstack(level=-1)  
Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted.

Parameters level : int, string, or list of these, default last level
Level(s) to unstack, can pass level name

Returns unstacked: DataFrame

Examples

```python
>>> s
one a 1.
 b 2.
two a 3.
two b 4.

>>> s.unstack(level=-1)
a b
one 1. 2.
two 3. 4.

>>> s.unstack(level=0)
one two
 a 1. 2.
 b 3. 4.
```

pandas.Series.update

Series.update(other)  
Modify Series in place using non-NA values from passed Series. Aligns on index

Parameters other: Series

pandas.Series.valid

Series.valid(inplace=False, **kwargs)

pandas.Series.value_counts

Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Returns object containing counts of unique values.
The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

**Parameters**

- **normalize** : boolean, default False
  
  If True then the object returned will contain the relative frequencies of the unique values.

- **sort** : boolean, default True
  
  Sort by values

- **ascending** : boolean, default False
  
  Sort in ascending order

- **bins** : integer, optional
  
  Rather than count values, group them into half-open bins, a convenience for `pd.cut`, only works with numeric data

- **dropna** : boolean, default True
  
  Don’t include counts of NaN.

**Returns**

- **counts** : Series

### pandas.Series.var

**Series.var**(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the `ddof` argument

**Parameters**

- **axis** : {index (0)}

- **skipna** : boolean, default True

  Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **level** : int or level name, default None

  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

- **numeric_only** : boolean, default None

  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

- **var** : scalar or Series (if level specified)

### pandas.Series.view

**Series.view**(dtype=None)

### pandas.Series.where

**Series.where**(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.
Parameters

- **cond**: boolean NDFrame or array
- **other**: scalar or NDFrame
- **inplace**: boolean, default False
  - Whether to perform the operation in place on the data
- **axis**: alignment axis if needed, default None
- **level**: alignment level if needed, default None
- **try_cast**: boolean, default False
  - try to cast the result back to the input type (if possible),
- **raise_on_error**: boolean, default True
  - Whether to raise on invalid data types (e.g. trying to where on strings)

Returns

- **wh**: same type as caller

---

**pandas.Series.xs**

**Series.xs** *(key, axis=0, level=None, copy=None, drop_level=True)*

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

**Parameters**

- **key**: object
  - Some label contained in the index, or partially in a MultiIndex
- **axis**: int, default 0
  - Axis to retrieve cross-section on
- **level**: object, defaults to first n levels (n=1 or len(key))
  - In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.
- **copy**: boolean [deprecated]
  - Whether to make a copy of the data
- **drop_level**: boolean, default True
  - If False, returns object with same levels as self.

**Returns**

- **xs**: Series or DataFrame

**Notes**

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see *MultiIndex Slicers*

**Examples**
>>> df
   A  B  C
a  4  5  2
b  4  0  9
c  9  7  3
>>> df.xs('a')
   A  B  C
Name: a
   4  5  2
>>> df.xs('C', axis=1)
   a  b  c
Name: C
   2  9  3
>>> df
   A  B  C  D
first second third
bar one  1  4  1  8  9
two  1  7  5  5  0
baz one  1  6  6  8  0
two  1  7  5  5  0
three  2  5  3  5  3
>>> df.xs(('baz', 'three'))
   A  B  C  D
third
   2  5  3  5  3
>>> df.xs('one', level=1)
   A  B  C  D
first third
bar  1  4  1  8  9
baz  1  6  6  8  0
>>> df.xs(('baz', 2), level=[0, 'third'])
   A  B  C  D
second
   three  5  3  5  3

32.3.2 Attributes

Axes

- **index**: axis labels

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.values</td>
<td>Return Series as ndarray</td>
</tr>
<tr>
<td>Series.dtype</td>
<td>return the dtype object of the underlying data</td>
</tr>
<tr>
<td>Series.itype</td>
<td>return if the data is sparse/dense</td>
</tr>
<tr>
<td>Series.shape</td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td>Series.size</td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td>Series.nbytes</td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td>Series.ndim</td>
<td>return the number of dimensions of the underlying data, by definition 1</td>
</tr>
<tr>
<td>Series.strides</td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td>Series.itemsize</td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td>Series.base</td>
<td>return the base object if the memory of the underlying data is shared</td>
</tr>
<tr>
<td>Series.T</td>
<td>return the transpose, which is by definition self</td>
</tr>
</tbody>
</table>
pandas.Series.values

Series.values
Return Series as ndarray

Returns arr : numpy.ndarray

pandas.Series.dtype

Series.dtype
return the dtype object of the underlying data

pandas.Series.ftype

Series.ftype
return if the data is sparse|dense

pandas.Series.shape

Series.shape
return a tuple of the shape of the underlying data

pandas.Series.size

Series.size
return the number of elements in the underlying data

pandas.Series.nbytes

Series.nbytes
return the number of bytes in the underlying data

pandas.Series.ndim

Series.ndim
return the number of dimensions of the underlying data, by definition 1

pandas.Series.strides

Series.strides
return the strides of the underlying data

pandas.Series.itemsize

Series.itemsize
return the size of the dtype of the item of the underlying data
**pandas.Series.base**

```
Series.base
return the base object if the memory of the underlying data is shared
```

**pandas.Series.T**

```
Series.T
return the transpose, which is by definition self
```

### 32.3.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.astype(dtype[, copy, raise_on_error])</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>Series.copy([deep])</code></td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td><code>Series.isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td><code>Series.notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null ..</td>
</tr>
</tbody>
</table>

**pandas.Series.astype**

```
Series.astype(dtype, copy=True, raise_on_error=True)
Cast object to input numpy.dtype
Return a copy when copy = True (be really careful with this!)
```

**Parameters**

- `dtype`: numpy.dtype or Python type
- `raise_on_error`: raise on invalid input

**Returns**

- `casted`: type of caller

**pandas.Series.copy**

```
Series.copy(deep=True)
Make a copy of this object
```

**Parameters**

- `deep`: boolean or string, default True
  - Make a deep copy, i.e. also copy data

**Returns**

- `copy`: type of caller

**pandas.Series.isnull**

```
Series.isnull()
Return a boolean same-sized object indicating if the values are null
```

**See Also:**

- `notnull` boolean inverse of isnull

**pandas.Series.notnull**

```
Series.notnull()
Return a boolean same-sized object indicating if the values are not null
```
See Also:

isnull boolean inverse of notnull

## 32.3.4 Indexing, iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.get</code></td>
<td>Get item from object for given key (DataFrame column, Panel slice, etc.).</td>
</tr>
<tr>
<td><code>Series.at</code></td>
<td></td>
</tr>
<tr>
<td><code>Series.iat</code></td>
<td></td>
</tr>
<tr>
<td><code>Series.ix</code></td>
<td></td>
</tr>
<tr>
<td><code>Series.loc</code></td>
<td></td>
</tr>
<tr>
<td><code>Series.iloc</code></td>
<td></td>
</tr>
<tr>
<td><code>Series.__iter__()</code></td>
<td></td>
</tr>
<tr>
<td><code>Series.iteritems()</code></td>
<td>Lazily iterate over (index, value) tuples</td>
</tr>
</tbody>
</table>

### pandas.Series.get

```
Series.get(key[, default]) Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found
```

**Parameters**  
- **key**: object  
- **default**: None

**Returns**  
- **value**: type of items contained in object

### pandas.Series.at

```
Series.at
```

### pandas.Series.iat

```
Series.iat
```

### pandas.Series.ix

```
Series.ix
```

### pandas.Series.loc

```
Series.loc
```

### pandas.Series.iloc

```
Series.iloc
```

### pandas.Series.__iter__

```
Series.__iter__()
```

### pandas.Series.iteritems

```
Series.iteritems() Lazily iterate over (index, value) tuples
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Series.iteritems

Series.iteritems()  
Lazily iterate over (index, value) tuples

For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation.

32.3.5 Binary operator functions

<table>
<thead>
<tr>
<th>Method (Series)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(other[, level, fill_value, axis])</td>
<td>Binary operator add with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>sub(other[, level, fill_value, axis])</td>
<td>Binary operator sub with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>mul(other[, level, fill_value, axis])</td>
<td>Binary operator mul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>div(other[, level, fill_value, axis])</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>floordiv(other[, level, fill_value, axis])</td>
<td>Binary operator floordiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>mod(other[, level, fill_value, axis])</td>
<td>Binary operator mod with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>pow(other[, level, fill_value, axis])</td>
<td>Binary operator pow with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>radd(other[, level, fill_value, axis])</td>
<td>Binary operator radd with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rsub(other[, level, fill_value, axis])</td>
<td>Binary operator rsub with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rmul(other[, level, fill_value, axis])</td>
<td>Binary operator rmul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rdiv(other[, level, fill_value, axis])</td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rfloordiv(other[, level, fill_value, axis])</td>
<td>Binary operator rfloordiv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rmod(other[, level, fill_value, axis])</td>
<td>Binary operator rmod with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>rpow(other[, level, fill_value, axis])</td>
<td>Binary operator rpow with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>combine(other, func[, fill_value])</td>
<td>Perform elementwise binary operation on two Series using given function</td>
</tr>
<tr>
<td>combine_first(other)</td>
<td>Combine Series values, choosing the calling Series’s values</td>
</tr>
<tr>
<td>round([decimals, out])</td>
<td>Return a with each element rounded to the given number of decimals.</td>
</tr>
</tbody>
</table>

pandas.Series.add

Series.add(other[, level=None, fill_value=None, axis=0])  
Binary operator add with support to substitute a fill_value for missing data in one of the inputs

Parameters  
other: Series or scalar value

fill_value : None or float value, default None (NaN)  
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name  
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns  
result : Series
**pandas.Series.sub**

Series.sub(other, level=None, fill_value=None, axis=0)

Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other**: Series or scalar value
  - **fill_value**: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**
- **result**: Series

**pandas.Series.mul**

Series.mul(other, level=None, fill_value=None, axis=0)

Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other**: Series or scalar value
  - **fill_value**: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**
- **result**: Series

**pandas.Series.div**

Series.div(other, level=None, fill_value=None, axis=0)

Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other**: Series or scalar value
  - **fill_value**: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**
- **result**: Series

**pandas.Series.truediv**

Series.truediv(other, level=None, fill_value=None, axis=0)

Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other**: Series or scalar value
  - **fill_value**: None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.

**level**: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**: result : Series

### pandas.Series.floordiv

`Series.floordiv(other, level=None, fill_value=None, axis=0)`  
Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
  
  Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.
- **level**: int or name
  
  Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**: result : Series

### pandas.Series.mod

`Series.mod(other, level=None, fill_value=None, axis=0)`  
Binary operator mod with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
  
  Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.
- **level**: int or name
  
  Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**: result : Series

### pandas.Series.pow

`Series.pow(other, level=None, fill_value=None, axis=0)`  
Binary operator pow with support to substitute a fill_value for missing data in one of the inputs

**Parameters**
- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
  
  Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.
- **level**: int or name
  
  Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**: result : Series
**pandas.Series.radd**

Series.\texttt{radd}(other, level=None, fill_value=None, axis=0)

Binary operator radd with support to substitute a fill_value for missing data in one of the inputs

- **Parameters**
  - other: Series or scalar value
  - fill_value: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - level: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
  - result: Series

**pandas.Series.rsub**

Series.\texttt{rsub}(other, level=None, fill_value=None, axis=0)

Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs

- **Parameters**
  - other: Series or scalar value
  - fill_value: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - level: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
  - result: Series

**pandas.Series.rmul**

Series.\texttt{rmul}(other, level=None, fill_value=None, axis=0)

Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs

- **Parameters**
  - other: Series or scalar value
  - fill_value: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - level: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns**
  - result: Series

**pandas.Series.rdiv**

Series.\texttt{rdiv}(other, level=None, fill_value=None, axis=0)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

- **Parameters**
  - other: Series or scalar value
  - fill_value: None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

**level** : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
result : Series

**pandas.Series.rtruediv**

Series.rtruediv(other, level=None, fill_value=None, axis=0)  
Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
other: Series or scalar value

**fill_value** : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

**level** : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
result : Series

**pandas.Series.rfloordiv**

Series.rfloordiv(other, level=None, fill_value=None, axis=0)  
Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
other: Series or scalar value

**fill_value** : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

**level** : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
result : Series

**pandas.Series.rmod**

Series.rmod(other, level=None, fill_value=None, axis=0)  
Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs

**Parameters**  
other: Series or scalar value

**fill_value** : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

**level** : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
result : Series
pandas.Series.rpow

Series.rpow(other, level=None, fill_value=None, axis=0)
Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs

Parameters other: Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

pandas.Series.combine

Series.combine(other, func, fill_value=nan)
Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other

Parameters other : Series or scalar value

func : function

fill_value : scalar value

Returns result : Series

pandas.Series.combine_first

Series.combine_first(other)
Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two indexes

Parameters other : Series

Returns y : Series

pandas.Series.round

Series.round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.
Refer to numpy.around for full documentation.

See Also:

numpy.around equivalent function

pandas.Series.lt

Series.lt(other)
pandas.Series.gt

Series.gt(other)

pandas.Series.le

Series.le(other)

pandas.Series.ge

Series.ge(other)

pandas.Series.ne

Series.ne(other)

pandas.Series.eq

Series.eq(other)

32.3.6 Function application, GroupBy

<table>
<thead>
<tr>
<th>Function Call</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.apply(func[, convert_dtype, args])</td>
<td>Invoke function on values of Series. Can be ufunc (a NumPy function) or a Python function that only works on single values</td>
</tr>
<tr>
<td>Series.map(arg[, na_action])</td>
<td>Map values of Series using input correspondence (which can be a NumPy function or a Python function)</td>
</tr>
<tr>
<td>Series.groupby([by, axis, level, as_index, ...])</td>
<td>Group series using mapper (dict or key function, apply given function)</td>
</tr>
</tbody>
</table>

pandas.Series.apply

Series.apply (func, convert_dtype=True, args=(), **kwds)

Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values

Parameters:
- func : function
- convert_dtype : boolean, default True
  
  Try to find better dtype for elementwise function results. If False, leave as dtype=object
- args : tuple

  Positional arguments to pass to function in addition to the value

  Additional keyword arguments will be passed as keywords to the function

Returns:
- y : Series or DataFrame if func returns a Series

See Also:

Series.map For element-wise operations
pandas.Series.map

Series.map(arg, na_action=None)
Map values of Series using input correspondence (which can be a dict, Series, or function)

Parameters arg : function, dict, or Series
na_action : {None, ‘ignore’}
    If ‘ignore’, propagate NA values

Returns y : Series
    same index as caller

Examples

>>> x
   one  1
   two  2
   three  3

>>> y
   1  foo
   2  bar
   3  baz

>>> x.map(y)
   one  foo
   two  bar
   three  baz

pandas.Series.groupby

Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns

Parameters by : mapping function / list of functions, dict, Series, or tuple /
    list of column names. Called on each element of the object index to determine the
    groups. If a dict or Series is passed, the Series or dict VALUES will be used to
determine the groups
axis : int, default 0
level : int, level name, or sequence of such, default None
    If the axis is a MultiIndex (hierarchical), group by a particular level or levels
as_index : boolean, default True
    For aggregated output, return object with group labels as the index. Only relevant
    for DataFrame input. as_index=False is effectively “SQL-style” grouped output
sort : boolean, default True
    Sort group keys. Get better performance by turning this off

group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces

squeeze : boolean, default False
reduce the dimensionality of the return type if possible, otherwise return a consistent type

Returns GroupBy object

Examples

# DataFrame result >>> data.groupby(func, axis=0).mean()
# DataFrame result >>> data.groupby([’col1’, ’col2’])[’col3’].mean()
# DataFrame with hierarchical index >>> data.groupby([’col1’, ’col2’]).mean()

32.3.7 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.abs()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td>Series.all(axis, out)</td>
<td>Returns True if all elements evaluate to True.</td>
</tr>
<tr>
<td>Series.any(axis, out)</td>
<td>Returns True if any of the elements of a evaluate to True.</td>
</tr>
<tr>
<td>Series.autocorr()</td>
<td>Lag-1 autocorrelation</td>
</tr>
<tr>
<td>Series.between(left, right[, inclusive])</td>
<td>Return boolean Series equivalent to left &lt;= series &lt;= right. NA values</td>
</tr>
<tr>
<td>Series.clip(lower, upper, out)</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td>Series.clip_lower(threshold)</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td>Series.clip_upper(threshold)</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td>Series.corr(other[, method, min_periods])</td>
<td>Compute correlation with other Series, excluding missing values</td>
</tr>
<tr>
<td>Series.count([level])</td>
<td>Return number of non-NA/null observations in the Series</td>
</tr>
<tr>
<td>Series.cov(other[, min_periods])</td>
<td>Compute covariance with Series, excluding missing values</td>
</tr>
<tr>
<td>Series.cummmax([axis, dtype, out, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td>Series.cummmin([axis, dtype, out, skipna])</td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td>Series.cumprod([axis, dtype, out, skipna])</td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td>Series.cumsum([axis, dtype, out, skipna])</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>Series.describe([percentile_width, ...])</td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td>Series.diff([periods])</td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td>Series.factorize([sort, na_sentinel])</td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td>Series.kurt([axis, skipna, level, numeric_only])</td>
<td>Return unbiased kurtosis over requested axis.</td>
</tr>
<tr>
<td>Series.mad([axis, skipna, level])</td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td>Series.max([axis, skipna, level, numeric_only])</td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td>Series.mean([axis, skipna, level, numeric_only])</td>
<td>Return the mean of the values for the requested axis.</td>
</tr>
<tr>
<td>Series.median([axis, skipna, level, ...])</td>
<td>Return the median of the values for the requested axis.</td>
</tr>
<tr>
<td>Series.min([axis, skipna, level, numeric_only])</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td>Series.mode()</td>
<td>Returns the mode(s) of the dataset.</td>
</tr>
<tr>
<td>Series.pct_change([periods, fill_method, ...])</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td>Series.prod([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>Series.quantile([q])</td>
<td>Return value at the given quantile, a la numpy.percentile.</td>
</tr>
<tr>
<td>Series.rank([(method, na_option, ascending, pct)])</td>
<td>Compute data ranks (1 through n).</td>
</tr>
<tr>
<td>Series.sem([axis, skipna, level, ddof])</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td>Series.skew([axis, skipna, level, numeric_only])</td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td>Series.std([axis, skipna, level, ddof])</td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td>Series.sum([axis, skipna, level, numeric_only])</td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
</tbody>
</table>

Continued on next page
**Table 32.27 – continued from previous page**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.var([axis, skipna, level, ddof])</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td><code>Series.unique()</code></td>
<td>Return array of unique values in the object.</td>
</tr>
<tr>
<td><code>Series.nunique([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>Series.value_counts([normalize, sort, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

**pandas.Series.abs**

`Series.abs()`

Return an object with absolute value taken. Only applicable to objects that are all numeric

**Returns**

- abs: type of caller

**pandas.Series.all**

`Series.all(axis=None, out=None)`

Returns True if all elements evaluate to True.

Refer to `numpy.all` for full documentation.

**See Also**

- `numpy.all` equivalent function

**pandas.Series.any**

`Series.any(axis=None, out=None)`

Returns True if any of the elements of `a` evaluate to True.

Refer to `numpy.any` for full documentation.

**See Also**

- `numpy.any` equivalent function

**pandas.Series.autocorr**

`Series.autocorr()`

Lag-1 autocorrelation

**Returns**

- autocorr: float

**pandas.Series.between**

`Series.between(left, right, inclusive=True)`

Return boolean Series equivalent to left <= series <= right. NA values will be treated as False

**Parameters**

- left: scalar
  - Left boundary
- right: scalar
  - Right boundary

**Returns**

- is_between: Series

---

**32.3. Series**
pandas.Series.clip

Series.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters
lower : float, default None
upper : float, default None

Returns
clipped : Series

pandas.Series.clip_lower

Series.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns
clipped : same type as input

See Also:
clip

pandas.Series.clip_upper

Series.clip_upper(threshold)
Return copy of input with values above given value truncated

Returns
clipped : same type as input

See Also:
clip

pandas.Series.corr

Series.corr(other, method='pearson', min_periods=None)
Compute correlation with other Series, excluding missing values

Parameters
other : Series
method : {'pearson', 'kendall', 'spearman'}

- pearson : standard correlation coefficient
- kendall : Kendall Tau correlation coefficient
- spearman : Spearman rank correlation

min_periods : int, optional
Minimum number of observations needed to have a valid result

Returns
correlation : float

pandas.Series.count

Series.count(level=None)
Return number of non-NA/null observations in the Series

Parameters
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series

**Returns**
- `nobs`: int or Series (if level specified)

**pandas.Series.cov**

Series.**cov**(other, min_periods=None)
Compute covariance with Series, excluding missing values

**Parameters**
- `other`: Series
  - `min_periods`: int, optional
    Minimum number of observations needed to have a valid result

**Returns**
- `covariance`: float
  Normalized by N-1 (unbiased estimator).

**pandas.Series.cummax**

Series.**cummax**(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative max over requested axis.

**Parameters**
- `axis`: {index (0)}
  - `skipna`: boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**
- `max`: scalar

**pandas.Series.cummin**

Series.**cummin**(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative min over requested axis.

**Parameters**
- `axis`: {index (0)}
  - `skipna`: boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**
- `min`: scalar

**pandas.Series.cumprod**

Series.**cumprod**(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative prod over requested axis.

**Parameters**
- `axis`: {index (0)}
  - `skipna`: boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**
- `prod`: scalar
pandas.Series.cumsum

Series.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative sum over requested axis.

Parameters:
- **axis**: {index (0)}
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns:
- **sum**: scalar

pandas.Series.describe

Series.describe(percentile_width=None, percentiles=None, include=None, exclude=None)
Generate various summary statistics, excluding NaN values.

Parameters:
- **percentile_width**: float, deprecated
  The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75
- **percentiles**: array-like, optional
  The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.
- **include**, **exclude**: list-like, ‘all’, or None (default)
  Specify the form of the returned result. Either:
  - None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
  - A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])
  - If include is the string ‘all’, the output column-set will match the input one.

Returns:
- **summary**: NDFrame of summary statistics

See Also:
- DataFrame.select_dtypes

Notes
The output DataFrame index depends on the requested dtypes:
For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.
For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.
For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

The include, exclude arguments are ignored for Series.

**pandas.Series.diff**

Series.diff(periods=1)

1st discrete difference of object

**Parameters**  
periods : int, default 1  
Periods to shift for forming difference

**Returns**  
diffed : Series

**pandas.Series.factorize**

Series.factorize(sort=False, na_sentinel=-1)

Encode the object as an enumerated type or categorical variable

**Parameters**  
sort : boolean, default False  
Sort by values

na_sentinel : int, default -1  
Value to mark “not found”

**Returns**  
labels : the indexer to the original array

uniques : the unique Index

**pandas.Series.kurt**

Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis Normalized by N-1

**Parameters**  
axis : {index (0)}

skipna : boolean, default True  
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None  
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None  
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**  
kurt : scalar or Series (if level specified)
pandas.Series.mad

Series.mad(axis=None, skipna=None, level=None, **kwargs)
Return the mean absolute deviation of the values for the requested axis

Parameters
axis : {index (0)}
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
skipna : boolean, default True
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a scalar
numeric_only : boolean, default None
    Include only float, int, boolean data. If None, will attempt to use everything, then
    use only numeric data

Returns
mad : scalar or Series (if level specified)

pandas.Series.max

Series.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object. If you want the index of the maximum, use
idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters
axis : {index (0)}
skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a scalar
numeric_only : boolean, default None
    Include only float, int, boolean data. If None, will attempt to use everything, then
    use only numeric data

Returns
max : scalar or Series (if level specified)

pandas.Series.mean

Series.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters
axis : {index (0)}
skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a scalar
**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**mean**: scalar or Series (if level specified)

### pandas.Series.median

`Series.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the median of the values for the requested axis

**Parameters**

**axis**: {index (0)}

**skipna**: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**median**: scalar or Series (if level specified)

### pandas.Series.min

`Series.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

This method returns the minimum of the values in the object. If you want the index of the minimum, use `idxmin`. This is the equivalent of the numpy.ndarray method `argmin`.

**Parameters**

**axis**: {index (0)}

**skipna**: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**min**: scalar or Series (if level specified)

### pandas.Series.mode

`Series.mode()`

Returns the mode(s) of the dataset.

Empty if nothing occurs at least 2 times. Always returns Series even if only one value.

**Parameters**

**sort**: bool, default True
**pandas.Series.pct_change**

Series.pct_change (periods=1, fill_method='pad', limit=None, freq=None, **kwds)

Percent change over given number of periods.

**Parameters**
- **periods**: int, default 1
  
  Periods to shift for forming percent change

- **fill_method**: str, default 'pad'
  
  How to handle NAs before computing percent changes

- **limit**: int, default None
  
  The number of consecutive NAs to fill before stopping

- **freq**: DateOffset, timedelta, or offset alias string, optional
  
  Increment to use from time series API (e.g. ‘M’ or BDay())

**Returns**
- **chg**: NDFrame

**Notes**

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

**pandas.Series.prod**

Series.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis.

**Parameters**
- **axis**: {index (0)}

- **skipna**: boolean, default True

  Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **level**: int or level name, default None

  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

- **numeric_only**: boolean, default None

  Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **prod**: scalar or Series (if level specified)
pandas.Series.quantile

Series.quantile(q=0.5)
Return value at the given quantile, a la numpy.percentile.

Parameters  q : float or array-like, default 0.5 (50% quantile)
0 <= q <= 1, the quantile(s) to compute

Returns  quantile : float or Series
if q is an array, a Series will be returned where the index is q and the values are the quantiles.

Examples

>>> s = Series([1, 2, 3, 4])
>>> s.quantile(.5)
2.5
>>> s.quantile([.25, .5, .75])
0.25  1.75
0.50  2.50
0.75  3.25
dtype: float64

pandas.Series.rank

Series.rank(method='average', na_option='keep', ascending=True, pct=False)
Compute data ranks (1 through n). Equal values are assigned a rank that is the average of the ranks of those values

Parameters  method : {'average', 'min', 'max', 'first', 'dense'}
- average: average rank of group
- min: lowest rank in group
- max: highest rank in group
- first: ranks assigned in order they appear in the array
- dense: like 'min', but rank always increases by 1 between groups

na_option : {'keep'}
- keep: leave NA values where they are

ascending : boolean, default True
- False for ranks by high (1) to low (N)

pct : boolean, default False
- Computes percentage rank of data

Returns  ranks : Series
**pandas.Series.sem**

`Series.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)`

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters**
- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **sem**: scalar or Series (if level specified)

**pandas.Series.skew**

`Series.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return unbiased skew over requested axis Normalized by N-1

**Parameters**
- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**
- **skew**: scalar or Series (if level specified)

**pandas.Series.std**

`Series.std(axis=None, skipna=None, level=None, ddof=1, **kwargs)`

Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters**
- **axis**: {index (0)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**std**: scalar or Series (if level specified)

### pandas.Series.sum

**Series.sum** *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Return the sum of the values for the requested axis

**Parameters**

**axis**: {index (0)}

**skipna**: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**sum**: scalar or Series (if level specified)

### pandas.Series.var

**Series.var** *(axis=None, skipna=None, level=None, ddof=1, **kwargs)*

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters**

**axis**: {index (0)}

**skipna**: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only**: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

**Returns**

**var**: scalar or Series (if level specified)
pandas.Series.unique

Series.unique()
Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values.

Returns uniques : ndarray

pandas.Series.nunique

Series.nunique(dropna=True)
Return number of unique elements in the object.
Excludes NA values by default.

Parameters dropna : boolean, default True
Don’t include NaN in the count.

Returns nunique : int

pandas.Series.value_counts

Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.
The resulting object will be in descending order so that the first element is the most frequently-occurring element.
Excludes NA values by default.

Parameters normalize : boolean, default False
If True then the object returned will contain the relative frequencies of the unique values.

sort : boolean, default True
Sort by values

ascending : boolean, default False
Sort in ascending order

bins : integer, optional
Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

dropna : boolean, default True
Don’t include counts of NaN.

Returns counts : Series

32.3.8 Reindexing / Selection / Label manipulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.align(other[, join, axis, level, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>Series.drop(labels[, axis, level, inplace])</td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td>Series.drop_duplicates([take_last, inplace])</td>
<td>Return Series with duplicate values removed</td>
</tr>
<tr>
<td>Series.duplicated([take_last])</td>
<td>Return boolean Series denoting duplicate values</td>
</tr>
</tbody>
</table>

Continued on next page
Table 32.28 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.equals()</code></td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in either</td>
</tr>
<tr>
<td><code>Series.first()</code></td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td><code>Series.head()</code></td>
<td>Returns first n rows</td>
</tr>
<tr>
<td><code>Series.idxmax()</code></td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td><code>Series.idxmin()</code></td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td><code>Series.isin()</code></td>
<td>Return a boolean Series showing whether each element is in the list.</td>
</tr>
<tr>
<td><code>Series.last()</code></td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td><code>Series.reindex()</code></td>
<td>Conform Series to new index with optional filling logic, placing</td>
</tr>
<tr>
<td><code>Series.rename_like()</code></td>
<td>Return an object with matching indices to myself</td>
</tr>
<tr>
<td><code>Series.reset_index()</code></td>
<td>Analogous to the pandas.DataFrame.reset_index() function, see</td>
</tr>
<tr>
<td><code>Series.select()</code></td>
<td>Return data corresponding to index labels matching criteria</td>
</tr>
<tr>
<td><code>Series.take()</code></td>
<td>Return Series corresponding to requested indices</td>
</tr>
<tr>
<td><code>Series.tail()</code></td>
<td>Returns last n rows</td>
</tr>
<tr>
<td><code>Series.truncate()</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
</tbody>
</table>

**pandas.Series.align**

Series.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)

Align two object on their axes with the specified join method for each axis Index

**Parameters**
- `other`: DataFrame or Series
- `join`: {‘outer’, ‘inner’, ‘left’, ‘right’}, default ‘outer’
- `axis`: allowed axis of the other object, default None
  - Align on index (0), columns (1), or both (None)
- `level`: int or level name, default None
  - Broadcast across a level, matching Index values on the passed MultiIndex level
- `copy`: boolean, default True
  - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
- `fill_value`: scalar, default np.NaN
  - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- `method`: str, default None
- `limit`: int, default None
- `fill_axis`: {0, 1}, default 0
  - Filling axis, method and limit

**Returns**
- (left, right): (type of input, type of other)
  - Aligned objects

**pandas.Series.drop**

Series.drop(labels, axis=0, level=None, inplace=False, **kwargs)

Return new object with labels in requested axis removed
**Parameters**

- **labels**: single label or list-like
- **axis**: int or axis name
- **level**: int or level name, default None
  
  For MultiIndex
- **inplace**: bool, default False
  
  If True, do operation inplace and return None.

**Returns**

- **dropped**: type of caller

---

**Series.drop_duplicates**

**Series.drop_duplicates** *(take_last=False, inplace=False)*

Return Series with duplicate values removed

**Parameters**

- **take_last**: boolean, default False
  
  Take the last observed index in a group. Default first
- **inplace**: boolean, default False
  
  If True, performs operation inplace and returns None.

**Returns**

- **deduplicated**: Series

---

**Series.duplicated**

**Series.duplicated** *(take_last=False)*

Return boolean Series denoting duplicate values

**Parameters**

- **take_last**: boolean, default False
  
  Take the last observed index in a group. Default first

**Returns**

- **duplicated**: Series

---

**Series.equals**

**Series.equals** *(other)*

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

---

**Series.first**

**Series.first** *(offset)*

Convenience method for subsetting initial periods of time series data based on a date offset

**Parameters**

- **offset**: string, DateOffset, dateutil.relativedelta

**Returns**

- **subset**: type of caller

---

**Examples**

```python
ts.last('10D') -> First 10 days```

946 Chapter 32. API Reference
pandas.Series.head

Series.head(n=5)
Returns first n rows

pandas.Series.idxmax

Series.idxmax(axis=None, out=None, skipna=True)
Index of first occurrence of maximum of values.

- **Parameters**
 - skipna: boolean, default True
 - Exclude NA/null values

- **Returns**
 - idxmax: Index of maximum of values

See Also:
- DataFrame.idxmax, numpy.ndarray.argmax

Notes

This method is the Series version of ndarray.argmax.

pandas.Series.idxmin

Series.idxmin(axis=None, out=None, skipna=True)
Index of first occurrence of minimum of values.

- **Parameters**
 - skipna: boolean, default True
 - Exclude NA/null values

- **Returns**
 - idxmin: Index of minimum of values

See Also:
- DataFrame.idxmin, numpy.ndarray.argmin

Notes

This method is the Series version of ndarray.argmin.

pandas.Series.isin

Series.isin(values)
Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.

- **Parameters**
 - values: list-like
 - The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element.

- **Returns**
 - isin: Series (bool dtype)

- **Raises**
 - TypeError
- If `values` is a string

See Also:

`pandas.DataFrame.isin`

Examples

```python
>>> s = pd.Series(list('abc'))
>>> s.isin(['a', 'c', 'e'])
0   True
1  False
2   True
dtype: bool
```

Passing a single string as `s.isin('a')` will raise an error. Use a list of one element instead:

```python
>>> s.isin(['a'])
0   True
1  False
2  False
dtype: bool
```

pandas.Series.last

Series.last(`offset`)

Convenience method for subsetting final periods of time series data based on a date offset

Parameters

- `offset`: string, DateOffset, dateutil.relativedelta

Returns

- `subset`: type of caller

Examples

```python
ts.last('5M') -> Last 5 months
```

pandas.Series.reindex

Series.reindex(`index=None, **kwargs`)

Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and `copy=False`

Parameters

- `index`: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

Method

- `{'backfill', 'bfill', 'pad', 'ffill', None}`, default None

Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

Copy

- boolean, default True

Return a new object, even if the passed indexes are the same
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN
Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None
Maximum size gap to forward or backward fill

Returns reindexed : Series

Examples

>>> df.reindex(index=[date1, date2, date3], columns=[‘A’, ‘B’, ‘C’])

pandas.Series.reindex_like

Series.reindex_like(other, method=None, copy=True, limit=None)
return an object with matching indicies to myself

Parameters other : Object
method : string or None
copy : boolean, default True
limit : int, default None
Maximum size gap to forward or backward fill

Returns reindexed : same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Series.rename

Series.rename(index=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters index : dict-like or function, optional
Transformation to apply to that axis values

copy : boolean, default True
Also copy underlying data

inplace : boolean, default False
Whether to return a new Series. If True then value of copy is ignored.

Returns renamed : Series (new object)
pandas.Series.reset_index

Series.reset_index(level=None, drop=False, name=None, inplace=False)

Analogous to the pandas.DataFrame.reset_index() function, see docstring there.

Parameters
- **level**: int, str, tuple, or list, default None
 - Only remove the given levels from the index. Removes all levels by default
- **drop**: boolean, default False
 - Do not try to insert index into dataframe columns
- **name**: object, default None
 - The name of the column corresponding to the Series values
- **inplace**: boolean, default False
 - Modify the Series in place (do not create a new object)

Returns
- **resetted**: DataFrame, or Series if drop == True

pandas.Series.select

Series.select(crit, axis=0)

Return data corresponding to axis labels matching criteria

Parameters
- **crit**: function
 - To be called on each index (label). Should return True or False
- **axis**: int

Returns
- **selection**: type of caller

pandas.Series.take

Series.take(indices, axis=0, convert=True, is_copy=False)

return Series corresponding to requested indices

Parameters
- **indices**: list / array of ints
- **convert**: translate negative to positive indices (default)

Returns
- **taken**: Series

See Also:
- numpy.ndarray.take

pandas.Series.tail

Series.tail(n=5)

Returns last n rows
pandas.Series.truncate

Series.truncate(before=None, after=None, axis=None, copy=True)
Truncates a sorted NDFrame before and/or after some particular dates.

Parameters

- **before**: date
 Truncate before date
- **after**: date
 Truncate after date
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
 return a copy of the truncated section

Returns

- **truncated**: type of caller

32.3.9 Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dropna(axis=0, inplace=False, **kwargs)</td>
<td>Return Series without null values</td>
</tr>
<tr>
<td>Series.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>Series.interpolate(method, axis=0, limit=None, downcast=None)</td>
<td>Interpolate values according to different methods.</td>
</tr>
</tbody>
</table>

pandas.Series.dropna

Series.dropna(axis=0, inplace=False, **kwargs)
Return Series without null values

Returns

- **valid**: Series
 - **inplace**: boolean, default False
 Do operation in place.

pandas.Series.fillna

Series.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)
Fill NA/NaN values using the specified method

Parameters

- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 Method to use for filling holes in reindexed Series
 pad / ffill: propagate last valid observation forward to next valid
 backfill / bfill: use NEXT valid observation to fill gap
- **value**: scalar, dict, Series, or DataFrame
 Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame).
 (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.
- **axis**: {0, 1}, default 0
 - 0: fill column-by-column
• 1: fill row-by-row

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a
no-copy slice for a column in a DataFrame).

limit : int, default None

Maximum size gap to forward or backward fill
downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will
try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : same type as caller

See Also:

reindex, asfreq

pandas.Series.interpolate

Series.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None,
**kwargs)

Interpolate values according to different methods.

Parameters method : {'linear', 'time', 'index', 'values', 'nearest', 'zero',
‘piecewise_polynomial’, ‘pchip’}

• ‘linear’: ignore the index and treat the values as equally spaced. default
• ‘time’: interpolation works on daily and higher resolution data to interpolate
given length of interval
• ‘index’, ‘values’: use the actual numerical values of the index
is passed to scipy.interpolate.interp1d with the order given both ‘poly-
nomial’ and ‘spline’ require that you also specify and order (int) e.g.
df.interpolate(method=’polynomial’, order=4)
• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all
wrappers around the scipy interpolation methods of similar
names. See the scipy documentation for more on their behavior:
http://docs.scipy.org/doc/scipy/reference/interpolate.html

axis : {0, 1}, default 0

• 0: fill column-by-column
• 1: fill row-by-row

limit : int, default None.

Maximum number of consecutive NaNs to fill.
inplace : bool, default False

Update the NDFrame in place if possible.
downcast : optional, ‘infer’ or None, defaults to None

 Downcast dtypes if possible.

Returns
Series or DataFrame of same shape interpolated at the NaNs

See Also:
reindex, replace, fillna

Examples

Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 2 2 3 3 dtype: float64

32.3.10 Reshaping, sorting

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.argsort(axis, kind=None)</code></td>
<td>Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values.</td>
</tr>
<tr>
<td><code>Series.order(ascending, kind='quicksort')</code></td>
<td>Sorts Series object, by value, maintaining index-value link.</td>
</tr>
<tr>
<td><code>Series.reorder_levels(order)</code></td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>Series.sort_index(ascending)</code></td>
<td>Sort Series with MultiIndex by chosen level. Data will be</td>
</tr>
<tr>
<td><code>Series.swaplevel(i, j, copy)</code></td>
<td>Swap levels i and j in a MultiIndex</td>
</tr>
<tr>
<td><code>Series.unstack(level)</code></td>
<td>Unstack, a.k.a.</td>
</tr>
<tr>
<td><code>Series.searchsorted(v, side='left', sorter)</code></td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
</tbody>
</table>

pandas.Series.argsort

`Series.argsort(axis=0, kind='quicksort', order=None)`
Overrides ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values.

Parameters
axis : int (can only be zero)

 kind : {‘mergesort’, ‘quicksort’, ‘heapsort’}, default ‘quicksort’

 Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm.

 order : ignored

Returns
`argsorted` : Series, with -1 indicated where nan values are present

See Also:

numpy.ndarray.argsort

pandas.Series.order

`Series.order(ascending=False, kind='quicksort', na_position='last', inplace=False)`
Sorts Series object, by value, maintaining index-value link. This will return a new Series by default. Series.sort is the equivalent but as an inplace method.

Parameters
na_last : boolean (optional, default=True) (DEPRECATED; use na_position)

 Put NaN’s at beginning or end
ascending : boolean, default True
Sort ascending. Passing False sorts descending

kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm

na_position : {'first', 'last'} (optional, default='last')
‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

inplace : boolean, default False
Do operation in place.

Returns y : Series

See Also:
Series.sort

pandas.Series.reorder_levels

Series.reorder_levels (order)
Rearrange index levels using input order. May not drop or duplicate levels

Parameters order: list of int representing new level order.
(referenced level by number or key)

axis: where to reorder levels

Returns type of caller (new object)

pandas.Series.sort

Series.sort (axis=0, ascending=True, kind='quicksort', na_position='last', inplace=True)
Sort values and index labels by value. This is an inplace sort by default. Series.order is the equivalent but returns a new Series.

Parameters axis : int (can only be zero)

ascending : boolean, default True
Sort ascending. Passing False sorts descending

kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm

na_position : {'first', 'last'} (optional, default='last')
‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

inplace : boolean, default True
Do operation in place.

See Also:
Series.order
pandas.Series.sort_index

Series.sort_index(ascending=True)
Sort object by labels (along an axis)

Parameters ascending : boolean or list, default True
Sort ascending vs. descending. Specify list for multiple sort orders

Returns sorted_obj : Series

Examples

>>> result1 = s.sort_index(ascending=False)
>>> result2 = s.sort_index(ascending=[1, 0])

pandas.Series.sortlevel

Series.sortlevel(level=0, ascending=True, sort_remaining=True)
Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

Parameters level : int or level name, default None
ascending : bool, default True

Returns sorted : Series

pandas.Series.swaplevel

Series.swaplevel(i, j, copy=True)
Swap levels i and j in a MultiIndex

Parameters i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.

Returns swapped : Series

pandas.Series.unstack

Series.unstack(level=-1)
Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted.

Parameters level : int, string, or list of these, default last level
Level(s) to unstack, can pass level name

Returns unstacked : DataFrame

Examples
>>> s
 one a 1.
 one b 2.
 two a 3.
 two b 4.

>>> s.unstack(level=-1)
 a b
 one 1. 2.
 two 3. 4.

>>> s.unstack(level=0)
 one two
 a 1. 2.
 b 3. 4.

pandas.Series.searchsorted

Series.searchsorted(v, side=’left’, sorter=None)

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted Series self such that, if the corresponding elements in v were inserted before the indices, the order of self would be preserved.

Parameters

v : array_like
 Values to insert into a.

side : {‘left’, ‘right’}, optional
 If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of a).

sorter : 1-D array_like, optional
 Optional array of integer indices that sort self into ascending order. They are typically the result of np.argsort.

Returns

indices : array of ints
 Array of insertion points with the same shape as v.

See Also:

Series.sort, Series.order, numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

Examples

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0  1
1  2
2  3
```
32.3.11 Combining / joining / merging

<table>
<thead>
<tr>
<th>pandas.Series.append</th>
<th>pandas.Series.replace</th>
<th>pandas.Series.update</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.append (to_append[, verify_integrity])</td>
<td>Series.replace ([to_replace, value, inplace, ...])</td>
<td>Series.update(other)</td>
</tr>
<tr>
<td>Concatenate two or more Series. The indexes must not overlap</td>
<td>Replace values given in 'to_replace' with 'value'.</td>
<td>Modify Series in place using non-NA values from passed</td>
</tr>
</tbody>
</table>

pandas.Series.append

Series.append (to_append[, verify_integrity=False])

Concatenate two or more Series. The indexes must not overlap

- Parameters
to_append : Series or list/tuple of Series
verify_integrity : boolean, default False
If True, raise Exception on creating index with duplicates

- Returns appended : Series

pandas.Series.replace

Series.replace (to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in 'to_replace' with 'value'.

- Parameters
to_replace : str, regex, list, dict, Series, numeric, or None
 - str or regex:
 - str: string exactly matching to_replace will be replaced with value
 - regex: regexes matching to_replace will be replaced with value
 - list of str, regex, or numeric:
 - First, if to_replace and value are both lists, they must be the same length.
 - Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
 - str and regex rules apply as above.
 - dict:
Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column 'a' for the value 'b' and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) **cannot** be regular expressions.

Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

- None:
 - This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also `None` then this **must** be a nested dictionary or Series.

See the examples section for examples of each of these.

Parameters

- **value** : scalar, dict, list, str, regex, default None

 Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

- **inplace** : boolean, default False

 If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

- **limit** : int, default None

 Maximum size gap to forward or backward fill

- **regex** : bool or same types as `to_replace`, default False

 Whether to interpret `to_replace` and/or `value` as regular expressions. If this is `True` then `to_replace` must be a string. Otherwise, `to_replace` must be `None` because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

- **method** : string, optional, {'pad', ‘ffill’, ‘bfill’}

 The method to use when for replacement, when `to_replace` is a list.

Returns

- **filled** : NDFrame

Raises

- **AssertionError**

 - If `regex` is not a bool and `to_replace` is not None.

- **TypeError**

 - If `to_replace` is a dict and `value` is not a list, dict, ndarray, or Series

 - If `to_replace` is `None` and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series.

- **ValueError**

 - If `to_replace` and `value` are lists or ndarrays, but they are not the same length.

See Also

- `NDFrame.reindex`, `NDFrame.asfreq`, `NDFrame.fillna`
Notes

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.
- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
- This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.Series.update

Series.update(other)
Modify Series in place using non-NA values from passed Series. Aligns on index

Parameters
- `other`: Series

32.3.12 Time series-related

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
</table>
| `Series.asfreq(freq, method=None, how=None, normalize=False)` | Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values. **Parameters**
 - `freq`: DateOffset object, or string
 - `method`: {'backfill', 'bfill', 'pad', 'ffill', 'None'}
 - Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method
 - `how`: {'start', 'end'}, default end
 - For PeriodIndex only, see PeriodIndex.asfreq
 - `normalize`: bool, default False
 - Whether to reset output index to midnight
 - `converted`: type of caller |
| `Series.asof(where)` | Return last good (non-NaN) value in TimeSeries if value is NaN for
| `Series.shift([periods, freq, axis])` | Shift index by desired number of periods with an optional time freq
| `Series.first_valid_index()` | Return label for first non-NA/null value
| `Series.last_valid_index()` | Return label for last non-NA/null value
| `Series.resample(rule[, how, axis, ...])` | Convenience method for frequency conversion and resampling of regular time-series data.
| `Series.tz_convert(tz[, axis, level, copy])` | Convert the axis to target time zone.
| `Series.tz_localize(*args, **kwargs)` | Localize tz-naive TimeSeries to target time zone

pandas.Series.asfreq

Series.asfreq(freq, method=None, how=None, normalize=False)
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

Parameters
- `freq`: DateOffset object, or string
- `method`: {'backfill', 'bfill', 'pad', 'ffill', 'None'}
- `how`: {'start', 'end'}, default end
- `normalize`: bool, default False

Returns
- `converted`: type of caller
pandas.Series.asof

Series.asof(where)
Return last good (non-NaN) value in TimeSeries if value is NaN for requested date.
If there is no good value, NaN is returned.

Parameters where : date or array of dates
Returns value or NaN

Notes

Dates are assumed to be sorted

pandas.Series.shift

Series.shift(periods=1, freq=None, axis=0, **kwds)
Shift index by desired number of periods with an optional time freq

Parameters periods : int
Number of periods to move, can be positive or negative
freq : DateOffset, timedelta, or time rule string, optional
Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes.

Returns shifted : same type as caller

Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

pandas.Series.first_valid_index

Series.first_valid_index()
Return label for first non-NA/null value

pandas.Series.last_valid_index

Series.last_valid_index()
Return label for last non-NA/null value

pandas.Series.resample

Series.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, offset=None, limit=None, base=0)
Convenience method for frequency conversion and resampling of regular time-series data.

Parameters rule : string
the offset string or object representing target conversion
how : string
 method for down- or re-sampling, default to ‘mean’ for downsampling
axis : int, optional, default 0
fill_method : string, default None
 fill_method for upsampling
closed : {'right', 'left'}
 Which side of bin interval is closed
label : {'right', 'left'}
 Which bin edge label to label bucket with
convention : {'start', 'end', 's', 'e'}
kind : “period”/”timestamp”
loffset : timedelta
 Adjust the resampled time labels
limit : int, default None
 Maximum size gap to when reindexing with fill_method
base : int, default 0
 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals.
 For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.Series.tz_convert

Series.tz_convert (tz, axis=0, level=None, copy=True)
 Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters

 tz : string or pytz.timezone object
 the axis to convert
 axis : the axis to convert
 level : int, str, default None
 If axis ia a MultiIndex, convert a specific level. Otherwise must be None
 copy : boolean, default True
 Also make a copy of the underlying data

pandas.Series.tz_localize

Series.tz_localize (*args, **kwargs)
 Localize tz-naive TimeSeries to target time zone

Parameters

 tz : string or pytz.timezone object
 the axis to localize
 axis : the axis to localize
 level : int, str, default None
 If axis ia a MultiIndex, localize a specific level. Otherwise must be None
 copy : boolean, default True
Also make a copy of the underlying data

ambiguous: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
- ‘infer’ will attempt to infer fall dst-transition hours based on order
- bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
- ‘NaT’ will return NaT where there are ambiguous times
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

infer_dst: boolean, default False (DEPRECATED)
- Attempt to infer fall dst-transition hours based on order

32.3.13 Datetimelike Properties

Series.dt can be used to access the values of the series as datetimelike and return several properties. Due to implementation details the methods show up here as methods of the DatetimeProperties/PeriodProperties/TimedeltaProperties classes. These can be accessed like Series.dt.<property>.

Datetime Properties

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeProperties.date</td>
<td>Returns numpy array of datetime.date.</td>
</tr>
<tr>
<td>DatetimeProperties.time</td>
<td>Returns numpy array of datetime.time.</td>
</tr>
<tr>
<td>DatetimeProperties.year</td>
<td>The year of the datetime</td>
</tr>
<tr>
<td>DatetimeProperties.month</td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td>DatetimeProperties.day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>DatetimeProperties.hour</td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td>DatetimeProperties.minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>DatetimeProperties.second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>DatetimeProperties.microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeProperties.nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeProperties.second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>DatetimeProperties.weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>DatetimeProperties.dayofweek</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>DatetimeProperties.weekday</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>DatetimeProperties.dayofyear</td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td>DatetimeProperties.quarter</td>
<td>The quarter of the date</td>
</tr>
</tbody>
</table>

pandas.tseries.common.DatetimeProperties.date

DatetimeProperties.date
- Returns numpy array of datetime.date. The date part of the Timestamps.
pandas.tseries.common.DatetimeProperties.time

Datet imeProperties.time
Returns numpy array of datetime.time. The time part of the Timestamps.

pandas.tseries.common.DatetimeProperties.year

Datet imeProperties.year
The year of the datetime

pandas.tseries.common.DatetimeProperties.month

Datet imeProperties.month
The month as January=1, December=12

pandas.tseries.common.DatetimeProperties.day

Datet imeProperties.day
The days of the datetime

pandas.tseries.common.DatetimeProperties.hour

Datet imeProperties.hour
The hours of the datetime

pandas.tseries.common.DatetimeProperties.minute

Datet imeProperties.minute
The minutes of the datetime

pandas.tseries.common.DatetimeProperties.second

Datet imeProperties.second
The seconds of the datetime

pandas.tseries.common.DatetimeProperties.microsecond

Datet imeProperties.microsecond
The microseconds of the datetime

pandas.tseries.common.DatetimeProperties.nanosecond

Datet imeProperties.nanosecond
The nanoseconds of the datetime
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.tseries.common.DatetimeProperties.second

DatetimeProperties.second
The seconds of the datetime

pandas.tseries.common.DatetimeProperties.weekofyear

DatetimeProperties.weekofyear
The week ordinal of the year

pandas.tseries.common.DatetimeProperties.dayofweek

DatetimeProperties.dayofweek
The day of the week with Monday=0, Sunday=6

pandas.tseries.common.DatetimeProperties.weekday

DatetimeProperties.weekday
The day of the week with Monday=0, Sunday=6

pandas.tseries.common.DatetimeProperties.dayofyear

DatetimeProperties.dayofyear
The ordinal day of the year

pandas.tseries.common.DatetimeProperties.quarter

DatetimeProperties.quarter
The quarter of the date

pandas.tseries.common.DatetimeProperties.is_month_start

DatetimeProperties.is_month_start
Logical indicating if first day of month (defined by frequency)

pandas.tseries.common.DatetimeProperties.is_month_end

DatetimeProperties.is_month_end
Logical indicating if last day of month (defined by frequency)

pandas.tseries.common.DatetimeProperties.is_quarter_start

DatetimeProperties.is_quarter_start
Logical indicating if first day of quarter (defined by frequency)
pandas.tseries.common.DatetimeProperties.is_quarter_end

DatetimeProperties.is_quarter_end
Logical indicating if last day of quarter (defined by frequency)

pandas.tseries.common.DatetimeProperties.is_year_start

DatetimeProperties.is_year_start
Logical indicating if first day of year (defined by frequency)

pandas.tseries.common.DatetimeProperties.is_year_end

DatetimeProperties.is_year_end
Logical indicating if last day of year (defined by frequency)

Datetime Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeProperties.to_period(*args, **kwargs)</td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td>DatetimeProperties.to_pydatetime()</td>
<td></td>
</tr>
<tr>
<td>DatetimeProperties.tz_localize(*args, **kwargs)</td>
<td>Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex</td>
</tr>
<tr>
<td>DatetimeProperties.tz_convert(*args, **kwargs)</td>
<td>Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)</td>
</tr>
</tbody>
</table>

pandas.tseries.common.DatetimeProperties.to_period

DatetimeProperties.to_period(*args, **kwargs)
Cast to PeriodIndex at a particular frequency

pandas.tseries.common.DatetimeProperties.to_pydatetime

DatetimeProperties.to_pydatetime()

pandas.tseries.common.DatetimeProperties.tz_localize

DatetimeProperties.tz_localize(*args, **kwargs)
Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex

Parameters

tz : string, pytz.timezone, dateutil.tz.tzfile or None
Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time.

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
- ‘infer’ will attempt to infer fall dst-transition hours based on order
- bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
- ‘NaT’ will return NaT where there are ambiguous times
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

infer_dst : boolean, default False (DEPRECATED)
Attempt to infer fall dst-transition hours based on order

Returns localized : DatetimeIndex

pandas.tseries.common.DatetimeProperties.tz_convert

DatetimeProperties.tz_convert(*args, **kwargs)
Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None
Time zone for time. Corresponding timestamps would be converted to time zone of
the TimeSeries. None will remove timezone holding UTC time.

Returns normalized : DatetimeIndex

Timedelta Properties

<table>
<thead>
<tr>
<th>TimedeltaProperties.days</th>
<th>The number of integer days for each element</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimedeltaProperties.hours</td>
<td>The number of integer hours for each element</td>
</tr>
<tr>
<td>TimedeltaProperties.minutes</td>
<td>The number of integer minutes for each element</td>
</tr>
<tr>
<td>TimedeltaProperties.seconds</td>
<td>The number of integer seconds for each element</td>
</tr>
<tr>
<td>TimedeltaProperties.milliseconds</td>
<td>The number of integer milliseconds for each element</td>
</tr>
<tr>
<td>TimedeltaProperties.microseconds</td>
<td>The number of integer microseconds for each element</td>
</tr>
<tr>
<td>TimedeltaProperties.nanoseconds</td>
<td>The number of integer nanoseconds for each element</td>
</tr>
</tbody>
</table>

pandas.tseries.common.TimedeltaProperties.days

TimedeltaProperties.days
The number of integer days for each element

pandas.tseries.common.TimedeltaProperties.hours

TimedeltaProperties.hours
The number of integer hours for each element

pandas.tseries.common.TimedeltaProperties.minutes

TimedeltaProperties.minutes
The number of integer minutes for each element

pandas.tseries.common.TimedeltaProperties.seconds

TimedeltaProperties.seconds
The number of integer seconds for each element

pandas.tseries.common.TimedeltaProperties.milliseconds

TimedeltaProperties.milliseconds
The number of integer milliseconds for each element
pandas.tseries.common.TimedeltaProperties.microseconds

TimedeltaProperties.microseconds
The number of integer microseconds for each element

pandas.tseries.common.TimedeltaProperties.nanoseconds

TimedeltaProperties.nanoseconds
The number of integer nanoseconds for each element

pandas.tseries.common.TimedeltaProperties.components

TimedeltaProperties.components
Timedelta Methods

TimedeltaProperties.to_pytimedelta

32.3.14 String handling

Series.str can be used to access the values of the series as strings and apply several methods to it. Due to implementation details the methods show up here as methods of the StringMethods class. These can be accessed like Series.str.<function/property>.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StringMethods.cat([others, sep, na_rep])</td>
<td>Concatenate arrays of strings with given separator</td>
</tr>
<tr>
<td>StringMethods.center(width)</td>
<td>“Center” strings, filling left and right side with additional whitespace</td>
</tr>
<tr>
<td>StringMethods.contains(pat[, case, flags, ...])</td>
<td>Check whether given pattern is contained in each string in the array</td>
</tr>
<tr>
<td>StringMethods.count(pat[, flags])</td>
<td>Count occurrences of pattern in each string</td>
</tr>
<tr>
<td>StringMethods.decode(encoding[, errors])</td>
<td>Decode character string to unicode using indicated encoding</td>
</tr>
<tr>
<td>StringMethods.encode(encoding[, errors])</td>
<td>Encode character string to some other encoding using indicated encoding</td>
</tr>
<tr>
<td>StringMethods.endswith(pat[, na])</td>
<td>Return boolean array indicating whether each string ends with passed</td>
</tr>
<tr>
<td>StringMethods.extract(pat[, flags])</td>
<td>Find groups in each string using passed regular expression</td>
</tr>
<tr>
<td>StringMethods.findall(pat[, flags])</td>
<td>Find all occurrences of pattern or regular expression</td>
</tr>
<tr>
<td>StringMethods.get(i)</td>
<td>Extract element from lists, tuples, or strings in each element in the array</td>
</tr>
<tr>
<td>StringMethods.join(sep)</td>
<td>Join lists contained as elements in array, a la str.join</td>
</tr>
<tr>
<td>StringMethods.len()</td>
<td>Compute length of each string in array</td>
</tr>
<tr>
<td>StringMethods.lower()</td>
<td>Convert strings in array to lowercase</td>
</tr>
<tr>
<td>StringMethods.lstrip([to_strip])</td>
<td>Strip whitespace (including newlines) from left side of each string in the</td>
</tr>
<tr>
<td>StringMethods.match(pat[, case, flags, na, ...])</td>
<td>Deprecated: Find groups in each string using passed regular expression.</td>
</tr>
<tr>
<td>StringMethods.pad(width[, side])</td>
<td>Pad strings with whitespace</td>
</tr>
<tr>
<td>StringMethods.repeat(repeats)</td>
<td>Duplicate each string in the array by indicated number of times</td>
</tr>
<tr>
<td>StringMethods.replace(pat, repl[, n, case, ...])</td>
<td>Replace</td>
</tr>
<tr>
<td>StringMethods.rstrip([to_strip])</td>
<td>Strip whitespace (including newlines) from right side of each string in the</td>
</tr>
<tr>
<td>StringMethods.slice([start, stop, step])</td>
<td>Slice substrings from each element in array</td>
</tr>
<tr>
<td>StringMethods.slice_replace([i, jj])</td>
<td>Slice substrings from each element in array</td>
</tr>
</tbody>
</table>

Continued on next page

32.3. Series 967
pandas: powerful Python data analysis toolkit, Release 0.15.1

Table 32.37 – continued from previous page

StringMethods.split([pat, n, return_type])	Split each string (a la re.split) in array by given pattern, propagating NA
StringMethods.startswith(pat[, na])	Return boolean array indicating whether each string starts with passed
StringMethods.strip([to_strip])	Strip whitespace (including newlines) from each string in the array
StringMethods.title()	Convert strings to titlecased version
StringMethods.upper()	Convert strings in array to uppercase
StringMethods.get_dummies([sep])	Split each string by sep and return a frame of dummy/indicator variables.

pandas.core.strings.StringMethods.cat

StringMethods.cat (others=None, sep=None, na_rep=None)

Concatenate arrays of strings with given separator

Parameters
- `arr`: list or array-like
 - `others`: list or array, or list of arrays
 - `sep`: string or None, default None
 - `na_rep`: string or None, default None
 - If None, an NA in any array will propagate

Returns
- `concat`: array

pandas.core.strings.StringMethods.center

StringMethods.center(width)

“Center” strings, filling left and right side with additional whitespace

Parameters
- `width`: int
 - Minimum width of resulting string; additional characters will be filled with spaces

Returns
- `centered`: array

pandas.core.strings.StringMethods.contains

StringMethods.contains (pat, case=True, flags=0, na=nan, regex=True)

Check whether given pattern is contained in each string in the array

Parameters
- `pat`: string
 - Character sequence or regular expression
 - `case`: boolean, default True
 - If True, case sensitive
 - `flags`: int, default 0 (no flags)
 - re module flags, e.g. re.IGNORECASE
 - `na`: default NaN, fill value for missing values.
 - `regex`: bool, default True
 - If True use re.search, otherwise use Python in operator

Returns
- Series of boolean values
See Also:

match analogous, but stricter, relying on re.match instead of re.search

pandas.core.strings.StringMethods.count

StringMethods.count (pat, flags=0, **kwargs)
Count occurrences of pattern in each string

Parameters:
- arr: list or array-like
- pat: string, valid regular expression
- flags: int, default 0 (no flags)
 - re module flags, e.g. re.IGNORECASE

Returns:
- counts: arrays

pandas.core.strings.StringMethods.decode

StringMethods.decode (encoding, errors='strict')
Decode character string to unicode using indicated encoding

Parameters:
- encoding: string
- errors: string

Returns:
- decoded: array

pandas.core.strings.StringMethods.encode

StringMethods.encode (encoding, errors='strict')
Encode character string to some other encoding using indicated encoding

Parameters:
- encoding: string
- errors: string

Returns:
- encoded: array

pandas.core.strings.StringMethods.endswith

StringMethods.endswith (pat, na=nan)
Return boolean array indicating whether each string ends with passed pattern

Parameters:
- pat: string
 - Character sequence
- na: bool, default NaN

Returns:
- endswith: array (boolean)
pandas.core.strings.StringMethods.extract

StringMethods.extract (pat, flags=0, **kwargs)

Find groups in each string using passed regular expression

Parameters
- pat : string
 Pattern or regular expression
- flags : int, default 0 (no flags)
 re module flags, e.g. re.IGNORECASE

Returns
- extracted groups : Series (one group) or DataFrame (multiple groups)
 Note that dtype of the result is always object, even when no match is found and the
 result is a Series or DataFrame containing only NaN values.

Examples

A pattern with one group will return a Series. Non-matches will be NaN.

```python
>>> Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)')
0    1
1    2
2  NaN
```

A pattern with more than one group will return a DataFrame.

```python
>>> Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)')
   0   1
0  a  1
1  b  2
2  NaN  NaN
```

A pattern may contain optional groups.

```python
>>> Series(['a1', 'b2', 'c3']).str.extract('([ab])?(\d)')
0    1
0  a  1
1  b  2
2  NaN  3
```

Named groups will become column names in the result.

```python
>>> Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)')
   letter  digit
0      a      1
1      b      2
2  NaN  NaN
```

pandas.core.strings.StringMethods.findall

StringMethods.findall (pat, flags=0, **kwargs)

Find all occurrences of pattern or regular expression

Parameters
- pat : string
 Pattern or regular expression
flags : int, default 0 (no flags)
 re module flags, e.g. re.IGNORECASE
 Returns matches : array

pandas.core.strings.StringMethods.get

StringMethods.get(i)
 Extract element from lists, tuples, or strings in each element in the array
 Parameters i : int
 Integer index (location)
 Returns items : array

pandas.core.strings.StringMethods.join

StringMethods.join(sep)
 Join lists contained as elements in array, a la str.join
 Parameters sep : string
 Delimiter
 Returns joined : array

pandas.core.strings.StringMethods.len

StringMethods.len()
 Compute length of each string in array.
 Returns lengths : array

pandas.core.strings.StringMethods.lower

StringMethods.lower()
 Convert strings in array to lowercase
 Returns lowercase : array

pandas.core.strings.StringMethods.lstrip

StringMethods.lstrip(to_strip=None)
 Strip whitespace (including newlines) from left side of each string in the array
 Parameters to_strip : str or unicode
 Returns stripped : array
pandas.core.strings.StringMethods.match

StringMethods.match \(\text{pat}, \text{case}=True, \text{flags}=0, \text{na}=\text{nan}, \text{as_indexer}=False \)

Deprecated: Find groups in each string using passed regular expression. If as_indexer=True, determine if each string matches a regular expression.

Parameters
- **pat**: string
 - Character sequence or regular expression
- **case**: boolean, default True
 - If True, case sensitive
- **flags**: int, default 0 (no flags)
 - re module flags, e.g. re.IGNORECASE
- **na**: default NaN, fill value for missing values.
- **as_indexer**: False, by default, gives deprecated behavior better achieved using str.extract. True return boolean indexer.

Returns
- Series of boolean values if as_indexer=True
- Series of tuples if as_indexer=False, default but deprecated

See Also:
- contains analogous, but less strict, relying on re.search instead of re.match
- extract now preferred to the deprecated usage of match (as_indexer=False)

Notes
To extract matched groups, which is the deprecated behavior of match, use str.extract.

pandas.core.strings.StringMethods.pad

StringMethods.pad \(\text{width}, \text{side}=\text{`left'} \)

Pad strings with whitespace

Parameters
- **arr**: list or array-like
 - width : int
 - Minimum width of resulting string; additional characters will be filled with spaces
 - side : \{ `left', `right', `both' \}, default `left'

Returns
- padded : array
pandas.core.strings.StringMethods.repeat

StringMethods.repeat(repeats)
Duplicate each string in the array by indicated number of times

Parameters repeats : int or array
 Same value for all (int) or different value per (array)

Returns repeated : array

pandas.core.strings.StringMethods.replace

StringMethods.replace(pat, repl, n=-1, case=True, flags=0)
Replace

Parameters pat : string
 Character sequence or regular expression

repl : string
 Replacement sequence

n : int, default -1 (all)
 Number of replacements to make from start

case : boolean, default True
 If True, case sensitive

flags : int, default 0 (no flags)
 re module flags, e.g. re.IGNORECASE

Returns replaced : array

pandas.core.strings.StringMethods.rstrip

StringMethods.rstrip(to_strip=None)
Strip whitespace (including newlines) from right side of each string in the array

Parameters to_strip : str or unicode

Returns stripped : array

pandas.core.strings.StringMethods.slice

StringMethods.slice(start=None, stop=None, step=1)
Slice substrings from each element in array

Parameters start : int or None

stop : int or None

Returns sliced : array
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.core.strings.StringMethods.slice_replace

StringMethods.slice_replace(i=None, j=None)
Slice substrings from each element in array

Parameters
start : int or None
stop : int or None

Returns
sliced : array

pandas.core.strings.StringMethods.split

StringMethods.split(pat=None, n=-1, return_type='series')
Split each string (a la re.split) in array by given pattern, propagating NA values

Parameters
pat : string, default None
String or regular expression to split on. If None, splits on whitespace
n : int, default None (all)
return_type : {'series', 'frame'}, default 'series
If frame, returns a DataFrame (elements are strings) If series, returns an Series (elements are lists of strings).

Returns
split : array

Notes
Both 0 and -1 will be interpreted as return all splits

pandas.core.strings.StringMethods.startswith

StringMethods.startswith(pat, na=nan)
Return boolean array indicating whether each string starts with passed pattern

Parameters
pat : string
Character sequence
na : bool, default NaN

Returns
startswith : array (boolean)

pandas.core.strings.StringMethods.strip

StringMethods.strip(to_strip=None)
Strip whitespace (including newlines) from each string in the array

Parameters
to_strip : str or unicode

Returns
stripped : array
pandas.core.strings.StringMethods.title

StringMethods.title()
Convert strings to titlecased version

Returns titled : array

pandas.core.strings.StringMethods.upper

StringMethods.upper()
Convert strings in array to uppercase

Returns uppercase : array

pandas.core.strings.StringMethods.get_dummies

StringMethods.get_dummies(sep='|')
Split each string by sep and return a frame of dummy/indicator variables.

Examples

```python
>>> Series(['a|b', 'a', 'a|c']).str.get_dummies()
     a  b  c
 0  1  1  0
 1  1  0  0
 2  1  0  1

>>> pd.Series(['a|b', np.nan, 'a|c']).str.get_dummies()
     a  b  c
 0  1  1  0
 1  0  0  0
 2  1  0  1
```

See also pd.get_dummies.

32.3.15 Categorical

If the Series is of dtype `category`, Series.cat can be used to change the the categorical data. This accessor is similar to the Series.dt or Series.str and has the following usable methods and properties (all available as Series.cat.<method_or_property>).

<table>
<thead>
<tr>
<th>Method Or Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical.categories</td>
<td>The categories of this categorical.</td>
</tr>
<tr>
<td>Categorical.ordered</td>
<td>bool(x) -> bool</td>
</tr>
<tr>
<td>Categorical.rename_categories(new_categories)</td>
<td>Renames categories.</td>
</tr>
<tr>
<td>Categorical.reorder_categories(new_categories)</td>
<td>Reorders categories as specified in new_categories.</td>
</tr>
<tr>
<td>Categorical.add_categories(new_categories[, ...])</td>
<td>Add new categories.</td>
</tr>
<tr>
<td>Categorical.remove_categories(removals[, ...])</td>
<td>Removes the specified categories.</td>
</tr>
<tr>
<td>Categorical.remove_unused_categories([inplace])</td>
<td>Removes categories which are not used.</td>
</tr>
<tr>
<td>Categorical.set_categories(new_categories[, ...])</td>
<td>Sets the categories to the specified new_categories.</td>
</tr>
<tr>
<td>Categorical.codes</td>
<td>The category codes of this categorical.</td>
</tr>
</tbody>
</table>

32.3. Series
pandas.core.categorical.Categorical.categories

Categorical.categories
The categories of this categorical.

Setting assigns new values to each category (effectively a rename of each individual category).
The assigned value has to be a list-like object. All items must be unique and the number of items in the new
categories must be the same as the number of items in the old categories.
Assigning to categories is an inplace operation!

Raises ValueError
If the new categories do not validate as categories or if the number of new categories
is unequal the number of old categories

See Also:
rename_categories, reorder_categories, add_categories, remove_categories,
remove_unused_categories, set_categories

pandas.core.categorical.Categorical.ordered

Categorical.ordered = False
Whether or not this Categorical is ordered.

Only ordered Categoricals can be sorted (according to the order of the categories) and have a min and max
value.

See Also:
Categorical.sort, Categorical.order, Categorical.min, Categorical.max

pandas.core.categorical.Categorical.rename_categories

Categorical.rename_categories(new_categories, inplace=False)
Renames categories.
The new categories has to be a list-like object. All items must be unique and the number of items in the new
categories must be the same as the number of items in the old categories.

Parameters new_categories : Index-like
The renamed categories.

inplace : boolean (default: False)
Whether or not to rename the categories inplace or return a copy of this categorical
with renamed categories.

Returns cat : Categorical with renamed categories added or None if inplace.

 Raises ValueError
If the new categories do not have the same number of items than the current cate-
gories or do not validate as categories

See Also:
rename_categories, add_categories, remove_categories,
remove_unused_categories, set_categories
pandas.core.categorical.Categorical.reorder_categories

Categorical.reorder_categories (new_categories, ordered=None, inplace=False)
Reorders categories as specified in new_categories.

Parameters new_categories : Index-like
The categories in new order.

ordered : boolean, optional
Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

inplace : boolean (default: False)
Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns cat : Categorical with reordered categories or None if inplace.

Raises ValueError
If the new categories do not contain all old category items or any new ones

See Also:
rename_categories, add_categories, remove_categories, remove_unused_categories, set_categories

pandas.core.categorical.Categorical.add_categories

Categorical.add_categories (new_categories, inplace=False)
Add new categories.

new_categories will be included at the last/highest place in the categories and will be unused directly after this call.

Parameters new_categories : category or list-like of category
The new categories to be included.

inplace : boolean (default: False)
Whether or not to add the categories inplace or return a copy of this categorical with added categories.

Returns cat : Categorical with new categories added or None if inplace.

Raises ValueError
If the new categories include old categories or do not validate as categories

See Also:
rename_categories, reorder_categories, remove_categories, remove_unused_categories, set_categories
pandas.core.categorical.Categorical.remove_categories

Categorical.remove_categories(removals, inplace=False)

Removes the specified categories.

removals must be included in the old categories. Values which were in the removed categories will be set to NaN.

Parameters

removals : category or list of categories

The categories which should be removed.

inplace : boolean (default: False)

Whether or not to remove the categories inplace or return a copy of this categorical with removed categories.

Returns

cat : Categorical with removed categories or None if inplace.

Raises

ValueError

If the removals are not contained in the categories

See Also:

rename_categories, reorder_categories, add_categories, remove_unused_categories, set_categories

pandas.core.categorical.Categorical.remove_unused_categories

Categorical.remove_unused_categories(inplace=False)

Removes categories which are not used.

Parameters

inplace : boolean (default: False)

Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped.

Returns

cat : Categorical with unused categories dropped or None if inplace.

See Also:

rename_categories, reorder_categories, add_categories, remove_categories, set_categories

pandas.core.categorical.Categorical.set_categories

Categorical.set_categories(new_categories, ordered=None, rename=False, inplace=False)

Sets the categories to the specified new_categories.

new_categories can include new categories (which will result in unused categories) or or remove old categories (which results in values set to NaN). If rename==True, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively).

This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods.

On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string.

Parameters

new_categories : Index-like
The categories in new order.

ordered: boolean, optional

Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

rename: boolean (default: False)

Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories.

inplace: boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns

- **cat**: Categorical with reordered categories or None if inplace.

Raises

- ValueError

If new_categories does not validate as categories

See Also

rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories

pandas.core.categorical.Categorical.codes

Categorical.codes

The category codes of this categorical.

- Level codes are an array if integer which are the positions of the real values in the categories array.

There is not setter, use the other categorical methods and the normal item setter to change values in the categorical.

To create a Series of dtype category, use `cat = s.astype("category")`.

The following two Categorical constructors are considered API but should only be used when adding ordering information or special categories is need at creation time of the categorical data:

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical(values[, categories, ordered, ...])</td>
<td>Represents a categorical variable in classic R / S-plus fashion</td>
</tr>
<tr>
<td>Categorical.from_codes(codes, categories[, ...])</td>
<td>Make a Categorical type from codes and categories arrays.</td>
</tr>
</tbody>
</table>

pandas.core.categorical.Categorical

class pandas.core.categorical.Categorical (values, categories=None, ordered=None, name=None, fastpath=False, levels=None)

Represents a categorical variable in classic R / S-plus fashion

Categoricals can only take on only a limited, and usually fixed, number of possible values (*categories*). In contrast to statistical categorical variables, a *Categorical* might have an order, but numerical operations (additions, divisions, ...) are not possible.

All values of the *Categorical* are either in *categories* or np.nan. Assigning values outside of *categories* will raise a ValueError. Order is defined by the order of the *categories*, not lexical order of the values.

Parameters

- **values**: list-like
The values of the categorical. If categories are given, values not in categories will be replaced with NaN.

categories : Index-like (unique), optional

The unique categories for this categorical. If not given, the categories are assumed to be the unique values of values.

ordered : boolean, optional

Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be ordered if values can be sorted.

name : str, optional

Name for the Categorical variable. If name is None, will attempt to infer from values.

Raises ValueError

If the categories do not validate.

TypeError

If an explicit ordered=True is given but no categories and the values are not sortable.

Examples

```python
>>> from pandas import Categorical
>>> Categorical([1, 2, 3, 1, 2, 3])
[1, 2, 3, 1, 2, 3]
Categories (3, int64): [1 < 2 < 3]

>>> Categorical(['a', 'b', 'c', 'a', 'b', 'c'])
[a, b, c, a, b, c]
Categories (3, object): [a < b < c]

>>> a = Categorical(['a','b','c','a','b','c'], ['c', 'b', 'a'])
>>> a.min()
'c'
```

Attributes

- `categories`: The categories of this categorical.
- `codes`: The category codes of this categorical.

pandas.core.categorical.Categorical.categories

Categorical.categories

The categories of this categorical.

Setting assigns new values to each category (effectively a rename of each individual category).

The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.

Assigning to categories is a inplace operation!
Raises ValueError

If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories

See Also:
rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories, set_categories

pandas.core.categorical.Categorical.codes

Categorical.codes
The category codes of this categorical.

Level codes are an array if integer which are the positions of the real values in the categories array.

There is not setter, use the other categorical methods and the normal item setter to change values in the categorical.

| ordered | (boolean) Whether or not this Categorical is ordered. |
| name | (string) The name of this Categorical. |

Methods

add_categories(new_categories[, inplace]) Add new categories.
argsort([ascending]) Implements ndarray.argsort.
copy() Copy constructor.
describe() Describes this Categorical
equals(other) Returns True if categorical arrays are equal.
fillna([fill_value, method, limit]) Fill NA/NaN values using the specified method.
from_array(data, **kwargs) Make a Categorical type from a single array-like object.
from_codes(codes, categories[, ordered, name]) Make a Categorical type from codes and categories arrays.
get_values() Return the values.
isnull() Detect missing values
max([numeric_only]) The maximum value of the object.
min([numeric_only]) The minimum value of the object.
mode() Returns the mode(s) of the Categorical.
notnull() Reverse of isnull
order([inplace, ascending, na_position]) Sorts the Category by category value returning a new Categorical by default.
ravel([order]) Return a flattened (numpy) array.
remove_categories(removals[, inplace]) Removes the specified categories.
remove_unused_categories([inplace]) Removes categories which are not used.
rename_categories(new_categories[, ordered, ...]) Renames categories.
reorder_categories(new_categories[,...]) Reorders categories as specified in new_categories.
searchsorted(v[, side, sorter]) Return a view of myself.
set_categories(new_categories[, ordered, ...]) Sets the categories to the specified new_categories.
sort([inplace, ascending, na_position]) Sorts the Category inplace by category value.
take(indexer[, allow_fill, fill_value]) Take the codes by the indexer, fill with the fill_value.
take_nd(indexer[, allow_fill, fill_value]) Take the codes by the indexer, fill with the fill_value.
to_dense() Return my 'dense' representation
unique() Return the unique values.
view() Return a view of myself.
pandas.core.categorical.Categorical.add_categories

Categorical.add_categories(new_categories, inplace=False)
Add new categories.

new_categories will be included at the last/highest place in the categories and will be unused directly after
this call.

Parameters

new_categories : category or list-like of category
 The new categories to be included.

inplace : boolean (default: False)
 Whether or not to add the categories inplace or return a copy of this categorical
 with added categories.

Returns

cat : Categorical with new categories added or None if inplace.

Raises

ValueError
 If the new categories include old categories or do not validate as categories

See Also:

rename_categories, reorder_categories, remove_categories,
remove_unused_categories, set_categories

pandas.core.categorical.Categorical.argsort

Categorical.argsort(ascending=True, **kwargs)
Implements ndarray.argsort.
For internal compatibility with numpy arrays.
Only ordered Categoricals can be argsorted!

Returns

argsorted : numpy array

pandas.core.categorical.Categorical.copy

Categorical.copy()
Copy constructor.

pandas.core.categorical.Categorical.describe

Categorical.describe()
Describes this Categorical

Returns

description: DataFrame
 A dataframe with frequency and counts by category.
pandas.core.categorical.Categorical.equals

Categorical.equals(other)
Returns True if categorical arrays are equal.
The name of the Categorical is not compared!

Parameters other : Categorical

Returns are_equal : boolean

pandas.core.categorical.Categorical.fillna

Categorical.fillna(fill_value=None, method=None, limit=None, **kwargs)
Fill NA/NaN values using the specified method.

Parameters method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

value : scalar
Value to use to fill holes (e.g. 0)

limit : int, default None
Maximum size gap to forward or backward fill (not implemented yet!)

Returns filled : Categorical with NA/NaN filled

pandas.core.categorical.Categorical.from_array

classmethod Categorical.from_array(data, **kwargs)
Make a Categorical type from a single array-like object.
For internal compatibility with numpy arrays.

Parameters data : array-like
Can be an Index or array-like. The categories are assumed to be the unique values of data.

pandas.core.categorical.Categorical.from_codes

classmethod Categorical.from_codes(codes, categories, ordered=False, name=None)
Make a Categorical type from codes and categories arrays.
This constructor is useful if you already have codes and categories and so do not need the (computation intensive) factorization step, which is usually done on the constructor.
If your data does not follow this convention, please use the normal constructor.

Parameters codes : array-like, integers
An integer array, where each integer points to a category in categories or -1 for NaN

categories : index-like
The categories for the categorical. Items need to be unique.

ordered: boolean, optional

Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be unordered.

name: str, optional

Name for the Categorical variable.

pandas.core.categorical.Categorical.get_values

`Categorical.get_values()`

Return the values.

For internal compatibility with pandas formatting.

Returns values: numpy array

A numpy array of the same dtype as `categorical.categories.dtype` or dtype string if periods

pandas.core.categorical.Categorical.isnan

`Categorical.isnull()`

Detect missing values

Both missing values (-1 in .codes) and NA as a category are detected.

Returns: a boolean array of whether my values are null

See Also:

- `pandas.isnull` pandas version
- `Categorical.notnull` boolean inverse of `Categorical.isnull`

pandas.core.categorical.Categorical.max

`Categorical.max(numeric_only=None, **kwargs)`

The maximum value of the object.

Only ordered `Categoricals` have a maximum!

Returns: the maximum of this `Categorical`

Raisers: `TypeError`

If the `Categorical` is not ordered.

pandas.core.categorical.Categorical.min

`Categorical.min(numeric_only=None, **kwargs)`

The minimum value of the object.

Only ordered `Categoricals` have a minimum!

Returns: the minimum of this `Categorical`
Raises TypeError

If the Categorical is not ordered.

```

pandas.core.categorical.Categorical.mode
```

Categorical.mode()

Returns the mode(s) of the Categorical.

Empty if nothing occurs at least 2 times. Always returns Categorical even if only one value.

Returns modes : Categorical (sorted)

```

pandas.core.categorical.Categorical.notnull
```

Categorical.notnull()

Reverse of isnull

Both missing values (-1 in .codes) and NA as a category are detected as null.

Returns a boolean array of whether my values are not null

See Also:

pandas.notnull pandas version

Categorical.isnull boolean inverse of Categorical.notnull

```

pandas.core.categorical.Categorical.order
```

Categorical.order(inplace=False, ascending=True, na_position='last', **kwargs)

Sorts the Category by category value returning a new Categorical by default.

Only ordered Categoricals can be sorted!

Categorical.sort is the equivalent but sorts the Categorical inplace.

Parameters ascending : boolean, default True

Sort ascending. Passing False sorts descending

inplace : boolean, default False

Do operation in place.

na_position : {'first', 'last'} (optional, default='last')

‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

Returns y : Category or None

See Also:

Category.sort
pandas.core.categorical.Categorical.ravel

Categorical.ravel(order='C')

Return a flattened (numpy) array.

For internal compatibility with numpy arrays.

Returns raveled : numpy array

pandas.core.categorical.Categorical.remove_categories

Categorical.remove_categories(removals, inplace=False)

Removes the specified categories.

removals must be included in the old categories. Values which were in the removed categories will be set to NaN.

Parameters removals : category or list of categories

The categories which should be removed.

inplace : boolean (default: False)

Whether or not to remove the categories inplace or return a copy of this categorical with removed categories.

Returns cat : Categorical with removed categories or None if inplace.

Raises ValueError

If the removals are not contained in the categories

See Also:

rename_categories, reorder_categories, add_categories, remove_unused_categories, set_categories

pandas.core.categorical.Categorical.remove_unused_categories

Categorical.remove_unused_categories(inplace=False)

Removes categories which are not used.

Parameters inplace : boolean (default: False)

Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped.

Returns cat : Categorical with unused categories dropped or None if inplace.

See Also:

rename_categories, reorder_categories, add_categories, remove_categories, set_categories

pandas.core.categorical.Categorical.rename_categories

Categorical.rename_categories(new_categories, inplace=False)

 Renames categories.
The new categories has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.

Parameters

`new_categories` : Index-like

The renamed categories.

`inplace` : boolean (default: False)

Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories.

Returns

`cat` : Categorical with renamed categories added or None if inplace.

Raises

`ValueError`

If the new categories do not have the same number of items than the current categories or do not validate as categories

See Also:

`rename_categories`, `add_categories`, `remove_categories`, `remove_unused_categories`, `set_categories`

pandas.core.categorical.Categorical.reorder_categories

Categorical.reorder_categories(new_categories, ordered=None, inplace=False)

Reorders categories as specified in new_categories.

`new_categories` need to include all old categories and no new category items.

Parameters

`new_categories` : Index-like

The categories in new order.

`ordered` : boolean, optional

Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

`inplace` : boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns

`cat` : Categorical with reordered categories or None if inplace.

Raises

`ValueError`

If the new categories do not contain all old category items or any new ones

See Also:

`rename_categories`, `add_categories`, `remove_categories`, `remove_unused_categories`, `set_categories`

pandas.core.categorical.Categorical.searchsorted

Categorical.searchsorted(v, side='left', sorter=None)

32.3. Series 987
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.core.categorical.Categorical.set_categories

Categorical.set_categories (new_categories, ordered=None, rename=False, inplace=False)

Sets the categories to the specified new_categories.

new_categories can include new categories (which will result in unused categories) or or remove old categories (which results in values set to NaN). If rename==True, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively).

This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods.

On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string.

Parameters
new_categories : Index-like

The categories in new order.

ordered : boolean, optional

Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

rename : boolean (default: False)

Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories.

inplace : boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns
cat : Categorical with reordered categories or None if inplace.

Raises
ValueError

If new_categories does not validate as categories

See Also:

rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories

pandas.core.categorical.Categorical.sort

Categorical.sort (inplace=True, ascending=True, na_position='last', **kwargs)

Sorts the Category inplace by category value.

Only ordered Categoricals can be sorted!

Categorical.order is the equivalent but returns a new Categorical.

Parameters
ascending : boolean, default True

Sort ascending. Passing False sorts descending

inplace : boolean, default False

Do operation in place.

na_position : {'first', 'last'} (optional, default='last')
‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

Returns y : Category or None

See Also:

Category.order

pandas.core.categorical.Categorical.take

Categorical.\texttt{take}(\texttt{indexer}, \texttt{allow_fill=}True, \texttt{fill_value=}None)
Take the codes by the indexer, fill with the fill_value.
For internal compatibility with numpy arrays.

pandas.core.categorical.Categorical.take_nd

Categorical.\texttt{take_nd}(\texttt{indexer}, \texttt{allow_fill=}True, \texttt{fill_value=}None)
Take the codes by the indexer, fill with the fill_value.
For internal compatibility with numpy arrays.

pandas.core.categorical.Categorical.to_dense

Categorical.\texttt{to_dense}()
Return my ‘dense’ representation
For internal compatibility with numpy arrays.

Returns dense : array

pandas.core.categorical.Categorical.unique

Categorical.\texttt{unique}()
Return the unique values.
This includes all categories, even if one or more is unused.

Returns \texttt{unique_values} : array

pandas.core.categorical.Categorical.view

Categorical.\texttt{view}()
Return a view of myself.
For internal compatibility with numpy arrays.

Returns \texttt{view} : Categorical
Returns self!
pandas.core.categorical.Categorical.from_codes

```python
Categorical.from_codes(codes, categories, ordered=False, name=None)
```

Make a Categorical type from codes and categories arrays.

This constructor is useful if you already have codes and categories and so do not need the (computation intensive) factorization step, which is usually done on the constructor.

If your data does not follow this convention, please use the normal constructor.

Parameters
- `codes` : array-like, integers
 - An integer array, where each integer points to a category in categories or -1 for NaN
- `categories` : index-like
 - The categories for the categorical. Items need to be unique.
- `ordered` : boolean, optional
 - Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be unordered.
- `name` : str, optional
 - Name for the Categorical variable.

np.asarray(categorical) works by implementing the array interface. Be aware, that this converts the Categorical back to a numpy array, so levels and order information is not preserved!

```python
Categorical.__array__((dtype))
```

The numpy array interface.

pandas.core.categorical.Categorical.__array__

```python
Categorical.__array__(dtype=None)
```

The numpy array interface.

Returns
- `values` : numpy array
 - A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype

32.3.16 Plotting

```python
Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds)
```

Draw histogram of the input series using matplotlib

```python
Series.plot(data[, kind, ax, figsize, ...])
```

Make plots of Series using matplotlib / pylab.

pandas.Series.hist

```python
Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds)
```

Draw histogram of the input series using matplotlib

Parameters
- `by` : object, optional
 - If passed, then used to form histograms for separate groups
- `ax` : matplotlib axis object
If not passed, uses gca()

grid : boolean, default True
 Whether to show axis grid lines

xlabelsize : int, default None
 If specified changes the x-axis label size

xrot : float, default None
 rotation of x axis labels

ylabelsize : int, default None
 If specified changes the y-axis label size

yrot : float, default None
 rotation of y axis labels

figsize : tuple, default None
 figure size in inches by default

bins : integer, default 10
 Number of histogram bins to be used

kwds : keywords
 To be passed to the actual plotting function

Notes

See matplotlib documentation online for more on this

pandas.Series.plot

```
Series.plot(data, kind='line', ax=None, figsize=None, use_index=True,
            title=None, grid=None, legend=False, style=None,
            logx=False, logy=False, loglog=False, xticks=None,
            yticks=None, xlim=None, ylim=None, rot=None,
            fontsize=None, colormap=None, table=False,
            yerr=None, xerr=None, label=None, secondary_y=False, **kwds)
```

Make plots of Series using matplotlib / pylab.

Parameters

data : Series

kind : str
 - ‘line’ : line plot (default)
 - ‘bar’ : vertical bar plot
 - ‘barh’ : horizontal bar plot
 - ‘hist’ : histogram
 - ‘box’ : boxplot
 - ‘kde’ : Kernel Density Estimation plot
 - ‘density’ : same as ‘kde’
 - ‘area’ : area plot
• ‘pie’ : pie plot

ax : matplotlib axes object

If not passed, uses gca()

figsize : a tuple (width, height) in inches

use_index : boolean, default True

Use index as ticks for x axis

title : string

Title to use for the plot

grid : boolean, default None (matlab style default)

Axis grid lines

legend : False/True/’reverse’

Place legend on axis subplots

style : list or dict

matplotlib line style per column

logx : boolean, default False

Use log scaling on x axis

logy : boolean, default False

Use log scaling on y axis

loglog : boolean, default False

Use log scaling on both x and y axes

xticks : sequence

Values to use for the xticks

yticks : sequence

Values to use for the yticks

xlim : 2-tuple/list

ylim : 2-tuple/list

rot : int, default None

Rotation for ticks

fontsize : int, default None

Font size for ticks

colormap : str or matplotlib colormap object, default None

Colormap to select colors from. If string, load colormap with that name from matplotlib.

colorbar : boolean, optional

If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position : float
Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

layout: tuple (optional)
(rows, columns) for the layout of the plot

table: boolean, Series or DataFrame, default False

If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table.

yerr: DataFrame, Series, array-like, dict and str
See *Plotting with Error Bars* for detail.

xerr: same types as yerr.

label: label argument to provide to plot

secondary_y: boolean or sequence of ints, default False
If True then y-axis will be on the right

mark_right: boolean, default True
When using a secondary_y axis, automatically mark the column labels with ``(right)`` in the legend

kwds: keywords
Options to pass to matplotlib plotting method

Returns

axes: matplotlib.AxesSubplot or np.array of them

Notes

- See matplotlib documentation online for more on this subject
- If `kind` = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by `position` keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

32.3.17 Serialization / IO / Conversion

- **Series.from_csv**(path[, sep, parse_dates,...]) Read delimited file into Series
- **Series.to_pickle**(path) Pickle (serialize) object to input file path
- **Series.to_csv**(path[, index, sep, na_rep,...]) Write Series to a comma-separated values (csv) file
- **Series.to_dict**() Convert Series to {label -> value} dict
- **Series.to_frame**([name]) Convert Series to DataFrame
- **Series.to_hdf**(path_or_buf, key,**kwargs) activate the HDFStore
- **Series.to_sql**(name, con[, flavor, schema,...]) Write records stored in a DataFrame to a SQL database.
- **Series.to_msgpack**(path_or_buf) msgpack (serialize) object to input file path
- **Series.to_json**(path_or_buf, orient,...) Convert the object to a JSON string.
- **Series.to_sparse**([kind, fill_value]) Convert Series to SparseSeries
- **Series.to_dense**() Return dense representation of NDFrame (as opposed to sparse)
- **Series.to_string**(buf, na_rep,...) Render a string representation of the Series
- **Series.to_clipboard**(excel, sep) Attempt to write text representation of object to the system clipboard
pandas.Series.from_csv

```python
classmethod Series.from_csv(path, sep=’,’, parse_dates=True, header=None, index_col=0, encoding=None, infer_datetime_format=False)
```

Read delimited file into Series

Parameters
- **path**: string file path or file handle / StringIO
- **sep**: string, default ‘,’
- **parse_dates**: boolean, default True
 - Parse dates. Different default from read_table
- **header**: int, default 0
 - Row to use at header (skip prior rows)
- **index_col**: int or sequence, default 0
 - Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table
- **encoding**: string, optional
 - a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
- **infer_datetime_format**: boolean, default False
 - If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

Returns
- **y**: Series

pandas.Series.to_pickle

```python
Series.to_pickle(path)
```

Pickle (serialize) object to input file path

Parameters
- **path**: string
 - File path

pandas.Series.to_csv

```python
Series.to_csv(path, index=True, sep=’,’, na_rep=’’, float_format=None, header=False, index_label=None, mode=’w’, nanRep=None, encoding=None, date_format=None)
```

Write Series to a comma-separated values (csv) file

Parameters
- **path**: string file path or file handle / StringIO. If None is provided the result is returned as a string.
 - **na_rep**: string, default ‘’
 - Missing data representation
 - **float_format**: string, default None
 - Format string for floating point numbers
header : boolean, default False
 Write out series name
index : boolean, default True
 Write row names (index)
index_label : string or sequence, default None
 Column label for index column(s) if desired. If None is given, and header and
 index are True, then the index names are used. A sequence should be given if the
 DataFrame uses MultiIndex.
mode : Python write mode, default ’w’
sep : character, default ”,”
 Field delimiter for the output file.
encoding : string, optional
 a string representing the encoding to use if the contents are non-ascii, for python
 versions prior to 3

date_format: string, default None
 Format string for datetime objects.

pandas.Series.to_dict

Series.to_dict()
 Convert Series to {label -> value} dict
 Returns value_dict : dict

pandas.Series.to_frame

Series.to_frame(name=None)
 Convert Series to DataFrame
 Parameters name : object, default None
 The passed name should substitute for the series name (if it has one).
 Returns data_frame : DataFrame

pandas.Series.to_hdf

Series.to_hdf(path_or_buf, key, **kwargs)
 activate the HDFStore
 Parameters path_or_buf : the path (string) or buffer to put the store
 key : string
 identifier for the group in the store
 mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’
 ‘r’ Read-only; no data can be modified.
‘w’ Write; a new file is created (an existing file with the same name would be deleted).

‘a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

‘r+’ It is similar to ‘a’, but the file must already exist.

(format: ‘fixed(f)|table(t)’, default is ‘fixed’

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False

For Table formats, append the input data to the existing

complevel : int, 1-9, default 0

If a complib is specified compression will be applied where possible

complib : {‘zlib’, ‘bz2’, ‘lzma’, ‘blosc’, None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum

pandas.Series.to_sql

Series.to_sql(name, con, flavor='sqlite', schema=None, if_exists='fail', index=True, index_label=None, chunksize=None)

Write records stored in a DataFrame to a SQL database.

Parameters name : string

Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)

Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

flavor : {‘sqlite’, ‘mysql’}, default ‘sqlite’

The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

schema : string, default None

Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’

• fail: If table exists, do nothing.
• replace: If table exists, drop it, recreate it, and insert data.
• append: If table exists, insert data. Create if does not exist.
index : boolean, default True

Write DataFrame index as a column.

index_label : string or sequence, default None

Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None

If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

pandas.Series.to_msgpack

Series.to_msgpack(path_or_buf=None, **kwargs)

msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters

- path : string File path, buffer-like, or None

 if None, return generated string

- append : boolean whether to append to an existing msgpack

 (default is False)

- compress : type of compressor (zlib or blosc), default to None (no compression)

pandas.Series.to_json

Series.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters

- path_or_buf : the path or buffer to write the result string

 if this is None, return a StringIO of the converted string

- orient : string

 • Series

 – default is ‘index’

 – allowed values are: {'split', 'records', 'index'}

 • DataFrame

 – default is ‘columns’

 – allowed values are: {'split', 'records', 'index', 'columns', 'values'}

 • The format of the JSON string

 – split : dict like {index -> [index], columns -> [columns], data -> [values]}

 – records : list like [{column -> value}, ... , {column -> value}]

32.3. Series
- `index`: dict like `{index -> {column -> value}}`
- `columns`: dict like `{column -> {index -> value}}`
- `values`: just the values array

date_format: `{‘epoch’, ‘iso’}`

Type of date conversion. `epoch` = epoch milliseconds, `iso` = ISO8601, default is `epoch`.

double_precision: The number of decimal places to use when encoding floating point values, default 10.

force_ascii: force encoded string to be ASCII, default True.

date_unit: string, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

default_handler: callable, default None

Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

Returns
same type as input object with filtered info axis

pandas.Series.to_sparse

```
Series.to_sparse(kind='block', fill_value=None)
```

Convert Series to SparseSeries

Parameters
`kind`: {'block', 'integer'}

`fill_value`: float, defaults to NaN (missing)

Returns
`sp`: SparseSeries

pandas.Series.to_dense

```
Series.to_dense()
```

Return dense representation of NDFrame (as opposed to sparse)

pandas.Series.to_string

```
Series.to_string(buf=None, na_rep='NaN', float_format=None, length=False, dtype=False, name=False)
```

Render a string representation of the Series

Parameters
`buf`: StringIO-like, optional

buffer to write to

`na_rep`: string, optional

string representation of NAN to use, default ‘NaN’

`float_format`: one-parameter function, optional

formatter function to apply to columns’ elements if they are floats default None
pandas.Series.to_clipboard

Series.to_clipboard(excel=None, sep=None, **kwargs)

Attempts to write the text representation of an object to the system clipboard. This can be pasted into Excel, for example.

Parameters
- **excel**: boolean, defaults to True
 - if True, use the provided separator, writing in a CSV format for allowing easy pasting into Excel. If False, write a string representation of the object to the clipboard.
- **sep**: optional, defaults to tab
- **other keywords are passed to to_csv**

Notes

Requirements for your platform
- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none

32.4 DataFrame

32.4.1 Constructor

DataFrame(data=None, index=None, columns=None, dtype=None, copy=False)

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure.

Parameters
- **data**: numpy ndarray (structured or homogeneous), dict, or DataFrame
 - Dict can contain Series, arrays, constants, or list-like objects
- **index**: Index or array-like
- **columns**: Index or array-like
- **dtype**: object
 - The data types of the columns
- **copy**: boolean, default False
 - If True, make a copy of the input data
Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided

columns : Index or array-like

Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided
dtype : dtype, default None

Data type to force, otherwise infer
copy : boolean, default False

Copy data from inputs. Only affects DataFrame / 2d ndarray input

See Also:

DataFrame.from_records constructor from tuples, also record arrays
DataFrame.from_dict from dicts of Series, arrays, or dicts
DataFrame.from_csv from CSV files
DataFrame.from_items from sequence of (key, value) pairs

Examples

>>> d = {'col1': ts1, 'col2': ts2}
>>> df = DataFrame(data=d, index=index)
>>> df2 = DataFrame(np.random.randn(10, 5))
>>> df3 = DataFrame(np.random.randn(10, 5),
... columns=['a', 'b', 'c', 'd', 'e'])

Attributes

T Transpose index and columns
at
axes
blocks Internal property, property synonym for as_blocks()
dtypes Return the dtypes in this object
empty True if NDFrame is entirely empty [no items]
ftypes Return the ftypes (indication of sparse/dense and dtype)
iat
iloc
ix
loc
ndim Number of axes / array dimensions
shape
values Numpy representation of NDFrame
DataFrame

- `pandas.DataFrame.T`
 - DataFrame.T
 - Transpose index and columns

- `pandas.DataFrame.at`
 - DataFrame.at

- `pandas.DataFrame.axes`
 - DataFrame.axes

- `pandas.DataFrame.blocks`
 - DataFrame.blocks
 - Internal property, property synonym for as_blocks()

- `pandas.DataFrame.dtypes`
 - DataFrame.dtypes
 - Return the dtypes in this object

- `pandas.DataFrame.empty`
 - DataFrame.empty
 - True if NDFrame is entirely empty [no items]

- `pandas.DataFrame.ftypes`
 - DataFrame.ftypes
 - Return the ftypes (indication of sparse/dense and dtype) in this object.

- `pandas.DataFrame.iat`
 - DataFrame.iat

- `pandas.DataFrame.iloc`
 - DataFrame.iloc

- `pandas.DataFrame.ix`
 - DataFrame.ix
pandas.DataFrame.loc

DataFrame.loc

pandas.DataFrame.ndim

DataFrame.ndim
Number of axes / array dimensions

pandas.DataFrame.shape

DataFrame.shape

pandas.DataFrame.values

DataFrame.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

E.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td>add(other[, axis, level, fill_value])</td>
<td>Binary operator add with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names</td>
</tr>
<tr>
<td>align(other[, join, axis, level, copy, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>all([axis, bool_only, skipna, level])</td>
<td>Return whether all elements are True over requested axis.</td>
</tr>
<tr>
<td>any([axis, bool_only, skipna, level])</td>
<td>Return whether any element is True over requested axis.</td>
</tr>
<tr>
<td>append(other[, ignore_index, verify_integrity])</td>
<td>Append columns of other to end of this frame’s columns and index, returning a</td>
</tr>
<tr>
<td>apply(func[, axis, broadcast, raw, reduce, args])</td>
<td>Applies function along input axis of DataFrame.</td>
</tr>
<tr>
<td>applymap(func)</td>
<td>Apply a function to a DataFrame that is intended to operate</td>
</tr>
<tr>
<td>as_blocks()</td>
<td>Convert the frame to a dict of dtype -> Constructor Types that each has</td>
</tr>
<tr>
<td>as_matrix([columns])</td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td>asfreq(freq[, method, how, normalize])</td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td>astype(dtype[, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>at_time(time[, asof])</td>
<td>Select values at particular time of day (e.g.)</td>
</tr>
<tr>
<td>between_time(start_time, end_time[, ...])</td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM)</td>
</tr>
<tr>
<td>bfill([axis, inplace, limit, downcast])</td>
<td>Synonym for NDFrame.fillna(method='bfill')</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>bool()</td>
<td>Return the bool of a single element PandasObject</td>
</tr>
<tr>
<td>boxplot([column, by, ax, fontsize, rot, ...])</td>
<td>Make a box plot from DataFrame column optionally grouped by some columns</td>
</tr>
<tr>
<td>clip([lower, upper, out])</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td>clip_lower(threshold)</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td>clip_upper(threshold)</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td>combine(other, func[, fill_value, overwrite])</td>
<td>Add two DataFrame objects and do not propagate NaN values, so if for a</td>
</tr>
<tr>
<td>combineAdd(other)</td>
<td>Add two DataFrame objects and do not propagate</td>
</tr>
<tr>
<td>combineMult(other)</td>
<td>Multiply two DataFrame objects and do not propagate NaN values, so if</td>
</tr>
<tr>
<td>combine_first(other)</td>
<td>Combine two DataFrame objects and default to non-null values in frame</td>
</tr>
<tr>
<td>compound([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td>consolidate([inplace])</td>
<td>Compute NDFrame with “consolidated” internals (data of each dtype</td>
</tr>
<tr>
<td>convert_objects([convert_dates, ...])</td>
<td>Attempt to infer better dtype for object columns</td>
</tr>
<tr>
<td>copy([deep])</td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td>corr([method, min_periods])</td>
<td>Compute pairwise correlation of columns, excluding NA/null values</td>
</tr>
<tr>
<td>corrwith(other[, axis, drop])</td>
<td>Compute pairwise correlation between rows or columns of two DataFrame</td>
</tr>
<tr>
<td>count([axis, level, numeric_only])</td>
<td>Return Series with number of non-NA/null observations over requested</td>
</tr>
<tr>
<td>cov([min_periods])</td>
<td>Compute pairwise covariance of columns, excluding NA/null values</td>
</tr>
<tr>
<td>cummax([axis, dtype, out, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td>cummin([axis, dtype, skipna])</td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td>cumprod([axis, dtype, out, skipna])</td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td>cumsum([axis, dtype, out, skipna])</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>describe([percentile_width, percentiles, ...])</td>
<td>Generate various summary statistics, excluding NaN values</td>
</tr>
<tr>
<td>diff([periods])</td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td>div(other[, axis, level, fill_value])</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data in the other object</td>
</tr>
<tr>
<td>divide(other[, axis, level, fill_value])</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data in the other object</td>
</tr>
<tr>
<td>dot(other)</td>
<td>Matrix multiplication with DataFrame or Series objects</td>
</tr>
<tr>
<td>drop(labels[, axis, level, inplace])</td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td>drop_duplicates(*args, **kwargs)</td>
<td>Return DataFrame with duplicate rows removed, optionally only</td>
</tr>
<tr>
<td>dropna([axis, how, thresh, subset, inplace])</td>
<td>Return object with labels on given axis omitted where alternately any</td>
</tr>
<tr>
<td>duplicated(*args, **kwargs)</td>
<td>Return boolean Series denoting duplicate rows, optionally only</td>
</tr>
<tr>
<td>eq(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods eq</td>
</tr>
<tr>
<td>equals(other)</td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the other object</td>
</tr>
<tr>
<td>eval(expr, **kwargs)</td>
<td>Evaluate an expression in the context of the calling DataFrame</td>
</tr>
<tr>
<td>ffill([axis, inplace, limit, downcast])</td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td>fillna([value, method, axis, inplace, ...])</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>filter([items, like, regex, axis])</td>
<td>Restrict the info axis to set of items or wildcard</td>
</tr>
<tr>
<td>first(offset)</td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td>first_valid_index()</td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td>floordiv(other[, axis, level, fill_value])</td>
<td>Binary operator floordiv with support to substitute a fill_value for missing data in the other object</td>
</tr>
<tr>
<td>from_csv(path[, header, sep, index_col, ...])</td>
<td>Read delimited file into DataFrame</td>
</tr>
<tr>
<td>from_dict(data[, orient, dtype])</td>
<td>Construct DataFrame from dict of array-like or dicts</td>
</tr>
<tr>
<td>from_items(items[, columns, orient])</td>
<td>Convert (key, value) pairs to DataFrame. The keys will be the axis</td>
</tr>
<tr>
<td>from_records(data[, index, exclude, ...])</td>
<td>Convert structured or record ndarray to DataFrame</td>
</tr>
<tr>
<td>ge(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods ge</td>
</tr>
<tr>
<td>get(key[, default])</td>
<td>Get item from object for given key (DataFrame column, Panel slice,</td>
</tr>
<tr>
<td>get_dtype_counts()</td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td>get_ftype_counts()</td>
<td>Return the counts of ftypes in this object</td>
</tr>
<tr>
<td>get_value(index, col[, takeable])</td>
<td>Quickly retrieve single value at passed column and index</td>
</tr>
<tr>
<td>get_values()</td>
<td>same as values (but handles sparseness conversions)</td>
</tr>
<tr>
<td>groupby([by, axis, level, as_index, sort, ...])</td>
<td>Group series using mapper (dict or key function, apply given function</td>
</tr>
</tbody>
</table>

Continued on next page
Table 32.47 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>gt()</code></td>
<td>Wrapper for flexible comparison methods</td>
</tr>
<tr>
<td><code>head()</code></td>
<td>Returns first n rows</td>
</tr>
<tr>
<td><code>hist()</code></td>
<td>Draw histogram of the DataFrame’s series using matplotlib / pylab.</td>
</tr>
<tr>
<td><code>icol()</code></td>
<td></td>
</tr>
<tr>
<td><code>idxmax()</code></td>
<td>Return index of first occurrence of maximum over requested axis.</td>
</tr>
<tr>
<td><code>idxmin()</code></td>
<td>Return index of first occurrence of minimum over requested axis.</td>
</tr>
<tr>
<td><code>iget_value()</code></td>
<td></td>
</tr>
<tr>
<td><code>info()</code></td>
<td>Concise summary of a DataFrame.</td>
</tr>
<tr>
<td><code>insert()</code></td>
<td>Insert column into DataFrame at specified location.</td>
</tr>
<tr>
<td><code>interpolate()</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>irow()</code></td>
<td></td>
</tr>
<tr>
<td><code>isin()</code></td>
<td>Return boolean DataFrame showing whether each element in the</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Iterator over (column, series) pairs</td>
</tr>
<tr>
<td><code>iterkv()</code></td>
<td>Get the ‘info axis’ (see Indexing for more)</td>
</tr>
<tr>
<td><code>iterrows()</code></td>
<td>Join columns with other DataFrame either on index or on a key.</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td></td>
</tr>
<tr>
<td><code>kurt()</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>kurtosis()</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>last()</code></td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td><code>last_valid_index()</code></td>
<td>Return index of last non-NA/null value</td>
</tr>
<tr>
<td><code>le()</code></td>
<td>Wrapper for flexible comparison methods</td>
</tr>
<tr>
<td><code>load()</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>lookup()</code></td>
<td>Label-based “fancy indexing” function for DataFrame.</td>
</tr>
<tr>
<td><code>lt()</code></td>
<td>Wrapper for flexible comparison methods</td>
</tr>
<tr>
<td><code>mad()</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>mask()</code></td>
<td>Returns copy whose values are replaced with nan if the target value is nan</td>
</tr>
<tr>
<td><code>max()</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean()</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>median()</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>memory_usage()</code></td>
<td>Memory usage of DataFrame columns.</td>
</tr>
<tr>
<td><code>merge()</code></td>
<td>Merge DataFrame objects by performing a database-style join operation by</td>
</tr>
<tr>
<td><code>min()</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>mod()</code></td>
<td>Binary operator mod with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>mode()</code></td>
<td>Gets the mode of each element along the axis selected.</td>
</tr>
<tr>
<td><code>mul()</code></td>
<td>Binary operator mul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>multiply()</code></td>
<td>Binary operator mul with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>ne()</code></td>
<td>Wrapper for flexible comparison methods</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>pct_change()</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pivot()</code></td>
<td>Reshape data (produce a “pivot” table) based on column values.</td>
</tr>
<tr>
<td><code>pivot_table()</code></td>
<td>Create a spreadsheet-style pivot table as a DataFrame. The levels in the</td>
</tr>
<tr>
<td><code>plot()</code></td>
<td>Make plots of DataFrame using matplotlib / pylab.</td>
</tr>
<tr>
<td><code>pop()</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow()</code></td>
<td>Binary operator pow with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td><code>prod()</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>product()</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>quantile()</code></td>
<td>Return values at the given quantile over requested axis, a la numpy.percentile.</td>
</tr>
</tbody>
</table>

Continued on next page.
Table 32.47 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>query(expr, **kwargs)</td>
<td>Query the columns of a frame with a boolean expression.</td>
</tr>
<tr>
<td>radd(other[, axis, level, fill_value])</td>
<td>Binary operator radd with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>rank([axis, numeric_only, method, ...])</td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td>rdiv(other[, axis, level, fill_value])</td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>reindex([index, columns])</td>
<td>Conform DataFrame to new index with optional filling logic, placing</td>
</tr>
<tr>
<td>reindex_axis([labels[, axis, method, level, ...]])</td>
<td>Conform input object to new index with optional filling logic,</td>
</tr>
<tr>
<td>reindex_like(other[, method, copy, limit])</td>
<td>return an object with matching indices to myself</td>
</tr>
<tr>
<td>rename([index, columns])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>rename_axis(mapper[, axis, copy, inplace])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td>reorder_levels([order[, axis]])</td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td>replace([to_replace, value, inplace])</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td>resample([rule[, how, axis, fill_method, ...]])</td>
<td>Convenience method for frequency conversion and resampling of regular time-</td>
</tr>
<tr>
<td>reset_index([level, drop, inplace])</td>
<td>For DataFrame with multi-level index, return new DataFrame with</td>
</tr>
<tr>
<td>rfloordiv(other[, axis, level, fill_value])</td>
<td>Binary operator rfloordiv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>rmod(other[, axis, level, fill_value])</td>
<td>Binary operator rmod with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>rmul(other[, axis, level, fill_value])</td>
<td>Binary operator rmul with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>rpow(other[, axis, level, fill_value])</td>
<td>Binary operator rpow with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>rsub(other[, axis, level, fill_value])</td>
<td>Binary operator rsub with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>rtruediv(other[, axis, level, fill_value])</td>
<td>Binary operator rtruediv with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>save(path)</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>select_dtypes([include, exclude])</td>
<td>Return a subset of a DataFrame including/excluding columns based on</td>
</tr>
<tr>
<td>sem([axis, skipna, level, ddof])</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td>set_axis(axis, labels)</td>
<td>public version of axis assignment.</td>
</tr>
<tr>
<td>set_index(keys[, drop, append, inplace])</td>
<td>Set the DataFrame index (row labels) using one or more existing</td>
</tr>
<tr>
<td>set_value(col[, value[, takeable]])</td>
<td>Put single value at passed column and index</td>
</tr>
<tr>
<td>shift([periods, freq, axis])</td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td>skew([axis, skipna, level, numeric_only])</td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td>slice_shift([periods, axis])</td>
<td>Equivalent to shift without copying data.</td>
</tr>
<tr>
<td>sort([columns, axis, ascending, inplace])</td>
<td>Sort DataFrame either by labels (along either axis) or by the values in</td>
</tr>
<tr>
<td>sort_index([axis, by, ascending, inplace])</td>
<td>Sort DataFrame either by labels (along either axis) or by the values in</td>
</tr>
<tr>
<td>sortlevel([level, axis, ascending, inplace])</td>
<td>Sort multilevel index by chosen axis and primary level.</td>
</tr>
<tr>
<td>squeeze()</td>
<td>squeeze length 1 dimensions</td>
</tr>
<tr>
<td>stack([level, dropna])</td>
<td>Pivot a level of the (possibly hierarchical) column labels, returning a</td>
</tr>
<tr>
<td>std([axis, skipna, level, ddof])</td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td>substract(other[, axis, level, fill_value])</td>
<td>Binary operator sub with support to substitute a fill_value for missing data in</td>
</tr>
<tr>
<td>sum([axis, skipna, level, numeric_only])</td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td>swapaxes(ax1[, ax2, copy])</td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td>swaplevel(i, j[, axis])</td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td>tail([n])</td>
<td>Returns last n rows</td>
</tr>
<tr>
<td>take(indices[, axis, convert, is_copy])</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>to_clipboard([excel, sep])</td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
<tr>
<td>to_csv(*args, **kwargs)</td>
<td>Write DataFrame to a comma-separated values (csv) file</td>
</tr>
<tr>
<td>to_dense()</td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td>to_dict(*args, **kwargs)</td>
<td>Convert DataFrame to dictionary.</td>
</tr>
<tr>
<td>to_excel(*args, **kwargs)</td>
<td>Write DataFrame to a excel sheet</td>
</tr>
<tr>
<td>to_gbq(destination_table[, project_id, ...])</td>
<td>Write a DataFrame to a Google BigQuery table.</td>
</tr>
<tr>
<td>to_hdf(path_or_buf, key, **kwargs)</td>
<td>activate the HDFStore</td>
</tr>
<tr>
<td>to_html([buf, columns, col_space, colSpace, ...])</td>
<td>Render a DataFrame as an HTML table.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 32.47 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>to_json([path_or_buf, orient, date_format, ...])</td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td>to_latex([buf, columns, col_space, ...])</td>
<td>Render a DataFrame to a tabular environment table. You can splice</td>
</tr>
<tr>
<td>to_msgpack(path_or_buf)</td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td>to_panel()</td>
<td>Transform long (stacked) format (DataFrame) into wide (3D, Panel)</td>
</tr>
<tr>
<td>to_period([freq, axis, copy])</td>
<td>Convert DataFrame from DatetimeIndex to PeriodIndex with desired</td>
</tr>
<tr>
<td>to_pickle(path)</td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td>to_records([index, convert_datetime64])</td>
<td>Convert DataFrame to record array. Index will be put in the</td>
</tr>
<tr>
<td>to_sparse([fill_value, kind])</td>
<td>Convert to SparseDataFrame</td>
</tr>
<tr>
<td>to_sql(name, con[, flavor, schema, ...])</td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td>to_stata(name[, convert_dates, ...])</td>
<td>A class for writing Stata binary dta files from array-like objects</td>
</tr>
<tr>
<td>to_timestamp([freq, how, axis, copy])</td>
<td>Cast to DatetimeIndex of timestamps, at beginning of period</td>
</tr>
<tr>
<td>to_wide(*args, **kwargs)</td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td>transpose()</td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td>truediv(other[, axis, level, fill_value])</td>
<td>Binary operator truediv with support to substitute a fill_value for missing data</td>
</tr>
<tr>
<td>truncate([before, after, axis, copy])</td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
<tr>
<td>tshift([periods, freq, axis])</td>
<td>Shift the time index, using the index’s frequency if available</td>
</tr>
<tr>
<td>tz_convert(tz[, axis, level, copy])</td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td>tz_localize(*args, **kwargs)</td>
<td>Localize tz-naive TimeSeries to target time zone</td>
</tr>
<tr>
<td>unstack([level])</td>
<td>Pivot a level of the (necessarily hierarchical) index labels, returning</td>
</tr>
<tr>
<td>update(other[, join, overwrite, ...])</td>
<td>Modify DataFrame in place using non-NA values from passed</td>
</tr>
<tr>
<td>var([axis, skipna, level, ddof])</td>
<td>Return unbiased variance over requested axis</td>
</tr>
<tr>
<td>where(cond[, other, inplace, axis, level, ...])</td>
<td>Return an object of same shape as self and whose corresponding</td>
</tr>
<tr>
<td>xs(key[, axis, level, copy, drop_level])</td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
</tbody>
</table>

pandas.DataFrame.abs

DataFrame.abs()
Return an object with absolute value taken. Only applicable to objects that are all numeric

Returns
abs: type of caller

pandas.DataFrame.add

DataFrame.add(other, axis=’columns’, level=None, fill_value=None)
Binary operator add with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame
Notes

Mismatched indices will be unioned together

pandas.DataFrame.add_prefix

DataFrame.add_prefix(prefix)
Concatenate prefix string with panel items names.

Parameters prefix : string

Returns with_prefix : type of caller

pandas.DataFrame.add_suffix

DataFrame.add_suffix(suffix)
Concatenate suffix string with panel items names

Parameters suffix : string

Returns with_suffix : type of caller

pandas.DataFrame.align

DataFrame.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)
Align two object on their axes with the specified join method for each axis

Parameters other : DataFrame or Series

 join : {'outer', 'inner', 'left', 'right'}, default 'outer'

 axis : allowed axis of the other object, default None

 Align on index (0), columns (1), or both (None)

 level : int or level name, default None

 Broadcast across a level, matching Index values on the passed MultiIndex level

 copy : boolean, default True

 Always returns new objects. If copy=False and no reindexing is required then
 original objects are returned.

 fill_value : scalar, default np.NaN

 Value to use for missing values. Defaults to NaN, but can be any “compatible”
 value

 method : str, default None

 limit : int, default None

 fill_axis : {0, 1}, default 0

 Filling axis, method and limit

Returns (left, right) : (type of input, type of other)

Aligned objects
pandas.DataFrame.all

DataFrame.all (axis=None, bool_only=None, skipna=True, level=None, **kwargs)
Return whether all elements are True over requested axis. %(na_action)s

Parameters
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
bool_only : boolean, default None
Only include boolean data.

Returns any : Series (or DataFrame if level specified)

pandas.DataFrame.any

DataFrame.any (axis=None, bool_only=None, skipna=True, level=None, **kwargs)
Return whether any element is True over requested axis. %(na_action)s

Parameters
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
bool_only : boolean, default None
Only include boolean data.

Returns any : Series (or DataFrame if level specified)

pandas.DataFrame.append

DataFrame.append (other, ignore_index=False, verify_integrity=False)
Append columns of other to end of this frame’s columns and index, returning a new object. Columns not in this frame are added as new columns.

Parameters
other : DataFrame or list of Series/dict-like objects
ignore_index : boolean, default False
If True do not use the index labels. Useful for gluing together record arrays
verify_integrity : boolean, default False
If True, raise ValueError on creating index with duplicates
Returns appended : DataFrame

Notes

If a list of dict is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged

pandas.DataFrame.apply

DataFrame.apply (func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

Applies function along input axis of DataFrame.

Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty.

Parameters

func : function

Function to apply to each column/row

axis : {0, 1}

- 0 : apply function to each column
- 1 : apply function to each row

broadcast : boolean, default False

For aggregation functions, return object of same size with values propagated

reduce : boolean or None, default None

Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned.

raw : boolean, default False

If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance

args : tuple

Positional arguments to pass to function in addition to the array/series

Additional keyword arguments will be passed as keywords to the function

Returns applied : Series or DataFrame

See Also:

DataFrame.applymap For elementwise operations
Notes

In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.

Examples

```python
gf.apply(numpy.sqrt)  # returns DataFrame
gf.apply(numpy.sum, axis=0)  # equiv to df.sum(0)
gf.apply(numpy.sum, axis=1)  # equiv to df.sum(1)
```

pandas.DataFrame.applymap

DataFrame.applymap(func)

Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame

Parameters

- **func**: function

Python function, returns a single value from a single value

Returns

- **applied**: DataFrame

See Also:

DataFrame.apply For operations on rows/columns

pandas.DataFrame.as_blocks

DataFrame.as_blocks()

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. are presented in sorted order unless a specific list of columns is provided.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters

- **columns**: array-like

Specific column order

Returns

- **values**: a list of Object

pandas.DataFrame.as_matrix

DataFrame.as_matrix(columns=None)

Convert the frame to its Numpy-array representation.

Parameters

- **columns**: list, optional, default:None

If None, return all columns, otherwise, returns specified columns.

Returns

- **values**: ndarray

If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.
See Also:

pandas.DataFrame.values

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

This method is provided for backwards compatibility. Generally, it is recommended to use `.values`.

pandas.DataFrame.asfreq

DataFrame.asfreq(freq=None, method=None, how=None, normalize=False)
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

Parameters:
- freq : DateOffset object, or string
- method : {'backfill', 'bfill', 'pad', 'ffill', None}
 Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method
- how : {'start', 'end'}, default end
 For PeriodIndex only, see PeriodIndex.asfreq
- normalize : bool, default False
 Whether to reset output index to midnight

Returns:
- converted : type of caller

pandas.DataFrame.astype

DataFrame.astype(dtype, copy=True, raise_on_error=True)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters:
- dtype : numpy.dtype or Python type
- raise_on_error : raise on invalid input

Returns:
- casted : type of caller

pandas.DataFrame.at_time

DataFrame.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM)

Parameters:
- time : datetime.time or string
Returns values_at_time : type of caller

pandas.DataFrame.between_time

DataFrame.between_time (start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM)
Parameters start_time : datetime.time or string
 end_time : datetime.time or string
 include_start : boolean, default True
 include_end : boolean, default True
Returns values_between_time : type of caller

pandas.DataFrame.bfill

DataFrame.bfill (axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.DataFrame.bool

DataFrame.bool()
Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False
Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

pandas.DataFrame.boxplot

DataFrame.boxplot (column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds)
Make a box plot from DataFrame column optionally grouped by some columns or other inputs
Parameters data : the pandas object holding the data
 column : column name or list of names, or vector
 Can be any valid input to groupby
 by : string or sequence
 Column in the DataFrame to group by
 ax : Matplotlib axes object, optional
 fontsize : int or string
 rot : label rotation angle
 figsize : A tuple (width, height) in inches
 grid : Setting this to True will show the grid
 layout : tuple (optional)
 (rows, columns) for the layout of the plot
 return_type : {'axes', 'dict', 'both'}, default 'dict'
The kind of object to return. ‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot; ‘axes’ returns the matplotlib axes the boxplot is drawn on; ‘both’ returns a namedtuple with the axes and dict.

When grouping with by, a dict mapping columns to return_type is returned.

kwds: other plotting keyword arguments to be passed to matplotlib boxplot function

Returns

lines : dict

ax : matplotlib Axes

(ax, lines): namedtuple

Notes

Use return_type=‘dict’ when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.

pandas.DataFrame.clip

DataFrame.clip(lower=None, upper=None, out=None)

Trim values at input threshold(s)

Parameters

lower : float, default None

upper : float, default None

Returns

clipped : Series

pandas.DataFrame.clip_lower

DataFrame.clip_lower(threshold)

Return copy of the input with values below given value truncated

Returns

clipped : same type as input

See Also:

clip

pandas.DataFrame.clip_upper

DataFrame.clip_upper(threshold)

Return copy of input with values above given value truncated

Returns

clipped : same type as input

See Also:

clip
pandas.DataFrame.combine

DataFrame.combine (other, func, fill_value=None, overwrite=True)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters
other : DataFrame
func : function
fill_value : scalar value
overwrite : boolean, default True
If True then overwrite values for common keys in the calling frame

Returns
result : DataFrame

pandas.DataFrame.combineAdd

DataFrame.combineAdd (other)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters
other : DataFrame

Returns
DataFrame

pandas.DataFrame.combineMult

DataFrame.combineMult (other)
Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters
other : DataFrame

Returns
DataFrame

pandas.DataFrame.combine_first

DataFrame.combine_first (other)
Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns

Parameters
other : DataFrame

Returns
combined : DataFrame

Examples

a’s values prioritized, use values from b to fill holes:

```python
>>> a.combine_first(b)
```
pandas.DataFramecompound

DataFrame.compound(axis=None, skipna=None, level=None, **kwargs)

Return the compound percentage of the values for the requested axis

Parameters
axis : {index (0), columns (1)}

 skipna : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

 level : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Series

 numeric_only : boolean, default None

 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns compounded : Series or DataFrame (if level specified)

pandas.DataFrame.consolidate

DataFrame.consolidate(inplace=False)

Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndar-
ray). Mainly an internal API function, but available here to the savvy user

Parameters
inplace : boolean, default False

 If False return new object, otherwise modify existing object

Returns consolidated : type of caller

pandas.DataFrame.convert_objects

DataFrame.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)

Attempt to infer better dtype for object columns

Parameters
convert_dates : if True, attempt to soft convert dates, if ‘coerce’,

 force conversion (and non-convertibles get NaT)

 convert_numeric : if True attempt to coerce to numbers (including

 strings), non-convertibles get NaN

 convert_timedeltas : if True, attempt to soft convert timedeltas, if ‘coerce’,

 force conversion (and non-convertibles get NaT)

 copy : Boolean, if True, return copy even if no copy is necessary

 (e.g. no conversion was done), default is True. It is meant for internal use, not to
 be confused with inplace kw.

Returns converted : asm as input object
pandas: powerful Python data analysis toolkit, Release 0.15.1

```python
pandas.DataFrame.copy
```

DataFrame.copy\((deep=True)\)
Make a copy of this object

Parameters
- **deep**: boolean or string, default True
 - Make a deep copy, i.e. also copy data

Returns
- **copy**: type of caller

```python
pandas.DataFrame.corr
```

DataFrame.corr\(\text{method='pearson', min_periods=1}\)
Compute pairwise correlation of columns, excluding NA/null values

Parameters
- **method**: {'pearson', 'kendall', 'spearman'}
 - pearson: standard correlation coefficient
 - kendall: Kendall Tau correlation coefficient
 - spearman: Spearman rank correlation
- **min_periods**: int, optional
 - Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation

Returns
- **y**: DataFrame

```python
pandas.DataFrame.corrwith
```

DataFrame.corrwith\(\text{other, axis=0, drop=False}\)
Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters
- **other**: DataFrame
- **axis**: {0, 1}
 - 0 to compute column-wise, 1 for row-wise
- **drop**: boolean, default False
 - Drop missing indices from result, default returns union of all

Returns
- **correls**: Series

```python
pandas.DataFrame.count
```

DataFrame.count\(\text{axis=0, level=None, numeric_only=False}\)
Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None)

Parameters
- **axis**: {0, 1}
 - 0 for row-wise, 1 for column-wise
- **level**: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

- numeric_only : boolean, default False
 - Include only float, int, boolean data

Returns
- count : Series (or DataFrame if level specified)

pandas.DataFrame.cov

DataFrame.cov (min_periods=None)
Compute pairwise covariance of columns, excluding NA/null values

Parameters
- min_periods : int, optional
 - Minimum number of observations required per pair of columns to have a valid result.

Returns
- y : DataFrame

Notes

y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator).

pandas.DataFrame.cummax

DataFrame.cummax (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative max over requested axis.

Parameters
- axis : {index (0), columns (1)}
- skipna : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- max : Series

pandas.DataFrame.cummin

DataFrame.cummin (axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative min over requested axis.

Parameters
- axis : {index (0), columns (1)}
- skipna : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- min : Series
pandas.DataFrame.cumprod

DataFrame.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative prod over requested axis.

Parameters
- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- **prod**: Series

pandas.DataFrame.cumsum

DataFrame.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative sum over requested axis.

Parameters
- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- **sum**: Series

pandas.DataFrame.describe

DataFrame.describe(percentile_width=None, percentiles=None, include=None, exclude=None)
Generate various summary statistics, excluding NaN values.

Parameters
- **percentile_width**: float, deprecated
 The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75
- **percentiles**: array-like, optional
 The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.
- **include, exclude**: list-like, ‘all’, or None (default)
 Specify the form of the returned result. Either:
 - None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
 - A list of dtypes or strings to be included/excluded. To select all numeric types use numpy number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])
 - If include is the string ‘all’, the output column-set will match the input one.

Returns
- **summary**: NDFrame of summary statistics

See Also:
- DataFrame.select_dtypes
Notes

The output DataFrame index depends on the requested dtypes:
For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.
For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.
For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.
The include, exclude arguments are ignored for Series.

pandas.DataFrame.diff

DataFrame.diff(periods=1)
1st discrete difference of object

Parameters periods : int, default 1
Periods to shift for forming difference

Returns diffed : DataFrame

pandas.DataFrame.div

DataFrame.div(other, axis='columns', level=None, fill_value=None)
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together
pandas.DataFrame.divide

DataFrame.divide(other, axis='columns', level=None, fill_value=None)
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.dot

DataFrame.dot(other)
Matrix multiplication with DataFrame or Series objects

Parameters
other : DataFrame or Series

Returns
dot_product : DataFrame or Series

pandas.DataFrame.drop

DataFrame.drop(labels, axis=0, level=None, inplace=False, **kwargs)
Return new object with labels in requested axis removed

Parameters
labels : single label or list-like
axis : int or axis name
level : int or level name, default None
For MultiIndex
inplace : bool, default False
If True, do operation inplace and return None.

Returns
dropped : type of caller
pandas.DataFrame.drop_duplicates

DataFrame.\texttt{drop_duplicates(*args, **kwargs)}
Return DataFrame with duplicate rows removed, optionally only considering certain columns

Parameters
- \texttt{subset} : column label or sequence of labels, optional
 - Only consider certain columns for identifying duplicates, by default use all of the columns
- \texttt{take_last} : boolean, default False
 - Take the last observed row in a row. Defaults to the first row
- \texttt{inplace} : boolean, default False
 - Whether to drop duplicates in place or to return a copy
- \texttt{cols} : kwargs only argument of subset [deprecated]

Returns
- \texttt{deduplicated} : DataFrame

pandas.DataFrame.dropna

DataFrame.\texttt{dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)}
Return object with labels on given axis omitted where alternately any or all of the data are missing

Parameters
- \texttt{axis} : {0, 1}, or tuple/list thereof
 - Pass tuple or list to drop on multiple axes
- \texttt{how} : {'any', 'all'}
 - any : if any NA values are present, drop that label
 - all : if all values are NA, drop that label
- \texttt{thresh} : int, default None
 - int value : require that many non-NA values
- \texttt{subset} : array-like
 - Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include
- \texttt{inplace} : boolean, default False
 - If True, do operation inplace and return None.

Returns
- \texttt{dropped} : DataFrame

pandas.DataFrame.duplicated

DataFrame.\texttt{duplicated(*args, **kwargs)}
Return boolean Series denoting duplicate rows, optionally only considering certain columns

Parameters
- \texttt{subset} : column label or sequence of labels, optional
 - Only consider certain columns for identifying duplicates, by default use all of the columns
- \texttt{take_last} : boolean, default False
pandas: powerful Python data analysis toolkit, Release 0.15.1

Take the last observed row in a row. Defaults to the first row

cols : kwarg only argument of subset [deprecated]

Returns duplicated : Series

pandas.DataFrame.eq

DataFrame.eq(other, axis='columns', level=None)

Wrapper for flexible comparison methods eq

pandas.DataFrame.equals

DataFrame.equals(other)

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.DataFrame.eval

DataFrame.eval(expr, **kwargs)

Evaluate an expression in the context of the calling DataFrame instance.

Parameters

expr : string

The expression string to evaluate.

kwargs : dict

See the documentation for eval() for complete details on the keyword arguments accepted by query().

Returns ret : ndarray, scalar, or pandas object

See Also:

pandas.DataFrame.query, pandas.eval

Notes

For more details see the API documentation for eval(). For detailed examples see enhancing performance with eval.

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.eval('a + b')
>>> df.eval('c = a + b')
```
pandas.DataFrame.ffill

DataFrame.ffill *(axis=0, inplace=False, limit=None, downcast=None)*
Synonym for NDFrame.fillna(method='ffill')

pandas.DataFrame.fillna

DataFramefillna *(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)*
Fill NA/NaN values using the specified method

Parameters

- **method** : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 Method to use for filling holes in reindexed Series
 pad / ffill: propagate last valid observation forward to next valid
 backfill / bfill: use NEXT valid observation to fill gap

- **value** : scalar, dict, Series, or DataFrame
 Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values
 specifying which value to use for each index (for a Series) or column (for a
 DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value
 cannot be a list.

- **axis** : {0, 1}, default 0
 • 0: fill column-by-column
 • 1: fill row-by-row

- **inplace** : boolean, default False
 If True, fill in place. Note: this will modify any other views on this object, (e.g. a
 no-copy slice for a column in a DataFrame).

- **limit** : int, default None
 Maximum size gap to forward or backward fill

- **downcast** : dict, default is None
 a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which
 will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns

- **filled** : same type as caller

See Also:

- reindex, asfreq

pandas.DataFrame.filter

DataFrame.filter *(items=None, like=None, regex=None, axis=None)*
Restrict the info axis to set of items or wildcard

Parameters

- **items** : list-like
 List of info axis to restrict to (must not all be present)

- **like** : string
 Keep info axis where “arg in col == True”
regex : string (regular expression)
 Keep info axis with re.search(regex, col) == True

axis : int or None
 The axis to filter on. By default this is the info axis. The “info axis” is the axis
 that is used when indexing with[]. For example, df = DataFrame({'a':
 [1, 2, 3, 4]}); df['a']. So, the DataFrame columns are the info
 axis.

Notes

Arguments are mutually exclusive, but this is not checked for

pandas.DataFrame.first

DataFrame.first(offset)
 Convenience method for subsetting initial periods of time series data based on a date offset

Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

ts.last(‘10D’) -> First 10 days

pandas.DataFrame.first_valid_index

DataFrame.first_valid_index()
 Return label for first non-NA/null value

pandas.DataFrame.floordiv

DataFrame.floordiv(other, axis='columns', level=None, fill_value=None)
 Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant
 axis : {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
 fill_value : None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are miss-
 ing, the result will be missing
 level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame
Notes

Mismatched indices will be unioned together

pandas.DataFrame.from_csv

classmethod DataFrame.from_csv(path, header=0, sep=',', index_col=0,
parse_dates=True, encoding=None, tupleize_cols=False,
infer_datetime_format=False)

Read delimited file into DataFrame

Parameters

- **path**: string file path or file handle / StringIO
- **header**: int, default 0
 - Row to use at header (skip prior rows)
- **sep**: string, default ‘,’
 - Field delimiter
- **index_col**: int or sequence, default 0
 - Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table
- **parse_dates**: boolean, default True
 - Parse dates. Different default from read_table
- **tupleize_cols**: boolean, default False
 - write multi_index columns as a list of tuples (if True) or new (expanded format) if False
- **infer_datetime_format**: boolean, default False
 - If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

Returns

- **y**: DataFrame

Notes

Preferable to use read_table for most general purposes but from_csv makes for an easy roundtrip to and from file, especially with a DataFrame of time series data

pandas.DataFrame.from_dict

classmethod DataFrame.from_dict(data, orient='columns', dtype=None)

Construct DataFrame from dict of array-like or dicts

Parameters

- **data**: dict
 - {field : array-like} or {field : dict}
- **orient**: {'columns', 'index'}, default 'columns'}
The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass `columns` (default). Otherwise if the keys should be rows, pass ‘index’.

Returns DataFrame

pandas.DataFrame.from_items

classmethod DataFrame.from_items *(items, columns=None, orient='columns')*

Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series.

Parameters
- **items**: sequence of (key, value) pairs
 - Values should be arrays or Series.
- **columns**: sequence of column labels, optional
 - Must be passed if orient='index'.
- **orient** : {'columns', 'index'}, default ‘columns’
 - The “orientation” of the data. If the keys of the input correspond to column labels, pass ‘columns’ (default). Otherwise if the keys correspond to the index, pass ‘index’.

Returns **frame** : DataFrame

pandas.DataFrame.from_records

classmethod DataFrame.from_records *(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)*

Convert structured or record ndarray to DataFrame

Parameters
- **data**: ndarray (structured dtype), list of tuples, dict, or DataFrame
- **index**: string, list of fields, array-like
 - Field of array to use as the index, alternately a specific set of input labels to use
- **exclude**: sequence, default None
 - Columns or fields to exclude
- **columns**: sequence, default None
 - Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns)
- **coerce_float**: boolean, default False
 - Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

Returns **df** : DataFrame
pandas.DataFrame.ge

DataFrame.ge(other, axis='columns', level=None)
Wrapper for flexible comparison methods ge

pandas.DataFrame.get

DataFrame.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found

Parameters key : object
Returns value : type of items contained in object

pandas.DataFrame.get_dtype_counts

DataFrame.get_dtype_counts()
Return the counts of dtypes in this object

pandas.DataFrame.get_ftype_counts

DataFrame.get_ftype_counts()
Return the counts of ftypes in this object

pandas.DataFrame.get_value

DataFrame.get_value(index, col, takeable=False)
Quickly retrieve single value at passed column and index

Parameters index : row label
col : column label
takeable : interpret the index/col as indexers, default False
Returns value : scalar value

pandas.DataFrame.get_values

DataFrame.get_values()
same as values (but handles sparseness conversions)

pandas.DataFrame.groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns

Parameters by : mapping function / list of functions, dict. Series, or tuple /
list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups.

axis : int, default 0

level : int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels.

as_index : boolean, default True

For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output.

sort : boolean, default True

Sort group keys. Get better performance by turning this off.

group_keys : boolean, default True

When calling apply, add group keys to index to identify pieces.

squeeze : boolean, default False

reduce the dimensionality of the return type if possible, otherwise return a consistent type.

Returns GroupBy object

Examples

DataFrame result >>> data.groupby(func, axis=0).mean()

DataFrame result >>> data.groupby(['col1', 'col2'])['col3'].mean()

DataFrame with hierarchical index >>> data.groupby(['col1', 'col2']).mean()

pandas.DataFrame.gt

DataFrame.gt(other, axis='columns', level=None)

Wrapper for flexible comparison methods gt

pandas.DataFrame.head

DataFrame.head(n=5)

Returns first n rows

pandas.DataFrame.hist

DataFrame.hist(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds)

Draw histogram of the DataFrame’s series using matplotlib / pylab.

Parameters

- **data** : DataFrame
- **column** : string or sequence
If passed, will be used to limit data to a subset of columns

by: object, optional
If passed, then used to form histograms for separate groups

grid: boolean, default True
Whether to show axis grid lines

xlabelsize: int, default None
If specified changes the x-axis label size

xrot: float, default None
rotation of x axis labels

ylabelsize: int, default None
If specified changes the y-axis label size

yrot: float, default None
rotation of y axis labels

ax: matplotlib axes object, default None

sharex: bool, if True, the X axis will be shared amongst all subplots.

sharey: bool, if True, the Y axis will be shared amongst all subplots.

figsize: tuple
The size of the figure to create in inches by default

layout: (optional) a tuple (rows, columns) for the layout of the histograms

bins: integer, default 10
Number of histogram bins to be used

kwds: other plotting keyword arguments
To be passed to hist function

pandas.DataFrame.icol

Dataframe.

icol(*i*)

pandas.DataFrame.idxmax

Dataframe.

idxmax(axis=0, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

Parameters

- **axis**: {0, 1}
0 for row-wise, 1 for column-wise

- **skipna**: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be first index.

Returns

- **idmax**: Series
See Also:

Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

pandas.DataFrame.idxmin

DataFrame.idxmin (axis=0, skipna=True)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters

axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns

idxmin : Series

See Also:

Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.

pandas.DataFrame.iget_value

DataFrame.iget_value(i, j)

pandas.DataFrame.info

DataFrame.info (verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)
Concise summary of a DataFrame.

Parameters

verbose : {None, True, False}, optional
Whether to print the full summary. None follows the display.max_info_columns setting. True or False overrides the display.max_info_columns setting.
buf : writable buffer, defaults to sys.stdout
max_cols : int, default None
Determines whether full summary or short summary is printed. None follows the display.max_info_columns setting.
memory_usage : boolean, default None
Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the display.memory_usage setting. True or False overrides the display.memory_usage setting. Memory usage is shown in human-readable units (base-2 representation).

null_counts : boolean, default None

Whether to show the non-null counts If None, then only show if the frame is smaller than max_info_rows and max_info_columns. If True, always show counts. If False, never show counts.

pandas.DataFrame.insert

```python
DataFrame.insert(loc, column, value, allow_duplicates=False)
```

Insert column into DataFrame at specified location.

If allow_duplicates is False, raises Exception if column is already contained in the DataFrame.

Parameters

- **loc** : int
 Must have 0 <= loc <= len(columns)

- **column** : object

- **value** : int, Series, or array-like

pandas.DataFrame.interpolate

```python
DataFrame.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)
```

Interpolate values according to different methods.

Parameters

- **method** : {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline', 'piecewise_polynomial', 'pchip'}

 - ‘linear’: ignore the index and treat the values as equally spaced. default
 - ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval
 - ‘index’, ‘values’: use the actual numerical values of the index
 - ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’ require that you also specify and order (int) e.g. df.interpolate(method='polynomial', order=4)

- **axis** : {0, 1}, default 0
 - 0: fill column-by-column
 - 1: fill row-by-row
limit : int, default None.
Maximum number of consecutive NaNs to fill.

inplace : bool, default False
Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None
Downcast dtypes if possible.

Returns Series or DataFrame of same shape interpolated at the NaNs

See Also: reindex, replace,fillna

Examples

Filling in NaNs:
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0 1 2 2 3 3
dtype: float64

pandas.DataFrame.irow

DataFrame.irow(i, copy=False)

pandas.DataFrame.isin

DataFrame.isin(values)
Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

Parameters values : iterable, Series, DataFrame or dictionary
The result will only be true at a location if all the labels match. If values is a Series, that's the index. If values is a dictionary, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match.

Returns DataFrame of booleans

Examples

When values is a list:

>>> df = DataFrame({‘A’: [1, 2, 3], ‘B’: [‘a’, ‘b’, ‘f’]})
>>> df.isin([1, 3, 12, ‘a’])
A B
0 True True
1 False False
2 True False

When values is a dict:

>>> df = DataFrame({‘A’: [1, 2, 3], ‘B’: [1, 4, 7]})
>>> df.isin({‘A’: [1, 3], ‘B’: [4, 7, 12]})
A B
0 True False # Note that B didn’t match the 1 here.
When values is a Series or DataFrame:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
>>> df.isin(other)
   A  B
0  True  False  # Column A in 'other' has a 3, but not at index 1.
1  False  False
2  True  True
```

pandas.DataFrame.isnull

DataFrame.isnull()
Return a boolean same-sized object indicating if the values are null

See Also:

.notnull boolean inverse of isnull

pandas.DataFrame.iteritems

DataFrame.iteritems()
Iterator over (column, series) pairs

pandas.DataFrame.iterkv

DataFrame.iterkv(*args, **kwargs)
iteritems alias used to get around 2to3. Deprecated

pandas.DataFrame.iterrows

DataFrame.iterrows()
Iterate over rows of DataFrame as (index, Series) pairs.

Returns

it : generator
A generator that iterates over the rows of the frame.

Notes

• iterrows does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

```python
>>> df = DataFrame([[1, 1.0]], columns=[‘x’, ‘y’])
>>> row = next(df.iterrows())[1]
>>> print(row[‘x’].dtype)  
float64
>>> print(df[‘x’].dtype)  
int64
```
pandas.DataFrame.itertuples

```python
DataFrame.itertuples(index=True)
```

Iterate over rows of DataFrame as tuples, with index value as first element of the tuple.

pandas.DataFrame.join

```python
DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)
```

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

Parameters
- `other` : DataFrame, Series with name field set, or list of DataFrame
 - Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame.
- `on` : column name, tuple/list of column names, or array-like
 - Column(s) to use for joining, otherwise join on index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation.
- `how` : {'left', 'right', 'outer', 'inner'}
 - How to handle indexes of the two objects. Default: ‘left’ for joining on index. None otherwise.
 - left: use calling frame’s index
 - right: use input frame’s index
 - outer: form union of indexes
 - inner: use intersection of indexes
- `lsuffix` : string
 - Suffix to use from left frame’s overlapping columns
- `rsuffix` : string
 - Suffix to use from right frame’s overlapping columns
- `sort` : boolean, default False
 - Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame.

Returns
- `joined` : DataFrame

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects.
pandas.DataFrame.keys

`DataFrame.keys()`
Get the ‘info axis’ (see Indexing for more)
This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.DataFrame.kurt

`DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **kurt**: Series or DataFrame (if level specified)

pandas.DataFrame.kurtosis

`DataFrame.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **kurt**: Series or DataFrame (if level specified)

pandas.DataFrame.last

`DataFrame.last(offset)`
Convenience method for subsetting final periods of time series data based on a date offset

Parameters

- **offset**: string, DateOffset, dateutil.relativedelta
Returns subset: type of caller

Examples

ts.last('5M') -> Last 5 months

pandas.DataFrame.last_valid_index

DataFrame.last_valid_index()
Return label for last non-NA/null value

pandas.DataFrame.le

DataFrame.le(other, axis='columns', level=None)
Wrapper for flexible comparison methods le

pandas.DataFrame.load

DataFrame.load(path)
Deprecated. Use read_pickle instead.

pandas.DataFrame.lookup

DataFrame.lookup(row_labels, col_labels)
Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair.

Parameters row_labels: sequence
The row labels to use for lookup

col_labels: sequence
The column labels to use for lookup

Notes

Akin to:

result = []
for row, col in zip(row_labels, col_labels):
 result.append(df.get_value(row, col))

Examples

values [ndarray] The found values
pandas.DataFrame.lt

DataFrame.lt(other, axis='columns', level=None)
Wrapper for flexible comparison methods lt

pandas.DataFrame.mad

DataFrame.mad(axis=None, skipna=None, level=None, **kwargs)
Return the mean absolute deviation of the values for the requested axis

Parameters
axis : {index (0), columns (1)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Series
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns
mad : Series or DataFrame (if level specified)

pandas.DataFrame.mask

DataFrame.mask(cond)
Returns copy whose values are replaced with nan if the inverted condition is True

Parameters
cond : boolean NDFrame or array

Returns
wh : same as input

pandas.DataFrame.max

DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object. If you want the index of the maximum, use
idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters
axis : {index (0), columns (1)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Series
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns
max : Series or DataFrame (if level specified)
pandas.DataFrame.mean

Dataframe.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters axis : {index (0), columns (1)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns mean : Series or DataFrame (if level specified)

pandas.DataFrame.median

DataFrame.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters axis : {index (0), columns (1)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns median : Series or DataFrame (if level specified)

pandas.DataFrame.memory_usage

DataFrame.memory_usage (index=False)
Memory usage of DataFrame columns.

Parameters index : bool
 Specifies whether to include memory usage of DataFrame’s index in returned Series. If index=True (default is False) the first index of the Series is Index.

Returns sizes : Series
 A series with column names as index and memory usage of columns with units of bytes.
See Also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array.

pandas.DataFrame.merge

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters

right : DataFrame

how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’

• left: use only keys from left frame (SQL: left outer join)
• right: use only keys from right frame (SQL: right outer join)
• outer: use union of keys from both frames (SQL: full outer join)
• inner: use intersection of keys from both frames (SQL: inner join)

on : label or list

Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.

left_on : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns

right_on : label or list, or array-like

Field names to join on in right DataFrame or vector/list of vectors per left_on
docs

left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index

sort : boolean, default False

Sort the join keys lexicographically in the result DataFrame

suffixes : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively
copy : boolean, default True
If False, do not copy data unnecessarily

Returns merged : DataFrame
The output type will the be same as ‘left’, if it is a subclass of DataFrame.

Examples

```python
>>> A
  lkey  value
0   foo  1
1   bar  2
2   baz  3
3   foo  4

>>> B
  rkey  value
0   foo  5
1   bar  6
2   qux  7
3   bar  8

>>> merge(A, B, left_on='lkey', right_on='rkey', how='outer')
  lkey  value_x  rkey  value_y
0   foo       1       foo       5
1   foo       4       foo       5
2   bar       2       bar       6
3   bar       2       bar       8
4   baz       3       NaN       NaN
5   NaN       NaN       qux       7
```

pandas.DataFrame.min

DataFrame.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns min : Series or DataFrame (if level specified)

pandas.DataFrame.mod

DataFrame.mod (other, axis='columns', level=None, fill_value=None)
Binary operator mod with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.mode

DataFrame.mode *(axis=0, numeric_only=False)*
Gets the mode of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan.

Parameters
axis : {0, 1, ‘index’, ‘columns’} (default 0)

• 0/‘index’ : get mode of each column

• 1/‘columns’ : get mode of each row

numeric_only : boolean, default False

if True, only apply to numeric columns

Returns
modes : DataFrame (sorted)

pandas.DataFrame.mul

DataFrame.mul *(other, axis=’columns’, level=None, fill_value=None)*
Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes

Mismatched indices will be unioned together

32.4. DataFrame
pandas.DataFrame.multiply

DataFrame.multiply(other, axis='columns', level=None, fill_value=None)

Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

Parameters
- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- **result**: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.ne

DataFrame.ne(other, axis='columns', level=None)

Wrapper for flexible comparison methods ne

pandas.DataFrame.notnull

DataFrame.notnull()

Return a boolean same-sized object indicating if the values are not null

See Also:

- isnull: boolean inverse of notnull

pandas.DataFrame.pct_change

DataFrame.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwds)

Percent change over given number of periods.

Parameters
- **periods**: int, default 1
 - Periods to shift for forming percent change
- **fill_method**: str, default ‘pad’
 - How to handle NAs before computing percent changes
- **limit**: int, default None
 - The number of consecutive NAs to fill before stopping
- **freq**: DateOffset, timedelta, or offset alias string, optional

Chapter 32. API Reference
Increment to use from time series API (e.g. ‘M’ or BDay())

Returns
chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or `Index`, for DataFrame and 1, or `minor` for Panel. You can change this with the `axis` keyword argument.

pandas.DataFrame.pivot

DataFrame.pivot (*index=None, columns=None, values=None*)

Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns to form axes and return either DataFrame or Panel, depending on whether you request a single value column (DataFrame) or all columns (Panel)

Parameters

- **index**: string or object
 Column name to use to make new frame’s index
- **columns**: string or object
 Column name to use to make new frame’s columns
- **values**: string or object, optional
 Column name to use for populating new frame’s values

Returns

- **pivoted**: DataFrame
 If no values column specified, will have hierarchically indexed columns

Notes

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods

Examples

```python
>>> df
   foo  bar  baz
0  one   A   1.0
1  one   B   2.0
2  one   C   3.0
3  two   A   4.0
4  two   B   5.0
5  two   C   6.0

>>> df.pivot('foo', 'bar', 'baz')
     one  two
A  1.0  4.0
B  2.0  5.0
C  3.0  6.0
```
>>> df.pivot('foo', 'bar')[['baz']]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>two</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

pandas.DataFrame.pivot_table

DataFrame.pivot_table(*args, **kwargs)

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame

Parameters

- **data**: DataFrame
- **values** : column to aggregate, optional
- **index** : a column, Grouper, array which has the same length as data, or list of them.
 Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- **columns** : a column, Grouper, array which has the same length as data, or list of them.
 Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- **aggfunc** : function, default numpy.mean, or list of functions
 If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)
- **fill_value** : scalar, default None
 Value to replace missing values with
- **margins** : boolean, default False
 Add all row / columns (e.g. for subtotal / grand totals)
- **dropna** : boolean, default True
 Do not include columns whose entries are all NaN
- **rows** : kwarg only alias of index [deprecated]
- **cols** : kwarg only alias of columns [deprecated]

Returns

- **table** : DataFrame

Examples

>>> df

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>foo</td>
<td>one</td>
<td>small</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>foo</td>
<td>one</td>
<td>large</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>foo</td>
<td>one</td>
<td>large</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>foo</td>
<td>two</td>
<td>small</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>foo</td>
<td>two</td>
<td>small</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>bar</td>
<td>one</td>
<td>large</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>bar</td>
<td>one</td>
<td>small</td>
<td>5</td>
</tr>
</tbody>
</table>
>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)

 small large
 foo
 one 1 4
 two 6 NaN
 bar
 one 5 4
 two 6 7

pandas.DataFrame.plot

DataFrame.plot(data=None, x=None, y=None, kind='line', ax=None, subplots=False, sharex=True, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=True, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds)

Make plots of DataFrame using matplotlib / pylab.

Parameters:

data : DataFrame

x : label or position, default None

y : label or position, default None

 Allows plotting of one column versus another

kind : str

 • ‘line’ : line plot (default)
 • ‘bar’ : vertical bar plot
 • ‘barh’ : horizontal bar plot
 • ‘hist’ : histogram
 • ‘box’ : boxplot
 • ‘kde’ : Kernel Density Estimation plot
 • ‘density’ : same as ‘kde’
 • ‘area’ : area plot
 • ‘pie’ : pie plot
 • ‘scatter’ : scatter plot
 • ‘hexbin’ : hexbin plot

ax : matplotlib axes object, default None

subplots : boolean, default False

 Make separate subplots for each column

sharex : boolean, default True

 In case subplots=True, share x axis
sharey : boolean, default False
 In case subplots=True, share y axis
layout : tuple (optional)
 (rows, columns) for the layout of subplots
figsize : a tuple (width, height) in inches
use_index : boolean, default True
 Use index as ticks for x axis
title : string
 Title to use for the plot
grid : boolean, default None (matlab style default)
 Axis grid lines
legend : False/True/’reverse’
 Place legend on axis subplots
style : list or dict
 matplotlib line style per column
logx : boolean, default False
 Use log scaling on x axis
logy : boolean, default False
 Use log scaling on y axis
loglog : boolean, default False
 Use log scaling on both x and y axes
xticks : sequence
 Values to use for the xticks
yticks : sequence
 Values to use for the yticks
xlim : 2-tuple/list
ylim : 2-tuple/list
rot : int, default None
 Rotation for ticks
fontsize : int, default None
 Font size for ticks
colormap : str or matplotlib colormap object, default None
 Colormap to select colors from. If string, load colormap with that name from matplotlib.
colorbar : boolean, optional
 If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)
position : float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

layout : tuple (optional)

(rows, columns) for the layout of the plot

table : boolean, Series or DataFrame, default False

If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr : same types as yerr.

stacked : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot.

sort_columns : boolean, default False

Sort column names to determine plot ordering

secondary_y : boolean or sequence, default False

Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns : axes : matplotlib.AxesSubplot or np.array of them

Notes

•See matplotlib documentation online for more on this subject

•If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

•If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column are used to color each point.

•If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std).
pandas.DataFrame.pop

DataFrame.pop(item)

Return item and drop from frame. Raise KeyError if not found.

pandas.DataFrame.pow

DataFrame.pow(other, axis='columns', level=None, fill_value=None)

Binary operator pow with support to substitute a fill_value for missing data in one of the inputs

Parameters
- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- **result**: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.prod

DataFrame.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis

Parameters
- **axis**: {index (0), columns (1)}
 - **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 - **numeric_only**: boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- **prod**: Series or DataFrame (if level specified)
pandas.DataFrame.product

DataFrame.product (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters
- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- **prod**: Series or DataFrame (if level specified)

pandas.DataFrame.quantile

DataFrame.quantile (q=0.5, axis=0, numeric_only=True)
Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters
- **q**: float or array-like, default 0.5 (50% quantile)
 0 <= q <= 1, the quantile(s) to compute
- **axis**: {0, 1}
 0 for row-wise, 1 for column-wise

Returns
- **quantiles**: Series or DataFrame
 If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Examples

```python
>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
                  columns=['a', 'b'])
>>> df.quantile(.1)
a  1.3
b  3.7
dtype: float64
>>> df.quantile([.1, .5])
a  b
0.1  1.3  3.7
0.5  2.5  55.0
```
pandas.DataFrame.query

DataFrame.query(expr, **kwargs)
Query the columns of a frame with a boolean expression. New in version 0.13.

Parameters expr : string
 The query string to evaluate. You can refer to variables in the environment by
 prefixing them with an ‘@’ character like @a + b.

 kwargs : dict
 See the documentation for pandas.eval() for complete details on the keyword
 arguments accepted by DataFrame.query().

Returns q : DataFrame

See Also:
pandas.eval, DataFrame.eval

Notes

The result of the evaluation of this expression is first passed to DataFrame.loc and if that
fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to
DataFrame.__getitem__().

This method uses the top-level pandas.eval() function to evaluate the passed query.

The query() method uses a slightly modified Python syntax by default. For example, the & and |
(bitwise) operators have the precedence of their boolean cousins, and and or. This is syntactically valid
Python, however the semantics are different.

You can change the semantics of the expression by passing the keyword argument parser='python'.
This enforces the same semantics as evaluation in Python space. Likewise, you can pass
engine='python' to evaluate an expression using Python itself as a backend. This is not recom-
manded as it is inefficient compared to using numexpr as the engine.

The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are
placed in the query namespace by default, which allows you to treat both the index and columns of
the frame as a column in the frame. The identifier index is used for the frame index; you can also use
the name of the index to identify it in a query.

For further details and examples see the query documentation in indexing.

Examples

>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.query('a > b')
>>> df[df.a > df.b] # same result as the previous expression

pandas.DataFrame.radd

DataFrame.radd(other, axis='columns', level=None, fill_value=None)
Binary operator radd with support to substitute a fill_value for missing data in one of the inputs
Parameters **other** : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rank

DataFrame.rank(axis=0, numeric_only=None, method='average', na_option='keep', ascending=True, pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

Parameters axis : {0, 1}, default 0

Ranks over columns (0) or rows (1)

numeric_only : boolean, default None

Include only float, int, boolean data

method : {'average', 'min', 'max', 'first', 'dense'}

• average: average rank of group
• min: lowest rank in group
• max: highest rank in group
• first: ranks assigned in order they appear in the array
• dense: like ‘min’, but rank always increases by 1 between groups

na_option : {'keep', 'top', 'bottom'}

• keep: leave NA values where they are
• top: smallest rank if ascending
• bottom: smallest rank if descending

ascending : boolean, default True

False for ranks by high (1) to low (N)

pct : boolean, default False

Computes percentage rank of data

Returns ranks : DataFrame
pandas.DataFrame.rdiv

DataFrame.rdiv(other, axis='columns', level=None, fill_value=None)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters

other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.reindex

DataFrame.reindex(index=None, columns=None, **kwargs)

Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters

index, columns : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None

Maximum size gap to forward or backward fill

Returns

reindexed : DataFrame
Examples

```python
>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])
```

pandas.DataFrame.reindex_axis

```python
def.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=np.nan)
```

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters

- `labels`: array-like
 - New labels / index to conform to. Preferably an Index object to avoid duplicating data
- `axis`: {0,1,'index','columns'}
- `method`: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 - Method to use for filling holes in reindexed object. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- `copy`: boolean, default True
 - Return a new object, even if the passed indexes are the same
- `level`: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level
- `limit`: int, default None
 - Maximum size gap to forward or backward fill

Returns

- `reindexed`: DataFrame

See Also:

```
reindex, reindex_like
```

Examples

```python
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```

pandas.DataFrame.reindex_like

```python
def.reindex_like(other, method=None, copy=True, limit=None)
```

return an object with matching indices to myself

Parameters

- `other`: Object
- `method`: string or None
- `copy`: boolean, default True
- `limit`: int, default None
Maximum size gap to forward or backward fill

Returns reindexed : same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.DataFrame.rename

DataFrame.rename(index=None, columns=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters index, columns : dict-like or function, optional
 Transformation to apply to that axis values
 copy : boolean, default True
 Also copy underlying data
 inplace : boolean, default False
 Whether to return a new DataFrame. If True then value of copy is ignored.

Returns renamed : DataFrame (new object)

pandas.DataFrame.rename_axis

DataFrame.rename_axis(mapper, axis=0, copy=True, inplace=False)
Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters mapper : dict-like or function, optional
 axis : int or string, default 0
 copy : boolean, default True
 Also copy underlying data
 inplace : boolean, default False

Returns renamed : type of caller

pandas.DataFrame.reorder_levels

DataFrame.reorder_levels(order, axis=0)
Rearrange index levels using input order. May not drop or duplicate levels

Parameters order : list of int or list of str
 List representing new level order. Reference level by number (position) or by key (label).
 axis : int
 Where to reorder levels.
Returns type of caller (new object)

pandas.DataFrame.replace

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)
Replace values given in to_replace with value.

Parameters to_replace : str, regex, list, dict, Series, numeric, or None

• str or regex:
 – str: string exactly matching to_replace will be replaced with value
 – regex: regexs matching to_replace will be replaced with value

• list of str, regex, or numeric:
 – First, if to_replace and value are both lists, they must be the same length.
 – Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
 – str and regex rules apply as above.

• dict:
 – Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
 – Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

• None:
 – This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

dvalue : scalar, dict, list, str, regex, default None
Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False
If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None
Maximum size gap to forward or backward fill

regex : bool or same types as to_replace, default False
Whether to interpret `to_replace` and/or `value` as regular expressions. If this is `True` then `to_replace` must be a string. Otherwise, `to_replace` must be `None` because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

method : string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when `to_replace` is a list.

Returns
`filled` : NDFrame

Raises
* AssertionError
 - If `regex` is not a `bool` and `to_replace` is not `None`.

* TypeError
 - If `to_replace` is a dict and `value` is not a list, dict, ndarray, or Series
 - If `to_replace` is `None` and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series.

* ValueError
 - If `to_replace` and `value` are lists or ndarrays, but they are not the same length.

See Also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

• Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.DataFrame.resample

`DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, offset=None, limit=None, base=0)`

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters
`rule` : string

 the offset string or object representing target conversion

`how` : string

 method for down- or re-sampling, default to ‘mean’ for downsampling

`axis` : int, optional, default 0

`fill_method` : string, default None

 fill_method for upsampling
closed : {'right', 'left'}
Which side of bin interval is closed

label : {'right', 'left'}
Which bin edge label to label bucket with

convention : {'start', 'end', 's', 'e'}
kind : “period”/”timestamp”

loffset : timedelta
Adjust the resampled time labels

limit : int, default None
Maximum size gap to when reindexing with fill_method

base : int, default 0
For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ’5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.DataFrame.reset_index

DataFrame.reset_index (level=None, drop=False, inplace=False, col_level=0, col_fill='')
For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used.

Parameters level : int, str, tuple, or list, default None
Only remove the given levels from the index. Removes all levels by default

drop : boolean, default False
Do not try to insert index into dataframe columns. This resets the index to the default integer index.

inplace : boolean, default False
Modify the DataFrame in place (do not create a new object)

col_level : int or str, default 0
If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.

col_fill : object, default ‘’
If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.

Returns resetted : DataFrame

pandas.DataFrame.rfloordiv

DataFrame.rfloordiv (other, axis='columns', level=None, fill_value=None)
Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs
Parameters

- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rmod

DataFrame.rmod(other, axis='columns', level=None, fill_value=None)

Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs

Parameters

- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rmul

DataFrame.rmul(other, axis='columns', level=None, fill_value=None)

Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs

Parameters

- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

Returns

- **result**: DataFrame
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rpow

DataFrame.rpow(other, axis='columns', level=None, fill_value=None)

Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rsub

DataFrame.rsub(other, axis='columns', level=None, fill_value=None)

Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame
Notes

Mismatched indices will be unioned together

pandas.DataFrame.rtruediv

DataFrame.rtruediv(other, axis='columns', level=None, fill_value=None)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters

- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.save

DataFrame.save(path)

Deprecated. Use to_pickle instead

pandas.DataFrame.select

DataFrame.select(crit, axis=0)

Return data corresponding to axis labels matching criteria

Parameters

- **crit**: function
 - To be called on each index (label). Should return True or False
- **axis**: int

Returns

- **selection**: type of caller

pandas.DataFrame.select_dtypes

DataFrame.select_dtypes(include=None, exclude=None)

Return a subset of a DataFrame including/excluding columns based on their dtype.

Parameters

- **include, exclude**: list-like
A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these.

Returns
subset : DataFrame
The subset of the frame including the dtypes in `include` and excluding the dtypes in `exclude`.

Raises
`ValueError`
- If both of `include` and `exclude` are empty
- If `include` and `exclude` have overlapping elements
- If any kind of string dtype is passed in.

`TypeError`
- If either of `include` or `exclude` is not a sequence

Notes

- To select all numeric types use the numpy dtype `numpy.number`
- To select strings you must use the object dtype, but note that this will return all object dtype columns
- See the numpy dtype hierarchy
- To select Pandas categorical dtypes, use `category`

Examples

```python
df = pd.DataFrame({'a': np.random.randn(6).astype('f4'),  
                   'b': [True, False] * 3,  
                   'c': [1.0, 2.0] * 3})
```  
```python
df.select_dtypes(include=['float64'])
```
```bash
c  
0 1  
1 2  
2 1  
3 2  
4 1  
5 2  
```  
```python
df.select_dtypes(exclude=['floating'])
```
```bash
b  
0 True  
1 False  
2 True  
3 False  
4 True  
5 False  
```
pandas.DataFrame.sem

DataFrame.sem (axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard error of the mean over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters:
- **axis** : {index (0), columns (1)}
- **skipna** : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only** : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns:
- **sem** : Series or DataFrame (if level specified)

pandas.DataFrame.set_axis

DataFrame.set_axis (axis, labels)
public version of axis assignment

pandas.DataFrame.set_index

DataFrame.set_index (keys, drop=True, append=False, inplace=False, verify_integrity=False)
Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object.

Parameters:
- **keys** : column label or list of column labels / arrays
- **drop** : boolean, default True
 Delete columns to be used as the new index
- **append** : boolean, default False
 Whether to append columns to existing index
- **inplace** : boolean, default False
 Modify the DataFrame in place (do not create a new object)
- **verify_integrity** : boolean, default False
 Check the new index for duplicates. Otherwise defer the check until necessary.
 Setting to False will improve the performance of this method

Returns:
- **dataframe** : DataFrame

Examples
>>> indexed_df = df.set_index(['A', 'B'])
>>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
>>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]])

pandas.DataFrame.set_value

DataFrame.set_value (index, col, value, takeable=False)
 Put single value at passed column and index

Parameters index : row label

 col : column label

 value : scalar value

 takeable : interpret the index/col as indexers, default False

Returns frame : DataFrame

 If label pair is contained, will be reference to calling DataFrame, otherwise a new object

pandas.DataFrame.shift

DataFrame.shift (periods=1, freq=None, axis=0, **kwds)
 Shift index by desired number of periods with an optional time freq

Parameters periods : int

 Number of periods to move, can be positive or negative

 freq : DateOffset, timedelta, or time rule string, optional

 Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes.

Returns shifted : same type as caller

Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

pandas.DataFrame.skew

DataFrame.skew (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 Return unbiased skew over requested axis Normalized by N-1

Parameters axis : {index (0), columns (1)}

 skipna : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

 level : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only: boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

skew: Series or DataFrame (if level specified)

pandas.DataFrame.slice_shift

DataFrame.slice_shift(periods=1, axis=0, **kwds)
Equivalent to `shift` without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters

- **periods**: int
 Number of periods to move, can be positive or negative

Returns

- **shifted**: same type as caller

Notes

While the `slice_shift` is faster than `shift`, you may pay for it later during alignment.

pandas.DataFrame.sort

DataFrame.sort(columns=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Sort DataFrame either by labels (along either axis) or by the values in column(s)

Parameters

- **columns**: object
 Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index.

- **ascending**: boolean or list, default True
 Sort ascending vs. descending. Specify list for multiple sort orders

- **axis**: {0, 1}
 Sort index/rows versus columns

- **inplace**: boolean, default False
 Sort the DataFrame without creating a new instance

- **kind**: {'quicksort', 'mergesort', 'heapsort'}, optional
 This option is only applied when sorting on a single column or label.

- **na_position**: {'first', 'last'} (optional, default='last')
 ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

Returns

- **sorted**: DataFrame
Examples

```python
>>> result = df.sort(
    ['A', 'B'], ascending=[1, 0])
```

pandas.DataFrame.sort_index

DataFrame.sort_index (axis=0, by=None, ascending=True, inplace=False, kind='quicksort', na_position='last')

Sort DataFrame either by labels (along either axis) or by the values in a column

Parameters

- **axis**: {0, 1}

 Sort index/rows versus columns

- **by**: object

 Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index.

- **ascending**: boolean or list, default True

 Sort ascending vs. descending. Specify list for multiple sort orders

- **inplace**: boolean, default False

 Sort the DataFrame without creating a new instance

- **na_position**: {'first', 'last'} (optional, default='last')

 'first' puts NaNs at the beginning 'last' puts NaNs at the end

- **kind**: {'quicksort', 'mergesort', 'heapsort'}, optional

 This option is only applied when sorting on a single column or label.

Returns

- **sorted**: DataFrame

Examples

```python
>>> result = df.sort_index(by=['A', 'B'], ascending=[True, False])
```

pandas.DataFrame.sortlevel

DataFrame.sortlevel (level=0, axis=0, ascending=True, inplace=False, sort_remaining=True)

Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

Parameters

- **level**: int

 Primary level to sort by

- **axis**: {0, 1}

 Sort index/rows versus columns

- **ascending**: boolean, default True

 Sort ascending vs. descending

- **inplace**: boolean, default False

 Sort the DataFrame without creating a new instance

- **sort_remaining**: boolean, default True

 Sort by the other levels too.
Returns
sorted : DataFrame

pandas.DataFrame.squeeze

DataFrame.squeeze()
squeeze length 1 dimensions

pandas.DataFrame.stack

DataFrame.stack(level=-1, dropna=True)
Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels. The level involved will automatically get sorted.

Parameters
level : int, string, or list of these, default last level
Level(s) to stack, can pass level name
dropna : boolean, default True
Whether to drop rows in the resulting Frame/Series with no valid values

Returns
stacked : DataFrame or Series

Examples

```python  
>>> s  
a    b  
one 1.  2.  
two 3.  4.  

>>> s.stack()  
one_a 1  
   b 2  
two_a 3  
   b 4  
```

pandas.DataFrame.std

DataFrame.std(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
std : Series or DataFrame (if level specified)

pandas.DataFrame.sub

DataFrame.sub \((other, axis='columns', level=None, fill_value=None)\)
Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant
axis : \(\{0, 1, \text{‘index’, ‘columns’}\}\)
For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.subtract

DataFrame.subtract \((other, axis='columns', level=None, fill_value=None)\)
Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant
axis : \(\{0, 1, \text{‘index’, ‘columns’}\}\)
For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes

Mismatched indices will be unioned together
pandas.DataFrame.sum

DataFrame.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the sum of the values for the requested axis

Parameters
- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Series
- **numeric_only**: boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns
- **sum**: Series or DataFrame (if level specified)

pandas.DataFrame.swapaxes

DataFrame.swapaxes (axis1, axis2, copy=True)
Interchange axes and swap values axes appropriately

Returns
- **y**: same as input

pandas.DataFrame.swaplevel

DataFrame.swaplevel (i, j, axis=0)
Swap levels i and j in a MultiIndex on a particular axis

Parameters
- **i, j**: int, string (can be mixed)
 Level of index to be swapped. Can pass level name as string.

Returns
- **swapped**: type of caller (new object)

pandas.DataFrame.tail

DataFrame.tail (n=5)
Returns last n rows

pandas.DataFrame.take

DataFrame.take (indices, axis=0, convert=True, is_copy=True)
Analogous to ndarray.take

Parameters
- **indices**: list / array of ints
- **axis**: int, default 0
- **convert**: translate neg to pos indices (default)
- **is_copy**: mark the returned frame as a copy
Returns taken: type of caller

pandas.DataFrame.to_clipboard

DataFrame.to_clipboard(excel=None, sep=None, **kwargs)

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters

- **excel**: boolean, defaults to True
 - If True, use the provided separator, writing in a csv format for allowing easy pasting into excel. If False, write a string representation of the object to the clipboard

- **sep**: optional, defaults to tab

 Other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none

pandas.DataFrame.to_csv

DataFrame.to_csv(*args, **kwargs)

Write DataFrame to a comma-separated values (csv) file

Parameters

- **path_or_buf**: string or file handle, default None
 - File path or object, if None is provided the result is returned as a string.

- **sep**: character, default ","
 - Field delimiter for the output file.

- **na_rep**: string, default ""
 - Missing data representation

- **float_format**: string, default None
 - Format string for floating point numbers

- **columns**: sequence, optional
 - Columns to write

- **header**: boolean or list of string, default True
 - Write out column names. If a list of string is given it is assumed to be aliases for the column names

- **index**: boolean, default True
 - Write row names (index)

- **index_label**: string or sequence, or False, default None
Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R

nanRep : None
 deprecated, use na_rep

mode : str
 Python write mode, default ‘w’

encoding : string, optional
 a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3

line_terminator : string, default ‘\n’
 The newline character or character sequence to use in the output file

quoting : optional constant from csv module
 defaults to csv.QUOTE_MINIMAL

quotechar : string (length 1), default ‘”’
 character used to quote fields

doublequote : boolean, default True
 Control quoting of quotechar inside a field

escapechar : string (length 1), default None
 character used to escape sep and quotechar when appropriate

chunksize : int or None
 rows to write at a time

tupleize_cols : boolean, default False
 write multi_index columns as a list of tuples (if True) or new (expanded format) if False

date_format : string, default None
 Format string for datetime objects

cols : kwarg only alias of columns [deprecated]

pandas.DataFrame.to_dense

DataFrame.to_dense()
 Return dense representation of NDFrame (as opposed to sparse)

pandas.DataFrame.to_dict

*DataFrame.to_dict(*args, **kwargs)*
 Convert DataFrame to dictionary.

 Parameters

Determines the type of the values of the dictionary.

- dict (default) : dict like \{column -> \{index -> value\}\}
- list : dict like \{column -> [values]\}
- series : dict like \{column -> Series(values)\}
- split : dict like \{index -> [index], columns -> [columns], data -> [values]\}
- records : list like \{\{column -> value\}, ... , \{column -> value\}\}

Abbreviations are allowed. \(s\) indicates \textit{series} and \(sp\) indicates \textit{split}.

\textbf{Returns} \textbf{result} : dict like \{column -> \{index -> value\}\}

\texttt{pandas.DataFrame.to_excel}

\texttt{DataFrame.to_excel(*args, **kwargs)}

Write DataFrame to a excel sheet

\textbf{Parameters} \textbf{excel writer} : string or ExcelWriter object
- File path or existing ExcelWriter

\textbf{sheet name} : string, default ‘Sheet1’
- Name of sheet which will contain DataFrame

\textbf{na rep} : string, default ‘’
- Missing data representation

\textbf{float format} : string, default None
- Format string for floating point numbers

\textbf{columns} : sequence, optional
- Columns to write

\textbf{header} : boolean or list of string, default True
- Write out column names. If a list of string is given it is assumed to be aliases for the column names

\textbf{index} : boolean, default True
- Write row names (index)

\textbf{index label} : string or sequence, default None
- Column label for index column(s) if desired. If None is given, and \textit{header} and \textit{index} are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

\textbf{startrow} :
- upper left cell row to dump data frame

\textbf{startcol} :
- upper left cell column to dump data frame

\textbf{engine} : string, default None
write engine to use - you can also set this via the options
io.excel.xlsx.writer, io.excel.xls.writer, and
io.excel.xlsm.writer.

merge_cells : boolean, default True
Write MultiIndex and Hierarchical Rows as merged cells.

encoding: string, default None
encoding of the resulting excel file. Only necessary for xlwt, other writers support
unicode natively.
cols : kwarg only alias of columns [deprecated]

inf_rep : string, default ‘inf’
Representation for infinity (there is no native representation for infinity in Excel)

Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can
be used to save different DataFrames to one workbook:

```python
>>> writer = ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()
```

pandas.DataFrame.to_gbq

```
DataFrame.to_gbq(destination_table, project_id=None, chunksize=10000, verbose=True, reauth=False)
```

Write a DataFrame to a Google BigQuery table.

THIS IS AN EXPERIMENTAL LIBRARY

If the table exists, the dataframe will be written to the table using the defined table schema and column
types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks
data into a default chunk size of 10,000. Failures return the complete error response which can be quite
long depending on the size of the insert. There are several important limitations of the Google streaming
API which are detailed at: https://developers.google.com/bigquery/streaming-data-into-bigquery.

Parameters dataframe : DataFrame

dataframe to be written
destination_table : string
Name of table to be written, in the form ‘dataset.tablename’
project_id : str
Google BigQuery Account project ID.
chunksize : int (default 10000)
Number of rows to be inserted in each chunk from the dataframe.
verbose : boolean (default True)
Show percentage complete
pandas: powerful Python data analysis toolkit, Release 0.15.1

reauth: boolean (default False)
Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

pandas.DataFrame.to_hdf

DataFrame.to_hdf *(path_or_buf, key, **kwargs)*
activate the HDFStore

Parameters
path_or_buf: the path (string) or buffer to put the store

key: string
identifier for the group in the store

mode: optional, {'a', 'w', 'r', 'r+'}, default 'a'

' r' Read-only; no data can be modified.

' w' Write; a new file is created (an existing file with the same name would be deleted).

' a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

' r+' It is similar to ' a', but the file must already exist.

format: 'fixed(f)|table(t)', default is 'fixed'

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append: boolean, default False
For Table formats, append the input data to the existing

complevel: int, 1-9, default 0
If a complib is specified compression will be applied where possible

complib: {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None
If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32: bool, default False
If applying compression use the fletcher32 checksum

pandas.DataFrame.to_html

DataFrame.to_html *(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=False, na_rep='NaN', formatters=None, float_format=None, sparsify=False, index_names=False, justify=None, bold_rows=False, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False)*

Render a DataFrame as an HTML table.

to_html-specific options:

32.4. **DataFrame**
bold_rows [boolean, default True] Make the row labels bold in the output

classes [str or list or tuple, default None] CSS class(es) to apply to the resulting html table

escape [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.

max_rows [int, optional] Maximum number of rows to show before truncating. If None, show all.

max_cols [int, optional] Maximum number of columns to show before truncating. If None, show all.

Parameters

frame : DataFrame

object to render

buf : StringIO-like, optional

buffer to write to

columns : sequence, optional

the subset of columns to write; default None writes all columns

col_space : int, optional

the minimum width of each column

header : bool, optional

whether to print column labels, default True

index : bool, optional

whether to print index (row) labels, default True

na_rep : string, optional

string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

sparsify : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

justify : {'left', 'right'}, default None

Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

index_names : bool, optional

Prints the names of the indexes, default True

force_unicode : bool, default False

Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

Returns

formatted : string (or unicode, depending on data and options)
pandas.DataFrame.to_json

DataFrame.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters path_or_buf : the path or buffer to write the result string
 if this is None, return a StringIO of the converted string

orient : string
 • Series
 - default is ‘index’
 - allowed values are: {‘split’, ‘records’, ‘index’}
 • DataFrame
 - default is ‘columns’
 - allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’}
 • The format of the JSON string
 - split : dict like {index -> [index], columns -> [columns], data -> [values]}
 - records : list like [{column -> value}, ... , {column -> value}]
 - index : dict like {index -> {column -> value}}
 - columns : dict like {column -> {index -> value}}
 - values : just the values array

date_format : {‘epoch’, ‘iso’}
 Type of date conversion. epoch = epoch milliseconds, iso = ISO8601, default is epoch.

double_precision : The number of decimal places to use when encoding floating point values, default 10.

force_ascii : force encoded string to be ASCII, default True.

date_unit : string, default ‘ms’ (milliseconds)
 The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

default_handler : callable, default None
 Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

Returns same type as input object with filtered info axis
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.DataFrame.to_latex

`DataFrame.to_latex(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=True, longtable=False, escape=True)`

Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}.

to_latex-specific options:

bold_rows [boolean, default True] Make the row labels bold in the output

longtable [boolean, default False] Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble.

escape [boolean, default True] When set to False prevents from escaping latex special characters in column names.

Parameters

- **frame**: DataFrame
 - object to render
 - **buf**: StringIO-like, optional
 - buffer to write to
 - **columns**: sequence, optional
 - the subset of columns to write; default None writes all columns
 - **col_space**: int, optional
 - the minimum width of each column
 - **header**: bool, optional
 - whether to print column labels, default True
 - **index**: bool, optional
 - whether to print index (row) labels, default True
 - **na_rep**: string, optional
 - string representation of NAN to use, default ‘NaN’
 - **formatters**: list or dict of one-parameter functions, optional
 - formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.
 - **float_format**: one-parameter function, optional
 - formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.
 - **sparsify**: bool, optional
 - Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True
 - **justfiy**: {'left', 'right'}, default None
Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

index_names : bool, optional
Prints the names of the indexes, default True

force_unicode : bool, default False
Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

Returns
formatted : string (or unicode, depending on data and options)

pandas.DataFrame.to_msgpack

DataFrame.to_msgpack(path_or_buf=None, **kwargs)

msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters

- **path** : string File path, buffer-like, or None
 - if None, return generated string
- **append** : boolean whether to append to an existing msgpack
 - (default is False)
- **compress** : type of compressor (zlib or blosc), default to None (no compression)

pandas.DataFrame.to_panel

DataFrame.to_panel()

Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.

Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later

Returns
panel : Panel

pandas.DataFrame.to_period

DataFrame.to_period(freq=None, axis=0, copy=True)

Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)

Parameters

- **freq** : string, default
- **axis** : {0, 1}, default 0
 - The axis to convert (the index by default)
- **copy** : boolean, default True
 - If False then underlying input data is not copied

Returns
ts : TimeSeries with PeriodIndex
pandas.DataFrame.to_pickle

DataFrame.to_pickle(path)
Pickle (serialize) object to input file path

Parameters path : string
 File path

pandas.DataFrame.to_records

DataFrame.to_records(index=True, convert_datetime64=True)
Convert DataFrame to record array. Index will be put in the 'index' field of the record array if requested

Parameters index : boolean, default True
 Include index in resulting record array, stored in 'index' field

convert_datetime64 : boolean, default True
 Whether to convert the index to datetime.datetime if it is a DatetimeIndex

Returns y : recarray

pandas.DataFrame.to_sparse

DataFrame.to_sparse(fill_value=None, kind='block')
Convert to SparseDataFrame

Parameters fill_value : float, default NaN
 kind : {'block', 'integer'}

Returns y : SparseDataFrame

pandas.DataFrame.to_sql

DataFrame.to_sql(name, con, flavor='sqlite', schema=None, if_exists='fail', index=True, index_label=None, chunksize=None)
Write records stored in a DataFrame to a SQL database.

Parameters name : string
 Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
 Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

flavor : {'sqlite', 'mysql'}, default 'sqlite'
 The flavor of SQL to use. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

schema : string, default None
 Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default 'fail'
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.

index: boolean, default True
Write DataFrame index as a column.

index_label: string or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize: int, default None
If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

pandas.DataFrame.to_stata

DataFrame.to_stata(*fname*, *convert_dates=None*, *write_index=True*, *encoding='latin-1'*, *byte-order=None*, *time_stamp=None*, *data_label=None*)

A class for writing Stata binary dta files from array-like objects

Parameters

- **fname**: file path or buffer
 Where to save the dta file.

- **convert_dates**: dict
 Dictionary mapping column of datetime types to the stata internal format that you want to use for the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either a number or a name.

- **encoding**: str
 Default is latin-1. Note that Stata does not support unicode.

- **byteorder**: str
 Can be “>”, “<”, “little”, or “big”. The default is None which uses sys.byteorder

Examples

```python
>>> writer = StataWriter('./data_file.dta', data)
>>> writer.write_file()
```

Or with dates

```python
>>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'})
>>> writer.write_file()
```
pandas.DataFrame.to_string

DataFrame.to_string(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False)

Render a DataFrame to a console-friendly tabular output.

Parameters

frame : DataFrame
 object to render

buf : StringIO-like, optional
 buffer to write to

columns : sequence, optional
 the subset of columns to write; default None writes all columns

col_space : int, optional
 the minimum width of each column

header : bool, optional
 whether to print column labels, default True

index : bool, optional
 whether to print index (row) labels, default True

na_rep : string, optional
 string representation of NAN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional
 formatter functions to apply to columns’ elements by position or name, default
 None. The result of each function must be a unicode string. List must be of length
 equal to the number of columns.

float_format : one-parameter function, optional
 formatter function to apply to columns’ elements if they are floats, default None.
 The result of this function must be a unicode string.

sparsify : bool, optional
 Set to False for a DataFrame with a hierarchical index to print every multiindex
 key at each row, default True

justify : {'left', 'right'}, default None
 Left or right-justify the column labels. If None uses the option from the print
 configuration (controlled by set_option), ‘right’ out of the box.

index_names : bool, optional
 Prints the names of the indexes, default True

force_unicode : bool, default False
 Always return a unicode result. Deprecated in v0.10.0 as string formatting is now
 rendered to unicode by default.
Returns formatted: string (or unicode, depending on data and options)

pandas.DataFrame.to_timestamp

DataFrame.to_timestamp(freq=None, how='start', axis=0, copy=True)

Cast to DatetimeIndex of timestamps, at beginning of period

Parameters

- **freq**: string, default frequency of PeriodIndex
 - Desired frequency

- **how**: {'s', 'e', 'start', 'end'}
 - Convention for converting period to timestamp; start of period vs. end

- **axis**: {0, 1} default 0
 - The axis to convert (the index by default)

- **copy**: boolean, default True
 - If false then underlying input data is not copied

Returns

- **df**: DataFrame with DatetimeIndex

pandas.DataFrame.to_wide

DataFrame.to_wide(*args, **kwargs)

pandas.DataFrame.transpose

DataFrame.transpose()

Transpose index and columns

pandas.DataFrame.truediv

DataFrame.truediv(other, axis='columns', level=None, fill_value=None)

Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters

- **other**: Series, DataFrame, or constant

- **axis**: {0, 1, 'index', 'columns'}
 - For Series input, axis to match Series index on

- **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: DataFrame
Notes

Mismatched indices will be unioned together

pandas.DataFrame.truncate

DataFrame.truncate(\(before=None, \text{after}=None, \text{axis}=None, \text{copy}=True\))

Truncates a sorted NDFrame before and/or after some particular dates.

- **Parameters**
 - \(\text{before} \) : date
 - Truncate before date
 - \(\text{after} \) : date
 - Truncate after date
 - \(\text{axis} \) : the truncation axis, defaults to the stat axis
 - \(\text{copy} \) : boolean, default is True,
 - return a copy of the truncated section

- **Returns**
 - \(\text{truncated} \) : type of caller

pandas.DataFrame.tshift

DataFrame.tshift(\(\text{periods}=1, \text{freq}=None, \text{axis}=0, **kwds\))

Shift the time index, using the index’s frequency if available

- **Parameters**
 - \(\text{periods} \) : int
 - Number of periods to move, can be positive or negative
 - \(\text{freq} \) : DateOffset, timedelta, or time rule string, default None
 - Increment to use from datetools module or time rule (e.g. ‘EOM’)
 - \(\text{axis} \) : int or basestring
 - Corresponds to the axis that contains the Index

- **Returns**
 - \(\text{shifted} \) : NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown

pandas.DataFrame.tz_convert

DataFrame.tz_convert(\(\text{tz}, \text{axis}=0, \text{level}=None, \text{copy}=True\))

Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

- **Parameters**
 - \(\text{tz} \) : string or pytz.timezone object
 - \(\text{axis} \) : the axis to convert
 - \(\text{level} \) : int, str, default None
If axis ia a MultiIndex, convert a specific level. Otherwise must be None

copy: boolean, default True

Also make a copy of the underlying data

pandas.DataFrame.tz_localize

DataFrame.tz_localize(*args, **kwargs)
Localize tz-naive TimeSeries to target time zone

Parameters
- **tz**: string or pytz.timezone object
- **axis**: the axis to localize
- **level**: int, str, default None
 - If axis ia a MultiIndex, localize a specific level. Otherwise must be None
- **copy**: boolean, default True
 - Also make a copy of the underlying data
- **ambiguous**: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times
- **infer_dst**: boolean, default False (DEPRECATED)
 - Attempt to infer fall dst-transition hours based on order

pandas.DataFrame.unstack

DataFrame.unstack(level=-1)
Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted.

Parameters
- **level**: int, string, or list of these, default -1 (last level)
 - Level(s) of index to unstack, can pass level name

Returns
- **unstacked**: DataFrame or Series

See Also:

- **DataFrame.pivot** Pivot a table based on column values.
- **DataFrame.stack** Pivot a level of the column labels (inverse operation from unstack).
Examples

```python
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
... ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
one a 1
 b 2
two a 3
 b 4
dtype: float64

>>> s.unstack(level=-1)
   a  b
one 1 2
two 3 4

>>> s.unstack(level=0)
   one  two
a  1 3
 b  2 4

>>> df = s.unstack(level=0)
>>> df.unstack()
   one a  1.
     b  3.
   two a  2.
     b  4.
```

pandas.DataFrame.update

DataFrame `update` *(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)*

Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices

Parameters

- **other**: DataFrame, or object coercible into a DataFrame
- **join**: {'left', 'right', 'outer', 'inner'}, default ‘left’
- **overwrite**: boolean, default True

 If True then overwrite values for common keys in the calling frame
- **filter_func**: callable(1d-array) -> 1d-array<boolean>, default None

 Can choose to replace values other than NA. Return True for values that should be updated
- **raise_conflict**: boolean

 If True, will raise an error if the DataFrame and other both contain data in the same place.

pandas.DataFrame.var

DataFrame `var` *(axis=None, skipna=None, level=None, ddof=1, **kwargs)*

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument
Parameters

- **axis**: {index (0), columns (1)}
 - **skipna**: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **level**: int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 - **numeric_only**: boolean, default None

 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns **var**: Series or DataFrame (if level specified)

:pandas:DataFrame:where:

DataFrame.**where** (**cond**, **other=nan**, **inplace=False**, **axis=None**, **level=None**, **try_cast=False**, **raise_on_error=True**)

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters

- **cond**: boolean NDFrame or array
 - **other**: scalar or NDFrame
 - **inplace**: boolean, default False

 Whether to perform the operation in place on the data
 - **axis**: alignment axis if needed, default None
 - **level**: alignment level if needed, default None
 - **try_cast**: boolean, default False

 try to cast the result back to the input type (if possible).
 - **raise_on_error**: boolean, default True

 Whether to raise on invalid data types (e.g. trying to where on strings)

Returns **wh**: same type as caller

:pandas:DataFrame:xs:

DataFrame.**xs** (**key**, **axis=0**, **level=None**, **copy=None**, **drop_level=True**)

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

Parameters

- **key**: object

 Some label contained in the index, or partially in a MultiIndex
- **axis**: int, default 0

 Axis to retrieve cross-section on
- **level**: object, defaults to first n levels (n=1 or len(key))
In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.

copy : boolean [deprecated]

Whether to make a copy of the data

drop_level : boolean, default True

If False, returns object with same levels as self.

Returns
 xs : Series or DataFrame

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see *MultiIndex Slicers*

Examples

```python
>>> df
   A  B  C
a 4  5  2
b 4  0  9
c 9  7  3
>>> df.xs('a')
   A   B  
   a  4  5
   b  4  0
   c  9  7
Name: a
>>> df.xs('C', axis=1)
   a   2  
   b   9  
   c   3  
Name: C
```

```python
>>> df.xs(('baz', 'three'))
   A  B  C  D
first third
baz one 1  4  1  8  9
   two 1  7  5  5  0
baz one 1  6  6  8  0
   three 2  5  3  5  3
>>> df.xs(('baz', 'three'))
   A  B  C  D
first third
two 1  7  5  5  0
```

```python
>>> df.xs(('baz', 'three'))
   A  B  C  D
second
three 2  5  3  5  3
>>> df.xs('one', level=1)
   A  B  C  D
first third
bar one 1  4  1  8  9
   two 1  7  5  5  0
baz one 1  6  6  8  0
   three 2  5  3  5  3
```
32.4.2 Attributes and underlying data

Axes

- **index**: row labels
- **columns**: column labels

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.as_matrix([columns])</code></td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td><code>DataFrame.dtypes</code></td>
<td>Return the dtypes in this object</td>
</tr>
<tr>
<td><code>DataFrame.ftypes</code></td>
<td>Return the ftypes (indication of sparse/dense and dtype)</td>
</tr>
<tr>
<td><code>DataFrame.get_dtype_counts()</code></td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td><code>DataFrame.get_ftype_counts()</code></td>
<td>Return the counts of ftypes in this object</td>
</tr>
<tr>
<td><code>DataFrame.select_dtypes([include, exclude])</code></td>
<td>Return a subset of a DataFrame including/excluding columns based on data type.</td>
</tr>
<tr>
<td><code>DataFrame.values</code></td>
<td>Numpy representation of NDFrame</td>
</tr>
<tr>
<td><code>DataFrame.axes</code></td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td><code>DataFrame.ndim</code></td>
<td></td>
</tr>
<tr>
<td><code>DataFrame.shape</code></td>
<td></td>
</tr>
</tbody>
</table>

pandas.DataFrame.as_matrix

`DataFrame.as_matrix(columns=None)`

Convert the frame to its Numpy-array representation.

Parameters
- **columns**: list, optional, default: None
 - If None, return all columns, otherwise, returns specified columns.

Returns
- **values**: ndarray
 - If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.

See Also:
- `pandas.DataFrame.values`

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting): that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

E.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

This method is provided for backwards compatibility. Generally, it is recommended to use `.values`.

pandas.DataFrame.dtypes

`DataFrame.dtypes`

Return the dtypes in this object
pandas.DataFrame.ftypes

DataFrame.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.

pandas.DataFrame.get_dtype_counts

DataFrame.get_dtype_counts()
Return the counts of dtypes in this object

pandas.DataFrame.get_ftype_counts

DataFrame.get_ftype_counts()
Return the counts of ftypes in this object

pandas.DataFrame.select_dtypes

DataFrame.select_dtypes(include=None, exclude=None)
Return a subset of a DataFrame including/excluding columns based on their dtype.

Parameters

- include, exclude : list-like
 A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these.

Returns

- subset : DataFrame
 The subset of the frame including the dtypes in include and excluding the dtypes in exclude.

Raises

- ValueError
 • If both of include and exclude are empty
 • If include and exclude have overlapping elements
 • If any kind of string dtype is passed in.

- TypeError
 • If either of include or exclude is not a sequence

Notes

- To select all numeric types use the numpy dtype numpy.number
- To select strings you must use the object dtype, but note that this will return all object dtype columns
- See the numpy dtype hierarchy
- To select Pandas categorical dtypes, use ‘category’

Examples
```python
>>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'),
                    'b': [True, False] * 3,
                    'c': [1.0, 2.0] * 3})
>>> df
  a    b    c
0 0.3962 True  1
1 0.1459 False  2
2 0.2623 True  1
3 0.0764 False  2
4-0.9703 True  1
5-1.2094 False  2
>>> df.select_dtypes(include=['float64'])
   c
0  1
1  2
2  1
3  2
4  1
5  2
>>> df.select_dtypes(exclude=['floating'])
   b
0 True
1 False
2 True
3 False
4 True
5 False
```

pandas.DataFrame.values

`DataFrame.values`
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

E.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

pandas.DataFrame.axes

`DataFrame.axes`

pandas.DataFrame.ndim

`DataFrame.ndim`
Number of axes / array dimensions
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.DataFrame.shape

DataFrame.shape

32.4.3 Conversion

DataFrame.astype(dtype[, copy, raise_on_error])
Cast object to input numpy.dtype

DataFrame.convert_objects([convert_dates, ...])
Attempt to infer better dtype for object columns

DataFrame.copy([deep])
Make a copy of this object

DataFrame.isnull()
Return a boolean same-sized object indicating if the values are null ..

DataFrame.notnull()
Return a boolean same-sized object indicating if the values are not null ..

pandas.DataFrame.astype

DataFrame.astype (dtype, copy=True, raise_on_error=True)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters dtype : numpy.dtype or Python type

Parameters raise_on_error : raise on invalid input

Returns casted : type of caller

pandas.DataFrame.convert_objects

DataFrame.convert_objects (convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
Attempt to infer better dtype for object columns

Parameters convert_dates : if True, attempt to soft convert dates, if ‘coerce’, force conversion (and non-convertibles get NaT)

Parameters convert_numeric : if True attempt to coerce to numbers (including strings), non-convertibles get NaN

Parameters convert_timedeltas : if True, attempt to soft convert timedeltas, if ‘coerce’, force conversion (and non-convertibles get NaT)

Parameters copy : Boolean, if True, return copy even if no copy is necessary (e.g. no conversion was done), default is True. It is meant for internal use, not to be confused with inplace kw.

Returns converted : asm as input object

pandas.DataFrame.copy

DataFrame.copy (deep=True)
Make a copy of this object

Parameters deep : boolean or string, default True

Parameters make a deep copy, i.e. also copy data

Parameters copy : type of caller
pandas.DataFrame.isnull

DataFrame.isnull()
 Return a boolean same-sized object indicating if the values are null

See Also:
 notnull boolean inverse of isnull

pandas.DataFrame.notnull

DataFrame.notnull()
 Return a boolean same-sized object indicating if the values are not null

See Also:
 isnull boolean inverse of notnull

32.4.4 Indexing, iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.head(n)</td>
<td>Returns first n rows</td>
</tr>
<tr>
<td>DataFrame.at</td>
<td></td>
</tr>
<tr>
<td>DataFrame.iat</td>
<td></td>
</tr>
<tr>
<td>DataFrame.ix</td>
<td></td>
</tr>
<tr>
<td>DataFrame.loc</td>
<td></td>
</tr>
<tr>
<td>DataFrame.iloc</td>
<td></td>
</tr>
<tr>
<td>DataFrame.insert(loc, column, value[, ...])</td>
<td>Insert column into DataFrame at specified location.</td>
</tr>
<tr>
<td>DataFrame.iter()</td>
<td>Iterate over infor axis</td>
</tr>
<tr>
<td>DataFrame.iteritems()</td>
<td>Iterator over (column, series) pairs</td>
</tr>
<tr>
<td>DataFrame.iterrows()</td>
<td>Iterate over rows of DataFrame as (index, Series) pairs.</td>
</tr>
<tr>
<td>DataFrame.itertuples([index])</td>
<td>Iterate over rows of DataFrame as tuples, with index value</td>
</tr>
<tr>
<td>DataFrame.lookup(row_labels, col_labels)</td>
<td>Label-based "fancy indexing" function for DataFrame.</td>
</tr>
<tr>
<td>DataFrame.pop(item)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td>DataFrame.tail(n)</td>
<td>Returns last n rows</td>
</tr>
<tr>
<td>DataFrame.xs(key[, axis, level, copy, ...])</td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
<tr>
<td>DataFrame.isin(values)</td>
<td>Return boolean DataFrame showing whether each element in the</td>
</tr>
<tr>
<td>DataFrame.query(expr, **kwargs)</td>
<td>Query the columns of a frame with a boolean expression.</td>
</tr>
</tbody>
</table>

pandas.DataFrame.head

DataFrame.head(n=5)
 Returns first n rows

pandas.DataFrame.at

DataFrame.at

pandas.DataFrame.iat

DataFrame.iat
pandas.DataFrame.ix

DataFrame.ix

pandas.DataFrame.loc

DataFrame.loc

pandas.DataFrame.iloc

DataFrame.iloc

pandas.DataFrame.insert

DataFrame.insert(loc, column, value, allow_duplicates=False)
Insert column into DataFrame at specified location.
If allow_duplicates is False, raises Exception if column is already contained in the DataFrame.

Parameters
- loc : int
 Must have 0 <= loc <= len(columns)
- column : object
- value : int, Series, or array-like

pandas.DataFrame.__iter__

DataFrame.__iter__()
Iterate over infor axis

pandas.DataFrame.iteritems

DataFrame.iteritems()
Iterator over (column, series) pairs

pandas.DataFrame.iterrows

DataFrame.iterrows()
Iterate over rows of DataFrame as (index, Series) pairs.

Returns
- it : generator
 A generator that iterates over the rows of the frame.

Notes

• iterrows does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,
```python
>>> df = DataFrame([[1, 1.0]], columns=['x', 'y'])
>>> row = next(df.iterrows())[1]
>>> print(row['x'].dtype)
float64
>>> print(df['x'].dtype)
int64
```

pandas.DataFrame.itertuples

DataFrames have the method `itertuples`, which can be called with an optional argument `index=True`.

- **itertuples(index=True)**
 - Iterate over rows of DataFrame as tuples, with index value as first element of the tuple.

pandas.DataFrame.lookup

Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair.

Parameters

- **row_labels**: sequence
 - The row labels to use for lookup
- **col_labels**: sequence
 - The column labels to use for lookup

Notes

Akin to:

```python
result = []
for row, col in zip(row_labels, col_labels):
    result.append(df.get_value(row, col))
```

Examples

- **values**: [ndarray] The found values

pandas.DataFrame.pop

Return item and drop from frame. Raise KeyError if not found.

pandas.DataFrame.tail

Returns last n rows
DataFrame.xs

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

Parameters

key : object
Some label contained in the index, or partially in a MultiIndex

axis : int, default 0
A axis to retrieve cross-section on

level : object, defaults to first n levels (n=1 or len(key))
In case of a key partially contained in a MultiIndex, indicate which levels are used.
Levels can be referred by label or position.

copy : boolean [deprecated]
Whether to make a copy of the data

drop_level : boolean, default True
If False, returns object with same levels as self.

Returns

xs : Series or DataFrame

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers

Examples

```python
>>> df
  A  B  C
a  4  5  2
b  4  0  9
c  9  7  3

>>> df.xs('a')
  A  B  C
   4  5  2

>>> df.xs('C', axis=1)
  a  b  c
   2  9  3
Name: C

>>> df
  first  second  third
bar  one  1  4  1  8  9
     two  1  7  5  5  0
baz  one  1  6  6  8  0
```

Chapter 32. API Reference
three 2 5 3 3

```
>>> df.xs(('baz', 'three'))
   A  B  C  D
third
2 5 3 3 3
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

1 False False # Column A in 'other' has a 3, but not at index 1.
2 True True

pandas.DataFrame.query

DataFrame.query(expr, **kwargs)
Query the columns of a frame with a boolean expression. New in version 0.13.

Parameters expr : string
The query string to evaluate. You can refer to variables in the environment by pre-
fixing them with an ‘@’ character like @a + b.

kwargs : dict
See the documentation for pandas.eval() for complete details on the keyword
arguments accepted by DataFrame.query().

Returns q : DataFrame

See Also:
pandas.eval, DataFrame.eval

Notes

The result of the evaluation of this expression is first passed to DataFrame.loc and if that fails because of a
multidimensional key (e.g., a DataFrame) then the result will be passed to DataFrame.__getitem__().
This method uses the top-level pandas.eval() function to evaluate the passed query.

The query() method uses a slightly modified Python syntax by default. For example, the & and | (bitwise)
operators have the precedence of their boolean cousins, and or. This is syntactically valid Python, however
the semantics are different.

You can change the semantics of the expression by passing the keyword argument parser='python'. This
enforces the same semantics as evaluation in Python space. Likewise, you can pass engine='python' to
evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared
to using numexpr as the engine.

The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are placed in
the query namespace by default, which allows you to treat both the index and columns of the frame as a column
in the frame. The identifier index is used for the frame index; you can also use the name of the index to
identify it in a query.

For further details and examples see the query documentation in indexing.

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.query('a > b')
>>> df[df.a > df.b]  # same result as the previous expression
```

For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation.
32.4.5 Binary operator functions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.add</td>
<td>Binary operator add with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.sub</td>
<td>Binary operator sub with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.mul</td>
<td>Binary operator mul with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.div</td>
<td>Binary operator true_div with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.truediv</td>
<td>Binary operator true_div with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.floor_div</td>
<td>Binary operator floor_div with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.radd</td>
<td>Binary operator radd with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.rsub</td>
<td>Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.rmul</td>
<td>Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.rtruediv</td>
<td>Binary operator rtrue_div with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.rfloordiv</td>
<td>Binary operator rfloor_div with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.rmod</td>
<td>Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.rpow</td>
<td>Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs</td>
</tr>
<tr>
<td>DataFrame.lt</td>
<td>Wrapper for flexible comparison methods lt</td>
</tr>
<tr>
<td>DataFrame.gt</td>
<td>Wrapper for flexible comparison methods gt</td>
</tr>
<tr>
<td>DataFrame.le</td>
<td>Wrapper for flexible comparison methods le</td>
</tr>
<tr>
<td>DataFrame.ge</td>
<td>Wrapper for flexible comparison methods ge</td>
</tr>
<tr>
<td>DataFrame.ne</td>
<td>Wrapper for flexible comparison methods ne</td>
</tr>
<tr>
<td>DataFrame.eq</td>
<td>Wrapper for flexible comparison methods eq</td>
</tr>
<tr>
<td>DataFrame.combine</td>
<td>Add two DataFrame objects and do not propagate NaN values, so if for a level, propagate NaN values</td>
</tr>
<tr>
<td>DataFrame.combineAdd</td>
<td>Add two DataFrame objects and default to non-null values in frame</td>
</tr>
<tr>
<td>DataFrame.combine_first</td>
<td>Combine two DataFrame objects and default to non-null values in frame</td>
</tr>
<tr>
<td>DataFrame.combine_mult</td>
<td>Multiply two DataFrame objects and do not propagate NaN values, so if for a level, propagate NaN values</td>
</tr>
</tbody>
</table>

pandas.DataFrame.add

DataFrame.add(other[, axis, level, fill_value])

Binary operator add with support to substitute a fill_value for missing data in one of the inputs

Parameters

- **other** : Series, DataFrame, or constant
- **axis** : {0, 1, ‘index’, ‘columns’}

 For Series input, axis to match Series index on
- **fill_value** : None or float value, default None

 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level** : int or name

 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result** : DataFrame

Notes

Mismatched indices will be unioned together
pandas.DataFrame.sub

DataFrame.sub(other, axis='columns', level=None, fill_value=None)

Binary operator sub with support to substitute a fill_value for missing data in one of the inputs

Parameters
- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns **result**: DataFrame

Notes
Mismatches indices will be unioned together

pandas.DataFrame.mul

DataFrame.mul(other, axis='columns', level=None, fill_value=None)

Binary operator mul with support to substitute a fill_value for missing data in one of the inputs

Parameters
- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
 - **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
 - **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns **result**: DataFrame

Notes
Mismatches indices will be unioned together

pandas.DataFrame.div

DataFrame.div(other, axis='columns', level=None, fill_value=None)

Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
- **other**: Series, DataFrame, or constant
 - **axis**: {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on

fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.truediv

DataFrame.truediv(other, axis='columns', level=None, fill_value=None)
Binary operator truediv with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant
axis : {0, 1, 'index', 'columns'}
For Series input, axis to match Series index on

fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.floordiv

DataFrame.floordiv(other, axis='columns', level=None, fill_value=None)
Binary operator floordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters other : Series, DataFrame, or constant
axis : {0, 1, 'index', 'columns'}
For Series input, axis to match Series index on

fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.mod

DataFrame.mod *(other, axis='columns', level=None, fill_value=None)*

Binary operator mod with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

- **axis** : {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on

- **fill_value** : None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

- **level** : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes
Mismatched indices will be unioned together

pandas.DataFrame.pow

DataFrame.pow *(other, axis='columns', level=None, fill_value=None)*

Binary operator pow with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

- **axis** : {0, 1, ‘index’, ‘columns’}
 For Series input, axis to match Series index on

- **fill_value** : None or float value, default None
 Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

- **level** : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame
Notes

Mismatched indices will be unioned together

pandas.DataFrame.radd

`DataFrame.radd(other, axis='columns', level=None, fill_value=None)`

Binary operator radd with support to substitute a fill_value for missing data in one of the inputs

Parameters

- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rsub

`DataFrame.rsub(other, axis='columns', level=None, fill_value=None)`

Binary operator rsub with support to substitute a fill_value for missing data in one of the inputs

Parameters

- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- **result**: DataFrame

Notes

Mismatched indices will be unioned together
pandas.DataFrame.rmul

DataFrame.rmul(other, axis='columns', level=None, fill_value=None)

Binary operator rmul with support to substitute a fill_value for missing data in one of the inputs

Parameters
- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- result: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rdiv

DataFrame.rdiv(other, axis='columns', level=None, fill_value=None)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
 - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
 - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- result: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rtruediv

DataFrame.rtruediv(other, axis='columns', level=None, fill_value=None)

Binary operator rtruediv with support to substitute a fill_value for missing data in one of the inputs

Parameters
- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on

fill_value: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rfloordiv

DataFrame.rfloordiv(other, axis='columns', level=None, fill_value=None)
Binary operator rfloordiv with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series, DataFrame, or constant

axis: {0, 1, 'index', 'columns'}

For Series input, axis to match Series index on

fill_value: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rmod

DataFrame.rmod(other, axis='columns', level=None, fill_value=None)
Binary operator rmod with support to substitute a fill_value for missing data in one of the inputs

Parameters
other: Series, DataFrame, or constant

axis: {0, 1, 'index', 'columns'}

For Series input, axis to match Series index on

fill_value: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: DataFrame

Notes

Mismatched indices will be unioned together
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rpow

DataFrame.rpow(other, axis='columns', level=None, fill_value=None)

Binary operator rpow with support to substitute a fill_value for missing data in one of the inputs

Parameters
other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result : DataFrame

Notes

Mismatched indices will be unioned together

pandas.DataFrame.lt

DataFrame.lt(other, axis='columns', level=None)

Wrapper for flexible comparison methods lt

pandas.DataFrame.gt

DataFrame.gt(other, axis='columns', level=None)

Wrapper for flexible comparison methods gt

pandas.DataFrame.le

DataFrame.le(other, axis='columns', level=None)

Wrapper for flexible comparison methods le

pandas.DataFrame.ge

DataFrame.ge(other, axis='columns', level=None)

Wrapper for flexible comparison methods ge
pandas.DataFrame.ne

DataFrame.ne(other, axis='columns', level=None)
Wrapper for flexible comparison methods ne

pandas.DataFrame.eq

DataFrame.eq(other, axis='columns', level=None)
Wrapper for flexible comparison methods eq

pandas.DataFrame.combine

DataFrame.combine(other, func, fill_value=None, overwrite=True)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters

other : DataFrame
func : function
fill_value : scalar value
overwrite : boolean, default True

If True then overwrite values for common keys in the calling frame

Returns

result : DataFrame

pandas.DataFrame.combineAdd

DataFrame.combineAdd(other)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters

other : DataFrame

Returns

DataFrame

pandas.DataFrame.combine_first

DataFrame.combine_first(other)
Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns

Parameters

other : DataFrame

Returns

combined : DataFrame

Examples

a’s values prioritized, use values from b to fill holes:

>>> a.combine_first(b)
pandas.DataFrame.combineMult

DataFrame.combineMult *(other)*
Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters
- **other**: DataFrame

Returns
- DataFrame

32.4.6 Function application, GroupBy

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.apply</td>
<td>Applies function along input axis of DataFrame.</td>
</tr>
<tr>
<td>DataFrame.applymap</td>
<td>Apply a function to a DataFrame that is intended to operate</td>
</tr>
<tr>
<td>DataFrame.groupby</td>
<td>Group series using mapper (dict or key function, apply given function</td>
</tr>
</tbody>
</table>

pandas.DataFrame.apply

DataFrame.apply *(func[, axis, broadcast, ...])*
Applies function along input axis of DataFrame.

Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty.

Parameters
- **func**: function
- **axis**: {0, 1}
 - 0 : apply function to each column
 - 1 : apply function to each row
- **broadcast**: boolean, default False
 For aggregation functions, return object of same size with values propagated
- **reduce**: boolean or None, default None
 Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned.
- **raw**: boolean, default False
 If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance
- **args**: tuple
 Positional arguments to pass to function in addition to the array/series

Returns
- **applied**: Series or DataFrame
See Also:

DataFrame.applymap For elementwise operations

Notes

In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.

Examples

```python
>>> df.apply(numpy.sqrt)  # returns DataFrame
>>> df.apply(numpy.sum, axis=0)  # equiv to df.sum(0)
>>> df.apply(numpy.sum, axis=1)  # equiv to df.sum(1)
```

pandas.DataFrame.applymap

DataFrame.applymap(func)

Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame.

Parameters

- **func**: function

 Python function, returns a single value from a single value

Returns

- **applied**: DataFrame

See Also:

DataFrame.apply For operations on rows/columns

pandas.DataFrame.groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

Parameters

- **by**: mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups
- **axis**: int, default 0
- **level**: int, level name, or sequence of such, default None

 If the axis is a MultiIndex (hierarchical), group by a particular level or levels
- **as_index**: boolean, default True

 For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output
- **sort**: boolean, default True

32.4. DataFrame 1107
Sort group keys. Get better performance by turning this off

group_keys: boolean, default True

When calling `apply`, add group keys to index to identify pieces

squeeze: boolean, default False

reduce the dimensionality of the return type if possible, otherwise return a consistent type

Returns GroupBy object

Examples

```python
# DataFrame result >>> data.groupby(func, axis=0).mean()
# DataFrame result >>> data.groupby(["col1", "col2"])["col3"].mean()
# DataFrame with hierarchical index >>> data.groupby(["col1", "col2"]).mean()
```

32.4.7 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.abs()</code></td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td><code>DataFrame.all()</code></td>
<td>Return whether all elements are True over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.any()</code></td>
<td>Return whether any element is True over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.clip()</code></td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td><code>DataFrame.clip_lower()</code></td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td><code>DataFrame.clip_upper()</code></td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td><code>DataFrame.corr()</code></td>
<td>Compute pairwise correlation of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>DataFrame.corrwith()</code></td>
<td>Compute pairwise correlation between rows or columns of two DataFrame</td>
</tr>
<tr>
<td><code>DataFrame.count()</code></td>
<td>Return Series with number of non-NA/null observations over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.cov()</code></td>
<td>Compute pairwise covariance of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>DataFrame.cummax()</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.cummin()</code></td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.cumprod()</code></td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.cumsum()</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.describe()</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>DataFrame.diff()</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>DataFrame.eval()</code></td>
<td>Evaluate an expression in the context of the calling DataFrame</td>
</tr>
<tr>
<td><code>DataFrame.kurt()</code></td>
<td>Return unbiased kurtosis over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.max()</code></td>
<td>Return the mean absolute deviation of the values for the requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.mean()</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>DataFrame.median()</code></td>
<td>Return the mean of the values for the requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.min()</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>DataFrame.mode()</code></td>
<td>Gets the mode of each element along the axis selected.</td>
</tr>
<tr>
<td><code>DataFrame.pct_change()</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>DataFrame.prod()</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>DataFrame.quantile()</code></td>
<td>Return values at the given quantile over requested axis, a la numpy.percent</td>
</tr>
<tr>
<td><code>DataFrame.rank()</code></td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>DataFrame.sem()</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.skew()</code></td>
<td>Return unbiased skew over requested axis.</td>
</tr>
</tbody>
</table>
Table 32.53 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.sum</td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td>DataFrame.std</td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td>DataFrame.var</td>
<td>Return unbiased variance over requested axis.</td>
</tr>
</tbody>
</table>

pandas.DataFrame.abs

```
DataFrame.abs()
```

Return an object with absolute value taken. Only applicable to objects that are all numeric

Returns

abs: type of caller

pandas.DataFrame.all

```
DataFrame.all(axis=None, bool_only=None, skipna=True, level=None, **kwargs)
```

Return whether all elements are True over requested axis. %%(na_action)s

Parameters

- `axis`: 0 for row-wise, 1 for column-wise
- `skipna`: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level`: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- `bool_only`: boolean, default None
 - Only include boolean data.

Returns

any: Series (or DataFrame if level specified)

pandas.DataFrame.any

```
DataFrame.any(axis=None, bool_only=None, skipna=True, level=None, **kwargs)
```

Return whether any element is True over requested axis. %%(na_action)s

Parameters

- `axis`: 0 for row-wise, 1 for column-wise
- `skipna`: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level`: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- `bool_only`: boolean, default None
 - Only include boolean data.

Returns

any: Series (or DataFrame if level specified)
pandas.DataFrame.clip

DataFrame.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters
- lower : float, default None
- upper : float, default None

Returns
- clipped : Series

pandas.DataFrame.clip_lower

DataFrame.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns
- clipped : same type as input

See Also:
- clip

pandas.DataFrame.clip_upper

DataFrame.clip_upper(threshold)
Return copy of input with values above given value truncated

Returns
- clipped : same type as input

See Also:
- clip

pandas.DataFrame.corr

DataFrame.corr(method='pearson', min_periods=1)
Compute pairwise correlation of columns, excluding NA/null values

Parameters
- method : {'pearson', 'kendall', 'spearman'}
 - pearson : standard correlation coefficient
 - kendall : Kendall Tau correlation coefficient
 - spearman : Spearman rank correlation
- min_periods : int, optional
 Minimum number of observations required per pair of columns to have a valid result.
 Currently only available for pearson and spearman correlation

Returns
- y : DataFrame

pandas.DataFrame.corrwith

DataFrame.corrwith(other, axis=0, drop=False)
Compute pairwise correlation between rows or columns of two DataFrame objects.
Parameters

- **other**: DataFrame
 - **axis**: \{0, 1\}
 - 0 to compute column-wise, 1 for row-wise
 - **drop**: boolean, default False
 - Drop missing indices from result, default returns union of all

Returns

- **corrls**: Series

pandas.DataFrame.count

- **DataFrame.count** \(\text{(axis=0, level=None, numeric_only=False)}\)
 - Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None)
 - **Parameters**
 - **axis**: \{0, 1\}
 - 0 for row-wise, 1 for column-wise
 - **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
 - **numeric_only**: boolean, default False
 - Include only float, int, boolean data
 - **Returns**
 - **count**: Series (or DataFrame if level specified)

pandas.DataFrame.cov

- **DataFrame.cov** \(\text{(min_periods=None)}\)
 - Compute pairwise covariance of columns, excluding NA/null values
 - **Parameters**
 - **min_periods**: int, optional
 - Minimum number of observations required per pair of columns to have a valid result.
 - **Returns**
 - **y**: DataFrame

Notes

- \(y\) contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator).

pandas.DataFrame.cummax

- **DataFrame.cummax** \(\text{(axis=None, dtype=None, out=None, skipna=True, **kwargs)}\)
 - Return cumulative max over requested axis.
 - **Parameters**
 - **axis**: \{index (0), columns (1)\}
 - **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **Returns**
 - **max**: Series
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.DataFrame.cummin

DataFrame.cummin(\texttt{axis=None, dtype=None, out=None, skipna=True, **kwargs})

Return cumulative min over requested axis.

\textbf{Parameters} \ \texttt{axis} : \{index (0), columns (1)}

\texttt{skipna} : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

\textbf{Returns} \ \texttt{min} : Series

pandas.DataFrame.cumprod

DataFrame.cumprod(\texttt{axis=None, dtype=None, out=None, skipna=True, **kwargs})

Return cumulative prod over requested axis.

\textbf{Parameters} \ \texttt{axis} : \{index (0), columns (1)}

\texttt{skipna} : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

\textbf{Returns} \ \texttt{prod} : Series

pandas.DataFrame.cumsum

DataFrame.cumsum(\texttt{axis=None, dtype=None, out=None, skipna=True, **kwargs})

Return cumulative sum over requested axis.

\textbf{Parameters} \ \texttt{axis} : \{index (0), columns (1)}

\texttt{skipna} : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

\textbf{Returns} \ \texttt{sum} : Series

pandas.DataFrame.describe

DataFrame.describe(\texttt{percentile_width=None, percentiles=None, include=None, exclude=None})

Generate various summary statistics, excluding NaN values.

\textbf{Parameters} \ \texttt{percentile_width} : float, deprecated

The \texttt{percentile_width} argument will be removed in a future version. Use \texttt{percentiles} instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

\texttt{percentiles} : array-like, optional

The percentiles to include in the output. Should all be in the interval \([0, 1]\). By default \texttt{percentiles} is \([.25, .5, .75]\), returning the 25th, 50th, and 75th percentiles.

\texttt{include, exclude} : list-like, ‘all’, or None (default)

Specify the form of the returned result. Either:

\begin{itemize}
 \item None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
\end{itemize}
• A list of dtypes or strings to be included/excluded. To select all numeric types use numpy number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])

• If include is the string ‘all’, the output column-set will match the input one.

Returns
summary: NDFrame of summary statistics

See Also:
DataFrame.select_dtypes

Notes

The output DataFrame index depends on the requested dtypes:
For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.
For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.
For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.
The include, exclude arguments are ignored for Series.

pandas.DataFrame.diff

DataFrame.diff(periods=1)
1st discrete difference of object

Parameters
periods : int, default 1
Periods to shift for forming difference

Returns
diffed : DataFrame

pandas.DataFrame.eval

DataFrame.eval(expr, **kwargs)
Evaluate an expression in the context of the calling DataFrame instance.

Parameters
expr : string
The expression string to evaluate.

kwargs : dict
See the documentation for eval() for complete details on the keyword arguments accepted by query().

Returns
ret : ndarray, scalar, or pandas object

See Also:
DataFrame.query, pandas.eval
Notes

For more details see the API documentation for `eval()`. For detailed examples see *enhancing performance with eval*.

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.eval('a + b')
>>> df.eval('c = a + b')
```

`pandas.DataFrame.kurt`

DataFrame. `kurt` *(axis=\text{None}, skipna=\text{None}, level=\text{None}, numeric_only=\text{None}, **kwargs)*

Return unbiased kurtosis over requested axis Normalized by N-1

Parameters

- `axis` : \{index (0), columns (1)\}
- `skipna` : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- `numeric_only` : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- `kurt` : Series or DataFrame (if level specified)

`pandas.DataFrame.mad`

DataFrame. `mad` *(axis=\text{None}, skipna=\text{None}, level=\text{None}, **kwargs)*

Return the mean absolute deviation of the values for the requested axis

Parameters

- `axis` : \{index (0), columns (1)\}
- `skipna` : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- `numeric_only` : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- `mad` : Series or DataFrame (if level specified)
pandas.DataFrame.max

DataFrame.max(\textit{axis=None, skipna=None, level=None, numeric_only=None, **kwargs})

This method returns the maximum of the values in the object. If you want the index of the maximum, use \texttt{idxmax}. This is the equivalent of the \texttt{numpy.ndarray} method \texttt{argmax}.

Parameters
- \texttt{axis} : \{index (0), columns (1)}
 - \texttt{skipna} : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - \texttt{level} : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 - \texttt{numeric_only} : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- \texttt{max} : Series or DataFrame (if level specified)

pandas.DataFrame.mean

DataFrame.mean(\textit{axis=None, skipna=None, level=None, numeric_only=None, **kwargs})

Return the mean of the values for the requested axis

Parameters
- \texttt{axis} : \{index (0), columns (1)}
 - \texttt{skipna} : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - \texttt{level} : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 - \texttt{numeric_only} : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- \texttt{mean} : Series or DataFrame (if level specified)

pandas.DataFrame.median

DataFrame.median(\textit{axis=None, skipna=None, level=None, numeric_only=None, **kwargs})

Return the median of the values for the requested axis

Parameters
- \texttt{axis} : \{index (0), columns (1)}
 - \texttt{skipna} : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - \texttt{level} : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 - \texttt{numeric_only} : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- \texttt{median} : Series or DataFrame (if level specified)
numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns median : Series or DataFrame (if level specified)

pandas.DataFrame.min

DataFrame.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns min : Series or DataFrame (if level specified)

pandas.DataFrame.mode

DataFrame.mode (axis=0, numeric_only=False)

Gets the mode of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan.

Parameters axis : {0, 1, 'index', 'columns'} (default 0)

• 0/'index' : get mode of each column
• 1/'columns' : get mode of each row

numeric_only : boolean, default False

if True, only apply to numeric columns

Returns modes : DataFrame (sorted)

pandas.DataFrame.pct_change

DataFrame.pct_change (periods=1, fill_method='pad', limit=None, freq=None, **kwds)

Percent change over given number of periods.

Parameters periods : int, default 1

Periods to shift for forming percent change

fill_method : str, default ‘pad’

How to handle NAs before computing percent changes
limit: int, default None

The number of consecutive NAs to fill before stopping

freq: DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. 'M' or BDay())

Returns **chg**: NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or
minor for Panel. You can change this with the axis keyword argument.

pandas.DataFrame.prod

DataFrame.prod *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Return the product of the values for the requested axis

Parameters **axis**: {index (0), columns (1)}

skipna: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns **prod**: Series or DataFrame (if level specified)

pandas.DataFrame.quantile

DataFrame.quantile *(q=0.5, axis=0, numeric_only=True)*

Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters **q**: float or array-like, default 0.5 (50% quantile)

0 <= q <= 1, the quantile(s) to compute

axis: {0, 1}

0 for row-wise, 1 for column-wise

Returns **quantiles**: Series or DataFrame

If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.
Examples

```python
>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
                  columns=['a', 'b'])
>>> df.quantile(.1)
dtype: float64
>>> df.quantile([.1, .5])
```

```
pandas.DataFrame.rank

DataFrame.rank (axis=0, numeric_only=None, method='average', na_option='keep', ascending=True, pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

Parameters

- **axis**: {0, 1}, default 0
  - Ranks over columns (0) or rows (1)
- **numeric_only**: boolean, default None
  - Include only float, int, boolean data
- **method**: {'average', 'min', 'max', 'first', 'dense'}
  - average: average rank of group
  - min: lowest rank in group
  - max: highest rank in group
  - first: ranks assigned in order they appear in the array
  - dense: like ‘min’, but rank always increases by 1 between groups
- **na_option**: {'keep', 'top', 'bottom'}
  - keep: leave NA values where they are
  - top: smallest rank if ascending
  - bottom: smallest rank if descending
- **ascending**: boolean, default True
  - False for ranks by high (1) to low (N)
- **pct**: boolean, default False
  - Computes percentage rank of data

Returns

- **ranks**: DataFrame
```

```python
pandas.DataFrame.sem

DataFrame.sem (axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard error of the mean over requested axis.
```
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **sem**: Series or DataFrame (if level specified)

pandas.DataFrame.skew

DataFrame.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased skew over requested axis Normalized by N-1

Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **skew**: Series or DataFrame (if level specified)

pandas.DataFrame.sum

DataFrame.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the sum of the values for the requested axis

Parameters

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data
pandas: powerful Python data analysis toolkit, Release 0.15.1

Returns sum : Series or DataFrame (if level specified)

pandas.DataFrame.std

DataFrame.std(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns std : Series or DataFrame (if level specified)

pandas.DataFrame.var

DataFrame.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns var : Series or DataFrame (if level specified)

32.4.8 Reindexing / Selection / Label manipulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>DataFrame.add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td>DataFrame.align(other[, join, axis, level, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>DataFrame.drop(labels[, axis, level, inplace])</td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td>DataFrame.drop_duplicates(*args, **kwargs)</td>
<td>Return DataFrame with duplicate rows removed, optionally only</td>
</tr>
</tbody>
</table>

Continued on next page
Table 32.54 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.duplicated(*args, **kwargs)</code></td>
<td>Return boolean Series denoting duplicate rows, optionally only</td>
</tr>
<tr>
<td><code>DataFrame.equals(other)</code></td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the first take precedence.</td>
</tr>
<tr>
<td><code>DataFrame.filter([items, like, regex, axis])</code></td>
<td>Restrict the info axis to set of items or wildcard</td>
</tr>
<tr>
<td><code>DataFrame.first(offset)</code></td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td><code>DataFrame.head(n)</code></td>
<td>Returns first n rows</td>
</tr>
<tr>
<td><code>DataFrame.idxmax([axis, skipna])</code></td>
<td>Return index of first occurrence of maximum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.idxmin([axis, skipna])</code></td>
<td>Return index of first occurrence of minimum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td><code>DataFrame.reindex([index, columns])</code></td>
<td>Conform DataFrame to new index with optional filling logic, placing missing values as necessary</td>
</tr>
<tr>
<td><code>DataFrame.reindex_axis(labels[, axis, level, fill_value])</code></td>
<td>Conform input object to new index with optional filling logic, placing missing values as necessary</td>
</tr>
<tr>
<td><code>DataFrame.reindex_like(other[, method, fill_value])</code></td>
<td>return an object with matching indicies to myself</td>
</tr>
<tr>
<td><code>DataFrame.rename([index, columns])</code></td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>DataFrame.reset_index([level, drop, fill_value])</code></td>
<td>For DataFrame with multi-level index, return new DataFrame with single level</td>
</tr>
<tr>
<td><code>DataFrame.select(crit[, axis])</code></td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>DataFrame.set_index(keys[, drop, append, fill_value])</code></td>
<td>Set the DataFrame index (row labels) using one or more existing names</td>
</tr>
<tr>
<td><code>DataFrame.tail(n)</code></td>
<td>Returns last n rows</td>
</tr>
<tr>
<td><code>DataFrame.take(indices[, axis, convert, is_copy])</code></td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><code>DataFrame.truncate([before, after, axis, copy])</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular point</td>
</tr>
</tbody>
</table>

pandas.DataFrame.add_prefix

DataFrame.add_prefix(prefix)

Concatenate prefix string with panel items names.

Parameters
- `prefix` : string

Returns
- `with_prefix` : type of caller

pandas.DataFrame.add_suffix

DataFrame.add_suffix(suffix)

Concatenate suffix string with panel items names

Parameters
- `suffix` : string

Returns
- `with_suffix` : type of caller

pandas.DataFrame.align

DataFrame.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)

Align two object on their axes with the specified join method for each axis. Index

Parameters
- `other` : DataFrame or Series
- `join` : {'outer', 'inner', 'left', 'right'}, default ‘outer’
- `axis` : allowed axis of the other object, default None
 - Align on index (0), columns (1), or both (None)
- `level` : int or level name, default None
 - Broadcast across a level, matching Index values on the passed MultiIndex level
- `copy` : boolean, default True
Always returns new objects. If copy=False and no reindexing is required then original objects are returned.

fill_value: scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

method: str, default None

limit: int, default None

fill_axis: {0, 1}, default 0

Filling axis, method and limit

Returns: (left, right) : (type of input, type of other)

Aligned objects

pandas.DataFrame.drop

DataFrame. **drop**(labels, axis=0, level=None, inplace=False, **kwargs)

Return new object with labels in requested axis removed

Parameters:
- **labels**: single label or list-like
- **axis**: int or axis name
- **level**: int or level name, default None
 - For MultiIndex
- **inplace**: bool, default False
 - If True, do operation inplace and return None.

Returns: dropped : type of caller

pandas.DataFrame.drop_duplicates

DataFrame. **drop_duplicates**(*args, **kwargs)

Return DataFrame with duplicate rows removed, optionally only considering certain columns

Parameters:
- **subset**: column label or sequence of labels, optional
 - Only consider certain columns for identifying duplicates, by default use all of the columns
- **take_last**: boolean, default False
 - Take the last observed row in a row. Defaults to the first row
- **inplace**: boolean, default False
 - Whether to drop duplicates in place or to return a copy
- **cols**: kwargs only argument of subset [deprecated]

Returns: deduplicated : DataFrame
pandas.DataFrame.duplicated

DataFrame.duplicated(*args, **kwargs)
Return boolean Series denoting duplicate rows, optionally only considering certain columns

Parameters
- **subset**: column label or sequence of labels, optional
 Only consider certain columns for identifying duplicates, by default use all of the columns
- **take_last**: boolean, default False
 Take the last observed row in a row. Defaults to the first row
- **cols**: kwags only argument of subset [deprecated]

Returns
- **duplicated**: Series

pandas.DataFrame.equals

DataFrame.equals(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.DataFrame.filter

DataFrame.filter(items=None, like=None, regex=None, axis=None)
Restrict the info axis to set of items or wildcard

Parameters
- **items**: list-like
 List of info axis to restrict to (must not all be present)
- **like**: string
 Keep info axis where “arg in col == True”
- **regex**: string (regular expression)
 Keep info axis with re.search(regex, col) == True
- **axis**: int or None
 The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with[]. For example, df = DataFrame({'a': [1, 2, 3, 4]}); df['a']. So, the DataFrame columns are the info axis.

Notes
Arguments are mutually exclusive, but this is not checked for

pandas.DataFrame.first

DataFrame.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset

Parameters
- **offset**: string, DateOffset, dateutil.relativedelta

Returns
- **subset**: type of caller
Examples

ts.last('10D') -> First 10 days

pandas.DataFrame.head

DataFrame.head(n=5)
Returns first n rows

pandas.DataFrame.idxmax

DataFrame.idxmax(axis=0, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

Parameters
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be first index.

Returns
idxmax : Series

See Also:
Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.

pandas.DataFrame.idxmin

DataFrame.idxmin(axis=0, skipna=True)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters
axis : {0, 1}
0 for row-wise, 1 for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
idxmin : Series

See Also:
Series.idxmin

Notes

This method is the DataFrame version of ndarray.argmin.
pandas.DataFrame.last

`DataFrame.last(offset)`
Convenience method for subsetting final periods of time series data based on a date offset

Parameters
- `offset`: string, DateOffset, dateutil.relativedelta

Returns
- `subset`: type of caller

Examples

ts.last('5M') -> Last 5 months

pandas.DataFrame.reindex

`DataFrame.reindex(index=None, columns=None, **kwargs)`
Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters
- `index`, `columns`: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
- `method`: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 Method to use for filling holes in reindexed DataFrame
 pad / ffill: propagate last valid observation forward to next valid
 backfill / bfill: use NEXT valid observation to fill gap
- `copy`: boolean, default True
 Return a new object, even if the passed indexes are the same
- `level`: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
- `fill_value`: scalar, default np.Nan
 Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- `limit`: int, default None
 Maximum size gap to forward or backward fill

Returns
- `reindexed`: DataFrame

Examples

```python
>>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.DataFrame.reindex_axis

DataFrame.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)

Conform input object to new index with optional filling logic, placing NA/Nan in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters

labels : array-like
 New labels / index to conform to. Preferably an Index object to avoid duplicating data

axis : {0,1,’index’,’columns’}

 Method to use for filling holes in reindexed object. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True
 Return a new object, even if the passed indexes are the same

level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

limit : int, default None
 Maximum size gap to forward or backward fill

Returns

reindexed : DataFrame

See Also:

reindex, reindex_like

Examples

>>> df.reindex_axis(['A', 'B', 'C'], axis=1)

pandas.DataFrame.reindex_like

DataFrame.reindex_like(other, method=None, copy=True, limit=None)

return an object with matching indicies to myself

Parameters

other : Object

method : string or None

copy : boolean, default True

limit : int, default None

Returns

reindexed : same as input
Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.DataFrame.rename

DataFrame.rename(index=None, columns=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters

index, columns : dict-like or function, optional
Transformation to apply to that axis values
copy : boolean, default True
Also copy underlying data
inplace : boolean, default False
Whether to return a new DataFrame. If True then value of copy is ignored.

Returns

renamed : DataFrame (new object)

pandas.DataFrame.reset_index

DataFrame.reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')
For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used.

Parameters

level : int, str, tuple, or list, default None
Only remove the given levels from the index. Removes all levels by default
drop : boolean, default False
Do not try to insert index into dataframe columns. This resets the index to the default integer index.
inplace : boolean, default False
Modify the DataFrame in place (do not create a new object)
col_level : int or str, default 0
If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.
col_fill : object, default ''
If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated.

Returns

resetted : DataFrame

pandas.DataFrame.select

DataFrame.select(crit, axis=0)
Return data corresponding to axis labels matching criteria
Parameters

- **crit**: function
 - To be called on each index (label). Should return True or False

- **axis**: int

Returns

- **selection**: type of caller

pandas.DataFrame.set_index

DataFrame.set_index(*keys*, *drop=True, append=False, inplace=False, verify_integrity=False)*

Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object.

Parameters

- **keys**: column label or list of column labels / arrays
 - **drop**: boolean, default True
 - Delete columns to be used as the new index
 - **append**: boolean, default False
 - Whether to append columns to existing index
 - **inplace**: boolean, default False
 - Modify the DataFrame in place (do not create a new object)
 - **verify_integrity**: boolean, default False
 - Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method

Returns

- **dataframe**: DataFrame

Examples

```python
>>> indexed_df = df.set_index(['A', 'B'])
>>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
>>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]])
```

pandas.DataFrame.tail

DataFrame.tail(*n=5)*

Returns last n rows

pandas.DataFrame.take

DataFrame.take(*indices, axis=0, convert=True, is_copy=True)*

Analogous to ndarray.take

Parameters

- **indices**: list / array of ints
 - **axis**: int, default 0
 - Convert negative to positive indices (default)
 - **convert**: boolean, default True
 - Mark the returned frame as a copy

Returns

- **taken**: type of caller
pandas.DataFrame.truncate

DataFrame.truncate(before=None, after=None, axis=None, copy=True)
Truncates a sorted NDFrame before and/or after some particular dates.

Parameters
- **before**: date
 - Truncate before date
- **after**: date
 - Truncate after date
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
 - return a copy of the truncated section

Returns **truncated**: type of caller

32.4.9 Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.dropna()</td>
<td>Return object with labels on given axis omitted where alternately any or all of the data are missing</td>
</tr>
<tr>
<td>DataFrame.fillna()</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>DataFrame.replace()</td>
<td>Replace values in 'to_replace' with 'value'.</td>
</tr>
</tbody>
</table>

pandas.DataFrame.dropna

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
Return object with labels on given axis omitted where alternately any or all of the data are missing

Parameters
- **axis**: {0, 1}, or tuple/list thereof
 - Pass tuple or list to drop on multiple axes
- **how**: {'any', 'all'}
 - any : if any NA values are present, drop that label
 - all : if all values are NA, drop that label
- **thresh**: int, default None
 - int value : require that many non-NA values
- **subset**: array-like
 - Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include
- **inplace**: boolean, default False
 - If True, do operation inplace and return None.

Returns **dropped**: DataFrame

pandas.DataFrame.fillna

DataFrame.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)
Fill NA/NaN values using the specified method

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

value : scalar, dict, Series, or DataFrame

Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

axis : {0, 1}, default 0

• 0: fill column-by-column
• 1: fill row-by-row

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None

Maximum size gap to forward or backward fill

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : same type as caller

See Also:

reindex, asfreq

pandas.DataFrame.replace

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=’pad’, axis=None)

Replace values given in ‘to_replace’ with ‘value’.

Parameters to_replace : str, regex, list, dict, Series, numeric, or None

• str or regex:
 – str: string exactly matching to_replace will be replaced with value
 – regex: regexprs matching to_replace will be replaced with value
• list of str, regex, or numeric:
 – First, if to_replace and value are both lists, they must be the same length.
 – Second, if regex=True then all of the strings in both lists will be interpreted as regexprs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexprs you can use.
 – str and regex rules apply as above.
• dict:
Nested dictionaries, e.g., `{a: {'b': nan}}`, are read as follows: look in column `a` for the value `b` and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) **cannot** be regular expressions.

Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

- **None:**
 - This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also None then this **must** be a nested dictionary or Series.

See the examples section for examples of each of these.

```
value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill

regex : bool or same types as `to_replace`, default False

Whether to interpret `to_replace` and/or `value` as regular expressions. If this is True then `to_replace` must be a string. Otherwise, `to_replace` must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

method : string, optional, `{'pad', 'ffill', 'bfill'}`

The method to use when for replacement, when `to_replace` is a list.

Returns  filled : NDFrame

Raises  AssertionError

- If `regex` is not a bool and `to_replace` is not None.

TypeError

- If `to_replace` is a dict and `value` is not a list, dict, ndarray, or Series
- If `to_replace` is None and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series.

ValueError

- If `to_replace` and `value` are lists or ndarrays, but they are not the same length.

See Also:

- `NDFrame.reindex`, `NDFrame.asfreq`, `NDFrame.fillna`
Notes

• Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.

• Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.

• This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

32.4.10 Reshaping, sorting, transposing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.pivot()</code></td>
<td>Reshape data (produce a “pivot” table) based on column values.</td>
</tr>
<tr>
<td><code>DataFrame.reorder_levels()</code></td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>DataFrame.sort()</code></td>
<td>Sort DataFrame either by labels (along either axis) or by the values in</td>
</tr>
<tr>
<td><code>DataFrame.sort_index()</code></td>
<td>Sort DataFrame either by labels (along either axis) or by the values in</td>
</tr>
<tr>
<td><code>DataFrame.sortlevel()</code></td>
<td>Sort multilevel index by chosen axis and primary level.</td>
</tr>
<tr>
<td><code>DataFrame.swaplevel()</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td><code>DataFrame.stack()</code></td>
<td>Pivot a level of the (possibly hierarchical) column labels, returning a</td>
</tr>
<tr>
<td><code>DataFrame.unstack()</code></td>
<td>Pivot a level of the (necessarily hierarchical) index labels, returning</td>
</tr>
<tr>
<td><code>DataFrame.T</code></td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td><code>DataFrame.to_panel()</code></td>
<td>Transform long (stacked) format (DataFrame) into wide (3D, Panel)</td>
</tr>
<tr>
<td><code>DataFrame.transpose()</code></td>
<td>Transpose index and columns</td>
</tr>
</tbody>
</table>

**pandas.DataFrame.pivot**

`DataFrame.pivot(index=None, columns=None, values=None)`

Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns to form axes and return either DataFrame or Panel, depending on whether you request a single value column (DataFrame) or all columns (Panel)

**Parameters**

- `index` : string or object
  Column name to use to make new frame’s index
- `columns` : string or object
  Column name to use to make new frame’s columns
- `values` : string or object, optional
  Column name to use for populating new frame’s values

**Returns**

- `pivot` : DataFrame
  If no values column specified, will have hierarchically indexed columns

**Notes**

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods
Examples

```python
>>> df
 foo bar baz
 0 one A 1.0
 1 one B 2.0
 2 one C 3.0
 3 two A 4.0
 4 two B 5.0
 5 two C 6.0

>>> df.pivot('foo', 'bar', 'baz')
 A B C
one 1 2 3
two 4 5 6

>>> df.pivot('foo', 'bar')['baz']
 A B C
one 1 2 3
two 4 5 6
```

**pandas.DataFrame.reorder_levels**

`DataFrame.reorder_levels(order, axis=0)`

Rearrange index levels using input order. May not drop or duplicate levels

**Parameters**

- `order`: list of int or list of str
  - List representing new level order. Reference level by number (position) or by key (label).
- `axis`: int
  - Where to reorder levels.

**Returns**

- type of caller (new object)

**pandas.DataFrame.sort**

`DataFrame.sort(columns=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')`

Sort DataFrame either by labels (along either axis) or by the values in column(s)

**Parameters**

- `columns`: object
  - Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index.
- `ascending`: boolean or list, default True
  - Sort ascending vs. descending. Specify list for multiple sort orders
- `axis`: {0, 1}
  - Sort index/rows versus columns
- `inplace`: boolean, default False
  - Sort the DataFrame without creating a new instance
- `kind`: {'quicksort', 'mergesort', 'heapsort'}, optional
This option is only applied when sorting on a single column or label.

\[
\text{na_position} = \{\text{‘first’, ‘last’} \} \text{ (optional, default=‘last’)}
\]

‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

**Returns**  
\[
\text{sorted} : \text{DataFrame}
\]

### Examples

```python
>>> result = df.sort([‘A’, ‘B’], ascending=[1, 0])
```

### pandas.DataFrame.sort_index

**DataFrame.sort_index**  
\[
\text{DataFrame.sort_index(axis}=0, \text{ by=None, ascending=True, inplace=False, kind=‘quicksort’, na_position=’last’)}
\]

Sort DataFrame either by labels (along either axis) or by the values in a column

**Parameters**  
\[
\text{axis}: \{0, 1\}
\]

Sort index/rows versus columns

by : object  
Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index.

ascending : boolean or list, default True  
Sort ascending vs. descending. Specify list for multiple sort orders

inplace : boolean, default False  
Sort the DataFrame without creating a new instance

na_position : \{‘first’, ‘last’\} (optional, default=’last’)

‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

kind : \{‘quicksort’, ‘mergesort’, ‘heapsort’\}, optional  
This option is only applied when sorting on a single column or label.

**Returns**  
\[
\text{sorted} : \text{DataFrame}
\]

### Examples

```python
>>> result = df.sort_index(by=[‘A’, ‘B’], ascending=[True, False])
```

### pandas.DataFrame.sortlevel

**DataFrame.sortlevel**  
\[
\text{DataFrame.sortlevel(level}=0, \text{ axis}=0, \text{ ascending=True, inplace=False, sort_remaining=True})
\]

Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

**Parameters**  
\[
\text{level}: \text{int}
\]

axis : \{0, 1\}

ascending : boolean, default True
inplace : boolean, default False
Sort the DataFrame without creating a new instance

sort_remaining : boolean, default True
Sort by the other levels too.

Returns sorted : DataFrame

pandas.DataFrame.swaplevel

DataFrame.swaplevel(i, j, axis=0)
Swap levels i and j in a MultiIndex on a particular axis

Parameters i, j : int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.

Returns swapped : type of caller (new object)

pandas.DataFrame.stack

DataFrame.stack(level=-1, dropna=True)
Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an
object with a single level of column labels) having a hierarchical index with a new inner-most level of row
labels. The level involved will automatically get sorted.

Parameters level : int, string, or list of these, default last level
Level(s) to stack, can pass level name
dropna : boolean, default True
Whether to drop rows in the resulting Frame/Series with no valid values

Returns stacked : DataFrame or Series

Examples

>>> s
   a  b
one 1. 2.
two 3. 4.

>>> s.stack()
   a  
  b 
one 1
 2
two a 3
   b 4

pandas.DataFrame.unstack

DataFrame.unstack(level=-1)
Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column
labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will
be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically
get sorted.
Parameters

- **level**: int, string, or list of these, default -1 (last level)
  - Level(s) of index to unstack, can pass level name

Returns

- **unstacked**: DataFrame or Series

See Also:

- **DataFrame.pivot**  
  Pivot a table based on column values.
- **DataFrame.stack**  
  Pivot a level of the column labels (inverse operation from `unstack`).

Examples

```python
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ...
 ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
one a 1
 b 2
two a 3
 b 4
dtype: float64

>>> s.unstack(level=-1)
 a b
one 1 2
two 3 4

>>> s.unstack(level=0)
 one two
 a 1 3
 b 2 4

>>> df = s.unstack(level=0)
>>> df.unstack()
 one a 1.
 b 3.
two a 2.
 b 4.
```

---

**pandas.DataFrame.T**

- **DataFrame.T**  
  Transpose index and columns

**pandas.DataFrame.to_panel**

- **DataFrame.to_panel()**  
  Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.
  - Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later

Returns

- **panel**: Panel
pandas.DataFrame.transpose

DataFrame.transpose()
Transposes index and columns.

32.4.11 Combining / joining / merging

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.append</td>
<td>Append columns of other to end of this frame's columns and index, returning a new object. Columns not in this frame are added as new columns.</td>
</tr>
<tr>
<td>DataFrame.join</td>
<td>Join columns with other DataFrame either on index or on a key.</td>
</tr>
<tr>
<td>DataFrame.merge</td>
<td>Merge DataFrame objects by performing a database-style join operation by</td>
</tr>
<tr>
<td>DataFrame.update</td>
<td>Modify DataFrame in place using non-NA values from passed</td>
</tr>
</tbody>
</table>

pandas.DataFrame.append

DataFrame.append( other[, ignore_index, ...])

Append columns of other to end of this frame's columns and index, returning a new object. Columns not in this frame are added as new columns.

**Parameters**

- **other**: DataFrame or list of Series/dict-like objects
- **ignore_index**: boolean, default False
  - If True do not use the index labels. Useful for gluing together record arrays
- **verify_integrity**: boolean, default False
  - If True, raise ValueError on creating index with duplicates

**Returns**

- **appended**: DataFrame

**Notes**

If a list of dict is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged.

pandas.DataFrame.join

DataFrame.join( other, on=None, how='left', lsuffix='', rsuffix='', sort=False)

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

**Parameters**

- **other**: DataFrame, Series with name field set, or list of DataFrame
  - Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame
- **on**: column name, tuple/list of column names, or array-like
  - Column(s) to use for joining, otherwise join on index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation
- **how**: {'left', 'right', 'outer', 'inner'}
How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise

- left: use calling frame’s index
- right: use input frame’s index
- outer: form union of indexes
- inner: use intersection of indexes

lsuffix : string
Suffix to use from left frame’s overlapping columns

rsuffix : string
Suffix to use from right frame’s overlapping columns

sort : boolean, default False
Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame

Returns joined : DataFrame

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

pandas.DataFrame.merge

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters right : DataFrame

- how : {'left', 'right', 'outer', 'inner'}, default ‘inner’
  - left: use only keys from left frame (SQL: left outer join)
  - right: use only keys from right frame (SQL: right outer join)
  - outer: use union of keys from both frames (SQL: full outer join)
  - inner: use intersection of keys from both frames (SQL: inner join)

- on : label or list
  Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.

- left_on : label or list, or array-like
  Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns

- right_on : label or list, or array-like
  Field names to join on in right DataFrame or vector/list of vectors per left_on docs
left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index

sort : boolean, default False

Sort the join keys lexicographically in the result DataFrame

suffixes : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively

copy : boolean, default True

If False, do not copy data unnecessarily

Returns merged : DataFrame

The output type will the be same as ‘left’, if it is a subclass of DataFrame.

Examples

>>> A
   lkey value
 0  foo  1
 1  bar  2
 2  baz  3
 3  foo  4

>>> B
   rkey value
 0  foo  5
 1  bar  6
 2  qux  7

>>> merge(A, B, left_on='lkey', right_on='rkey', how='outer')
   lkey value_x  rkey value_y
 0   foo      1    foo      5
 1   bar      2    bar      6
 2   baz      3      NaN    NaN
 3   foo      4    bar      8
 5   NaN  NaN    qux      7

pandas.DataFrame.update

DataFrame.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)

Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices

Parameters other : DataFrame, or object coercible into a DataFrame

join : {'left', 'right', 'outer', 'inner'}, default ‘left’

overwrite : boolean, default True

If True then overwrite values for common keys in the calling frame

filter_func : callable(1d-array) -> 1d-array<boolean>, default None

Can choose to replace values other than NA. Return True for values that should be updated
raise_conflict : boolean

If True, will raise an error if the DataFrame and other both contain data in the same place.

### 32.4.12 Time series-related

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.asfreq(freq[, method, how, normalize])</code></td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.</td>
</tr>
<tr>
<td><code>DataFrame.shift([periods, freq, axis])</code></td>
<td>Shift index by desired number of periods with an optional time freq.</td>
</tr>
<tr>
<td><code>DataFrame.first_valid_index()</code></td>
<td>Return label for first non-NA/null value.</td>
</tr>
<tr>
<td><code>DataFrame.last_valid_index()</code></td>
<td>Return label for last non-NA/null value.</td>
</tr>
<tr>
<td><code>DataFrame.resample(rule[, how, axis, ...])</code></td>
<td>Convenience method for frequency conversion and resampling of regular time-series data.</td>
</tr>
<tr>
<td><code>DataFrame.to_period([freq, axis, copy])</code></td>
<td>Convert DataFrame from DatetimeIndex to PeriodIndex with desired freq.</td>
</tr>
<tr>
<td><code>DataFrame.to_timestamp([freq, how, axis, copy])</code></td>
<td>Cast to DatetimeIndex of timestamps, at beginning of period.</td>
</tr>
<tr>
<td><code>DataFrame.tz_convert(tz[, axis, level, copy])</code></td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td><code>DataFrame.tz_localize(*args, **kwargs)</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
</tbody>
</table>

**pandas.DataFrame.asfreq**

Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

**Parameters**

- **freq** : DateOffset object, or string
  - **method** : {'backfill', 'bfill', 'pad', 'ffill', None}
    - Method to use for filling holes in reindexed Series
      - pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method
  - **how** : {‘start’, ‘end’}, default end
    - For PeriodIndex only, see PeriodIndex.asfreq
  - **normalize** : bool, default False
    - Whether to reset output index to midnight

**Returns**

- **converted** : type of caller

**pandas.DataFrame.shift**

Shift index by desired number of periods with an optional time freq.

**Parameters**

- **periods** : int
  - Number of periods to move, can be positive or negative
- **freq** : DateOffset, timedelta, or time rule string, optional
  - Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes.

**Returns**

- **shifted** : same type as caller
Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

**pandas.DataFrame.first_valid_index**

DataFrame.first_valid_index()

Return label for first non-NA/null value

**pandas.DataFrame.last_valid_index**

DataFrame.last_valid_index()

Return label for last non-NA/null value

**pandas.DataFrame.resample**

DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)

Convenience method for frequency conversion and resampling of regular time-series data.

**Parameters**

- **rule**: string
  
  the offset string or object representing target conversion

- **how**: string
  
  method for down- or re-sampling, default to ‘mean’ for downsampling

- **axis**: int, optional, default 0

- **fill_method**: string, default None
  
  fill_method for upsampling

- **closed**: {'right', 'left'}

  Which side of bin interval is closed

- **label**: {'right', 'left'}

  Which bin edge label to label bucket with

- **convention**: {'start', 'end', 's', 'e'}

- **kind**: “period”/“timestamp”

- **loffset**: timedelta

  Adjust the resampled time labels

- **limit**: int, default None

  Maximum size gap to when reindexing with fill_method

- **base**: int, default 0

  For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0
**pandas.DataFrame.to_period**

Dataframe.to_period(freq=None, axis=0, copy=True)

Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)

- **Parameters**
  - freq : string, default
  - axis : {0, 1}, default 0
    - The axis to convert (the index by default)
  - copy : boolean, default True
    - If False then underlying input data is not copied

- **Returns**
  - ts : TimeSeries with PeriodIndex

**pandas.DataFrame.to_timestamp**

Dataframe.to_timestamp(freq=None, how='start', axis=0, copy=True)

Cast to DatetimeIndex of timestamps, at beginning of period

- **Parameters**
  - freq : string, default frequency of PeriodIndex
    - Desired frequency
  - how : {'s', 'e', 'start', 'end'}
    - Convention for converting period to timestamp; start of period vs. end
  - axis : {0, 1} default 0
    - The axis to convert (the index by default)
  - copy : boolean, default True
    - If false then underlying input data is not copied

- **Returns**
  - df : DataFrame with DatetimeIndex

**pandas.DataFrame.tz_convert**

Dataframe.tz_convert(tz, axis=0, level=None, copy=True)

Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

- **Parameters**
  - tz : string or pytz.timezone object
    - the axis to convert
  - axis : int, str, default None
    - If axis is a MultiIndex, convert a specific level. Otherwise must be None
  - copy : boolean, default True
    - Also make a copy of the underlying data
pandas.DataFrame.tz_localize

DataFrame.tz_localize(*args, **kwargs)
Localize tz-naive TimeSeries to target time zone

Parameters
tz : string or pytz.timezone object
axis : the axis to localize
level : int, str, default None
   If axis ia a MultiIndex, localize a specific level. Otherwise must be None
copy : boolean, default True
   Also make a copy of the underlying data
ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
   • ‘infer’ will attempt to infer fall dst-transition hours based on order
   • bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
   • ‘NaT’ will return NaT where there are ambiguous times
   • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times
infer_dst : boolean, default False (DEPRECATED)
   Attempt to infer fall dst-transition hours based on order

32.4.13 Plotting

DataFrame.boxplot([column, by, ax, ...]) Make a box plot from DataFrame column optionally grouped by some columns or other inputs
DataFrame.hist(data[, column, by, grid, ...]) Draw histogram of the DataFrame’s series using matplotlib / pylab.
DataFrame.plot(data[, x, y, kind, ax, ...]) Make plots of DataFrame using matplotlib / pylab.

pandas.DataFrame.boxplot

DataFrame.boxplot (column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds)
Make a box plot from DataFrame column optionally grouped by some columns or other inputs

Parameters
data : the pandas object holding the data
column : column name or list of names, or vector
   Can be any valid input to groupby
by : string or sequence
   Column in the DataFrame to group by
ax : Matplotlib axes object, optional
fontsize : int or string
rot : label rotation angle
figsize : A tuple (width, height) in inches
grid : Setting this to True will show the grid
**layout**: tuple (optional)
(rows, columns) for the layout of the plot

**return_type**: {'axes', 'dict', 'both'}, default 'dict'

The kind of object to return. ‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot; ‘axes’ returns the matplotlib axes the boxplot is drawn on; ‘both’ returns a namedtuple with the axes and dict.

When grouping with `by`, a dict mapping columns to return_type is returned.

**kwds**: other plotting keyword arguments to be passed to matplotlib boxplot function

**Returns**

**lines**: dict

**ax**: matplotlib Axes

(ax, lines): namedtuple

**Notes**

Use `return_type='dict'` when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.

**pandas.DataFrame.hist**

DataFrame.hist(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds)

Draw histogram of the DataFrame’s series using matplotlib / pylab.

**Parameters**

**data**: DataFrame

**column**: string or sequence

If passed, will be used to limit data to a subset of columns

**by**: object, optional

If passed, then used to form histograms for separate groups

**grid**: boolean, default True

Whether to show axis grid lines

**xlabelsize**: int, default None

If specified changes the x-axis label size

**xrot**: float, default None

rotation of x axis labels

**ylabelsize**: int, default None

If specified changes the y-axis label size

**yrot**: float, default None

rotation of y axis labels
\texttt{pandas: powerful Python data analysis toolkit, Release 0.15.1}

\texttt{ax} : \texttt{matplotlib} axes object, default None

\texttt{sharex} : bool, if True, the X axis will be shared amongst all subplots.

\texttt{sharey} : bool, if True, the Y axis will be shared amongst all subplots.

\texttt{figsize} : tuple

The size of the figure to create in inches by default

\texttt{layout} : (optional) a tuple (rows, columns) for the layout of the histograms

\texttt{bins} : integer, default 10

Number of histogram bins to be used

\texttt{kwds} : other plotting keyword arguments

To be passed to \texttt{hist} function

\texttt{pandas.DataFrame.plot}

\texttt{DataFrame.plot} \texttt{(data, x=None, y=None, kind='line', ax=None, subplots=False, sharex=True, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds)}

Make plots of DataFrame using matplotlib / pylab.

**Parameters**

\texttt{data} : DataFrame

\texttt{x} : label or position, default None

\texttt{y} : label or position, default None

Allows plotting of one column versus another

\texttt{kind} : str

- `line` : line plot (default)
- `bar` : vertical bar plot
- `barh` : horizontal bar plot
- `hist` : histogram
- `box` : boxplot
- `kde` : Kernel Density Estimation plot
- `density` : same as `kde`
- `area` : area plot
- `pie` : pie plot
- `scatter` : scatter plot
- `hexbin` : hexbin plot

\texttt{ax} : \texttt{matplotlib} axes object, default None

\texttt{subplots} : boolean, default False

Make separate subplots for each column

\texttt{sharex} : boolean, default True
In case subplots=True, share x axis

**sharey** : boolean, default False
In case subplots=True, share y axis

**layout** : tuple (optional)
(rows, columns) for the layout of subplots

**figsize** : a tuple (width, height) in inches

**use_index** : boolean, default True
Use index as ticks for x axis

**title** : string
Title to use for the plot

**grid** : boolean, default None (matlab style default)
Axis grid lines

**legend** : False/True/’reverse’
Place legend on axis subplots

**style** : list or dict
matplotlib line style per column

**logx** : boolean, default False
Use log scaling on x axis

**logy** : boolean, default False
Use log scaling on y axis

**loglog** : boolean, default False
Use log scaling on both x and y axes

**xticks** : sequence
Values to use for the xticks

**yticks** : sequence
Values to use for the yticks

**xlim** : 2-tuple/list

**ylim** : 2-tuple/list

**rot** : int, default None
Rotation for ticks

**fontsize** : int, default None
Font size for ticks

**colormap** : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name from matplotlib.

**colorbar** : boolean, optional
If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position : float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1
(right/top-end). Default is 0.5 (center)

layout : tuple (optional)

(rows, columns) for the layout of the plot

table : boolean, Series or DataFrame, default False

If True, draw a table using the data in the DataFrame and the data will be transposed
to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed
data to draw a table.

yerr : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

xerr : same types as yerr.

stacked : boolean, default False in line and

bar plots, and True in area plot. If True, create stacked plot.

sort_columns : boolean, default False

Sort column names to determine plot ordering

secondary_y : boolean or sequence, default False

Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on
secondary y-axis

mark_right : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)”
in the legend

kwds : keywords

Options to pass to matplotlib plotting method

Returns axes : matplotlib.AxesSubplot or np.array of them

Notes

•See matplotlib documentation online for more on this subject

•If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

•If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column are used to color each point.

•If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a histogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and reduce_C_function is a function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std).
# 32.4.14 Serialization / IO / Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.from_csv(path[, header, sep,...])</td>
<td>Read delimited file into DataFrame</td>
</tr>
<tr>
<td>DataFrame.from_dict(data[, orient, dtype])</td>
<td>Construct DataFrame from dict of array-like or dicts</td>
</tr>
<tr>
<td>DataFrame.from_items(items[, columns, orient])</td>
<td>Convert (key, value) pairs to DataFrame. The keys will be the axis</td>
</tr>
<tr>
<td>DataFrame.from_records(data[, index, ...])</td>
<td>Convert structured or record ndarray to DataFrame</td>
</tr>
<tr>
<td>DataFrame.info([verbose, buf, max_cols,...])</td>
<td>Concise summary of a DataFrame.</td>
</tr>
<tr>
<td>DataFrame.to_pickle(path)</td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td>DataFrame.to_csv(*args, **kwargs)</td>
<td>Write DataFrame to a comma-separated values (csv) file</td>
</tr>
<tr>
<td>DataFrame.to_hdf(path_or_buf, key, **kwargs)</td>
<td>activate the HDFStore</td>
</tr>
<tr>
<td>DataFrame.to_sql(name, con[, flavor,...])</td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td>DataFrame.to_dict(*args, **kwargs)</td>
<td>Convert DataFrame to dictionary.</td>
</tr>
<tr>
<td>DataFrame.to_json([path_or_buf, orient,...])</td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td>DataFrame.to_html([buf, columns, col_space,...])</td>
<td>Render a DataFrame as an HTML table.</td>
</tr>
<tr>
<td>DataFrame.to_latex([buf, columns,...])</td>
<td>Render a DataFrame to a tabular environment table. You can splice</td>
</tr>
<tr>
<td>DataFrame.to_stata(frame[, convert_dates,...])</td>
<td>A class for writing Stata binary dta files from array-like objects</td>
</tr>
<tr>
<td>DataFrame.to_msgpack([path_or_buf])</td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td>DataFrame.to_gbq(destination_table[, ...])</td>
<td>Write a DataFrame to a Google BigQuery table.</td>
</tr>
<tr>
<td>DataFrame.to_records([index, convert_datetime64])</td>
<td>Convert DataFrame to record array. Index will be put in the</td>
</tr>
<tr>
<td>DataFrame.to_sparse([fill_value, kind])</td>
<td>Convert to SparseDataFrame</td>
</tr>
<tr>
<td>DataFrame.to_dense()</td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td>DataFrame.to_string([buf, columns,...])</td>
<td>Render a DataFrame to a console-friendly tabular output.</td>
</tr>
<tr>
<td>DataFrame.to_clipboard([excel, sep])</td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
</tbody>
</table>

### pandas.DataFrame.from_csv

**classmethod** `DataFrame.from_csv(path, header=0, sep=',', index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)`

Read delimited file into DataFrame

**Parameters**

- **path**: string file path or file handle / StringIO
  - **header**: int, default 0
  - Row to use at header (skip prior rows)
  - **sep**: string, default ‘,’
  - Field delimiter
  - **index_col**: int or sequence, default 0
    - Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table
  - **parse_dates**: boolean, default True
    - Parse dates. Different default from read_table
  - **tupleize_cols**: boolean, default False
    - Write multi_index columns as a list of tuples (if True) or new (expanded format) if False
  - **infer_datetime_format**: boolean, default False
If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

**Returns**  
`y`: DataFrame

**Notes**

Preferable to use `read_table` for most general purposes but from_csv makes for an easy roundtrip to and from file, especially with a DataFrame of time series data

**pandas.DataFrame.from_dict**

```python
classmethod DataFrame.from_dict(data, orient='columns', dtype=None)
```

Construct DataFrame from dict of array-like or dicts

**Parameters**

- `data`: dict  
  {field : array-like} or {field : dict}

- `orient`: {'columns', 'index'}, default 'columns'
  The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’.

**Returns**  
DataFrame

**pandas.DataFrame.from_items**

```python
classmethod DataFrame.from_items(items, columns=None, orient='columns')
```

Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series.

**Parameters**

- `items`: sequence of (key, value) pairs  
  Values should be arrays or Series.

- `columns`: sequence of column labels, optional  
  Must be passed if orient=’index’.

- `orient`: {'columns', 'index'}, default ‘columns’
  The “orientation” of the data. If the keys of the input correspond to column labels, pass ‘columns’ (default). Otherwise if the keys correspond to the index, pass ‘index’.

**Returns**  
Frame: DataFrame

**pandas.DataFrame.from_records**

```python
classmethod DataFrame.from_records(data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)
```

Convert structured or record ndarray to DataFrame

**Parameters**

- `data`: ndarray (structured dtype), list of tuples, dict, or DataFrame

- `index`: string, list of fields, array-like

---

32.4. DataFrame 1149
Field of array to use as the index, alternately a specific set of input labels to use

**exclude** : sequence, default None

Columns or fields to exclude

**columns** : sequence, default None

Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns)

**coerce_float** : boolean, default False

Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

**Returns**

**df** : DataFrame

### pandas.DataFrame.info

**DataFrame.info**(*verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None*)

Concise summary of a DataFrame.

**Parameters**

**verbose** : {None, True, False}, optional

Whether to print the full summary. None follows the `display.max_info_columns` setting. True or False overrides the `display.max_info_columns` setting.

**buf** : writable buffer, defaults to sys.stdout

**max_cols** : int, default None

Determines whether full summary or short summary is printed. None follows the `display.max_info_columns` setting.

**memory_usage** : boolean, default None

Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the `display.memory_usage` setting. True or False overrides the `display.memory_usage` setting. Memory usage is shown in human-readable units (base-2 representation).

**null_counts** : boolean, default None

Whether to show the non-null counts. If None, then only show if the frame is smaller than `max_info_rows` and `max_info_columns`. If True, always show counts. If False, never show counts.

### pandas.DataFrame.to_pickle

**DataFrame.to_pickle**(*path*)

Pickle (serialize) object to input file path

**Parameters**

**path** : string

File path
**DataFrame.to_csv**

*DataFrame.to_csv(*args, **kwargs)*

Write DataFrame to a comma-separated values (csv) file

- **path_or_buf**: string or file handle, default None
  - File path or object, if None is provided the result is returned as a string.
- **sep**: character, default ","
  - Field delimiter for the output file.
- **na_rep**: string, default ‘’
  - Missing data representation
- **float_format**: string, default None
  - Format string for floating point numbers
- **columns**: sequence, optional
  - Columns to write
- **header**: boolean or list of string, default True
  - Write out column names. If a list of string is given it is assumed to be aliases for the column names
- **index**: boolean, default True
  - Write row names (index)
- **index_label**: string or sequence, or False, default None
  - Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R
- **nanRep**: None
  - depreciated, use na_rep
- **mode**: str
  - Python write mode, default ‘w’
- **encoding**: string, optional
  - a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
- **line_terminator**: string, default ‘\n’
  - The newline character or character sequence to use in the output file
- **quoting**: optional constant from csv module
  - defaults to csv.QUOTE_MINIMAL
- **quotechar**: string (length 1), default ‘’
  - character used to quote fields
- **doublequote**: boolean, default True
  - Control quoting of quotechar inside a field
**escapechar** : string (length 1), default None
   character used to escape *sep* and *quotechar* when appropriate

**chunksize** : int or None
   rows to write at a time

**tupleize_cols** : boolean, default False
   write multi_index columns as a list of tuples (if True) or new (expanded format) if False

**date_format** : string, default None
   Format string for datetime objects

**cols** : kwarg only alias of columns [deprecated]

### pandas.DataFrame.to_hdf

DataFrame.to_hdf(*path_or_buf*, *key*, **kwargs)
activate the HDFStore

**Parameters**

**path_or_buf** : the path (string) or buffer to put the store

**key** : string
   identifier for the group in the store

**mode** : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’
   ‘r’  Read-only; no data can be modified.
   ‘w’  Write; a new file is created (an existing file with the same name would be deleted).
   ‘a’  Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
   ‘r+’  It is similar to ‘a’, but the file must already exist.

**format** : ‘fixed(f)|table(t)’, default is ‘fixed’
   **fixed(f)** [Fixed format] Fast writing/reading. Not-appendable, nor searchable
   **table(t)** [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

**append** : boolean, default False
   For Table formats, append the input data to the existing

**complevel** : int, 1-9, default 0
   If a complib is specified compression will be applied where possible

**complib** : {‘zlib’, ‘bzip2’, ‘lzma’, ‘blosc’, None}, default None
   If complevel is > 0 apply compression to objects written in the store wherever possible

**fletcher32** : bool, default False
   If applying compression use the fletcher32 checksum
pandas.DataFrame.to_sql

DataFrame.to_sql(name, con, flavor='sqlite', schema=None, if_exists='fail', index=True, index_label=None, chunksize=None)

Write records stored in a DataFrame to a SQL database.

**Parameters**

- **name**: string
  
  Name of SQL table

- **con**: SQLAlchemy engine or DBAPI2 connection (legacy mode)
  
  Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

- **flavor**: {'sqlite', 'mysql'}, default 'sqlite'
  
  The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

- **schema**: string, default None
  
  Specify the schema (if database flavor supports this). If None, use default schema.

- **if_exists**: {'fail', 'replace', 'append'}, default 'fail'
  
  - fail: If table exists, do nothing.
  - replace: If table exists, drop it, recreate it, and insert data.
  - append: If table exists, insert data. Create if does not exist.

- **index**: boolean, default True
  
  Write DataFrame index as a column.

- **index_label**: string or sequence, default None
  
  Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

- **chunksize**: int, default None
  
  If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

pandas.DataFrame.to_dict

DataFrame.to_dict(*args, **kwargs)

Convert DataFrame to dictionary.

**Parameters**

- **orient**: str {'dict', 'list', 'series', 'split', 'records'}
  
  Determines the type of the values of the dictionary.

  - dict (default): dict like {column -> {index -> value}}
  - list: dict like {column -> [values]}
  - series: dict like {column -> Series(values)}
  - split: dict like {index -> [index], columns -> [columns], data -> [values]}
  - records: list like [{column -> value}, ... , {column -> value}]
Abbreviations are allowed. *s* indicates *series* and *sp* indicates *split*.

**Returns** result: dict like {column -> {index -> value}}

**pandas.DataFrame.to_excel**

DataFrame.to_excel(*args, **kwargs)

Write DataFrame to an excel sheet

**Parameters**

- **excel_writer**: string or ExcelWriter object
  - File path or existing ExcelWriter
- **sheet_name**: string, default ‘Sheet1’
  - Name of sheet which will contain DataFrame
- **na_rep**: string, default ‘’
  - Missing data representation
- **float_format**: string, default None
  - Format string for floating point numbers
- **columns**: sequence, optional
  - Columns to write
- **header**: boolean or list of string, default True
  - Write out column names. If a list of string is given it is assumed to be aliases for the column names
- **index**: boolean, default True
  - Write row names (index)
- **index_label**: string or sequence, default None
  - Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- **startrow**: upper left cell row to dump data frame
- **startcol**: upper left cell column to dump data frame
- **engine**: string, default None
  - Write engine to use - you can also set this via the options io.excel.xlsx.writer, io.excel.xls.writer, and io.excel.xlsm.writer.
- **merge_cells**: boolean, default True
  - Write MultiIndex and Hierarchical Rows as merged cells.
- **encoding**: string, default None
  - encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively.
cols : kwarg only alias of columns [deprecated]

inf_rep : string, default ‘inf’

Representation for infinity (there is no native representation for infinity in Excel)

Notes

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook:

```python
>>> writer = ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()
```

**pandas.DataFrame.to_json**

DataFrame.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

**Parameters**

- **path_or_buf**: the path or buffer to write the result string
  - if this is None, return a StringIO of the converted string

- **orient** : string
  - Series
    - default is ‘index’
    - allowed values are: {'split','records','index’}
  - DataFrame
    - default is ‘columns’
    - allowed values are: {'split','records','index’,’columns’,’values’}
  - The format of the JSON string
    - split : dict like {index -> [index], columns -> [columns], data -> [values]}
    - records : list like [{column -> value}, ... , {column -> value}]
    - index : dict like {index -> [column -> value]}
    - columns : dict like {column -> {index -> value}}
    - values : just the values array

- **date_format** : {'epoch', ‘iso’}
  - Type of date conversion. epoch = epoch milliseconds, iso’ = ISO8601, default is epoch.

- **double_precision** : The number of decimal places to use when encoding floating point values, default 10.
**force_ascii** : force encoded string to be ASCII, default True.

**date_unit** : string, default 'ms' (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively.

**default_handler** : callable, default None

Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serializable object.

**Returns** same type as input object with filtered info axis

### pandas.DataFrame.to_html

DataFrame.to_html(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False)

Render a DataFrame as an HTML table.

to_html-specific options:

**bold_rows** [boolean, default True] Make the row labels bold in the output

**classes** [str or list or tuple, default None] CSS class(es) to apply to the resulting html table

**escape** [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.

**max_rows** [int, optional] Maximum number of rows to show before truncating. If None, show all.

**max_cols** [int, optional] Maximum number of columns to show before truncating. If None, show all.

**Parameters**

**frame** : DataFrame

object to render

**buf** : StringIO-like, optional

buffer to write to

**columns** : sequence, optional

the subset of columns to write; default None writes all columns

**col_space** : int, optional

the minimum width of each column

**header** : bool, optional

whether to print column labels, default True

**index** : bool, optional

whether to print index (row) labels, default True

**na_rep** : string, optional

string representation of NAN to use, default ‘NaN’

**formatters** : list or dict of one-parameter functions, optional
formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

**float_format** : one-parameter function, optional
formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

**sparsify** : bool, optional
Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

**justify** : {'left', 'right'}, default None
Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

**index_names** : bool, optional
Prints the names of the indexes, default True

**force_unicode** : bool, default False
Always return a unicode result.Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

**Returns**  **formatted** : string (or unicode, depending on data and options)

### pandas.DataFrame.to_latex

```python
Dataframe.to_latex(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=True, longtable=False, escape=True)
```

Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}.

to_latex-specific options:

**bold_rows** [boolean, default True] Make the row labels bold in the output

**longtable** [boolean, default False] Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble.

**escape** [boolean, default True] When set to False prevents from escaping latex special characters in column names.

**Parameters** 

**frame** : DataFrame
object to render

**buf** : StringIO-like, optional
buffer to write to

**columns** : sequence, optional
the subset of columns to write; default None writes all columns

**col_space** : int, optional
the minimum width of each column

**header** : bool, optional
whether to print column labels, default True

**index** : bool, optional

whether to print index (row) labels, default True

**na_rep** : string, optional

string representation of NaN to use, default ‘NaN’

**formatters** : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

**float_format** : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

**sparsify** : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

**justify** : {'left', 'right'}, default None

Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

**index_names** : bool, optional

Prints the names of the indexes, default True

**force_unicode** : bool, default False

Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

**Returns**  **formatted** : string (or unicode, depending on data and options)

### pandas.DataFrame.to_stata

DataFrame.to_stata(\*fname, convert_dates=None, write_index=True, encoding='latin-1', byteorder=None, time_stamp=None, data_label=None)

A class for writing Stata binary dta files from array-like objects

**Parameters**  **fname** : file path or buffer

Where to save the dta file.

**convert_dates** : dict

Dictionary mapping column of datetime types to the stata internal format that you want to use for the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either a number or a name.

**encoding** : str

Default is latin-1. Note that Stata does not support unicode.

**byteorder** : str

Can be “>”, “<”, “little”, or “big”. The default is None which uses sys.byteorder
Examples

```python
>>> writer = StataWriter('./data_file.dta', data)
>>> writer.write_file()

Or with dates

```python
>>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'})
>>> writer.write_file()
```

pandas.DataFrame.to_msgpack

DataFrame.to_msgpack(path_or_buf=None, **kwargs)

msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters

- **path**: string File path, buffer-like, or None
 - if None, return generated string
- **append**: boolean whether to append to an existing msgpack
 - (default is False)
- **compress**: type of compressor (zlib or blosc), default to None (no compression)

pandas.DataFrame.to_gbq

DataFrame.to_gbq(destination_table, project_id=None, chunksize=10000, verbose=True, reauth=False)

Write a DataFrame to a Google BigQuery table.

THIS IS AN EXPERIMENTAL LIBRARY

If the table exists, the dataframe will be written to the table using the defined table schema and column types. For simplicity, this method uses the Google BigQuery streaming API. The to_gbq method chunks data into a default chunk size of 10,000. Failures return the complete error response which can be quite long depending on the size of the insert. There are several important limitations of the Google streaming API which are detailed at: https://developers.google.com/bigquery/streaming-data-into-bigquery.

Parameters

- **dataframe**: DataFrame
 - DataFrame to be written
- **destination_table**: string
 - Name of table to be written, in the form ‘dataset.tablename’
- **project_id**: str
 - Google BigQuery Account project ID.
- **chunksize**: int (default 10000)
 - Number of rows to be inserted in each chunk from the dataframe.
- **verbose**: boolean (default True)
 - Show percentage complete
- **reauth**: boolean (default False)
Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

pandas.DataFrame.to_records

`DataFrame.to_records(index=True, convert_datetime64=True)`
Convert DataFrame to record array. Index will be put in the `index` field of the record array if requested

Parameters

- `index`: boolean, default True
 Include index in resulting record array, stored in `index` field
- `convert_datetime64`: boolean, default True
 Whether to convert the index to datetime.datetime if it is a DatetimeIndex

Returns

- `y`: recarray

pandas.DataFrame.to_sparse

`DataFrame.to_sparse(fill_value=None, kind='block')`
Convert to SparseDataFrame

Parameters

- `fill_value`: float, default NaN
- `kind`: {'block', 'integer'}

Returns

- `y`: SparseDataFrame

pandas.DataFrame.to_dense

`DataFrame.to_dense()`
Return dense representation of NDFrame (as opposed to sparse)

pandas.DataFrame.to_string

`DataFrame.to_string(buf=None, columns=None, col_space=None, colSpace=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False)`
Render a DataFrame to a console-friendly tabular output.

Parameters

- `frame`: DataFrame
 object to render
- `buf`: StringIO-like, optional
 buffer to write to
- `columns`: sequence, optional
 the subset of columns to write; default None writes all columns
- `col_space`: int, optional
 the minimum width of each column
- `header`: bool, optional
 codeblock
whether to print column labels, default True

index : bool, optional

whether to print index (row) labels, default True

na_rep : string, optional

string representation of NaN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional

formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

sparsify : bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

justify : {'left', 'right'}, default None

Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

index_names : bool, optional

Prints the names of the indexes, default True

force_unicode : bool, default False

Always return a unicode result. Deprecated in v0.10.0 as string formatting is now rendered to unicode by default.

Returns
formatted : string (or unicode, depending on data and options)

pandas.DataFrame.to_clipboard

pandas.DataFrame.to_clipboard(excel=None, sep=None, **kwargs)

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters

- **excel** : boolean, defaults to True
 - if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard

- **sep** : optional, defaults to tab

- other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
32.5 Panel

32.5.1 Constructor

```python
def Panel([data, items, major_axis, minor_axis, ...])
```

Represents wide format panel data, stored as 3-dimensional array.

pandas.Panel

```python
class pandas.Panel(data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)
```

Represents wide format panel data, stored as 3-dimensional array.

Parameters

- **data**: ndarray (items x major x minor), or dict of DataFrames
- **items**: Index or array-like
 - `axis=0`
- **major_axis**: Index or array-like
 - `axis=1`
- **minor_axis**: Index or array-like
 - `axis=2`
- **dtype**: dtype, default None
 - Data type to force, otherwise infer
- **copy**: boolean, default False
 - Copy data from inputs. Only affects DataFrame / 2d ndarray input

Attributes

- `at`
- `axes`
 index(es) of the NDFrame
- `blocks`
 Internal property, property synonym for as_blocks()
- `dtypes`
 Return the dtypes in this object
- `empty`
 True if NDFrame is entirely empty [no items]
- `ftypes`
 Return the ftypes (indication of sparse/dense and dtype)
- `iat`
- `iloc`
- `ix`
- `loc`
- `ndim`
 Number of axes / array dimensions
- `shape`
 tuple of axis dimensions
- `values`
 Numpy representation of NDFrame
pandas.Panel.at

Panel.at

pandas.Panel.axes

Panel.axes

index(es) of the NDFrame

pandas.Panel.blocks

Panel.blocks

Internal property, property synonym for as_blocks()

pandas.Panel.dtypes

Panel.dtypes

Return the dtypes in this object

pandas.Panel.empty

Panel.empty

True if NDFrame is entirely empty [no items]

pandas.Panel.ftypes

Panel.ftypes

Return the ftypes (indication of sparse/dense and dtype) in this object.

pandas.Panel.iat

Panel.iat

pandas.Panel.iloc

Panel.iloc

pandas.Panel.ix

Panel.ix

pandas.Panel.loc

Panel.loc
Panel.ndim

Number of axes / array dimensions

Panel.shape

tuple of axis dimensions

Panel.values

Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td>add(other[, axis])</td>
<td>Wrapper method for add</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names</td>
</tr>
<tr>
<td>align(other[, join, axis, level, copy, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>apply(func[, axis])</td>
<td>Applies function along input axis of the Panel</td>
</tr>
<tr>
<td>as_blocks()</td>
<td>Convert the frame to a dict of dtype -> Constructor Types that each has</td>
</tr>
<tr>
<td>as_matrix()</td>
<td></td>
</tr>
<tr>
<td>asfreq(freq[, method, how, normalize])</td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td>astype(dtype[, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>at_time(time[, asof])</td>
<td>Select values at particular time of day (e.g.</td>
</tr>
<tr>
<td>between_time(start_time, end_time[, ...])</td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM)</td>
</tr>
<tr>
<td>bfill([axis, inplace, limit, downcast])</td>
<td>Synonym for NDFrame.fillna(method=’bfill’)</td>
</tr>
<tr>
<td>bool()</td>
<td>Return the bool of a single element PandasObject</td>
</tr>
<tr>
<td>clip([lower, upper, out])</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td>clip_lower(threshold)</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td>clip_upper(threshold)</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td>compound([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td>conform(frame[, axis])</td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
<tr>
<td>consolidate([inplace])</td>
<td>Compute NDFrame with “consolidated” internals (data of each dtype</td>
</tr>
</tbody>
</table>
Table 32.63 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>convert_objects()</code></td>
<td>Attempt to infer better dtype for object columns</td>
</tr>
<tr>
<td><code>copy(deep)</code></td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td><code>count(axis)</code></td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td><code>cummax(axis, dtype, out, skipna)</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin(axis, dtype, out, skipna)</code></td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td><code>cumprod(axis, dtype, out, skipna)</code></td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td><code>cumsum(axis, dtype, out, skipna)</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>describe(percentile_width, percentiles, ...)</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>div(other[, axis])</code></td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td><code>divide(other[, axis])</code></td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td><code>drop(labels[, axis, level, inplace])</code></td>
<td>Drop 2D from panel, holding passed axis constant</td>
</tr>
<tr>
<td><code>eq(other)</code></td>
<td>Wrapper for comparison method eq</td>
</tr>
<tr>
<td><code>equals(other)</code></td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the</td>
</tr>
<tr>
<td><code>ffill(axis, inplace, limit, downcast)</code></td>
<td>Synonym for NDFrame.fillna(method=’ffill’)</td>
</tr>
<tr>
<td><code>fillna(value, method, axis, inplace, ...)</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter(items, like, regex, axis)</code></td>
<td>Restrict the info axis to set of items or wildcard</td>
</tr>
<tr>
<td><code>first(offset)</code></td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td><code>floordiv(other[, axis])</code></td>
<td>Return values using the specified method</td>
</tr>
<tr>
<td><code>fromDict(data[, intersect, orient, dtype])</code></td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td><code>get(key[, default])</code></td>
<td>Get item from object for given key (DataFrame column, Panel slice,</td>
</tr>
<tr>
<td><code>get_dtypes()</code></td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td><code>get_ftypes()</code></td>
<td>Return the counts of ftypes in this object</td>
</tr>
<tr>
<td><code>get_value(*args, **kwargs)</code></td>
<td>Quickly retrieve single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>same as values (but handles sparseness conversions)</td>
</tr>
<tr>
<td><code>groupby(function[, axis])</code></td>
<td>Group data on given axis, returning GroupBy object</td>
</tr>
<tr>
<td><code>gt(other)</code></td>
<td>Wrapper for comparison method gt</td>
</tr>
<tr>
<td><code>head(n)</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Iterate over (label, values) on info axis</td>
</tr>
<tr>
<td><code>iterkv(*args, **kwargs)</code></td>
<td>iteritems alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td><code>join(other[, how, lsuffix, rsuffix])</code></td>
<td>Join items with other Panel either on major and minor axes column</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td>Get the ‘info axis’ (see Indexing for more)</td>
</tr>
<tr>
<td><code>kurt(axis, skipna, level, numeric_only)</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>kurtosis(axis, skipna, level, numeric_only)</code></td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td><code>last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td><code>le(other)</code></td>
<td>Wrapper for comparison method le</td>
</tr>
<tr>
<td><code>load(path)</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>lt(other)</code></td>
<td>Wrapper for comparison method lt</td>
</tr>
<tr>
<td><code>mad(axis, skipna, level)</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>major_xs(key[, copy])</code></td>
<td>Return slice of panel along major axis</td>
</tr>
<tr>
<td><code>mask(cond)</code></td>
<td>Returns copy whose values are replaced with nan if the</td>
</tr>
<tr>
<td><code>max(axis, skipna, level, numeric_only)</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean(axis, skipna, level, numeric_only)</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>median(axis, skipna, level, numeric_only)</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>min(axis, skipna, level, numeric_only)</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>minor_xs(key[, copy])</code></td>
<td>Return slice of panel along minor axis</td>
</tr>
</tbody>
</table>

Continued on next page.
Table 32.63 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mod(other[, axis])</td>
<td>Wrapper method for mod</td>
</tr>
<tr>
<td>mul(other[, axis])</td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td>multiply(other[, axis])</td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td>ne(other)</td>
<td>Wrapper for comparison method ne</td>
</tr>
<tr>
<td>notnull()</td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td>pct_change((periods, fill_method, limit, freq))</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td>pop(item)</td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td>pow(other[, axis])</td>
<td>Wrapper method for pow</td>
</tr>
<tr>
<td>prod([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>product([axis, skipna, level, numeric_only])</td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td>rad2(other[, axis])</td>
<td>Wrapper method for rad2</td>
</tr>
<tr>
<td>rdiv(other[, axis])</td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td>reindex([items, major_axis, minor_axis])</td>
<td>Conform Panel to new index with optional filling logic, placing</td>
</tr>
<tr>
<td>reindex_axis(labels[, axis, method, level, ...])</td>
<td>Conform input object to new index with optional filling logic.</td>
</tr>
<tr>
<td>reindex_like(other[, method, copy, limit])</td>
<td>Return an object with matching indices to myself</td>
</tr>
<tr>
<td>rename([items, major_axis, minor_axis])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>rename_axis(mapper[, axis, copy, inplace])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td>replaced(to_replacement, value, inplace, limit, ...)</td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td>resample([rule[, how, axis, fill_method, ...]])</td>
<td>Convenience method for frequency conversion and resampling of regular time-series data.</td>
</tr>
<tr>
<td>r floordiv(other[, axis])</td>
<td>Wrapper method for rfloordiv</td>
</tr>
<tr>
<td>rmod(other[, axis])</td>
<td>Wrapper method for rmod</td>
</tr>
<tr>
<td>rmul(other[, axis])</td>
<td>Wrapper method for rmul</td>
</tr>
<tr>
<td>rpow(other[, axis])</td>
<td>Wrapper method for rpow</td>
</tr>
<tr>
<td>rsub(other[, axis])</td>
<td>Wrapper method for rsub</td>
</tr>
<tr>
<td>rtruediv(other[, axis])</td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td>save(path)</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>sem([axis, skipna, level, ddof])</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td>set_axis(axis, labels)</td>
<td>public version of axis assignment</td>
</tr>
<tr>
<td>set_value(*args, **kwargs)</td>
<td>Quickly set single value at (item, major, minor) location</td>
</tr>
<tr>
<td>shift(*args, **kwargs)</td>
<td>Shift major or minor axis by specified number of leads/lags.</td>
</tr>
<tr>
<td>skew([axis, skipna, level, numeric_only])</td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td>slice_shift([periods, axis])</td>
<td>Equivalent to shift without copying data.</td>
</tr>
<tr>
<td>sort_index([axis, ascending])</td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td>squeeze()</td>
<td>squeeze length 1 dimensions</td>
</tr>
<tr>
<td>std([axis, skipna, level, ddof])</td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td>sub(other[, axis])</td>
<td>Wrapper method for sub</td>
</tr>
<tr>
<td>subtract(other[, axis])</td>
<td>Wrapper method for sub</td>
</tr>
<tr>
<td>sum([axis, skipna, level, numeric_only])</td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td>swapaxes(axis1, axis2[, copy])</td>
<td>Interchange axes and swap values axes appropriately.</td>
</tr>
<tr>
<td>swaplevel(i, j, [axis])</td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td>tail([n])</td>
<td></td>
</tr>
<tr>
<td>take(indices[, axis, convert, is_copy])</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>toLong(*args, **kwargs)</td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
<tr>
<td>to_clipboard([excel, sep])</td>
<td>Write each DataFrame in Panel to a separate excel sheet</td>
</tr>
<tr>
<td>to_dense()</td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td>to_excel(path[, na_rep, engine])</td>
<td>Transform wide format into long (stacked) format as DataFrame whose</td>
</tr>
<tr>
<td>to_hdf(path_or_buf, key, **kwargs)</td>
<td>activate the HDFStore</td>
</tr>
<tr>
<td>to_json([path_or_buf, orient, date_format, ...])</td>
<td>Convert the object to a JSON string.</td>
</tr>
</tbody>
</table>
Table 32.63 – continued from previous page

- `to_long`(*args, **kwargs)*
 - Convert to Panel from DataFrame

- `to_msgpack`([path_or_buf])
 - msgpack (serialize) object to input file path

- `to_pickle`(path)
 - Pickle (serialize) object to input file path

- `to_sparse`([fill_value, kind])
 - Convert to SparsePanel

- `to_sql`(name, con[, flavor, schema, ...])
 - Write records stored in a DataFrame to a SQL database.

- `transpose`(*args, **kwargs)*
 - Permute the dimensions of the Panel

- `truediv`(other[, axis])
 - Wrapper method for truediv

- `truncate`([before, after, axis, copy])
 - Truncates a sorted NDFrame before and/or after some particular

- `tz_convert`(tz[, axis, level, copy])
 - Convert the axis to target time zone.

- `tz_localize`(*args, **kwargs)
 - Localize tz-naive TimeSeries to target time zone

- `update`(other[, join, overwrite, ...])
 - Modify Panel in place using non-NA values from passed

- `var`(axis, skipna, level, ddof)
 - Return unbiased variance over requested axis.

- `where`(cond[, other, inplace, axis, level, ...])
 - Return an object of same shape as self and whose corresponding

- `xs`(key[, axis, copy])
 - Return slice of panel along selected axis

pandas.Panel.abs

Panel.abs()

Return an object with absolute value taken. Only applicable to objects that are all numeric

Returns abs: type of caller

pandas.Panel.add

Panel.add(other, axis=0)

Wrapper method for add

Parameters other : DataFrame or Panel
 - axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel

pandas.Panel.add_prefix

Panel.add_prefix(prefix)

Concatenate prefix string with panel items names.

Parameters prefix : string

Returns with_prefix : type of caller

pandas.Panel.add_suffix

Panel.add_suffix(suffix)

Concatenate suffix string with panel items names

Parameters suffix : string

Returns with_suffix : type of caller
pandas.Panel.align

`Panel.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)`

Align two object on their axes with the specified join method for each axis Index

Parameters
- `other`: DataFrame or Series
 - `join`: {'outer', 'inner', 'left', 'right'}, default 'outer'
 - `axis`: allowed axis of the other object, default None
 - Align on index (0), columns (1), or both (None)
 - `level`: int or level name, default None
 - Broadcast across a level, matching Index values on the passed MultiIndex level
 - `copy`: boolean, default True
 - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
 - `fill_value`: scalar, default np.NaN
 - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
 - `method`: str, default None
 - `limit`: int, default None
 - `fill_axis`: {0, 1}, default 0
 - Filling axis, method and limit

Returns
- `(left, right)`: (type of input, type of other)
 - Aligned objects

pandas.Panel.apply

`Panel.apply(func, axis='major', **kwargs)`

Applies function along input axis of the Panel

Parameters
- `func`: function
 - Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/ minor_axis will be passed a Series
 - `axis`: {'major', 'minor', 'items'}

Additional keyword arguments will be passed as keywords to the function

Returns
- `result`: Pandas Object

Examples

```python
>>> p.apply(numpy.sqrt) # returns a Panel
>>> p.apply(lambda x: x.sum(), axis=0) # equiv to p.sum(0)
>>> p.apply(lambda x: x.sum(), axis=1) # equiv to p.sum(1)
>>> p.apply(lambda x: x.sum(), axis=2) # equiv to p.sum(2)
```
pandas.Panel.as_blocks

Panel.as_blocks()

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

are presented in sorted order unless a specific list of columns is provided.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters columns : array-like

Specific column order

Returns values : a list of Object

pandas.Panel.as_matrix

Panel.as_matrix()

pandas.Panel.asfreq

Panel.asfreq(freq=None, method=None, how=None, normalize=False)

Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

Parameters freq : DateOffset object, or string

method : {'backfill', 'bfill', 'pad', 'ffill', None}

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method

how : {'start', 'end'}, default end

For PeriodIndex only, see PeriodIndex.asfreq

normalize : bool, default False

Whether to reset output index to midnight

Returns converted : type of caller

pandas.Panel.astype

Panel.astype(dtype, copy=True, raise_on_error=True)

Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters dtype : numpy.dtype or Python type

raise_on_error : raise on invalid input

Returns casted : type of caller
pandas.Panel.at_time

Panel.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM)

Parameters
time : datetime.time or string

Returns
values_at_time : type of caller

pandas.Panel.between_time

Panel.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM)

Parameters
start_time : datetime.time or string
date:time : datetime.time or string
include_start : boolean, default True
include_end : boolean, default True

Returns
values_between_time : type of caller

pandas.Panel.bfill

Panel.bfill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.Panel.bool

Panel.bool()
Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False
Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

pandas.Panel.clip

Panel.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters
lower : float, default None
upper : float, default None

Returns
clipped : Series

pandas.Panel.clip_lower

Panel.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns
clipped : same type as input
See Also:
clip

pandas.Panel.clip_upper

Panel.clip_upper (threshold)
Return copy of input with values above given value truncated

Returns clipped : same type as input

See Also:
clip

pandas.Panel.compound

Panel.compound (axis=None, skipna=None, level=None, **kwargs)
Return the compound percentage of the values for the requested axis

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame
numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns compounded : DataFrame or Panel (if level specified)

pandas.Panel.conform

Panel.conform (frame, axis='items')
Conform input DataFrame to align with chosen axis pair.

Parameters frame : DataFrame
axis : {'items', 'major', 'minor'}
 Axis the input corresponds to. E.g., if axis='major', then the frame's columns
 would be items, and the index would be values of the minor axis

Returns DataFrame

pandas.Panel.consolidate

Panel.consolidate (inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user

Parameters inplace : boolean, default False
If False return new object, otherwise modify existing object

Returns consolidated : type of caller

pandas.Panel.convert_objects

```python
Panel.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
```

Attempt to infer better dtype for object columns

Parameters
- **convert_dates** : if True, attempt to soft convert dates, if ‘coerce’, force conversion (and non-convertibles get NaT)
- **convert_numeric** : if True attempt to coerce to numbers (including strings), non-convertibles get NaN
- **convert_timedeltas** : if True, attempt to soft convert timedeltas, if ‘coerce’, force conversion (and non-convertibles get NaT)
- **copy** : Boolean, if True, return copy even if no copy is necessary
 (e.g. no conversion was done), default is True. It is meant for internal use, not to be confused with inplace kw.

Returns converted : asm as input object

pandas.Panel.copy

```python
Panel.copy(deep=True)
```

Make a copy of this object

Parameters
- **deep** : boolean or string, default True
 - Make a deep copy, i.e. also copy data

Returns copy : type of caller

pandas.Panel.count

```python
Panel.count(axis='major')
```

Return number of observations over requested axis.

Parameters
- **axis** : {'items', 'major', 'minor'} or {0, 1, 2}

Returns count : DataFrame

pandas.Panel.cummax

```python
Panel.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs)
```

Return cumulative max over requested axis.

Parameters
- **axis** : {items (0), major_axis (1), minor_axis (2)}
- **skipna** : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA.
Returns max : DataFrame

pandas.Panel.cummin

Panel.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative min over requested axis.

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns min : DataFrame

pandas.Panel.cumprod

Panel.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative prod over requested axis.

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns prod : DataFrame

pandas.Panel.cumsum

Panel.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative sum over requested axis.

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns sum : DataFrame

pandas.Panel.describe

Panel.describe(percentile_width=None, percentiles=None, include=None, exclude=None)
Generate various summary statistics, excluding NaN values.

Parameters percentile_width : float, deprecated
The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

percents : array-like, optional
The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

include, exclude : list-like, ‘all’, or None (default)
Specify the form of the returned result. Either:

- None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
- A list of dtypes or strings to be included/excluded. To select all numeric types use numpy number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])
- If include is the string ‘all’, the output column-set will match the input one.

Returns summary: NDFrame of summary statistics

See Also:

DataFrame.select_dtypes

Notes

The output DataFrame index depends on the requested dtypes:

For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.

For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.

For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.

If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

The include, exclude arguments are ignored for Series.

pandas.Panel.div

Panel.div (other, axis=0)

Wrapper method for truediv

Parameters

- other : DataFrame or Panel
- axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel

pandas.Panel.divide

Panel.divide (other, axis=0)

Wrapper method for truediv

Parameters

- other : DataFrame or Panel
- axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel
pandas.Panel.drop

Panel.drop(labels, axis=0, level=None, inplace=False, **kwargs)
Return new object with labels in requested axis removed

Parameters:
labels : single label or list-like
axis : int or axis name
level : int or level name, default None
For MultiIndex
inplace : bool, default False
If True, do operation inplace and return None.

Returns:
dropped : type of caller

pandas.Panel.dropna

Panel.dropna(axis=0, how='any', inplace=False, **kwargs)
Drop 2D from panel, holding passed axis constant

Parameters:
axis : int, default 0
Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data
how : {'all', 'any'}, default ‘any’
‘any’: one or more values are NA in the DataFrame along the axis. For ‘all’ they all must be.
inplace : bool, default False
If True, do operation inplace and return None.

Returns:
dropped : Panel

pandas.Panel.eq

Panel.eq(other)
Wrapper for comparison method eq

pandas.Panel.equals

Panel.equals(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Panel.ffill

Panel.ffill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='ffill')
pandas.Panel.fillna

Panel.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)
Fill NA/NaN values using the specified method

Parameters method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 Method to use for filling holes in reindexed Series pad / ffill: propagate last valid
 observation forward to next valid backfill / bfill: use NEXT valid observation to
 fill gap

value : scalar, dict, Series, or DataFrame
 Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of val-
 ues specifying which value to use for each index (for a Series) or column (for
 a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This
 value cannot be a list.

axis : {0, 1}, default 0
 • 0: fill column-by-column
 • 1: fill row-by-row

inplace : boolean, default False
 If True, fill in place. Note: this will modify any other views on this object, (e.g. a
 no-copy slice for a column in a DataFrame).

limit : int, default None
 Maximum size gap to forward or backward fill

downcast : dict, default is None
 a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which
 will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : same type as caller

See Also:
reindex, asfreq

pandas.Panel.filter

Panel.filter(items=None, like=None, regex=None, axis=None)
Restrict the info axis to set of items or wildcard

Parameters items : list-like
 List of info axis to restrict to (must not all be present)

like : string
 Keep info axis where “arg in col == True”

regex : string (regular expression)
 Keep info axis with re.search(regex, col) == True

axis : int or None
The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with []. For example, df = DataFrame({'a': [1, 2, 3, 4]}); df['a']. So, the DataFrame columns are the info axis.

Notes

Arguments are mutually exclusive, but this is not checked for

pandas.Panel.first

Panel.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset

Parameters

- offset : string, DateOffset, dateutil.relativedelta

Returns

- subset : type of caller

Examples

ts.last('10D') -> First 10 days

pandas.Panel.floordiv

Panel.floordiv(other, axis=0)
Wrapper method for floordiv

Parameters

- other : DataFrame or Panel
- axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.fromDict

classmethod Panel.fromDict(data, intersect=False, orient='items', dtype=None)
Construct Panel from dict of DataFrame objects

Parameters

- data : dict
 - {field : DataFrame}
- intersect : boolean
 - Intersect indexes of input DataFrames
- orient : {'items', 'minor'}, default 'items'
 - The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’

Returns

Panel
pandas.Panel.from_dict

classmethod Panel.from_dict(data, intersect=False, orient='items', dtype=None)
Construct Panel from dict of DataFrame objects

Parameters
- **data**: dict
 - {field : DataFrame}
- **intersect**: boolean
 - Intersect indexes of input DataFrames
- **orient**: {'items', 'minor'}, default 'items'
 - The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’

Returns
- Panel

pandas.Panel.ge

Panel.ge(other)
Wrapper for comparison method ge

pandas.Panel.get

Panel.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found

Parameters
- **key**: object

Returns
- **value**: type of items contained in object

pandas.Panel.get_dtype_counts

Panel.get_dtype_counts()
Return the counts of dtypes in this object

pandas.Panel.get_ftype_counts

Panel.get_ftype_counts()
Return the counts of ftypes in this object

pandas.Panel.get_value

Panel.get_value(*args, **kwargs)
Quickly retrieve single value at (item, major, minor) location
Parameters item: item label (panel item)
 major: major axis label (panel item row)
 minor: minor axis label (panel item column)
 takeable: interpret the passed labels as indexers, default False

Returns value: scalar value

pandas.Panel.get_values

Panel.get_values()
 same as values (but handles sparseness conversions)

pandas.Panel.groupby

Panel.groupby(function, axis='major')
 Group data on given axis, returning GroupBy object

Parameters function: callable
 Mapping function for chosen access
 axis: {'major', 'minor', 'items'}, default 'major'

Returns grouped: PanelGroupBy

pandas.Panel.gt

Panel.gt(other)
 Wrapper for comparison method gt

pandas.Panel.head

Panel.head(n=5)

pandas.Panel.interpolate

Panel.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)
 Interpolate values according to different methods.

Parameters method: {'linear', 'time', 'index', 'values', 'nearest', 'zero',
 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline'
 'piecewise_polynomial', 'pchip'}

• 'linear': ignore the index and treat the values as equally spaced. default
• 'time': interpolation works on daily and higher resolution data to interpolate
 given length of interval
• 'index', 'values': use the actual numerical values of the index
• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d with the order given both ‘polynomial’ and ‘spline’ require that you also specify order (int) e.g. df.interpolate(method=’polynomial’, order=4)

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, and ‘pchip’ are all wrappers around the scipy interpolation methods of similar names. See the scipy documentation for more on their behavior: http://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

axis : {0, 1}, default 0
 0: fill column-by-column
 1: fill row-by-row

limit : int, default None.
 Maximum number of consecutive NaNs to fill.

inplace : bool, default False
 Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None
 Downcast dtypes if possible.

Returns Series or DataFrame of same shape interpolated at the NaNs

See Also:
reindex, replace,fillna

Examples

Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 1 2 2 3 3 dtype: float64

pandas.Panel.isnull

Panel.isnull ()
 Return a boolean same-sized object indicating if the values are null

See Also:

notnull boolean inverse of isnull

pandas.Panel.iteritems

Panel.iteritems ()
 Iterate over (label, values) on info axis
 This is index for Series, columns for DataFrame, major_axis for Panel, and so on.
pandas.Panel.iterkv

Panel.iterkv(*args, **kwargs)
iteritems alias used to get around 2to3. Deprecated

pandas.Panel.join

Panel.join(other, how='left', lsuffix='', rsuffix='')
Join items with other Panel either on major and minor axes column

Parameters other : Panel or list of Panels
Index should be similar to one of the columns in this one
how : {'left', 'right', 'outer', 'inner'}
How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise * left: use calling frame’s index * right: use input frame’s index * outer: form union of indexes * inner: use intersection of indexes
lsuffix : string
Suffix to use from left frame’s overlapping columns
rsuffix : string
Suffix to use from right frame’s overlapping columns

Returns joined : Panel

pandas.Panel.keys

Panel.keys()
Get the ‘info axis’ (see Indexing for more)
This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.Panel.kurt

Panel.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns kurt : DataFrame or Panel (if level specified)
pandas.Panel.kurtosis

Panel.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
kurt : DataFrame or Panel (if level specified)

pandas.Panel.last

Panel.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset

Parameters
offset : string, DateOffset, dateutil.relativedelta

Returns
subset : type of caller

Examples

ts.last(‘5M’) -> Last 5 months

pandas.Panel.le

Panel.le(other)
Wrapper for comparison method le

pandas.Panel.load

Panel.load(path)
Deprecated. Use read_pickle instead.

pandas.Panel.lt

Panel.lt(other)
Wrapper for comparison method lt
pandas.Panel.mad

Panel.mad(axis=None, skipna=None, level=None, **kwargs)
Return the mean absolute deviation of the values for the requested axis

Parameters:
- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame
- **numeric_only**: boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns:
- **mad**: DataFrame or Panel (if level specified)

pandas.Panel.major_xs

Panel.major_xs(key, copy=None)
Return slice of panel along major axis

Parameters:
- **key**: object
 Major axis label
- **copy**: boolean [deprecated]
 Whether to make a copy of the data

Returns:
- **y**: DataFrame
 index -> minor axis, columns -> items

Notes

major_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs
functionality, see MultiIndex Slicers

pandas.Panel.mask

Panel.mask(cond)
Returns copy whose values are replaced with nan if the inverted condition is True

Parameters:
- **cond**: boolean NDFrame or array

Returns:
- **wh**: same as input
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel.max

Panel.max (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns max : DataFrame or Panel (if level specified)

pandas.Panel.mean

Panel.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns mean : DataFrame or Panel (if level specified)

pandas.Panel.median

Panel.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns median : DataFrame or Panel (if level specified)

pandas.Panel.min

Panel.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True
Exlude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns min : DataFrame or Panel (if level specified)

pandas.Panel.minor_xs

Panel.minor_xs(key, copy=None)
Return slice of panel along minor axis

Parameters key : object
Minor axis label

copy : boolean [deprecated]
Whether to make a copy of the data

Returns y : DataFrame
index -> major axis, columns -> items

Notes

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see MultiIndex Slicers
pandas.Panel.mod

Panel.mod *(other, axis=0)*

Wrapper method for mod

Parameters

- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.mul

Panel.mul *(other, axis=0)*

Wrapper method for mul

Parameters

- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.multiply

Panel.multiply *(other, axis=0)*

Wrapper method for mul

Parameters

- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.ne

Panel.ne *(other)*

Wrapper for comparison method ne

pandas.Panel.notnull

Panel.notnull *

Return a boolean same-sized object indicating if the values are not null

See Also:

- **isnull** boolean inverse of notnull
pandas.Panel.pct_change

Method

`pandas.Panel.pct_change`

Description

Percent change over given number of periods.

Parameters

- **periods**: int, default 1
 Periods to shift for forming percent change
- **fill_method**: str, default 'pad'
 How to handle NAs before computing percent changes
- **limit**: int, default None
 The number of consecutive NAs to fill before stopping
- **freq**: DateOffset, timedelta, or offset alias string, optional
 Increment to use from time series API (e.g. ‘M’ or BDay())

Returns

- **chg**: NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the `axis` keyword argument.

pandas.Panel.pop

Method

`pandas.Panel.pop`

Description

Return item and drop from frame. Raise KeyError if not found.

pandas.Panel.pow

Method

`pandas.Panel.pow`

Description

Wrapper method for pow

Parameters

- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Returns

Panel

pandas.Panel.prod

Method

`pandas.Panel.prod`

Description

Return the product of the values for the requested axis

Parameters

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None

32.5. Panel
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
prod: DataFrame or Panel (if level specified)

pandas.Panel.product

Panel.product *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Return the product of the values for the requested axis

Parameters

axis: {items (0), major_axis (1), minor_axis (2)}

skipna: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
prod: DataFrame or Panel (if level specified)

pandas.Panel.radd

Panel.radd *(other, axis=0)*

Wrapper method for radd

Parameters

other: DataFrame or Panel

axis: {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

pandas.Panel.rdiv

Panel.rdiv *(other, axis=0)*

Wrapper method for rtruediv

Parameters

other: DataFrame or Panel

axis: {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel
pandas.Panel.reindex

Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)

Conform Panel to new index with optional filling logic, placing NA/Nan in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters
- **items, major_axis, minor_axis**: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 - Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **copy**: boolean, default True
 - Return a new object, even if the passed indexes are the same
- **level**: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level
- **fill_value**: scalar, default np.NaN
 - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- **limit**: int, default None
 - Maximum size gap to forward or backward fill

Returns
- **reindexed**: Panel

Examples

```python
>>> df.reindex(index=[date1, date2, date3], columns=[‘A’, ‘B’, ‘C’])
```

pandas.Panel.reindex_axis

Panel.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)

Conform input object to new index with optional filling logic, placing NA/Nan in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters
- **labels**: array-like
 - New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **axis**: {0,1,2,’items’,’major_axis’,’minor_axis’}
- **method**: {'backfill', 'bfill', ‘pad’, ‘ffill’, None}, default None

32.5. Panel 1189
Method to use for filling holes in reindexed object. pad / fill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True
 Return a new object, even if the passed indexes are the same

level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

limit : int, default None
 Maximum size gap to forward or backward fill

Returns reindexed : Panel

See Also:
reindex, reindex_like

Examples

```python
>>> df.reindex_axis(["A", "B", "C"], axis=1)
```

pandas.Panel.reindex_like

Panel.reindex_like(other, method=None, copy=True, limit=None)
return an object with matching indicies to myself

Parameters other : Object
 method : string or None
 copy : boolean, default True
 limit : int, default None
 Maximum size gap to forward or backward fill

Returns reindexed : same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Panel.rename

Panel.rename(items=None, major_axis=None, minor_axis=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters items, major_axis, minor_axis : dict-like or function, optional
 Transformation to apply to that axis values

 copy : boolean, default True
Also copy underlying data

inplace : boolean, default False

Whether to return a new Panel. If True then value of copy is ignored.

Returns **renamed** : Panel (new object)

pandas.Panel.rename_axis

Panel.rename_axis (mapper, axis=0, copy=True, inplace=False)

Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters

- **mapper** : dict-like or function, optional
- **axis** : int or string, default 0
- **copy** : boolean, default True

Also copy underlying data

inplace : boolean, default False

Returns **renamed** : type of caller

pandas.Panel.replace

Panel.replace (to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in 'to_replace' with 'value'.

Parameters

- **to_replace** : str, regex, list, dict, Series, numeric, or None
 - str or regex:
 - str: string exactly matching to_replace will be replaced with value
 - regex: regexs matching to_replace will be replaced with value
 - list of str, regex, or numeric:
 - First, if to_replace and value are both lists, they must be the same length.
 - Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
 - str and regex rules apply as above.
 - dict:
 - Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
 - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
 - None:
This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also None then this **must** be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill

regex : bool or same types as `to_replace`, default False

Whether to interpret `to_replace` and/or `value` as regular expressions. If this is True then `to_replace` must be a string. Otherwise, `to_replace` must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

method : string, optional, {'pad', ‘ffill’, ‘bfill’}

The method to use when for replacement, when `to_replace` is a list.

Returns filled : NDFrame

Raises AssertionError

- If `regex` is not a bool and `to_replace` is not None.

TypeError

- If `to_replace` is a dict and `value` is not a list, dict, ndarray, or Series
- If `to_replace` is None and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series.

ValueError

- If `to_replace` and `value` are lists or ndarrays, but they are not the same length.

See Also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.
- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.Panel.resample

```python
Panel.resample(rule=None, how=None, fill_method=None, axis=0, closed=None, label=None, conversion='start', kind=None, loffset=None, limit=None, base=0)
```

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters

- `rule` : string
 - the offset string or object representing target conversion
- `how` : string
 - method for down- or re-sampling, default to 'mean' for downsampling
- `axis` : int, optional, default 0
- `fill_method` : string, default None
 - fill_method for upsampling
- `closed` : {'right', 'left'}
 - Which side of bin interval is closed
- `label` : {'right', 'left'}
 - Which bin edge label to label bucket with
- `conversion` : {'start', 'end', 's', 'e'}
- `kind` : “period”/”timestamp”
- `loffset` : timedelta
 - Adjust the resampled time labels
- `limit` : int, default None
 - Maximum size gap to when reindexing with fill_method
- `base` : int, default 0
 - For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.Panel.rfloordiv

```python
Panel.rfloordiv(other, axis=0)
```

Wrapper method for rfloordiv

Parameters

- `other` : DataFrame or Panel
- `axis` : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel.rmod

Panel.rmod(other, axis=0)
Wrapper method for rmod

Parameters

other : DataFrame or Panel
axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

pandas.Panel.rmul

Panel.rmul(other, axis=0)
Wrapper method for rmul

Parameters

other : DataFrame or Panel
axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

pandas.Panel.rpow

Panel.rpow(other, axis=0)
Wrapper method for rpow

Parameters

other : DataFrame or Panel
axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

pandas.Panel.rsub

Panel.rsub(other, axis=0)
Wrapper method for rsub

Parameters

other : DataFrame or Panel
axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

pandas.Panel.rtruediv

Panel.rtruediv(other, axis=0)
Wrapper method for rtruediv
Parameters
- `other`: DataFrame or Panel
 - `axis`: `{items, major_axis, minor_axis}`
 - **Axis to broadcast over**

Returns
- Panel

Methods

pandas.Panel.save

`Panel.save(path)`
- Deprecated. Use `to_pickle` instead

pandas.Panel.select

`Panel.select(crit, axis=0)`
- Return data corresponding to axis labels matching criteria
 - **Parameters**
 - `crit`: function
 - To be called on each index (label). Should return True or False
 - `axis`: int
 - **Returns**
 - selection: type of caller

pandas.Panel.sem

`Panel.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)`
- Return unbiased standard error of the mean over requested axis.
 - Normalized by N-1 by default. This can be changed using the `ddof` argument
 - **Parameters**
 - `axis`: `{items (0), major_axis (1), minor_axis (2)}`
 - `skipna`: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - `level`: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
 - `numeric_only`: boolean, default None
 - Include only float, int, boolean data. If False, will attempt to use everything, then use only numeric data
 - **Returns**
 - `sem`: DataFrame or Panel (if level specified)

pandas.Panel.set_axis

`Panel.set_axis(axis, labels)`
- public version of axis assignment
pandas.Panel.set_value

Panel.set_value(*args, **kwargs)
Quickly set single value at (item, major, minor) location

Parameters
- **item**: item label (panel item)
- **major**: major axis label (panel item row)
- **minor**: minor axis label (panel item column)
- **value**: scalar
- **takeable**: interpret the passed labels as indexers, default False

Returns
- **panel**: Panel
If label combo is contained, will be reference to calling Panel, otherwise a new object

pandas.Panel.shift

Panel.shift(*args, **kwargs)
Shift major or minor axis by specified number of leads/lags. Drops periods right now compared with DataFrame.shift

Parameters
- **lags**: int
- **axis**: {'major', 'minor'}

Returns
- **shifted**: Panel

pandas.Panel.skew

Panel.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters
- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- **skew**: DataFrame or Panel (if level specified)

pandas.Panel.slice_shift

Panel.slice_shift(periods=1, axis=0, **kwds)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.
Parameters periods : int
 Number of periods to move, can be positive or negative

Returns shifted : same type as caller

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.Panel.sort_index

Panel.sort_index(axis=0, ascending=True)
Sort object by labels (along an axis)

Parameters axis : {0, 1}
 Sort index/rows versus columns

 ascending : boolean, default True
 Sort ascending vs. descending

Returns sorted_obj : type of caller

pandas.Panel.squeeze

Panel.squeeze()
 squeeze length 1 dimensions

pandas.Panel.std

Panel.std(axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame

 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns std : DataFrame or Panel (if level specified)
pandas.Panel.sub

```
Panel.sub(other, axis=0)
```
Wrapper method for sub

Parameters
other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

pandas.Panel.subtract

```
Panel.subtract(other, axis=0)
```
Wrapper method for sub

Parameters
other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

pandas.Panel.sum

```
Panel.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```
Return the sum of the values for the requested axis

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
sum : DataFrame or Panel (if level specified)

pandas.Panel.swapaxes

```
Panel.swapaxes(axis1, axis2, copy=True)
```
Interchange axes and swap values axes appropriately

Returns
y : same as input
pandas Panel.swaplevel

Panel.swaplevel(i, j, axis=0)
 Swap levels i and j in a MultiIndex on a particular axis

 Parameters i, j: int, string (can be mixed)
 Level of index to be swapped. Can pass level name as string.

 Returns swapped : type of caller (new object)

pandas Panel.tail

Panel.tail(n=5)

pandas Panel.take

Panel.take(indices, axis=0, convert=True, is_copy=True)
 Analogous to ndarray.take

 Parameters indices : list / array of ints
 axis : int, default 0
 convert : translate neg to pos indices (default)
 is_copy : mark the returned frame as a copy

 Returns taken : type of caller

pandas Panel.toLong

Panel.toLong(*args, **kwargs)

pandas Panel.to_clipboard

Panel.to_clipboard(excel=None, sep=None, **kwargs)
 Attempt to write text representation of object to the system clipboard This
 can be pasted into Excel, for example.

 Parameters excel : boolean, defaults to True
 if True, use the provided separator, writing in a csv format for
 allowing easy pasting into excel. if False, write a string
 representation of the object to the clipboard
 sep : optional, defaults to tab
 other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
• OS X: none

pandas.Panel.to_dense

Panel.to_dense()

Return dense representation of NDFrame (as opposed to sparse)

pandas.Panel.to_excel

Panel.to_excel(path, na_rep='', engine=None, **kwargs)

Write each DataFrame in Panel to a separate excel sheet

Parameters

- **path**: string or ExcelWriter object
 - File path or existing ExcelWriter
- **na_rep**: string, default ""
 - Missing data representation
- **engine**: string, default None
 - write engine to use - you can also set this via the options io.excel.xlsx.writer, io.excel.xls.writer, and io.excel.xlsm.writer.

Other Parameters

- **float_format**: string, default None
 - Format string for floating point numbers
- **cols**: sequence, optional
 - Columns to write
- **header**: boolean or list of string, default True
 - Write out column names. If a list of string is given it is assumed to be aliases for the column names
- **index**: boolean, default True
 - Write row names (index)
- **index_label**: string or sequence, default None
 - Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.
- **startrow**: upper left cell row to dump data frame
- **startcol**: upper left cell column to dump data frame

Notes

Keyword arguments (and na_rep) are passed to the to_excel method for each DataFrame written.
pandas.Panel.to_frame

Panel.to_frame(filter_observations=True)
Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes.

Parameters filter_observations : boolean, default True
Drop (major, minor) pairs without a complete set of observations across all the items

Returns y : DataFrame

pandas.Panel.to_hdf

Panel.to_hdf(path_or_buf, key, **kwargs)
activate the HDFStore

Parameters path_or_buf : the path (string) or buffer to put the store
 key : string
 indentifier for the group in the store
 mode : optional, {‘a’, ‘w’, ‘r’, ‘r+’}, default ‘a’
 ‘r’ Read-only; no data can be modified.
 ‘w’ Write; a new file is created (an existing file with the same name would be deleted).
 ‘a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
 ‘r+’ It is similar to ‘a’, but the file must already exist.
 format : ‘fixed(f)|table(t)’, default is ‘fixed’
 fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
 table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
 append : boolean, default False
 For Table formats, append the input data to the existing
 complevel : int, 1-9, default 0
 If a comprlib is specified compression will be applied where possible
 comprlib : {‘zlib’, ‘bzip2’, ‘lzma’, ‘blosc’, None}, default None
 If complevel is > 0 apply compression to objects written in the store wherever possible
 fletcher32 : bool, default False
 If applying compression use the fletcher32 checksum
pandas.Panel.to_json

Panel.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters
- **path_or_buf** : the path or buffer to write the result string
 - if this is None, return a StringIO of the converted string
- **orient** : string
 - Series
 - default is ‘index’
 - allowed values are: {'split','records','index’}
 - DataFrame
 - default is ‘columns’
 - allowed values are: {'split','records','index’,'columns’,‘values’}
 - The format of the JSON string
 - split : dict like {index -> [index], columns -> [columns], data -> [values]}
 - records : list like [{column -> value}, ... , {column -> value}]
 - index : dict like {index -> {column -> value}}
 - columns : dict like {column -> {index -> value}}
 - values : just the values array
- **date_format** : {'epoch’, ‘iso’}
 - Type of date conversion. *epoch* = epoch milliseconds, *iso* = ISO8601, default is *epoch*.
- **double_precision** : The number of decimal places to use when encoding
 - floating point values, default 10.
- **force_ascii** : force encoded string to be ASCII, default True.
- **date_unit** : string, default ‘ms’ (milliseconds)
 - The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
- **default_handler** : callable, default None
 - Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

Returns
- same type as input object with filtered info axis
pandas.Panel.to_long

Panel.to_long(*args, **kwargs)

pandas.Panel.to_msgpack

Panel.to_msgpack(path_or_buf=None, **kwargs)
msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters

path : string
File path, buffer-like, or None
if None, return generated string
append : boolean whether to append to an existing msgpack
(default is False)
compress : type of compressor (zlib or blosc), default to None (no compression)

pandas.Panel.to_pickle

Panel.to_pickle(path)
Pickle (serialize) object to input file path

Parameters

path : string
File path

pandas.Panel.to_sparse

Panel.to_sparse(fill_value=None, kind='block')
Convert to SparsePanel

Parameters

fill_value : float, default NaN
kind : {'block', 'integer'}

Returns

y : SparseDataFrame

pandas.Panel.to_sql

Panel.to_sql(name, con, flavor='sqlite', schema=None, if_exists='fail', index=True, index_label=None, chunksize=None)
Write records stored in a DataFrame to a SQL database.

Parameters

name : string
Name of SQL table
con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
flavor : {'sqlite', 'mysql'}, default 'sqlite'}
The flavor of SQL to use. Ignored when using SQLAlchemy engine. ‘mysql’ is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.

schema : string, default None

Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default ‘fail’

- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.

index : boolean, default True

Write DataFrame index as a column.

index_label : string or sequence, default None

Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None

If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

pandas.Panel.transpose

Panel.transpose (*args, **kwargs*)

Permute the dimensions of the Panel

Parameters

- **args** : three positional arguments: each one of
 - {0,1,2,’items’,’major_axis’,’minor_axis’}

- **copy** : boolean, default False

 Make a copy of the underlying data. Mixed-dtype data will always result in a copy

Returns

- **y** : same as input

Examples

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```

pandas.Panel.truediv

Panel.truediv (*other, axis=0*)

Wrapper method for truediv
Parameters

- `other` : DataFrame or Panel
- `axis` : items, major_axis, minor_axis

Returns
Panel

pandas.Panel.truncate

Panel.truncate(before=None, after=None, axis=None, copy=True)

Truncates a sorted NDFrame before and/or after some particular dates.

Parameters

- `before` : date
 Truncate before date
- `after` : date
 Truncate after date
- `axis` : the truncation axis, defaults to the stat axis
- `copy` : boolean, default is True,
 return a copy of the truncated section

Returns
truncated : type of caller

pandas.Panel.tshift

Panel.tshift(periods=1, freq=None, axis='major', **kwds)

pandas.Panel.tz_convert

Panel.tz_convert(tz, axis=0, level=None, copy=True)

Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters

- `tz` : string or pytz.timezone object
- `axis` : the axis to convert
- `level` : int, str, default None
 If axis ia a MultiIndex, convert a specific level. Otherwise must be None
- `copy` : boolean, default True
 Also make a copy of the underlying data

pandas.Panel.tz_localize

Panel.tz_localize(*args, **kwargs)

Localize tz-naive TimeSeries to target time zone

Parameters

- `tz` : string or pytz.timezone object
- `axis` : the axis to localize
- `level` : int, str, default None
If axis ia a MultiIndex, localize a specific level. Otherwise must be None

copy: boolean, default True

Also make a copy of the underlying data

ambiguous: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

- ‘infer’ will attempt to infer fall dst-transition hours based on order
- bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
- ‘NaT’ will return NaT where there are ambiguous times
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

infer_dst: boolean, default False (DEPRECATED)

Attempt to infer fall dst-transition hours based on order

pandas.Panel.update

Panel.update (*other*, *join='left', overwrite=True, filter_func=None, raise_conflict=False*)

Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items

Parameters

- **other**: Panel, or object coercible to Panel
- **join**: How to join individual DataFrames
  ```
  {'left', 'right', 'outer', 'inner'}, default 'left'
  ```
- **overwrite**: boolean, default True
 If True then overwrite values for common keys in the calling panel
- **filter_func**: callable(1d-array) -> 1d-array<boolean>, default None
 Can choose to replace values other than NA. Return True for values that should be updated
- **raise_conflict**: bool
 If True, will raise an error if a DataFrame and other both contain data in the same place.

pandas.Panel.var

Panel.var (*axis=None, skipna=None, level=None, ddof=1, **kwargs*)

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns var : DataFrame or Panel (if level specified)

pandas.Panel.where

Panel.where(cond, other=None, inplace=False, axis=None, level=None, try_cast=False,
raise_on_error=True)
Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters cond : boolean NDFrame or array
other : scalar or NDFrame
inplace : boolean, default False
Whether to perform the operation in place on the data
axis : alignment axis if needed, default None
level : alignment level if needed, default None
try_cast : boolean, default False
try to cast the result back to the input type (if possible),
raise_on_error : boolean, default True
Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

pandas.Panel.xs

Panel.xs(key, axis=1, copy=None)
Return slice of panel along selected axis

Parameters key : object
Label
axis : {'items', 'major', 'minor'}, default 1/major
copy : boolean [deprecated]
Whether to make a copy of the data

Returns y : ndim(self)-1

Notes
xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers
32.5.2 Attributes and underlying data

Axes

- **items**: axis 0; each item corresponds to a DataFrame contained inside
- **major_axis**: axis 1; the index (rows) of each of the DataFrames
- **minor_axis**: axis 2; the columns of each of the DataFrames

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.values</td>
<td>Numpy representation of NDFrame</td>
</tr>
<tr>
<td>Panel.axes</td>
<td>Index(es) of the NDFrame</td>
</tr>
<tr>
<td>Panel.ndim</td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td>Panel.shape</td>
<td>Tuple of axis dimensions</td>
</tr>
<tr>
<td>Panel.dtypes</td>
<td>Return the dtypes in this object</td>
</tr>
<tr>
<td>Panel.ftypes</td>
<td>Return the ftypes (indication of sparse/dense and dtype)</td>
</tr>
<tr>
<td>Panel.get_dtype_counts()</td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td>Panel.get_ftype_counts()</td>
<td>Return the counts of ftypes in this object</td>
</tr>
</tbody>
</table>

pandas.Panel.values

Panel.values

Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

pandas.Panel.axes

Panel.axes

Index(es) of the NDFrame

pandas.Panel.ndim

Panel.ndim

Number of axes / array dimensions

pandas.Panel.shape

Panel.shape

tuple of axis dimensions
pandas.Panel.dtypes

Panel.dtypes
Return the dtypes in this object

pandas.Panel.ftypes

Panel.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.

pandas.Panel.get_dtype_counts

Panel.get_dtype_counts()
Return the counts of dtypes in this object

pandas.Panel.get_ftype_counts

Panel.get_ftype_counts()
Return the counts of ftypes in this object

32.5.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.astype(dtype[, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>Panel.copy([deep])</td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td>Panel.isnull()</td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td>Panel.notnull()</td>
<td>Return a boolean same-sized object indicating if the values are not null ..</td>
</tr>
</tbody>
</table>

pandas.Panel.astype

Panel.astype(dtype, copy=True, raise_on_error=True)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters
dtype : numpy.dtype or Python type
raise_on_error : raise on invalid input

Returns
casted : type of caller

pandas.Panel.copy

Panel.copy(deep=True)
Make a copy of this object

Parameters
deep : boolean or string, default True

Make a deep copy, i.e. also copy data

Returns
copy : type of caller
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel.isnull

Panel.isnull()
Return a boolean same-sized object indicating if the values are null

See Also:

notnull boolean inverse of isnull

pandas.Panel.notnull

Panel.notnull()
Return a boolean same-sized object indicating if the values are not null

See Also:

isnull boolean inverse of notnull

32.5.4 Getting and setting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.get_value(*) *</td>
<td>Quickly retrieve single value at (item, major, minor) location</td>
</tr>
<tr>
<td>Panel.set_value(*) *</td>
<td>Quickly set single value at (item, major, minor) location</td>
</tr>
</tbody>
</table>

pandas.Panel.get_value

Panel.get_value(*args, **kwargs)
Quickly retrieve single value at (item, major, minor) location

Parameters

- **item**: item label (panel item)
- **major**: major axis label (panel item row)
- **minor**: minor axis label (panel item column)
- **takeable**: interpret the passed labels as indexers, default False

Returns

- **value**: scalar value

pandas.Panel.set_value

Panel.set_value(*args, **kwargs)
Quickly set single value at (item, major, minor) location

Parameters

- **item**: item label (panel item)
- **major**: major axis label (panel item row)
- **minor**: minor axis label (panel item column)
- **value**: scalar
- **takeable**: interpret the passed labels as indexers, default False

Returns

- **panel**: Panel

 If label combo is contained, will be reference to calling Panel, otherwise a new object
32.5.5 Indexing, iteration, slicing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.at</code></td>
<td>Return element at index key</td>
</tr>
<tr>
<td><code>Panel.iat</code></td>
<td>Return element at index key, integer access</td>
</tr>
<tr>
<td><code>Panel.ix</code></td>
<td>Return element at index key, integer access</td>
</tr>
<tr>
<td><code>Panel.loc</code></td>
<td>Return element at label, integer access</td>
</tr>
<tr>
<td><code>Panel.iloc</code></td>
<td>Return element at label, integer access</td>
</tr>
<tr>
<td><code>Panel.__iter__()</code></td>
<td>Iterate over index</td>
</tr>
<tr>
<td><code>Panel.iteritems()</code></td>
<td>Iterate over (label, values) on index</td>
</tr>
<tr>
<td><code>Panel.pop(item)</code></td>
<td>Return item and drop from frame</td>
</tr>
<tr>
<td><code>Panel.xs(key[, axis, copy])</code></td>
<td>Return slice of panel along selected axis</td>
</tr>
<tr>
<td><code>Panel.major_xs(key[, copy])</code></td>
<td>Return slice of panel along major axis</td>
</tr>
<tr>
<td><code>Panel.minor_xs(key[, copy])</code></td>
<td>Return slice of panel along minor axis</td>
</tr>
</tbody>
</table>

This is index for Series, columns for DataFrame, major_axis for Panel, and so on.
pandas.Panel.pop

Panel.pop(item)
Return item and drop from frame. Raise KeyError if not found.

pandas.Panel.xs

Panel.xs(key, axis=1, copy=None)
Return slice of panel along selected axis

Parameters
- key : object
 Label
- axis : {'items', 'major', 'minor'}, default 1/major
- copy : boolean [deprecated]
 Whether to make a copy of the data

Returns
- y : ndim(self)-1

Notes
xs is only for getting, not setting values.
MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see MultiIndex Slicers

pandas.Panel.major_xs

Panel.major_xs(key, copy=None)
Return slice of panel along major axis

Parameters
- key : object
 Major axis label
- copy : boolean [deprecated]
 Whether to make a copy of the data

Returns
- y : DataFrame
 index -> minor axis, columns -> items

Notes
major_xs is only for getting, not setting values.
MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs functionality, see MultiIndex Slicers
pandas.Panel.minor_xs

Panel.minor_xs(key, copy=None)

Return slice of panel along minor axis

Parameters

- **key**: object
 - Minor axis label
- **copy**: boolean [deprecated]
 - Whether to make a copy of the data

Returns

- **y**: DataFrame
 - index -> major axis, columns -> items

Notes

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see MultiIndex Slicers

For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation.

32.5.6 Binary operator functions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.add(other[, axis])</td>
<td>Wrapper method for add</td>
</tr>
<tr>
<td>Panel.sub(other[, axis])</td>
<td>Wrapper method for sub</td>
</tr>
<tr>
<td>Panel.mul(other[, axis])</td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td>Panel.div(other[, axis])</td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td>Panel.truediv(other[, axis])</td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td>Panel.floordiv(other[, axis])</td>
<td>Wrapper method for floordiv</td>
</tr>
<tr>
<td>Panel.mod(other[, axis])</td>
<td>Wrapper method for mod</td>
</tr>
<tr>
<td>Panel.pow(other[, axis])</td>
<td>Wrapper method for pow</td>
</tr>
<tr>
<td>Panel.radd(other[, axis])</td>
<td>Wrapper method for radd</td>
</tr>
<tr>
<td>Panel.rsub(other[, axis])</td>
<td>Wrapper method for rsub</td>
</tr>
<tr>
<td>Panel.rmul(other[, axis])</td>
<td>Wrapper method for rmul</td>
</tr>
<tr>
<td>Panel.rdiv(other[, axis])</td>
<td>Wrapper method for rtruediv</td>
</tr>
<tr>
<td>Panel.rfloordiv(other[, axis])</td>
<td>Wrapper method for rfloordiv</td>
</tr>
<tr>
<td>Panel.rmod(other[, axis])</td>
<td>Wrapper method for rmod</td>
</tr>
<tr>
<td>Panel.rpow(other[, axis])</td>
<td>Wrapper method for rpow</td>
</tr>
<tr>
<td>Panel.lt(other)</td>
<td>Wrapper for comparison method lt</td>
</tr>
<tr>
<td>Panel.gt(other)</td>
<td>Wrapper for comparison method gt</td>
</tr>
<tr>
<td>Panel.le(other)</td>
<td>Wrapper for comparison method le</td>
</tr>
<tr>
<td>Panel.ge(other)</td>
<td>Wrapper for comparison method ge</td>
</tr>
<tr>
<td>Panel.ne(other)</td>
<td>Wrapper for comparison method ne</td>
</tr>
<tr>
<td>Panel.eq(other)</td>
<td>Wrapper for comparison method eq</td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel.add

Panel.add(other, axis=0)
Wrapper method for add

Parameters
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Returns Panel

pandas.Panel.sub

Panel.sub(other, axis=0)
Wrapper method for sub

Parameters
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Returns Panel

pandas.Panel.mul

Panel.mul(other, axis=0)
Wrapper method for mul

Parameters
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Returns Panel

pandas.Panel.div

Panel.div(other, axis=0)
Wrapper method for truediv

Parameters
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Returns Panel

pandas.Panel.truediv

Panel.truediv(other, axis=0)
Wrapper method for truediv
Parameters `other` : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel

pandas.Panel.floordiv

Panel.floordiv(other, axis=0)

Wrapper method for floordiv

Parameters `other` : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel

pandas.Panel.mod

Panel.mod(other, axis=0)

Wrapper method for mod

Parameters `other` : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel

pandas.Panel.pow

Panel.pow(other, axis=0)

Wrapper method for pow

Parameters `other` : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel

pandas.Panel.radd

Panel.radd(other, axis=0)

Wrapper method for radd

Parameters `other` : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel.rsub

```python
Panel.rsub(other, axis=0)
```
Wrapper method for rsub

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Returns

Panel

pandas.Panel.rmul

```python
Panel.rmul(other, axis=0)
```
Wrapper method for rmul

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Returns

Panel

pandas.Panel.rdiv

```python
Panel.rdiv(other, axis=0)
```
Wrapper method for rtruediv

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Returns

Panel

pandas.Panel.rtruediv

```python
Panel.rtruediv(other, axis=0)
```
Wrapper method for rtruediv

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Returns

Panel

pandas.Panel.rfloordiv

```python
Panel.rfloordiv(other, axis=0)
```
Wrapper method for rfloordiv
Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.rmod

Panel.rmod(other, axis=0)

Wrapper method for rmod

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.rpow

Panel.rpow(other, axis=0)

Wrapper method for rpow

Parameters

other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns

Panel

pandas.Panel.lt

Panel.lt(other)

Wrapper for comparison method lt

pandas.Panel.gt

Panel.gt(other)

Wrapper for comparison method gt

pandas.Panel.le

Panel.le(other)

Wrapper for comparison method le

pandas.Panel.ge

Panel.ge(other)

Wrapper for comparison method ge
pandas.Panel.ne

Panel.ne(other)
Wrapper for comparison method ne

pandas.Panel.eq

Panel.eq(other)
Wrapper for comparison method eq

32.5.7 Function application, GroupBy

| pandas.Panel.apply (func[, axis]) | Applies function along input axis of the Panel |
| pandas.Panel.groupby (function[, axis]) | Group data on given axis, returning GroupBy object |

pandas.Panel.apply

Panel.apply (func, axis='major', **kwargs)
Applies function along input axis of the Panel

Parameters func : function
Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/minor_axis will be passed a Series
axis : {'major', ‘minor’, ‘items’}

Additional keyword arguments will be passed as keywords to the function

Returns result : Pandas Object

Examples

>>> p.apply(numpy.sqrt) # returns a Panel
>>> p.apply(lambda x: x.sum(), axis=0) # equiv to p.sum(0)
>>> p.apply(lambda x: x.sum(), axis=1) # equiv to p.sum(1)
>>> p.apply(lambda x: x.sum(), axis=2) # equiv to p.sum(2)

pandas.Panel.groupby

Panel.groupby (function, axis='major')
Group data on given axis, returning GroupBy object

Parameters function : callable
Mapping function for chosen access
axis : {'major', ‘minor’, ‘items’}, default ‘major’

Returns grouped : PanelGroupBy

32.5.8 Computations / Descriptive Stats
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.abs()</code></td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td><code>Panel.clip([lower, upper, out])</code></td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td><code>Panel.clip_lower(threshold)</code></td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td><code>Panel.clip_upper(threshold)</code></td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td><code>Panel.count([axis])</code></td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cummax([axis, dtype, out, skipna])</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cummin([axis, dtype, out, skipna])</code></td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cumprod([axis, dtype, out, skipna])</code></td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cumsum([axis, dtype, out, skipna])</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>Panel.max([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>Panel.mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis.</td>
</tr>
<tr>
<td><code>Panel.median([axis, skipna, level, numeric_only])</code></td>
<td>Return the median of the values for the requested axis.</td>
</tr>
<tr>
<td><code>Panel.min([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>Panel.pct_change([periods, fill_method, ...])</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>Panel.prod([axis, skipna, level, numeric_only])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>Panel.sem([axis, skipna, level, ddof])</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>Panel.skew([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td><code>Panel.sum([axis, skipna, level, numeric_only])</code></td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
<tr>
<td><code>Panel.std([axis, skipna, level, ddof])</code></td>
<td>Return unbiased standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>Panel.var([axis, skipna, level, ddof])</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
</tbody>
</table>

pandas.Panel.abs

Panel.abs()

Return an object with absolute value taken. Only applicable to objects that are all numeric.

Returns abs: type of caller

pandas.Panel.clip

Panel.clip(lower=None, upper=None, out=None)

Trim values at input threshold(s)

Parameters
- `lower`: float, default None
- `upper`: float, default None

Returns clipped: Series

pandas.Panel.clip_lower

Panel.clip_lower(threshold)

Return copy of the input with values below given value truncated

Returns clipped: same type as input

See Also:
- `clip`
pandas.Panel.clip_upper

Panel.clip_upper(threshold)
Return copy of input with values above given value truncated

Returns clipped: same type as input

See Also:
clip

pandas.Panel.count

Panel.count(axis='major')
Return number of observations over requested axis.

Parameters axis: {'items', 'major', 'minor'} or {0, 1, 2}

Returns count: DataFrame

pandas.Panel.cummax

Panel.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative max over requested axis.

Parameters axis: {items (0), major_axis (1), minor_axis (2)}

skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns max: DataFrame

pandas.Panel.cummin

Panel.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative min over requested axis.

Parameters axis: {items (0), major_axis (1), minor_axis (2)}

skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns min: DataFrame

pandas.Panel.cumprod

Panel.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)
Return cumulative prod over requested axis.

Parameters axis: {items (0), major_axis (1), minor_axis (2)}

skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns prod: DataFrame
pandas.Panel.cumsum

Panel.cumsum(\(axis=None, dtype=None, out=None, skipna=True, **kwargs\))

Return cumulative sum over requested axis.

Parameters
- **axis** : {items (0), major_axis (1), minor_axis (2)}
- **skipna** : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- **sum** : DataFrame

pandas.Panel.max

Panel.max(\(axis=None, skipna=None, level=None, numeric_only=None, **kwargs\))

This method returns the maximum of the values in the object. If you want the index of the maximum, use .idxmax. This is the equivalent of the numpy.ndarray method .argmax.

Parameters
- **axis** : {items (0), major_axis (1), minor_axis (2)}
- **skipna** : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only** : boolean, default None

 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- **max** : DataFrame or Panel (if level specified)

pandas.Panel.mean

Panel.mean(\(axis=None, skipna=None, level=None, numeric_only=None, **kwargs\))

Return the mean of the values for the requested axis

Parameters
- **axis** : {items (0), major_axis (1), minor_axis (2)}
- **skipna** : boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only** : boolean, default None

 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- **mean** : DataFrame or Panel (if level specified)
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel.median

Panel.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame
numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns median : DataFrame or Panel (if level specified)

pandas.Panel.min

Panel.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. If you want the index of the minimum, use
idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame
numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns min : DataFrame or Panel (if level specified)

pandas.Panel.pct_change

Panel.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwds)
Percent change over given number of periods.

Parameters
periods : int, default 1
 Periods to shift for forming percent change
fill_method : str, default ‘pad’
 How to handle NAs before computing percent changes
limit : int, default None
 The number of consecutive NAs to fill before stopping
freq : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

Returns
chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.Panel.prod

Panel.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis

Parameters

axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

prod : DataFrame or Panel (if level specified)

pandas.Panel.sem

Panel.sem(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

sem : DataFrame or Panel (if level specified)
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel.skew

Panel.skew (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased skew over requested axis Normalized by N-1

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
skew : DataFrame or Panel (if level specified)

pandas.Panel.sum

Panel.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the sum of the values for the requested axis

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
sum : DataFrame or Panel (if level specified)

pandas.Panel.std

Panel.std (axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only: boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **std**: DataFrame or Panel (if level specified)

pandas.Panel.var

```python
Panel.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)
```

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the `ddof` argument

Parameters

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **var**: DataFrame or Panel (if level specified)

32.5.9 Reindexing / Selection / Label manipulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.add_prefix</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>Panel.add_suffix</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td>Panel.drop</td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td>Panel.equals</td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the other object are considered equal to the other object's NaNs.</td>
</tr>
<tr>
<td>Panel.filter</td>
<td>Restrict the info axis to set of items or wildcard.</td>
</tr>
<tr>
<td>Panel.first</td>
<td>Convenience method for subsetting initial periods of time series data.</td>
</tr>
<tr>
<td>Panel.last</td>
<td>Convenience method for subsetting final periods of time series data.</td>
</tr>
<tr>
<td>Panel.reindex</td>
<td>Conform Panel to new index with optional filling logic, placing.</td>
</tr>
<tr>
<td>Panel.reindex_axis</td>
<td>Conform input object to new index with optional filling logic.</td>
</tr>
<tr>
<td>Panel.reindex_like</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td>Panel.rename</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>Panel.select</td>
<td>Return data corresponding to axis labels matching criteria.</td>
</tr>
<tr>
<td>Panel.take</td>
<td>Analogous to ndarray.take.</td>
</tr>
<tr>
<td>Panel.truncate</td>
<td>Truncates a sorted NDFrame before and/or after some particular index.</td>
</tr>
</tbody>
</table>

pandas.Panel.add_prefix

```python
Panel.add_prefix(prefix)
```

Concatenate prefix string with panel items names.

Parameters

- **prefix**: string

Returns

- **with_prefix**: type of caller
pandas.Panel.add_suffix

Panel.add_suffix(suffix)
Concateenate suffix string with panel items names

Parameters suffix : string

Returns with_suffix : type of caller

pandas.Panel.drop

Panel.drop (labels, axis=0, level=None, inplace=False, **kwargs)
Return new object with labels in requested axis removed

Parameters labels : single label or list-like
axis : int or axis name
level : int or level name, default None
For MultiIndex
inplace : bool, default False
If True, do operation inplace and return None.

Returns dropped : type of caller

pandas.Panel.equals

Panel.equals (other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Panel.filter

Panel.filter (items=None, like=None, regex=None, axis=None)
Restrict the info axis to set of items or wildcard

Parameters items : list-like
like : string
Keep info axis where “arg in col == True”
regex : string (regular expression)
Keep info axis with re.search(regex, col) == True
axis : int or None
The axis to filter on. By default this is the info axis. The “info axis” is the axis that is used when indexing with[]. For example, df = DataFrame({‘a’: [1, 2, 3, 4]}); df[‘a’]. So, the DataFrame columns are the info axis.

Notes
Arguments are mutually exclusive, but this is not checked for
pandas.Panel.first

Panel.first (offset)
Convenience method for subsetting initial periods of time series data based on a date offset

- **Parameters**
 - offset : string, DateOffset, dateutil.relativedelta
- **Returns**
 - subset : type of caller

Examples

ts.last('10D') -> First 10 days

pandas.Panel.last

Panel.last (offset)
Convenience method for subsetting final periods of time series data based on a date offset

- **Parameters**
 - offset : string, DateOffset, dateutil.relativedelta
- **Returns**
 - subset : type of caller

Examples

ts.last('5M') -> Last 5 months

pandas.Panel.reindex

Panel.reindex (items=None, major_axis=None, minor_axis=None, **kwargs)
Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

- **Parameters**
 - items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
 - method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
 - copy : boolean, default True
 Return a new object, even if the passed indexes are the same
 - level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
 - fill_value : scalar, default np.NaN
 Value to use for missing values. Defaults to NaN, but can be any “compatible” value
 - limit : int, default None
 Maximum size gap to forward or backward fill
Returns reindexed : Panel

Examples

```python
df.reindex(index=[date1, date2, date3], columns=[‘A’, ‘B’, ‘C’])
```

pandas.Panel.reindex_axis

Panel.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters labels : array-like

New labels / index to conform to. Preferably an Index object to avoid duplicating data

axis : {0,1,2,’items’,’major_axis’,’minor_axis’}

Method to use for filling holes in reindexed object. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

limit : int, default None

Maximum size gap to forward or backward fill

Returns reindexed : Panel

See Also:

reindex, reindex_like

Examples

```python
df.reindex_axis([‘A’, ‘B’, ‘C’], axis=1)
```

pandas.Panel.reindex_like

Panel.reindex_like(other, method=None, copy=True, limit=None)

return an object with matching indiciies to myself

Parameters other : Object

method : string or None

copy : boolean, default True
limit : int, default None
Maximum size gap to forward or backward fill

Returns reindexed : same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Panel.rename

Panel.rename(items=None, major_axis=None, minor_axis=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a
dict / Series will be left as-is.

Parameters items, major_axis, minor_axis : dict-like or function, optional
Transformation to apply to that axis values
copy : boolean, default True
Also copy underlying data
inplace : boolean, default False
Whether to return a new Panel. If True then value of copy is ignored.

Returns renamed : Panel (new object)

pandas.Panel.select

Panel.select(crit, axis=0)
Return data corresponding to axis labels matching criteria

Parameters crit : function
To be called on each index (label). Should return True or False
axis : int

Returns selection : type of caller

pandas.Panel.take

Panel.take(indices, axis=0, convert=True, is_copy=True)
Analogous to ndarray.take

Parameters indices : list / array of ints
axis : int, default 0
convert : translate neg to pos indices (default)
is_copy : mark the returned frame as a copy

Returns taken : type of caller
pandas.Panel.truncate

Panel.truncate(before=None, after=None, axis=None, copy=True)

Truncates a sorted NDFrame before and/or after some particular dates.

Parameters

- **before**: date
 - Truncate before date
- **after**: date
 - Truncate after date
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
 - return a copy of the truncated section

Returns

- **truncated**: type of caller

32.5.10 Missing data handling

<table>
<thead>
<tr>
<th>Panel.dropna(axis, how, inplace)</th>
<th>Drop 2D from panel, holding passed axis constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel.fillna(value, method, axis, inplace, ...)</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
</tbody>
</table>

pandas.Panel.dropna

Panel.dropna(axis=0, how='any', inplace=False, **kwargs)

Drop 2D from panel, holding passed axis constant

Parameters

- **axis**: int, default 0
 - Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data
- **how**: {'all', 'any'}, default 'any'
 - 'any': one or more values are NA in the DataFrame along the axis. For 'all' they all must be.
- **inplace**: bool, default False
 - If True, do operation inplace and return None.

Returns

- **dropped**: Panel

pandas.Panel.fillna

Panel.fillna(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)

Fill NA/NaN values using the specified method

Parameters

- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 - Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **value**: scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

axis: {0, 1}, default 0
- 0: fill column-by-column
- 1: fill row-by-row

inplace: boolean, default False
If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit: int, default None
Maximum size gap to forward or backward fill

downcast: dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled: same type as caller

See Also:
reindex, asfreq

32.5.11 Reshaping, sorting, transposing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.sort_index(axis=0, ascending=True)</code></td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>Panel.swaplevel(i, j[, axis])</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td><code>Panel.transpose(*args, **kwargs)</code></td>
<td>Permute the dimensions of the Panel</td>
</tr>
<tr>
<td><code>Panel.swapaxes(axis1, axis2[, copy])</code></td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>Panel.conform(frame[, axis])</code></td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
</tbody>
</table>

pandas.Panel.sort_index

```Panel.sort_index(axis=0, ascending=True)```  
Sort object by labels (along an axis)

**Parameters**

- **axis**: {0, 1}  
  Sort index/rows versus columns
- **ascending**: boolean, default True  
  Sort ascending vs. descending

**Returns**

sorted_obj : type of caller

**pandas.Panel.swaplevel**

```Panel.swaplevel(i, j[, axis])```  
Swap levels i and j in a MultiIndex on a particular axis

Parameters

- **i, j**: int, string (can be mixed)
Level of index to be swapped. Can pass level name as string.

Returns
swapped: type of caller (new object)

pandas.Panel.transpose

Panel.transpose (*args, **kwargs*)

Permute the dimensions of the Panel

Parameters
args: three positional arguments: each one of
{0,1,2,'items','major_axis','minor_axis'}

copy: boolean, default False

Make a copy of the underlying data. Mixed-dtype data will always result in a copy

Returns
y: same as input

Examples

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```

pandas.Panel.swapaxes

Panel.swapaxes (axis1, axis2, copy=True)

Interchange axes and swap values axes appropriately

Returns
y: same as input

pandas.Panel.conform

Panel.conform (frame, axis='items')

Conform input DataFrame to align with chosen axis pair.

Parameters
frame: DataFrame

axis: {'items', 'major', 'minor'}

Axis the input corresponds to. E.g., if axis='major', then the frame’s columns would be items, and the index would be values of the minor axis

Returns
DataFrame

32.5.12 Combining / joining / merging

Panel.join (other[, how, lsuffix, rsuffix])
Join items with other Panel either on major and minor axes column

Panel.update (other[, join, overwrite, ...])
Modify Panel in place using non-NA values from passed

pandas.Panel.join

Panel.join (other, how='left', lsuffix='', rsuffix='')

Join items with other Panel either on major and minor axes column
Parameters

- `other`: Panel or list of Panels

 Index should be similar to one of the columns in this one

- `how`: `{'left', 'right', 'outer', 'inner'}`

 How to handle indexes of the two objects. Default: ‘left’ for joining on index, None otherwise * left: use calling frame’s index * right: use input frame’s index * outer: form union of indexes * inner: use intersection of indexes

- `lsuffix`: string

 Suffix to use from left frame’s overlapping columns

- `rsuffix`: string

 Suffix to use from right frame’s overlapping columns

Returns

- `joined`: Panel

pandas.Panel.update

```python
Panel.update(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)
```

Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items

Parameters

- `other`: Panel, or object coercible to Panel

- `join`: How to join individual DataFrames

 `{'left', 'right', 'outer', 'inner'}`, default ‘left’

- `overwrite`: boolean, default True

 If True then overwrite values for common keys in the calling panel

- `filter_func`: callable(1d-array) -> 1d-array<boolean>, default None

 Can choose to replace values other than NA. Return True for values that should be updated

- `raise_conflict`: bool

 If True, will raise an error if a DataFrame and other both contain data in the same place.

32.5.13 Time series-related

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.asfreq(freq, method, how, normalize)</code></td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td><code>Panel.shift(*args, **kwargs)</code></td>
<td>Shift major or minor axis by specified number of leads/lags.</td>
</tr>
<tr>
<td><code>Panel.resample(rule[, how, axis, ...])</code></td>
<td>Convenience method for frequency conversion and resampling of regular time-series data.</td>
</tr>
<tr>
<td><code>Panel.tz_convert(tz[, axis, level, copy])</code></td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td><code>Panel.tz_localize(*args, **kwargs)</code></td>
<td>Localize tz-naive TimeSeries to target time zone</td>
</tr>
</tbody>
</table>

pandas.Panel.asfreq

```python
Panel.asfreq(freq=None, method=None, how=None, normalize=False)
```

Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

Parameters

- `freq`: DateOffset object, or string
method: \{`backfill`, `bfill`, `pad`, `ffill`, `None`\}

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method

how: \{`start`, `end`\}, default end

For PeriodIndex only, see PeriodIndex.asfreq

normalize: bool, default False

Whether to reset output index to midnight

Returns converted: type of caller

pandas.Panel.shift

Panel.shift(*args, **kwargs)

Shift major or minor axis by specified number of leads/lags. Drops periods right now compared with DataFrame.shift

Parameters lags: int
axis: \{`major`, `minor`\}

Returns shifted: Panel

pandas.Panel.resample

Panel.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters rule: string

the offset string or object representing target conversion

how: string

method for down- or re-sampling, default to `mean` for downsampling

axis: int, optional, default 0

fill_method: string, default None

fill_method for upsampling

closed: \{`right`, `left`\}

Which side of bin interval is closed

label: \{`right`, `left`\}

Which bin edge label to label bucket with

convention: \{`start`, `end`, `s`, `e`\}

kind: “period”/”timestamp”

loffset: timedelta

Adjust the resampled time labels

limit: int, default None
Maximum size gap to when reindexing with fill_method

base: int, default 0

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.Panel.tz_convert

```python
Panel.tz_convert(tz, axis=0, level=None, copy=True)
```

Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters

- **tz**: string or pytz.timezone object
- **axis**: the axis to convert
- **level**: int, str, default None
 - If axis ia a MultiIndex, convert a specific level. Otherwise must be None
- **copy**: boolean, default True
 - Also make a copy of the underlying data

pandas.Panel.tz_localize

```python
Panel.tz_localize(*args, **kwargs)
```

Localize tz-naive TimeSeries to target time zone

Parameters

- **tz**: string or pytz.timezone object
- **axis**: the axis to localize
- **level**: int, str, default None
 - If axis ia a MultiIndex, localize a specific level. Otherwise must be None
- **copy**: boolean, default True
 - Also make a copy of the underlying data

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

- ‘infer’ will attempt to infer fall dst-transition hours based on order
- bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
- ‘NaT’ will return NaT where there are ambiguous times
- ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

infer_dst : boolean, default False (DEPRECATED)

Attempt to infer fall dst-transition hours based on order

32.5.14 Serialization / IO / Conversion

Panel.from_dict *(data[, intersect, orient, dtype])*

Construct Panel from dict of DataFrame objects

Panel.to_pickle *(path)*

Pickle (serialize) object to input file path

Continued on next page
Table 32.76 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.to_excel(path[, na_rep, engine])</code></td>
<td>Write each DataFrame in Panel to a separate excel sheet</td>
</tr>
<tr>
<td><code>Panel.to_hdf(path_or_buf, key, **kwargs)</code></td>
<td>Activate the HDFStore</td>
</tr>
<tr>
<td><code>Panel.to_json([path_or_buf, orient, ...])</code></td>
<td>Convert the object to a JSON string</td>
</tr>
<tr>
<td><code>Panel.to_sparse([fill_value, kind])</code></td>
<td>Convert to SparsePanel</td>
</tr>
<tr>
<td><code>Panel.to_frame([filter_observations])</code></td>
<td>Transform wide format into long (stacked) format as DataFrame</td>
</tr>
<tr>
<td><code>Panel.to_clipboard([excel, sep])</code></td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
</tbody>
</table>

pandas.Panel.from_dict

classmethod `Panel.from_dict(data, intersect=False, orient='items', dtype=None)`
Construct Panel from dict of DataFrame objects

Parameters
- `data`: dict
 - `{field : DataFrame}
- `intersect`: boolean
 - Intersect indexes of input DataFrames
- `orient`: `{‘items’, ‘minor’}, default ‘items’
 - The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’

Returns
- `Panel`

pandas.Panel.to_pickle

`Panel.to_pickle(path)`
Pickle (serialize) object to input file path

Parameters
- `path`: string
 - File path

pandas.Panel.to_excel

`Panel.to_excel(path, na_rep='', engine=None, **kwargs)`
Write each DataFrame in Panel to a separate excel sheet

Parameters
- `path`: string or ExcelWriter object
 - File path or existing ExcelWriter
- `na_rep`: string, default ‘’
 - Missing data representation
- `engine`: string, default None
 - write engine to use - you can also set this via the options `io.excel.xlsx.writer`, `io.excel.xls.writer`, and `io.excel.xlsm.writer`.

Other Parameters
- `float_format`: string, default None
Format string for floating point numbers

cols: sequence, optional
Columns to write

header: boolean or list of string, default True
Write out column names. If a list of string is given it is assumed to be aliases for the column names

index: boolean, default True
Write row names (index)

index_label: string or sequence, default None
Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

startrow: upper left cell row to dump data frame

startcol: upper left cell column to dump data frame

Notes

Keyword arguments (and na_rep) are passed to the `to_excel` method for each DataFrame written.

pandas.Panel.to_hdf

`Panel.to_hdf(path_or_buf, key, **kwargs)`
activate the HDFStore

Parameters

path_or_buf: the path (string) or buffer to put the store

key: string
identifier for the group in the store

mode: optional, {'a', 'w', 'r', 'r+'}, default ‘a’

‘r’ Read-only; no data can be modified.

‘w’ Write; a new file is created (an existing file with the same name would be deleted).

‘a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

‘r+’ It is similar to ‘a’, but the file must already exist.

format: ‘fixed(f)table(t)’, default is ‘fixed’

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append: boolean, default False

For Table formats, append the input data to the existing
complevel : int, 1-9, default 0

If a complib is specified compression will be applied where possible

complib : {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum

pandas.Panel.to_json

Panel.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None)

Convert the object to a JSON string.

Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters

- **path_or_buf** : the path or buffer to write the result string

 if this is None, return a StringIO of the converted string

- **orient** : string

 - Series

 - default is ‘index’

 - allowed values are: {'split', 'records', 'index'}

 - DataFrame

 - default is ‘columns’

 - allowed values are: {'split', 'records', 'index', 'columns', 'values'}

 - The format of the JSON string

 - split : dict like {index -> [index], columns -> [columns], data -> [values]}

 - records : list like [{column -> value}, ... , {column -> value}]

 - index : dict like {index -> {column -> value}}

 - columns : dict like {column -> {index -> value}}

 - values : just the values array

- **date_format** : {'epoch', 'iso'}

 Type of date conversion. epoch = epoch milliseconds, iso’ = ISO8601, default is epoch.

- **double_precision** : The number of decimal places to use when encoding floating point values, default 10.

- **force_ascii** : force encoded string to be ASCII, default True.

- **date_unit** : string, default 'ms’ (milliseconds)

 The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

- **default_handler** : callable, default None
Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

Returns same type as input object with filtered info axis

pandas.Panel.to_sparse

`Panel.to_sparse(fill_value=None, kind='block')`
Convert to SparsePanel

Parameters
- `fill_value`: float, default NaN
- `kind`: {'block', 'integer'}

Returns
y: SparseDataFrame

pandas.Panel.to_frame

`Panel.to_frame(filter_observations=True)`
Transform wide format into long (stacked) format as DataFrame whose columns are the Panel's items and whose index is a MultiIndex formed of the Panel's major and minor axes.

Parameters
- `filter_observations`: boolean, default True
 Drop (major, minor) pairs without a complete set of observations across all the items

Returns
y: DataFrame

pandas.Panel.to_clipboard

`Panel.to_clipboard(excel=None, sep=None, **kwargs)`
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters
- `excel`: boolean, defaults to True
 if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard
- `sep`: optional, defaults to tab
 other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none
32.6 Panel4D

32.6.1 Constructor

Panel4D([data, labels, items, major_axis, ...]) Represents a 4 dimensional structured

pandas.Panel4D

class pandas.Panel4D(data=None, labels=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)
Represents a 4 dimensional structured

Parameters
- data : ndarray (labels x items x major x minor), or dict of Panels
- labels : Index or array-like
- items : Index or array-like
- major_axis : Index or array-like: axis=2
- minor_axis : Index or array-like: axis=3
- dtype : dtype, default None

Data type to force, otherwise infer
- copy : boolean, default False

Copy data from inputs. Only affects DataFrame / 2d ndarray input

Attributes

- at: index(es) of the NDFrame
- axes: Internal property, property synonym for as_blocks()
- blocks: Return the dtypes in this object
- empty: True if NDFrame is entirely empty [no items]
- ftypes: Return the ftypes (indication of sparse/dense and dtype)
- iat
- iloc
- ix
- loc
- ndim: Number of axes / array dimensions
- shape: tuple of axis dimensions
- values: Numpy representation of NDFrame

pandas.Panel4D.at

Panel4D.at
pandas.Panel4D.axes

Panel4D.axes
index(es) of the NDFrame

pandas.Panel4D.blocks

Panel4D.blocks
Internal property, property synonym for as_blocks()

pandas.Panel4D.dtypes

Panel4D.dtypes
Return the dtypes in this object

pandas.Panel4D.empty

Panel4D.empty
True if NDFrame is entirely empty [no items]

pandas.Panel4D.ftypes

Panel4D.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.

pandas.Panel4D.iat

Panel4D.iat

pandas.Panel4D.iloc

Panel4D.iloc

pandas.Panel4D.ix

Panel4D.ix

pandas.Panel4D.loc

Panel4D.loc

pandas.Panel4D.ndim

Panel4D.ndim
Number of axes / array dimensions
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel4D.shape

Panel4D.shape
tuple of axis dimensions

pandas.Panel4D.values

Panel4D.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken.</td>
</tr>
<tr>
<td>add(other[, axis])</td>
<td>Wrapper method for add</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names</td>
</tr>
<tr>
<td>align(other[, join, axis, level, copy, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>apply(func[, axis])</td>
<td>Applies function along input axis of the Panel</td>
</tr>
<tr>
<td>as_blocks()</td>
<td>Convert the frame to a dict of dtype -> Constructor Types that each has</td>
</tr>
<tr>
<td>as_matrix()</td>
<td></td>
</tr>
<tr>
<td>asfreq(freq[, method, how, normalize])</td>
<td>Convert all TimeSeries inside to specified frequency using DateOffset</td>
</tr>
<tr>
<td>astype(dtype[, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>at_time(time[, asof])</td>
<td>Select values at particular time of day (e.g.</td>
</tr>
<tr>
<td>between_time(start_time, end_time[, ...])</td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM)</td>
</tr>
<tr>
<td>bfill([axis, inplace, limit, downcast])</td>
<td>Synonym for NDFrame.fillna(method='bfill')</td>
</tr>
<tr>
<td>bool()</td>
<td>Return the bool of a single element PandasObject</td>
</tr>
<tr>
<td>clip([lower, upper, out])</td>
<td>Trim values at input threshold(s)</td>
</tr>
<tr>
<td>clip_lower(threshold)</td>
<td>Return copy of the input with values below given value truncated</td>
</tr>
<tr>
<td>clip_upper(threshold)</td>
<td>Return copy of input with values above given value truncated</td>
</tr>
<tr>
<td>compound([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td>conform(frame[, axis])</td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
<tr>
<td>consolidate([implace])</td>
<td>Compute NDFrame with “consolidated” internals (data of each dtype)</td>
</tr>
<tr>
<td>convert_objects([convert_dates, ...])</td>
<td>Attempt to infer better dtype for object columns</td>
</tr>
<tr>
<td>copy([deep])</td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td>count([axis])</td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td>cummax([axis, dtype, out, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td>cummin([axis, dtype, out, skipna])</td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td>cumprod([axis, dtype, out, skipna])</td>
<td>Return cumulative prod over requested axis.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 32.79 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cumsum(axis, dtype, out, skipna)</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>describe(percentile_width, percentiles, ...)</td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td>div(other[, axis])</td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td>divide(other[, axis])</td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td>drop(labels[, axis, level, inplace])</td>
<td>Return new object with labels in requested axis removed</td>
</tr>
<tr>
<td>dropna(*args, **kwargs)</td>
<td>Wrapper for comparison method eq</td>
</tr>
<tr>
<td>eq(other)</td>
<td>Determines if two NDFrame objects contain the same elements. NaNs in the</td>
</tr>
<tr>
<td>equals(other)</td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td>ffill(axis, inplace, limit, downcast)</td>
<td>Fill NaN/NaN values using the specified method</td>
</tr>
<tr>
<td>fillna(value, method, axis, inplace, ...)</td>
<td>Convenience method for subsetting initial periods of time series data</td>
</tr>
<tr>
<td>floordiv(other[, axis])</td>
<td>Wrapper method for floordiv</td>
</tr>
<tr>
<td>fromDict(data[, intersect, orient, dtype])</td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td>from_dict(data[, intersect, orient, dtype])</td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td>get(key[, default])</td>
<td>Get item from object for given key (DataFrame column, Panel slice,</td>
</tr>
<tr>
<td>get_dtype_counts()</td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td>get_ftype_counts()</td>
<td>Return the counts of ftypes in this object</td>
</tr>
<tr>
<td>get_value(*args, **kwargs)</td>
<td>Quickly retrieve single value at (item, major, minor) location</td>
</tr>
<tr>
<td>get_values()</td>
<td>same as values (but handles sparseness conversions)</td>
</tr>
<tr>
<td>groupby(*args, **kwargs)</td>
<td>Wrapper for comparison method gt</td>
</tr>
<tr>
<td>head([n])</td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td>isnull()</td>
<td>Return a boolean same-sized object indicating if the values are null ..</td>
</tr>
<tr>
<td>iteritems()</td>
<td>Iterate over (label, values) on info axis</td>
</tr>
<tr>
<td>iterkv(*args, **kwargs)</td>
<td>iteritems alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td>keys()</td>
<td>Get the ‘info axis’ (see Indexing for more)</td>
</tr>
<tr>
<td>kurt(axis, skipna, level, numeric_only)</td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td>kurtosis(axis, skipna, level, numeric_only)</td>
<td>Return unbiased kurtosis over requested axis</td>
</tr>
<tr>
<td>last(offset)</td>
<td>Convenience method for subsetting final periods of time series data</td>
</tr>
<tr>
<td>le(other)</td>
<td>Wrapper for comparison method le</td>
</tr>
<tr>
<td>load(path)</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>lt(other)</td>
<td>Wrapper for comparison method lt</td>
</tr>
<tr>
<td>mad(axis, skipna, level)</td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td>major_xs(key[, copy])</td>
<td>Return slice of panel along major axis</td>
</tr>
<tr>
<td>max(axis, skipna, level, numeric_only)</td>
<td>Returns copy whose values are replaced with nan if the</td>
</tr>
<tr>
<td>mean(axis, skipna, level, numeric_only)</td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td>median(axis, skipna, level, numeric_only)</td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td>min(axis, skipna, level, numeric_only)</td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td>minor_xs(key[, copy])</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td>mod(other[, axis])</td>
<td>Wrapper method for mod</td>
</tr>
<tr>
<td>mul(other[, axis])</td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td>multiply(other[, axis])</td>
<td>Wrapper method for mul</td>
</tr>
<tr>
<td>ne(other)</td>
<td>Wrapper for comparison method ne</td>
</tr>
<tr>
<td>notnull()</td>
<td>Return a boolean same-sized object indicating if the values are not null ..</td>
</tr>
<tr>
<td>pct_change(periods, fill_method, limit, freq)</td>
<td>Percent change over given number of periods.</td>
</tr>
</tbody>
</table>
Table 32.79 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pop()</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow()</code></td>
<td>Wrapper method for <code>pow</code>.</td>
</tr>
<tr>
<td><code>prod()</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>product()</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>radd()</code></td>
<td>Wrapper method for <code>radd</code>.</td>
</tr>
<tr>
<td><code>rdiv()</code></td>
<td>Wrapper method for <code>rtruediv</code>.</td>
</tr>
<tr>
<td><code>reindex()</code></td>
<td>Conform Panel to new index with optional filling logic, placing</td>
</tr>
<tr>
<td><code>reindex_axis()</code></td>
<td>Conform input object to new index with optional filling logic, placing</td>
</tr>
<tr>
<td><code>rename_axis()</code></td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>replace()</code></td>
<td>Replace values given in 'to_replace' with 'value'.</td>
</tr>
<tr>
<td><code>resample()</code></td>
<td>Convenience method for frequency conversion and resampling of regular time-series data.</td>
</tr>
<tr>
<td><code>rfloordiv()</code></td>
<td>Wrapper method for <code>rfloordiv</code>.</td>
</tr>
<tr>
<td><code>rmod()</code></td>
<td>Wrapper method for <code>rmod</code>.</td>
</tr>
<tr>
<td><code>rmul()</code></td>
<td>Wrapper method for <code>rmul</code>.</td>
</tr>
<tr>
<td><code>rpow()</code></td>
<td>Wrapper method for <code>rpow</code>.</td>
</tr>
<tr>
<td><code>rsub()</code></td>
<td>Wrapper method for <code>rsub</code>.</td>
</tr>
<tr>
<td><code>rtruediv()</code></td>
<td>Wrapper method for <code>rtruediv</code>.</td>
</tr>
<tr>
<td><code>save()</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>select()</code></td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>sem()</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>set_axis()</code></td>
<td>public version of axis assignment</td>
</tr>
<tr>
<td><code>set_value()</code></td>
<td>Quickly set single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>shift()</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>skew()</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>slice_shift()</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort_index()</code></td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>squeeze()</code></td>
<td>squeeze length 1 dimensions</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>Return unbiased standard deviation over requested axis</td>
</tr>
<tr>
<td><code>sub()</code></td>
<td>Wrapper method for <code>sub</code>.</td>
</tr>
<tr>
<td><code>subtract()</code></td>
<td>Wrapper method for <code>subtract</code>.</td>
</tr>
<tr>
<td><code>sum()</code></td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td><code>swapaxes()</code></td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>swaplevel()</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td><code>tail()</code></td>
<td>Analagous to ndarray.take</td>
</tr>
<tr>
<td><code>take()</code></td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
<tr>
<td><code>toLong()</code></td>
<td>Return dense representation of NDataFrame (as opposed to sparse)</td>
</tr>
<tr>
<td><code>to_clipboard()</code></td>
<td>Return dense representation of NDataFrame (as opposed to sparse)</td>
</tr>
<tr>
<td><code>to_frame()</code></td>
<td>activate the HDFStore</td>
</tr>
<tr>
<td><code>to_json()</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_long()</code></td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_pickle()</code></td>
<td>Pickle (serialize) object to input file path</td>
</tr>
<tr>
<td><code>to_sql()</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>transpose()</code></td>
<td>Permute the dimensions of the Panel</td>
</tr>
</tbody>
</table>

Continued on next page
Table 32.79 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>truediv</td>
<td>Wrapper method for truediv</td>
</tr>
<tr>
<td>truncate</td>
<td>Truncates a sorted NDFrame before and/or after some particular</td>
</tr>
<tr>
<td>tshift</td>
<td>([periods, freq, axis])</td>
</tr>
<tr>
<td>tz_convert</td>
<td>Convert the axis to target time zone.</td>
</tr>
<tr>
<td>tz_localize</td>
<td>Localize tz-naive TimeSeries to target time zone</td>
</tr>
<tr>
<td>update</td>
<td>Modify Panel in place using non-NA values from passed</td>
</tr>
<tr>
<td>var</td>
<td>Returns unbiased variance over requested axis.</td>
</tr>
<tr>
<td>where</td>
<td>Return an object of same shape as self and whose corresponding</td>
</tr>
<tr>
<td>xs</td>
<td>Return slice of panel along selected axis</td>
</tr>
</tbody>
</table>

pandas.Panel4D.abs

```python
Panel4D.abs()  
```

Return an object with absolute value taken. Only applicable to objects that are all numeric

Returns

- abs: type of caller

pandas.Panel4D.add

```python
Panel4D.add(other, axis=0)  
```

Wrapper method for add

Parameters

- `other`: Panel or Panel4D
- `axis`: [labels, items, major_axis, minor_axis]

Axis to broadcast over

Returns

- Panel4D

pandas.Panel4D.add_prefix

```python
Panel4D.add_prefix(prefix)  
```

Concatenate prefix string with panel items names.

Parameters

- `prefix`: string

Returns

- with_prefix: type of caller

pandas.Panel4D.add_suffix

```python
Panel4D.add_suffix(suffix)  
```

Concatenate suffix string with panel items names.

Parameters

- `suffix`: string

Returns

- with_suffix: type of caller

pandas.Panel4D.align

```python
Panel4D.align(other, join='outer', axis=0, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0)  
```

Align two object on their axes with the specified join method for each axis Index
Parameters

- **other**: DataFrame or Series
 - **join**: \{'outer', 'inner', 'left', 'right'\}, default 'outer'
 - **axis**: allowed axis of the other object, default None
 - Align on index (0), columns (1), or both (None)
 - **level**: int or level name, default None
 - Broadcast across a level, matching Index values on the passed MultiIndex level
 - **copy**: boolean, default True
 - Always returns new objects. If copy=False and no reindexing is required then original objects are returned.
 - **fill_value**: scalar, default np.NaN
 - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
 - **method**: str, default None
 - **limit**: int, default None
 - **fill_axis**: \{0, 1\}, default 0
 - Filling axis, method and limit

Returns

- **(left, right)**: (type of input, type of other)
 - Aligned objects

pandas.Panel4D.apply

Panel4D.apply(func, axis='major', **kwargs)

Applies function along input axis of the Panel

Parameters

- **func**: function
 - Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, then the combination of major_axis/minor_axis will be passed a Series
 - **axis**: \{'major', 'minor', 'items'\}

Additional keyword arguments will be passed as keywords to the function

Returns

- **result**: Pandas Object

Examples

```python
>>> p.apply(numpy.sqrt)  # returns a Panel
>>> p.apply(lambda x: x.sum(), axis=0)  # equiv to p.sum(0)
>>> p.apply(lambda x: x.sum(), axis=1)  # equiv to p.sum(1)
>>> p.apply(lambda x: x.sum(), axis=2)  # equiv to p.sum(2)
```
pandas.Panel4D.as_blocks

Panel4D.as_blocks()
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.
are presented in sorted order unless a specific list of columns is provided.
NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters columns : array-like
Specific column order

Returns values : a list of Object

pandas.Panel4D.as_matrix

Panel4D.as_matrix()

pandas.Panel4D.asfreq

Panel4D.asfreq(freq=None, method=None, how=None, normalize=False)
Convert all TimeSeries inside to specified frequency using DateOffset objects. Optionally provide fill method to pad/backfill missing values.

Parameters freq : DateOffset object, or string
method : {'backfill', 'bfill', 'pad', 'ffill', None}
Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill method
how : {'start', 'end'}, default end
For PeriodIndex only, see PeriodIndex.asfreq
normalize : bool, default False
Whether to reset output index to midnight

Returns converted : type of caller

pandas.Panel4D.astype

Panel4D.astype(dtype, copy=True, raise_on_error=True)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters dtype : numpy.dtype or Python type
raise_on_error : raise on invalid input

Returns casted : type of caller
pandas.Panel4D.at_time

Panel4D.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM)

Parameters
time : datetime.time or string

Returns
values_at_time : type of caller

pandas.Panel4D.between_time

Panel4D.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM)

Parameters
start_time : datetime.time or string
date_time : datetime.time or string
include_start : boolean, default True
include_end : boolean, default True

Returns
values_between_time : type of caller

pandas.Panel4D.bfill

Panel4D.bfill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.Panel4D.bool

Panel4D.bool()
Return the bool of a single element PandasObject This must be a boolean scalar value, either True or False
Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

pandas.Panel4D.clip

Panel4D.clip(lower=None, upper=None, out=None)
Trim values at input threshold(s)

Parameters
lower : float, default None
upper : float, default None

Returns
clipped : Series

pandas.Panel4D.clip_lower

Panel4D.clip_lower(threshold)
Return copy of the input with values below given value truncated

Returns
clipped : same type as input
pandas.Panel4D.clip_upper

Panel4D.clip_upper(threshold)

Return copy of input with values above given value truncated

Returns clipped: same type as input

See Also: clip

pandas.Panel4D.compound

Panel4D.compound(axis=None, skipna=None, level=None, **kwargs)

Return the compound percentage of the values for the requested axis

Parameters

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None

 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns compounded: Panel or Panel4D (if level specified)

pandas.Panel4D.conform

Panel4D.conform(frame, axis='items')

Conform input DataFrame to align with chosen axis pair.

Parameters

- **frame**: DataFrame
- **axis**: `{‘items’, ‘major’, ‘minor’}`

 Axis the input corresponds to. E.g., if axis='major', then the frame's columns would be items, and the index would be values of the minor axis

Returns DataFrame

pandas.Panel4D.consolidate

Panel4D.consolidate(inplace=False)

Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user

Parameters

- **inplace**: boolean, default False
If False return new object, otherwise modify existing object

Returns consolidated : type of caller

pandas.Panel4D.convert_objects

Panel4D.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)

Attempt to infer better dtype for object columns

Parameters
- **convert_dates** : if True, attempt to soft convert dates, if ‘coerce’, force conversion (and non-convertibles get NaT)
- **convert_numeric** : if True attempt to coerce to numbers (including strings), non-convertibles get NaN
- **convert_timedeltas** : if True, attempt to soft convert timedeltas, if ‘coerce’, force conversion (and non-convertibles get NaT)
- **copy** : Boolean, if True, return copy even if no copy is necessary (e.g. no conversion was done), default is True. It is meant for internal use, not to be confused with inplace kw.

Returns converted : asm as input object

pandas.Panel4D.copy

Panel4D.copy(deep=True)

Make a copy of this object

Parameters
- **deep** : boolean or string, default True
 - Make a deep copy, i.e. also copy data

Returns copy : type of caller

pandas.Panel4D.count

Panel4D.count(axis='major')

Return number of observations over requested axis.

Parameters
- **axis** : {‘items’, ‘major’, ‘minor’} or {0, 1, 2}

Returns count : DataFrame

pandas.Panel4D.cummax

Panel4D.cummax(axis=None, dtype=None, out=None, skipna=True, **kwargs)

Return cumulative max over requested axis.

Parameters
- **axis** : {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna** : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
Returns max: Panel

```python
pandas.Panel4D.cummin
```

`Panel4D.cummin(axis=None, dtype=None, out=None, skipna=True, **kwargs)`
Return cumulative min over requested axis.

Parameters
- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns min: Panel

```python
pandas.Panel4D.cumprod
```

`Panel4D.cumprod(axis=None, dtype=None, out=None, skipna=True, **kwargs)`
Return cumulative prod over requested axis.

Parameters
- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns prod: Panel

```python
pandas.Panel4D.cumsum
```

`Panel4D.cumsum(axis=None, dtype=None, out=None, skipna=True, **kwargs)`
Return cumulative sum over requested axis.

Parameters
- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns sum: Panel

```python
pandas.Panel4D.describe
```

`Panel4D.describe(percentile_width=None, percentiles=None, include=None, exclude=None)`
Generate various summary statistics, excluding NaN values.

Parameters
- **percentile_width**: float, deprecated
 The `percentile_width` argument will be removed in a future version. Use `percentiles` instead.
 width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

- **percentiles**: array-like, optional
 The percentiles to include in the output. Should all be in the interval [0, 1]. By default `percentiles` is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

- **include, exclude**: list-like, ‘all’, or None (default)
Specify the form of the returned result. Either:

- None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
- A list of dtypes or strings to be included/excluded. To select all numeric types use numpy number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])
- If include is the string 'all', the output column-set will match the input one.

Returns summary: NDFrame of summary statistics

See Also:

Dataframe.select_dtypes

Notes

The output DataFrame index depends on the requested dtypes:
For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.
For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.
For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.
The include, exclude arguments are ignored for Series.

pandas.Panel4D.div

Panel4D.div (other, axis=0)
Wrapper method for truediv

Parameters other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel4D

pandas.Panel4D.divide

Panel4D.divide (other, axis=0)
Wrapper method for truediv

Parameters other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel4D
Panel4D\texttt{.drop} (labels, axis=0, level=None, inplace=False, **kwargs)

Return new object with labels in requested axis removed

Parameters
- **labels**: single label or list-like
- **axis**: int or axis name
- **level**: int or level name, default None
 - For MultiIndex
 - **inplace**: bool, default False
 - If True, do operation inplace and return None.

Returns
- **dropped**: type of caller

Panel4D\texttt{.dropna}(*args, **kwargs)

Panel4D\texttt{.eq}(other)

Wrapper for comparison method eq

Panel4D\texttt{.equals}(other)

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

Panel4D\texttt{.ffill}(axis=0, inplace=False, limit=None, downcast=None)

Synonym for NDFrame.fillna(method='ffill')

Panel4D\texttt{.fillna}(value=None, method=None, axis=0, inplace=False, limit=None, downcast=None)

Fill NA/NaN values using the specified method

Parameters
- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 - Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **value**: scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

```
axis : {0, 1}, default 0
  • 0: fill column-by-column
  • 1: fill row-by-row
inplace : boolean, default False
  If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).
limit : int, default None
  Maximum size gap to forward or backward fill
downcast : dict, default is None
  a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)
```

Returns filled: same type as caller

See Also:

```
reindex, asfreq
```

pandas.Panel4D.filter

```
Panel4D.filter(*args, **kwargs)
```

pandas.Panel4D.first

```
Panel4D.first(offset)
```

Convenience method for subsetting initial periods of time series data based on a date offset

```
Parameters offset : string, DateOffset, dateutil.relativedelta
Returns subset : type of caller
```

Examples

```
ts.last('10D') -> First 10 days
```

pandas.Panel4D.floordiv

```
Panel4D.floordiv(other, axis=0)
```

Wrapper method for floordiv

```
Parameters other : Panel or Panel4D
  axis : {labels, items, major_axis, minor_axis}
  Axis to broadcast over
```
Returns Panel4D

pandas.Panel4D.fromDict

classmethod Panel4D.fromDict(data, intersect=False, orient='items', dtype=None)

Construct Panel from dict of DataFrame objects

Parameters

- data : dict

 - field : DataFrame

- intersect : boolean

 Intersect indexes of input DataFrames

- orient : {'items', 'minor'}, default 'items'

 The “orientation” of the data. If the keys of the passed dict should be the items of
 the result panel, pass 'items' (default). Otherwise if the columns of the values of
 the passed DataFrame objects should be the items (which in the case of mixed-
 dtype data you should do), instead pass 'minor'

Returns Panel

pandas.Panel4D.from_dict

classmethod Panel4D.from_dict(data, intersect=False, orient='items', dtype=None)

Construct Panel from dict of DataFrame objects

Parameters

- data : dict

 - field : DataFrame

- intersect : boolean

 Intersect indexes of input DataFrames

- orient : {'items', 'minor'}, default 'items'

 The “orientation” of the data. If the keys of the passed dict should be the items of
 the result panel, pass 'items' (default). Otherwise if the columns of the values of
 the passed DataFrame objects should be the items (which in the case of mixed-
 dtype data you should do), instead pass 'minor'

Returns Panel

pandas.Panel4D.ge

Panel4D.ge(other)

Wrapper for comparison method ge

pandas.Panel4D.get

Panel4D.get(key, default=None)

Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not

Parameters

- key : object
Returns
value : type of items contained in object

pandas.Panel4D.get_dtype_counts

Panel4D.\texttt{get_dtype_counts()}
Return the counts of dtypes in this object

pandas.Panel4D.get_ftype_counts

Panel4D.\texttt{get_ftype_counts()}
Return the counts of ftypes in this object

pandas.Panel4D.get_value

Panel4D.\texttt{get_value(*args, **kwargs)}
Quickly retrieve single value at (item, major, minor) location

Parameters
item : item label (panel item)
major : major axis label (panel item row)
minor : minor axis label (panel item column)
takeable : interpret the passed labels as indexers, default False

Returns
value : scalar value

pandas.Panel4D.get_values

Panel4D.\texttt{get_values()}
same as values (but handles sparseness conversions)

pandas.Panel4D.groupby

Panel4D.\texttt{groupby(*args, **kwargs)}

pandas.Panel4D.gt

Panel4D.\texttt{gt(other)}
Wrapper for comparison method gt

pandas.Panel4D.head

Panel4D.\texttt{head(n=5)}
pandas.Panel4D.interpolate

Panel4D.interpolate(method='linear', axis=0, limit=None, inplace=False, downcast=None, **kwargs)
Interpolate values according to different methods.

Parameters:
- **method**: {'linear', 'time', 'index', 'values', 'nearest', 'zero',
 'slinear', 'cubic', 'barycentric', 'polynomial', 'spline',
 'piecewise_polynomial', 'pchip'}
 - 'linear': ignore the index and treat the values as equally spaced. default
 - 'time': interpolation works on daily and higher resolution data to interpolate
given length of interval
 - 'index', 'values': use the actual numerical values of the index
 - 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial'
is passed to scipy.interpolate.interp1d with the order given both 'poly-
nomial' and 'spline' require that you also specify and order (int) e.g.
df.interpolate(method='polynomial', order=4)
 - 'krogh', 'piecewise_polynomial', 'spline', and 'pchip' are all
wrappers around the scipy interpolation methods of similar
names. See the scipy documentation for more on their behavior:
http://docs.scipy.org/doc/scipy/reference/interpolate.html#univari-
ate-interpolation http://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

- **axis**: {0, 1}, default 0
 - 0: fill column-by-column
 - 1: fill row-by-row

- **limit**: int, default None.
 Maximum number of consecutive NaNs to fill.

- **inplace**: bool, default False
 Update the NDFrame in place if possible.

- **downcast**: optional, ‘infer’ or None, defaults to None
 Downcast dtypes if possible.

Returns
Series or DataFrame of same shape interpolated at the NaNs

See Also:
reindex, replace,fillna

Examples

Filling in NaNs: >>> s = pd.Series([0, 1, np.nan, 3]) >>> s.interpolate() 0 0 1 2 2 3 3 dtype: float64
pandas.Panel4D.isnull

Panel4D.isnull()
Return a boolean same-sized object indicating if the values are null

See Also:
notnull boolean inverse of isnull

pandas.Panel4D.iteritems

Panel4D.iteritems()
Iterate over (label, values) on info axis
This is index for Series, columns for DataFrame, major_axis for Panel, and so on.

pandas.Panel4D.iterkv

Panel4D.iterkv(*args, **kwargs)
iternumes alias used to get around 2to3. Deprecated

pandas.Panel4D.join

Panel4D.join(*args, **kwargs)

pandas.Panel4D.keys

Panel4D.keys()
Get the 'info axis' (see Indexing for more)
This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.Panel4D.kurt

Panel4D.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
numeric_only : boolean, default None
Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns kurt : Panel or Panel4D (if level specified)
pandas.Panel4D.kurtosis

Panel4D.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis Normalized by N-1

Parameters

axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Panel

numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns
 kurt : Panel or Panel4D (if level specified)

pandas.Panel4D.last

Panel4D.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset

Parameters

offset : string, DateOffset, dateutil.relativedelta

Returns
 subset : type of caller

Examples

ts.last('5M') -> Last 5 months

pandas.Panel4D.le

Panel4D.le(other)
Wrapper for comparison method le

pandas.Panel4D.load

Panel4D.load(path)
Deprecated. Use read_pickle instead.

pandas.Panel4D.lt

Panel4D.lt(other)
Wrapper for comparison method lt
pandas.Panel4D.mad

Panel4D.mad *(axis=None, skipna=None, level=None, **kwargs)*
Return the mean absolute deviation of the values for the requested axis

Parameters

- **axis** : {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna** : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only** : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **mad** : Panel or Panel4D (if level specified)

pandas.Panel4D.major_xs

Panel4D.major_xs *(key, copy=None)*
Return slice of panel along major axis

Parameters

- **key** : object
 Major axis label
- **copy** : boolean [deprecated]
 Whether to make a copy of the data

Returns

- **y** : DataFrame
 index -> minor axis, columns -> items

Notes

major_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of major_xs functionality, see *MultiIndex Slicers*

pandas.Panel4D.mask

Panel4D.mask *(cond)*
Returns copy whose values are replaced with nan if the inverted condition is True

Parameters

- **cond** : boolean NDFrame or array

Returns

- **wh** : same as input
pandas.Panel4D.max

Panel4D.max (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the maximum of the values in the object. If you want the index of the maximum, use .

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Panel
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns max : Panel or Panel4D (if level specified)

pandas.Panel4D.mean

Panel4D.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Panel
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns mean : Panel or Panel4D (if level specified)

pandas.Panel4D.median

Panel4D.median (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Panel
numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns median : Panel or Panel4D (if level specified)

pandas.Panel4D.min

Panel4D.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. If you want the index of the minimum, use
idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Panel
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns min : Panel or Panel4D (if level specified)

pandas.Panel4D.minor_xs

Panel4D.minor_xs(key, copy=None)
Return slice of panel along minor axis

Parameters key : object
 Minor axis label
 copy : boolean [deprecated]
 Whether to make a copy of the data

Returns y : DataFrame
 index -> major axis, columns -> items

Notes

minor_xs is only for getting, not setting values.
MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of minor_xs functionality, see MultiIndex Slicers
pandas.Panel4D.mod

Panel4D.mod (other, axis=0)
Wrapper method for mod

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel4D

pandas.Panel4D.mul

Panel4D.mul (other, axis=0)
Wrapper method for mul

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel4D

pandas.Panel4D.multiply

Panel4D.multiply (other, axis=0)
Wrapper method for mul

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns Panel4D

pandas.Panel4D.ne

Panel4D.ne (other)
Wrapper for comparison method ne

pandas.Panel4D.notnull

Panel4D.notnull ()
Return a boolean same-sized object indicating if the values are not null

See Also:

isnull boolean inverse of notnull
pandas.Panel4D.pct_change

Panel4D.pct_change() (periods=1, fill_method='pad', limit=None, freq=None, **kwds)
Percent change over given number of periods.

Parameters

- **periods**: int, default 1

 Periods to shift for forming percent change

- **fill_method**: str, default 'pad'

 How to handle NAs before computing percent changes

- **limit**: int, default None

 The number of consecutive NAs to fill before stopping

- **freq**: DateOffset, timedelta, or offset alias string, optional

 Increment to use from time series API (e.g. ‘M’ or BDay())

Returns

- **chg**: NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.Panel4D.pop

Panel4D.pop() (item)

Return item and drop from frame. Raise KeyError if not found.

pandas.Panel4D.pow

Panel4D.pow() (other, axis=0)

Wrapper method for pow

Parameters

- **other**: Panel or Panel4D

Axis to broadcast over

Returns

Panel4D

pandas.Panel4D.prod

Panel4D.prod() (axis=None, skipna=None, level=None, numeric_only=None, **kwds)

Return the product of the values for the requested axis

Parameters

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}

- **skipna**: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **level**: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns prod : Panel or Panel4D (if level specified)

pandas.Panel4D.product

Panel4D.product (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 Return the product of the values for the requested axis

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns prod : Panel or Panel4D (if level specified)

pandas.Panel4D.radd

Panel4D.radd (other, axis=0)
 Wrapper method for radd

Parameters other : Panel or Panel4D
 axis : {labels, items, major_axis, minor_axis}
 Axis to broadcast over

Returns Panel4D

pandas.Panel4D.rdiv

Panel4D.rdiv (other, axis=0)
 Wrapper method for rtruediv

Parameters other : Panel or Panel4D
 axis : {labels, items, major_axis, minor_axis}
 Axis to broadcast over

Returns Panel4D
pandas.Panel4D.reindex

Panel4D.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)

Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters
- **items, major_axis, minor_axis**: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- **copy**: boolean, default True
 Return a new object, even if the passed indexes are the same
- **level**: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level
- **fill_value**: scalar, default np.NaN
 Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- **limit**: int, default None
 Maximum size gap to forward or backward fill

Returns
- **reindexed**: Panel

Examples

```python
>>> df.reindex(index=[date1, date2, date3], columns=[‘A’, ‘B’, ‘C’])
```

pandas.Panel4D.reindex_axis

Panel4D.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)

Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters
- **labels**: array-like
 New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **axis**: {0,1,2,‘items’,‘major_axis’,‘minor_axis’}
- **method**: {'backfill', 'bfill', ‘pad’, ‘ffill’, None}, default None
Method to use for filling holes in reindexed object. pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

(copy: boolean, default True
Return a new object, even if the passed indexes are the same)

(level: int or name
Broadcast across a level, matching Index values on the passed MultiIndex level)

(limit: int, default None
Maximum size gap to forward or backward fill)

Returns reindexed: Panel

See Also:
reindex, reindex_like

Examples

```python
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```

pandas.Panel4D.reindex_like

Panel4D.reindex_like(other, method=None, copy=True, limit=None)
return an object with matching indices to myself

Parameters other: Object

method: string or None

copy: boolean, default True

limit: int, default None

Maximum size gap to forward or backward fill

Returns reindexed: same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Panel4D.rename

Panel4D.rename(items=None, major_axis=None, minor_axis=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters items, major_axis, minor_axis: dict-like or function, optional

Transformation to apply to that axis values

copy: boolean, default True
Also copy underlying data

inplace : boolean, default False

Whether to return a new Panel. If True then value of copy is ignored.

Returns

renamed : Panel (new object)

pandas.Panel4D.rename_axis

Panel4D.rename_axis (mapper, axis=0, copy=True, inplace=False)

Alter index and / or columns using input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters

mapper : dict-like or function, optional

axis : int or string, default 0

copy : boolean, default True

Also copy underlying data

inplace : boolean, default False

Returns

renamed : type of caller

pandas.Panel4D.replace

Panel4D.replace (to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in ‘to_replace’ with ‘value’.

Parameters

to_replace : str, regex, list, dict, Series, numeric, or None

- str or regex:
 - str: string exactly matching to_replace will be replaced with value
 - regex: regexs matching to_replace will be replaced with value

- list of str, regex, or numeric:
 - First, if to_replace and value are both lists, they must be the same length.
 - Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
 - str and regex rules apply as above.

- dict:
 - Nested dictionaries, e.g., ‘a’: {'b': nan}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
 - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

- None:
- This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill

regex : bool or same types as `to_replace`, default False

Whether to interpret `to_replace` and/or `value` as regular expressions. If this is True then `to_replace` must be a string. Otherwise, `to_replace` must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

method : string, optional, {‘pad’, ‘ffill’, ‘bfill’}

The method to use when for replacement, when `to_replace` is a list.

Returns filled : NDFrame

Raises

- **AssertionError**
 - If `regex` is not a bool and `to_replace` is not None.

- **TypeError**
 - If `to_replace` is a dict and `value` is not a list, dict, ndarray, or Series
 - If `to_replace` is None and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series.

- **ValueError**
 - If `to_replace` and `value` are lists or ndarrays, but they are not the same length.

See Also:

`NDFrame.reindex`, `NDFrame.asfreq`, `NDFrame.fillna`

Notes

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.

- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
• This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.Panel4D.resample

Panel4D.resample(\texttt{rule}, \texttt{how}=\texttt{None}, \texttt{axis}=0, \texttt{fill_method}=\texttt{None}, \texttt{closed}=\texttt{None}, \texttt{label}=\texttt{None}, \texttt{convention}=\texttt{’start’}, \texttt{kind}=\texttt{None}, \texttt{loffset}=\texttt{None}, \texttt{limit}=\texttt{None}, \texttt{base}=0)

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters

- **rule** : string
 the offset string or object representing target conversion

- **how** : string
 method for down- or re-sampling, default to ‘mean’ for downsampling

- **axis** : int, optional, default 0

- **fill_method** : string, default None
 fill_method for up-sampling

- **closed** : {‘right’, ‘left’}
 Which side of bin interval is closed

- **label** : {‘right’, ‘left’}
 Which bin edge label to label bucket with

- **convention** : {‘start’, ‘end’, ‘s’, ‘e’}

- **kind** : “period”/”timestamp”

- **loffset** : timedelta
 Adjust the resampled time labels

- **limit** : int, default None
 Maximum size gap to when reindexing with fill_method

- **base** : int, default 0
 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.Panel4D.rfloordiv

Panel4D.rfloordiv(\texttt{other}, \texttt{axis}=0)

Wrapper method for rfloordiv

Parameters

- **other** : Panel or Panel4D

- **axis** : {labels, items, major_axis, minor_axis}

 Axis to broadcast over

Returns

Panel4D
pandas.Panel4D.rmod

Panel4D.rmod(other, axis=0)
Wrapper method for rmod

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns
Panel4D

pandas.Panel4D.rmul

Panel4D.rmul(other, axis=0)
Wrapper method for rmul

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns
Panel4D

pandas.Panel4D.rpow

Panel4D.rpow(other, axis=0)
Wrapper method for rpow

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns
Panel4D

pandas.Panel4D.rsub

Panel4D.rsub(other, axis=0)
Wrapper method for rsub

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns
Panel4D

pandas.Panel4D.rtruediv

Panel4D.rtruediv(other, axis=0)
Wrapper method for rtruediv
pandas: powerful Python data analysis toolkit, Release 0.15.1

Parameters

- `other`: Panel or Panel4D
- `axis`: [labels, items, major_axis, minor_axis]

 Axis to broadcast over

Returns

Panel4D

pandas.Panel4D.save

Panel4D.save(*path*)

Deprecated. Use to_pickle instead

pandas.Panel4D.select

Panel4D.select(*crit, axis=0*)

Return data corresponding to axis labels matching criteria

Parameters

- `crit`: function

 To be called on each index (label). Should return True or False

 - `axis`: int

 Returns

 selection: type of caller

pandas.Panel4D.sem

Panel4D.sem(*axis=None, skipna=None, level=None, ddof=1, **kwargs*)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

- `axis`: {labels (0), items (1), major_axis (2), minor_axis (3)}
- `skipna`: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

 - `level`: int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

 - `numeric_only`: boolean, default None

 Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

 Returns

 sem: Panel or Panel4D (if level specified)

pandas.Panel4D.set_axis

Panel4D.set_axis(*axis, labels*)

Public version of axis assignment
pandas.Panel4D.set_value

```python
Panel4D.set_value(*args, **kwargs)
```

Quickly set single value at (item, major, minor) location

Parameters

- **item** : item label (panel item)
 - **major** : major axis label (panel item row)
 - **minor** : minor axis label (panel item column)
 - **value** : scalar
 - **takeable** : interpret the passed labels as indexers, default False

Returns

- **panel** : Panel
 - If label combo is contained, will be reference to calling Panel, otherwise a new object

pandas.Panel4D.shift

```python
Panel4D.shift(*args, **kwargs)
```

pandas.Panel4D.skew

```python
Panel4D.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return unbiased skew over requested axis Normalized by N-1

Parameters

- **axis** : {labels (0), items (1), major_axis (2), minor_axis (3)}
 - **skipna** : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **level** : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
 - **numeric_only** : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

- **skew** : Panel or Panel4D (if level specified)

pandas.Panel4D.slice_shift

```python
Panel4D.slice_shift(periods=1, axis=0, **kwds)
```

Equivalent to **shift** without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters

- **periods** : int
 - Number of periods to move, can be positive or negative

Returns

- **shifted** : same type as caller
Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.Panel4D.sort_index

Panel4D.sort_index (axis=0, ascending=True)
Sort object by labels (along an axis)

Parameters
- **axis**: {0, 1}
 - Sort index/rows versus columns
- **ascending**: boolean, default True
 - Sort ascending vs. descending

Returns
- **sorted_obj**: type of caller

pandas.Panel4D.squeeze

Panel4D.squeeze()
squeeze length 1 dimensions

pandas.Panel4D.std

Panel4D.std (axis=None, skipna=None, level=None, ddof=1, **kwargs)
Return unbiased standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- **std**: Panel or Panel4D (if level specified)

pandas.Panel4D.sub

Panel4D.sub (other, axis=0)
Wrapper method for sub

Parameters
- **other**: Panel or Panel4D
- **axis**: {labels, items, major_axis, minor_axis}

Axis to broadcast over
Returns Panel4D

pandas.Panel4D.subtract

Panel4D.subtract (other, axis=0)
Wrapper method for sub

Parameters other : Panel or Panel4D
 axis : [labels, items, major_axis, minor_axis]

Axis to broadcast over

Returns Panel4D

pandas.Panel4D.sum

Panel4D.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the sum of the values for the requested axis

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Panel
 numeric_only : boolean, default None
 Include only float, int, boolean data. If None, will attempt to use everything, then
 use only numeric data

Returns sum : Panel or Panel4D (if level specified)

pandas.Panel4D.swapaxes

Panel4D.swapaxes (axis1, axis2, copy=True)
Interchange axes and swap values axes appropriately

Returns y : same as input

pandas.Panel4D.swaplevel

Panel4D.swaplevel (i, j, axis=0)
Swap levels i and j in a MultiIndex on a particular axis

Parameters i, j : int, string (can be mixed)
 Level of index to be swapped. Can pass level name as string.

Returns swapped : type of caller (new object)
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Panel4D.tail

Panel4D.\texttt{tail}(n=5)

pandas.Panel4D.take

Panel4D.\texttt{take}(indices, axis=0, convert=True, is_copy=True)

Analogous to ndarray.take

\begin{itemize}
 \item \textbf{Parameters} indices : list / array of ints
 \item axis : int, default 0
 \item convert : translate neg to pos indices (default)
 \item is_copy : mark the returned frame as a copy
\end{itemize}

\textbf{Returns} taken : type of caller

pandas.Panel4D.toLong

Panel4D.\texttt{toLong}(*args, **kwargs)

pandas.Panel4D.to_clipboard

Panel4D.\texttt{to_clipboard}(excel=None, sep=None, **kwargs)

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

\begin{itemize}
 \item \textbf{Parameters} excel : boolean, defaults to True
 if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard
 \item sep : optional, defaults to tab
 \item other keywords are passed to \texttt{to_csv}
\end{itemize}

Notes

Requirements for your platform

\begin{itemize}
 \item Linux: xclip, or xsel (with gtk or PyQt4 modules)
 \item Windows: none
 \item OS X: none
\end{itemize}

pandas.Panel4D.to_dense

Panel4D.\texttt{to_dense}()

Return dense representation of NDFrame (as opposed to sparse)
pandas.Panel4D.to_excel

Panel4D.to_excel(*args, **kwargs)

pandas.Panel4D.to_frame

Panel4D.to_frame(*args, **kwargs)

pandas.Panel4D.to_hdf

Panel4D.to_hdf(path_or_buf, key, **kwargs)

activate the HDFStore

Parameters

path_or_buf : the path (string) or buffer to put the store

key : string

identifier for the group in the store

mode : optional, {'a', 'w', 'r', 'r+'}, default 'a'

'r' Read-only; no data can be modified.

'w' Write; a new file is created (an existing file with the same name would be deleted).

'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created.

'r+' It is similar to 'a', but the file must already exist.

format : 'fixed(f)|table(t)', default is 'fixed'

fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False

For Table formats, append the input data to the existing

complevel : int, 1-9, default 0

If a complib is specified compression will be applied where possible

complib : {'zlib', 'bzip2', 'lzma', 'blosc', None}, default None

If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False

If applying compression use the fletcher32 checksum
Panel4D.to_json

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters

- **path_or_buf**: the path or buffer to write the result string

 if this is None, return a StringIO of the converted string

- **orient**: string

 - Series

 - default is ‘index’

 - allowed values are: {‘split’, ‘records’, ‘index’}

 - DataFrame

 - default is ‘columns’

 - allowed values are: {‘split’, ‘records’, ‘index’, ‘columns’, ‘values’}

 - The format of the JSON string

 - split: dict like {index -> [index], columns -> [columns], data -> [values]}

 - records: list like [{column -> value}, ... , {column -> value}]

 - index: dict like {index -> {column -> value}}

 - columns: dict like {column -> {index -> value}}

 - values: just the values array

- **date_format**: {‘epoch’, ‘iso’}

 Type of date conversion. **epoch** = epoch milliseconds, **iso** = ISO8601, default is epoch.

- **double_precision**: The number of decimal places to use when encoding floating point values, default 10.

- **force_ascii**: force encoded string to be ASCII, default True.

- **date_unit**: string, default ‘ms’ (milliseconds)

 The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

- **default_handler**: callable, default None

 Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

Returns

- same type as input object with filtered info axis
The documentation page for pandas.Panel4D introduces various methods and their parameters. Each method is described with parameters as follows:

- **pandas.Panel4D.to_long**
  ```python
  Panel4D.to_long(*args, **kwargs)
  ```

- **pandas.Panel4D.to_msgpack**
  ```python
  Panel4D.to_msgpack(path_or_buf=None, **kwargs)
  ```
 This method converts a Panel4D object to a msgpack (serialize) object to an input file path. It is an experimental library, and the storage format may not be stable until a future release.

 Parameters
 - **path**: string, File path, buffer-like, or None. If None, return the generated string.
 - **append**: boolean, whether to append to an existing msgpack. Default is False.
 - **compress**: type of compressor (zlib or blosc), default to None (no compression).

- **pandas.Panel4D.to_pickle**
  ```python
  Panel4D.to_pickle(path)
  ```
 This method pickles (serialize) an object to an input file path.

 Parameters
 - **path**: string, File path.

- **pandas.Panel4D.to_sparse**
  ```python
  Panel4D.to_sparse(*args, **kwargs)
  ```

- **pandas.Panel4D.to_sql**
  ```python
  Panel4D.to_sql(name, con, flavor='sqlite', schema=None, if_exists='fail', index=True, index_label=None, chunksize=None)
  ```
 This method writes records stored in a DataFrame to a SQL database.

 Parameters
 - **name**: string, Name of SQL table.
 - **con**: SQLAlchemy engine or DBAPI2 connection (legacy mode).
 - **flavor**: {'sqlite', 'mysql'}, default 'sqlite'. Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
 - **schema**: string, default None.
 - **if_exists**: {'fail', 'replace', 'append'}, default 'fail'. Ignored when using SQLAlchemy engine. 'mysql' is deprecated and will be removed in future versions, but it will be further supported through SQLAlchemy engines.
 - **index**: boolean, default True.
 - **index_label**: string, default None.
 - **chunksize**: integer, default None.
Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default 'fail'
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.

index : boolean, default True
Write DataFrame index as a column.

index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None
If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

pandas.Panel4D.transpose

Panel4D.transpose(*args, **kwargs)
Permute the dimensions of the Panel

Parameters
- **args** : three positional arguments: each one of
 - {0,1,2,'items','major_axis','minor_axis'}
- **copy** : boolean, default False
 Make a copy of the underlying data. Mixed-dtype data will always result in a copy

Returns
y : same as input

Examples

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```

pandas.Panel4D.truediv

Panel4D.truediv(other, axis=0)
Wrapper method for truediv

Parameters
- **other** : Panel or Panel4D
- **axis** : {labels, items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel4D
pandas.Panel4D.truncate

Panel4D.truncate(before=None, after=None, axis=None, copy=True)
Truncates a sorted NDFrame before and/or after some particular dates.

Parameters
before : date
 Truncate before date
after : date
 Truncate after date
axis : the truncation axis, defaults to the stat axis
copy : boolean, default is True,
 return a copy of the truncated section

Returns truncated : type of caller

pandas.Panel4D.tshift

Panel4D.tshift(periods=1, freq=None, axis='major', **kwds)

pandas.Panel4D.tz_convert

Panel4D.tz_convert(tz, axis=0, level=None, copy=True)
Convert the axis to target time zone. If it is time zone naive, it will be localized to the passed time zone.

Parameters
 tz : string or pytz.timezone object
 the axis to convert
 axis : int, str, default None
 If axis ia a MultiIndex, convert a specific level. Otherwise must be None
 level : boolean, default True
 Also make a copy of the underlying data

pandas.Panel4D.tz_localize

Panel4D.tz_localize(*args, **kwargs)
Localize tz-naive TimeSeries to target time zone

Parameters
 tz : string or pytz.timezone object
 the axis to localize
 axis : int, str, default None
 If axis ia a MultiIndex, localize a specific level. Otherwise must be None
 level : boolean, default True
 Also make a copy of the underlying data

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 ‘infer’ will attempt to infer fall dst-transition hours based on order
• bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
• ‘NaT’ will return NaT where there are ambiguous times
• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

infer_dst : boolean, default False (DEPRECATED)

Attempt to infer fall dst-transition hours based on order

pandas.Panel4D.update

Panel4D.update(other, join=’left’, overwrite=True, filter_func=None, raise_conflict=False)

Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items

Parameters

other : Panel, or object coercible to Panel

join : How to join individual DataFrames

{‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’

overwrite : boolean, default True

If True then overwrite values for common keys in the calling panel

filter_func : callable(1d-array) -> 1d-array<boolean>, default None

Can choose to replace values other than NA. Return True for values that should be updated

raise_conflict : bool

If True, will raise an error if a DataFrame and other both contain data in the same place.

pandas.Panel4D.var

Panel4D.var(axis=None, skipna=None, level=None, ddof=1, **kwargs)

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

numeric_only : boolean, default None

Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns

var : Panel or Panel4D (if level specified)
pandas.Panel4D.where

Panel4D.where *(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)*

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters
- **cond**: boolean NDFrame or array
- **other**: scalar or NDFrame
- **inplace**: boolean, default False
 - Whether to perform the operation in place on the data
- **axis**: alignment axis if needed, default None
- **level**: alignment level if needed, default None
- **try_cast**: boolean, default False
 - try to cast the result back to the input type (if possible),
- **raise_on_error**: boolean, default True
 - Whether to raise on invalid data types (e.g. trying to where on strings)

Returns
- **wh**: same type as caller

pandas.Panel4D.xs

Panel4D.xs *(key, axis=1, copy=None)*

Return slice of panel along selected axis

Parameters
- **key**: object
 - Label
- **axis**: {‘items’, ‘major’, ‘minor’}, default 1/’major’
- **copy**: boolean [deprecated]
 - Whether to make a copy of the data

Returns
- **y**: ndim(self)-1

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels it is a superset of xs functionality, see [MultiIndex Slicers](#)

32.6.2 Attributes and underlying data

Axes
- **labels**: axis 1; each label corresponds to a Panel contained inside
- **items**: axis 2; each item corresponds to a DataFrame contained inside
- **major_axis**: axis 3; the index (rows) of each of the DataFrames
- **minor_axis**: axis 4; the columns of each of the DataFrames

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel4D.values</code></td>
<td>Numpy representation of NDFrame</td>
</tr>
<tr>
<td><code>Panel4D.axes</code></td>
<td>index(es) of the NDFrame</td>
</tr>
<tr>
<td><code>Panel4D.ndim</code></td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td><code>Panel4D.shape</code></td>
<td>tuple of axis dimensions</td>
</tr>
<tr>
<td><code>Panel4D.dtypes</code></td>
<td>Return the dtypes in this object</td>
</tr>
<tr>
<td><code>Panel4D.ftypes</code></td>
<td>Return the ftypes (indication of sparse/dense and dtype)</td>
</tr>
<tr>
<td><code>Panel4D.get_dtype_counts()</code></td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td><code>Panel4D.get_ftype_counts()</code></td>
<td>Return the counts of ftypes in this object</td>
</tr>
</tbody>
</table>

pandas.Panel4D.values

Panel4D.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32.

pandas.Panel4D.axes

Panel4D.axes
index(es) of the NDFrame

pandas.Panel4D.ndim

Panel4D.ndim
Number of axes / array dimensions

pandas.Panel4D.shape

Panel4D.shape
tuple of axis dimensions

pandas.Panel4D.dtypes

Panel4D.dtypes
Return the dtypes in this object

pandas.Panel4D.ftypes

Panel4D.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.
32.6. Panel4D

Panel4D.get_dtype_counts

```
Panel4D.get_dtype_counts()
```

Return the counts of dtypes in this object

Panel4D.get_ftype_counts

```
Panel4D.get_ftype_counts()
```

Return the counts of ftypes in this object

32.6.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel4D.astype</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>Panel4D.copy</td>
<td>Make a copy of this object</td>
</tr>
<tr>
<td>Panel4D.isnull</td>
<td>Return a boolean same-sized object indicating if the values are null</td>
</tr>
<tr>
<td>Panel4D.notnull</td>
<td>Return a boolean same-sized object indicating if the values are not null</td>
</tr>
</tbody>
</table>

Panel4D.astype

```
Panel4D.astype(dtype[, copy, raise_on_error])
```

Cast object to input numpy.dtype

Parameters
- `dtype` : numpy.dtype or Python type
- `copy=True` : raise on invalid input

Returns
- `casted` : type of caller

Panel4D.copy

```
Panel4D.copy([deep])
```

Make a copy of this object

Parameters
- `deep=True` : boolean or string, default True

Returns
- `copy` : type of caller

Panel4D.isnull

```
Panel4D.isnull()
```

Return a boolean same-sized object indicating if the values are null

See Also:
- `notnull` boolean inverse of isnull

Panel4D.notnull

```
Panel4D.notnull()
```

Return a boolean same-sized object indicating if the values are not null
32.7 Index

Many of these methods or variants thereof are available on the objects that contain an index (Series/Dataframe) and those should most likely be used before calling these methods directly.

<table>
<thead>
<tr>
<th>Index</th>
<th>Immutable ndarray implementing an ordered, sliceable set.</th>
</tr>
</thead>
</table>

32.7.1 pandas.Index

```python
class pandas.Index
    Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects
```

- **Parameters**
 - `data`: array-like (1-dimensional)
 - `dtype`: NumPy dtype (default: object)
 - `copy`: bool
 - Make a copy of input ndarray
 - `name`: object
 - Name to be stored in the index
 - `tupleize_cols`: bool (default: True)
 - When True, attempt to create a MultiIndex if possible

Notes

An Index instance can **only** contain hashable objects

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>T</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>base</code></td>
<td>return the base object if the memory of the underlying data is shared</td>
</tr>
<tr>
<td><code>data</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>flags</code></td>
<td></td>
</tr>
<tr>
<td><code>is_monotonic</code></td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td><code>is_monotonic_decreasing</code></td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td><code>is_monotonic_increasing</code></td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>names</code></td>
<td></td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>return the number of dimensions of the underlying data, by definition 1</td>
</tr>
<tr>
<td><code>nlevels</code></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
pandas: powerful Python data analysis toolkit, Release 0.15.1

Table 32.83 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shape</td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td>size</td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td>strides</td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td>values</td>
<td>return the underlying data as an ndarray</td>
</tr>
</tbody>
</table>

pandas.Index.T

Index.T
return the transpose, which is by definition self

pandas.Index.base

Index.base
return the base object if the memory of the underlying data is shared

pandas.Index.data

Index.data
return the data pointer of the underlying data

pandas.Index.flags

Index.flags

pandas.Index.is_monotonic

Index.is_monotonic
alias for is_monotonic_increasing (deprecated)

pandas.Index.is_monotonic_decreasing

Index.is_monotonic_decreasing
return if the index is monotonic decreasing (only equal or decreasing values)

pandas.Index.is_monotonic_increasing

Index.is_monotonic_increasing
return if the index is monotonic increasing (only equal or increasing) values

pandas.Index.itemsize

Index.itemsize
return the size of the dtype of the item of the underlying data

pandas.Index.names

Index.names
pandas.Index.nbytes

Index.nbytes
return the number of bytes in the underlying data

pandas.Index.ndim

Index.ndim
return the number of dimensions of the underlying data, by definition 1

pandas.Index.nlevels

Index.nlevels

pandas.Index.shape

Index.shape
return a tuple of the shape of the underlying data

pandas.Index.size

Index.size
return the number of elements in the underlying data

pandas.Index.strides

Index.strides
return the strides of the underlying data

pandas.Index.values

Index.values
return the underlying data as an ndarray

<table>
<thead>
<tr>
<th>asi8</th>
</tr>
</thead>
<tbody>
<tr>
<td>dttype</td>
</tr>
<tr>
<td>inferred_type</td>
</tr>
<tr>
<td>is_all_dates</td>
</tr>
<tr>
<td>is_unique</td>
</tr>
<tr>
<td>name</td>
</tr>
</tbody>
</table>

Methods

all([axis, out])	Returns True if all elements evaluate to True.
any([axis, out])	Returns True if any of the elements of a evaluate to True.
append(other)	Append a collection of Index options together
argmax([axis])	return a ndarray of the maximum argument indexer
Table 32.84 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>argmin([axis])</code></td>
<td>Return an ndarray of the minimum argument indexer</td>
</tr>
<tr>
<td><code>argsort(*args, **kwargs)</code></td>
<td>Return an ndarray indexer of the underlying data</td>
</tr>
<tr>
<td><code>asof(label)</code></td>
<td>For a sorted index, return the most recent label up to and including the passed label</td>
</tr>
<tr>
<td><code>asof_locs(where, mask)</code></td>
<td>Where : array of timestamps</td>
</tr>
<tr>
<td><code>astype(dtype)</code></td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td><code>copy([names, name, dtype, deep])</code></td>
<td>Make new Index with passed location(s) deleted</td>
</tr>
<tr>
<td><code>diff(*args, **kwargs)</code></td>
<td>Compute sorted set difference of two Index objects</td>
</tr>
<tr>
<td><code>difference(other)</code></td>
<td>Make new Index with passed list of labels deleted</td>
</tr>
<tr>
<td><code>drop_duplicates([take_last])</code></td>
<td>Return Index with duplicate values removed</td>
</tr>
<tr>
<td><code>duplicated([take_last])</code></td>
<td>Return boolean Index denoting duplicate values</td>
</tr>
<tr>
<td><code>equals(other)</code></td>
<td>Determines if two Index objects contain the same elements.</td>
</tr>
<tr>
<td><code>factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>format([name, formatter])</code></td>
<td>Render a string representation of the Index</td>
</tr>
<tr>
<td><code>get_duplicates()</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer(target[, method, limit])</code></td>
<td>Guaranteed return of an indexer even when non-unique</td>
</tr>
<tr>
<td><code>get_indexer_non_unique(target, **kwargs)</code></td>
<td>Return an indexer suitable for taking from a non unique index</td>
</tr>
<tr>
<td><code>get_level_values(level)</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc(key)</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>get_value(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>Return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>groupby(to_groupby)</code></td>
<td>Return if I have any nans; enables various perf speedups</td>
</tr>
<tr>
<td><code>hasnans()</code></td>
<td>Make new Index inserting new item at location. Follows</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Form the intersection of two Index objects. Sortedness of the result is</td>
</tr>
<tr>
<td><code>is Boolean</code></td>
<td>More flexible, faster check like is but that works through views</td>
</tr>
<tr>
<td><code>is_(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Make new Index inserting new item at location. Follows</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Form the intersection of two Index objects. Sortedness of the result is</td>
</tr>
<tr>
<td><code>is_integer()</code></td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td>Return the first element of the underlying data as a python scalar</td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td>Internal API method. Compute join_index and indexers to conform data</td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td>The maximum value of the object</td>
</tr>
<tr>
<td><code>is_type_compatible(typ)</code></td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td><code>isin(values[, level])</code></td>
<td>Return the first element of the underlying data as a python scalar</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>The minimum value of the object</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>putmask(mask, value)</code></td>
<td>Return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>ravel(order)</code></td>
<td>Return an ndarray of the flattened values of the underlying data</td>
</tr>
<tr>
<td><code>reindex(target[, method, level, limit])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>rename(name[, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 32.84 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>repeat(n)</code></td>
<td>return a new Index of the values repeated n times</td>
</tr>
<tr>
<td><code>searchsorted(key[, side])</code></td>
<td>np.ndarray searchsorted compat</td>
</tr>
<tr>
<td><code>set_names(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>set_value(arr, key, value)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>shift([periods, freq])</code></td>
<td>Shift Index containing datetime objects by input number of periods and</td>
</tr>
<tr>
<td><code>slice_indexer([start, end, step])</code></td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td><code>slice_locs([start, end])</code></td>
<td>For an ordered Index, compute the slice locations for input labels</td>
</tr>
<tr>
<td><code>sort(*args, **kwargs)</code></td>
<td></td>
</tr>
<tr>
<td><code>summary([name])</code></td>
<td></td>
</tr>
<tr>
<td><code>sym_diff(other[, result_name])</code></td>
<td>Compute the sorted symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>take(indexer[, axis])</code></td>
<td>return a new Index of the values selected by the indexer</td>
</tr>
<tr>
<td><code>to_datetime([dayfirst])</code></td>
<td>For an Index containing strings or datetime.datetime objects, attempt</td>
</tr>
<tr>
<td><code>to_native_types([slicer])</code></td>
<td>slice and dice then format</td>
</tr>
<tr>
<td><code>to_series(**kwargs)</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td><code>tolist()</code></td>
<td>return a list of the Index values</td>
</tr>
<tr>
<td><code>transpose()</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>union(other)</code></td>
<td>Form the union of two Index objects and sorts if possible</td>
</tr>
<tr>
<td><code>unique()</code></td>
<td>Return array of unique values in the object.</td>
</tr>
<tr>
<td><code>value_counts([normalize, sort, ascending, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>view([cls])</code></td>
<td></td>
</tr>
</tbody>
</table>

pandas.Index.all

Index.all (axis=None, out=None)

Returns True if all elements evaluate to True.

Refer to `numpy.all` for full documentation.

See Also:

`numpy.all` equivalent function

pandas.Index.any

Index.any (axis=None, out=None)

Returns True if any of the elements of a evaluate to True.

Refer to `numpy.any` for full documentation.

See Also:

`numpy.any` equivalent function

pandas.Index.append

Index.append(other)

Append a collection of Index options together

Parameters

- `other`: Index or list/tuple of indices

Returns

- `appended`: Index
pandas.Index.argmax

Index.argmax(axis=None)
return a ndarray of the maximum argument indexer

See Also:
numpy.ndarray.argmax

pandas.Index.argmin

Index.argmin(axis=None)
return a ndarray of the minimum argument indexer

See Also:
numpy.ndarray.argmin

pandas.Index.argsort

Index.argsort(*args, **kwargs)
return an ndarray indexer of the underlying data

See Also:
numpy.ndarray.argsort

pandas.Index.asof

Index.asof(label)
For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found

pandas.Index.asof_locs

Index.asof_locs(where, mask)
where : array of timestamps
mask : array of booleans where data is not NA

pandas.Index.astype

Index.astype(dtype)

pandas.Index.copy

Index.copy(names=None, name=None, dtype=None, deep=False)
Make a copy of this object. Name and dtype set those attributes on the new object.

Parameters

name : string, optional
dtype : numpy dtype or pandas type

Returns

copy : Index
Notes

In most cases, there should be no functional difference from using `deep`, but if `deep` is passed it will attempt to deepcopy.

pandas.Index.delete

```python
Index.delete(loc)
```
Make new Index with passed location(-s) deleted

Returns `new_index`: Index

pandas.Index.diff

```python
Index.diff(*args, **kwargs)
```

pandas.Index.difference

```python
Index.difference(other)
```
Compute sorted set difference of two Index objects

Parameters `other`: Index or array-like

Returns `diff`: Index

Notes

One can do either of these and achieve the same result

```python
>>> index.difference(index2)
```
pandas.Index.duplicated

`Index.duplicated(take_last=False)`

Return boolean Index denoting duplicate values

Parameters
- `take_last`: boolean, default False
 - Take the last observed index in a group. Default first

Returns
- `duplicated`: Index

pandas.Index.equals

`Index.equals(other)`

Determines if two Index objects contain the same elements.

pandas.Index.factorize

`Index.factorize(sort=False, na_sentinel=-1)`

Encode the object as an enumerated type or categorical variable

Parameters
- `sort`: boolean, default False
 - Sort by values
- `na_sentinel`: int, default -1
 - Value to mark “not found”

Returns
- `labels`: the indexer to the original array
- `uniques`: the unique Index

pandas.Index.format

`Index.format(name=False, formatter=None, **kwargs)`

Render a string representation of the Index

pandas.Index.get_duplicates

`Index.get_duplicates()`

pandas.Index.get_indexer

`Index.get_indexer(target, method=None, limit=None)`

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to `ndarray.take` to align the current data to the new index. The mask determines whether labels are found or not in the current index

Parameters
- `target`: Index
- `method`: {'pad', 'ffill', 'backfill', 'bfill'}
 - `pad` / `ffill`: propagate LAST valid observation forward to next valid backfill / `bfill`: use NEXT valid observation to fill gap

Returns
- `indexer`: ndarray
Notes

This is a low-level method and probably should be used at your own risk

Examples

```python
d >> index = index.get_indexer(new_index)
 >> new_values = cur_values.take(indexer)
```

pandas.Index.get_indexer_for

Index.get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique

pandas.Index.get_indexer_non_unique

Index.get_indexer_non_unique(target, **kwargs)

return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable

pandas.Index.get_level_values

Index.get_level_values(level)

Return vector of label values for requested level, equal to the length of the index

Parameters

- level : int

Returns

- values : ndarray

pandas.Index.get_loc

Index.get_loc(key)

Get integer location for requested label

Returns

- loc : int if unique index, possibly slice or mask if not

pandas.Index.get_value

Index.get_value(series, key)

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.Index.get_values

Index.get_values()

return the underlying data as an ndarray
pandas.Index.groupby

Index.groupby(to_groupby)

pandas.Index.hasnans

Index.hasnans()
 return if I have any nans; enables various perf speedups

pandas.Index.holds_integer

Index.holds_integer()

pandas.Index.identical

Index.identical(other)
 Similar to equals, but check that other comparable attributes are also equal

pandas.Index.insert

Index.insert(loc, item)
 Make new Index inserting new item at location. Follows Python list.append semantics for negative values

 Parameters
 loc : int
 item : object

 Returns
 new_index : Index

pandas.Index.intersection

Index.intersection(other)
 Form the intersection of two Index objects. Sortedness of the result is not guaranteed

 Parameters
 other : Index or array-like

 Returns
 intersection : Index

pandas.Index.is

Index.is(other)
 More flexible, faster check like is but that works through views

 Note: this is not the same as Index.identical(), which checks that metadata is also the same.

 Parameters
 other : object

 Returns
 True if both have same underlying data, False otherwise: bool

pandas.Index.is_boolean

Index.is_boolean()
pandas.Index.is_floating
Index.is_floating()

pandas.Index.is_integer
Index.is_integer()

pandas.Index.is_lexsorted_for_tuple
Index.is_lexsorted_for_tuple(tup)

pandas.Index.is_mixed
Index.is_mixed()

pandas.Index.is_numeric
Index.is_numeric()

pandas.Index.is_object
Index.is_object()

pandas.Index.is_type_compatible
Index.is_type_compatible(typ)

pandas.Index.isin
Index.isin(values, level=None)
 Compute boolean array of whether each index value is found in the passed set of values

 Parameters values : set or sequence of values
 Sought values.
 level : str or int, optional
 Name or position of the index level to use (if the index is a MultiIndex).

 Returns is_contained : ndarray (boolean dtype)

Notes

If level is specified:

• if it is the name of one and only one index level, use that level;
• otherwise it should be a number indicating level position.
pandas.Index.item

Index.item()
return the first element of the underlying data as a python scalar

pandas.Index.join

Index.join(other, how='left', level=None, return_indexers=False)
Internal API method. Compute join_index and indexers to conform data structures to the new index.

Parameters
other : Index

how : {'left', 'right', 'inner', 'outer'}

level : int or level name, default None

return_indexers : boolean, default False

Returns
join_index, (left_indexer, right_indexer)

pandas.Index.map

Index.map(mapper)

pandas.Index.max

Index.max()
The maximum value of the object

pandas.Index.min

Index.min()
The minimum value of the object

pandas.Index.nunique

Index.nunique(dropna=True)
Return number of unique elements in the object.
Excludes NA values by default.

Parameters
dropna : boolean, default True
Don’t include NaN in the count.

Returns
nunique : int

pandas.Index.order

Index.order(return_indexer=False, ascending=True)
Return sorted copy of Index
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Index.putmask

Index.putmask(mask, value)
return a new Index of the values set with the mask

See Also:
numpy.ndarray.putmask

pandas.Index.ravel

Index.ravel(order='C')
return an ndarray of the flattened values of the underlying data

See Also:
numpy.ndarray.ravel

pandas.Index.reindex

Index.reindex(target, method=None, level=None, limit=None)
Create index with target’s values (move/add/delete values as necessary)

Returns new_index : pd.Index
Resulting index

indexer : np.ndarray or None
Indices of output values in original index

pandas.Index.rename

Index.rename(name, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters name : str or list
name to set

inplace : bool
if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

pandas.Index.repeat

Index.repeat(n)
return a new Index of the values repeated n times

See Also:
numpy.ndarray.repeat
pandas.Index.searchsorted

Index.searchsorted(key, side='left')
np.ndarray searchsorted compat

pandas.Index.set_names

Index.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters

names : str or sequence
 name(s) to set

level : int or level name, or sequence of int / level names (default None)
 If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels)
 Otherwise level must be None

inplace : bool
 if True, mutates in place

Returns

new index (of same type and class...etc) [if inplace, returns None]

Examples

>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')

>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')

>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
 (2, u'one'), (2, u'two')],
 names=['foo', 'bar'])

>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'quz'])

>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'bar'])

pandas.Index.set_value

Index.set_value(arr, key, value)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing

pandas.Index.shift

Index.shift(periods=1, freq=None)
Shift Index containing datetime objects by input number of periods and DateOffset

Returns

shifted : Index
pandas.Index.slice_indexer

Index.slice_indexer(start=None, end=None, step=None)
For an ordered Index, compute the slice indexer for input labels and step

Parameters start : label, default None
 If None, defaults to the beginning
end : label, default None
 If None, defaults to the end
step : int, default None

Returns indexer : ndarray or slice

Notes

This function assumes that the data is sorted, so use at your own peril

pandas.Index.slice_locs

Index.slice_locs(start=None, end=None)
For an ordered Index, compute the slice locations for input labels

Parameters start : label, default None
 If None, defaults to the beginning
end : label, default None
 If None, defaults to the end

Returns (start, end) : (int, int)

Notes

This function assumes that the data is sorted, so use at your own peril

pandas.Index.sort

Index.sort(*args, **kwargs)

pandas.Index.summary

Index.summary(name=None)

pandas.Index.sym_diff

Index.sym_diff(other, result_name=None)
Compute the sorted symmetric difference of two Index objects.

Parameters other : array-like
 result_name : str
Returns `sym_diff`: Index

Notes

`sym_diff` contains elements that appear in either `idx1` or `idx2` but not both. Equivalent to the Index created by `(idx1 - idx2) + (idx2 - idx1)` with duplicates dropped.

The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.sym_diff(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the `^` operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```

pandas.Index.take

Index `.take(indexer, axis=0)`

- return a new Index of the values selected by the indexer

 See Also:
 - `numpy.ndarray.take`

pandas.Index.to_datetime

Index `.to_datetime(dayfirst=False)`

For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

pandas.Index.to_native_types

Index `.to_native_types(slicer=None, **kwargs)`

- slice and dice then format

pandas.Index.to_series

Index `.to_series(**kwargs)`

Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

 Returns `Series`: dtype will be based on the type of the Index values.
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Index.tolist

Index.tolist()
return a list of the Index values

pandas.Index.transpose

Index.transpose()
return the transpose, which is by definition self

pandas.Index.union

Index.union(other)
Form the union of two Index objects and sorts if possible

Parameters
other : Index or array-like

Returns
union : Index

pandas.Index.unique

Index.unique()
Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values.

Returns
uniques : ndarray

pandas.Index.value_counts

Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters
normalize : boolean, default False
If True then the object returned will contain the relative frequencies of the unique values.

sort : boolean, default True
Sort by values

ascending : boolean, default False
Sort in ascending order

bins : integer, optional
Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

dropna : boolean, default True
Don’t include counts of NaN.

Returns
counts : Series
pandas.Index.view

```
Index.view(cls=None)
```

32.7.2 Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.values</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>Index.is_monotonic</code></td>
<td>alias for <code>is_monotonic_increasing</code> (deprecated)</td>
</tr>
<tr>
<td><code>Index.is_monotonic_increasing</code></td>
<td>return if the index is monotonic increasing (only equal or increasing values)</td>
</tr>
<tr>
<td><code>Index.is_monotonic_decreasing</code></td>
<td>return if the index is monotonic decreasing (only equal or decreasing values)</td>
</tr>
<tr>
<td><code>Index.is_unique</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.dtype</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.inferred_type</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.is_all_dates</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.shape</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>Index.size</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>Index.nbytes</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>Index.ndim</code></td>
<td>return the number of dimensions of the underlying data, by definition 1</td>
</tr>
<tr>
<td><code>Index.strides</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>Index.itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>Index.base</code></td>
<td>return the base object if the memory of the underlying data is shared</td>
</tr>
<tr>
<td><code>Index.T</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
</tbody>
</table>

pandas.Index.values

```
Index.values

return the underlying data as an ndarray
```

pandas.Index.is_monotonic

```
Index.is_monotonic

alias for `is_monotonic_increasing` (deprecated)
```

pandas.Index.is_monotonic_increasing

```
Index.is_monotonic_increasing

return if the index is monotonic increasing (only equal or increasing values)
```

pandas.Index.is_monotonic_decreasing

```
Index.is_monotonic_decreasing

return if the index is monotonic decreasing (only equal or decreasing values)
```

pandas.Index.is_unique

```
Index.is_unique = None
```
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Index.dtype

Index.\texttt{dtype} = \texttt{None}

pandas.Index.inferred_type

Index.\texttt{inferred_type} = \texttt{None}

pandas.Index.is_all_dates

Index.\texttt{is_all_dates} = \texttt{None}

pandas.Index.shape

Index.\texttt{shape}

\begin{verbatim}
return a tuple of the shape of the underlying data
\end{verbatim}

pandas.Index.size

Index.\texttt{size}

\begin{verbatim}
return the number of elements in the underlying data
\end{verbatim}

pandas.Index.nbytes

Index.\texttt{nbytes}

\begin{verbatim}
return the number of bytes in the underlying data
\end{verbatim}

pandas.Index.ndim

Index.\texttt{ndim}

\begin{verbatim}
return the number of dimensions of the underlying data, by definition 1
\end{verbatim}

pandas.Index.strides

Index.\texttt{strides}

\begin{verbatim}
return the strides of the underlying data
\end{verbatim}

pandas.Index.itemsize

Index.\texttt{itemsize}

\begin{verbatim}
return the size of the dtype of the item of the underlying data
\end{verbatim}

pandas.Index.base

Index.\texttt{base}

\begin{verbatim}
return the base object if the memory of the underlying data is shared
\end{verbatim}
32.7. Index

32.7.3 Modifying and Computations

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index.all([axis, out])</code></td>
<td>Returns True if all elements evaluate to True.</td>
</tr>
<tr>
<td><code>index.any([axis, out])</code></td>
<td>Returns True if any of the elements of <code>a</code> evaluate to True.</td>
</tr>
<tr>
<td><code>index.argmin([axis])</code></td>
<td>Return an array of the minimum argument indexer</td>
</tr>
<tr>
<td><code>index.argmax([axis])</code></td>
<td>Return an array of the maximum argument indexer</td>
</tr>
<tr>
<td><code>index.copy([names, name, dtype, deep])</code></td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td><code>index.delete(loc)</code></td>
<td>Make new Index with passed location(-s) deleted</td>
</tr>
<tr>
<td><code>index.diff(*args, **kwargs)</code></td>
<td></td>
</tr>
<tr>
<td><code>index.sym_diff(other[, result_name])</code></td>
<td>Compute the sorted symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>index.drop(labels)</code></td>
<td>Make new Index with passed list of labels deleted</td>
</tr>
<tr>
<td><code>index.drop_duplicates([take_last])</code></td>
<td>Return Index with duplicate values removed</td>
</tr>
<tr>
<td><code>index.duplicated([take_last])</code></td>
<td>Return boolean Index denoting duplicate values</td>
</tr>
<tr>
<td><code>index.equals(other)</code></td>
<td>Determines if two Index objects contain the same elements.</td>
</tr>
<tr>
<td><code>index.factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>index.identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>index.insert(loc, item)</code></td>
<td>Make new Index inserting new item at location. Follows</td>
</tr>
<tr>
<td><code>index.min()</code></td>
<td>The minimum value of the object</td>
</tr>
<tr>
<td><code>index.max()</code></td>
<td>The maximum value of the object</td>
</tr>
<tr>
<td><code>index.order([return_indexer, ascending])</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>index.reindex([target[, method, level, limit]])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>index.repeat(n)</code></td>
<td>Return a new Index of the values repeated n times</td>
</tr>
<tr>
<td><code>index.take(indexer[, axis])</code></td>
<td>Return a new Index of the values selected by the indexer</td>
</tr>
<tr>
<td><code>index.putmask(mask, value)</code></td>
<td>Return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>index.set_names(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>index.unique()</code></td>
<td>Return array of unique values in the object.</td>
</tr>
<tr>
<td><code>index.nunique([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>index.value_counts([normalize, sort, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

pandas.Index.all

`Index.all(axis=None, out=None)`

Returns True if all elements evaluate to True.

Refer to `numpy.all` for full documentation.

See Also:

- `numpy.all` equivalent function

pandas.Index.any

`Index.any(axis=None, out=None)`

Returns True if any of the elements of `a` evaluate to True.

Refer to `numpy.any` for full documentation.
pandas: powerful Python data analysis toolkit, Release 0.15.1

See Also:

numpy.any equivalent function

pandas.Index.argmin

Index.argmin (axis=None)
return a ndarray of the minimum argument indexer

See Also:

numpy.ndarray.argmin

pandas.Index.argmax

Index.argmax (axis=None)
return a ndarray of the maximum argument indexer

See Also:

numpy.ndarray.argmax

pandas.Index.copy

Index.copy (names=None, name=None, dtype=None, deep=False)
Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters

name : string, optional
dtype : numpy dtype or pandas type

Returns

copy : Index

Notes

In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.

pandas.Index.delete

Index.delete (loc)
Make new Index with passed location(s) deleted

Returns

new_index : Index

pandas.Index.diff

Index.diff (*args, **kwargs)
pandas.Index.sym_diff

Index.sym_diff(other, result_name=None)
Compute the sorted symmetric difference of two Index objects.

Parameters
other: array-like
result_name: str

Returns
sym_diff: Index

Notes

sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped.

The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444.

Examples

>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.sym_diff(idx2)
Int64Index([1, 5], dtype='int64')

You can also use the ^ operator:

>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')

pandas.Index.drop

Index.drop(labels)
Make new Index with passed list of labels deleted

Parameters
labels: array-like

Returns
dropped: Index

pandas.Index.drop_duplicates

Index.drop_duplicates(take_last=False)
Return Index with duplicate values removed

Parameters
take_last: boolean, default False

Take the last observed index in a group. Default first

Returns
deduplicated: Index

pandas.Index.duplicated

Index.duplicated(take_last=False)
Return boolean Index denoting duplicate values

Parameters
take_last: boolean, default False
pandas: powerful Python data analysis toolkit, Release 0.15.1

Take the last observed index in a group. Default first

Returns duplicated: Index

pandas.Index.equals

Index.equals(other)
Determines if two Index objects contain the same elements.

pandas.Index.factorize

Index.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort: boolean, default False
Sort by values

na_sentinel: int, default -1
Value to mark “not found”

Returns labels: the indexer to the original array
uniques: the unique Index

pandas.Index.identical

Index.identical(other)
Similar to equals, but check that other comparable attributes are also equal

pandas.Index.insert

Index.insert(loc, item)
Make new Index inserting new item at location. Follows Python list.append semantics for negative values

Parameters loc: int
item: object

Returns new_index: Index

pandas.Index.min

Index.min()
The minimum value of the object

pandas.Index.max

Index.max()
The maximum value of the object
pandas.Index.order

`Index.order(return_indexer=False, ascending=True)`

Return sorted copy of Index

pandas.Index.reindex

`Index.reindex(target, method=None, level=None, limit=None)`

Create index with target’s values (move/add/delete values as necessary)

Returns
`new_index` : pd.Index

Resulting index

`indexer` : np.ndarray or None

Indices of output values in original index

pandas.Index.repeat

`Index.repeat(n)`

return a new Index of the values repeated n times

See Also:

`numpy.ndarray.repeat`

pandas.Index.take

`Index.take(indexer, axis=0)`

return a new Index of the values selected by the indexer

See Also:

`numpy.ndarray.take`

pandas.Index.putmask

`Index.putmask(mask, value)`

return a new Index of the values set with the mask

See Also:

`numpy.ndarray.putmask`

pandas.Index.set_names

`Index.set_names(names, level=None, inplace=False)`

Set new names on index. Defaults to returning new index.

Parameters
`names` : str or sequence

name(s) to set

`level` : int or level name, or sequence of int / level names (default None)
If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels) Otherwise level must be None

 inplace : bool
if True, mutate in place

Returns new index (of same type and class...etc) [if inplace, returns None]

Examples

>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')

>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')

>>> idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
 (2, 'one'), (2, 'two')],
 names=[u'foo', u'bar'])

>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'quz'])

>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'bar'])

pandas.Index.unique

Index.unique()

Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values.

Returns uniques : ndarray

pandas.Index.nunique

Index.nunique(dropna=True)

Return number of unique elements in the object.

Excludes NA values by default.

Parameters dropna : boolean, default True

Don’t include NaN in the count.

Returns nunique : int

pandas.Index.value_counts

Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize : boolean, default False
If True then the object returned will contain the relative frequencies of the unique values.

sort: boolean, default True
- Sort by values

ascending: boolean, default False
- Sort in ascending order

bins: integer, optional
- Rather than count values, group them into half-open bins, a convenience for `pd.cut`, only works with numeric data

dropna: boolean, default True
- Don’t include counts of NaN.

Returns

counts: Series

32.7.4 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.astype()</code></td>
<td>Return the Index values as the specified dtype.</td>
</tr>
<tr>
<td><code>Index.tolist()</code></td>
<td>Return a list of the Index values</td>
</tr>
<tr>
<td><code>Index.to_datetime([dayfirst])</code></td>
<td>For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex</td>
</tr>
<tr>
<td><code>Index.to_series(**kwargs)</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
</tbody>
</table>

pandas.Index.astype

Index.*astype* *(dtype)*

pandas.Index.tolist

Index.*tolist* ()
- return a list of the Index values

pandas.Index.to_datetime

Index.*to_datetime*(dayfirst=False)
- For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

pandas.Index.to_series

Index.*to_series*(**kwargs)
- Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Returns

Series: dtype will be based on the type of the Index values.

32.7.5 Sorting
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.Index.argsort	Index.argsort(*args, **kwargs)	return an ndarray indexer of the underlying data
pandas.Index.order	Index.order([return_indexer, ascending])	Return sorted copy of Index
pandas.Index.sort	Index.sort(*args, **kwargs)	32.7.6 Time-specific operations

32.7.6 Time-specific operations

pandas.Index.shift	Index.shift([periods, freq])	Shift Index containing datetime objects by input number of periods and

32.7.7 Combining / joining / merging

pandas.Index.append	Index.append(other)	Append a collection of Index options together
pandas.Index.intersection	Index.intersection(other)	Form the intersection of two Index objects. Sortedness of the result is
pandas.Index.join	Index.join(other[, how, level, return_indexers])	Internal API method. Compute join_index and indexers to conform data
pandas.Index.union	Index.union(other)	Form the union of two Index objects and sorts if possible

1312 Chapter 32. API Reference
pandas.Index.intersection

`Index.intersection(other)`

Form the intersection of two Index objects. Sortedness of the result is not guaranteed.

- **Parameters**
 - `other`: Index or array-like
- **Returns**
 - `intersection`: Index

pandas.Index.join

`Index.join(other, how='left', level=None, return_indexers=False)`

Internal API method. Compute join_index and indexers to conform data structures to the new index.

- **Parameters**
 - `other`: Index
 - `how`: {'left', 'right', 'inner', 'outer'}
 - `level`: int or level name, default None
 - `return_indexers`: boolean, default False
- **Returns**
 - `join_index`, `(left_indexer, right_indexer)`

pandas.Index.union

`Index.union(other)`

Form the union of two Index objects and sorts if possible.

- **Parameters**
 - `other`: Index or array-like
- **Returns**
 - `union`: Index

32.7.8 Selecting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.get_indexer(target[, method, limit])</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>Index.get_indexer_non_unique(target, **kwargs)</code></td>
<td>Return an indexer suitable for taking from a non unique index.</td>
</tr>
<tr>
<td><code>Index.get_level_values(level)</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>Index.get_loc(key)</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>Index.get_value(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>Index.isin(values[, level])</code></td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td><code>Index.slice_indexer([start, end, step])</code></td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td><code>Index.slice_locs([start, end])</code></td>
<td>For an ordered Index, compute the slice locations for input labels</td>
</tr>
</tbody>
</table>

pandas.Index.get_indexer

`Index.get_indexer(target, method=None, limit=None)`

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to `ndarray.take` to align the current data to the new index. The mask determines whether labels are found or not in the current index.

- **Parameters**
 - `target`: Index
 - `method`: {'pad', 'ffill', 'backfill', 'bfill'}
 - `limit`: None

 - `pad` / `ffill`: propagate LAST valid observation forward to next valid backfill / bfill:
use NEXT valid observation to fill gap

Returns
indexer : ndarray

Notes

This is a low-level method and probably should be used at your own risk

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

pandas.Index.get_indexer_non_unique

Index.get_indexer_non_unique(target, **kwargs)
return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable

pandas.Index.get_level_values

Index.get_level_values(level)
Return vector of label values for requested level, equal to the length of the index

Parameters

- level : int

Returns

values : ndarray

pandas.Index.get_loc

Index.get_loc(key)
Get integer location for requested label

Returns

loc : int if unique index, possibly slice or mask if not

pandas.Index.get_value

Index.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.Index.isin

Index.isin(values, level=None)
Compute boolean array of whether each index value is found in the passed set of values

Parameters

- values : set or sequence of values
 Sought values.
- level : str or int, optional
 Name or position of the index level to use (if the index is a MultiIndex).
Returns `is_contained` : ndarray (boolean dtype)

Notes

If `level` is specified:

• if it is the name of one and only one index level, use that level;
• otherwise it should be a number indicating level position.

pandas.Index.slice_indexer

`Index.slice_indexer(start=None, end=None, step=None)`
For an ordered Index, compute the slice indexer for input labels and step

Parameters

- **start** : label, default None
 - If None, defaults to the beginning
- **end** : label, default None
 - If None, defaults to the end
- **step** : int, default None

Returns

- **indexer** : ndarray or slice

Notes

This function assumes that the data is sorted, so use at your own peril

pandas.Index.slice_locs

`Index.slice_locs(start=None, end=None)`
For an ordered Index, compute the slice locations for input labels

Parameters

- **start** : label, default None
 - If None, defaults to the beginning
- **end** : label, default None
 - If None, defaults to the end

Returns

- **(start, end)** : (int, int)

Notes

This function assumes that the data is sorted, so use at your own peril

32.8 DatetimeIndex

DatetimeIndex

Immutable ndarray of datetime64 data, represented internally as int64, and
32.8.1 pandas.DatetimeIndex

class pandas.DatetimeIndex

Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information.

Parameters

- **data**: array-like (1-dimensional), optional

 Optional datetime-like data to construct index with

- **copy**: bool

 Make a copy of input ndarray

- **freq**: string or pandas offset object, optional

 One of pandas date offset strings or corresponding objects

- **start**: starting value, datetime-like, optional

 If data is None, start is used as the start point in generating regular timestamp data.

- **periods**: int, optional, > 0

 Number of periods to generate, if generating index. Takes precedence over end argument

- **end**: end time, datetime-like, optional

 If periods is none, generated index will extend to first conforming time on or just past end argument

- **closed**: string or None, default None

 Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

- **tz**: pytz.timezone or dateutil.tz.tzfile

- **ambiguous**: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

- **infer_dst**: boolean, default False (DEPRECATED)

 Attempt to infer fall dst-transition hours based on order

- **name**: object

 Name to be stored in the index

Attributes

- **T**: return the transpose, which is by definition self

- **as18**

- **asobject**

Continued on next page
Table 32.93 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>base</code></td>
<td>return the base object if the memory of the underlying data is shared</td>
</tr>
<tr>
<td><code>data</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>date</code></td>
<td>Returns numpy array of datetime.date.</td>
</tr>
<tr>
<td><code>day</code></td>
<td>The days of the datetime</td>
</tr>
<tr>
<td><code>dayofweek</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>dayofyear</code></td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td><code>dtype</code></td>
<td></td>
</tr>
<tr>
<td><code>flags</code></td>
<td>get/set the frequency of the Index</td>
</tr>
<tr>
<td><code>freq</code></td>
<td>return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td><code>freqstr</code></td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td><code>inferred_type</code></td>
<td></td>
</tr>
<tr>
<td><code>is_all_dates</code></td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td><code>is_monotonic</code></td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td><code>is_monotonic_decreasing</code></td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td><code>is_month_end</code></td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td><code>is_month_start</code></td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td><code>is_quarter_end</code></td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td><code>is_quarter_start</code></td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td><code>is_year_end</code></td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>is_year_start</code></td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>microsecond</code></td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td><code>millisecond</code></td>
<td>The milliseconds of the datetime</td>
</tr>
<tr>
<td><code>minute</code></td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td><code>month</code></td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td><code>names</code></td>
<td></td>
</tr>
<tr>
<td><code>nanosecond</code></td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>return the number of dimensions of the underlying data, by definition 1</td>
</tr>
<tr>
<td><code>nlevels</code></td>
<td></td>
</tr>
<tr>
<td><code>quarter</code></td>
<td>The quarter of the date</td>
</tr>
<tr>
<td><code>second</code></td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>size</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>time</code></td>
<td>Returns numpy array of datetime.time.</td>
</tr>
<tr>
<td><code>tzinfo</code></td>
<td>Alias for tz attribute</td>
</tr>
<tr>
<td><code>values</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>week</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>weekday</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>weekofyear</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>year</code></td>
<td>The year of the datetime</td>
</tr>
</tbody>
</table>

pandas.DatetimeIndex.T

`DatetimeIndex.T` return the transpose, which is by definition self
pandas.DatetimeIndex.asi8

```
DatetimeIndex.asi8
```

pandas.DatetimeIndex.asobject

```
DatetimeIndex.asobject
```

pandas.DatetimeIndex.base

```
DatetimeIndex.base
return the base object if the memory of the underlying data is shared
```

pandas.DatetimeIndex.data

```
DatetimeIndex.data
return the data pointer of the underlying data
```

pandas.DatetimeIndex.date

```
DatetimeIndex.date
Returns numpy array of datetime.date. The date part of the Timestamps.
```

pandas.DatetimeIndex.day

```
DatetimeIndex.day
The days of the datetime
```

pandas.DatetimeIndex.dayofweek

```
DatetimeIndex.dayofweek
The day of the week with Monday=0, Sunday=6
```

pandas.DatetimeIndex.dayofyear

```
DatetimeIndex.dayofyear
The ordinal day of the year
```

pandas.DatetimeIndex.dtype

```
DatetimeIndex.dtype
```

pandas.DatetimeIndex.flags

```
DatetimeIndex.flags
```
pandas.DatetimeIndex.freq

DatetimeIndex.freq
get/set the frequency of the Index

pandas.DatetimeIndex.freqstr

DatetimeIndex.freqstr
return the frequency object as a string if its set, otherwise None

pandas.DatetimeIndex.hour

DatetimeIndex.hour
The hours of the datetime

pandas.DatetimeIndex.inferred_type

DatetimeIndex.inferred_type

pandas.DatetimeIndex.is_all_dates

DatetimeIndex.is_all_dates

pandas.DatetimeIndex.is_monotonic

DatetimeIndex.is_monotonic
alias for is_monotonic_increasing (deprecated)

pandas.DatetimeIndex.is_monotonic_decreasing

DatetimeIndex.is_monotonic_decreasing
return if the index is monotonic decreasing (only equal or decreasing values)

pandas.DatetimeIndex.is_monotonic_increasing

DatetimeIndex.is_monotonic_increasing
return if the index is monotonic increasing (only equal or increasing) values

pandas.DatetimeIndex.is_month_end

DatetimeIndex.is_month_end
Logical indicating if last day of month (defined by frequency)

pandas.DatetimeIndex.is_month_start

DatetimeIndex.is_month_start
Logical indicating if first day of month (defined by frequency)
pandas.DatetimeIndex.is_quarter_end

DatetimeIndex.is_quarter_end
Logical indicating if last day of quarter (defined by frequency)

pandas.DatetimeIndex.is_quarter_start

DatetimeIndex.is_quarter_start
Logical indicating if first day of quarter (defined by frequency)

pandas.DatetimeIndex.is_year_end

DatetimeIndex.is_year_end
Logical indicating if last day of year (defined by frequency)

pandas.DatetimeIndex.is_year_start

DatetimeIndex.is_year_start
Logical indicating if first day of year (defined by frequency)

pandas.DatetimeIndex.itemsize

DatetimeIndex.itemsize
return the size of the dtype of the item of the underlying data

pandas.DatetimeIndex.microsecond

DatetimeIndex.microsecond
The microseconds of the datetime

pandas.DatetimeIndex.millisecond

DatetimeIndex.millisecond
The milliseconds of the datetime

pandas.DatetimeIndex.minute

DatetimeIndex.minute
The minutes of the datetime

pandas.DatetimeIndex.month

DatetimeIndex.month
The month as January=1, December=12

pandas.DatetimeIndex.names

DatetimeIndex.names
pandas.DatetimeIndex.nanosecond

DatetimeIndex.nanosecond
The nanoseconds of the datetime

pandas.DatetimeIndex.nbytes

DatetimeIndex.nbytes
return the number of bytes in the underlying data

pandas.DatetimeIndex.ndim

DatetimeIndex.ndim
return the number of dimensions of the underlying data, by definition 1

pandas.DatetimeIndex.nlevels

DatetimeIndex.nlevels

pandas.DatetimeIndex.quarter

DatetimeIndex.quarter
The quarter of the date

pandas.DatetimeIndex.second

DatetimeIndex.second
The seconds of the datetime

pandas.DatetimeIndex.shape

DatetimeIndex.shape
return a tuple of the shape of the underlying data

pandas.DatetimeIndex.size

DatetimeIndex.size
return the number of elements in the underlying data

pandas.DatetimeIndex.strides

DatetimeIndex.strides
return the strides of the underlying data

pandas.DatetimeIndex.time

DatetimeIndex.time
Returns numpy array of datetime.time. The time part of the Timestamps.
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.DatetimeIndex.tzinfo

DatetimeIndex.tzinfo
 Alias for tz attribute

pandas.DatetimeIndex.values

DatetimeIndex.values
 return the underlying data as an ndarray

pandas.DatetimeIndex.week

DatetimeIndex.week
 The week ordinal of the year

pandas.DatetimeIndex.weekday

DatetimeIndex.weekday
 The day of the week with Monday=0, Sunday=6

pandas.DatetimeIndex.weekofyear

DatetimeIndex.weekofyear
 The week ordinal of the year

pandas.DatetimeIndex.year

DatetimeIndex.year
 The year of the datetime

<table>
<thead>
<tr>
<th>hasnans</th>
<th>inferred_freq</th>
<th>is_normalized</th>
<th>is_unique</th>
<th>name</th>
<th>offset</th>
<th>resolution</th>
<th>tz</th>
</tr>
</thead>
</table>

Methods

all([axis, out])	Returns True if all elements evaluate to True.
any([axis, out])	Returns True if any of the elements of a evaluate to True.
append(other)	Append a collection of Index options together
argmax([axis])	return ndarray of the maximum argument indexer
argmin([axis])	return ndarray of the minimum argument indexer
argsort(*args, **kwargs)	return an ndarray indexer of the underlying data
asof(label)	For a sorted index, return the most recent label up to and including the passed label

Continued on
Table 32.94 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>asof_locs</code></td>
<td>Returns the locs at which the where array is true.</td>
</tr>
<tr>
<td><code>astype</code></td>
<td>Return a DatetimeIndex with passed location(s) deleted.</td>
</tr>
<tr>
<td><code>copy</code></td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Make a new DatetimeIndex with passed list of labels deleted.</td>
</tr>
<tr>
<td><code>diff</code></td>
<td>Compute sorted set difference of two Index objects.</td>
</tr>
<tr>
<td><code>difference</code></td>
<td>Make new Index with passed list of labels deleted.</td>
</tr>
<tr>
<td><code>drop_duplicates</code></td>
<td>Return Index with duplicate values removed.</td>
</tr>
<tr>
<td><code>equals</code></td>
<td>Determines if two Index objects contain the same elements.</td>
</tr>
<tr>
<td><code>factorize</code></td>
<td>Encode the object as an enumerated type or categorical variable.</td>
</tr>
<tr>
<td><code>format</code></td>
<td>Render a string representation of the Index.</td>
</tr>
<tr>
<td><code>get_duplicates</code></td>
<td>Get a copy of the underlying data as an ndarray.</td>
</tr>
<tr>
<td><code>get_indexer</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer_for</code></td>
<td>Guaranteed return of an indexer even when non-unique</td>
</tr>
<tr>
<td><code>get_indexer_non_unique</code></td>
<td>Return an indexer suitable for taking from a non unique index</td>
</tr>
<tr>
<td><code>get_level_values</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc</code></td>
<td>Get integer location for requested label.</td>
</tr>
<tr>
<td><code>get_value</code></td>
<td>Return the underlying data as an ndarray.</td>
</tr>
<tr>
<td><code>get_value_maybe_box</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_values</code></td>
<td>Return the first element of the underlying data as a python scalar.</td>
</tr>
<tr>
<td><code>groupby</code></td>
<td>See Index.join.</td>
</tr>
<tr>
<td><code>hold_integer</code></td>
<td>Select values at particular time of day (e.g., 9:00-9:30AM).</td>
</tr>
<tr>
<td><code>identical</code></td>
<td>Return DatetimeIndex with times to midnight. Length is unaltered.</td>
</tr>
<tr>
<td><code>indexer_at_time</code></td>
<td>Select values between particular times of day (e.g., 9:00-9:30AM)</td>
</tr>
<tr>
<td><code>indexer_between_time</code></td>
<td>Make new Index inserting new item at location</td>
</tr>
<tr>
<td><code>insert</code></td>
<td>Specialized intersection for DatetimeIndex objects. May be much faster.</td>
</tr>
<tr>
<td><code>is_.other</code></td>
<td>More flexible, faster check like is but that works through views.</td>
</tr>
<tr>
<td><code>is_boolean</code></td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td><code>is_float</code></td>
<td>Return the first element of the underlying data as a python scalar.</td>
</tr>
<tr>
<td><code>is_integer</code></td>
<td>Return the maximum value of the Index.</td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple</code></td>
<td>Return the minimum value of the Index.</td>
</tr>
<tr>
<td><code>is_mixed</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>is_numeric</code></td>
<td>Return sorted copy of Index.</td>
</tr>
<tr>
<td><code>is_object</code></td>
<td>Return a new Index of the values set with the mask.</td>
</tr>
<tr>
<td><code>is_type_compatible</code></td>
<td>Return an ndarray of the flattened values of the underlying data</td>
</tr>
<tr>
<td><code>isin</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>item</code></td>
<td>Set new names on index.</td>
</tr>
</tbody>
</table>

Continued on
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>repeat</code></td>
<td>Analogous to ndarray.repeat</td>
</tr>
<tr>
<td><code>searchsorted</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>set_names</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>set_value</code></td>
<td>Specialized shift which produces a DatetimeIndex</td>
</tr>
<tr>
<td><code>slice_indexer</code></td>
<td>Index.slice_indexer, customized to handle time slicing</td>
</tr>
<tr>
<td><code>slice_locs</code></td>
<td>Index.slice_locs, customized to handle partial ISO-8601 string slicing</td>
</tr>
<tr>
<td><code>snap</code></td>
<td>Snap time stamps to nearest occurring frequency</td>
</tr>
<tr>
<td><code>sort</code></td>
<td>Compute the sorted symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><code>to_datetime</code></td>
<td>Convert DatetimeIndex to Float64Index of Julian Dates.</td>
</tr>
<tr>
<td><code>to_native_types</code></td>
<td>slice and dice then format</td>
</tr>
<tr>
<td><code>to_period</code></td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td><code>to_pydatetime</code></td>
<td>Return DatetimeIndex as object ndarray of datetime.datetime objects</td>
</tr>
<tr>
<td><code>to_series</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td><code>tolist</code></td>
<td>return a list of the underlying data</td>
</tr>
<tr>
<td><code>transpose</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>tz_convert</code></td>
<td>Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil).</td>
</tr>
<tr>
<td><code>tz_localize</code></td>
<td>Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil).</td>
</tr>
<tr>
<td><code>union</code></td>
<td>Specialized union for DatetimeIndex objects. If combine</td>
</tr>
<tr>
<td><code>union_many</code></td>
<td>A bit of a hack to accelerate unioning a collection of indexes</td>
</tr>
<tr>
<td><code>unique</code></td>
<td>Index.unique with handling for DatetimeIndex/PeriodIndex metadata</td>
</tr>
<tr>
<td><code>value_counts</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

pandas.DatetimeIndex.all

```python
DatetimeIndex.all(axis=None, out=None)
```

Returns True if all elements evaluate to True.

Refer to `numpy.all` for full documentation.

See Also:

`numpy.all` equivalent function

pandas.DatetimeIndex.any

```python
DatetimeIndex.any(axis=None, out=None)
```

Returns True if any of the elements of `a` evaluate to True.

Refer to `numpy.any` for full documentation.

See Also:

`numpy.any` equivalent function
pandas.DatetimeIndex.append

DatetimeIndex.append(other)
 Append a collection of Index options together
 Parameters other : Index or list/tuple of indices
 Returns appended : Index

pandas.DatetimeIndex.argmax

DatetimeIndex.argmax(axis=None)
 return a ndarray of the maximum argument indexer
 See Also:
 numpy.ndarray.argmax

pandas.DatetimeIndex.argmin

DatetimeIndex.argmin(axis=None)
 return a ndarray of the minimum argument indexer
 See Also:
 numpy.ndarray.argmin

pandas.DatetimeIndex.argsort

DatetimeIndex.argsort(*args, **kwargs)
 return an ndarray indexer of the underlying data
 See Also:
 numpy.ndarray.argsort

pandas.DatetimeIndex.asof

DatetimeIndex.asof(label)
 For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found

pandas.DatetimeIndex.asof_locs

DatetimeIndex.asof_locs(where, mask)
 where : array of timestamps mask : array of booleans where data is not NA

pandas.DatetimeIndex.astype

DatetimeIndex.astype(dtype)
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.DatetimeIndex.copy

DatetimeIndex.copy (names=None, name=None, dtype=None, deep=False)

Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters

name : string, optional

dtype : numpy dtype or pandas type

Returns

copy : Index

Notes

In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.

pandas.DatetimeIndex.delete

DatetimeIndex.delete(loc)

Make a new DatetimeIndex with passed location(s) deleted.

Parameters

loc: int, slice or array of ints

Indicate which sub-arrays to remove.

Returns

new_index : DatetimeIndex

pandas.DatetimeIndex.diff

DatetimeIndex.diff(*args, **kwargs)

pandas.DatetimeIndex.difference

DatetimeIndex.difference(other)

Compute sorted set difference of two Index objects

Parameters

other : Index or array-like

Returns

diff : Index

Notes

One can do either of these and achieve the same result

>>> index.difference(index2)

pandas.DatetimeIndex.drop

DatetimeIndex.drop(labels)

Make new Index with passed list of labels deleted

Parameters

labels : array-like

Returns

dropped : Index
pandas.DatetimeIndex.drop_duplicates

DatetimeIndex.drop_duplicates(take_last=False)
Return Index with duplicate values removed

Parameters take_last : boolean, default False
Take the last observed index in a group. Default first

Returns deduplicated : Index

pandas.DatetimeIndex.duplicated

DatetimeIndex.duplicated(take_last=False)
Return boolean Index denoting duplicate values

Parameters take_last : boolean, default False
Take the last observed index in a group. Default first

Returns duplicated : Index

pandas.DatetimeIndex.equals

DatetimeIndex.equals(other)
Determines if two Index objects contain the same elements.

pandas.DatetimeIndex.factorize

DatetimeIndex.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False
Sort by values

na_sentinel: int, default -1
Value to mark “not found”

Returns labels : the indexer to the original array
 uniques : the unique Index

pandas.DatetimeIndex.format

DatetimeIndex.format(name=False, formatter=None, **kwargs)
Render a string representation of the Index

pandas.DatetimeIndex.get_duplicates

DatetimeIndex.get_duplicates()
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.DatetimeIndex.get_indexer

DatetimeIndex.get_indexer(target, method=None, limit=None)

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. The mask determines whether labels are found or not in the current index.

Parameters
- `target`: Index
- `method`: {'pad', 'ffill', 'backfill', 'bfill'}
 - pad / ffill: propagate LAST valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

Returns
- `indexer`: ndarray

Notes

This is a low-level method and probably should be used at your own risk.

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

pandas.DatetimeIndex.get_indexer_for

DatetimeIndex.get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique

pandas.DatetimeIndex.get_indexer_non_unique

DatetimeIndex.get_indexer_non_unique(target, **kwargs)

return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable

pandas.DatetimeIndex.get_level_values

DatetimeIndex.get_level_values(level)

Return vector of label values for requested level, equal to the length of the index

Parameters
- `level`: int

Returns
- `values`: ndarray

pandas.DatetimeIndex.get_loc

DatetimeIndex.get_loc(key)

Get integer location for requested label

Returns
- `loc`: int
pandas.DatetimeIndex.get_value

DatetimeIndex.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.DatetimeIndex.get_value_maybe_box

DatetimeIndex.get_value_maybe_box(series, key)

pandas.DatetimeIndex.get_values

DatetimeIndex.get_values()
return the underlying data as an ndarray

pandas.DatetimeIndex.groupby

DatetimeIndex.groupby(f)

pandas.DatetimeIndex.holds_integer

DatetimeIndex.holds_integer()

pandas.DatetimeIndex.identical

DatetimeIndex.identical(other)
Similar to equals, but check that other comparable attributes are also equal

pandas.DatetimeIndex.indexer_at_time

DatetimeIndex.indexer_at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM)

Parameters
time: datetime.time or string
tz: string or pytz.timezone or dateutil.tz.tzfile
Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries

Returnsvalues_at_time: TimeSeries

pandas.DatetimeIndex.indexer_between_time

DatetimeIndex.indexer_between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of day (e.g., 9:00-9:30AM)

Parametersstart_time: datetime.time or string
date_time: datetime.time or string
include_start: boolean, default True
include_end : boolean, default True

tz : string or pytz.timezone or dateutil.tz.tzfile, default None

Returns values_between_time : TimeSeries

pandas.DatetimeIndex.insert

DatetimeIndex.insert(loc, item)
Make new Index inserting new item at location

Parameters loc : int

item : object
if not either a Python datetime or a numpy integer-like, returned Index dtype will
be object rather than datetime.

Returns new_index : Index

pandas.DatetimeIndex.intersection

DatetimeIndex.intersection(other)
Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection

Parameters other : DatetimeIndex or array-like

Returns y : Index or DatetimeIndex

pandas.DatetimeIndex.is

DatetimeIndex.is_(other)
More flexible, faster check like is but that works through views

Note: this is not the same as Index.identical(), which checks that metadata is also the same.

Parameters other : object

other object to compare against.

Returns True if both have same underlying data, False otherwise : bool

pandas.DatetimeIndex.is_boolean

DatetimeIndex.is_boolean()

pandas.DatetimeIndex.is_floating

DatetimeIndex.is_floating()

pandas.DatetimeIndex.is_integer

DatetimeIndex.is_integer()
pandas.DatetimeIndex.is_lexsorted_for_tuple

```python
DatetimeIndex.is_lexsorted_for_tuple(tup)
```

pandas.DatetimeIndex.is_mixed

```python
DatetimeIndex.is_mixed()
```

pandas.DatetimeIndex.is_numeric

```python
DatetimeIndex.is_numeric()
```

pandas.DatetimeIndex.is_object

```python
DatetimeIndex.is_object()
```

pandas.DatetimeIndex.is_type_compatible

```python
DatetimeIndex.is_type_compatible(typ)
```

pandas.DatetimeIndex.isin

```python
DatetimeIndex.isin(values)
```

Parameters
values : set or sequence of values

Returns
is_contained : ndarray (boolean dtype)

pandas.DatetimeIndex.item

```python
DatetimeIndex.item()
```

return the first element of the underlying data as a python scalar

pandas.DatetimeIndex.join

```python
DatetimeIndex.join(other, how='left', level=None, return_indexers=False)
```

See Index.join

pandas.DatetimeIndex.map

```python
DatetimeIndex.map(f)
```
pandas.DatetimeIndex.max

DatetimeIndex.max(axis=None)
return the maximum value of the Index

See Also:
numpy.ndarray.max

pandas.DatetimeIndex.min

DatetimeIndex.min(axis=None)
return the minimum value of the Index

See Also:
numpy.ndarray.min

pandas.DatetimeIndex.normalize

DatetimeIndex.normalize()
Return DatetimeIndex with times to midnight. Length is unaltered

Returns normalized : DatetimeIndex

pandas.DatetimeIndex.nunique

DatetimeIndex.nunique(dropna=True)
Return number of unique elements in the object.
Excludes NA values by default.

Parameters dropna : boolean, default True
Don’t include NaN in the count.

Returns nunique : int

pandas.DatetimeIndex.order

DatetimeIndex.order(return_indexer=False, ascending=True)
Return sorted copy of Index

pandas.DatetimeIndex.putmask

DatetimeIndex.putmask(mask, value)
return a new Index of the values set with the mask

See Also:
numpy.ndarray.putmask
pandas.DatetimeIndex.ravel

```
DatetimeIndex.ravel(order='C')
return an ndarray of the flattened values of the underlying data

See Also:
numpy.ndarray.ravel
```

pandas.DatetimeIndex.reindex

```
DatetimeIndex.reindex(target, method=None, level=None, limit=None)
Create index with target’s values (move/add/delete values as necessary)

Returns  new_index : pd.Index
Resulting index
indexer : np.ndarray or None
Indices of output values in original index
```

pandas.DatetimeIndex.rename

```
DatetimeIndex.rename(name, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters  name : str or list
name to set
inplace : bool
if True, mutates in place

Returns  new index (of same type and class...etc) [if inplace, returns None]
```

pandas.DatetimeIndex.repeat

```
DatetimeIndex.repeat(repeats, axis=None)
Analogous to ndarray.repeat
```

pandas.DatetimeIndex.searchsorted

```
DatetimeIndex.searchsorted(key, side='left')
```

pandas.DatetimeIndex.set_names

```
DatetimeIndex.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters  names : str or sequence
name(s) to set
level : int or level name, or sequence of int / level names (default None)
```
If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels)
Otherwise level must be None

inplace : bool
if True, mutates in place

Returns
new index (of same type and class...etc) [if inplace, returns None]

Examples

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
```

```python
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')
```

```python
idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'),
                               (2, 'one'), (2, 'two')],
                              names=['foo', 'bar'])
```

```python
>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], ['one', 'two']],
           labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
           names=['baz', 'quz'])
```

```python
>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], ['one', 'two']],
           labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
           names=['baz', 'bar'])
```

pandas.DatetimeIndex.set_value

* DatetimeIndex.set_value* *(arr, key, value)*

 Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.DatetimeIndex.shift

* DatetimeIndex.shift* *(n, freq=None)*

 Specialized shift which produces a DatetimeIndex

Parameters

 n : int

 Periods to shift by

 freq : DateOffset or timedelta-like, optional

 Returns

 shifted : DatetimeIndex

pandas.DatetimeIndex.slice_indexer

* DatetimeIndex.slice_indexer* *(start=None, end=None, step=None)*

 Index.slice_indexer, customized to handle time slicing

pandas.DatetimeIndex.sliceLocs

* DatetimeIndex.sliceLocs* *(start=None, end=None)*

 Index.slice_locs, customized to handle partial ISO-8601 string slicing
pandas.DatetimeIndex.snap

DatetimeIndex.snap(freq='S')
Snap time stamps to nearest occurring frequency

pandas.DatetimeIndex.sort

DatetimeIndex.sort(*args, **kwargs)

pandas.DatetimeIndex.summary

DatetimeIndex.summary(name=None)

pandas.DatetimeIndex.sym_diff

DatetimeIndex.sym_diff(other, result_name=None)
Compute the sorted symmetric difference of two Index objects.

Parameters:
other : array-like
result_name : str

Returns:
sym_diff : Index

Notes

sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped.

The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444.

Examples

>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.sym_diff(idx2)
Int64Index([1, 5], dtype='int64')

You can also use the ^ operator:

>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')

pandas.DatetimeIndex.take

DatetimeIndex.take(indices, axis=0)
Analogous to ndarray.take
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.DatetimeIndex.to_datetime

DatetimeIndex.to_datetime(dayfirst=False)

pandas.DatetimeIndex.to_julian_date

DatetimeIndex.to_julian_date()
Convert DatetimeIndex to Float64Index of Julian Dates. 0 Julian date is noon January 1, 4713 BC.
http://en.wikipedia.org/wiki/Julian_day

pandas.DatetimeIndex.to_native_types

DatetimeIndex.to_native_types(slicer=None, **kwargs)
slice and dice then format

pandas.DatetimeIndex.to_period

DatetimeIndex.to_period(freq=None)
Cast to PeriodIndex at a particular frequency

pandas.DatetimeIndex.to_pydatetime

DatetimeIndex.to_pydatetime()
Return DatetimeIndex as object ndarray of datetime.datetime objects

Returns datetimes : ndarray

pandas.DatetimeIndex.to_series

DatetimeIndex.to_series(keep_tz=False)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Parameters keep_tz : optional, defaults False.
return the data keeping the timezone.

If keep_tz is True:
If the timezone is not set or is UTC, the resulting Series will have a datetime64[ns] dtype. Otherwise the Series will have an object dtype.

If keep_tz is False:
Series will have a datetime64[ns] dtype.

Returns Series

pandas.DatetimeIndex.tolist

DatetimeIndex.tolist()
return a list of the underlying data
pandas.DatetimeIndex.transpose

```
DatetimeIndex.transpose()
```

return the transpose, which is by definition self

pandas.DatetimeIndex.tz_convert

```
DatetimeIndex.tz_convert(tz)
```

Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)

Parameters

- `tz`: string, pytz.timezone, dateutil.tz.tzfile or None

 Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time.

Returns

- `normalized`: DatetimeIndex

pandas.DatetimeIndex.tz_localize

```
DatetimeIndex.tz_localize(*args, **kwargs)
```

Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex

Parameters

- `tz`: string, pytz.timezone, dateutil.tz.tzfile or None

 Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time.

- `ambiguous`: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

- `infer_dst`: boolean, default False (DEPRECATED)

 Attempt to infer fall dst-transition hours based on order

Returns

- `localized`: DatetimeIndex

pandas.DatetimeIndex.union

```
DatetimeIndex.union(other)
```

Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union

Parameters

- `other`: DatetimeIndex or array-like

Returns

- `y`: Index or DatetimeIndex

pandas.DatetimeIndex.union_many

```
DatetimeIndex.union_many(others)
```

A bit of a hack to accelerate unioning a collection of indexes
pandas.DatetimeIndex.unique

```
DatetimeIndex.unique()
```

Index.unique with handling for DatetimeIndex/PeriodIndex metadata

Returns result: DatetimeIndex or PeriodIndex

pandas.DatetimeIndex.value_counts

```
DatetimeIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
```

Returns object containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize: boolean, default False

If True then the object returned will contain the relative frequencies of the unique values.

sort: boolean, default True

Sort by values

ascending: boolean, default False

Sort in ascending order

bins: integer, optional

Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

dropna: boolean, default True

Don’t include counts of NaN.

Returns counts: Series

pandas.DatetimeIndex.view

```
DatetimeIndex.view(cls=None)
```

32.8.2 Time/Date Components

<table>
<thead>
<tr>
<th>DatetimeIndex.year</th>
<th>The year of the datetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.month</td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td>DatetimeIndex.day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.hour</td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.date</td>
<td>Returns numpy array of datetime.date.</td>
</tr>
<tr>
<td>DatetimeIndex.time</td>
<td>Returns numpy array of datetime.time.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DatetimeIndex.dayofyear</code></td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td><code>DatetimeIndex.weekofyear</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>DatetimeIndex.dayofweek</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>DatetimeIndex.week</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>DatetimeIndex.dayofweek</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>DatetimeIndex.weekday</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>DatetimeIndex.quarter</code></td>
<td>The quarter of the date</td>
</tr>
<tr>
<td><code>DatetimeIndex.freq</code></td>
<td>get/set the frequency of the Index</td>
</tr>
<tr>
<td><code>DatetimeIndex.freqstr</code></td>
<td>return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td><code>DatetimeIndex.is_month_start</code></td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td><code>DatetimeIndex.is_month_end</code></td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td><code>DatetimeIndex.is_quarter_start</code></td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td><code>DatetimeIndex.is_quarter_end</code></td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td><code>DatetimeIndex.is_year_start</code></td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>DatetimeIndex.is_year_end</code></td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
</tbody>
</table>

pandas.DatetimeIndex.year

The year of the datetime

pandas.DatetimeIndex.month

The month as January=1, December=12

pandas.DatetimeIndex.day

The days of the datetime

pandas.DatetimeIndex.hour

The hours of the datetime

pandas.DatetimeIndex.minute

The minutes of the datetime

pandas.DatetimeIndex.second

The seconds of the datetime
pandas.DatetimeIndex.microsecond

DatetimeIndex.microsecond
The microseconds of the datetime

pandas.DatetimeIndex.nanosecond

DatetimeIndex.nanosecond
The nanoseconds of the datetime

pandas.DatetimeIndex.date

DatetimeIndex.date
Returns numpy array of datetime.date. The date part of the Timestamps.

pandas.DatetimeIndex.time

DatetimeIndex.time
Returns numpy array of datetime.time. The time part of the Timestamps.

pandas.DatetimeIndex.dayofyear

DatetimeIndex.dayofyear
The ordinal day of the year

pandas.DatetimeIndex.weekofyear

DatetimeIndex.weekofyear
The week ordinal of the year

pandas.DatetimeIndex.week

DatetimeIndex.week
The week ordinal of the year

pandas.DatetimeIndex.dayofweek

DatetimeIndex.dayofweek
The day of the week with Monday=0, Sunday=6

pandas.DatetimeIndex.weekday

DatetimeIndex.weekday
The day of the week with Monday=0, Sunday=6
pandas.DatetimeIndex.quarter

DatetimeIndex.quarter
The quarter of the date

pandas.DatetimeIndex.tz

DatetimeIndex.tz = None

pandas.DatetimeIndex.freq

DatetimeIndex.freq
get/set the frequency of the Index

pandas.DatetimeIndex.freqstr

DatetimeIndex.freqstr
return the frequency object as a string if its set, otherwise None

pandas.DatetimeIndex.is_month_start

DatetimeIndex.is_month_start
Logical indicating if first day of month (defined by frequency)

pandas.DatetimeIndex.is_month_end

DatetimeIndex.is_month_end
Logical indicating if last day of month (defined by frequency)

pandas.DatetimeIndex.is_quarter_start

DatetimeIndex.is_quarter_start
Logical indicating if first day of quarter (defined by frequency)

pandas.DatetimeIndex.is_quarter_end

DatetimeIndex.is_quarter_end
Logical indicating if last day of quarter (defined by frequency)

pandas.DatetimeIndex.is_year_start

DatetimeIndex.is_year_start
Logical indicating if first day of year (defined by frequency)

pandas.DatetimeIndex.is_year_end

DatetimeIndex.is_year_end
Logical indicating if last day of year (defined by frequency)
32.8.3 Selecting

`DatetimeIndex.indexer_at_time(time[, asof])` Select values at particular time of day (e.g., 9:30AM)

```python
def DatetimeIndex.indexer_at_time(time, asof=False):
    # Implementation details
    pass
```

Parameters
- `time`: datetime.time or string
- `tz`: string or pytz.timezone or dateutil.tz.tzfile
 - Time zone for time. Corresponding timestamps would be converted to time zone of
 the TimeSeries

Returns
- `values_at_time`: TimeSeries

`DatetimeIndex.indexer_between_time(start_time, end_time[, include_start=True, include_end=True])` Select values between particular times of day (e.g., 9:00-9:30AM)

```python
def DatetimeIndex.indexer_between_time(start_time, end_time, include_start=True, include_end=True):
    # Implementation details
    pass
```

Parameters
- `start_time`: datetime.time or string
- `end_time`: datetime.time or string
- `include_start`: boolean, default True
- `include_end`: boolean, default True
- `tz`: string or pytz.timezone or dateutil.tz.tzfile, default None

Returns
- `values_between_time`: TimeSeries

32.8.4 Time-specific operations

`DatetimeIndex.normalize()` Return DatetimeIndex with times to midnight. Length is unaltered

```python
def DatetimeIndex.normalize():
    # Implementation details
    pass
```

`DatetimeIndex.snap([freq])` Snap time stamps to nearest occurring frequency

```python
def DatetimeIndex.snap(freq):
    # Implementation details
    pass
```

`DatetimeIndex.tz_convert(tz)` Convert tz-aware DatetimeIndex from one time zone to another (using pytz)

```python
def DatetimeIndex.tz_convert(tz):
    # Implementation details
    pass
```

`DatetimeIndex.tz_localize(*args, **kwargs)` Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil)

```python
def DatetimeIndex.tz_localize(*args, **kwargs):
    # Implementation details
    pass
```

`pandas.DatetimeIndex.normalize()`

```python
def DatetimeIndex.normalize():
    # Implementation details
    pass
```

Returns
- `normalized`: DatetimeIndex
pandas.DatetimeIndex.snap

```
DatetimeIndex.snap(freq='S')
```

Snap time stamps to nearest occurring frequency

pandas.DatetimeIndex.tz_convert

```
DatetimeIndex.tz_convert(tz)
```

Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)

Parameters:
- **tz**: string, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time.

Returns:
- **normalized**: DatetimeIndex

pandas.DatetimeIndex.tz_localize

```
DatetimeIndex.tz_localize(*args, **kwargs)
```

Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex

Parameters:
- **tz**: string, pytz.timezone, dateutil.tz.tzfile or None
 Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time.

- **ambiguous**: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

- **infer_dst**: boolean, default False (DEPRECATED)
 Attempt to infer fall dst-transition hours based on order

Returns:
- **localized**: DatetimeIndex

32.8.5 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.to_datetime(dayfirst)</td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td>DatetimeIndex.to_period(freq)</td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td>DatetimeIndex.to_pydatetime()</td>
<td>Return DatetimeIndex as object ndarray of datetime.datetime objects</td>
</tr>
<tr>
<td>DatetimeIndex.to_series(keep_tz)</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
</tbody>
</table>

pandas.DatetimeIndex.to_datetime

```
DatetimeIndex.to_datetime(dayfirst=False)
```

Pandas: powerful Python data analysis toolkit, Release 0.15.1

32.8. DatetimeIndex 1343
pandas.DatetimeIndex.to_period

Datet imeIndex.to_period(freq=None)

Cast to PeriodIndex at a particular frequency

pandas.DatetimeIndex.to_pydatetime

Datet imeIndex.to_pydatetime()

Return DatetimeIndex as object ndarray of datetime.datetime objects

Returns
datetimes : ndarray

pandas.DatetimeIndex.to_series

Datet imeIndex.to_series(keep_tz=False)

Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Parameters

keep_tz : optional, defaults False.

return the data keeping the timezone.

If keep_tz is True:

If the timezone is not set or is UTC, the resulting Series will have a datetime64[ns] dtype. Otherwise the Series will have an object dtype.

If keep_tz is False:

Series will have a datetime64[ns] dtype.

Returns

Series

32.9 TimedeltaIndex

TimedeltaIndex

Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects

32.9.1 pandas.TimedeltaIndex

class pandas.TimedeltaIndex

Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects

Parameters

data : array-like (1-dimensional), optional

Optional timedelta-like data to construct index with

unit: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional

which is an integer/float number

freq: a frequency for the index, optional

copy : bool

Make a copy of input ndarray
start : starting value, timedelta-like, optional

 If data is None, start is used as the start point in generating regular timedelta data.

periods : int, optional, > 0

 Number of periods to generate, if generating index. Takes precedence over end argument

end : end time, timedelta-like, optional

 If periods is none, generated index will extend to first conforming time on or just past end argument

closed : string or None, default None

 Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

name : object

 Name to be stored in the index

Attributes

T
 return the transpose, which is by definition self

asii8

asobject

base
 return the base object if the memory of the underlying data is shared

components
 Return a dataframe of the components of the Timedeltas

data
 return the data pointer of the underlying data

days
 The number of integer days for each element

dtype

flags

freqstr
 return the frequency object as a string if its set, otherwise None

hours
 The number of integer hours for each element

inferred_type

is_all_dates

is_monotonic

is_monotonic_decreasing

is_monotonic_increasing
 return if the index is monotonic decreasing (only equal or

itemsize
 return the size of the dtype of the item of the underlying data

milliseconds
 The number of integer milliseconds for each element

minutes
 The number of integer minutes for each element

names

nanoseconds
 The number of integer nanoseconds for each element

nbytes
 return the number of bytes in the underlying data

ndim
 return the number of dimensions of the underlying data, by definition 1

nlevels

seconds
 The number of integer seconds for each element

shape
 return a tuple of the shape of the underlying data

size
 return the number of elements in the underlying data

strides
 return the strides of the underlying data

values
 return the underlying data as an ndarray

32.9. TimedeltaIndex
pandas.TimedeltaIndex.T

TimedeltaIndex.T
 return the transpose, which is by definition self

pandas.TimedeltaIndex.asi8

TimedeltaIndex.asi8

pandas.TimedeltaIndex.asobject

TimedeltaIndex.asobject

pandas.TimedeltaIndex.base

TimedeltaIndex.base
 return the base object if the memory of the underlying data is shared

pandas.TimedeltaIndex.components

TimedeltaIndex.components
 Return a dataframe of the components of the Timedeltas

 Returns a DataFrame

pandas.TimedeltaIndex.data

TimedeltaIndex.data
 return the data pointer of the underlying data

pandas.TimedeltaIndex.days

TimedeltaIndex.days
 The number of integer days for each element

pandas.TimedeltaIndex.dtype

TimedeltaIndex.dtype

pandas.TimedeltaIndex.flags

TimedeltaIndex.flags

pandas.TimedeltaIndex.freqstr

TimedeltaIndex.freqstr
 return the frequency object as a string if its set, otherwise None
pandas.TimedeltaIndex.hours

TimedeltaIndex.hours
The number of integer hours for each element

pandas.TimedeltaIndex.inferred_type

TimedeltaIndex.inferred_type

pandas.TimedeltaIndex.is_all_dates

TimedeltaIndex.is_all_dates

pandas.TimedeltaIndex.is_monotonic

TimedeltaIndex.is_monotonic
alias for is_monotonic_increasing (deprecated)

pandas.TimedeltaIndex.is_monotonic_decreasing

TimedeltaIndex.is_monotonic_decreasing
return if the index is monotonic decreasing (only equal or decreasing values)

pandas.TimedeltaIndex.is_monotonic_increasing

TimedeltaIndex.is_monotonic_increasing
return if the index is monotonic increasing (only equal or increasing) values

pandas.TimedeltaIndex.itemsize

TimedeltaIndex.itemsize
return the size of the dtype of the item of the underlying data

pandas.TimedeltaIndex.microseconds

TimedeltaIndex.microseconds
The number of integer microseconds for each element

pandas.TimedeltaIndex.milliseconds

TimedeltaIndex.milliseconds
The number of integer milliseconds for each element

pandas.TimedeltaIndex.minutes

TimedeltaIndex.minutes
The number of integer minutes for each element
pandas.TimedeltaIndex.names

TimedeltaIndex.names

pandas.TimedeltaIndex.nanoseconds

TimedeltaIndex.nanoseconds

The number of integer nanoseconds for each element

pandas.TimedeltaIndex.nbytes

TimedeltaIndex.nbytes

return the number of bytes in the underlying data

pandas.TimedeltaIndex.ndim

TimedeltaIndex.ndim

return the number of dimensions of the underlying data, by definition 1

pandas.TimedeltaIndex.nlevels

TimedeltaIndex.nlevels

pandas.TimedeltaIndex.seconds

TimedeltaIndex.seconds

The number of integer seconds for each element

pandas.TimedeltaIndex.shape

TimedeltaIndex.shape

return a tuple of the shape of the underlying data

pandas.TimedeltaIndex.size

TimedeltaIndex.size

return the number of elements in the underlying data

pandas.TimedeltaIndex.strides

TimedeltaIndex.strides

return the strides of the underlying data
pandas: powerful Python data analysis toolkit, Release 0.15.1

TimedeltaIndex

TimedeltaIndex

- Values

 return the underlying data as an ndarray

<table>
<thead>
<tr>
<th>freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>hasnans</td>
</tr>
<tr>
<td>inferred_freq</td>
</tr>
<tr>
<td>is_unique</td>
</tr>
<tr>
<td>name</td>
</tr>
<tr>
<td>resolution</td>
</tr>
</tbody>
</table>

Methods

all([axis, out])

Returns True if all elements evaluate to True.

any([axis, out])

Returns True if any of the elements of a evaluate to True.

append(other)

Append a collection of Index options together

argmax([axis])

return a ndarray of the maximum argument indexer

argmin([axis])

return a ndarray of the minimum argument indexer

argsort(*args, **kwargs)

return an ndarray indexer of the underlying data

asof(label)

For a sorted index, return the most recent label up to and including the passed label

asof_locs(where, mask)

where : array of timestamps

astype(dtype)

Make a copy of this object.

delete(loc)

Make a new DatetimeIndex with passed location(s) deleted.

diff(*args, **kwargs)

Compute sorted set difference of two Index objects

drop(labels)

Make new Index with passed list of labels deleted

drop_duplicates([take_last])

Return Index with duplicate values removed

duplicated([take_last])

Return boolean Index denoting duplicate values

equals(other)

Determines if two Index objects contain the same elements.

factorize([sort, na_sentinel])

Encode the object as an enumerated type or categorical variable

format([name, formatter])

Render a string representation of the Index

get_duplicates()

get_indexer(target[, method, limit])

Compute indexer and mask for new index given the current index.

get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique

get_indexer_non_unique(target, **kwargs)

return an indexer suitable for taking from a non unique index

get_level_values(level)

Return vector of label values for requested level, equal to the length

get_loc(key)

Get integer location for requested label

get_value(series, key)

Fast lookup of value from 1-dimensional ndarray.

get_value_maybe_box(series, key)

return the underlying data as an ndarray

groupby(f)

holds_integer()

Similar to equals, but check that other comparable attributes are

insert(loc, item)

Make new Index inserting new item at location

intersection(other)

Specialized intersection for TimedeltaIndex objects. May be much faster

is_(other)

More flexible, faster check like is but that works through views

is_boolean()

is_floating()
Table 32.101 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_integer()</code></td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td>Return the first element of the underlying data as a python scalar</td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible(typ)</code></td>
<td></td>
</tr>
<tr>
<td><code>isin(values)</code></td>
<td></td>
</tr>
<tr>
<td><code>item()</code></td>
<td>return the first element of the underlying data as a python scalar</td>
</tr>
<tr>
<td><code>join(other[, how, level, return_indexers])</code></td>
<td>See Index.join</td>
</tr>
<tr>
<td><code>map(f)</code></td>
<td></td>
</tr>
<tr>
<td><code>max([axis])</code></td>
<td>return the maximum value of the Index</td>
</tr>
<tr>
<td><code>min([axis])</code></td>
<td>return the minimum value of the Index</td>
</tr>
<tr>
<td><code>nunique(dropna)</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>order(return_indexer, ascending)</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>putmask(mask, value)</code></td>
<td>return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>ravel(order)</code></td>
<td>return an ndarray of the flattened values of the underlying data</td>
</tr>
<tr>
<td><code>reindex(target[, method, level, limit])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>rename(name[, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>repeat(repeats[, axis])</code></td>
<td>Analogous to ndarray.repeat</td>
</tr>
<tr>
<td><code>searchsorted(key[, side])</code></td>
<td></td>
</tr>
<tr>
<td><code>set_names(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>set_value(arr, key, value)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>shift(n[, freq])</code></td>
<td>Specialized shift which produces a DatetimeIndex</td>
</tr>
<tr>
<td><code>slice_indexer([start, end, step])</code></td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td><code>slice_locs([start, end])</code></td>
<td>Index.slice_locs, customized to handle partial ISO-8601 string slicing</td>
</tr>
<tr>
<td><code>sort(*args, **kwargs)</code></td>
<td></td>
</tr>
<tr>
<td><code>summary([name])</code></td>
<td>Compute the sorted symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>sym_diff(other[, result_name])</code></td>
<td></td>
</tr>
<tr>
<td><code>take(indices[, axis])</code></td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><code>to_datetime([dayfirst])</code></td>
<td>For an Index containing strings or datetime.datetime objects, attempt</td>
</tr>
<tr>
<td><code>to_native_types([slicer])</code></td>
<td>slice and dice then format</td>
</tr>
<tr>
<td><code>to_pytimedelta()</code></td>
<td>Return TimedeltaIndex as object ndarray of datetime.timedelta objects</td>
</tr>
<tr>
<td><code>to_series(**kwargs)</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td><code>tolist()</code></td>
<td>return a list of the underlying data</td>
</tr>
<tr>
<td><code>transpose()</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>union(other)</code></td>
<td>Specialized union for TimedeltaIndex objects. If combine</td>
</tr>
<tr>
<td><code>unique()</code></td>
<td>Index.unique with handling for DatetimeIndex/PeriodIndex metadata</td>
</tr>
<tr>
<td><code>value_counts([normalize, sort, ascending, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>view([cls])</code></td>
<td></td>
</tr>
</tbody>
</table>

pandas.TimedeltaIndex.all

TimedeltaIndex.all (axis=None, out=None)

Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See Also:

numpy.all equivalent function
pandas.TimedeltaIndex.any

TimedeltaIndex.\texttt{any}(axis=\texttt{None}, out=\texttt{None})

Returns True if any of the elements of \texttt{a} evaluate to True.

Refer to \texttt{numpy.any} for full documentation.

\textbf{See Also:}

\texttt{numpy.any} equivalent function

pandas.TimedeltaIndex.append

TimedeltaIndex.\texttt{append}(other)

Append a collection of Index options together

\textbf{Parameters} other : Index or list/tuple of indices

\textbf{Returns} appended : Index

pandas.TimedeltaIndex.argmax

TimedeltaIndex.\texttt{argmax}(axis=\texttt{None})

return a ndarray of the maximum argument indexer

\textbf{See Also:}

\texttt{numpy.ndarray.argmax}

pandas.TimedeltaIndex.argmin

TimedeltaIndex.\texttt{argmin}(axis=\texttt{None})

return a ndarray of the minimum argument indexer

\textbf{See Also:}

\texttt{numpy.ndarray.argmin}

pandas.TimedeltaIndex.argsort

TimedeltaIndex.\texttt{argsort}(*args, **kwargs)

return an ndarray indexer of the underlying data

\textbf{See Also:}

\texttt{numpy.ndarray.argsort}

pandas.TimedeltaIndex.asof

TimedeltaIndex.\texttt{asof}(label)

For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found
pandas.TimedeltaIndex.asof_locs

TimedeltaIndex.asof_locs(\texttt{where}, \texttt{mask})
where : array of timestamps mask : array of booleans where data is not NA

pandas.TimedeltaIndex.astype

TimedeltaIndex.astype(\texttt{dtype})

pandas.TimedeltaIndex.copy

TimedeltaIndex.copy(\texttt{names=\texttt{None}}, \texttt{name=\texttt{None}}, \texttt{dtype=\texttt{None}}, \texttt{deep=\texttt{False}})
Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters

- \texttt{name} : string, optional
- \texttt{dtype} : numpy dttype or pandas type

Returns \texttt{copy} : Index

Notes

In most cases, there should be no functional difference from using \texttt{deep}, but if \texttt{deep} is passed it will attempt to deepcopy.

pandas.TimedeltaIndex.delete

TimedeltaIndex.delete(\texttt{loc})
Make a new DatetimeIndex with passed location(s) deleted.

Parameters

- \texttt{loc} : int, slice or array of ints
 Indicate which sub-arrays to remove.

Returns \texttt{new_index} : TimedeltaIndex

pandas.TimedeltaIndex.diff

TimedeltaIndex.diff(\texttt{*args}, \texttt{**kwargs})

pandas.TimedeltaIndex.difference

TimedeltaIndex.difference(\texttt{other})
Compute sorted set difference of two Index objects

Parameters

- \texttt{other} : Index or array-like

Returns \texttt{diff} : Index
Notes

One can do either of these and achieve the same result

```python
>>> index.difference(index2)
```

pandas.TimedeltaIndex.drop

TimedeltaIndex.drop(labels)

Make new Index with passed list of labels deleted

Parameters
- labels : array-like

Returns
- dropped : Index

pandas.TimedeltaIndex.drop_duplicates

TimedeltaIndex.drop_duplicates(take_last=False)

Return Index with duplicate values removed

Parameters
- take_last : boolean, default False

 Take the last observed index in a group. Default first

Returns
- deduplicated : Index

pandas.TimedeltaIndex.duplicated

TimedeltaIndex.duplicated(take_last=False)

Return boolean Index denoting duplicate values

Parameters
- take_last : boolean, default False

 Take the last observed index in a group. Default first

Returns
- duplicated : Index

pandas.TimedeltaIndex.equals

TimedeltaIndex.equals(other)

Determines if two Index objects contain the same elements.

pandas.TimedeltaIndex.factorize

TimedeltaIndex.factorize(sort=False, na_sentinel=-1)

Encode the object as an enumerated type or categorical variable

Parameters
- sort : boolean, default False

 Sort by values

- na_sentinel : int, default -1

 Value to mark "not found"
Returns

- **labels**: the indexer to the original array
- **uniques**: the unique Index

TimedeltaIndex.format

`TimedeltaIndex.format(name=False, formatter=None, **kwargs)`

Render a string representation of the Index

TimedeltaIndex.get_duplicates

`TimedeltaIndex.get_duplicates()`

TimedeltaIndex.get_indexer

`TimedeltaIndex.get_indexer(target, method=None, limit=None)`

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. The mask determines whether labels are found or not in the current index.

Parameters

- **target**: Index
- **method**: {'pad', 'ffill', 'backfill', 'bfill'}

 - pad / ffill: propagate LAST valid observation forward to next valid
 - backfill / bfill: use NEXT valid observation to fill gap

Returns

- **indexer**: ndarray

Notes

This is a low-level method and probably should be used at your own risk

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

TimedeltaIndex.get_indexer_for

`TimedeltaIndex.get_indexer_for(target, **kwargs)`

Guaranteed return of an indexer even when non-unique

TimedeltaIndex.get_indexer_non_unique

`TimedeltaIndex.get_indexer_non_unique(target, **kwargs)`

Return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable
pandas.TimedeltaIndex.get_level_values

TimedeltaIndex.get_level_values(level)

Return vector of label values for requested level, equal to the length of the index

Parameters

- `level` : int

Returns

- `values` : ndarray

pandas.TimedeltaIndex.get_loc

TimedeltaIndex.get_loc(key)

Get integer location for requested label

Returns

- `loc` : int

pandas.TimedeltaIndex.get_value

TimedeltaIndex.get_value(series, key)

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.TimedeltaIndex.get_value_maybe_box

TimedeltaIndex.get_value_maybe_box(series, key)

pandas.TimedeltaIndex.get_values

TimedeltaIndex.get_values()

return the underlying data as an ndarray

pandas.TimedeltaIndex.groupby

TimedeltaIndex.groupby(f)

pandas.TimedeltaIndex.holds_integer

TimedeltaIndex.holds_integer()

pandas.TimedeltaIndex.identical

TimedeltaIndex.identical(other)

Similar to equals, but check that other comparable attributes are also equal

pandas.TimedeltaIndex.insert

TimedeltaIndex.insert(loc, item)

Make new Index inserting new item at location

Parameters

- `loc` : int
- `item` : object
if not either a Python datetime or a numpy integer-like, returned Index dtype will be object rather than datetime.

Returns new_index : Index

pandas.TimedeltaIndex.intersection

TimedeltaIndex.intersection(other)

Specialized intersection for TimedeltaIndex objects. May be much faster than Index.intersection

Parameters other : TimedeltaIndex or array-like

Returns y : Index or TimedeltaIndex

pandas.TimedeltaIndex.is

TimedeltaIndex.is_(other)

More flexible, faster check like is but that works through views

Note: this is not the same as Index.identical(), which checks that metadata is also the same.

Parameters other : object

other object to compare against.

Returns True if both have same underlying data, False otherwise : bool

pandas.TimedeltaIndex.is_boolean

TimedeltaIndex.is_boolean()

pandas.TimedeltaIndex.is_floating

TimedeltaIndex.is_floating()

pandas.TimedeltaIndex.is_integer

TimedeltaIndex.is_integer()

pandas.TimedeltaIndex.is_lexsorted_for_tuple

TimedeltaIndex.is_lexsorted_for_tuple(tup)

pandas.TimedeltaIndex.is_mixed

TimedeltaIndex.is_mixed()

pandas.TimedeltaIndex.is_numeric

TimedeltaIndex.is_numeric()
pandas.TimedeltaIndex.is_object

TimedeltaIndex.is_object()

pandas.TimedeltaIndex.is_type_compatible

TimedeltaIndex.is_type_compatible(typ)

pandas.TimedeltaIndex.isin

TimedeltaIndex.isin(values)
Compute boolean array of whether each index value is found in the passed set of values

Parameters
values: set or sequence of values

Returns
is_contained: ndarray (boolean dtype)

pandas.TimedeltaIndex.item

TimedeltaIndex.item()
return the first element of the underlying data as a python scalar

pandas.TimedeltaIndex.join

TimedeltaIndex.join(other, how='left', level=None, return_indexers=False)
See Index.join

pandas.TimedeltaIndex.map

TimedeltaIndex.map(f)

pandas.TimedeltaIndex.max

TimedeltaIndex.max(axis=None)
return the maximum value of the Index
See Also:
numpy.ndarray.max

pandas.TimedeltaIndex.min

TimedeltaIndex.min(axis=None)
return the minimum value of the Index
See Also:
numpy.ndarray.min
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.TimedeltaIndex.nunique

TimedeltaIndex.nunique (dropna=True)

Return number of unique elements in the object.

Excludes NA values by default.

Parameters

- **dropna** : boolean, default True

 Don’t include NaN in the count.

Returns

- **nunique** : int

pandas.TimedeltaIndex.order

TimedeltaIndex.order (return_indexer=False, ascending=True)

Return sorted copy of Index

pandas.TimedeltaIndex.putmask

TimedeltaIndex.putmask (mask, value)

return a new Index of the values set with the mask

See Also:

- numpy.ndarray.putmask

pandas.TimedeltaIndex.ravel

TimedeltaIndex.ravel (order='C')

return an ndarray of the flattened values of the underlying data

See Also:

- numpy.ndarray.ravel

pandas.TimedeltaIndex.reindex

TimedeltaIndex.reindex (target, method=None, level=None, limit=None)

Create index with target’s values (move/add/delete values as necessary)

Returns

- **new_index** : pd.Index

 Resulting index

- **indexer** : np.ndarray or None

 Indices of output values in original index

pandas.TimedeltaIndex.rename

TimedeltaIndex.rename (name, inplace=False)

Set new names on index. Defaults to returning new index.

Parameters

- **name** : str or list

 name to set
inplace : bool
 if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

pandas.TimedeltaIndex.repeat

TimedeltaIndex.repeat(repeats, axis=None)
 Analogous to ndarray.repeat

pandas.TimedeltaIndex.searchsorted

TimedeltaIndex.searchsorted(key, side='left')

pandas.TimedeltaIndex.set_names

TimedeltaIndex.set_names(names, level=None, inplace=False)
 Set new names on index. Defaults to returning new index.

Parameters names : str or sequence
 name(s) to set

level : int or level name, or sequence of int / level names (default None)
 If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels)
 Otherwise level must be None

inplace : bool
 if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

Examples

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
                                 (2, u'one'), (2, u'two')],
                                names=['foo', 'bar'])
>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
          labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
          names=['baz', u'quz'])
>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
          labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
          names=['baz', u'bar'])
```
pandas.TimedeltaIndex.set_value

TimedeltaIndex.set_value(arr, key, value)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.TimedeltaIndex.shift

TimedeltaIndex.shift(n, freq=None)
Specialized shift which produces a DatetimeIndex

Parameters
 n : int
 Periods to shift by
 freq : DateOffset or timedelta-like, optional

Returns
 shifted : DatetimeIndex

pandas.TimedeltaIndex.slice_indexer

TimedeltaIndex.slice_indexer(start=None, end=None, step=None)
For an ordered Index, compute the slice indexer for input labels and step

Parameters
 start : label, default None
 If None, defaults to the beginning
 end : label, default None
 If None, defaults to the end
 step : int, default None

Returns
 indexer : ndarray or slice

Notes
This function assumes that the data is sorted, so use at your own peril

pandas.TimedeltaIndex.slice_locs

TimedeltaIndex.slice_locs(start=None, end=None)
Index.slice_locs, customized to handle partial ISO-8601 string slicing

pandas.TimedeltaIndex.sort

TimedeltaIndex.sort(*args, **kwargs)

pandas.TimedeltaIndex.summary

TimedeltaIndex.summary(name=None)
pandas.TimedeltaIndex.sym_diff

TimedeltaIndex.sym_diff(other, result_name=None)
Compute the sorted symmetric difference of two Index objects.

Parameters
- other : array-like
- result_name : str

Returns
- sym_diff : Index

Notes

sym_diff contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by (idx1 - idx2) + (idx2 - idx1) with duplicates dropped.

The sorting of a result containing NaN values is not guaranteed across Python versions. See GitHub issue #6444.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.sym_diff(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the ^ operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```

pandas.TimedeltaIndex.take

TimedeltaIndex.take(indices, axis=0)
Analogous to ndarray.take

pandas.TimedeltaIndex.to_datetime

TimedeltaIndex.to_datetime(dayfirst=False)
For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

pandas.TimedeltaIndex.to_native_types

TimedeltaIndex.to_native_types(slicer=None, **kwargs)
slice and dice then format

pandas.TimedeltaIndex.to_pytimedelta

TimedeltaIndex.to_pytimedelta()
Return TimedeltaIndex as object ndarray of datetime.timedelta objects

Returns
- datetimes : ndarray

32.9. TimedeltaIndex
pandas.TimedeltaIndex.to_series

TimedeltaIndex.to_series(**kwargs)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Returns Series: dtype will be based on the type of the Index values.

pandas.TimedeltaIndex.tolist

TimedeltaIndex.tolist()
return a list of the underlying data

pandas.TimedeltaIndex.transpose

TimedeltaIndex.transpose()
return the transpose, which is by definition self

pandas.TimedeltaIndex.union

TimedeltaIndex.union(other)
Specialized union for TimedeltaIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union

Parameters other: TimedeltaIndex or array-like

Returns y: Index or TimedeltaIndex

pandas.TimedeltaIndex.unique

TimedeltaIndex.unique()
Index.unique with handling for DatetimeIndex/PeriodIndex metadata

Returns result: DatetimeIndex or PeriodIndex

pandas.TimedeltaIndex.value_counts

TimedeltaIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize: boolean, default False
If True then the object returned will contain the relative frequencies of the unique values.

sort: boolean, default True
Sort by values

ascending: boolean, default False
Sort in ascending order
bins: integer, optional
 Rather than count values, group them into half-open bins, a convenience for
pd.cut, only works with numeric data

dropna: boolean, default True
 Don’t include counts of NaN.

Returns counts: Series

pandas.TimedeltaIndex.view

TimedeltaIndex.view(cls=None)

32.9.2 Components

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimedeltaIndex.days</td>
<td>The number of integer days for each element</td>
</tr>
<tr>
<td>TimedeltaIndex.hours</td>
<td>The number of integer hours for each element</td>
</tr>
<tr>
<td>TimedeltaIndex.minutes</td>
<td>The number of integer minutes for each element</td>
</tr>
<tr>
<td>TimedeltaIndex.seconds</td>
<td>The number of integer seconds for each element</td>
</tr>
<tr>
<td>TimedeltaIndex.milliseconds</td>
<td>The number of integer milliseconds for each element</td>
</tr>
<tr>
<td>TimedeltaIndex.microseconds</td>
<td>The number of integer microseconds for each element</td>
</tr>
<tr>
<td>TimedeltaIndex.nanoseconds</td>
<td>The number of integer nanoseconds for each element</td>
</tr>
<tr>
<td>TimedeltaIndex.components</td>
<td>Return a dataframe of the components of the Timedeltas</td>
</tr>
</tbody>
</table>

pandas.TimedeltaIndex.days

TimedeltaIndex.days
 The number of integer days for each element

pandas.TimedeltaIndex.hours

TimedeltaIndex.hours
 The number of integer hours for each element

pandas.TimedeltaIndex.minutes

TimedeltaIndex.minutes
 The number of integer minutes for each element

pandas.TimedeltaIndex.seconds

TimedeltaIndex.seconds
 The number of integer seconds for each element

pandas.TimedeltaIndexmilliseconds

TimedeltaIndexmilliseconds
 The number of integer milliseconds for each element

32.9. TimedeltaIndex
pandas.TimedeltaIndex.microseconds

TimedeltaIndex.**microseconds**

The number of integer microseconds for each element

pandas.TimedeltaIndex.nanoseconds

TimedeltaIndex.**nanoseconds**

The number of integer nanoseconds for each element

pandas.TimedeltaIndex.components

TimedeltaIndex.**components**

Return a dataframe of the components of the Timedeltas

Returns a DataFrame

32.9.3 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimedeltaIndex.to_pytimedelta()</td>
<td>Return TimedeltaIndex as object ndarray of datetime.timedelta objects</td>
</tr>
<tr>
<td>TimedeltaIndex.to_series(kwargs)</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
</tbody>
</table>

pandas.TimedeltaIndex.to_pytimedelta

TimedeltaIndex.**to_pytimedelta()**

Return TimedeltaIndex as object ndarray of datetime.timedelta objects

Returns datetimes : ndarray

pandas.TimedeltaIndex.to_series

TimedeltaIndex.**to_series(**kwargs**)**

Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Returns Series : dtype will be based on the type of the Index values.

32.10 GroupBy

GroupBy objects are returned by groupby calls:
pandas.DataFrame.groupby(),
pandas.Series.groupby(), etc.

32.10.1 Indexing, iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupBy.iter()</td>
<td>Groupby iterator</td>
</tr>
<tr>
<td>GroupBy.groups</td>
<td>dict {group name -> group labels}</td>
</tr>
</tbody>
</table>

Continued on next page
Table 32.104 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GroupBy.indices</code></td>
<td><code>dict {group name -> group indices}</code></td>
</tr>
<tr>
<td><code>GroupBy.get_group</code></td>
<td><code>Constructs NDFrame from group with provided name</code></td>
</tr>
</tbody>
</table>

pandas.core.groupby.GroupBy.__iter__

GroupBy.__iter__()

Returns
Generator yielding sequence of (name, subsetted object)
for each group

pandas.core.groupby.GroupBy.groups

GroupBy.groups
`dict {group name -> group labels}`

pandas.core.groupby.GroupBy.indices

GroupBy.indices
`dict {group name -> group indices}`

pandas.core.groupby.GroupBy.get_group

GroupBy.get_group(name[, obj])
`Constructs NDFrame from group with provided name`

Parameters

- `name` : object
The name of the group to get as a DataFrame
- `obj` : NDFrame, default None
The NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used

Returns

- `group` : type of obj

Grouper([key, level, freq, axis, sort])
A Grouper allows the user to specify a groupby instruction for a target object

pandas.Grouper

class pandas.Grouper (key=None, level=None, freq=None, axis=None, sort=False)
A Grouper allows the user to specify a groupby instruction for a target object

This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object.

These are local specifications and will override ‘global’ settings, that is the parameters axis and level which are passed to the groupby itself.

Parameters

- `key` : string, defaults to None
grouby key, which selects the grouping column of the target
level : name/number, defaults to None
 the level for the target index
freq : string / frequency object, defaults to None
 This will groupby the specified frequency if the target selection (via key or level) is
 a datetime-like object
axis : number/name of the axis, defaults to None
sort : boolean, default to False
 whether to sort the resulting labels
additional kwargs to control time-like groupers (when freq is passed)
closed : closed end of interval; left or right
label : interval boundary to use for labeling; left or right
convention : {'start', 'end', 'e', 's'}
 If grouper is PeriodIndex

Returns A specification for a groupby instruction

Examples

>>> df.groupby(Grouper(key='A')) : syntatic sugar for df.groupby('A')
>>> df.groupby(Grouper(key='date',freq='60s')) : specify a resample on the column 'date'
>>> df.groupby(Grouper(level='date',freq='60s',axis=1)) :
 specify a resample on the level 'date' on the columns axis with a frequency of 60s

Attributes

 ax
 groups

pandas.Grouper.ax

Grouper.ax

pandas.Grouper.groups

Grouper.groups

32.10.2 Function application

GroupBy.apply(func, *args, **kwargs) Apply function and combine results together in an intelligent way.
GroupBy.aggregate(func, *args, **kwargs)
GroupBy.transform(func, *args, **kwargs)
pandas.core.groupby.GroupBy.apply

GroupBy.apply(func, *args, **kwargs)

Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example:

- **Case 1**: Group DataFrame apply aggregation function (\(f(chunk) \rightarrow \text{Series}\)) yield DataFrame, with group axis having group labels
- **Case 2**: Group DataFrame apply transform function (\(f(chunk) \rightarrow \text{DataFrame with same indexes}\)) yield DataFrame with resulting chunks glued together
- **Case 3**: Group Series apply function with \(f(chunk) \rightarrow \text{DataFrame}\) yield DataFrame with result of chunks glued together

Parameters

- **func**: function

Returns

- **applied**: type depending on grouped object and function

See Also

- aggregate, transform

Notes

See online documentation for full exposition on how to use apply.

In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group.

pandas.core.groupby.GroupBy.aggregate

GroupBy.aggregate(func, *args, **kwargs)

pandas.core.groupby.GroupBy.transform

GroupBy.transform(func, *args, **kwargs)

32.10.3 Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupBy.count([axis])</td>
<td>Number each item in each group from 0 to the length of that group - 1.</td>
</tr>
<tr>
<td>GroupBy.cumcount(kwargs)</td>
<td>Number each item in each group from 0 to the length of that group - 1.</td>
</tr>
<tr>
<td>GroupBy.first()</td>
<td>Compute first of group values</td>
</tr>
<tr>
<td>GroupBy.head([n])</td>
<td>Returns first n rows of each group.</td>
</tr>
<tr>
<td>GroupBy.last()</td>
<td>Compute last of group values</td>
</tr>
<tr>
<td>GroupBy.max()</td>
<td>Compute max of group values</td>
</tr>
<tr>
<td>GroupBy.mean()</td>
<td>Compute mean of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.median()</td>
<td>Compute median of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.min()</td>
<td>Compute min of group values</td>
</tr>
<tr>
<td>GroupBy.nth(n[, dropna])</td>
<td>Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints.</td>
</tr>
<tr>
<td>GroupBy.ohlc()</td>
<td>Compute sum of values, excluding missing values</td>
</tr>
</tbody>
</table>
Table 32.108 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupBy.prod()</td>
<td>Compute prod of group values</td>
</tr>
<tr>
<td>GroupBy.size()</td>
<td>Compute group sizes</td>
</tr>
<tr>
<td>GroupBy.sem(ddof)</td>
<td>Compute standard error of the mean of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.std(ddof)</td>
<td>Compute standard deviation of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.sum()</td>
<td>Compute sum of group values</td>
</tr>
<tr>
<td>GroupBy.var(ddof)</td>
<td>Compute variance of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.tail(n)</td>
<td>Returns last n rows of each group</td>
</tr>
</tbody>
</table>

pandas.core.groupby.GroupBy.count

GroupBy.count(axis=0)

pandas.core.groupby.GroupBy.cumcount

GroupBy.cumcount(**kwargs)

Number each item in each group from 0 to the length of that group - 1.
Essentially this is equivalent to

```python
>>> self.apply(lambda x: Series(np.arange(len(x)), x.index))
```

Parameters

- ascending : bool, default True
 If False, number in reverse, from length of group - 1 to 0.

Examples

```python
>>> df = pd.DataFrame([['a'], ['a'], ['a'], ['b'], ['b'], ['a']],
                     columns=['A'])
>>> df.groupby('A').cumcount()
0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64
>>> df.groupby('A').cumcount(ascending=False)
0 3
1 2
2 1
3 1
4 0
5 0
dtype: int64
```
pandas.core.groupby.GroupBy.first

GroupBy.first()

Compute first of group values

pandas.core.groupby.GroupBy.head

GroupBy.head(n=5)

Returns first n rows of each group.

Essentially equivalent to .apply(lambda x: x.head(n)), except ignores as_index flag.

Examples

```python
>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
                 columns=[‘A’, ‘B’])
>>> df.groupby(‘A’, as_index=False).head(1)
   A  B
0  1  2
2  5  6
>>> df.groupby(‘A’).head(1)
   A  B
0  1  2
2  5  6
```

pandas.core.groupby.GroupBy.last

GroupBy.last()

Compute last of group values

pandas.core.groupby.GroupBy.max

GroupBy.max()

Compute max of group values

pandas.core.groupby.GroupBy.mean

GroupBy.mean()

Compute mean of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.median

GroupBy.median()

Compute median of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex
pandas.core.groupby.GroupBy.min

GroupBy.min()
Compute min of group values

pandas.core.groupby.GroupBy.nth

GroupBy.nth(n, dropna=None)
Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints.

If dropna, will take the nth non-null row, dropna is either Truthy (if a Series) or ‘all’, ‘any’ (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby.

Parameters
- n: int or list of ints
 a single nth value for the row or a list of nth values
- dropna: None or str, optional
 apply the specified dropna operation before counting which row is the nth row. Needs to be None, ‘any’ or ‘all’

Examples

```python
>>> df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
>>> g = df.groupby('A')
>>> g.nth(0)
   A  B
0 1  NaN
2 5  6
>>> g.nth(1)
   A  B
 1 1  4
>>> g.nth(-1)
   A  B
 1 1  4
 2 5  6
>>> g.nth(0, dropna='any')
   B
   A
 1 4
 5 6
>>> g.nth(1, dropna='any')  # NaNs denote group exhausted when using dropna
   B
   A
 1  NaN
 5  NaN
```

pandas.core.groupby.GroupBy.ohlc

GroupBy.ohlc()
Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex
pandas.core.groupby.GroupBy.prod

GroupBy.prod()
 Compute prod of group values

pandas.core.groupby.GroupBy.size

GroupBy.size()
 Compute group sizes

pandas.core.groupby.GroupBy.sem

GroupBy.sem(ddof=1)
 Compute standard error of the mean of groups, excluding missing values
 For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.std

GroupBy.std(ddof=1)
 Compute standard deviation of groups, excluding missing values
 For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.sum

GroupBy.sum()
 Compute sum of group values

pandas.core.groupby.GroupBy.var

GroupBy.var(ddof=1)
 Compute variance of groups, excluding missing values
 For multiple groupings, the result index will be a MultiIndex

pandas.core.groupby.GroupBy.tail

GroupBy.tail(n=5)
 Returns last n rows of each group
 Essentially equivalent to .apply(lambda x: x.tail(n)), except ignores as_index flag.

Examples

```python
>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
    columns=['A', 'B'])
>>> df.groupby('A', as_index=False).tail(1)
   A  B
0  1  2
2  5  6
```
The following methods are available in both SeriesGroupBy and DataFrameGroupBy objects, but may differ slightly, usually in that the DataFrameGroupBy version usually permits the specification of an axis argument, and often an argument indicating whether to restrict application to columns of a specific data type.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrameGroupBy.bfill</td>
<td>Synonym for NDFrame.fillna(method='bfill')</td>
</tr>
<tr>
<td>DataFrameGroupBy.cummax</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.cummin</td>
<td>Return cumulative min over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.cumprod</td>
<td>Return cumulative prod over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.cumsum</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.describe</td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td>DataFrameGroupBy.all</td>
<td>Return whether all elements are True over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.any</td>
<td>Return whether any element is True over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.corr</td>
<td>Compute pairwise correlation of columns, excluding NA/null values.</td>
</tr>
<tr>
<td>DataFrameGroupBy.cov</td>
<td>Compute pairwise covariance of columns, excluding NA/null values.</td>
</tr>
<tr>
<td>DataFrameGroupBy.diff</td>
<td>1st discrete difference of object.</td>
</tr>
<tr>
<td>DataFrameGroupBy.ffill</td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td>DataFrameGroupBy.fillna</td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td>DataFrameGroupBy.hist</td>
<td>Draw histogram of the DataFrame's series using matplotlib / pylab.</td>
</tr>
<tr>
<td>DataFrameGroupBy.idxmax</td>
<td>Return index of first occurrence of maximum over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.idxmin</td>
<td>Return index of first occurrence of minimum over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.irow</td>
<td>1.0 to i exclusive, 0 to i inclusive</td>
</tr>
<tr>
<td>DataFrameGroupBy.mad</td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td>DataFrameGroupBy.pct_change</td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td>DataFrameGroupBy.plot</td>
<td>Make plots of DataFrame using matplotlib / pylab.</td>
</tr>
<tr>
<td>DataFrameGroupBy.quantile</td>
<td>Return values at the given quantile over requested axis, a la numpy percentile</td>
</tr>
<tr>
<td>DataFrameGroupBy.rank</td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.resample</td>
<td>Convenience method for frequency conversion and resampling of regular data</td>
</tr>
<tr>
<td>DataFrameGroupBy.shift</td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td>DataFrameGroupBy.skew</td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td>DataFrameGroupBy.take</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>DataFrameGroupBy.tshift</td>
<td>Shift the time index, using the index’s frequency if available.</td>
</tr>
</tbody>
</table>

pandas.core.groupby.DataFrameGroupBy.bfill

DataFrameGroupBy.bfill(axis=0, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.core.groupby.DataFrameGroupBy.cummax

DataFrameGroupBy.cummax(axis=None, dtype=None, out=None, skipna=True)
Return cumulative max over requested axis.

- **Parameters**
 - axis: {index (0), columns (1)}
 - skipna: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **Returns**
 - max: Series
pandas.core.groupby.DataFrameGroupBy.cummin

DataFrameGroupBy.cummin(axis=None, dtype=None, out=None, skipna=True)

Return cumulative min over requested axis.

Parameters

axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns min : Series

pandas.core.groupby.DataFrameGroupBy.cumprod

DataFrameGroupBy.cumprod(axis=None, dtype=None, out=None, skipna=True)

Return cumulative prod over requested axis.

Parameters

axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns prod : Series

pandas.core.groupby.DataFrameGroupBy.cumsum

DataFrameGroupBy.cumsum(axis=None, dtype=None, out=None, skipna=True)

Return cumulative sum over requested axis.

Parameters

axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns sum : Series

pandas.core.groupby.DataFrameGroupBy.describe

DataFrameGroupBy.describe(percentile_width=None, percentiles=None, include=None, exclude=None)

Generate various summary statistics, excluding NaN values.

Parameters

percentile_width : float, deprecated

The percentile_width argument will be removed in a future version. Use percentiles instead. width of the desired uncertainty interval, default is 50, which corresponds to lower=25, upper=75

percentiles : array-like, optional

The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

include, exclude : list-like, ‘all’, or None (default)

Specify the form of the returned result. Either:

• None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
- A list of dtypes or strings to be included/excluded. To select all numeric types use numpy number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])
- If include is the string ‘all’, the output column-set will match the input one.

Returns summary: NDFrame of summary statistics

See Also:
DataFrame.select_dtypes

Notes

The output DataFrame index depends on the requested dtypes:
For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.
For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.
For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.
The include, exclude arguments are ignored for Series.

pandas.core.groupby.DataFrameGroupBy.all

DataFrameGroupBy.all(axis=None, bool_only=None, skipna=True, level=None)
Return whether all elements are True over requested axis. %(na_action)s

Parameters
axis : {0, 1}
 0 for row-wise, 1 for column-wise
skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
bool_only : boolean, default None
 Only include boolean data.

Returns
any : Series (or DataFrame if level specified)

pandas.core.groupby.DataFrameGroupBy.any

DataFrameGroupBy.any(axis=None, bool_only=None, skipna=True, level=None)
Return whether any element is True over requested axis. %(na_action)s

Parameters
axis : {0, 1}
 0 for row-wise, 1 for column-wise
skipna : boolean, default True
Explain NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame

bool_only: boolean, default None
Only include boolean data.

Returns any : Series (or DataFrame if level specified)

pandas.core.groupby.DataFrameGroupBy.corr

DataFrameGroupBy.corr(method='pearson', min_periods=1)
Compute pairwise correlation of columns, excluding NA/null values

Parameters method : {'pearson', 'kendall', 'spearman'}
- pearson : standard correlation coefficient
- kendall : Kendall Tau correlation coefficient
- spearman : Spearman rank correlation

min_periods : int, optional
Minimum number of observations required per pair of columns to have a valid result.
Currently only available for pearson and spearman correlation

Returns y : DataFrame

pandas.core.groupby.DataFrameGroupBy.cov

DataFrameGroupBy.cov(min_periods=None)
Compute pairwise covariance of columns, excluding NA/null values

Parameters min_periods : int, optional
Minimum number of observations required per pair of columns to have a valid result.

Returns y : DataFrame

Notes

y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator).

pandas.core.groupby.DataFrameGroupBy.diff

DataFrameGroupBy.diff(periods=1)
1st discrete difference of object

Parameters periods : int, default 1
Periods to shift for forming difference

Returns diffed : DataFrame
pandas.core.groupby.DataFrameGroupBy.ffill

DataFrameGroupBy.ffill(\texttt{axis=0, inplace=False, limit=None, downcast=None})

Synonym for NDFrame.fillna(method='ffill')

pandas.core.groupby.DataFrameGroupBy.fillna

DataFrameGroupBy.fillna(\texttt{value=None, method=None, axis=0, inplace=False, limit=None, downcast=None})

Fill NA/NaN values using the specified method

\begin{description}
\item[Parameters] \texttt{method : \{‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None\}, default None}
\item[Method to use for filling holes in reindexed Series] pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
\item[value : scalar, dict, Series, or DataFrame]
\item[Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.]
\item[axis : \{0, 1\}, default 0]
\item[\textbullet \ 0: fill column-by-column]
\item[\textbullet \ 1: fill row-by-row]
\item[inplace : boolean, default False]
\item[If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).]
\item[limit : int, default None]
\item[Maximum size gap to forward or backward fill]
\item[downcast : dict, default is None]
\item[a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)]
\end{description}

\begin{quote}
\textbf{Returns} \texttt{filled : same type as caller}
\end{quote}

See Also:

reindex, asfreq

pandas.core.groupby.DataFrameGroupBy.hist

DataFrameGroupBy.hist(\texttt{data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10})

Draw histogram of the DataFrame’s series using matplotlib / pylab.

\begin{description}
\item[Parameters] \texttt{data : DataFrame}
\item[column : string or sequence]
\item[If passed, will be used to limit data to a subset of columns]
\end{description}
by : object, optional
 If passed, then used to form histograms for separate groups
grid : boolean, default True
 Whether to show axis grid lines
xlabelsize : int, default None
 If specified changes the x-axis label size
xrot : float, default None
 rotation of x axis labels
ylabelsize : int, default None
 If specified changes the y-axis label size
yrot : float, default None
 rotation of y axis labels
ax : matplotlib axes object, default None
sharex : bool, if True, the X axis will be shared amongst all subplots.
sharey : bool, if True, the Y axis will be shared amongst all subplots.
figsize : tuple
 The size of the figure to create in inches by default
layout: (optional) a tuple (rows, columns) for the layout of the histograms
bins: integer, default 10
 Number of histogram bins to be used
kwds : other plotting keyword arguments
 To be passed to hist function

```
pandas.core.groupby.DataFrameGroupBy.idxmax
```

DataFrameGroupBy.idxmax(axis=0, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

Parameters axis : {0, 1}
 0 for row-wise, 1 for column-wise
skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be first index.

Returns idxmax : Series

See Also: Series.idxmax

Notes

This method is the DataFrame version of ndarray.argmax.
pandas.core.groupby.DataFrameGroupBy.idxmin

DataFrameGroupBy.idxmin \((axis=0, \text{skipna}=\text{True}) \)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters
- **axis**: \{0, 1\}
 - 0 for row-wise, 1 for column-wise
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- **idxmin**: Series

See Also
Series.idxmin

Notes
This method is the DataFrame version of ndarray.argmin.

pandas.core.groupby.DataFrameGroupBy.irow

DataFrameGroupBy.irow \((i, \text{copy}=\text{False}) \)

pandas.core.groupby.DataFrameGroupBy.mad

DataFrameGroupBy.mad \((axis=\text{None}, \text{skipna}=\text{None}, \text{level}=\text{None}) \)
Return the mean absolute deviation of the values for the requested axis

Parameters
- **axis**: \{index (0), columns (1)\}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns
- **mad**: Series or DataFrame (if level specified)

pandas.core.groupby.DataFrameGroupBy.pct_change

DataFrameGroupBy.pct_change \((\text{periods}=1, \text{fill_method}=\text{’pad’}, \text{limit}=\text{None}, \text{freq}=\text{None}) \)
Percent change over given number of periods.

Parameters
- **periods**: int, default 1
 - Periods to shift for forming percent change
- **fill_method**: str, default ‘pad’
How to handle NAs before computing percent changes

limit : int, default None
The number of consecutive NAs to fill before stopping

freq : DateOffset, timedelta, or offset alias string, optional
Increment to use from time series API (e.g. ‘M’ or BDay())

Returns

chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the `axis` keyword argument.

pandas.core.groupby.DataFrameGroupBy.plot

DataFrameGroupBy.plot (data=x=None, y=None, kind='line', ax=None, subplots=False, sharex=True, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False)

Make plots of DataFrame using matplotlib / pylab.

Parameters

data : DataFrame

x : label or position, default None

y : label or position, default None

Allows plotting of one column versus another

kind : str

• ‘line’ : line plot (default)

• ‘bar’ : vertical bar plot

• ‘barh’ : horizontal bar plot

• ‘hist’ : histogram

• ‘box’ : boxplot

• ‘kde’ : Kernel Density Estimation plot

• ‘density’ : same as ‘kde’

• ‘area’ : area plot

• ‘pie’ : pie plot

• ‘scatter’ : scatter plot

• ‘hexbin’ : hexbin plot

ax : matplotlib axes object, default None

subplots : boolean, default False

Make separate subplots for each column
sharex : boolean, default True
In case subplots=True, share x axis

sharey : boolean, default False
In case subplots=True, share y axis

layout : tuple (optional)
(rows, columns) for the layout of subplots

figsize : a tuple (width, height) in inches

use_index : boolean, default True
Use index as ticks for x axis

title : string
Title to use for the plot

grid : boolean, default None (matlab style default)
Axis grid lines

legend : False/True/'reverse'
Place legend on axis subplots

style : list or dict
matplotlib line style per column

logx : boolean, default False
Use log scaling on x axis

logy : boolean, default False
Use log scaling on y axis

loglog : boolean, default False
Use log scaling on both x and y axes

xticks : sequence
Values to use for the xticks

yticks : sequence
Values to use for the yticks

xlim : 2-tuple/list

ylim : 2-tuple/list

rot : int, default None
Rotation for ticks

fontsize : int, default None
Font size for ticks

colormap : str or matplotlib colormap object, default None
Colormap to select colors from. If string, load colormap with that name from matplotlib.
colorbar : boolean, optional
 If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

position : float
 Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1
 (right/top-end). Default is 0.5 (center)

layout : tuple (optional)
 (rows, columns) for the layout of the plot

table : boolean, Series or DataFrame, default False
 If True, draw a table using the data in the DataFrame and the data will be transposed
 to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed
 data to draw a table.

yerr : DataFrame, Series, array-like, dict and str
 See Plotting with Error Bars for detail.

xerr : same types as yerr.

stacked : boolean, default False in line and
 bar plots, and True in area plot. If True, create stacked plot.

sort_columns : boolean, default False
 Sort column names to determine plot ordering

secondary_y : boolean or sequence, default False
 Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on
 secondary y-axis

mark_right : boolean, default True
 When using a secondary_y axis, automatically mark the column labels with “(right)”
 in the legend

kwds : keywords
 Options to pass to matplotlib plotting method

Returns axes : matplotlib.AxesSubplot or np.array of them

Notes

• See matplotlib documentation online for more on this subject
• If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword.
 From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
• If kind = ‘scatter’ and the argument c is the name of a dataframe column, the values of that column are
 used to color each point.
• If kind = ‘hexbin’, you can control the size of the bins with the gridsize argument. By default, a hist-
 ogram of the counts around each (x, y) point is computed. You can specify alternative aggregations by
 passing values to the C and reduce_C_function arguments. C specifies the value at each (x, y) point and
 reduce_C_function is a function of one argument that reduces all the values in a bin to a single number
 (e.g. mean, max, sum, std).
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.core.groupby.DataFrameGroupBy.quantile

DataFrameGroupBy.quantile(q=0.5, axis=0, numeric_only=True)

Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters q : float or array-like, default 0.5 (50% quantile)

0 <= q <= 1, the quantile(s) to compute

axis : {0, 1}

0 for row-wise, 1 for column-wise

Returns quantiles : Series or DataFrame

If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Examples

```python
grouped = df.groupby('A')
grouped.quantile(0.5)
grouped.quantile([0.5, 0.1])
```

pandas.core.groupby.DataFrameGroupBy.rank

DataFrameGroupBy.rank(axis=0, numeric_only=None, method='average', na_option='keep', ascending=True, pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

Parameters axis : {0, 1}, default 0

Ranks over columns (0) or rows (1)

numeric_only : boolean, default None

Include only float, int, boolean data

method : {'average', 'min', 'max', 'first', 'dense'}

- average: average rank of group
- min: lowest rank in group
- max: highest rank in group
- first: ranks assigned in order they appear in the array
- dense: like 'min', but rank always increases by 1 between groups

na_option : {'keep', 'top', 'bottom'}

- keep: leave NA values where they are
• top: smallest rank if ascending
• bottom: smallest rank if descending

ascending : boolean, default True
False for ranks by high (1) to low (N)

pct : boolean, default False
Computes percentage rank of data

Returns
ranks : DataFrame

pandas.core.groupby.DataFrameGroupBy.resample

DataFrameGroupBy.**resample**(rule=None, how=None, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0)

Convenience method for frequency conversion and resampling of regular time-series data.

Parameters
- **rule** : string
 the offset string or object representing target conversion
- **how** : string
 method for down- or re-sampling, default to ‘mean’ for downsampling
- **axis** : int, optional, default 0
- **fill_method** : string, default None
 fill_method for upsampling
- **closed** : {'right', 'left'}
 Which side of bin interval is closed
- **label** : {'right', 'left'}
 Which bin edge label to label bucket with
- **convention** : {'start', 'end', 's', 'e'}
- **kind** : “period”/“timestamp”
- **loffset** : timedelta
 Adjust the resampled time labels
- **limit** : int, default None
 Maximum size gap to when reindexing with fill_method
- **base** : int, default 0
 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals.
 For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

pandas.core.groupby.DataFrameGroupBy.shift

DataFrameGroupBy.**shift**(periods=1, freq=None, axis=0)
Shift index by desired number of periods with an optional time freq

Parameters
- **periods** : int
Number of periods to move, can be positive or negative

`freq` : DateOffset, timedelta, or time rule string, optional

Increment to use from datetools module or time rule (e.g. ‘EOM’). See Notes.

Returns shifted : same type as caller

Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

pandas.core.groupby.DataFrameGroupBy.skew

`DataFrameGroupBy.skew(axis=None, skipna=None, level=None, numeric_only=None)`

Return unbiased skew over requested axis Normalized by N-1

Parameters

- **axis** : {index (0), columns (1)}
- **skipna** : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only** : boolean, default None
 - Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data

Returns skew : Series or DataFrame (if level specified)

pandas.core.groupby.DataFrameGroupBy.take

`DataFrameGroupBy.take(indices, axis=0, convert=True, is_copy=True)`

Analogous to ndarray.take

Parameters

- **indices** : list / array of ints
- **axis** : int, default 0
- **convert** : translate neg to pos indices (default)
- **is_copy** : mark the returned frame as a copy

Returns taken : type of caller

pandas.core.groupby.DataFrameGroupBy.tshift

`DataFrameGroupBy.tshift(periods=1, freq=None, axis=0)`

Shift the time index, using the index’s frequency if available

Parameters

- **periods** : int
 - Number of periods to move, can be positive or negative
freq : DateOffset, timedelta, or time rule string, default None

Increment to use from datetools module or time rule (e.g. ‘EOM’)

axis : int or basestring

Corresponds to the axis that contains the Index

Returns shifted : NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown.

The following methods are available only for SeriesGroupBy objects.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeriesGroupBy.nlargest([n, take_last])</td>
<td>Return the largest n elements.</td>
</tr>
<tr>
<td>SeriesGroupBy.nsmallest([n, take_last])</td>
<td>Return the smallest n elements.</td>
</tr>
<tr>
<td>SeriesGroupBy.nunique([dropna])</td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td>SeriesGroupBy.unique()</td>
<td>Return array of unique values in the object.</td>
</tr>
<tr>
<td>SeriesGroupBy.value_counts([normalize, ...])</td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

pandas.core.groupby.SeriesGroupBy.nlargest

SeriesGroupBy.nlargest (n=5, take_last=False)

Return the largest n elements.

Parameters n : int

Return this many descending sorted values

take_last : bool

Where there are duplicate values, take the last duplicate

Returns top_n : Series

The n largest values in the Series, in sorted order

See Also:

Series.nsmallest

Notes

Faster than .order(ascending=False).head(n) for small n relative to the size of the Series object.

Examples

```python
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(1e6))
>>> s.nlargest(10)  # only sorts up to the N requested
```

32.10. GroupBy
pandas.core.groupby.SeriesGroupBy.nsmallest

SeriesGroupBy.nsmallest(n=5, take_last=False)
Return the smallest n elements.

Parameters n : int
 Return this many ascending sorted values

take_last : bool
 Where there are duplicate values, take the last duplicate

Returns bottom_n : Series
 The n smallest values in the Series, in sorted order

See Also:
Series.nlargest

Notes

Faster than .order().head(n) for small n relative to the size of the Series object.

Examples

>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(1e6))
>>> s.nsmallest(10) # only sorts up to the N requested

pandas.core.groupby.SeriesGroupBy.nunique

SeriesGroupBy.nunique(dropna=True)
Return number of unique elements in the object.
Excludes NA values by default.

Parameters dropna : boolean, default True
 Don’t include NaN in the count.

Returns nunique : int

pandas.core.groupby.SeriesGroupBy.unique

SeriesGroupBy.unique()
Return array of unique values in the object. Significantly faster than numpy.unique. Includes NA values.

Returns uniques : ndarray
pandas.core.groupby.SeriesGroupBy.value_counts

SeriesGroupBy.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters

normalize : boolean, default False
 If True then the object returned will contain the relative frequencies of the unique values.

sort : boolean, default True
 Sort by values

ascending : boolean, default False
 Sort in ascending order

bins : integer, optional
 Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

dropna : boolean, default True
 Don’t include counts of NaN.

Returns

counts : Series

The following methods are available only for DataFrameGroupBy objects.

DataFrameGroupBy.corrwith(other[, axis, drop])
 Compute pairwise correlation between rows or columns of two DataFrame objects.

DataFrameGroupBy.boxplot(grouped[,...])
 Make box plots from DataFrameGroupBy data.

pandas.core.groupby.DataFrameGroupBy.corrwith

DataFrameGroupBy.corrwith(other, axis=0, drop=False)
 Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters

other : DataFrame

axis : {0, 1}
 0 to compute column-wise, 1 for row-wise

drop : boolean, default False
 Drop missing indices from result, default returns union of all

Returns

correls : Series

pandas.core.groupby.DataFrameGroupBy.boxplot

DataFrameGroupBy.boxplot(grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, **kwds)

Make box plots from DataFrameGroupBy data.

Parameters

grouped : Grouped DataFrame
subplots :
 - False - no subplots will be used
 - True - create a subplot for each group

column : column name or list of names, or vector
 Can be any valid input to groupby

fontsize : int or string

rot : label rotation angle

grid : Setting this to True will show the grid

figsize : A tuple (width, height) in inches

layout : tuple (optional)
 (rows, columns) for the layout of the plot

kwds : other plotting keyword arguments to be passed to matplotlib boxplot function

Returns dict of key/value = group key/DataFrame.boxplot return value
 or DataFrame.boxplot return value in case subplots=figures=False

Examples

```python
>>> import pandas
>>> import numpy as np
>>> import itertools

>>> tuples = [(t for t in itertools.product(range(1000), range(4)))]
>>> index = pandas.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1'])
>>> data = np.random.randn(len(index),4)
>>> df = pandas.DataFrame(data, columns=list('ABCD'), index=index)

>>> grouped = df.groupby(level='lvl1')
>>> boxplot_frame_groupby(grouped)

>>> grouped = df.unstack(level='lvl1').groupby(level=0, axis=1)
>>> boxplot_frame_groupby(grouped, subplots=False)
```

32.11 General utility functions

32.11.1 Working with options

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>describe_option</td>
<td>Prints the description for one or more registered options.</td>
</tr>
<tr>
<td>reset_option</td>
<td>Reset one or more options to their default value.</td>
</tr>
<tr>
<td>get_option</td>
<td>Retrieves the value of the specified option.</td>
</tr>
<tr>
<td>set_option</td>
<td>Sets the value of the specified option.</td>
</tr>
<tr>
<td>option_context</td>
<td>Context manager to temporarily set options in the with statement context.</td>
</tr>
</tbody>
</table>
pandas.describe_option

pandas.describe_option(pat, _print_desc=False) = <pandas.core.config.CallableDynamicDoc object at 0xb54b3d0c>

Prints the description for one or more registered options.

Call with not arguments to get a listing for all registered options.

Available options:

- display.chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width
- io.excel.xls.[writer]
- io.excel.xlsm.[writer]
- io.excel.xlsx.[writer]
- io.hdf.[default_format, dropna_table]
- mode.[chained_assignment, sim_interactive, use_inf_as_null]

Parameters

pat : str

Regexp pattern. All matching keys will have their description displayed.

_print_desc : bool, default True

If True (default) the description(s) will be printed to stdout. Otherwise, the description(s) will be returned as a unicode string (for testing).

Returns

None by default, the description(s) as a unicode string if _print_desc is False

Notes

The available options with its descriptions:

display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]
display.colheader_justify ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]
display.column_space No description available. [default: 12] [currently: 12]
display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]
display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]
display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]
display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]
display.float_format [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None]

display.height [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)

display.large_repr ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “...” placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of “...” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: default]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]
display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

pandas.reset_option

pandas.reset_option(pat) = <pandas.core.config.CallableDynamicDoc object at 0xb54b3cec>

Reset one or more options to their default value.

Pass “all” as argument to reset all options.

Available options:

- **display.**[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width]
- **io.excel.xls.[writer]**
- **io.excel.xlsm.[writer]**
- **io.excel.xlsx.[writer]**
- **io.hdf.[default_format, dropna_table]**
- **mode.[chained_assignment, sim_interactive, use_inf_as_null]**

Parameters pat : str/regex
If specified only options matching `prefix*` will be reset. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. `x.y.z.option_name`), your code may break in future versions if new options with similar names are introduced.

Returns None

Notes

The available options with its descriptions:

- **display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

- **display.colheader_justify** [‘left’/’right’] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

- **display.column_space** No description available. [default: 12] [currently: 12]

- **display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

- **display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

- **display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

- **display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, `max_columns` is still respected, but the output will wrap-around across multiple “pages” if its width exceeds `display.width`. [default: True] [currently: True]

- **display.float_format** [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None]

- **display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use `display.max_rows` instead.)

- **display.large_repr** [‘truncate’/’info’] For DataFrames exceeding `max_rows/max_cols`, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

- **display.line_width** [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use `display.width` instead.)

- **display.max_categories** [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

- **display.max_columns** [int] If `max_cols` is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

 In case python/IPython is running in a terminal and `large_repr` equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

- **display.max_colwidth** [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “...” placeholder is embedded in the output. [default: 50] [currently: 50]

- **display.max_info_columns** [int] `max_info_columns` is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]
pandas: powerful Python data analysis toolkit, Release 0.15.1

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ‘...’ to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: default]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]
mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

pandas.get_option

pandas.get_option(pat) = <pandas.core.config.CallableDynamicDoc object at 0xb54b3cac>
Retrieves the value of the specified option.

Available options:

- `display.chop_threshold`, `colheader_justify`, `column_space`, `date_dayfirst`, `date_yearfirst`, `encoding`, `expand_frame_repr`, `float_format`, `height`, `large_repr`, `line_width`, `max_categories`, `max_columns`, `max_colwidth`, `max_info_columns`, `max_info_rows`, `max_rows`, `max_seq_items`, `memory_usage`, `mpl_style`, `multi_sparse`, `notebook_repr_html`, `pprint_nest_depth`, `precision`, `show_dimensions`, `width`

- `io.excel.xls.[writer]`
- `io.excel.xlsm.[writer]`
- `io.excel.xlsx.[writer]`
- `io.hdf.[default_format, dropna_table]`
- `mode.[chained_assignment, sim_interactive, use_inf_as_null]`

Parameters pat : str

Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.

Returns result : the value of the option

Raises OptionError : if no such option exists

Notes

The available options with its descriptions:

- `display.chop_threshold` [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

- `display.colheader_justify` ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

- `display.column_space` No description available. [default: 12] [currently: 12]

- `display.date_dayfirst` [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

- `display.date_yearfirst` [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

- `display.encoding` [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]
display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]

display.float_format [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None]

display.height [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)

display.large_repr [‘truncate’/’info’] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a “…” placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”…” to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: default]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]
display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True]

mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

mode.use_inf_as_null [boolean] True means treats None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

pandas.set_option

```
pandas.set_option (pat, value) = <pandas.core.config.CallableDynamicDoc object at 0xb54b3ccc>
```

Sets the value of the specified option.

Available options:

- **display.chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr, line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions, width**

- **io.excel.xls.[writer]**

- **io.excel.xlsm.[writer]**

- **io.excel.xlsx.[writer]**

- **io.hdf.[default_format, dropna_table]**

- **mode.[chained_assignment, sim_interactive, use_inf_as_null]**

Parameters

- **pat** : str
Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.

value:

new value of option.

Returns None

Raises OptionError if no such option exists

Notes

The available options with its descriptions:

- **display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

- **display.colheader_justify** ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

- **display.column_space** No description available. [default: 12] [currently: 12]

- **display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

- **display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

- **display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

- **display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]

- **display.float_format** [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See core.format.EngFormatter for an example. [default: None] [currently: None]

- **display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)

- **display.large_repr** ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

- **display.line_width** [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

- **display.max_categories** [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

- **display.max_columns** [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

 In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]
display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height.
The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: default]

display.multi_sparse [boolean] "sparsify" MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

display.pprint_nest_depth [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precision [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 7] [currently: 7]

display.show_dimensions [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.width [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

io.hdf.default_format [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]
io.hdf.dropna_table [boolean] drop ALL nan rows when appending to a table [default: True] [currently: True]
mode.chained_assignment [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]
mode.sim_interactive [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]
mode.use_inf_as_null [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

pandas.option_context

class pandas.option_context (*args)
 Context manager to temporarily set options in the with statement context.
 You need to invoke as option_context(pat, val, [(pat, val), ...]).

 Examples

 >>> with option_context('display.max_rows', 10, 'display.max_columns', 5):
 ...

pandas.core.common.isnull

pandas.core.common.isnull (obj)
 Detect missing values (NaN in numeric arrays, None/NaN in object arrays)
 Parameters arr : ndarray or object value
 Object to check for null-ness
 Returns isnulled : array-like of bool or bool
 Array or bool indicating whether an object is null or if an array is given which of the
 element is null.

 See Also:

 pandas.notnull boolean inverse of pandas.isnull

pandas.core.common.notnull

pandas.core.common.notnull (obj)
 Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.
 Parameters arr : ndarray or object value
 Object to check for not-null-ness
 Returns isnull : array-like of bool or bool
 Array or bool indicating whether an object is not null or if an array is given which of the
 element is not null.

 See Also:

 pandas.isnull boolean inverse of pandas.notnull

32.11. General utility functions
pandas.core.reshape.get_dummies

Convert categorical variable into dummy/indicator variables

Parameters
- `data`: array-like, Series, or DataFrame
- `prefix`: string, list of strings, or dict of strings, default None
 - String to append DataFrame column names. Pass a list with length equal to the number of columns when calling `get_dummies` on a DataFrame. Alternatively, `prefix` can be a dictionary mapping column names to prefixes.
- `prefix_sep`: string, default `_`
 - If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix`.
- `dummy_na`: bool, default False
 - Add a column to indicate NaNs, if False NaNs are ignored.
- `columns`: list-like, default None
 - Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted.

Returns
- `dummies`: DataFrame

Examples

```python
>>> import pandas as pd

>>> s = pd.Series(list('abca'))

>>> get_dummies(s)
   a  b  c
0  1  0  0
1  0  1  0
2  0  0  1
3  1  0  0

>>> sl = ['a', 'b', np.nan]

>>> get_dummies(sl)
   a  b
0  1  0
1  0  1
2  0  0

>>> get_dummies(sl, dummy_na=True)
   a  b  NaN
0  1  0  0
1  0  1  0
2  0  0  1

>>> df = DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]})
```
>>> get_dummies(df, prefix=['col1', 'col2']):
 C col1_a col1_b col2_a col2_b col2_c
 0 1 1 0 0 1 0
 1 2 0 1 1 0 0
 2 3 1 0 0 0 1

See also Series.str.get_dummies.

pandas.io.clipboard.read_clipboard

pandas.io.clipboard.read_clipboard(**kwargs)
Read text from clipboard and pass to read_table. See read_table for the full argument list
If unspecified, sep defaults to ‘s+

Returns parsed : DataFrame

pandas.io.excel.ExcelFile.parse

ExcelFile.parse(sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None,
parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None,
chunksize=None, convert_float=True, has_index_names=False, **kwds)
Read an Excel table into DataFrame

Parameters sheetname : string or integer
 Name of Excel sheet or the page number of the sheet

header : int, default 0
 Row to use for the column labels of the parsed DataFrame

skiprows : list-like
 Rows to skip at the beginning (0-indexed)

skip_footer : int, default 0
 Rows at the end to skip (0-indexed)

index_col : int, default None
 Column to use as the row labels of the DataFrame. Pass None if there is no such column

parse_cols : int or list, default None
 • If None then parse all columns
 • If int then indicates last column to be parsed
 • If list of ints then indicates list of column numbers to be parsed
 • If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

parse_dates : boolean, default False
 Parse date Excel values,

date_parser : function default None
 Date parsing function
pandas: powerful Python data analysis toolkit, Release 0.15.1

- **na_values**: list-like, default None
 - List of additional strings to recognize as NA/NaN
- **thousands**: str, default None
 - Thousands separator
- **chunksize**: int, default None
 - Size of file chunk to read for lazy evaluation.
- **convert_float**: boolean, default True
 - Convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally.
- **has_index_names**: boolean, default False
 - True if the cols defined in index_col have an index name and are not in the header

Returns
- **parsed**: DataFrame
 - DataFrame parsed from the Excel file

pandas.io.excel.read_excel

pandas.io.excel.read_excel(io, sheetname=0, **kwds)

Read an Excel table into a pandas DataFrame

Parameters
- **io**: string, file-like object, or xlrd workbook.
 - The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx
- **sheetname**: string or int, default 0
 - Name of Excel sheet or the page number of the sheet
- **header**: int, default 0
 - Row to use for the column labels of the parsed DataFrame
- **skiprows**: list-like
 - Rows to skip at the beginning (0-indexed)
- **skip_footer**: int, default 0
 - Rows at the end to skip (0-indexed)
- **index_col**: int, default None
 - Column to use as the row labels of the DataFrame. Pass None if there is no such column
- **parse_cols**: int or list, default None
 - If None then parse all columns,
 - If int then indicates last column to be parsed
 - If list of ints then indicates list of column numbers to be parsed
 - If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)
pandas: powerful Python data analysis toolkit, Release 0.15.1

na_values: list-like, default None

List of additional strings to recognize as NA/NaN

keep_default_na: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to

verbose: boolean, default False

Indicate number of NA values placed in non-numeric columns

engine: string, default None

If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd

convert_float: boolean, default True

Convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally

has_index_names: boolean, default False

True if the cols defined in index_col have an index name and are not in the header. Index name will be placed on a separate line below the header.

Returns

parsed: DataFrame

DataFrame from the passed in Excel file

pandas.io.html.read_html

`pandas.io.html.read_html(io, match='.+', flavor=None, header=None, index_col=None, skiprows=None, infer_types=None, attrs=None, parse_dates=False, tupleize_cols=False, thousands=' ', encoding=None)`

Read HTML tables into a list of DataFrame objects.

Parameters

io: str or file-like

A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts the http, ftp and file url protocols. If you have a URL that starts with `'https'` you might try removing the `'s'`.

match: str or compiled regular expression, optional

The set of tables containing text matching this regex or string will be returned. Unless the HTML is extremely simple you will probably need to pass a non-empty string here. Defaults to `'.'+` (match any non-empty string). The default value will return all tables contained on a page. This value is converted to a regular expression so that there is consistent behavior between Beautiful Soup and lxml.

flavor: str or None, container of strings

The parsing engine to use. `'bs4'` and `'html5lib'` are synonymous with each other, they are both there for backwards compatibility. The default of `None` tries to use lxml to parse and if that fails it falls back on bs4 + html5lib.

header: int or list-like or None, optional

The row (or list of rows for a MultiIndex) to use to make the columns headers.

index_col: int or list-like or None, optional
The column (or list of columns) to use to create the index.

skiprows : int or list-like or slice or None, optional

0-based. Number of rows to skip after parsing the column integer. If a sequence of integers or a slice is given, will skip the rows indexed by that sequence. Note that a single element sequence means ‘skip the nth row’ whereas an integer means ‘skip n rows’.

infer_types : None, optional

This has no effect since 0.15.0. It is here for backwards compatibility.

attrs : dict or None, optional

This is a dictionary of attributes that you can pass to use to identify the table in the HTML. These are not checked for validity before being passed to lxml or BeautifulSoup. However, these attributes must be valid HTML table attributes to work correctly. For example,

```python
attrs = {'id': 'table'}
```

is a valid attribute dictionary because the ‘id’ HTML tag attribute is a valid HTML attribute for any HTML tag as per this document.

```python
attrs = {'asdf': 'table'}
```

is not a valid attribute dictionary because ‘asdf’ is not a valid HTML attribute even if it is a valid XML attribute. Valid HTML 4.01 table attributes can be found here. A working draft of the HTML 5 spec can be found here. It contains the latest information on table attributes for the modern web.

parse_dates : bool, optional

See `read_csv()` for more details.

tupleize_cols : bool, optional

If False try to parse multiple header rows into a MultiIndex, otherwise return raw tuples. Defaults to False.

thousands : str, optional

Separator to use to parse thousands. Defaults to ‘,’.

encoding : str or None, optional

The encoding used to decode the web page. Defaults to None. ‘None‘ preserves the previous encoding behavior, which depends on the underlying parser library (e.g., the parser library will try to use the encoding provided by the document).

Returns

dfs : list of DataFrames

See Also

pandas.read_csv

Notes

Before using this function you should read the *gotchas about the HTML parsing libraries*.

1404 Chapter 32. API Reference
Expect to do some cleanup after you call this function. For example, you might need to manually assign column names if the column names are converted to NaN when you pass the header=0 argument. We try to assume as little as possible about the structure of the table and push the idiosyncrasies of the HTML contained in the table to the user.

This function searches for <table> elements and only for <tr> and <th> rows and <td> elements within each <tr> or <th> element in the table. <td> stands for “table data”.

Similar to read_csv() the header argument is applied after skiprows is applied.

This function will always return a list of DataFrame or it will fail, e.g., it will not return an empty list.

Examples

See the read_html documentation in the IO section of the docs for some examples of reading in HTML tables.

pandas.io.json.read_json

Convert a JSON string to pandas object

Parameters

- filepath_or_buffer : a valid JSON string or file-like

 The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json

- orient

 - default is ’index’

 - allowed values are: {’split’,’records’,’index’}

 - The Series index must be unique for orient ’index’.

 - default is ’columns’

 - allowed values are: {’split’,’records’,’index’,’columns’,’values’}

 - The DataFrame index must be unique for orients ’index’ and ’columns’.

 - The DataFrame columns must be unique for orients ’index’, ‘columns’, and ’records’.

 - The format of the JSON string

 - split : dict like {index -> [index], columns -> [columns], data -> [values]}

 - records : list like [{column -> value}, ... , {column -> value}]

 - index : dict like {index -> {column -> value}}

 - columns : dict like {column -> {index -> value}}

 - values : just the values array
typ: type of object to recover (series or frame), default ‘frame’

dtype: boolean or dict, default True

If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data.

convert_axes: boolean, default True

Try to convert the axes to the proper dtypes.

convert_dates: boolean, default True

List of columns to parse for dates; If True, then try to parse datelike columns default is True

keep_default_dates: boolean, default True.

If parsing dates, then parse the default datelike columns

numpy: boolean, default False

Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.

precise_float: boolean, default False.

Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality

date_unit: string, default None

The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.

Returns **result**: Series or DataFrame

pandas.io.parsers.read_csv

```python
def pandas.io.parsers.read_csv(filepath_or_buffer, sep=',', dialect=None, compression=None, doublequote=True, escapechar=None, quotechar=None, quoting=0, skipinitialspace=False, lineterminator=None, header='infer', index_col=None, names=None, prefix=None, skiprows=None, skipfooter=None, skip_footer=0, na_values=None, keep_default_na=True, keep_default_dates=True, engine=None, trimdevelopment=True, delimiters=False, as_recarray=False, na_filter=True, compact_ints=False, use_unsigned=False, memory_map=False, memory_map=False, float_precision=None, nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_cols=False, infer_datetime_format=False, skip_blank_lines=True)
```

Read CSV (comma-separated) file into DataFrame
Also supports optionally iterating or breaking of the file into chunks.

Parameters

- **filepath_or_buffer**: string or file handle / StringIO

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

- **sep**: string, default ‘,’

 Delimiter to use. If sep is None, will try to automatically determine this. Regular expressions are accepted.

- **engine**: {'c', 'python'}

 Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

- **linterminatedor**: string (length 1), default None

 Character to break file into lines. Only valid with C parser

- **quotechar**: string (length 1)

 The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

- **quoting**: int or csv.QUOTE_* instance, default None

 Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

- **skipinitialspace**: boolean, default False

 Skip spaces after delimiter

- **escapechar**: string (length 1), default None

 One-character string used to escape delimiter when quoting is QUOTE_NONE.

- **dtype**: Type name or dict of column -> type

 Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python')

- **compression**: {'gzip', 'bz2', None}, default None

 For on-the-fly decompression of on-disk data

- **dialect**: string or csv.Dialect instance, default None

 If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

- **header**: int, list of ints

 Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

- **skiprows**: list-like or integer
Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

index_col: int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

names: array-like

List of column names to use. If file contains no header row, then you should explicitly pass header=None

prefix: string, default None

Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ...

na_values: list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

true_values: list

Values to consider as True

false_values: list

Values to consider as False

keep_default_na: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to

parse_dates: boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates.

keep_date_col: boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser: function

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

dayfirst: boolean, default False

DD/MM format dates, international and European format

thousands: str, default None

Thousands separator

comment: str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are
ignored by the parameter header but not by skiprows. For example, if comment=’#’, parsing ‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header.

decimal : str, default ‘.’
Character to recognize as decimal point. E.g. use ‘,’ for European data

nrows : int, default None
Number of rows of file to read. Useful for reading pieces of large files

iterator : boolean, default False
Return TextFileReader object

chunksize : int, default None
Return TextFileReader object for iteration

skipfooter : int, default 0
Number of lines at bottom of file to skip (Unsupported with engine=’c’)

converters : dict. optional
Dict of functions for converting values in certain columns. Keys can either be integers or column labels

verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns

delimiter : string, default None
Alternative argument name for sep. Regular expressions are accepted.

encoding : string, default None
Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

squeeze : boolean, default False
If the parsed data only contains one column then return a Series

na_filter : boolean, default True
Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

usecols : array-like
Return a subset of the columns. Results in much faster parsing time and lower memory usage.

mangle_dupe_cols : boolean, default True
Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’

tupleize_cols : boolean, default False
Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True
Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

infer_datetime_format : boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

Returns **result** : DataFrame or TextParser

pandas.io.parsers.read_fwf

pandas.io.parsers.read_fwf (filepath_or_buffer, colspecs='infer', widths=None, **kwds)

Read a table of fixed-width formatted lines into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters **filepath_or_buffer** : string or file handle / StringIO

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

colspecs : list of pairs (int, int) or ‘infer’. optional

A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data (default=’infer’).

widths : list of ints. optional

A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

lineterminator : string (length 1), default None

Character to break file into lines. Only valid with C parser

quotechar : string (length 1)

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default None

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

skipinitialspace : boolean, default False

Skip spaces after delimiter
pandas: powerful Python data analysis toolkit, Release 0.15.1

escapechar: string (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

dtype: Type name or dict of column -> type

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python')

compression: {'gzip', 'bz2', None}, default None

For on-the-fly decompression of on-disk data

dialect: string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

header: int, list of ints

Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

skiprows: list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

index_col: int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

names: array-like

List of column names to use. If file contains no header row, then you should explicitly pass header=None

prefix: string, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

na_values: list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

true_values: list

Values to consider as True

false_values: list

Values to consider as False

keep_default_na: bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to
parse_dates : boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates.

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser : function

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

dayfirst : boolean, default False

DD/MM format dates, international and European format

thousands : str, default None

Thousands separator

column : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment=‘#’, parsing ‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header.

decimal : str, default ‘.’

Character to recognize as decimal point. E.g. use ‘,’ for European data

nrows : int, default None

Number of rows of file to read. Useful for reading pieces of large files

iterator : boolean, default False

Return TextFileReader object

chunksize : int, default None

Return TextFileReader object for iteration

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine=’c’)

converters : dict. optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

delimiter : string, default None

Alternative argument name for sep. Regular expressions are accepted.

encoding : string, default None
Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

na_filter : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

usecols : array-like

Return a subset of the columns. Results in much faster parsing time and lower memory usage.

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

warn_bad_lines : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

infer_datetime_format : boolean, default False

If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

Returns result : DataFrame or TextParser

Also, ‘delimiter’ is used to specify the filler character of the fields if it is not spaces (e.g., ‘~’).
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.io.parsers.read_table

pandas.io.parsers.read_table(filepath_or_buffer, sep='\t', dialect=None, compression=None, doublequote=True, escapechar=None, quotechar='', quoting=0, skipinitialspace=False, lineterminator=None, header='infer', index_col=None, names=None, prefix=None, skiprows=None, skipfooter=None, skip_footer=0, na_values=None, na_values=None, true_values=None, false_values=None, delimiter=None, converters=None, dtype=None, usecols=None, engine=None, delim_whitespace=False, as_recarray=False, na_filter=True, keep_default_na=True, thousands=None, comment=None, decimal='.', parse_dates=False, keep_date_col=False, dayfirst=False, date_parser=None, memory_map=False, float_precision=None, nrows=None, iterator=False, chunksize=None, verbose=False, encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_cols=False, infer_datetime_format=False, skip_blank_lines=True)

Read general delimited file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Parameters

file_path_or_buffer : string or file handle / StringIO

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file:///local-host/path/to/table.csv

sep : string, default t (tab-stop)

Delimiter to use. Regular expressions are accepted.

engine : {'c', 'python'}

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

lineterminator : string (length 1), default None

Character to break file into lines. Only valid with C parser

quotechar : string (length 1)

The character used to denote the start and end of a quoted item. Quoted items can include the delimeter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default None

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). Default (None) results in QUOTE_MINIMAL behavior.

skipinitialspace : boolean, default False

Skip spaces after delimiter

escapechar : string (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

dtype : Type name or dict of column -> type
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python')

compression : {'gzip', 'bz2', None}, default None

For on-the-fly decompression of on-disk data

dialect : string or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

header : int, list of ints

Row number(s) to use as the column names, and the start of the data. Defaults to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns E.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example are skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

skiprows : list-like or integer

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

names : array-like

List of column names to use. If file contains no header row, then you should explicitly pass header=None

prefix : string, default None

Prefix to add to column numbers when no header, e.g ‘X’ for X0, X1, ...

na_values : list-like or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values

true_values : list

Values to consider as True

false_values : list

Values to consider as False

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to

parse_dates : boolean, list of ints or names, list of lists, or dict

If True -> try parsing the index. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. If [[1, 3]] -> combine columns 1 and 3 and parse as a single
date column. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’ A fast-path exists for iso8601-formatted dates.

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser : function

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion.

dayfirst : boolean, default False

DD/MM format dates, international and European format

thousands : str, default None

Thousands separator

comment : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing ‘#emptyna,b,cn1,2,3’ with header=0 will result in ‘a,b,c’ being treated as the header.

decimal : str, default ‘.’

Character to recognize as decimal point. E.g. use ‘,’ for European data

nrows : int, default None

Number of rows of file to read. Useful for reading pieces of large files

iterator : boolean, default False

Return TextFileReader object

chunksize : int, default None

Return TextFileReader object for iteration

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c')

converters : dict. optional

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

delimiter : string, default None

Alternative argument name for sep. Regular expressions are accepted.

encoding : string, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings
squeeze : boolean, default False
 If the parsed data only contains one column then return a Series

na_filter : boolean, default True
 Detect missing value markers (empty strings and the value of na_values). In data
 without any NAs, passing na_filter=False can improve the performance of reading a
 large file

usecols : array-like
 Return a subset of the columns. Results in much faster parsing time and lower mem-
 ory usage.

mangle_dupe_cols : boolean, default True
 Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’

tupleize_cols : boolean, default False
 Leave a list of tuples on columns as is (default is to convert to a Multi Index on the
 columns)

error_bad_lines : boolean, default True
 Lines with too many fields (e.g. a csv line with too many commas) will by default
 cause an exception to be raised, and no DataFrame will be returned. If False, then
 these “bad lines” will dropped from the DataFrame that is returned. (Only valid with
 C parser)

warn_bad_lines : boolean, default True
 If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad
 line” will be output. (Only valid with C parser).

infer_datetime_format : boolean, default False
 If True and parse_dates is enabled for a column, attempt to infer the datetime format
to speed up the processing

skip_blank_lines : boolean, default True
 If True, skip over blank lines rather than interpreting as NaN values

Returns result : DataFrame or TextParser

pandas.io.pickle.read_pickle

pandas.io.pickle.read_pickle(path)
 Load pickled pandas object (or any other pickled object) from the specified file path
Warning: Loading pickled data received from untrusted sources can be unsafe. See:
http://docs.python.org/2.7/library/pickle.html

Parameters path : string
 File path

Returns unpickled : type of object stored in file
pandas.io.pytables.HDFStore.append

HDFStore. **append** (key, value, format=None, append=True, columns=None, dropna=None, **kwargs)

Append to Table in file. Node must already exist and be Table format.

Parameters

- **key**: object
- **value**: {Series, DataFrame, Panel, Panel4D}
- **format**: ‘table’ is the default
 - **table(t)** [table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
- **append**: boolean, default True, append the input data to the existing
- **data_columns**: list of columns to create as data columns, or True to use all columns
- **min_itemsizes**: dict of columns that specify minimum string sizes
- **nan_rep**: string to use as string nan representation
- **chunksize**: size to chunk the writing
- **expectedrows**: expected TOTAL row size of this table
- **encoding**: default None, provide an encoding for strings
- **dropna**: boolean, default True, do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’

Notes

—–

Does *not* check if data being appended overlaps with existing data in the table, so be careful

pandas.io.pytables.HDFStore.get

HDFStore. **get** (key)

Retrieve pandas object stored in file

Parameters

- **key**: object

Returns

- **obj**: type of object stored in file

pandas.io.pytables.HDFStore.put

HDFStore. **put** (key, value, format=None, append=False, **kwargs)

Store object in HDFStore

Parameters

- **key**: object
- **value**: {Series, DataFrame, Panel}
- **format**: ‘fixed(f)|table(t)’, default is ‘fixed’
fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable

table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False
This will force Table format, append the input data to the existing.

encoding : default None, provide an encoding for strings

dropna : boolean, default True, do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’

pandas.io.pytables.HDFStore.select

HDFStore.**select**(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False, **kwargs)
Retrieve pandas object stored in file, optionally based on where criteria

Parameters

key : object

where : list of Term (or convertible) objects, optional

start : integer (defaults to None), row number to start selection

stop : integer (defaults to None), row number to stop selection

columns : a list of columns that if not None, will limit the return columns

iterator : boolean, return an iterator, default False

chunksize : nrows to include in iteration, return an iterator

auto_close : boolean, should automatically close the store when finished, default is False

Returns
The selected object

pandas.io.pytables.read_hdf

pandas.io.pytables.**read_hdf**(path_or_buf, key, **kwargs)
read from the store, close it if we opened it

Retrieve pandas object stored in file, optionally based on where criteria

Parameters

path_or_buf : path (string), or buffer to read from

key : group identifier in the store

where : list of Term (or convertible) objects, optional

start : optional, integer (defaults to None), row number to start selection

stop : optional, integer (defaults to None), row number to stop selection

columns : optional, a list of columns that if not None, will limit the

32.11. General utility functions
pandas: powerful Python data analysis toolkit, Release 0.15.1

return columns

iterator : optional, boolean, return an iterator, default False

chunksize : optional, nrows to include in iteration, return an iterator

auto_close : optional, boolean, should automatically close the store when finished, default is False

Returns The selected object

pandas.io.sql.read_sql

```python
pandas.io.sql.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None)
```

Read SQL query or database table into a DataFrame.

Parameters

- **sql** : string
 - SQL query to be executed or database table name.
- **con** : SQLAlchemy engine or DBAPI2 connection (fallback mode)
 - Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
- **index_col** : string, optional
 - column name to use as index for the returned DataFrame object.
- **coerce_float** : boolean, default True
 - Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets
- **params** : list, tuple or dict, optional
 - List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}
- **parse_dates** : list or dict
 - List of column names to parse as dates
 - Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
 - Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite
- **columns** : list
 - List of column names to select from sql table (only used when reading a table).
- **chunksize** : int, default None
 - If specified, return an iterator where chunksize is the number of rows to include in each chunk.

Returns DataFrame
See Also:

- **read_sql_table**: Read SQL database table into a DataFrame
- **read_sql_query**: Read SQL query into a DataFrame

Notes

This function is a convenience wrapper around `read_sql_table` and `read_sql_query` (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or SQL query).

pandas.io.sql.read_frame

```python
pandas.io.sql.read_frame(*args, **kwargs)
```

DEPRECATED - use `read_sql`

Read SQL query or database table into a DataFrame.

Parameters

- `sql`: string
 - SQL query to be executed or database table name.
- `con`: SQLAlchemy engine or DBAPI2 connection (fallback mode)
 - Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
- `index_col`: string, optional
 - column name to use as index for the returned DataFrame object.
- `coerce_float`: boolean, default True
 - Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets.
- `params`: list, tuple or dict, optional
 - List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={'name' : 'value'}
- `parse_dates`: list or dict
 - List of column names to parse as dates
 - Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
 - Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of `pandas.to_datetime()` Especially useful with databases without native Datetime support, such as SQLite
- `columns`: list
 - List of column names to select from sql table (only used when reading a table).
- `chunksize`: int, default None
If specified, return an iterator where chunksize is the number of rows to include in each chunk.

Returns DataFrame

See Also:

read_sql_table Read SQL database table into a DataFrame
read_sql_query Read SQL query into a DataFrame

Notes

This function is a convenience wrapper around read_sql_table and read_sql_query (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query).

pandas.io.sql.write_frame

pandas.io.sql.write_frame(frame, name, con, flavor='sqlite', if_exists='fail', **kwargs)
DEPRECATED - use to_sql
Write records stored in a DataFrame to a SQL database.

Parameters frame : DataFrame

name : string

con : DBAPI2 connection

flavor : {'sqlite', 'mysql'}, default 'sqlite'
The flavor of SQL to use.

if_exists : {'fail', 'replace', 'append'}, default 'fail'
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.

index : boolean, default False
Write DataFrame index as a column

See Also:

pandas.DataFrame.to_sql

Notes

This function is deprecated in favor of to_sql. There are however two differences:

- With to_sql the index is written to the sql database by default. To keep the behaviour this function you need to specify index=False.
- The new to_sql function supports sqlalchamy engines to work with different sql flavors.
pandas: powerful Python data analysis toolkit, Release 0.15.1

pandas.io.stata.read_stata

```python
pandas.io.stata.read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encoding=None, index=None, convert_missing=False, preserve_dtypes=True, columns=None)
```

Read Stata file into DataFrame

Parameters

- **filepath_or_buffer**: string, file-like object

 Path to .dta file or object implementing a binary read() functions

- **convert_dates**: boolean, defaults to True

 Convert date variables to DataFrame time values

- **convert_categoricals**: boolean, defaults to True

 Read value labels and convert columns to Categorical/Factor variables

- **encoding**: string, None or encoding

 Encoding used to parse the files. Note that Stata doesn’t support unicode. None defaults to cp1252.

- **index**: identifier of index column

 identifier of column that should be used as index of the DataFrame

- **convert_missing**: boolean, defaults to False

 Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissingValue objects.

- **preserve_dtypes**: boolean, defaults to True

 Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64)

- **columns**: list or None

 Columns to retain. Columns will be returned in the given order. None returns all columns

pandas.stats.moments.ewma

```python
pandas.stats.moments.ewma(arg, com=None, span=None, halflife=None, min_periods=0, freq=None, adjust=True, how=None, ignore_na=False)
```

Exponentially-weighted moving average

Parameters

- **arg**: Series, DataFrame

 Com : float, optional

 Center of mass: \(\alpha = 1/(1 + com) \),

- **span**: float, optional

 Specify decay in terms of span, \(\alpha = 2/(span + 1) \)

- **halflife**: float, optional

 Specify decay in terms of halflife, \(\alpha = 1 - \exp(\log(0.5)/halflife) \)

- **min_periods**: int, default 0

32.11. General utility functions
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : None or string alias / date offset object, default=None

Frequency to conform to before computing statistic

adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’

Method for down- or re-sampling

ignore_na : boolean, default False

Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior

Returns y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter α is related to the span as α = 2/(s + 1) = 1/(1 + c)

where c is the center of mass. Given a span, the associated center of mass is c = (s − 1)/2

So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1.

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False).
Center of mass: $\alpha = 1/(1 + \text{com})$,

- **span**: float, optional
 Specify decay in terms of span, $\alpha = 2/(\text{span} + 1)$

- **halflife**: float, optional
 Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/\text{halflife})$

- **min_periods**: int, default 0
 Minimum number of observations in window required to have a value (otherwise result is NA).

- **freq**: None or string alias / date offset object, default=None
 Frequency to conform to before computing statistic

- **adjust**: boolean, default True
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

- **how**: string, default ‘mean’
 Method for down- or re-sampling

- **ignore_na**: boolean, default False
 Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior

- **pairwise**: bool, default False
 If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns y: type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter α is related to the span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where c is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights

- (1-alpha)**(n-1),
- (1-alpha)**(n-2), ..., 1-alpha, 1.

When adjust is False, weighted averages are calculated recursively as

- weighted_average[0] = arg[0];
- weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False).
When `ignore_na` is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if `adjust` is True), and 1-alpha and alpha (if `adjust` is False).

pandas.stats.moments.ewmcov

```
pandas.stats.moments.ewmcov(arg1, arg2=None, com=None, span=None, halflife=None, min_periods=0, bias=False, freq=None, pairwise=None, how=None, ignore_na=False, adjust=True)
```

Exponentially-weighted moving covariance

Parameters

- **arg1**: Series, DataFrame, or ndarray
- **arg2**: Series, DataFrame, or ndarray, optional
 - if not supplied then will default to arg1 and produce pairwise output
- **com**: float. optional
 - Center of mass: \(\alpha = 1 / (1 + \text{com}) \),
- **span**: float, optional
 - Specify decay in terms of span, \(\alpha = 2 / (\text{span} + 1) \)
- **halflife**: float, optional
 - Specify decay in terms of halflife, \(\alpha = 1 - \exp(\log(0.5)/\text{halflife}) \)
- **min_periods**: int, default 0
 - Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: None or string alias / date offset object, default=None
 - Frequency to conform to before computing statistic
- **adjust**: boolean, default True
 - Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)
- **how**: string, default ‘mean’
 - Method for down- or re-sampling
- **ignore_na**: boolean, default False
 - Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior
- **pairwise**: bool, default False
 - If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns

- **y**: type of input argument
Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter α is related to the span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where c is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights $(1-\alpha)^{(n-1)}$, $(1-\alpha)^{(n-2)}$, ..., $1-\alpha$, 1.

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-\alpha)*weighted_average[i-1] + \alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are $(1-\alpha)^2$ and 1 (if adjust is True), and $(1-\alpha)^2$ and α (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are $1-\alpha$ and 1 (if adjust is True), and 1-\alpha and α (if adjust is False).

pandas.stats.moments.ewmstd

Exponentially-weighted moving std

Parameters arg : Series, DataFrame
 com : float, optional
 Center of mass: $\alpha = 1/(1 + com)$,
 span : float, optional
 Specify decay in terms of span, $\alpha = 2/(span + 1)$
 halflife : float, optional
 Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/halflife)$
 min_periods : int, default 0
 Minimum number of observations in window required to have a value (otherwise result is NA).
 freq : None or string alias / date offset object, default=None
 Frequency to conform to before computing statistic
 adjust : boolean, default True
 Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)
 how : string, default ‘mean’
 Method for down- or re-sampling
 ignore_na : boolean, default False
Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior

bias: boolean, default False

Use a standard estimation bias correction

Returns
y : type of input argument

Notes

Either center of mass or span must be specified

EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter α is related to the span as $\alpha = 2/(s + 1) = 1/(1 + c)$

where c is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$

So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights
$(1-\alpha)^{**}(n-1), (1-\alpha)^{**}(n-2), ..., 1-\alpha, 1$.

When adjust is False, weighted averages are calculated recursively as:
weighted_average[0] = arg[0];
weighted_average[i] = (1-\alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-\alpha)**2 and 1 (if adjust is True), and (1-\alpha)**2 and alpha (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-\alpha and 1 (if adjust is True), and 1-\alpha and alpha (if adjust is False).

pandas.stats.moments.ewmvar

pandas.stats.moments.ewmvar
arg, com=None, span=None, halflife=None, min_periods=0,
bias=False, freq=None, how=None, ignore_na=False, adjust=True

Exponentially-weighted moving variance

Parameters
arg: Series, DataFrame

com : float, optional

Center of mass: $\alpha = 1/(1 + com)$.

span : float, optional

Specify decay in terms of span, $\alpha = 2/(span + 1)$

halflife : float, optional

Specify decay in terms of halflife, $\alpha = 1 - \exp(\log(0.5)/halflife)$

min_periods : int, default 0

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : None or string alias / date offset object, default=None

Frequency to conform to before computing statistic

Chapter 32. API Reference
adjust : boolean, default True
Divide by decaying adjustment factor in beginning periods to account for imbalance
in relative weightings (viewing EWMA as a moving average)

how : string, default ‘mean’
Method for down- or re-sampling

ignore_na : boolean, default False
Ignore missing values when calculating weights; specify True to reproduce pre-
0.15.0 behavior

bias : boolean, default False
Use a standard estimation bias correction

Returns y : type of input argument

Notes

Either center of mass or span must be specified
EWMA is sometimes specified using a “span” parameter s, we have that the decay parameter α is related to the
span as $\alpha = 2/(s + 1) = 1/(1 + c)$
where c is the center of mass. Given a span, the associated center of mass is $c = (s - 1)/2$
So a “20-day EWMA” would have center 9.5.

When adjust is True (default), weighted averages are calculated using weights $(1-\alpha)^{(n-1)}, (1-
\alpha)^{(n-2)}, ... , 1-\alpha, 1.$

When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0];
weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and
y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and
(1-alpha)**2 and alpha (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example,
the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust
is True), and 1-alpha and alpha (if adjust is False).

pandas.stats.moments.expanding_apply

pandas.stats.moments.expanding_apply(arg, func, min_periods=1, freq=None, args=(), kwargs={})

Generic expanding function application.

Parameters arg : Series, DataFrame
func : function
Must produce a single value from an ndarray input

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise
result is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

args: tuple
Passed on to func

kwargs: dict
Passed on to func

Returns
y : type of input argument

Notes

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.stats.moments.expanding_corr

pandas.stats.moments.expanding corr

`pandas.stats.moments.expanding_corr(arg1, arg2=None, min_periods=1, freq=None, pairwise=None)`

Expanding sample correlation.

Parameters
arg1 : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray, optional
 if not supplied then will default to arg1 and produce pairwise output

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

pairwise : bool, default False
 If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns
y : type depends on inputs
 DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
 DataFrame / Series -> Computes result for each column
 Series / Series -> Series

pandas.stats.moments.expanding_count

pandas.stats.moments.expanding_count

`pandas.stats.moments.expanding_count(arg, freq=None)`

Expanding count of number of non-NaN observations.

Parameters
arg : DataFrame or numpy ndarray-like

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns
`expanding_count`: type of caller

Notes

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.stats.moments.expanding_cov

Unbiased expanding covariance.

Parameters

- `arg1`: Series, DataFrame, or ndarray
- `arg2`: Series, DataFrame, or ndarray, optional
 - If not supplied then will default to `arg1` and produce pairwise output
- `min_periods`: int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq`: string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- `pairwise`: bool, default False
 - If False then only matching columns between `arg1` and `arg2` will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.
- `ddof`: int, default 1
 - Delta Degrees of Freedom. The divisor used in calculations is \(N - \text{ddof} \), where \(N \) represents the number of elements.

Returns

- `y`: type depends on inputs
 - DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
 - DataFrame / Series -> Computes result for each column
 - Series / Series -> Series

pandas.stats.moments.expanding_kurt

Unbiased expanding kurtosis.

Parameters

- `arg`: Series, DataFrame
- `min_periods`: int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a
 frequency string or DateOffset object.

Returns y : type of input argument

pandas.stats.moments.expanding_mean

pandas.stats.moments.expanding_mean(arg, min_periods=1, freq=None, **kwargs)
Expanding mean.

Parameters arg : Series, DataFrame

min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise
 result is NA).

freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a
 frequency string or DateOffset object.

Returns y : type of input argument

pandas.stats.moments.expanding_median

pandas.stats.moments.expanding_median(arg, min_periods=1, freq=None, **kwargs)
O(N log(window)) implementation using skip list
Expanding median.

Parameters arg : Series, DataFrame

min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise
 result is NA).

freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a
 frequency string or DateOffset object.

Returns y : type of input argument

pandas.stats.moments.expanding_quantile

pandas.stats.moments.expanding_quantile(arg, quantile, min_periods=1, freq=None)
Expanding quantile.

Parameters arg : Series, DataFrame

quantile : float
 0 <= quantile <= 1

min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise
 result is NA).
freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns y : type of input argument

Notes

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.stats.moments.expanding_skew

pandas.stats.moments.expanding_skew (arg, min_periods=1, freq=None, **kwargs)

Unbiased expanding skewness.

Parameters arg : Series, DataFrame

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns y : type of input argument

pandas.stats.moments.expanding_std

pandas.stats.moments.expanding_std (arg, min_periods=1, freq=None, **kwargs)

Expanding standard deviation.

Parameters arg : Series, DataFrame

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

ddof : int, default 1

Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.

Returns y : type of input argument
pandas.stats.moments.expanding_sum

Expanding sum.

Parameters

- **arg**: Series, DataFrame
- **min_periods**: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

Returns

- **y**: type of input argument

pandas.stats.moments.expanding_var

Numerically stable implementation using Welford’s method.

Expanding variance.

Parameters

- **arg**: Series, DataFrame
- **min_periods**: int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- **freq**: string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- **ddof**: int, default 1
 Delta Degrees of Freedom. The divisor used in calculations is \(N - \text{ddof} \), where \(N \) represents the number of elements.

Returns

- **y**: type of input argument

pandas.stats.moments.rolling_apply

Generic moving function application.

Parameters

- **arg**: Series, DataFrame
- **window**: int
 Size of the moving window. This is the number of observations used for calculating the statistic.
- **func**: function
 Must produce a single value from an ndarray input
- **min_periods**: int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
Whether the label should correspond with center of window

args : tuple
Passed on to func

kwargs : dict
Passed on to func

Returns
y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.stats.moments.rolling_corr

pandas.stats.moments.rolling_corr(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None)

Moving sample correlation.

Parameters

arg1 : Series, DataFrame, or ndarray

arg2 : Series, DataFrame, or ndarray, optional
if not supplied then will default to arg1 and produce pairwise output

window : int
Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
Set the labels at the center of the window.

how : string, default ‘None’
Method for down- or re-sampling
pairwise : bool, default False

If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

Returns y : type depends on inputs
- DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
- DataFrame / Series -> Computes result for each column
- Series / Series -> Series

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.stats.moments.rolling_count

pandas.stats.moments.rolling_count (arg, window, freq=None, center=False, how=None)
Rolling count of number of non-NaN observations inside provided window.

Parameters arg : DataFrame or numpy ndarray-like
- window : int
 Size of the moving window. This is the number of observations used for calculating the statistic.
- freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- center : boolean, default False
 Whether the label should correspond with center of window
- how : string, default ‘mean’
 Method for down- or re-sampling

Returns rolling_count : type of caller

Notes

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.stats.moments.rolling_cov

pandas.stats.moments.rolling_cov(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None, ddof=1)

Unbiased moving covariance.
Parameters
arg1 : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray, optional
if not supplied then will default to arg1 and produce pairwise output
window : int
Size of the moving window. This is the number of observations used for calculating the statistic.
min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).
freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
center : boolean, default False
Set the labels at the center of the window.
how : string, default ‘None’
Method for down- or re-sampling
pairwise : bool, default False
If False then only matching columns between arg1 and arg2 will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.
ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is $N - ddof$, where N represents the number of elements.

Returns
y : type depends on inputs
DataFrame / DataFrame -> DataFrame (matches on columns) or Panel (pairwise)
DataFrame / Series -> Computes result for each column
Series / Series -> Series

Notes
By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center=True.
The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

pandas.stats.moments.rolling_kurt
pandas.stats.moments.rolling_kurt(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
Unbiased moving kurtosis.
Parameters
arg : Series, DataFrame
window : int
Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
Set the labels at the center of the window.

how : string, default ‘None’
Method for down- or re-sampling

Returns
y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the mean).

pandas.stats.moments.rolling_mean

`pandas.stats.moments.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)`

Moving mean.

Parameters

arg : Series, DataFrame

window : int
Size of the moving window. This is the number of observations used for calculating the statistic.

min_periods : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
Set the labels at the center of the window.

how : string, default ‘None’
Method for down- or re-sampling

Returns
y : type of input argument
Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.stats.moments.rolling_median

```python
def pandas.stats.moments.rolling_median(arg, window, min_periods=None, freq=None, center=False, how='median', **kwargs):
```

O(N log(window)) implementation using skip list

Moving median.

Parameters
- `arg` : Series, DataFrame
 - `window` : int
 - Size of the moving window. This is the number of observations used for calculating the statistic.
 - `min_periods` : int, default None
 - Minimum number of observations in window required to have a value (otherwise result is NA).
 - `freq` : string or DateOffset object, optional (default None)
 - Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
 - `center` : boolean, default False
 - Set the labels at the center of the window.
 - `how` : string, default ‘median’
 - Method for down- or re-sampling

Returns
- `y` : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.stats.moments.rolling_quantile

```python
def pandas.stats.moments.rolling_quantile(arg, window, quantile, min_periods=None, freq=None, center=False)
```

Moving quantile.

Parameters
- `arg` : Series, DataFrame
 - `window` : int
Size of the moving window. This is the number of observations used for calculating the statistic.

quantile : float

0 <= quantile <= 1

min_periods : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False

Whether the label should correspond with center of window

Returns

y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting center= True.

The *freq* keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of *resample()* (i.e. using the *mean*).

```
pandas.stats.moments.rolling_skew
```

Unbiased moving skewness.

Parameters

- **arg** : Series, DataFrame
- **window** : int

Size of the moving window. This is the number of observations used for calculating the statistic.

- **min_periods** : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

- **freq** : string or DateOffset object, optional (default None)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

- **center** : boolean, default False

Set the labels at the center of the window.

- **how** : string, default ‘None’

Method for down- or re-sampling

Returns

y : type of input argument
Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

```
pandas.stats.moments.rolling_std
```

Moving standard deviation.

Parameters

- `arg` : Series, DataFrame
- `window` : int
 Size of the moving window. This is the number of observations used for calculating the statistic.
- `min_periods` : int, default None
 Minimum number of observations in window required to have a value (otherwise result is NA).
- `freq` : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.
- `center` : boolean, default False
 Set the labels at the center of the window.
- `how` : string, default ‘None’
 Method for down- or re-sampling
- `ddof` : int, default 1
 Delta Degrees of Freedom. The divisor used in calculations is \(N - ddof\), where \(N\) represents the number of elements.

Returns

- `y` : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

```
pandas.stats.moments.rolling_sum
```

Moving sum.
Parameters arg : Series, DataFrame

window : int
 Size of the moving window. This is the number of observations used for calculating
 the statistic.

min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise
 result is NA).

freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a
 frequency string or DateOffset object.

center : boolean, default False
 Set the labels at the center of the window.

how : string, default ‘None’
 Method for down- or re-sampling

Returns y : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by
setting center=True.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is
done with the default parameters of resample() (i.e. using the mean).

pandas.stats.moments.rolling_var

pandas.stats.moments.rolling_var(arg, window, min_periods=None, freq=None, center=False,
how=None, **kwargs)

Numerically stable implementation using Welford’s method.

Moving variance.

Parameters arg : Series, DataFrame

window : int
 Size of the moving window. This is the number of observations used for calculating
 the statistic.

min_periods : int, default None
 Minimum number of observations in window required to have a value (otherwise
 result is NA).

freq : string or DateOffset object, optional (default None)
 Frequency to conform the data to before computing the statistic. Specified as a
 frequency string or DateOffset object.

center : boolean, default False
 Set the labels at the center of the window.
how : string, default ‘None’
Method for down- or re-sampling

ddof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is \(N - \text{ddof} \), where \(N \) represents the number of elements.

Returns
\(y \) : type of input argument

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

pandas.tools.merge.concat

```
pandas.tools.merge.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
```

Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.

Parameters

- **objs** : a sequence or mapping of Series, DataFrame, or Panel objects

 If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised

- **axis** : \(\{0, 1, \ldots\} \), default 0

 The axis to concatenate along

- **join** : {'inner', 'outer'}, default ‘outer’

 How to handle indexes on other axis(es)

- **join_axes** : list of Index objects

 Specific indexes to use for the other \(n - 1 \) axes instead of performing inner/outer set logic

- **verify_integrity** : boolean, default False

 Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation

- **keys** : sequence, default None

 If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level

- **levels** : list of sequences, default None

 Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys
names : list, default None

Names for the levels in the resulting hierarchical index

ignore_index : boolean, default False

If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the the index values on the other axes are still respected in the join.

copy : boolean, default True

If False, do not copy data unnecessarily

Returns concatenated : type of objects

Notes

The keys, levels, and names arguments are all optional

pandas.tools.merge.merge

pandas.tools.merge.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('x', 'y'), copy=True)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters left : DataFrame

right : DataFrame

how : {'left', 'right', 'outer', 'inner'}, default 'inner'

• left: use only keys from left frame (SQL: left outer join)
• right: use only keys from right frame (SQL: right outer join)
• outer: use union of keys from both frames (SQL: full outer join)
• inner: use intersection of keys from both frames (SQL: inner join)

on : label or list

Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.

left_on : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns

right_on : label or list, or array-like

Field names to join on in right DataFrame or vector/list of vectors per left_on docs

left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels
right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index

sort : boolean, default False

Sort the join keys lexicographically in the result DataFrame

suffixes : 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively

copy : boolean, default True

If False, do not copy data unnecessarily

Returns merged : DataFrame

The output type will the be same as ‘left’, if it is a subclass of DataFrame.

Examples

```python
def merge(A, B, left_on='lkey', right_on='rkey', how='outer')
```
If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)

fill_value: scalar, default None

Value to replace missing values with

margins: boolean, default False

Add all row / columns (e.g. for subtotal / grand totals)

dropna: boolean, default True

Do not include columns whose entries are all NaN

rows: kwarg only alias of index [deprecated]

cols: kwarg only alias of columns [deprecated]

Returns

table: DataFrame

Examples

```python
>>> df
     A     B    C    D
   0  foo  one  small  1
   1  foo  one  large  2
   2  foo  one  large  2
   3  foo  two  small  3
   4  foo  two  small  3
   5  bar  one  large  4
   6  bar  one  small  5
   7  bar  two  small  6
   8  bar  two  large  7

>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)

>>> table
         small  large
    foo     1   4
      one   2   NaN
    bar     5   4
      one    6   NaN
      two    6   7
```

pandas.tseries.tools.to_datetime

Convert argument to datetime

Parameters

arg: string, datetime, array of strings (with possible NAs)

errors: {'ignore', 'raise'}, default ‘ignore’

Errors are ignored by default (values left untouched)

dayfirst: boolean, default False

```python
pandas.tseries.tools.to_datetime(arg, errors='ignore', dayfirst=False, utc=None, box=True, format=None, coerce=False, unit='ns', infer_datetime_format=False)
```
If True parses dates with the day first, eg 20/01/2005 Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug).

utc : boolean, default None

Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well)

box : boolean, default True

If True returns a DatetimeIndex, if False returns ndarray of values

format : string, default None

strptime to parse time, eg "%d/%m/%Y"

coerce : force errors to NaT (False by default)

unit : unit of the arg (D,s,ms,us,ns) denote the unit in epoch

(e.g. a unix timestamp), which is an integer/float number

infer_datetime_format : boolean, default False

If no format is given, try to infer the format based on the first datetime string. Provides a large speed-up in many cases.

Returns

ret : datetime if parsing succeeded

Examples

Take separate series and convert to datetime

```python
>>> import pandas as pd
>>> i = pd.date_range('20000101', periods=100)
>>> df = pd.DataFrame(dict(year=i.year, month=i.month, day=i.day))
>>> pd.to_datetime(df.year*10000 + df.month*100 + df.day, format='%Y%m%d')
```

Or from strings

```python
>>> df = df.astype(str)
>>> pd.to_datetime(df.day + df.month + df.year, format='%d%m%Y')
```
CONTRIBUTING TO PANDAS

See the following links:

- The developer pages on the website
- Guidelines on bug reports and pull requests
- Some extra tips on using git

33.1 Contributing to the documentation

If you’re not the developer type, contributing to the documentation is still of huge value. You don’t even have to be an expert on *pandas* to do so! Something as simple as rewriting small passages for clarity as you reference the docs is a simple but effective way to contribute. The next person to read that passage will be in your debt!

Actually, there are sections of the docs that are worse off by being written by experts. If something in the docs doesn’t make sense to you, updating the relevant section after you figure it out is a simple way to ensure it will help the next person.

Table of contents:

- About the pandas documentation
- How to build the pandas documentation
 - Requirements
 - Building pandas
 - Building the documentation
- Where to start?

33.1.1 About the pandas documentation

The documentation is written in reStructuredText, which is almost like writing in plain English, and built using Sphinx. The Sphinx Documentation has an excellent introduction to reST. Review the Sphinx docs to perform more complex changes to the documentation as well.

Some other important things to know about the docs:

- The pandas documentation consists of two parts: the docstrings in the code itself and the docs in this folder *pandas/doc/.*
The docstrings provide a clear explanation of the usage of the individual functions, while the documentation in this folder consists of tutorial-like overviews per topic together with some other information (what’s new, installation, etc).

- The docstrings follow the Numpy Docstring Standard which is used widely in the Scientific Python community. This standard specifies the format of the different sections of the docstring. See this document for a detailed explanation, or look at some of the existing functions to extend it in a similar manner.

- The tutorials make heavy use of the ipython directive sphinx extension. This directive lets you put code in the documentation which will be run during the doc build. For example:

```
.. ipython:: python
   :execute:

   x = 2
   x**3
```

will be rendered as

```
In [1]: x = 2
In [2]: x**3
Out[2]: 8
```

This means that almost all code examples in the docs are always run (and the output saved) during the doc build. This way, they will always be up to date, but it makes the doc building a bit more complex.

33.1.2 How to build the pandas documentation

Requirements

To build the pandas docs there are some extra requirements: you will need to have sphinx and ipython installed. numpydoc is used to parse the docstrings that follow the Numpy Docstring Standard (see above), but you don’t need to install this because a local copy of numpydoc is included in the pandas source code.

Furthermore, it is recommended to have all optional dependencies installed. This is not needed, but be aware that you will see some error messages. Because all the code in the documentation is executed during the doc build, the examples using this optional dependencies will generate errors. Run `pd.show_versions()` to get an overview of the installed version of all dependencies.

Warning: Building the docs with Sphinx version 1.2 is broken. Use the latest stable version (1.2.1) or the older 1.1.3.

Building pandas

For a step-by-step overview on how to set up your environment, to work with the pandas code and git, see the developer pages. When you start to work on some docs, be sure to update your code to the latest development version (‘master’):

```bash
git fetch upstream
git rebase upstream/master
```

Often it will be necessary to rebuild the C extension after updating:

```bash
python setup.py build_ext --inplace
```
Building the documentation

So how do you build the docs? Navigate to your local the folder pandas/doc/ directory in the console and run:

```bash
python make.py html
```

And then you can find the html output in the folder pandas/doc/build/html/.

The first time it will take quite a while, because it has to run all the code examples in the documentation and build all generated docstring pages. In subsequent evocations, sphinx will try to only build the pages that have been modified.

If you want to do a full clean build, do:

```bash
python make.py clean
python make.py build
```

Staring with 0.13.1 you can tell make.py to compile only a single section of the docs, greatly reducing the turn-around time for checking your changes. You will be prompted to delete .rst files that aren’t required, since the last committed version can always be restored from git.

```bash
# omit autosummary and API section
python make.py clean
python make.py --no-api

# compile the docs with only a single
# section, that which is in indexing.rst
python make.py clean
python make.py --single indexing
```

For comparison, a full doc build may take 10 minutes. a -no-api build may take 3 minutes and a single section may take 15 seconds.

33.1.3 Where to start?

There are a number of issues listed under Docs and Good as first PR where you could start out.

Or maybe you have an idea of you own, by using pandas, looking for something in the documentation and thinking ‘this can be improved’, let’s do something about that!

Feel free to ask questions on mailing list or submit an issue on Github.
This section will provide a look into some of pandas internals.

34.1 Indexing

In pandas there are a few objects implemented which can serve as valid containers for the axis labels:

- **Index**: the generic “ordered set” object, an ndarray of object dtype assuming nothing about its contents. The labels must be hashable (and likely immutable) and unique. Populates a dict of label to location in Cython to do \(O(1) \) lookups.
- **Int64Index**: a version of Index highly optimized for 64-bit integer data, such as time stamps
- **Float64Index**: a version of Index highly optimized for 64-bit float data
- **MultiIndex**: the standard hierarchical index object
- **DatetimeIndex**: An Index object with Timestamp boxed elements (impl are the int64 values)
- **TimedeltaIndex**: An Index object with Timedelta boxed elements (impl are the int64 values)
- **PeriodIndex**: An Index object with Period elements

These are range generators to make the creation of a regular index easy:

- **date_range**: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Python datetime objects
- **period_range**: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Period objects, representing Timespans

The motivation for having an Index class in the first place was to enable different implementations of indexing. This means that it’s possible for you, the user, to implement a custom Index subclass that may be better suited to a particular application than the ones provided in pandas.

From an internal implementation point of view, the relevant methods that an Index must define are one or more of the following (depending on how incompatible the new object internals are with the Index functions):

- **get_loc**: returns an “indexer” (an integer, or in some cases a slice object) for a label
- **slice_locs**: returns the “range” to slice between two labels
- **get_indexer**: Computes the indexing vector for reindexing / data alignment purposes. See the source / docstrings for more on this
- **get_indexer_non_unique**: Computes the indexing vector for reindexing / data alignment purposes when the index is non-unique. See the source / docstrings for more on this
• reindex: Does any pre-conversion of the input index then calls get_indexer
• union, intersection: computes the union or intersection of two Index objects
• insert: Inserts a new label into an Index, yielding a new object
• delete: Delete a label, yielding a new object
• drop: Deletes a set of labels
• take: Analogous to ndarray.take

34.1.1 MultiIndex

Internally, the MultiIndex consists of a few things: the levels, the integer labels, and the level names:

In [1]: index = MultiIndex.from_product([range(3), [’one’, ’two’]], names=[’first’, ’second’])

In [2]: index
Out[2]: MultiIndex(levels=[[0, 1, 2], [’one’, ’two’]],
 labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
 names=[’first’, ’second’])

In [3]: index.levels
Out[3]: FrozenList([[0, 1, 2], [’one’, ’two’]])

In [4]: index.labels
Out[4]: FrozenList([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])

In [5]: index.names
Out[5]: FrozenList([’first’, ’second’])

You can probably guess that the labels determine which unique element is identified with that location at each layer of the index. It’s important to note that sortedness is determined solely from the integer labels and does not check (or care) whether the levels themselves are sorted. Fortunately, the constructors from_tuples and from_arrays ensure that this is true, but if you compute the levels and labels yourself, please be careful.
RELEASE NOTES

This is the list of changes to pandas between each release. For full details, see the commit logs at http://github.com/pydata/pandas

What is it

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language.

Where to get it

- Source code: http://github.com/pydata/pandas
- Binary installers on PyPI: http://pypi.python.org/pypi/pandas
- Documentation: http://pandas.pydata.org

35.1 pandas 0.15.1

Release date: (November 9, 2014)

This is a minor release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

See the v0.15.1 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.1.

35.1.1 Thanks

- Aaron Staple
- Andrew Rosenfeld
- Anton I. Sipos
- Artemy Kolchinsky
- Bill Letson
- Dave Hughes
- David Stephens
- Guillaume Horel
35.2 pandas 0.15.0

Release date: (October 18, 2014)

This is a major release from 0.14.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:
• Drop support for numpy < 1.7.0 (GH7711)
• The Categorical type was integrated as a first-class pandas type, see here
• New scalar type Timedelta, and a new index type TimedeltaIndex, see here
• New DataFrame default display for df.info() to include memory usage, see Memory Usage
• New datetimelike properties accessor .dt for Series, see Datetimelike Properties
• Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing
• Split out string methods documentation into Working with Text Data
• read_csv will now by default ignore blank lines when parsing, see here
• API change in using Indexes in set operations, see here
• Internal refactoring of the Index class to no longer sub-class ndarray, see Internal Refactoring
• dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)

See the v0.15.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.0.
35.2.1 Thanks

- Aaron Schumacher
- Adam Greenhall
- Andy Hayden
- Anthony O’Brien
- Artemy Kolchinsky
- behzad nouri
- Benedikt Sauer
- benjamin
- Benjamin Thyreau
- Ben Schiller
- bjonen
- BorisVerk
- Chris Reynolds
- Chris Stafer
- Dav Clark
- dlovell
- DSM
- dsm054
- FragLegs
- German Gomez-Herrero
- Hsiaoming Yang
- Huan Li
- hunterowens
- Hyungtae Kim
- immerr
- Isaac Slavitt
- ischwabacher
- Jacob Schaer
- Jacob Wasserman
- Jan Schulz
- Jeff Tratner
- Jesse Farnham
- jmorris0x0
- jnmclarty
- Joe Bradish
- Joerg Rittinger
- John W. O’Brien
- Joris Van den Bossche
- jreback
- Kevin Sheppard
- klonuo
- Kyle Meyer
- lexual
- Max Chang
- mcjcode
- Michael Mueller
- Michael W Schatzow
- Mike Kelly
- Mortada Mehyar
- mtrbean
- Nathan Sanders
- Nathan Typanski
- onesandzeroes
- Paul Masurel
- Phillip Cloud
- Pietro Battiston
- RenzoBertocchi
- rockg
- Ross Petchler
- seth-p
- Shahul Hameed
- Shashank Agarwal
- sinhrks
- someben
- stahlous
- stas-sl
- Stephan Hoyer
- thatneat
- tom-alcorn
- TomAugspurger
- Tom Augustiner
35.3 pandas 0.14.1

Release date: (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

- New methods `select_dtypes()` to select columns based on the dtype and `sem()` to calculate the standard error of the mean.
- Support for dateutil timezones (see docs).
- Support for ignoring full line comments in the `read_csv()` text parser.
- New documentation section on Options and Settings.
- Lots of bug fixes.

See the v0.14.1 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.1.

35.3.1 Thanks

- Andrew Rosenfeld
- Andy Hayden
- Benjamin Adams
- Benjamin M. Gross
- Brian Quistorff
- Brian Wignall
- bwignall
- clham
- Daniel Waeber
- David Bew
- David Stephens
- DSM
• dsm054
• helger
• immerrr
• Jacob Schaer
• jaimefrio
• Jan Schulz
• John David Reaver
• John W. O’Brien
• Joris Van den Bossche
• jreback
• Julien Danjou
• Kevin Sheppard
• K.-Michael Aye
• Kyle Meyer
• lexical
• Matthew Brett
• Matt Wittmann
• Michael Mueller
• Mortada Mehyar
• onesandzeroes
• Phillip Cloud
• Rob Levy
• rockg
• sanguineturtle
• Schaer, Jacob C
• seth-p
• sinhhrs
• Stephan Hoyer
• Thomas Kluyver
• Todd Jennings
• TomAugspurger
• unknown
• yelite
35.4 pandas 0.14.0

Release date: (May 31, 2014)

This is a major release from 0.13.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

- Officially support Python 3.4
- SQL interfaces updated to use sqlalchemy, see here.
- Display interface changes, see here
- MultiIndexing using Slicers, see here.
- Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see here
- More consistency in groupby results and more flexible groupby specifications, see here
- Holiday calendars are now supported in CustomBusinessDay, see here
- Several improvements in plotting functions, including: hexbin, area and pie plots, see here.
- Performance doc section on I/O operations, see here

See the v0.14.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.0.

35.4.1 Thanks

- Acanthostega
- Adam Marcus
- agijsberts
- akittredge
- Alex Gaudio
- Alex Rothberg
- AllenDowney
- Andrew Rosenfeld
- Andy Hayden
- ankostis
- anomalake
- Antoine Mazières
- anton-d
- bashtage
- Benedikt Sauer
- benjamin
- Brad Buran
- bwignall
pandas: powerful Python data analysis toolkit, Release 0.15.1

- cgothlke
- chee7i
- Christopher Whelan
- Clark Fitzgerald
- clham
- Dale Jung
- Dan Allan
- Dan Birken
- danielballan
- Daniel Waeber
- David Jung
- David Stephens
- Douglas McNeil
- DSM
- Garrett Drapala
- Gouthaman Balaraman
- Guillaume Poulin
- hshimizu77
- hugo
- immerr
- ischwabacher
- Jacob Howard
- Jacob Schaer
- jaimefrio
- Jason Sexauer
- Jeff Reback
- Jeffrey Starr
- Jeff Tratner
- John David Reaver
- John McNamara
- John W. O’Brien
- Jonathan Chambers
- Joris Van den Bossche
- jreback
- jsexauer
- Julia Evans
• Júlio
• Katie Atkinson
• kdiether
• Kelsey Jordahl
• Kevin Sheppard
• K.-Michael Aye
• Matthias Kuhn
• Matt Wittmann
• Max Grender-Jones
• Michael E. Gruen
• michaelws
• mikebailey
• Mike Kelly
• Nipun Batra
• Noah Spies
• ojdo
• onesandzeroes
• Patrick O’Keeffe
• phaebz
• Phillip Cloud
• Pietro Battiston
• PKEuS
• Randy Carnevale
• ribonuous
• Robert Gibboni
• rockg
• sinhrks
• Skipper Seabold
• SplashDance
• Stephan Hoyer
• Tim Cera
• Tobias Brandt
• Todd Jennings
• TomAugspurger
• Tom Augspurger
• unutbu
35.5 pandas 0.13.1

Release date: (February 3, 2014)

35.5.1 New Features

- Added `date_format` and `datetime_format` attribute to `ExcelWriter`. (GH4133)

35.5.2 API Changes

- `Series.sort` will raise a `ValueError` (rather than a `TypeError`) on sorting an object that is a view of another (GH5856, GH5853)
- Raise/Warn `SettingWithCopyError` (according to the option chained_assignment in more cases, when detecting chained assignment, related (GH5938, GH6025)
- DataFrame.head(0) returns self instead of empty frame (GH5846)
- `autocorrelation_plot` now accepts `**kwargs`. (GH5623)
- `convert_objects` now accepts a `convert_timedeltas='coerce'` argument to allow forced dtype conversion of timedeltas (GH5458, issue:5689)
- Add `-NaN` and `-nan` to the default set of NA values (GH5952). See `NA Values`.
- `NDFrame` now has an `equals` method. (GH5283)
- `DataFrame.apply` will use the `reduce` argument to determine whether a `Series` or a `DataFrame` should be returned when the `DataFrame` is empty (GH6007).

35.5.3 Experimental Features

35.5.4 Improvements to existing features

- perf improvements in `Series` datetime/timedelta binary operations (GH5801)
- `option_context` context manager now available as top-level API (GH5752)
- `df.info()` view now display dtype info per column (GH5682)
- `df.info()` now honors option max_info_rows, disable null counts for large frames (GH5974)
- perf improvements in `DataFrame count/dropna` for axis=1
- `Series.str.contains` now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns. (GH5879)
- support `dtypes` property on `Series/Panel/Panel4D`
• **extend** `Panel.apply` **to allow arbitrary functions** (rather than only ufuncs) (GH1148) **allow multiple axes to be used to operate on slabs of a Panel**

• The `ArrayFormatter` for `datetime` and `timedelta64` now intelligently limit precision based on the values in the array (GH3401)

• `pd.show_versions()` is now available for convenience when reporting issues.

• perf improvements to `Series.str.extract` (GH5944)

• perf improvements in `dtypes/ftypes` methods (GH5968)

• perf improvements in indexing with object dtypes (GH5968)

• improved dtype inference for `timedelta` like passed to constructors (GH5458, GH5689)

• escape special characters when writing to latex (:issue: 5374)

• perf improvements in `DataFrame.apply` (GH6013)

• `pd.read_csv` and `pd.to_datetime` learned a new `infer_datetime_format` keyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490, :issue: 6021)

• add ability to recognize ‘%p’ format code (am/pm) to date parsers when the specific format is supplied (GH5361)

• Fix performance regression in JSON IO (GH5765)

• performance regression in Index construction from Series (GH6150)

35.5.5 Bug Fixes

• Bug in `io.wb.get_countries` not including all countries (GH6008)

• Bug in `Series.replace` with `timestamp` dict (GH5797)

• `read_csv/read_table` now respects the `prefix` kwarg (GH5732).

• Bug in selection with missing values via `.ix` from a duplicate indexed DataFrame failing (GH5835)

• Fix issue of boolean comparison on empty DataFrames (GH5808)

• Bug in `isnull` handling `NaT` in an object array (GH5443)

• Bug in `to_datetime` when passed a `np.nan` or integer datelike and a format string (GH5863)

• Bug in `groupby` dtype conversion with datetimelike (GH5869)

• Regression in handling of empty Series as indexers to Series (GH5877)

• Bug in internal caching, related to (GH5727)

• Testing bug in reading JSON/msgpack from a non-filepath on windows under py3 (GH5874)

• Bug when assigning to `.ix[tuple(...)]` (GH5896)

• Bug in fully reindexing a panel (GH5905)

• Bug in `idxmin/max` with object dtypes (GH5914)

• Bug in `BusinessDay` when adding `n` days to a date not on offset when $n>5$ and $n\%5==0$ (GH5890)

• Bug in assigning to chained series with a series via `ix` (GH5928)

• Bug in creating an empty DataFrame, copying, then assigning (GH5932)

• Bug in `DataFrame.tail` with empty frame (GH5846)
- Bug in propagating metadata on resample (GH5862)
- Fixed string-representation of NaT to be “NaT” (GH5708)
- Fixed string-representation for Timestamp to show nanoseconds if present (GH5912)
- `pd.match` not returning passed sentinel
- `Panel.to_frame()` no longer fails when `major_axis` is a MultiIndex (GH5402).
- Bug in `pd.read_msgpack` with inferring a `DateTimeIndex` frequency incorrectly (GH5947)
- Fixed `to_datetime` for array with both Tz-aware datetimes and NaT’s (GH5961)
- Bug in rolling skew/kurtosis when passed a Series with bad data (GH5749)
- Bug in scipy `interpolate` methods with a datetime index (GH5975)
- Bug in NaT comparison if a mixed datetime/np.datetime64 with NaT were passed (GH5968)
- Fixed bug with `pd.concat` losing dtype information if all inputs are empty (GH5742)
- Recent changes in IPython cause warnings to be emitted when using previous versions of pandas in QTConsole, now fixed. If you’re using an older version and need to suppress the warnings, see (GH5922).
- Bug in merging `timedelta` dtypes (GH5695)
- Bug in plotting `scatter_matrix` function. Wrong alignment among diagonal and off-diagonal plots, see (GH5497).
- Regression in Series with a multi-index via `ix` (GH6018)
- Bug in Series.xs with a multi-index (GH6018)
- Bug in Series construction of mixed type with datelike and an integer (which should result in object type and not automatic conversion) (GH6062)
- Possible segfault when chained indexing with an object array under numpy 1.7.1 (GH6026, GH6056)
- Bug in setting using fancy indexing a single element with a non-scalar (e.g. a list), (GH6043)
- `to_sql` did not respect `if_exists` (GH4110 GH4304)
- Regression in `.get(None)` indexing from 0.12 (GH5652)
- Subtle `iloc` indexing bug, surfaced in (GH6059)
- Bug with insert of strings into DatetimeIndex (GH5818)
- Fixed unicode bug in to_html/HTML repr (GH6098)
- Fixed missing arg validation in `get_options_data` (GH6105)
- Bug in assignment with duplicate columns in a frame where the locations are a slice (e.g. next to each other) (GH6120)
- Bug in propagating `_ref_locs` during construction of a DataFrame with dups index/columns (GH6121)
- Bug in `DataFrame.apply` when using mixed datelike reductions (GH6125)
- Bug in `DataFrame.append` when appending a row with different columns (GH6129)
- Bug in DataFrame construction with recarray and non-ns datetime dtype (GH6140)
- Bug in `.loc` setitem indexing with a dataframe on rhs, multiple item setting, and a datetimelike (GH6152)
- Fixed a bug in query/eval during lexicographic string comparisons (GH6155).
- Fixed a bug in query where the index of a single-element Series was being thrown away (GH6148).
• Bug in HDFStore on appending a dataframe with multi-indexed columns to an existing table (GH6167)
• Consistency with dtypes in setting an empty DataFrame (GH6171)
• Bug in selecting on a multi-index HDFStore even in the presence of under specified column spec (GH6169)
• Bug in nanops.var with ddof=1 and 1 elements would sometimes return inf rather than nan on some platforms (GH6136)
• Bug in Series and DataFrame bar plots ignoring the use_index keyword (GH6209)
• Bug in groupby with mixed str/int under python3 fixed; argsort was failing (GH6212)

35.6 pandas 0.13.0

Release date: January 3, 2014

35.6.1 New Features

• plot(kind='kde') now accepts the optional parameters bw_method and ind, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)
• Added isin method to DataFrame (GH4211)
• df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled by default). (GH5070).
• Clipboard functionality now works with PySide (GH4282)
• New extract string method returns regex matches more conveniently (GH4685)
• Auto-detect field widths in read_fwf when unspecified (GH4488)
• to_csv() now outputs datetime objects according to a specified format string via the date_format keyword (GH4313)
• Added LastWeekOfMonth DateOffset (GH4637)
• Added cumcount groupby method (GH4646)
• Added FY5253, and FY5253Quarter DateOffsets (GH4511)
• Added mode() method to Series and DataFrame to get the statistical mode(s) of a column/series. (GH5367)

35.6.2 Experimental Features

• The new eval() function implements expression evaluation using numexpr behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series.
• DataFrame has a new eval() that evaluates an expression in the context of the DataFrame; allows inline expression assignment
• A query() method has been added that allows you to select elements of a DataFrame using a natural query syntax nearly identical to Python syntax.
• pd.eval and friends now evaluate operations involving datetime64 objects in Python space because numexpr cannot handle NaT values (GH4897).
pandas: powerful Python data analysis toolkit, Release 0.15.1

- Add msgpack support via `pd.read_msgpack()` and `pd.to_msgpack()` / `df.to_msgpack()` for serialization of arbitrary pandas (and python objects) in a lightweight portable binary format (GH686, GH5506)
- Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.
- Added `pandas.io.gbq` for reading from (and writing to) Google BigQuery into a DataFrame. (GH4140)

35.6.3 Improvements to existing features

- `read_html` now raises a `URLError` instead of catching and raising a `ValueError` (GH4303, GH4305)
- `read_excel` now supports an integer in its `sheetname` argument giving the index of the sheet to read in (GH4301).
- `get_dummies` works with NaN (GH4446)
- Added a test for `read_clipboard()` and `to_clipboard()` (GH4282)
- Added bins argument to `value_counts` (GH3945), also sort and ascending, now available in Series method as well as top-level function.
- Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) to infinity. (GH4220, GH4219), affecting `read_table`, `read_csv`, etc.
- Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402)
- Significant table writing performance improvements in HDFStore
- JSON date serialization now performed in low-level C code.
- JSON support for encoding datetime.time
- Expanded JSON docs, more info about orient options and the use of the numpy param when decoding.
- Add `drop_level` argument to `xs` (GH4180)
- Can now resample a DataFrame with ohlc (GH2320)
- `Index.copy()` and `MultiIndex.copy()` now accept keyword arguments to change attributes (i.e., names, levels, labels) (GH4039)
- Add `rename` and `set_names` methods to `Index` as well as `set_names`, `set_levels`, `set_labels` to `MultiIndex`. (GH4039) with improved validation for all (GH4039, GH4794)
- A Series of dtype `timedelta64[ns]` can now be divided/multiplied by an integer series (GH4521)
- A Series of dtype `timedelta64[ns]` can now be divided by another `timedelta64[ns]` object to yield a `float64` dtyped Series. This is frequency conversion; `astyping` is also supported.
- `Timedelta64` support `fillna/ffill/bfill` with an integer interpreted as seconds, or a `timedelta` (GH3371)
- Box numeric ops on `timedelta` Series (GH4984)
- Datetime64 support `ffill/bfill`
- Performance improvements with `__getitem__` on DataFrames with when the key is a column
- Support for using a `DatetimeIndex/PeriodsIndex` directly in a datelike calculation e.g. `s-s.index` (GH4629)
- Better/cleaned up exceptions in core/common, io/excel and core/format (GH4721, GH3954), as well as cleaned up test cases in tests/test_frame, tests/test_multilevel (GH4732).
• Performance improvement of timeseries plotting with PeriodIndex and added test to vbench (GH4705 and GH4722)

• Add axis and level keywords to where, so that the other argument can now be an alignable pandas object.

• to_datetime with a format of ‘%Y%m%d’ now parses much faster

• It’s now easier to hook new Excel writers into pandas (just subclass ExcelWriter and register your engine). You can specify an engine in to_excel or in ExcelWriter. You can also specify which writers you want to use by default with config options io.excel.xlsx.writer and io.excel.xls.writer. (GH4745, GH4750)

• Panel.to_excel() now accepts keyword arguments that will be passed to its DataFrame’s to_excel() methods. (GH4750)

• Added XlsxWriter as an optional ExcelWriter engine. This is about 5x faster than the default openpyxl xlsx writer and is equivalent in speed to the xlwt xls writer module. (GH4542)

• allow DataFrame constructor to accept more list-like objects, e.g. list of collections.Sequence and array.Array objects (GH3783, GH4297, GH4851), thanks @lgautier

• DataFrame constructor now accepts a numpy masked record array (GH3478), thanks @jnothman

• __getitem__ with tuple key (e.g., [:, 2]) on Series without MultiIndex raises ValueError (GH4759, GH4837)

• read_json now raises a (more informative) ValueError when the dict contains a bad key and orient=’split’ (GH4730, GH4838)

• read_stata now accepts Stata 13 format (GH4291)

• ExcelWriter and ExcelFile can be used as contextmanagers. (GH3441, GH4933)

• pandas is now tested with two different versions of statsmodels (0.4.3 and 0.5.0) (GH4981).

• Better string representations of MultiIndex (including ability to roundtrip via repr). (GH3347, GH4935)

• Both ExcelFile and read_excel to accept an xlrd.Book for the io (formerly path_or_buf) argument; this requires engine to be set. (GH4961).

• concat now gives a more informative error message when passed objects that cannot be concatenated (GH4608).

• Add halflife option to exponentially weighted moving functions (PR GH4998)

• to_dict now takes records as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)

• tz_localize can infer a fall daylight savings transition based on the structure of unlocalized data (GH4230)

• DatetimeIndex is now in the API documentation

• Improve support for converting R datasets to pandas objects (more informative index for timeseries and numeric, support for factors, dist, and high-dimensional arrays).

• read_html() now supports the parse_dates, tupleize_cols and thousands parameters (GH4770).

• json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067)

• DataFrame.from_records() will now accept generators (GH4910)

• DataFrame.interpolate() and Series.interpolate() have been expanded to include interpolation methods from scipy. (GH4434, GH1892)
pandas: powerful Python data analysis toolkit, Release 0.15.1

- Series now supports a `to_frame` method to convert it to a single-column DataFrame (GH5164)
- DatetimeIndex (and date_range) can now be constructed in a left- or right-open fashion using the `closed` parameter (GH4579)
- Python csv parser now supports usecols (GH4335)
- Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)
- `NDFrame.drop()` now accepts names as well as integers for the axis argument. (GH5354)
- Added short docstrings to a few methods that were missing them + fixed the docstrings for Panel flex methods. (GH5336)
- `NDFrame.drop()`, `NDFrame.dropna()`, and `.drop_duplicates()` all accept `inplace` as a keyword argument; however, this only means that the wrapper is updated `inplace`, a copy is still made internally. (GH1960, GH5247, GH5628, and related GH2325 [still not closed])
- Fixed bug in `tools.plotting.andrews_curvres` so that lines are drawn grouped by color as expected.
- `read_excel()` now tries to convert integral floats (like 1.0) to int by default. (GH5394)
- Excel writers now have a default option `merge_cells` in `to_excel()` to merge cells in MultiIndex and Hierarchical Rows. Note: using this option it is no longer possible to round trip Excel files with merged MultiIndex and Hierarchical Rows. Set the `merge_cells` to `False` to restore the previous behaviour. (GH5254)
- The FRED DataReader now accepts multiple series (GH3413)
- StataWriter adjusts variable names to Stata’s limitations (GH5709)

35.6.4 API Changes

- `DataFrame.reindex()` and forward/backward filling now raises `ValueError` if either index is not monotonic (GH4483, GH4484).
- `pandas` now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, `pandas` now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into `compat`. (GH4384, GH4375, GH4372)
- `pandas.util.compat` and `pandas.util.py3compat` have been merged into `pandas.compat`. `pandas.compat` now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. `lmap`, `lzip`, `lrange` and `lfilter` all produce lists instead of iterators, for compatibility with `numpy`, `subscripting` and `pandas` constructors. (GH4384, GH4375, GH4372)
- Deprecated `iterkv`, which will be removed in a future release (was just an alias of `iteritems` used to get around `2to3`'s changes). (GH4384, GH4375, GH4372)
- `Series.get` with negative indexers now returns the same as `[]` (GH4390)
- allow `ix/loc` for `Series/DataFrame/Panel` to set on any axis even when the single-key is not currently contained in the index for that axis (GH2578, GH5226, GH5632, GH5720, GH5744, GH5756)
- Default export for `to_clipboard` is now csv with a sep of `t` for compat (GH3368)
- at now will enlarge the object `inplace` (and return the same) (GH2578)
- `DataFrame.plot` will scatter plot `x` versus `y` by passing `kind='scatter'` (GH2215)
- `HDFStore`
 - `append_to_multiple` automatically synchronizes writing rows to multiple tables and adds a `dropna` kwarg (GH4698)
- handle a passed Series in table format (GH4330)
- added an is_open property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)
- a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise ClosedFileError.
- removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table (GH4367)
- removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if you try to use mode='w' with an OPEN file handle (GH4367)
- allow a passed locations array or mask as a where condition (GH4467)
- add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625)
- the format keyword now replaces the table keyword; allowed values are fixed(f)|table(t) the Storer format has been renamed to Fixed
- a column multi-index will be recreated properly (GH4710); raise on trying to use a multi-index with data_columns on the same axis
- select_as_coordinates will now return an Int64Index of the resultant selection set
- support timedelta64[ns] as a serialization type (GH3577)
- store datetime.date objects as ordinals rather then timetuples to avoid timezone issues (GH2852), thanks@tavistmorph and @numpand
- numexpr 2.2.2 fixes incompatibility in PyTables 2.4 (GH4908)
- flush now accepts an fsync parameter, which defaults to False (GH5364)
- unicode indices not supported on table formats (GH5386)
- pass thru store creation arguments; can be used to support in-memory stores
 - JSON
 - added date_unit parameter to specify resolution of timestamps. Options are seconds, milliseconds, microseconds and nanoseconds. (GH4362, GH4498).
 - added default_handler parameter to allow a callable to be passed which will be responsible for handling otherwise unserializable objects. (GH5138)
 - Index and MultiIndex changes (GH4039):
 - Setting levels and labels directly on MultiIndex is now deprecated. Instead, you can use the set_levels() and set_labels() methods.
 - levels, labels and names properties no longer return lists, but instead return containers that do not allow setting of items (‘mostly immutable’)
 - levels, labels and names are validated upon setting and are either copied or shallow-copied.
 - inplace setting of levels or labels now correctly invalidates the cached properties. (GH5238).
 - __deepcopy__ now returns a shallow copy (currently: a view) of the data - allowing metadata changes.
- MultiIndex.astype() now only allows np.object-like dtypes and now returns a MultiIndex rather than an Index. (GH4039)
- Added is_ method to Index that allows fast equality comparison of views (similar to np.may_share_memory but no false positives, and changes on levels and labels setting on MultiIndex). (GH4859, GH4909)
- Aliased __iadd__ to __add__. (GH4996)
- Added is_ method to Index that allows fast equality comparison of views (similar to np.may_share_memory but no false positives, and changes on levels and labels setting on MultiIndex). (GH4859, GH4909)

• Infer and downcast dtype if downcast='infer' is passed to fillna/ffill/bfill (GH4604)
• __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073, GH4633) behavior. Add .bool() method to NDFrame objects to facilitate evaluating of single-element boolean Series
• DataFrame.update() no longer raises a DataConflictError, it now will raise a ValueError instead (if necessary) (GH4732)
• Series.isin() and DataFrame.isin() now raise a TypeError when passed a string (GH4763). Pass a list of one element (containing the string) instead.
• Remove undocumented/unused kind keyword argument from read_excel, and ExcelFile. (GH4713, GH4712)
• The method argument of NDFrame.replace() is valid again, so that a a list can be passed to to_replace (GH4743).
• provide automatic dtype conversions on _reduce operations (GH3371)
• exclude non-numerics if mixed types with datelike in _reduce operations (GH3371)
• default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12 (GH3604)
• moved timedeltas support to pandas.tseries.timedeltas.py; add timedeltas string parsing, add top-level to_timedelta function
• NDFrame now is compatible with Python’s toplevel abs() function (GH4821).
• raise a TypeError on invalid comparison ops on Series/DataFrame (e.g. integer/datetime) (GH4968)
• Added a new index type, Float64Index. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes [], ix, loc for scalar indexing and slicing work exactly the same. Indexing on other index types are preserved (and positional fallback for [], ix), with the exception, that floating point slicing on indexes on non Float64Index will raise a TypeError, e.g. Series(range(5))[3.5:4.5] (GH263, issue:5375)
• Make Categorical repr nicer (GH4368)
• Remove deprecated Factor (GH3650)
• Remove deprecated set_printoptions/reset_printoptions (issue:3046)
• Remove deprecated _verbose_info (GH3215)
• Begin removing methods that don’t make sense on GroupBy objects (GH4887).
• Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter from pandas.io.parsers (GH3717)
• All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not support pow or mod with non-scalars. (GH3765)

• Arithmetic func factories are now passed real names (suitable for using with super) (GH5240)

• Provide numpy compatibility with 1.7 for a calling convention like np.prod(pandas_object) as numpy call with additional keyword args (GH4435)

• Provide __dir__ method (and local context) for tab completion / remove ipython completers code (GH4501)

• Support non-unique axes in a Panel via indexing operations (GH4960)

• .truncate will raise a ValueError if invalid before and afters dates are given (GH5242)

• Timestamp now supports now/today/utcnow class methods (GH5339)

• default for display.max_seq_len is now 100 rather then None. This activates truncated display ("...") of long sequences in various places. (GH3391)

• All division with NDFrame - likes is now truedivision, regardless of the future import. You can use // and floordiv to do integer division.

In [3]: arr = np.array([1, 2, 3, 4])

In [4]: arr2 = np.array([5, 3, 2, 1])

In [5]: arr / arr2
Out[5]: array([0, 0.200000, 1.500000, 4.000000])

dtype: float64

• raise/warn SettingWithCopyError/Warning exception/warning when setting of a copy thru chained assignment is detected, settable via option mode.chained_assignment

• test the list of NA values in the csv parser. add N/A, #NA as independent default na values (GH5521)

• The refactoring involving “Series“ deriving from NDFrame breaks rpy2<=2.3.8. an Issue has been opened against rpy2 and a workaround is detailed in GH5698. Thanks @JanSchulz.

• Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element (GH6214)

35.6.5 Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass Series from NDFrame, which is the base class currently for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray. (GH4080, GH3862, GH816) See Internal Refactoring

• Refactor of series.py/frame.py/panel.py to move common code to generic.py

• added _setup_axes to created generic NDFrame structures

• moved methods
These are API changes which make Panel more consistent with DataFrame

- swapaxes on a Panel with the same axes specified now return a copy

- Series now inherits from NDFrame rather than directly from ndarray. There are several minor changes that affect the API.

- numpy functions that do not support the array interface will now return ndarrays rather than series, e.g. np.diff, np.ones_like, np.where

- Series(0.5) would previously return the scalar 0.5, this is no longer supported

- TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if desired)

- Refactor of Sparse objects to use BlockManager

- Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is non-consolidatable. SparseSeries and SparseDataFrame now inherit more methods from their hierarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of the SparseBlock)

- Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)

- Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient

- added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense (as well as the dtype)

- All NDFrame objects now have a _prop_attributes, which can be used to indicate various values to propagate to a new object from an existing (e.g. name in Series will follow more automatically now)
• Internal type checking is now done via a suite of generated classes, allowing `isinstance(value, klass)` without having to directly import the class, courtesy of @jtratner

• Bug in Series update where the parent frame is not updating its cache based on changes (GH4080, GH5216) or types (GH3217), fillna (GH3386)

• Indexing with dtype conversions fixed (GH4463, GH4204)

• Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work

• Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy

• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with the same signature for Panel

• Series (for index) / Panel (for items) now as attribute access to its elements (GH1903)

• Refactor clip methods to core/generic.py (GH4798)

• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality

• Refactor of Series arithmetic with time-like objects (datetime/timedelta/time etc.) into a separate, cleaned up wrapper class. (GH4613)

• Complex compat for Series with ndarray. (GH4819)

• Removed unnecessary rwproperty from codebase in favor of builtin property. (GH4843)

• Refactor object level numeric methods (mean/sum/min/max...) from object level modules to core/generic.py (GH4435).

• Refactor cum objects to core/generic.py (GH4435), note that these have a more numpy-like function signature.

• `read_html()` now uses TextParser to parse HTML data from bs4/lxml (GH4770).

• Removed the keep_internal keyword parameter in pandas/core/groupby.py because it wasn’t being used (GH5102).

• Base DateOffsets are no longer all instantiated on importing pandas, instead they are generated and cached on the fly. The internal representation and handling of DateOffsets has also been clarified. (GH5189, related GH5004)

• MultiIndex constructor now validates that passed levels and labels are compatible. (GH5213, GH5214)

• Unity dropna for Series/DataFrame signature (GH5250), tests from GH5234, courtesy of @rockg

• Rewrite assert_almost_equal() in cython for performance (GH4398)

• Added an internal _update_inplace method to facilitate updating NDFrame wrappers on inplace ops (only is for convenience of caller, doesn’t actually prevent copies). (GH5247)

35.6.6 Bug Fixes

• HDFStore
 – raising an invalid TypeError rather than ValueError when appending with a different block ordering (GH4096)
 – read_hdf was not respecting as passed mode (GH4504)
 – appending a 0-len table will work correctly (GH4273)
 – to_hdf was raising when passing both arguments append and table (GH4584)
- reading from a store with duplicate columns across dtypes would raise (GH4767)
- Fixed a bug where ValueError wasn’t correctly raised when column names weren’t strings (GH4956)
- A zero length series written in Fixed format not deserializing properly. (GH4708)
- Fixed decoding perf issue on pyt3 (GH5441)
- Validate levels in a multi-index before storing (GH5527)
- Correctly handle data_columns with a Panel (GH5717)

- Fixed bug in tslib.tz_convert(vals, tz1, tz2): it could raise IndexError exception while trying to access trans[pos + 1] (GH4496)
- The by argument now works correctly with the layout argument (GH4102, GH4014) in *.hist plotting methods
- Fixed bug in PeriodIndex.map where using str would return the str representation of the index (GH4136)
- Fixed test failure test_time_series_plot_color_with_empty_kwargs when using custom matplotlib default colors (GH4345)
- Fix running of stata IO tests. Now uses temporary files to write (GH4353)
- Fixed an issue where DataFrame.sum was slower than DataFrame.mean for integer valued frames (GH4365)
- read_html tests now work with Python 2.6 (GH4351)
- Fixed bug where network testing was throwing NameError because a local variable was undefined (GH4381)
- In to_json, raise if a passed orient would cause loss of data because of a duplicate index (GH4359)
- In to_json, fix date handling so milliseconds are the default timestamp as the docstring says (GH4362).
- as_index is no longer ignored when doing groupby apply (GH4648, GH3417)
- JSON NaT handling fixed, NaTs are now serialized to null (GH4498)
- Fixed JSON handling of escapable characters in JSON object keys (GH4593)
- Fixed passing keep_default_na=False when na_values=None (GH4318)
- Fixed bug with values raising an error on a DataFrame with duplicate columns and mixed dtypes, surfaced in (GH4377)
- Fixed bug with duplicate columns and type conversion in read_json when orient=’split’ (GH4377)
- Fixed JSON bug where locales with decimal separators other than ‘.’ threw exceptions when encoding / decoding certain values. (GH4918)
- Fix .iat indexing with a PeriodIndex (GH4390)
- Fixed an issue where PeriodIndex joining with self was returning a new instance rather than the same instance (GH4379); also adds a test for this for the other index types
- Fixed a bug with all the dtypes being converted to object when using the CSV cparser with the usecols parameter (GH3192)
- Fix an issue in merging blocks where the resulting DataFrame had partially set _ref_locs (GH4403)
- Fixed an issue where hist subplots were being overwritten when they were called using the top level matplotlib API (GH4408)
- Fixed a bug where calling Series.astype(str) would truncate the string (GH4405, GH4437)
- Fixed a py3 compat issue where bytes were being repr'd as tuples (GH4455)
- Fixed Panel attribute naming conflict if item is named 'a' (GH3440)
- Fixed an issue where duplicate indexes were raising when plotting (GH4486)
- Fixed an issue where cumsum and cumprod didn’t work with bool dtypes (GH4170, GH4440)
- Fixed Panel slicing issued in xs that was returning an incorrect dimmed object (GH4016)
- Fix resampling bug where custom reduce function not used if only one group (GH3849, GH4494)
- Fixed Panel assignment with a transposed frame (GH3830)
- Raise on set indexing with a Panel and a Panel as a value which needs alignment (GH3777)
- frozenset objects now raise in the Series constructor (GH4482, GH4480)
- Fixed issue with sorting a duplicate multi-index that has multiple dtypes (GH4516)
- Fixed bug in DataFrame.set_values which was causing name attributes to be lost when expanding the index. (GH3742, GH4039)
- Fixed issue where individual names, levels and labels could be set on MultiIndex without validation (GH3714, GH4039)
- Fixed (GH3334) in pivot_table. Margins did not compute if values is the index.
- Fix bug in having a rhs of np.timedelta64 or np.offsets.DateOffset when operating with dates (GH4532)
- Fix arithmetic with series/datetimedelta and np.timedelta64 not working the same (GH4134) and buggy timedelta in numpy 1.6 (GH4135)
- Fix bug in pd.read_clipboard on windows with PY3 (GH4561); not decoding properly
- tslib.get_period_field() and tslib.get_period_field_arr() now raise if code argument out of range (GH4519, GH4520)
- Fix boolean indexing on an empty series loses index names (GH4235), infer_dtype works with empty arrays.
- Fix reindexing with multiple axes; if an axes match was not replacing the current axes, leading to a possible lazy frequency inference issue (GH3317)
- Fixed issue where DataFrame.apply was reraising exceptions incorrectly (causing the original stack trace to be truncated).
- Fix selection with ix/loc and non_unique selectors (GH4619)
- Fix assignment with iloc/loc involving a dtype change in an existing column (GH4312, GH5702) have internal setitem_with_indexer in core/indexing to use Block.setitem
- Fixed bug where thousands operator was not handled correctly for floating point numbers in csv_import (GH4322)
- Fix an issue with CacheableOffset not properly being used by many DateOffset; this prevented the DateOffset from being cached (GH4609)
- Fix boolean comparison with a DataFrame on the lhs, and a list/tuple on the rhs (GH4576)
- Fix error/dtype conversion with setitem of None on Series/DataFrame (GH4667)
- Fix decoding based on a passed in non-default encoding in pd.read_stata (GH4626)
- Fix DataFrame.from_records with a plain-vanilla ndarray. (GH4727)
- Fix some inconsistencies with Index.rename and MultiIndex.rename, etc. (GH4718, GH4628)
• Bug in using iloc/loc with a cross-sectional and duplicate indicies (GH4726)
• Bug with using QUOTE_NONE with to_csv causing Exception. (GH4328)
• Bug in using Series indexing not raising an error when the right-hand-side has an incorrect length (GH2702)
• Bug in multi-indexing with a partial string selection as one part of a MultiIndex (GH4758)
• Bug with reindexing on the index with a non-unique index will now raise ValueError (GH4746)
• Bug in setting with loc/ix a single indexer with a multi-index axis and a numpy array, related to (GH3777)
• Bug in concatenation with duplicate columns across dtypes not merging with axis=0 (GH4771, GH4975)
• Bug in iloc with a slice index failing (GH4771)
• Incorrect error message with no colspecs or width in read_fwf. (GH4774)
• Fix bugs in indexing in a Series with a duplicate index (GH4548, GH4550)
• Fixed bug with reading compressed files with read_fwf in Python 3. (GH3963)
• Fixed an issue with a duplicate index and assignment with a dtype change (GH4686)
• Fixed an issue related to ticklocs/ticklabels with log scale bar plots across different versions of matplotlib (GH4789)
• Suppressed DeprecationWarning associated with internal calls issued by repr() (GH4391)
• Fixed an issue with a duplicate index and duplicate selector with .loc (GH4825)
• Fixed an issue with DataFrame.sort_index where, when sorting by a single column and passing a list for ascending, the argument for ascending was being interpreted as True (GH4839, GH4846)
• Fixed Panel.tshift not working. Added freq support to Panel.shift (GH4853)
• Fix an issue in TextFileReader w/ Python engine (i.e. PythonParser) with thousands != “,” (GH4596)
• Bug in getitem with a duplicate index when using where (GH4879)
• Fix Type inference code coerces float column into datetime (GH4601)
• Fixed _ensure_numeric does not check for complex numbers (GH4902)
• Fixed a bug in Series.hist where two figures were being created when the by argument was passed (GH4112, GH4113).
• Fixed a bug in convert_objects for > 2 ndims (GH4937)
• Fixed a bug in DataFrame/Panel cache insertion and subsequent indexing (GH4939, GH5424)
• Fixed string methods for FrozenNDArray and FrozenList (GH4929)
• Fixed a bug with setting invalid or out-of-range values in indexing enlargement scenarios (GH4940)
• Tests for fillna on empty Series (GH4346), thanks @immerrr
• Fixed copy() to shallow copy axes/indices as well and thereby keep separate metadata. (GH4202, GH4830)
• Fixed skiprows option in Python parser for read_csv (GH4382)
• Fixed bug preventing cut from working with np.inf levels without explicitly passing labels (GH3415)
• Fixed wrong check for overlapping in DatetimeIndex.union (GH4564)
• Fixed conflict between thousands separator and date parser in csv_parser (GH4678)
- Fix appending when dtypes are not the same (error showing mixing float/numpy.datetime64) (GH4993)
- Fix repr for DateOffset. No longer show duplicate entries in kwds. Removed unused offset fields. (GH4638)
- Fixed wrong index name during read_csv if using usecols. Applies to c parser only. (GH4201)
- Timestamp objects can now appear in the left hand side of a comparison operation with a Series or DataFrame object (GH4982).
- Fix a bug when indexing with np.nan via iloc/loc (GH5016)
- Fixed a bug where low memory c parser could create different types in different chunks of the same file. Now coerces to numerical type or raises warning. (GH3866)
- Fix a bug where reshaping a Series to its own shape raised TypeError (GH4554) and other reshaping issues.
- Bug in setting with ix/loc and a mixed int/string index (GH4544)
- Make sure series-series boolean comparisons are label based (GH4947)
- Bug in multi-level indexing with a Timestamp partial indexer (GH4294)
- Tests/fix for multi-index construction of an all-nan frame (GH4078)
- Fixed a bug where read_html() wasn’t correctly inferring values of tables with commas (GH5029)
- Fixed a bug where read_html() wasn’t providing a stable ordering of returned tables (GH4770, GH5029).
- Fixed a bug where read_html() was incorrectly parsing when passed index_col=0 (GH5066).
- Fixed a bug where read_html() was incorrectly inferring the type of headers (GH5048).
- Fixed a bug where DatetimeIndex joins with PeriodIndex caused a stack overflow (GH3899).
- Fixed a bug where groupby objects didn’t allow plots (GH5102).
- Fixed a bug where groupby objects weren’t tab-completing column names (GH5102).
- Fixed a bug where groupby.plot() and friends were duplicating figures multiple times (GH5102).
- Provide automatic conversion of object dtypes on fillna, related (GH5103)
- Fixed a bug where default options were being overwritten in the option parser cleaning (GH5121).
- Treat a list/ndarray identically for iloc indexing with list-like (GH5006)
- Fix MultiIndex.get_level_values() with missing values (GH5074)
- Fix bound checking for Timestamp() with datetime64 input (GH4065)
- Fix a bug where TestReadHtml wasn’t calling the correct read_html() function (GH5150).
- Fix a bug with NDFrame.replace() which made replacement appear as though it was (incorrectly) using regular expressions (GH5143).
- Fix better error message for to_datetime (GH4928)
- Made sure different locales are tested on travis-ci (GH4918). Also adds a couple of utilities for getting locales and setting locales with a context manager.
- Fixed segfault on isnull(MultiIndex) (now raises an error instead) (GH5123, GH5125)
- Allow duplicate indices when performing operations that align (GH5185, GH5639)
- Compound dtypes in a constructor raise NotImplementedError (GH5191)
- Bug in comparing duplicate frames (GH4421) related
- Bug in describe on duplicate frames
• Bug in `to_datetime` with a format and `coerce=True` not raising (GH5195)
• Bug in `loc` setting with multiple indexers and a rhs of a Series that needs broadcasting (GH5206)
• Fixed bug where inplace setting of levels or labels on `MultiIndex` would not clear cached values property and therefore return wrong values. (GH5215)
• Fixed bug where filtering a grouped DataFrame or Series did not maintain the original ordering (GH4621).
• Fixed `Period` with a business date freq to always roll-forward if on a non-business date. (GH5203)
• Fixed bug in Excel writers where frames with duplicate column names weren’t written correctly. (GH5235)
• Fixed issue with `drop` and a non-unique index on Series (GH5248)
• Fixed seg fault in C parser caused by passing more names than columns in the file. (GH5156)
• Fixed bug in `Series.isin` with date/time-like dtypes (GH5021)
• C and Python Parser can now handle the more common multi-index column format which doesn’t have a row for index names (GH4702)
• Bug when trying to use an out-of-bounds date as an object dtype (GH5312)
• Bug when trying to display an embedded PandasObject (GH5324)
• Allows operating of Timestamps to return a datetime if the result is out-of-bounds related (GH5312)
• Fix return value/type signature of `initObjToJSON()` to be compatible with numpy’s `import_array()` (GH5334, GH5326)
• Bug when renaming then set_index on a DataFrame (GH5344)
• Test suite no longer leaves around temporary files when testing graphics. (GH5347) (thanks for catching this @yarikoptic!)
• Fixed html tests on win32. (GH4580)
• Make sure that `head/tail` are `iloc` based, (GH5370)
• Fixed bug for `PeriodIndex` string representation if there are 1 or 2 elements. (GH5372)
• The GroupBy methods `transform` and `filter` can be used on Series and DataFrames that have repeated (non-unique) indices. (GH4620)
• Fix empty series not printing name in repr (GH4651)
• Make tests create temp files in temp directory by default. (GH5419)
• `pd.to_timedelta` of a scalar returns a scalar (GH5410)
• `pd.to_timedelta` accepts `NaN` and `NaT`, returning `NaT` instead of raising (GH5437)
• performance improvements in `isnull` on larger size pandas objects
• Fixed various setitem with 1d ndarray that does not have a matching length to the indexer (GH5508)
• Bug in getitem with a multi-index and `iloc` (GH5528)
• Bug in delitem on a Series (GH5542)
• Bug fix in apply when using custom function and objects are not mutated (GH5545)
• Bug in selecting from a non-unique index with `loc` (GH5553)
• Bug in groupby returning non-consistent types when user function returns a `None`, (GH5592)
• Work around regression in numpy 1.7.0 which erroneously raises `IndexError` from `ndarray.item` (GH5666)
• Bug in repeated indexing of object with resultant non-unique index (GH5678)
• Bug in fillna with Series and a passed series/dict (GH5703)
• Bug in groupby transform with a datetime-like grouper (GH5712)
• Bug in multi-index selection in PY3 when using certain keys (GH5725)
• Row-wise concat of differing dtypes failing in certain cases (GH5754)

35.7 pandas 0.12.0

Release date: 2013-07-24

35.7.1 New Features

• **pd.read_html()** can now parse HTML strings, files or urls and returns a list of DataFrames courtesy of @cpcloud. (GH3477, GH3605, GH3606)
• Support for reading Amazon S3 files. (GH3504)
• Added module for reading and writing JSON strings/files: pandas.io.json includes to_json DataFrame/Series method, and a read_json top-level reader various issues (GH1226, GH3804, GH3876, GH3867, GH1305)
• Added module for reading and writing Stata files: pandas.io.stata (GH1512) includes to_stata DataFrame method, and a read_stata top-level reader
• Added support for writing in to_csv and reading in read_csv, multi-index columns. The header option in read_csv now accepts a list of the rows from which to read the index. Added the option, tupleize_cols to provide compatibility for the pre 0.12 behavior of writing and reading multi-index columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as a multi-index column. Note: The default value will change in 0.12 to make the default to write and read multi-index columns in the new format. (GH3571, GH1651, GH3141)
• Add iterator to Series.str (GH3638)
• **pd.set_option()** now allows N option, value pairs (GH3667).
• Added keyword parameters for different types of scatter_matrix subplots
• A filter method on grouped Series or DataFrames returns a subset of the original (GH3680, GH919)
• Access to historical Google Finance data in pandas.io.data (GH3814)
• DataFrame plotting methods can sample column colors from a Matplotlib colormap via the colormap keyword. (GH3860)

35.7.2 Improvements to existing features

• Fixed various issues with internal pprinting code, the repr() for various objects including TimeStamp and Index now produces valid python code strings and can be used to recreate the object, (GH3038, GH3379, GH3251, GH3460)
• **convert_objects** now accepts a copy parameter (defaults to True)
• **HDFStore**
 – will retain index attributes (freq,tz,name) on recreation (GH3499,issue:4098)
will warn with a `AttributeConflictWarning` if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing

support datelike columns with a timezone as `data_columns` (GH2852)

- table writing performance improvements.
- support python3 (via PyTables 3.0.0) (GH3750)

- Add modulo operator to Series, DataFrame
- Add `date` method to DatetimeIndex
- Add `dropna` argument to `pivot_table` (:issue: 3820)
- Simplified the API and added a describe method to Categorical
 - `melt` now accepts the optional parameters `var_name` and `value_name` to specify custom column names of the returned DataFrame (GH3649), thanks @hoechenberger. If `var_name` is not specified and `dataframe.columns.name` is not None, then this will be used as the `var_name` (GH4144). Also support for MultiIndex columns.

- clipboard functions use pyperclip (no dependencies on Windows, alternative dependencies offered for Linux) (GH3837).

- Plotting functions now raise a `TypeError` before trying to plot anything if the associated objects have have a dtype of `object` (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.

- Added FAQ section on repr display options, to help users customize their setup.

- where operations that result in block splitting are much faster (GH3733)

- Series and DataFrame hist methods now take a `figsize` argument (GH3834)

- DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)

- Add `unit` keyword to `Timestamp` and `to_datetime` to enable passing of integers or floats that are in an epoch unit of D, s, ms, us, ns, thanks @mtkini (GH3969) (e.g. unix timestamps or epoch s, with fractional seconds allowed) (GH3540)

- DataFrame corr method (spearman) is now cythonized.

- Improved network test decorator to catch IOError (and therefore URLError as well). Added `with_connectivity_check` decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, new `optional_args` decorator factory for decorators. (GH3910, GH3914)

- `read_csv` will now throw a more informative error message when a file contains no columns, e.g., all newline characters

- Added `layout` keyword to `DataFrame.hist()` for more customizable layout (GH4050)

- `Timestamp.min` and `Timestamp.max` now represent valid `Timestamp` instances instead of the default `datetime.min` and `datetime.max` (respectively), thanks @SleepingPills

- `read_html` now raises when no tables are found and `BeautifulSoup==4.2.0` is detected (GH4214)

35.7.3 API Changes

- `HDFStore`
 - When removing an object, `remove(key)` raises `KeyError` if the key is not a valid store object.
- raise a TypeError on passing where or columns to select with a Storer; these are invalid parameters at this time (GH4189)
- can now specify an encoding option to append/put to enable alternate encodings (GH3750)
- enable support for iterator/chunksize with read_hdf

- The repr() for (Multi)Index now obeys display.max_seq_items rather then numpy threshold print options. (GH3426, GH3466)
- Added mangle_dupe_cols option to read_table/csv, allowing users to control legacy behaviour re dupe cols (A, A.1, A.2 vs A, A) (GH3468) Note: The default value will change in 0.12 to the “no mangle” behaviour. If your code relies on this behaviour, explicitly specify mangle_dupe_cols=True in your calls.
- Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int (GH3425)
- The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a TypeError when performed on a Series and return an emptySeries when performed on a DataFrame similar to performing these operations on, for example, a DataFrame of slice objects: sum, prod, mean, std, var, skew, kurt, corr, and cov
- Do not allow datetimelike/timedeltalike creation except with valid types (e.g. cannot pass datetime64[ms]) (GH3423)
- Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. Regression from 0.10.1, partial revert on (GH2893) with (GH3596)
- Raise on iloc when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Since iloc is purely positional based, the labels on the Series are not alignable (GH3631)
- The raise_on_error option to plotting methods is obviated by GH3572, so it is removed. Plots now always raise when data cannot be plotted or the object being plotted has a dtype of object.
- DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and DataFrame.replace() instead (GH3582, GH3675, GH3676).
- the method and axis arguments of DataFrame.replace() are deprecated
- DataFrame.replace’s infer_types parameter is removed and now performs conversion by default. (GH3907)
- Deprecated display.height, display.width is now only a formatting option does not control triggering of summary, similar to < 0.11.0.
- Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted if True, default is False (same as prior to 0.12) (GH3679)
- io API changes
 - added pandas.io.api for i/o imports
 - removed Excel support to pandas.io.excel
 - added top-level pd.read_sql and to_sql DataFrame methods
 - removed clipboard support to pandas.io.clipboard
 - replace top-level and instance methods save and load with top-level read_pickle and to_pickle instance method, save and load will give deprecation warning.
- the method and axis arguments of DataFrame.replace() are deprecated
- set FutureWarning to require data_source, and to replace year/month with expiry date in pandas.io options. This is in preparation to add options data from Google (GH3822)
• the method and axis arguments of DataFrame.replace() are deprecated
• Implement __nonzero__ for NDFrame objects (GH3691, GH3696)
• as_matrix with mixed signed and unsigned dtypes will result in 2 x the lcd of the unsigned as an int, maxing with int64, to avoid precision issues (GH3733)
• na_values in a list provided to read_csv/read_excel will match string and numeric versions e.g. na_values=['99'] will match 99 whether the column ends up being int, float, or string (GH3611)
• read_html now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to parse. a list of parsers to try until success is also valid
• more consistency in the to_datetime return types (give string/array of string inputs) (GH3888)
• The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently, PandasObject provides string methods (from StringMixin). (GH4090, GH4092)
• New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)

35.7.4 Experimental Features

• Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars and custom weekmasks. (GH2301)

35.7.5 Bug Fixes

• Fixed an esoteric excel reading bug, xlrd>= 0.9.0 now required for excel support. Should provide python3 support (for reading) which has been lacking. (GH3164)
• Disallow Series constructor called with MultiIndex which caused segfault (GH4187)
• Allow unioning of date ranges sharing a timezone (GH3491)
• Fix to_csv issue when having a large number of rows and NaT in some columns (GH3437)
• .loc was not raising when passed an integer list (GH3449)
• Unordered time series selection was misbehaving when using label slicing (GH3448)
• Fix sorting in a frame with a list of columns which contains datetime64[ns] dtypes (GH3461)
• DataFrames fetched via FRED now handle ‘.’ as a NaN. (GH3469)
• Fix regression in a DataFrame apply with axis=1, objects were not being converted back to base dtypes correctly (GH3480)
• Fix issue when storing uint dtypes in an HDFStore. (GH3493)
• Non-unique index support clarified (GH3468)
 – Addressed handling of dupe columns in df.to_csv new and old (GH3454, GH3457)
 – Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
 – Fix construction of a DataFrame with a duplicate index
 – ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194)
- applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
- Fix to_csv to handle non-unique columns (GH3495)
- Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
- Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
- Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
- Non-unique indexing with a slice via loc and friends fixed (GH3659)
- Allow insert/delete to non-unique columns (GH3679)
- Extend reindex to correctly deal with non-unique indices (GH3679)
- DataFrame.itertuples() now works with frames with duplicate column names (GH3873)
- Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for location-based taking
- Allow non-unique indexing in series via .ix/.loc and __getitem__ (GH4246)
- Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)

- Fixed bug in groupby with empty series referencing a variable before assignment. (GH3510)
- Allow index name to be used in groupby for non MultiIndex (GH4014)
- Fixed bug in mixed-frame assignment with aligned series (GH3492)
- Fixed bug in selecting month/quarter/year from a series would not select the time element on the last day (GH3546)
- Fixed a couple of MultiIndex rendering bugs in df.to_html() (GH3547, GH3553)
- Properly convert np.datetime64 objects in a Series (GH3416)
- Raise a TypeError on invalid datetime/timedelta operations e.g. add datetimes, multiple timedelta x datetime
- Fix .diff on datelike and timedelta operations (GH3100)
- combine_first not returning the same dtype in cases where it can (GH3552)
- Fixed bug with Panel.transpose argument aliases (GH3556)
- Fixed platform bug in PeriodIndex.take (GH3579)
- Fixed bug in incorrect conversion of datetime64[ns] in combine_first (GH3593)
- Fixed bug in reset_index with NaN in a multi-index (GH3586)
- fillna methods now raise a TypeError when the value parameter is a list or tuple.
- Fixed bug where a time-series was being selected in preference to an actual column name in a frame (GH3594)
- Make secondary_y work properly for bar plots (GH3598)
- Fix modulo and integer division on Series,DataFrames to act similiar to float dtypes to return np.nan or np.inf as appropriate (GH3590)
- Fix incorrect dtype on groupby with as_index=False (GH3610)
- Fix read_csv/read_excel to correctly encode identical na_values, e.g. na_values=[-999.0, -999] was failing (GH3611)
- Disable HTML output in qtconsole again. (GH3657)
• Reworked the new repr display logic, which users found confusing. (GH3663)
• Fix indexing issue in ndim >= 3 with iloc (GH3617)
• Correctly parse date columns with embedded (nan/NaT) into datetime64[ns] dtype in read_csv when parse_dates is specified (GH3062)
• Fix not consolidating before to_csv (GH3624)
• Fix alignment issue when setitem in a DataFrame with a piece of a DataFrame (GH3626) or a mixed DataFrame and a Series (GH3668)
• Fix plotting of unordered DatetimeIndex (GH3601)
• sql.write_frame failing when writing a single column to sqlite (GH3628), thanks to @stonebig
• Fix pivoting with nan in the index (GH3558)
• Fix running of bs4 tests when it is not installed (GH3605)
• Fix parsing of html table (GH3606)
• read_html() now only allows a single backend: html5lib (GH3616)
• convert_objects with convert_dates='coerce' was parsing some single-letter strings into today’s date
• DataFrame.from_records did not accept empty recarrays (GH3682)
• DataFrame.to_csv will succeed with the deprecated option nanRep, @tdsmith
• DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)
• Fix file tokenization error with r delimiter and quoted fields (GH3453)
• Groupby transform with item-by-item not upcasting correctly (GH3740)
• Incorrectly read a HDFStore multi-index Frame with a column specification (GH3748)
• read_html now correctly skips tests (GH3741)
• PandasObjects raise TypeError when trying to hash (GH3882)
• Fix incorrect arguments passed to concat that are not list-like (e.g. concat(df1,df2)) (GH3481)
• Correctly parse when passed the dtype=str (or other variable-len string dtypes) in read_csv (GH3795)
• Fix index name not propagating when using loc/ix (GH3880)
• Fix groupby when applying a custom function resulting in a returned DataFrame was not converting dtypes (GH3911)
• Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument wasn’t working (GH3907)
• Fixed __truediv__ in Python 2.7 with numexpr installed to actually do true division when dividing two integer arrays with at least 10000 cells total (GH3764)
• Indexing with a string with seconds resolution not selecting from a time index (GH3925)
• csv parsers would loop infinitely if iterator=True but no chunksize was specified (GH3967), python parser failing with chunksize=1
• Fix index name not propagating when using shift
• Fixed dropna=False being ignored with multi-index stack (GH3997)
• Fixed flattening of columns when renaming MultiIndex columns DataFrame (GH4004)
• Fix Series.clip for datetime series. NA/NaN threshold values will now throw ValueError (GH3996)
• Fixed insertion issue into DataFrame, after rename (GH4032)
• Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)
• Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)
• Series.hist will now take the figure from the current environment if one is not passed
• Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)
• Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)
• Series.hist will now take the figure from the current environment if one is not passed
• Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
• Fix bug where HDFStore will fail to append because of a different block ordering on-disk (GH4096)
• Better error messages on inserting incompatible columns to a frame (GH4107)
• Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False (GH4115)
• Fixed bug in convert_objects(convert_numeric=True) where a mixed numeric and object Series/Frame was not converting properly (GH4119)
• Fixed bugs in multi-index selection with column multi-index and duplicates (GH4145, GH4146)
• Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)
• Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly MilliSecondLocator (GH3990)
• Fixed bug in Series.where where broadcasting a single element input vector to the length of the series resulted in multiplying the value inside the input (GH4192)
• Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
• Fixed the legend displaying in DataFrame.plot(kind='kde') (GH4216)
• Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
• Fixed bug in initializing DatetimeIndex with an array of strings in a certain time zone (GH4229)
• Fixed bug where html5lib wasn’t being properly skipped (GH4265)
• Fixed bug where get_data_famafrench wasn’t using the correct file edges (GH4281)

35.8 pandas 0.11.0

Release date: 2013-04-22

35.8.1 New Features

• New documentation section, 10 Minutes to Pandas
• New documentation section, Cookbook
• Allow mixed dtypes (e.g float32/float64/int32/int16/int8) to coexist in DataFrames and propagate in operations
pandas: powerful Python data analysis toolkit, Release 0.15.1

- Add function to pandas.io.data for retrieving stock index components from Yahoo! finance (GH2795)
- Support slicing with time objects (GH2681)
- Added `.iloc` attribute, to support strict integer based indexing, analogous to `.ix` (GH2922)
- Added `.loc` attribute, to support strict label based indexing, analogous to `.ix` (GH3053)
- Added `.iat` attribute, to support fast scalar access via integers (replaces `iget_value/iset_value`)
- Added `.at` attribute, to support fast scalar access via labels (replaces `get_value/set_value`)
- Moved functionality from `irow,icol,iget_value/iset_value` to `.iloc` indexer (via `_ixs` methods in each object)
- Added support for expression evaluation using the `numexpr` library
- Added `convert=boolean` to take routines to translate negative indices to positive, defaults to True
- Added to_series() method to indices, to facilitate the creation of indexers (GH3275)

35.8.2 Improvements to existing features

- Improved performance of `df.to_csv()` by up to 10x in some cases. (GH3059)
- Added `blocks` attribute to DataFrames, to return a dict of dtypes to homogeneously dtype DataFrames
- Added keyword `convert_numeric` to `convert_objects()` to try to convert object dtypes to numeric types (default is False)
- `convert_dates` in `convert_objects` can now be `coerce` which will return a datetime64[ns] dtype with non-convertibles set as NaT; will preserve an all-nan object (e.g. strings), default is True (to perform soft-conversion)
- Series print output now includes the dtype by default
- Optimize internal reindexing routines (GH2819, GH2867)
- `describe_option()` now reports the default and current value of options.
- Add `format` option to `pandas.to_datetime` with faster conversion of strings that can be parsed with `datetime.strptime`
- Add `axes` property to `Series` for compatibility
- Add `xs` function to `Series` for compatibility
- Allow setitem in a frame where only mixed numerics are present (e.g. int and float), (GH3037)
- HDFStore
 - Provide dotted attribute access to `get` from stores (e.g. `store.df == store['df']`)
 - New keywords `iterator=boolean, and chunksize=number_in_a_chunk` are provided to support iteration on `select and select_as_multiple` (GH3076)
 - Support `read_hdf/to_hdf` API similar to `read_csv/to_csv` (GH3222)
- Add `squeeze` method to possibly remove length 1 dimensions from an object.

```
In [1]: p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
               ...:     major_axis=date_range('20010102',periods=4),
               ...:     minor_axis=['A','B','C','D'])
...:
In [2]: p
```
Out[2]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00
Minor_axis axis: A to D

In [3]: p.reindex(items=['ItemA']).squeeze()
Out[3]:
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-01-02</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
</tr>
<tr>
<td>2001-01-03</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
</tr>
<tr>
<td>2001-01-04</td>
<td>-0.861849</td>
<td>-2.104569</td>
<td>-0.494929</td>
</tr>
<tr>
<td>2001-01-05</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
</tr>
</tbody>
</table>

In [4]: p.reindex(items=['ItemA'], minor=['B']).squeeze()
Out[4]:
2001-01-02	-0.282863
2001-01-03	-0.173215
2001-01-04	-2.104569
2001-01-05	-0.706771
Freq: D, Name: B, dtype: float64

- Improvement to Yahoo API access in pd.io.data.Options (GH2758)
- added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979)
- added option display.chop_threshold to control display of small numerical values. (GH2739)
- added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)
- value_counts() now accepts a “normalize” argument, for normalized histograms. (GH2710).
- DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.
- Allow selection semantics via a string with a datelike index to work in both Series and DataFrames (GH3070)

In [5]: idx = date_range("2001-10-1", periods=5, freq='M')
In [6]: ts = Series(np.random.rand(len(idx)), index=idx)
In [7]: ts['2001']
Out[7]:
2001-10-31	0.838796
2001-11-30	0.897333
2001-12-31	0.732592
Freq: M, dtype: float64
In [8]: df = DataFrame(dict(A = ts))
In [9]: df['2001']
Out[9]:
<table>
<thead>
<tr>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-10-31</td>
</tr>
<tr>
<td>2001-11-30</td>
</tr>
<tr>
<td>2001-12-31</td>
</tr>
</tbody>
</table>

- added option display.mpl_style providing a sleeker visual style for plots. Based on https://gist.github.com/huyng/816622 (GH3075).
• Improved performance across several core functions by taking memory ordering of arrays into account. Courtesy of @stephenwlin (GH3130)
• Improved performance of groupby transform method (GH2121)
• Handle “ragged” CSV files missing trailing delimiters in rows with missing fields when also providing explicit list of column names (so the parser knows how many columns to expect in the result) (GH2981)
• On a mixed DataFrame, allow setting with indexers with ndarray/DataFrame on rhs (GH3216)
• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)
• Add time method to DatetimeIndex (GH3180)
• Return NA when using Series.str[...] for values that are not long enough (GH3223)
• Display cursor coordinate information in time-series plots (GH1670)
• to_html() now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes & in addition to < and >. (GH2919)

35.8.3 API Changes

• Do not automatically upcast numeric specified dtypes to int64 or float64 (GH622 and GH797)
• DataFrame construction of lists and scalars, with no dtype present, will result in casting to int64 or float64, regardless of platform. This is not an apparent change in the API, but noting it.
• Guarantee that convert_objects() for Series/DataFrame always returns a copy
• Groupby operations will respect dtypes for numeric float operations (float32/float64); other types will be operated on, and will try to cast back to the input dtype (e.g. if an int is passed, as long as the output doesn’t have nans, then an int will be returned)
• backfill/pad/take/diff/ohlc will now support float32/int16/int8 operations
• Block types will upcast as needed in where/masking operations (GH2793)
• Series now automatically will try to set the correct dtype based on passed datetimelike objects (date-time/Timestamp)
 – timedelta64 are returned in appropriate cases (e.g. Series - Series, when both are datetime64)
 – mixed datetimes and objects (GH2751) in a constructor will be cast correctly
 – astype on datetimes to object are now handled (as well as NaT conversions to np.nan)
 – all timedelta like objects will be correctly assigned to timedelta64 with mixed NaN and/or NaT allowed
• arguments to DataFrame.clip were inconsistent to numpy and Series clipping (GH2747)
• util.testing.assert_frame_equal now checks the column and index names (GH2964)
• Constructors will now return a more informative ValueError on failures when invalid shapes are passed
• Don’t suppress TypeError in GroupBy.agg (GH3238)
• Methods return None when inplace=True (GH1893)
• HDFStore
 – added the method select_column to select a single column from a table as a Series.
 – deprecated the unique method, can be replicated by select_column(key, column).unique()
 – min_itemsize parameter will now automatically create data_columns for passed keys
• Downcast on pivot if possible (GH3283), adds argument `downcast` to `fillna`

• Introduced options `display.height/width` for explicitly specifying terminal height/width in characters. Deprecated `display.line_width`, now replaced by `display.width`. These defaults are in effect for scripts as well, so unless disabled, previously very wide output will now be output as “expand_repr” style wrapped output.

• Various defaults for options (including `display.max_rows`) have been revised, after a brief survey concluded they were wrong for everyone. Now at `w=80,h=60`.

• HTML repr output in IPython qtconsole is once again controlled by the option `display.notebook_repr_html`, and on by default.

35.8.4 Bug Fixes

• Fix seg fault on empty data frame when `fillna` with `pad` or `backfill` (GH2778)

• Single element ndarrays of datetimelike objects are handled (e.g. `np.array(datetime(2001,1,1,0,0)))`, w/o dtype being passed

• 0-dim ndarrays with a passed dtype are handled correctly (e.g. `np.array(0., dtype='float32')`)

• Fix some boolean indexing inconsistencies in Series.__getitem__/__setitem__ (GH2776)

• Fix issues with DataFrame and Series constructor with integers that overflow `int64` and some mixed typed type lists (GH2845)

• `HDFStore`
 – Fix weird PyTables error when using too many selectors in a where also correctly filter on any number of values in a Term expression (so not using numexpr filtering, but isin filtering)
 – Internally, change all variables to be private-like (now have leading underscore)
 – Fixes for query parsing to correctly interpret boolean and `!=` (GH2849, GH2973)
 – Fixes for pathological case on SparseSeries with 0-len array and compression (GH2931)
 – Fixes bug with writing rows if part of a block was all-nan (GH3012)
 – Exceptions are now `ValueError` or `TypeError` as needed
 – A table will now raise if `min_itemsize` contains fields which are not queryables

• Bug showing up in applymap where some object type columns are converted (GH2909) had an incorrect default in `convert_objects`

• `TimeDeltas`
 – Series ops with a Timestamp on the rhs was throwing an exception (GH2898) added tests for Series ops with datetimes, timedeltas, Timestamps, and datelike Series on both lhs and rhs
 – Fixed subtle timedelta64 inference issue on py3 & numpy 1.7.0 (GH3094)
 – Fixed some formatting issues on timedelta when negative
 – Support null checking on timedelta64, representing (and formatting) with NaT
 – Support setitem with np.nan value, converts to NaT
 – Support min/max ops in a Dataframe (abs not working, nor do we error on non-supported ops)
 – Support idxmin/idxmax/abs/max/min in a Series (GH2989, GH2982)

• Bug on in-place putmasking on an integer series that needs to be converted to float (GH2746)

• Bug in argsort of datetime64[ns] Series with NaT (GH2967)
- Bug in `value_counts` of `datetime64[ns]` Series (GH3002)
- Fixed printing of `NaN` in an index
- Bug in `idxmin/idxmax` of `datetime64[ns]` Series with `NaN` (GH2982)
- Bug in `icol, take` with negative indices was producing incorrect return values (see GH2922, GH2892), also check for out-of-bounds indices (GH3029)
- Bug in DataFrame column insertion when the column creation fails, existing frame is left in an irrecoverable state (GH3010)
- Bug in DataFrame update, `combine_first` where non-specified values could cause dtype changes (GH3016, GH3041)
- Bug in groupby with first/last where dtypes could change (GH3041, GH2763)
- Formatting of an index that has `nan` was inconsistent or wrong (would fill from other values), (GH2850)
- Unstack of a frame with no nans would always cause dtype upcasting (GH2929)
- Fix scalar datetime.datetime parsing bug in read_csv (GH3071)
- Fixed slow printing of large Dataframes, due to inefficient dtype reporting (GH2807)
- Fixed a segfault when using a function as grouper in groupby (GH3035)
- Fix pretty-printing of infinite data structures (closes GH2978)
- Fixed exception when plotting timeseries bearing a timezone (closes GH2877)
- `str.contains` ignored na argument (GH2806)
- Substitute warning for segfault when grouping with categorical grouper of mismatched length (GH3011)
- Fix exception in SparseSeries.density (GH2083)
- Fix upsampling bug with `closed='left'` and daily to daily data (GH3020)
- Fixed missing tick bars on scatter_matrix plot (GH3063)
- Fixed bug in `Timestamp(d,tz=foo)` when `d` is `date()` rather then `datetime()` (GH2993)
- `series.plot(kind='bar')` now respects `pylab` color scheme (GH3111)
- Fixed bug in reshape if not passed correct input, now raises `TypeError` (GH2719)
- Fixed a bug where Series ctor did not respect ordering if `OrderedDict` passed in (GH3282)
- Fix `NameError` issue on `RESO_US` (GH2787)
- Allow selection in an `unordered` timeseries to work similar to an `ordered` timeseries (GH2437).
- Fix implemented `.xs` when called with `axes=1` and a level parameter (GH2903)
- `Timestamp` now supports the class method `fromordinal` similar to datetimes (GH3042)
- Fix issue with indexing a series with a boolean key and specifying a 1-len list on the rhs (GH2745) or a list on the rhs (GH3235)
- Fixed bug in groupby apply when kernel generate list of arrays having unequal len (GH1738)
- fixed handling of `rolling_corr` with `center=True` which could produce `corr>1` (GH3155)
- Fixed issues where indices can be passed as ‘index/column’ in addition to 0/1 for the axis parameter
- `PeriodIndex.tolist` now boxes to `Period` (GH3178)
- `PeriodIndex.get_loc` `KeyError` now reports `Period` instead of `ordinal` (GH3179)
• df.to_records bug when handling MultiIndex (GH3189)
• Fix Series.__getitem__ segfault when index less than -length (GH3168)
• Fix bug when using Timestamp as a date parser (GH2932)
• Fix bug creating date range from Timestamp with time zone and passing same time zone (GH2926)
• Add comparison operators to Period object (GH2781)
• Fix bug when concatenating two Series into a DataFrame when they have the same name (GH2797)
• Fix automatic color cycling when plotting consecutive timeseries without color arguments (GH2816)
• fixed bug in the pickling of PeriodIndex (GH2891)
• Upcast/split blocks when needed in a mixed DataFrame when setitem with an indexer (GH3216)
• Invoking df.applymap on a dataframe with dupe cols now raises a ValueError (GH2786)
• Apply with invalid returned indices raise correct Exception (GH2808)
• Fixed a bug in plotting log-scale bar plots (GH3247)
• df.plot() grid on/off now obeys the mpl default style, just like series.plot(). (GH3233)
• Fixed a bug in the legend of plotting.andrews_curves() (GH3278)
• Produce a series on apply if we only generate a singular series and have a simple index (GH2893)
• Fix Python ASCII file parsing when integer falls outside of floating point spacing (GH3258)
• fixed pretty printing of sets (GH3294)
• Panel() and Panel.from_dict() now respects ordering when give OrderedDict (GH3303)
• DataFrame where with a datetimelike incorrectly selecting (GH3311)
• Ensure index casts work even in Int64Index
• Fix set_index segfault when passing MultiIndex (GH3308)
• Ensure pickles created in py2 can be read in py3
• Insert ellipsis in MultiIndex summary repr (GH3348)
• Groupby will handle mutation among an input groups columns (and fallback to non-fast apply) (GH3380)
• Eliminated unicode errors on FreeBSD when using MPL GTK backend (GH3360)
• Period.strftime should return unicode strings always (GH3363)
• Respect passed read_* chunksize in get_chunk function (GH3406)

35.9 pandas 0.10.1

Release date: 2013-01-22

35.9.1 New Features

• Add data interface to World Bank WDI pandas.io.wb (GH2592)
35.9.2 API Changes

- Restored inplace=True behavior returning self (same object) with deprecation warning until 0.11 (GH1893)

- HDFStore
 - refactored HDFStore to deal with non-table stores as objects, will allow future enhancements
 - removed keyword compression from put (replaced by keyword complib to be consistent across library)
 - warn PerformanceWarning if you are attempting to store types that will be pickled by PyTables

35.9.3 Improvements to existing features

- HDFStore
 - enables storing of multi-index dataframes (closes GH1277)
 - support data column indexing and selection, via data_columns keyword in append
 - support write chunking to reduce memory footprint, via chunksize keyword to append
 - support automagic indexing via index keyword to append
 - support expectedrows keyword in append to inform PyTables about the expected tablesize
 - support start and stop keywords in select to limit the row selection space
 - added get_store context manager to automatically import with pandas
 - added column filtering via columns keyword in select
 - added methods append_to_multiple/select_as_multiple/select_as_coordinates to do multiple-table append/selection
 - added support for datetime64 in columns
 - added method unique to select the unique values in an indexable or data column
 - added method copy to copy an existing store (and possibly upgrade)
 - show the shape of the data on disk for non-table stores when printing the store
 - added ability to read PyTables flavor tables (allows compatibility to other HDF5 systems)

- Add logx option to DataFrame/Series.plot (GH2327, GH2565)

- Support reading gzipped data from file-like object

- pivot_table aggfunc can be anything used in GroupBy.aggregate (GH2643)

- Implement DataFrame merges in case where set cardinalities might overflow 64-bit integer (GH2690)

- Raise exception in C file parser if integer dtype specified and have NA values. (GH2631)

- Attempt to parse ISO8601 format dates when parse_dates=True in read_csv for major performance boost in such cases (GH2698)

- Add methods neg and inv to Series

- Implement kind option in ExcelFile to indicate whether it’s an XLS or XLSX file (GH2613)

- Documented a fast-path in pd.read_csv when parsing iso8601 datetime strings yielding as much as a 20x speedup. (GH5993)
35.9.4 Bug Fixes

- Fix read_csv/read_table multithreading issues (GH2608)
- HDFStore
 - correctly handle nan elements in string columns; serialize via the nan_rep keyword to append
 - raise correctly on non-implemented column types (unicode/date)
 - handle correctly Term passed types (e.g. index<1000, when index is Int64), (closes GH512)
 - handle Timestamp correctly in data_columns (closes GH2637)
 - contains correctly matches on non-natural names
 - correctly store float32 dtypes in tables (if not other float types in the same table)
- Fix DataFrame.info bug with UTF8-encoded columns. (GH2576)
- Fix DatetimeIndex handling of FixedOffset tz (GH2604)
- More robust detection of being in IPython session for wide DataFrame console formatting (GH2585)
- Fix platform issues with file:// in unit test (GH2564)
- Fix bug and possible segfault when grouping by hierarchical level that contains NA values (GH2616)
- Ensure that MultiIndex tuples can be constructed with NAs (GH2616)
- Fix int64 overflow issue when unstacking MultiIndex with many levels (GH2616)
- Exclude non-numeric data from DataFrame.quantile by default (GH2625)
- Fix a Cython C int64 boxing issue causing read_csv to return incorrect results (GH2599)
- Fix groupby summing performance issue on boolean data (GH2692)
- Don’t bork Series containing datetime64 values with to_datetime (GH2699)
- Fix DataFrame.from_records corner case when passed columns, index column, but empty record list (GH2633)
- Fix C parser-tokenizer bug with trailing fields. (GH2668)
- Don’t exclude non-numeric data from GroupBy.max/min (GH2700)
- Don’t lose time zone when calling DatetimeIndex.drop (GH2621)
- Fix setitem on a Series with a boolean key and a non-scalar as value (GH2686)
- Box datetime64 values in Series.apply/map (GH2627, GH2689)
- Upconvert datetime + datetime64 values when concatenating frames (GH2624)
- Raise a more helpful error message in merge operations when one DataFrame has duplicate columns (GH2649)
- Fix partial date parsing issue occuring only when code is run at EOM (GH2618)
- Prevent MemoryError when using counting sort in sortlevel with high-cardinality MultiIndex objects (GH2684)
- Fix Period resampling bug when all values fall into a single bin (GH2070)
- Fix buggy interaction with usecols argument in read_csv when there is an implicit first index column (GH2654)
- Fix bug in Index.summary() where string format methods were being called incorrectly. (GH3869)
35.10 pandas 0.10.0

Release date: 2012-12-17

35.10.1 New Features

- Brand new high-performance delimited file parsing engine written in C and Cython. 50% or better performance in many standard use cases with a fraction as much memory usage. (GH407, GH821)

- Many new file parser (read_csv, read_table) features:
 - Support for on-the-fly gzip or bz2 decompression (compression option)
 - Ability to get back numpy.recarray instead of DataFrame (as_recarray=True)
 - dtype option: explicit column dtypes
 - usecols option: specify list of columns to be read from a file. Good for reading very wide files with many irrelevant columns (GH1216 GH926, GH2465)
 - Enhanced unicode decoding support via encoding option
 - skipinitialspace dialect option
 - Can specify strings to be recognized as True (true_values) or False (false_values)
 - High-performance delim_whitespace option for whitespace-delimited files; a preferred alternative to the ‘s+’ regular expression delimiter
 - Option to skip “bad” lines (wrong number of fields) that would otherwise have caused an error in the past (error_bad_lines and warn_bad_lines options)
 - Substantially improved performance in the parsing of integers with thousands markers and lines with comments
 - Easy of European (and other) decimal formats (decimal option) (GH584, GH2466)
 - Custom line terminators (e.g. lineterminator=’~’) (GH2457)
 - Handling of no trailing commas in CSV files (GH2333)
 - Ability to handle fractional seconds in date_converters (GH2209)
 - read_csv allow scalar arg to na_values (GH1944)
 - Explicit column dtype specification in read_* functions (GH1858)
 - Easier CSV dialect specification (GH1743)
 - Improve parser performance when handling special characters (GH1204)

- Google Analytics API integration with easy oauth2 workflow (GH2283)

- Add error handling to Series.str.encode/decode (GH2276)

- Add where and mask to Series (GH2337)

- Grouped histogram via by keyword in Series/DataFrame.hist (GH2186)

- Support optional min_periods keyword in corr and cov for both Series and DataFrame (GH2002)

- Add duplicated and drop_duplicates functions to Series (GH1923)

- Add docs for HDFStore table format

- ‘density’ property in SparseSeries (GH2384)
• Add `ffill` and `bfill` convenience functions for forward- and backfilling time series data (GH2284)

• New option configuration system and functions `set_option`, `get_option`, `describe_option`, and `reset_option`. Deprecate `set_printoptions` and `reset_printoptions` (GH2393). You can also access options as attributes via `pandas.options.X`

• Wide DataFrames can be viewed more easily in the console with new `expand_frame_repr` and `line_width` configuration options. This is on by default now (GH2436)

• Scikits.timeseries-like moving window functions via `rolling_window` (GH1270)

35.10.2 Experimental Features

• Add support for Panel4D, a named 4 Dimensional structure

• Add support for ndpanel factory functions, to create custom, domain-specific N-Dimensional containers

35.10.3 API Changes

• The default binning/labeling behavior for `resample` has been changed to `closed='left', label='left'` for daily and lower frequencies. This had been a large source of confusion for users. See “what’s new” page for more on this. (GH2410)

• Methods with `inplace` option now return None instead of the calling (modified) object (GH1893)

• The special case DataFrame - TimeSeries doing column-by-column broadcasting has been deprecated. Users should explicitly do e.g. `df.sub(ts, axis=0)` instead. This is a legacy hack and can lead to subtle bugs.

• `inf/-inf` are no longer considered as NA by `isnull/notnull`. To be clear, this is legacy cruft from early pandas. This behavior can be globally re-enabled using the new option `mode.use_inf_as_null` (GH2050, GH1919)

• `pandas.merge` will now default to `sort=False`. For many use cases sorting the join keys is not necessary, and doing it by default is wasteful

• Specify `header=0` explicitly to replace existing column names in file in `read_*` functions.

• Default column names for header-less parsed files (yielded by `read_csv`, etc.) are now the integers 0, 1, A new argument `prefix` has been added; to get the v0.9.x behavior specify `prefix='X'` (GH2034). This API change was made to make the default column names more consistent with the DataFrame constructor's default column names when none are specified.

• DataFrame selection using a boolean frame now preserves input shape

• If function passed to `Series.apply` yields a Series, result will be a DataFrame (GH2316)

• Values like YES/NO/yes/no will not be considered as boolean by default any longer in the file parsers. This can be customized using the new `true_values` and `false_values` options (GH2360)

• `obj.fillna()` is no longer valid; make `method='pad'` no longer the default option, to be more explicit about what kind of filling to perform. Add `ffill/bfill` convenience functions per above (GH2284)

• `HDFStore.keys()` now returns an absolute path-name for each key

• `to_string()` now always returns a unicode string. (GH2224)

• File parsers will not handle NA sentinel values arising from passed converter functions
35.10.4 Improvements to existing features

- Add `nrows` option to `DataFrame.from_records` for iterators (GH1794)
- Unstack/reshape algorithm rewrite to avoid high memory use in cases where the number of observed key-tuples is much smaller than the total possible number that could occur (GH2278). Also improves performance in most cases.
- Support duplicate columns in `DataFrame.from_records` (GH2179)
- Add `normalize` option to `Series/DataFrame.asfreq` (GH2137)
- SparseSeries and SparseDataFrame construction from empty and scalar values now no longer create dense ndarrays unnecessarily (GH2322)
- `HDFStore` now supports hierarchical keys (GH2397)
- Support multiple query selection formats for `HDFStore` tables (GH1996)
- Support `del store['df']` syntax to delete HDFStores
- Add multi-dtype support for `HDFStore` tables
- `min_itemsize` parameter can be specified in `HDFStore` table creation
- Indexing support in `HDFStore` tables (GH698)
- Add `line_terminator` option to `DataFrame.to_csv` (GH2383)
- added implementation of `str(x)/unicode(x)/bytes(x)` to major pandas data structures, which should do the right thing on both py2.x and py3.x. (GH2224)
- Reduce groupby:apply overhead substantially by low-level manipulation of internal NumPy arrays in DataFrames (GH535)
- Implement `value_vars` in `melt` and add `melt` to pandas namespace (GH2412)
- Added boolean comparison operators to `Panel`
- Enable `Series.str.strip/lstrip/rstrip` methods to take an argument (GH2411)
- The `DataFrame` ctor now respects column ordering when given an `OrderedDict` (GH2455)
- Assigning `DatetimeIndex` to `Series` changes the class to `TimeSeries` (GH2139)
- Improve performance of `.value_counts` method on non-integer data (GH2480)
- `get_level_values` method for `MultiIndex` return `Index` instead of `ndarray` (GH2449)
- `convert_to_r_dataframe` conversion for datetime values (GH2351)
- Allow `DataFrame.to_csv` to represent `inf` and `nan` differently (GH2026)
- Add `min_i` argument to `nancorr` to specify minimum required observations (GH2002)
- Add `inplace` option to `sortlevel/sort` functions on `DataFrame` (GH1873)
- Enable `DataFrame` to accept scalar constructor values like `Series` (GH1856)
- `DataFrame.from_records` now takes optional `size` parameter (GH1794)
- include iris dataset (GH1709)
- No datetime64 `DataFrame` column conversion of `datetime.datetime` with `tzinfo` (GH1581)
- Micro-optimizations in `DataFrame` for tracking state of internal consolidation (GH217)
- Format parameter in `DataFrame.to_csv` (GH1525)
• Partial string slicing for `DatetimeIndex` for daily and higher frequencies (GH2306)
• Implement `col_space` parameter in `to_html` and `to_string` in DataFrame (GH1000)
• Override `Series.tolist` and box datetime64 types (GH2447)
• Optimize `unstack` memory usage by compressing indices (GH2278)
• Fix HTML repr in IPython qtconsole if opening window is small (GH2275)
• Escape more special characters in console output (GH2492)
• `df.select` now invokes `bool` on the result of `crit(x)` (GH2487)

35.10.5 Bug Fixes

• Fix major performance regression in DataFrame.iteritems (GH2273)
• Fixes bug when negative period passed to Series/DataFrame.diff (GH2266)
• Escape tabs in console output to avoid alignment issues (GH2038)
• Properly box datetime64 values when retrieving cross-section from mixed-dtype DataFrame (GH2272)
• Fix concatenation bug leading to GH2057, GH2257
• Fix regression in Index console formatting (GH2319)
• Box Period data when assigning PeriodIndex to frame column (GH2243, GH2281)
• Raise exception on calling `reset_index` on Series with inplace=True (GH2277)
• Enable setting multiple columns in DataFrame with hierarchical columns (GH2295)
• Respect `dtype=object` in DataFrame constructor (GH2291)
• Fix `DatetimeIndex.join` bug with tz-aware indexes and how=`outer` (GH2317)
• `pop(...)` and `del` works with DataFrame with duplicate columns (GH2349)
• Treat empty strings as NA in date parsing (rather than let dateutil do something weird) (GH2263)
• Prevent `uint64` -> `int64` overflows (GH2355)
• Enable joins between MultiIndex and regular Index (GH2024)
• Fix time zone metadata issue when unioning non-overlapping DatetimeIndex objects (GH2367)
• Raise/handle `int64` overflows in parsers (GH2247)
• Deleting of consecutive rows in HDFStore tables` is much faster than before
• Appending on a HDFStore would fail if the table was not first created via `put`
• Use `col_space` argument as minimum column width in DataFrame.to_html (GH2328)
• Fix tz-aware DatetimeIndex.to_period (GH2232)
• Fix DataFrame row indexing case with MultiIndex (GH2314)
• Fix to_excel exporting issues with Timestamp objects in index (GH2294)
• Fixes assigning scalars and array to hierarchical column chunk (GH1803)
• Fixed a UnicodeDecodeError with series tidy_repr (GH2225)
• Fixed issued with duplicate keys in an index (GH2347, GH2380)
• Fixed issues re: Hash randomization, default on starting w/ py3.3 (GH2331)
• Fixed issue with missing attributes after loading a pickled dataframe (GH2431)
• Fix Timestamp formatting with tzoffset time zone in dateutil 2.1 (GH2443)
• Fix GroupBy.apply issue when using BinGrouper to do ts binning (GH2300)
• Fix issues resulting from datetime.datetime columns being converted to datetime64 when calling DataFrame.apply. (GH2374)
• Raise exception when calling to_panel on non uniquely-indexed frame (GH2441)
• Improved detection of console encoding on IPython zmq frontends (GH2458)
• Preserve time zone when .append-ing two time series (GH2260)
• Box timestamps when calling reset_index on time-zone-aware index rather than creating a tz-less datetime64 column (GH2262)
• Enable searching non-string columns in DataFrame.filter(like=...) (GH2467)
• Fixed issue with losing nanosecond precision upon conversion to DatetimeIndex(GH2252)
• Handle timezones in Datetime.normalize (GH2338)
• Fix test case where dtype specification with endianness causes failures on big endian machines (GH2318)
• Fix plotting bug where upsampling causes data to appear shifted in time (GH2448)
• Fix read_csv failure for UTF-16 with BOM and skiprows(GH2298)
• read_csv with names arg not implicitly setting header=None(GH2459)
• Unrecognized compression mode causes segfault in read_csv(GH2474)
• In read_csv, header=0 and passed names should discard first row(GH2269)
• Correctly route to stdout/stderr in read_table (GH2071)
• Fix exception when Timestamp.to_datetime is called on a Timestamp with tzoffset (GH2471)
• Fixed unintentional conversion of datetime64 to long in groupby.first() (GH2133)
• Union of empty DataFrames now return empty with concatenated index (GH2307)
• DataFrame.sort_index raises more helpful exception if sorting by column with duplicates (GH2488)
• DataFrame.to_string formatters can be list, too (GH2520)
• DataFrame.combine_first will always result in the union of the index and columns, even if one DataFrame is length-zero (GH2525)
• Fix several DataFrame.icol/irow with duplicate indices issues (GH2228, GH2259)
• Use Series names for column names when using concat with axis=1 (GH2489)
• Raise Exception if start, end, periods all passed to date_range (GH2538)
• Fix Panel resampling issue (GH2537)

35.11 pandas 0.9.1

Release date: 2012-11-14
35.11.1 New Features

- Can specify multiple sort orders in DataFrame/Series.sort/sort_index (GH928)
- New top and bottom options for handling NAs in rank (GH1508, GH2159)
- Add where and mask functions to DataFrame (GH2109, GH2151)
- Add at_time and between_time functions to DataFrame (GH2149)
- Add flexible pow and rpow methods to DataFrame (GH2190)

35.11.2 API Changes

- Upsampling period index “spans” intervals. Example: annual periods upsampled to monthly will span all months in each year
- Period.end_time will yield timestamp at last nanosecond in the interval (GH2124, GH2125, GH1764)
- File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

35.11.3 Improvements to existing features

- Time rule inference for week-of-month (e.g. WOM-2FRI) rules (GH2140)
- Improve performance of datetime + business day offset with large number of offset periods
- Improve HTML display of DataFrame objects with hierarchical columns
- Enable referencing of Excel columns by their column names (GH1936)
- DataFrame.dot can accept ndarrays (GH2042)
- Support negative periods in Panel.shift (GH2164)
- Make .drop(...) work with non-unique indexes (GH2101)
- Improve performance of Series/DataFrame.diff (re: GH2087)
- Support unary ~ (__invert__) in DataFrame (GH2110)
- Turn off pandas-style tick locators and formatters (GH2205)
- DataFrame[DataFrame] uses DataFrame.where to compute masked frame (GH2230)

35.11.4 Bug Fixes

- Fix some duplicate-column DataFrame constructor issues (GH2079)
- Fix bar plot color cycle issues (GH2082)
- Fix off-center grid for stacked bar plots (GH2157)
- Fix plotting bug if inferred frequency is offset with N > 1 (GH2126)
- Implement comparisons on date offsets with fixed delta (GH2078)
- Handle inf/-inf correctly in read_* parser functions (GH2041)
- Fix matplotlib unicode interaction bug
- Make WLS r-squared match statsmodels 0.5.0 fixed value
• Fix zero-trimming DataFrame formatting bug
• Correctly compute/box datetime64 min/max values from Series.min/max (GH2083)
• Fix unstacking edge case with unrepresented groups (GH2100)
• Fix Series.str failures when using pipe pattern ‘\’l’ (GH2119)
• Fix pretty-printing of dict entries in Series, DataFrame (GH2144)
• Cast other datetime64 values to nanoseconds in DataFrame ctor (GH2095)
• Alias Timestamp.astimezone to tz_convert, so will yield Timestamp (GH2060)
• Fix timedelta64 formatting from Series (GH2165, GH2146)
• Handle None values gracefully in dict passed to Panel constructor (GH2075)
• Box datetime64 values as Timestamp objects in Series/DataFrame.iget (GH2148)
• Fix Timestamp indexing bug in DatetimeIndex.insert (GH2155)
• Use index name(s) (if any) in DataFrame.to_records (GH2161)
• Don’t lose index names in Panel.to_frame/DataFrame.to_panel (GH2163)
• Work around length-0 boolean indexing NumPy bug (GH2096)
• Fix partial integer indexing bug in DataFrame.xs (GH2107)
• Fix variety of cut/qcut string-bin formatting bugs (GH1978, GH1979)
• Raise Exception when xs view not possible of MultiIndex’d DataFrame (GH2117)
• Fix groupby(...).first() issue with datetime64 (GH2133)
• Better floating point error robustness in some rolling_* functions (GH2114, GH2527)
• Fix ewma NA handling in the middle of Series (GH2128)
• Fix numerical precision issues in diff with integer data (GH2087)
• Fix bug in MultiIndex.__getitem__ with NA values (GH2008)
• Fix DataFrame.from_records dict-arg bug when passing columns (GH2179)
• Fix Series and DataFrame.diff for integer dtypes (GH2087, GH2174)
• Fix bug when taking intersection of DatetimeIndex with empty index (GH2129)
• Pass through timezone information when calling DataFrame.align (GH2127)
• Properly sort when joining on datetime64 values (GH2196)
• Fix indexing bug in which False/True were being coerced to 0/1 (GH2199)
• Many unicode formatting fixes (GH2201)
• Fix improper MultiIndex conversion issue when assigning e.g. DataFrame.index (GH2200)
• Fix conversion of mixed-type DataFrame to ndarray with dup columns (GH2236)
• Fix duplicate columns issue (GH2218, GH2219)
• Fix SparseSeries.__pow__ issue with NA input (GH2220)
• Fix icol with integer sequence failure (GH2228)
• Fixed resampling tz-aware time series issue (GH2245)
• SparseDataFrame.icol was not returning SparseSeries (GH2227, GH2229)
• Enable ExcelWriter to handle PeriodIndex (GH2240)
• Fix issue constructing DataFrame from empty Series with name (GH2234)
• Use console-width detection in interactive sessions only (GH1610)
• Fix parallel_coordinates legend bug with mpl 1.2.0 (GH2237)
• Make tz_localize work in corner case of empty Series (GH2248)

35.12 pandas 0.9.0

Release date: 10/7/2012

35.12.1 New Features

• Add `str.encode` and `str.decode` to Series (GH1706)
• Add `to_latex` method to DataFrame (GH1735)
• Add convenient expanding window equivalents of all rolling_* ops (GH1785)
• Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
• Recognize and convert more boolean values in file parsing (Yes, No, TRUE, FALSE, variants thereof) (GH1691, GH1295)
• Add Panel.update method, analogous to DataFrame.update (GH1999, GH1988)

35.12.2 Improvements to existing features

• Proper handling of NA values in merge operations (GH1990)
• Add flags option for `re.compile` in some Series.str methods (GH1659)
• Parsing of UTC date strings in read_* functions (GH1693)
• Handle generator input to Series (GH1679)
• Add `na_action='ignore'` to Series.map to quietly propagate NAs (GH1661)
• Add args/kwds options to Series.apply (GH1829)
• Add inplace option to Series/DataFrame.reset_index (GH1797)
• Add level parameter to Series.reset_index
• Add quoting option for DataFrame.to_csv (GH1902)
• Indicate long column value truncation in DataFrame output with ... (GH1854)
• DataFrame.dot will not do data alignment, and also work with Series (GH1915)
• Add `na` option for missing data handling in some vectorized string methods (GH1689)
• If index_label=False in DataFrame.to_csv, do not print fields/commas in the text output. Results in easier importing into R (GH1583)
• Can pass tuple/list of axes to DataFrame.dropna to simplify repeated calls (dropping both columns and rows) (GH924)
• Improve DataFrame.to_html output for hierarchically-indexed rows (do not repeat levels) (GH1929)
• TimeSeries.between_time can now select times across midnight (GH1871)
• Enable skip footer parameter in ExcelFile.parse (GH1843)

35.12.3 API Changes

• Change default header names in read_* functions to more Pythonic X0, X1, etc. instead of X.1, X.2. (GH2000)
• Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723)
• Don’t modify NumPy suppress printoption at import time
• The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
• Legacy cruft removed: pandas.stats.misc.quantileTS
• Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
• Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
• Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
• first and last methods in GroupBy no longer drop non-numeric columns (GH1809)
• Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer over-
ride default NAs unless keep_default_na is set to false explicitly (GH1657)
• Enable skipfooter parameter in text parsers as an alias for skip_footer

35.12.4 Bug Fixes

• Perform arithmetic column-by-column in mixed-type DataFrame to avoid type upcasting issues. Caused down-
stream DataFrame.diff bug (GH1896)
• Fix matplotlib auto-color assignment when no custom spectrum passed. Also respect passed color keyword argument (GH1711)
• Fix resampling logical error with closed=’left’ (GH1726)
• Fix critical DatetimeIndex.union bugs (GH1730, GH1719, GH1745, GH1702, GH1753)
• Fix critical DatetimeIndex.intersection bug with unanchored offsets (GH1708)
• Fix MM-YYYY time series indexing case (GH1672)
• Fix case where Categorical group key was not being passed into index in GroupBy result (GH1701)
• Handle Ellipsis in Series.__getitem__/__setitem__ (GH1721)
• Fix some bugs with handling datet ime64 scalars of other units in NumPy 1.6 and 1.7 (GH1717)
• Fix performance issue in MultiIndex.format (GH1746)
• Fixed GroupBy bugs interacting with DatetimeIndex asof / map methods (GH1677)
• Handle factors with NAs in pandas.rpy (GH1615)
• Fix statsmodels import in pandas.stats.var (GH1734)
• Fix DataFrame repr/info summary with non-unique columns (GH1700)
• Fix Series.iget_value for non-unique indexes (GH1694)
Don’t lose tzinfo when passing DatetimeIndex as DataFrame column (GH1682)
• Fix tz conversion with time zones that haven’t had any DST transitions since first date in the array (GH1673)
• Fix field access with UTC->local conversion on unsorted arrays (GH1756)
• Fix isnull handling of array-like (list) inputs (GH1755)
• Fix regression in handling of Series in Series constructor (GH1671)
• Fix comparison of Int64Index with DatetimeIndex (GH1681)
• Fix min_periods handling in new rolling_max/min at array start (GH1695)
• Fix errors with how=’median’ and generic NumPy resampling in some cases caused by SeriesBinGrouper (GH1648, GH1688)
• When grouping by level, exclude unobserved levels (GH1697)
• Don’t lose tzinfo in DatetimeIndex when shifting by different offset (GH1683)
• Hack to support storing data with a zero-length axis in HDFStore (GH1707)
• Fix DatetimeIndex tz-aware range generation issue (GH1674)
• Fix method=’time’ interpolation with intraday data (GH1698)
• Don’t plot all-NA DataFrame columns as zeros (GH1696)
• Fix bug in scatter_plot with by option (GH1716)
• Fix performance problem in infer_freq with lots of non-unique stamps (GH1686)
• Fix handling of PeriodIndex as argument to create MultiIndex (GH1705)
• Fix re: unicode MultiIndex level names in Series/DataFrame repr (GH1736)
• Handle PeriodIndex in to_datetime instance method (GH1703)
• Support StaticTzInfo in DatetimeIndex infrastructure (GH1692)
• Allow MultiIndex setops with length-0 other type indexes (GH1727)
• Fix handling of DatetimeIndex in DataFrame.to_records (GH1720)
• Fix handling of general objects in isnull on which bool(...) fails (GH1749)
• Fix .ix indexing with MultiIndex ambiguity (GH1678)
• Fix .ix setting logic error with non-unique MultiIndex (GH1750)
• Basic indexing now works on MultiIndex with > 1000000 elements, regression from earlier version of pandas (GH1757)
• Handle non-float64 dtypes in fast DataFrame.corr/cov code paths (GH1761)
• Fix DatetimeIndex.isin to function properly (GH1763)
• Fix conversion of array of tz-aware datetime.datetime to DatetimeIndex with right time zone (GH1777)
• Fix DST issues with generating anchored date ranges (GH1778)
• Fix issue calling sort on result of Series.unique (GH1807)
• Fix numerical issue leading to square root of negative number in rolling_std (GH1840)
• Let Series.str.split accept no arguments (like str.split) (GH1859)
• Allow user to have dateutil 2.1 installed on a Python 2 system (GH1851)
• Catch ImportError less aggressively in pandas/__init__.py (GH1845)
• Fix pip source installation bug when installing from GitHub (GH1805)
• Fix error when window size > array size in rolling_apply (GH1850)
• Fix pip source installation issues via SSH from GitHub
• Fix OLS.summary when column is a tuple (GH1837)
• Fix bug in __doc__ patching when -OO passed to interpreter (GH1792 GH1741 GH1774)
• Fix unicode console encoding issue in IPython notebook (GH1782, GH1768)
• Fix unicode formatting issue with Series.name (GH1782)
• Fix bug in DataFrame.duplicated with datetime64 columns (GH1833)
• Fix bug in Panel internals resulting in error when doing fillna after truncate not changing size of panel (GH1823)
• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
• Fix UnboundLocalError in Panel.__setitem__ and add better error (GH1826)
• Fix to_csv issues with list of string entries. Isnnull works on list of strings now too (GH1791)
• Fix Timestamp comparisons with datetime values outside the nanosecond range (1677-2262)
• Revert to prior behavior of normalize_date with datetime.date objects (return datetime)
• Fix broken interaction between np.nansum and Series.any/all
• Fix bug with multiple column date parsers (GH1866)
• DatetimeIndex.union(Int64Index) was broken
• Make plot x vs y interface consistent with integer indexing (GH1842)
• set_index inplace modified data even if unique check fails (GH1831)
• Only use Q-OCT/NOV/DEC in quarterly frequency inference (GH1789)
• Upcast to dtype=object when unstacking boolean DataFrame (GH1820)
• Fix float64/float32 merging bug (GH1849)
• Fixes to Period.start_time for non-daily frequencies (GH1857)
• Fix failure when converter used on index_col in read_csv (GH1835)
• Implement PeriodIndex.append so that pandas.concat works correctly (GH1815)
• Avoid Cython out-of-bounds access causing segfault sometimes in pad_2d, backfill_2d
• Fix resampling error with intraday times and anchored target time (like AS-DEC) (GH1772)
• Fix .ix indexing bugs with mixed-integer indexes (GH1799)
• Respect passed color keyword argument in Series.plot (GH1890)
• Fix rolling_min/max when the window is larger than the size of the input array. Check other malformed inputs (GH1899, GH1897)
• Rolling variance / standard deviation with only a single observation in window (GH1884)
• Fix unicode sheet name failure in to_excel (GH1828)
• Override DatetimeIndex.min/max to return Timestamp objects (GH1895)
• Fix column name formatting issue in length-truncated column (GH1906)
• Fix broken handling of copying Index metadata to new instances created by view(...) calls inside the NumPy infrastructure
• Support datetime.date again in DateOffset.rollback/rollforward
• Raise Exception if set passed to Series constructor (GH1913)
• Add TypeError when appending HDFStore table w/ wrong index type (GH1881)
• Don’t raise exception on empty inputs in EW functions (e.g. ewma) (GH1900)
• Make asof work correctly with PeriodIndex (GH1883)
• Fix extlinks in doc build
• Fill boolean DataFrame with NaN when calling shift (GH1814)
• Fix setuptools bug causing pip not to Cythonize .pyx files sometimes
• Fix negative integer indexing regression in .ix from 0.7.x (GH1888)
• Fix error while retrieving timezone and utc offset from subclasses of datetime.tzinfo without .zone and ._utcoffset attributes (GH1922)
• Fix DataFrame formatting of small, non-zero FP numbers (GH1911)
• Various fixes by upcasting of date -> datetime (GH1395)
• Raise better exception when passing multiple functions with the same name, such as lambdas, to GroupBy.aggregate
• Fix DataFrame.apply with axis=1 on a non-unique index (GH1878)
• Proper handling of Index subclasses in pandas.unique (GH1759)
• Set index names in DataFrame.from_records (GH1744)
• Fix time series indexing error with duplicates, under and over hash table size cutoff (GH1821)
• Handle list keys in addition to tuples in DataFrame.xs when partial-indexing a hierarchically-indexed DataFrame (GH1796)
• Support multiple column selection in DataFrame.__getitem__ with duplicate columns (GH1943)
• Fix time zone localization bug causing improper fields (e.g. hours) in time zones that have not had a UTC transition in a long time (GH1946)
• Fix errors when parsing and working with with fixed offset timezones (GH1922, GH1928)
• Fix text parser bug when handling UTC datetime objects generated by dateutil (GH1693)
• Fix plotting bug when ‘B’ is the inferred frequency but index actually contains weekends (GH1668, GH1669)
• Fix plot styling bugs (GH1666, GH1665, GH1658)
• Fix plotting bug with index/columns with unicode (GH1685)
• Fix DataFrame constructor bug when passed Series with datetime64 dtype in a dict (GH1680)
• Fixed regression in generating DatetimeIndex using timezone aware datetime.datetime (GH1676)
• Fix DataFrame bug when printing concatenated DataFrames with duplicated columns (GH1675)
• Fixed bug when plotting time series with multiple intraday frequencies (GH1732)
• Fix bug in DataFrame.duplicated to enable iterables other than list-types as input argument (GH1773)
• Fix resample bug when passed list of lambdas as how argument (GH1808)
• Repr fix for MultiIndex level with all NAs (GH1971)
• Fix PeriodIndex slicing bug when slice start/end are out-of-bounds (GH1977)
• Fix read_table bug when parsing unicode (GH1975)
• Fix BlockManager.iget bug when dealing with non-unique MultiIndex as columns (GH1970)
• Fix reset_index bug if both drop and level are specified (GH1957)
• Work around unsafe NumPy object->int casting with Cython function (GH1987)
• Fix datetime64 formatting bug in DataFrame.to_csv (GH1993)
• Default start date in pandas.io.data to 1/1/2000 as the docs say (GH2011)

35.13 pandas 0.8.1

Release date: July 22, 2012

35.13.1 New Features

• Add vectorized, NA-friendly string methods to Series (GH1621, GH620)
• Can pass dict of per-column line styles to DataFrame.plot (GH1559)
• Selective plotting to secondary y-axis on same subplot (GH1640)
• Add new bootstrap_plot plot function
• Add new parallel_coordinates plot function (GH1488)
• Add radviz plot function (GH1566)
• Add multi_sparse option to set_printoptions to modify display of hierarchical indexes (GH1538)
• Add dropna method to Panel (GH171)

35.13.2 Improvements to existing features

• Use moving min/max algorithms from Bottleneck in rolling_min/rolling_max for > 100x speedup. (GH1504, GH50)
• Add Cython group median method for >15x speedup (GH1358)
• Drastically improve to_datetime performance on ISO8601 datetime strings (with no time zones) (GH1571)
• Improve single-key groupby performance on large data sets, accelerate use of groupby with a Categorical variable
• Add ability to append hierarchical index levels with set_index and to drop single levels with reset_index (GH1569, GH1577)
• Always apply passed functions in resample, even if upsampling (GH1596)
• Avoid unnecessary copies in DataFrame constructor with explicit dtype (GH1572)
• Cleaner DatetimeIndex string representation with 1 or 2 elements (GH1611)
• Improve performance of array-of-Period to PeriodIndex, convert such arrays to PeriodIndex inside Index (GH1215)
• More informative string representation for weekly Period objects (GH1503)
• Accelerate 3-axis multi data selection from homogeneous Panel (GH979)
• Add `adjust` option to `ewma` to disable adjustment factor (GH1584)
• Add new matplotlib converters for high frequency time series plotting (GH1599)
• Handling of tz-aware datetime.datetime objects in `to_datetime`; raise Exception unless utc=True given (GH1581)

35.13.3 Bug Fixes

• Fix NA handling in DataFrame.to_panel (GH1582)
• Handle TypeError issues inside PyObject_RichCompareBool calls in khash (GH1318)
• Fix resampling bug to lower case daily frequency (GH1588)
• Fix kendall/spearman DataFrame.corr bug with no overlap (GH1595)
• Fix bug in DataFrame.set_index (GH1592)
• Don’t ignore axes in boxplot if by specified (GH1565)
• Fix Panel.ix indexing with integers bug (GH1603)
• Fix Partial indexing bugs (years, months, ...) with PeriodIndex (GH1601)
• Fix MultiIndex console formatting issue (GH1606)
• Unordered index with duplicates doesn’t yield scalar location for single entry (GH1586)
• Fix resampling of tz-aware time series with “anchored” freq (GH1591)
• Fix DataFrame.rank error on integer data (GH1589)
• Selection of multiple SparseDataFrame columns by list in __getitem__ (GH1585)
• Override Index.tolist for compatibility with MultiIndex (GH1576)
• Fix hierarchical summing bug with MultiIndex of length 1 (GH1568)
• Work around numpy.concatenate use/bug in Series.set_value (GH1561)
• Ensure Series/DataFrame are sorted before resampling (GH1580)
• Fix unhandled IndexError when indexing very large time series (GH1562)
• Fix DatetimeIndex intersection logic error with irregular indexes (GH1551)
• Fix unit test errors on Python 3 (GH1550)
• Fix .ix indexing bugs in duplicate DataFrame index (GH1201)
• Better handle errors with non-existing objects in HDFStore (GH1254)
• Don’t copy int64 array data in DatetimeIndex when copy=False (GH1624)
• Fix resampling of conforming periods quarterly to annual (GH1622)
• Don’t lose index name on resampling (GH1631)
• Support python-dateutil version 2.1 (GH1637)
• Fix broken scatter_matrix axis labeling, esp. with time series (GH1625)
• Fix cases where extra keywords weren’t being passed on to matplotlib from Series.plot (GH1636)
• Fix BusinessMonthBegin logic for dates before 1st bday of month (GH1645)
• Ensure string alias converted (valid in DatetimeIndex.get_loc) in DataFrame.xs / __getitem__ (GH1644)
• Fix use of string alias timestamps with tz-aware time series (GH1647)
• Fix Series.max/min and Series.describe on len-0 series (GH1650)
• Handle None values in dict passed to concat (GH1649)
• Fix Series.interpolate with method='values' and DatetimeIndex (GH1646)
• Fix IndexError in left merges on a DataFrame with 0-length (GH1628)
• Fix DataFrame column width display with UTF-8 encoded characters (GH1620)
• Handle case in pandas.io.data.get_data_yahoo where Yahoo! returns duplicate dates for most recent business day
• Avoid downsampling when plotting mixed frequencies on the same subplot (GH1619)
• Fix read_csv bug when reading a single line (GH1553)
• Fix bug in C code causing monthly periods prior to December 1969 to be off (GH1570)

35.14 pandas 0.8.0

Release date: 6/29/2012

35.14.1 New Features

• New unified DatetimeIndex class for nanosecond-level timestamp data
• New Timestamp datetime.datetime subclass with easy time zone conversions, and support for nanoseconds
• New PeriodIndex class for timespans, calendar logic, and Period scalar object
• High performance resampling of timestamp and period data. New resample method of all pandas data structures
• New frequency names plus shortcut string aliases like ‘15h’, ‘1h30min’
• Time series string indexing shorthand (GH222)
• Add week, dayofyear array and other timestamp array-valued field accessor functions to DatetimeIndex
• Add GroupBy.prod optimized aggregation function and ‘prod’ fast time series conversion method (GH1018)
• Implement robust frequency inference function and inferred_freq attribute on DatetimeIndex (GH391)
• New tz_convert and tz_localize methods in Series / DataFrame
• Convert DatetimeIndexes to UTC if time zones are different in join/setops (GH864)
• Add limit argument for forward/backward filling to reindex, fillna, etc. (GH825 and others)
• Add support for indexes (dates or otherwise) with duplicates and common sense indexing/selection functionality
• Series/DataFrame.update methods, in-place variant of combine_first (GH961)
• Add match function to API (GH502)
• Add Cython-optimized first, last, min, max, prod functions to GroupBy (GH994, GH1043)
• Dates can be split across multiple columns (GH1227, GH1186)
• Add experimental support for converting pandas DataFrame to R data.frame via rpy2 (GH350, GH1212)
• Can pass list of (name, function) to GroupBy.aggregate to get aggregates in a particular order (GH610)
• Can pass dicts with lists of functions or dicts to GroupBy aggregate to do much more flexible multiple function aggregation (GH642, GH610)
• New ordered_merge functions for merging DataFrames with ordered data. Also supports group-wise merging for panel data (GH813)
• Add keys() method to DataFrame
• Add flexible replace method for replacing potentially values to Series and DataFrame (GH929, GH1241)
• Add ‘kde’ plot kind for Series/DataFrame.plot (GH1059)
• More flexible multiple function aggregation with GroupBy
• Add pct_change function to Series/DataFrame
• Add option to interpolate by Index values in Series.interpolate (GH1206)
• Add max_colwidth option for DataFrame, defaulting to 50
• Conversion of DataFrame through rpy2 to R data.frame (GH1282,)
• Add keys() method on DataFrame (GH1240)
• Add new match function to API (similar to R) (GH502)
• Add dayfirst option to parsers (GH854)
• Add method argument to align method for forward/backward fillin (GH216)
• Add Panel.transpose method for rearranging axes (GH695)
• Add new cut function (patterned after R) for discretizing data into equal range-length bins or arbitrary breaks of your choosing (GH415)
• Add new qcut for cutting with quantiles (GH1378)
• Add value_counts top level array method (GH1392)
• Added Andrews curves plot tupe (GH1325)
• Add lag plot (GH1440)
• Add autocorrelation_plot (GH1425)
• Add support for tox and Travis CI (GH1382)
• Add support for Categorical use in GroupBy (GH292)
• Add any and all methods to DataFrame (GH1416)
• Add secondary_y option to Series.plot
• Add experimental lreshape function for reshaping wide to long

35.14.2 Improvements to existing features

• Switch to klib/khash-based hash tables in Index classes for better performance in many cases and lower memory footprint
• Shipping some functions from scipy.stats to reduce dependency, e.g. Series.describe and DataFrame.describe (GH1092)
• Can create MultiIndex by passing list of lists or list of arrays to Series, DataFrame constructor, etc. (GH831)
• Can pass arrays in addition to column names to DataFrame.set_index (GH402)
• Improve the speed of “square” reindexing of homogeneous DataFrame objects by significant margin (GH836)
• Handle more dtypes when passed MaskedArrays in DataFrame constructor (GH406)
- Improved performance of join operations on integer keys (GH682)
- Can pass multiple columns to GroupBy object, e.g. grouped[[col1, col2]] to only aggregate a subset of the value columns (GH383)
- Add histogram / kde plot options for scatter_matrix diagonals (GH1237)
- Add inplace option to Series/DataFrame.rename and sort_index, DataFrame.drop_duplicates (GH805, GH207)
- More helpful error message when nothing passed to Series.reindex (GH1267)
- Can mix array and scalars as dict-value inputs to DataFrame ctor (GH1329)
- Use DataFrame columns’ name for legend title in plots
- Preserve frequency in DatetimeIndex when possible in boolean indexing operations
- Promote datetime.date values in data alignment operations (GH867)
- Add `order` method to Index classes (GH1028)
- Avoid hash table creation in large monotonic hash table indexes (GH1160)
- Store time zones in HDFStore (GH1232)
- Enable storage of sparse data structures in HDFStore (GH85)
- Enable Series.asof to work with arrays of timestamp inputs
- Cython implementation of DataFrame.corr speeds up by > 100x (GH1349, GH1354)
- Exclude “nuisance” columns automatically in GroupBy.transform (GH1364)
- Support functions-as-strings in GroupBy.transform (GH1362)
- Use index name as xlabel/ylabel in plots (GH1415)
- Add `convert_dtype` option to Series.apply to be able to leave data as dtype=object (GH1414)
- Can specify all index level names in concat (GH1419)
- Add `dialect` keyword to parsers for quoting conventions (GH1363)
- Enable DataFrame[bool_DataFrame] += value (GH1366)
- Add `retries` argument to `get_data_yahoo` to try to prevent Yahoo! API 404s (GH826)
- Improve performance of reshaping by using O(N) categorical sorting
- Series names will be used for index of DataFrame if no index passed (GH1494)
- Header argument in DataFrame.to_csv can accept a list of column names to use instead of the object’s columns (GH921)
- Add `raise_conflict` argument to DataFrame.update (GH1526)
- Support file-like objects in ExcelFile (GH1529)

35.14.3 API Changes

- Rename `pandas._tseries` to `pandas.lib`
- Rename Factor to Categorical and add improvements. Numerous Categorical bug fixes
- Frequency name overhaul, WEEKDAY/EOM and rules with @ deprecated. `get_legacy_offset_name` backwards compatibility function added
- Raise ValueError in DataFrame.__nonzero__, so “if df” no longer works (GH1073)
• Change BDay (business day) to not normalize dates by default (GH506)
• Remove deprecated DataMatrix name
• Default merge suffixes for overlap now have underscores instead of periods to facilitate tab completion, etc. (GH1239)
• Deprecation of offset, time_rule timeRule parameters throughout codebase
• Series.append and DataFrame.append no longer check for duplicate indexes by default, add verify_integrity parameter (GH1394)
• Refactor Factor class, old constructor moved to Factor.from_array
• Modified internals of MultiIndex to use less memory (no longer represented as array of tuples) internally, speed up construction time and many methods which construct intermediate hierarchical indexes (GH1467)

35.14.4 Bug Fixes

• Fix OverflowError from storing pre-1970 dates in HDFStore by switching to datetime64 (GH179)
• Fix logical error with February leap year end in YearEnd offset
• Series([False, nan]) was getting casted to float64 (GH1074)
• Fix binary operations between boolean Series and object Series with booleans and NAs (GH1074, GH1079)
• Couldn’t assign whole array to column in mixed-type DataFrame via .ix (GH1142)
• Fix label slicing issues with float index values (GH1167)
• Fix segfault caused by empty groups passed to groupby (GH1048)
• Fix occasionally misbehaved reindexing in the presence of NaN labels (GH522)
• Fix imprecise logic causing weird Series results from .apply (GH1183)
• Unstack multiple levels in one shot, avoiding empty columns in some cases. Fix pivot table bug (GH1181)
• Fix formatting of MultiIndex on Series/DataFrame when index name coincides with label (GH1217)
• Handle Excel 2003 #N/A as NaN from xlrd (GH1213, GH1225)
• Fix timestamp locale-related deserialization issues with HDFStore by moving to datetime64 representation (GH1081, GH809)
• Fix DataFrame.duplicated/drop_duplicates NA value handling (GH557)
• Actually raise exceptions in fast reducer (GH1243)
• Fix various timezone-handling bugs from 0.7.3 (GH969)
• GroupBy on level=0 discarded index name (GH1313)
• Better error message with unmergeable DataFrames (GH1307)
• Series.__repr__ alignment fix with unicode index values (GH1279)
• Better error message if nothing passed to reindex (GH1267)
• More robust NA handling in DataFrame.drop_duplicates (GH557)
• Resolve locale-based and pre-epoch HDF5 timestamp deserialization issues (GH973, GH1081, GH179)
• Implement Series.repeat (GH1229)
• Fix indexing with namedtuple and other tuple subclasses (GH1026)
• Fix float64 slicing bug (GH1167)
• Parsing integers with commas (GH796)
• Fix groupby improper data type when group consists of one value (GH1065)
• Fix negative variance possibility in nanvar resulting from floating point error (GH1090)
• Consistently set name on groupby pieces (GH184)
• Treat dict return values as Series in GroupBy.apply (GH823)
• Respect column selection for DataFrame in in GroupBy.transform (GH1365)
• Fix MultiIndex partial indexing bug (GH1352)
• Enable assignment of rows in mixed-type DataFrame via .ix (GH1432)
• Reset index mapping when grouping Series in Cython (GH1423)
• Fix outer/inner DataFrame.join with non-unique indexes (GH1421)
• Fix MultiIndex groupby bugs with empty lower levels (GH1401)
• Calling fillna with a Series will have same behavior as with dict (GH1486)
• SparseSeries reduction bug (GH1375)
• Fix unicode serialization issue in HDFStore (GH1361)
• Pass keywords to pyplot.boxplot in DataFrame.boxplot (GH1493)
• Bug fixes in MonthBegin (GH1483)
• Preserve MultiIndex names in drop (GH1513)
• Fix Panel DataFrame slice-assignment bug (GH1533)
• Don’t use locals() in read_* functions (GH1547)

35.15 pandas 0.7.3

Release date: April 12, 2012

35.15.1 New Features

• Support for non-unique indexes: indexing and selection, many-to-one and many-to-many joins (GH1306)
• Added fixed-width file reader, read_fwf (GH952)
• Add group_keys argument to groupby to not add group names to MultiIndex in result of apply (GH938)
• DataFrame can now accept non-integer label slicing (GH946). Previously only DataFrame.ix was able to do so.
• DataFrame.apply now retains name attributes on Series objects (GH983)
• Numeric DataFrame comparisons with non-numeric values now raises proper TypeError (GH943). Previously raise “PandasError: DataFrame constructor not properly called!”
• Add kurt methods to Series and DataFrame (GH964)
• Can pass dict of column -> list/set NA values for text parsers (GH754)
• Allows users specified NA values in text parsers (GH754)
• Parsers checks for openpyxl dependency and raises ImportError if not found (GH1007)
• New factory function to create HDFStore objects that can be used in a with statement so users do not have to explicitly call HDFStore.close (GH1005)
• pivot_table is now more flexible with same parameters as groupby (GH941)
• Added stacked bar plots (GH987)
• scatter_matrix method in pandas/tools/plotting.py (GH935)
• DataFrame.boxplot returns plot results for ex-post styling (GH985)
• Short version number accessible as pandas.version.short_version (GH930)
• Additional documentation in panel.to_frame (GH942)
• More informative Series.apply docstring regarding element-wise apply (GH977)
• Notes on rpy2 installation (GH1006)
• Add rotation and font size options to hist method (GH1012)
• Use exogenous / X variable index in result of OLS.y_predict. Add OLS.predict method (GH1027, GH1008)

35.15.2 API Changes

• Calling apply on grouped Series, e.g. describe(), will no longer yield DataFrame by default. Will have to call unstack() to get prior behavior
• NA handling in non-numeric comparisons has been tightened up (GH933, GH953)
• No longer assign dummy names key_0, key_1, etc. to groupby index (GH1291)

35.15.3 Bug Fixes

• Fix logic error when selecting part of a row in a DataFrame with a MultiIndex index (GH1013)
• Series comparison with Series of differing length causes crash (GH1016).
• Fix bug in indexing when selecting section of hierarchically-indexed row (GH1013)
• DataFrame.plot(logy=True) has no effect (GH1011).
• Broken arithmetic operations between SparsePanel-Panel (GH1015)
• Unicode repr issues in MultiIndex with non-ASCII characters (GH1010)
• DataFrame.lookup() returns inconsistent results if exact match not present (GH1001)
• DataFrame arithmetic operations not treating None as NA (GH992)
• DataFrameGroupBy.apply returns incorrect result (GH991)
• Series reshape returns incorrect result for multiple dimensions (GH989)
• Series.std and Series.var ignores ddof parameter (GH934)
• DataFrame.append loses index names (GH980)
• DataFrame.plot(kind='bar') ignores color argument (GH958)
• Inconsistent Index comparison results (GH948)
• Improper int dtype DataFrame construction from data with NaN (GH846)
• Removes default ‘result’ name in groupby results (GH995)
• DataFrame.from_records no longer mutate input columns (GH975)
• Use Index name when grouping by it (GH1313)

35.16 pandas 0.7.2

Release date: March 16, 2012

35.16.1 New Features

• Add additional tie-breaking methods in DataFrame.rank (GH874)
• Add ascending parameter to rank in Series, DataFrame (GH875)
• Add sort_columns parameter to allow unsorted plots (GH918)
• IPython tab completion on GroupBy objects

35.16.2 API Changes

• Series.sum returns 0 instead of NA when called on an empty series. Analogously for a DataFrame whose rows or columns are length 0 (GH844)

35.16.3 Improvements to existing features

• Don’t use groups dict in Grouper.size (GH860)
• Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
• Enable column access via attributes on GroupBy (GH882)
• Enable setting existing columns (only) via attributes on DataFrame, Panel (GH883)
• Intercept __builtin__.sum in groupby (GH885)
• Can pass dict to DataFrame.fillna to use different values per column (GH661)
• Can select multiple hierarchical groups by passing list of values in .ix (GH134)
• Add level keyword to drop for dropping values from a level (GH159)
• Add coerce_float option on DataFrame.from_records (GH893)
• Raise exception if passed date_parser fails in read_csv
• Add axis option to DataFrame.fillna (GH174)
• Fixes to Panel to make it easier to subclass (GH888)

35.16.4 Bug Fixes

• Fix overflow-related bugs in groupby (GH850, GH851)
• Fix unhelpful error message in parsers (GH856)
• Better err msg for failed boolean slicing of dataframe (GH859)
• Series.count cannot accept a string (level name) in the level argument (GH869)
• Group index platform int check (GH870)
• concat on axis=1 and ignore_index=True raises TypeError (GH871)
• Further unicode handling issues resolved (GH795)
• Fix failure in multiindex-based access in Panel (GH880)
• Fix DataFrame boolean slice assignment failure (GH881)
• Fix combineAdd NotImplementedError for SparseDataFrame (GH887)
• Fix DataFrame.to_html encoding and columns (GH890, GH891, GH909)
• Fix na-filling handling in mixed-type DataFrame (GH910)
• Fix to DataFrame.set_value with non-existant row/col (GH911)
• Fix malformed block in groupby when excluding nuisance columns (GH916)
• Fix inconsistent NA handling in dtype=object arrays (GH925)
• Fix missing center-of-mass computation in ewmcov (GH862)
• Don’t raise exception when opening read-only HDF5 file (GH847)
• Fix possible out-of-bounds memory access in 0-length Series (GH917)

35.17 pandas 0.7.1

Release date: February 29, 2012

35.17.1 New Features

• Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)
• Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
• Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
• Add fill_value option to reindex, align methods (GH784)
• Enable concat to produce DataFrame from Series (GH787)
• Add between method to Series (GH802)
• Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
• Support for reading Excel 2007 XML documents using openpyxl

35.17.2 Improvements to existing features

• Improve performance and memory usage of fillna on DataFrame
• Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)
35.17.3 Bug Fixes

- Fix memory leak when inserting large number of columns into a single DataFrame (GH790)
- Appending length-0 DataFrame with new columns would not result in those new columns being part of the resulting concatenated DataFrame (GH782)
- Fixed groupby corner case when passing dictionary grouper and as_index is False (GH819)
- Fixed bug whereby bool array sometimes had object dtype (GH820)
- Fix exception thrown on np.diff (GH816)
- Fix to_records where columns are non-strings (GH822)
- Fix Index.intersection where indices have incomparable types (GH811)
- Fix ExcelFile throwing an exception for two-line file (GH837)
- Add clearer error message in csv parser (GH835)
- Fix loss of fractional seconds in HDFStore (GH513)
- Fix DataFrame join where columns have datetimes (GH787)
- Work around numpy performance issue in take (GH817)
- Improve comparison operations for NA-friendliness (GH801)
- Fix indexing operation for floating point values (GH780, GH798)
- Fix groupby case resulting in malformed dataframe (GH814)
- Fix behavior of reindex of Series dropping name (GH812)
- Improve on redundant groupby computation (GH775)
- Catch possible NA assignment to int/bool series with exception (GH839)

35.18 pandas 0.7.0

Release date: 2/9/2012

35.18.1 New Features

- New `merge` function for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)
- New `concat` function for concatenating DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of DataFrame.append (GH468, GH479, GH273)
- Handle differently-indexed output values in DataFrame.apply (GH498)
- Can pass list of dicts (e.g., a list of shallow JSON objects) to DataFrame constructor (GH526)
- Add `reorder_levels` method to Series and DataFrame (GH534)
- Add dict-like `get` function to DataFrame and Panel (GH521)
- DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame
- Added DataFrame.to_panel with code adapted from LongPanel.to_long
• **reindex_axis** method added to DataFrame
• Add **level** option to binary arithmetic functions on DataFrame and Series
• Add **level** option to the **reindex** and **align** methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others)
• Add attribute-based item access to Panel and add IPython completion (PR GH554)
• Add **logy** option to Series.plot for log-scaling on the Y axis
• Add **index**, **header**, and **justify** options to DataFrame.to_string. Add option to (GH570, GH571)
• Can pass multiple DataFrames to DataFrame.join to join on index (GH115)
• Can pass multiple Panels to Panel.join (GH115)
• Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.append too
• Added **justify** argument to DataFrame.to_string to allow different alignment of column headers
• Add **sort** option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)
• Can pass MaskedArray to Series constructor (GH563)
• Add Panel item access via attributes and IPython completion (GH554)
• Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338)
• Add **verbose** option to read_csv and read_table to show number of NA values inserted in non-numeric columns (GH614)
• Can pass a list of dicts or Series to DataFrame.append to concatenate multiple rows (GH464)
• Add **level** argument to DataFrame.xs for selecting data from other MultiIndex levels. Can take one or more levels with potentially a tuple of keys for flexible retrieval of data (GH371, GH629)
• New crosstab function for easily computing frequency tables (GH170)
• Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with hierarchical columns (GH166)
• Add integer-indexing functions **iget** in Series and **irow/iget** in DataFrame (GH628)
• Add new Series.unique function, significantly faster than numpy.unique (GH658)
• Add new cummin and cummax instance methods to Series and DataFrame (GH647)
• Add new value_range function to return min/max of a dataframe (GH288)
• Add **drop** parameter to reset_index method of DataFrame and added method to Series as well (GH699)
• Add isin method to Index objects, works just like Series.isin (GH GH657)
• Implement array interface on Panel so that ufuncs work (re: GH740)
• Add **sort** option to DataFrame.join (GH731)
• Improved handling of NAs (propagation) in binary operations with dtype=object arrays (GH737)
• Add **abs** method to Pandas objects
• Added algorithms module to start collecting central algs
35.18.2 API Changes

- Label-indexing with integer indexes now raises KeyError if a label is not found instead of falling back on location-based indexing (GH700)
- Label-based slicing via \texttt{ix} or \texttt{[]} on Series will now only work if exact matches for the labels are found or if the index is monotonic (for range selections)
- Label-based slicing and sequences of labels can be passed to \texttt{[]} on a Series for both getting and setting (GH86)
- \texttt{[]} operator (\texttt{__getitem__} and \texttt{__setitem__}) will raise KeyError with integer indexes when an index is not contained in the index. The prior behavior would fall back on position-based indexing if a key was not found in the index which would lead to subtle bugs. This is now consistent with the behavior of \texttt{.ix} on DataFrame and friends (GH328)
- Rename \texttt{DataFrame.delevel} to \texttt{DataFrame.reset_index} and add deprecation warning
- \texttt{Series.sort} (an in-place operation) called on a Series which is a view on a larger array (e.g. a column in a DataFrame) will generate an Exception to prevent accidentally modifying the data source (GH316)
- Refactor to remove deprecated \texttt{LongPanel} class (GH552)
- Deprecated \texttt{Panel.to_long}, renamed to \texttt{to_frame}
- Deprecated \texttt{colSpace} argument in \texttt{DataFrame.to_string}, renamed to \texttt{col_space}
- Rename \texttt{precision} to \texttt{accuracy} in engineering float formatter (GH395)
- The default delimiter for \texttt{read_csv} is comma rather than letting csv.Sniffer infer it
- Rename \texttt{col_or_columns} argument in \texttt{DataFrame.drop_duplicates} (GH734)

35.18.3 Improvements to existing features

- Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
- Substantially improve performance of multi-\texttt{GroupBy} aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
- Can store objects indexed by tuples and floats in HDFStore (GH492)
- Don’t print length by default in Series.to_string, add \texttt{length} option (GH489)
- Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
- Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
- Further performance tweaking of Series.\texttt{__getitem__} for standard use cases
- Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
- Friendlier error message in setup.py if NumPy not installed
- Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)
- Default name assignment when calling \texttt{reset_index} on DataFrame with a regular (non-hierarchical) index (GH476)
- Use Cythonized groupers when possible in Series/DataFrame stat ops with \texttt{level} parameter passed (GH545)
- Ported skiplist data structure to C to speed up \texttt{rolling_median} by about 5-10x in most typical use cases (GH374)
• Some performance enhancements in constructing a Panel from a dict of DataFrame objects
• Made Index._get_duplicates a public method by removing the underscore
• Prettier printing of floats, and column spacing fix (GH395, GH571)
• Add **bold_rows** option to DataFrame.to_html (GH586)
• Improve the performance of DataFrame.sort_index by up to 5x or more when sorting by multiple columns
• Substantially improve performance of DataFrame and Series constructors when passed a nested dict or dict, respectively (GH540, GH621)
• Modified setup.py so that pip / setuptools will install dependencies (GH GH507, various pull requests)
• Unstack called on DataFrame with non-MultiIndex will return Series (GH GH477)
• Improve DataFrame.to_string and console formatting to be more consistent in the number of displayed digits (GH395)
• Use bottleneck if available for performing NaN-friendly statistical operations that it implemented (GH91)
• Monkey-patch context to traceback in DataFrame.apply to indicate which row/column the function application failed on (GH614)
• Improved ability of read_table and read_clipboard to parse console-formatted DataFrames (can read the row of index names, etc.)
• Can pass list of group labels (without having to convert to an ndarray yourself) to groupby in some cases (GH659)
• Use **kind** argument to Series.order for selecting different sort kinds (GH668)
• Add option to Series.to_csv to omit the index (GH684)
• Add **delimiter** as an alternative to **sep** in read_csv and other parsing functions
• Substantially improved performance of groupby on DataFrames with many columns by aggregating blocks of columns all at once (GH745)
• Can pass a file handle or StringIO to Series/DataFrame.to_csv (GH765)
• Can pass sequence of integers to DataFrame.irow(ic), and Series.iget, (GH GH654)
• Prototypes for some vectorized string functions
• Add float64 hash table to solve the Series.unique problem with NAs (GH714)
• Memoize objects when reading from file to reduce memory footprint
• Can get and set a column of a DataFrame with hierarchical columns containing “empty” (‘’), lower levels without passing the empty levels (PR GH768)

35.18.4 Bug Fixes

• Raise exception in out-of-bounds indexing of Series instead of seg-faulting, regression from earlier releases (GH495)
• Fix error when joining DataFrames of different dtypes within the same typeclass (e.g. float32 and float64) (GH486)
• Fix bug in Series.min/Series.max on objects like datetime.datetime (GH GH487)
• Preserve index names in Index.union (GH501)
• Fix bug in Index joining causing subclass information (like DateRange type) to be lost in some cases (GH500)
• Accept empty list as input to DataFrame constructor, regression from 0.6.0 (GH491)
• Can output DataFrame and Series with ndarray objects in a dtype=object array (GH490)
• Return empty string from Series.to_string when called on empty Series (GH488)
• Fix exception passing empty list to DataFrame.from_records
• Fix Index.format bug (excluding name field) with datetimes with time info
• Fix scalar value access in Series to always return NumPy scalars, regression from prior versions (GH510)
• Handle rows skipped at beginning of file in read_* functions (GH505)
• Handle improper dtype casting in set_value methods
• Unary ‘-’ / __neg__ operator on DataFrame was returning integer values
• Unbox 0-dim ndarrays from certain operators like all, any in Series
• Fix handling of missing columns (was combine_first-specific) in DataFrame.combine for general case (GH529)
• Fix type inference logic with boolean lists and arrays in DataFrame indexing
• Use centered sum of squares in R-square computation if entity_effects=True in panel regression
• Handle all NA case in Series.{corr, cov}, was raising exception (GH548)
• Aggregating by multiple levels with level argument to DataFrame, Series stat method, was broken (GH545)
• Fix Cython buf when converter passed to read_csv produced a numeric array (buffer dtype mismatch when passed to Cython type inference function) (GH546)
• Fix exception when setting scalar value using .ix on a DataFrame with a MultiIndex (GH551)
• Fix outer join between two DateRanges with different offsets that returned an invalid DateRange
• Cleanup DataFrame.from_records failure where index argument is an integer
• Fix Data.from_records failure when passed a dictionary
• Fix NA handling in {Series, DataFrame}.rank with non-float point dtypes
• Fix bug related to integer type-checking in .ix-based indexing
• Handle non-string index name passed to DataFrame.from_records
• DataFrame.insert caused the columns name(s) field to be discarded (GH527)
• Fix erroneous in monotonic many-to-one left joins
• Fix DataFrame.to_string to remove extra column white space (GH571)
• Format floats to default to same number of digits (GH395)
• Added decorator to copy docstring from one function to another (GH449)
• Fix error in monotonic many-to-one left joins
• Fix __eq__ comparison between DateOffsets with different relativedelta keywords passed
• Fix exception caused by parser converter returning strings (GH583)
• Fix MultiIndex formatting bug with integer names (GH601)
• Fix bug in handling of non-numeric aggregates in Series.groupby (GH612)
• Fix TypeError with tuple subclasses (e.g. namedtuple) in DataFrame.from_records (GH611)
• Catch misreported console size when running IPython within Emacs
• Fix minor bug in pivot table margins, loss of index names and length-1 ‘All’ tuple in row labels
• Add support for legacy WidePanel objects to be read from HDFStore
• Fix out-of-bounds segfault in pad_object and backfill_object methods when either source or target array are empty
• Could not create a new column in a DataFrame from a list of tuples
• Fix bugs preventing SparseDataFrame and SparseSeries working with groupby (GH666)
• Use sort kind in Series.sort / argsort (GH668)
• Fix DataFrame operations on non-scalar, non-pandas objects (GH672)
• Don’t convert DataFrame column to integer type when passing integer to __setitem__ (GH669)
• Fix downstream bug in pivot_table caused by integer level names in MultiIndex (GH678)
• Fix SparseSeries.combine_first when passed a dense Series (GH687)
• Fix performance regression in HDFStore loading when DataFrame or Panel stored in table format with datetimes
• Raise Exception in DateRange when offset with n=0 is passed (GH683)
• Fix get/set inconsistency with .ix property and integer location but non-integer index (GH707)
• Use right dropna function for SparseSeries. Return dense Series for NA fill value (GH730)
• Fix Index.format bug causing incorrectly string-formatted Series with datetime indexes (GH726, GH758)
• Fix errors caused by object dtype arrays passed to ols (GH759)
• Fix error where column names lost when passing list of labels to DataFrame.__getitem__. (GH662)
• Fix error whereby top-level week iterator overwrote week instance
• Fix circular reference causing memory leak in sparse array / series / frame, (GH663)
• Fix integer-slicing from integers-as-floats (GH670)
• Fix zero division errors in nanops from object dtype arrays in all NA case (GH676)
• Fix csv encoding when using unicode (GH705, GH717, GH738)
• Fix assumption that each object contains every unique block type in concat, (GH708)
• Fix sortedness check of multiindex in to_panel (GH719, 720)
• Fix that None was not treated as NA in PyObjectHashtable
• Fix hashing dtype because of endianness confusion (GH747, GH748)
• Fix SparseSeries.dropna to return dense Series in case of NA fill value (GH GH730)
• Use map_infer instead of np.vectorize. handle NA sentinels if converter yields numeric array, (GH753)
• Fixes and improvements to DataFrame.rank (GH742)
• Fix catching AttributeError instead of NameError for bottleneck
• Try to cast non-MultiIndex to better dtype when calling reset_index (GH726 GH440)
• Fix #1.QNAN0’ float bug on 2.6/win64
• Allow subclasses of dicts in DataFrame constructor, with tests
• Fix problem whereby set_index destroys column multiindex (GH764)
• Hack around bug in generating DateRange from naive DateOffset (GH770)
• Fix bug in DateRange.intersection causing incorrect results with some overlapping ranges (GH771)

35.18.5 Thanks

• Craig Austin
• Chris Billington
• Marius Cobzarenco
• Mario Gamboa-Cavazos
• Hans-Martin Gaudecker
• Arthur Gerigk
• Yaroslav Halchenko
• Jeff Hammerbacher
• Matt Harrison
• Andreas Hilboll
• Luc Kesters
• Adam Klein
• Gregg Lind
• Solomon Negusse
• Wouter Overmeire
• Christian Prinoth
• Jeff Reback
• Sam Reckoner
• Craig Reeson
• Jan Schulz
• Skipper Seabold
• Ted Square
• Graham Taylor
• Aman Thakral
• Chris Uga
• Dieter Vandenbussche
• Texas P.
• Pinxing Ye
• ... and everyone I forgot
35.19 pandas 0.6.1

Release date: 12/13/2011

35.19.1 API Changes

- Rename `names` argument in DataFrame.from_records to `columns`. Add deprecation warning
- Boolean get/set operations on Series with boolean Series will reindex instead of requiring that the indexes be exactly equal (GH429)

35.19.2 New Features

- Can pass Series to DataFrame.append with ignore_index=True for appending a single row (GH430)
- Add Spearman and Kendall correlation options to Series.corr and DataFrame.corr (GH428)
- Add new `get_value` and `set_value` methods to Series, DataFrame, and Panel to very low-overhead access to scalar elements. `df.get_value(row, column)` is about 3x faster than `df[column][row]` by handling fewer cases (GH437, GH438). Add similar methods to sparse data structures for compatibility
- Add Qt table widget to sandbox (GH435)
- DataFrame.align can accept Series arguments, add axis keyword (GH461)
- Implement new SparseList and SparseArray data structures. SparseSeries now derives from SparseArray (GH463)
- max_columns / max_rows options in set_printoptions (GH453)
- Implement Series.rank and DataFrame.rank, fast versions of scipy.stats.rankdata (GH428)
- Implement DataFrame.from_items alternate constructor (GH444)
- DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)
- Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)
- Add `margins` option to `pivot_table` for computing subgroup aggregates (GH114)
- Add `Series.from_csv` function (GH482)

35.19.3 Improvements to existing features

- Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (GH425)
- Use same formatting function for outputting floating point Series to console as in DataFrame (GH420)
- DataFrame.delevel will try to infer better dtype for new columns (GH440)
- Exclude non-numeric types in DataFrame.{corr, cov}
- Override Index.astype to enable dtype casting (GH412)
- Use same float formatting function for Series.__repr__ (GH420)
- Use available console width to output DataFrame columns (GH453)
- Accept ndarrays when setting items in Panel (GH452)
- Infer console width when printing __repr__ of DataFrame to console (PR GH453)
- Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
- Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH462)
- Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
- Column deletion in DataFrame copies no data (computes views on blocks) (GH GH158)
- MultiIndex.get_level_values can take the level name
- More helpful error message when DataFrame.plot fails on one of the columns (GH478)
- Improve performance of DataFrame.{index, columns} attribute lookup

35.19.4 Bug Fixes

- Fix $O(K^2)$ memory leak caused by inserting many columns without consolidating, had been present since 0.4.0 (GH467)
- `DataFrame.count` should return Series with zero instead of NA with length-0 axis (GH423)
- Fix Yahoo! Finance API usage in pandas.io.data (GH419, GH427)
- Fix upstream bug causing failure in Series.align with empty Series (GH434)
- Function passed to DataFrame.apply can return a list, as long as it’s the right length. Regression from 0.4 (GH432)
- Don’t “accidentally” upcast scalar values when indexing using .ix (GH431)
- Fix groupby exception raised with as_index=False and single column selected (GH421)
- Implement `DateOffset.__ne__` causing downstream bug (GH456)
- Fix __doc__-related issue when converting py -> pyo with py2exe
- Bug fix in left join Cython code with duplicate monotonic labels
- Fix bug when unstacking multiple levels described in GH451
- Exclude NA values in dtype=object arrays, regression from 0.5.0 (GH469)
- Use Cython map Infer function in DataFrame.applymap to properly infer output type, handle tuple return values and other things that were breaking (GH465)
- Handle floating point index values in HDFStore (GH454)
- Fixed stale column reference bug (cached Series object) caused by type change / item deletion in DataFrame (GH473)
- Index.get_loc should always raise Exception when there are duplicates
- Handle differently-indexed Series input to DataFrame constructor (GH475)
- Omit nuisance columns in multi-groupby with Python function
- Buglet in handling of single grouping in general apply
- Handle type inference properly when passing list of lists or tuples to DataFrame constructor (GH484)
- Preserve Index / MultiIndex names in GroupBy.apply concatenation step (GH GH481)
35.19.5 Thanks

- Ralph Bean
- Luca Beltrame
- Marius Cobzarenco
- Andreas Hilboll
- Jev Kuznetsov
- Adam Lichtenstein
- Wouter Overmeire
- Fernando Perez
- Nathan Pinger
- Christian Prinoth
- Alex Reyfman
- Joon Ro
- Chang She
- Ted Square
- Chris Uga
- Dieter Vandenbussche

35.20 pandas 0.6.0

Release date: 11/25/2011

35.20.1 API Changes

- Arithmetic methods like `sum` will attempt to sum `dtype=object` values by default instead of excluding them (GH382)

35.20.2 New Features

- Add `melt` function to `pandas.core.reshape`
- Add `level` parameter to group by level in Series and DataFrame descriptive statistics (GH313)
- Add `head` and `tail` methods to Series, analogous to to DataFrame (PR GH296)
- Add `Series.isin` function which checks if each value is contained in a passed sequence (GH289)
- Add `float_format` option to `Series.to_string`
- Add `skip_footer` (GH291) and `converters` (GH343) options to `read_csv` and `read_table`
- Add proper, tested weighted least squares to standard and panel OLS (GH GH303)
- Add `drop_duplicates` and `duplicated` functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)
• Implement logical (boolean) operators & | ^ on DataFrame (GH347)
• Add Series.mad, mean absolute deviation, matching DataFrame
• Add QuarterEnd DateOffset (GH321)
• Add matrix multiplication function dot to DataFrame (GH65)
• Add orient option to Panel.from_dict to ease creation of mixed-type Panels (GH359, GH301)
• Add DataFrame.from_dict with similar orient option
• Can now pass list of tuples or list of lists to DataFrame.from_records for fast conversion to DataFrame (GH357)
• Can pass multiple levels to groupby, e.g. df.groupby(level=[0, 1]) (GH GH103)
• Can sort by multiple columns in DataFrame.sort_index (GH92, GH362)
• Add fast get_value and put_value methods to DataFrame and micro-performance tweaks (GH360)
• Add cov instance methods to Series and DataFrame (GH194, GH362)
• Add bar plot option to DataFrame.plot (GH348)
• Add idxmin and idxmax functions to Series and DataFrame for computing index labels achieving maximum and minimum values (GH286)
• Add read_clipboard function for parsing DataFrame from OS clipboard, should work across platforms (GH300)
• Add nunique function to Series for counting unique elements (GH297)
• DataFrame constructor will use Series name if no columns passed (GH373)
• Support regular expressions and longer delimiters in read_table/read_csv, but does not handle quoted strings yet (GH364)
• Add DataFrame.to_html for formatting DataFrame to HTML (GH387)
• MaskedArray can be passed to DataFrame constructor and masked values will be converted to NaN (GH396)
• Add DataFrame.boxplot function (GH368, others)
• Can pass extra args, kwds to DataFrame.apply (GH376)

35.20.3 Improvements to existing features

• Raise more helpful exception if date parsing fails in DateRange (GH298)
• Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)
• Print level names in hierarchical index in Series repr (GH305)
• Return DataFrame when performing GroupBy on selected column and as_index=False (GH308)
• Can pass vector to on argument in DataFrame.join (GH312)
• Don’t show Series name if it’s None in the repr, also omit length for short Series (GH317)
• Show legend by default in DataFrame.plot, add legend boolean flag (GH GH324)
• Significantly improved performance of Series.order, which also makes np.unique called on a Series faster (GH327)
• Faster cythonized count by level in Series and DataFrame (GH341)
• Raise exception if dateutil 2.0 installed on Python 2.x runtime (GH346)
• Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
• New Cython vectorized function `map_infer` speeds up `Series.apply` and `Series.map` significantly when passed elementwise Python function, motivated by GH355

• Cythonized `cache_readonly`, resulting in substantial micro-performance enhancements throughout the codebase (GH361)

• Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than `np.apply_along_axis` (GH309)

• Add `raw` option to `DataFrame.apply` for getting better performance when the passed function only requires an ndarray (GH309)

• Improve performance of `MultiIndex.from_tuples`

• Can pass multiple levels to `stack` and `unstack` (GH370)

• Can pass multiple values columns to `pivot_table` (GH381)

• Can call `DataFrame.delevel` with standard Index with name set (GH393)

• Use Series name in GroupBy for result index (GH363)

• Refactor Series/DataFrame stat methods to use common set of NaN-friendly function

• Handle NumPy scalar integers at C level in Cython conversion routines

35.20.4 Bug Fixes

• Fix bug in `DataFrame.to_csv` when writing a DataFrame with an index name (GH290)

• DataFrame should clear its Series caches on consolidation, was causing “stale” Series to be returned in some corner cases (GH304)

• DataFrame constructor failed if a column had a list of tuples (GH293)

• Ensure that `Series.apply` always returns a Series and implement `Series.round` (GH314)

• Support boolean columns in Cythonized groupby functions (GH315)

• `DataFrame.describe` should not fail if there are no numeric columns, instead return categorical describe (GH323)

• Fixed bug which could cause columns to be printed in wrong order in `DataFrame.to_string` if specific list of columns passed (GH325)

• Fix legend plotting failure if DataFrame columns are integers (GH326)

• Shift start date back by one month for Yahoo! Finance API in pandas.io.data (GH329)

• Fix `DataFrame.join` failure on unconsolidated inputs (GH331)

• DataFrame.min/max will no longer fail on mixed-type DataFrame (GH337)

• Fix `read_csv / read_table` failure when passing list to `index_col` that is not in ascending order (GH349)

• Fix failure passing Int64Index to Index.union when both are monotonic

• Fix error when passing SparseSeries to (dense) DataFrame constructor

• Added missing bang at top of setup.py (GH352)

• Change `is_monotonic` on MultiIndex so it properly compares the tuples

• Fix MultiIndex outer join logic (GH351)

• Set index name attribute with single-key groupby (GH358)
- Bug fix in reflexive binary addition in Series and DataFrame for non-commutative operations (like string concatenation) (GH353)
- setupegg.py will invoke Cython (GH192)
- Fix block consolidation bug after inserting column into MultiIndex (GH366)
- Fix bug in join operations between Index and Int64Index (GH367)
- Handle min_periods=0 case in moving window functions (GH365)
- Fixed corner cases in DataFrame.apply/pivot with empty DataFrame (GH378)
- Fixed repr exception when Series name is a tuple
- Always return DateRange from asfreq (GH390)
- Pass level names to swaplavel (GH379)
- Don’t lose index names in MultiIndex.droplevel (GH394)
- Infer more proper return type in DataFrame.apply when no columns or rows depending on whether the passed function is a reduction (GH389)
- Always return NA/NaN from Series.min/max and DataFrame.min/max when all of a row/column/values are NA (GH384)
- Enable partial setting with .ix / advanced indexing (GH397)
- Handle mixed-type DataFrames correctly in unstack, do not lose type information (GH403)
- Fix integer name formatting bug in Index.format and in Series.__repr__
- Handle label types other than string passed to groupby (GH405)
- Fix bug in .ix-based indexing with partial retrieval when a label is not contained in a level
- Index name was not being pickled (GH408)
- Level name should be passed to result index in GroupBy.apply (GH416)

35.20.5 Thanks

- Craig Austin
- Marius Cobzarenco
- Joel Cross
- Jeff Hammerbacher
- Adam Klein
- Thomas Kluyver
- Jev Kuznetsov
- Kieran O’Mahony
- Wouter Overmeire
- Nathan Pinger
- Christian Prinoth
- Skipper Seabold
- Chang She
35.21 pandas 0.5.0

Release date: 10/24/2011

This release of pandas includes a number of API changes (see below) and cleanup of deprecated APIs from pre-0.4.0 releases. There are also bug fixes, new features, numerous significant performance enhancements, and includes a new ipython completer hook to enable tab completion of DataFrame columns accesses and attributes (a new feature).

In addition to the changes listed here from 0.4.3 to 0.5.0, the minor releases 4.1, 0.4.2, and 0.4.3 brought some significant new functionality and performance improvements that are worth taking a look at.

Thanks to all for bug reports, contributed patches and generally providing feedback on the library.

35.21.1 API Changes

- `read_table`, `read_csv`, and `ExcelFile.parse` default arguments for `index_col` is now None. To use one or more of the columns as the resulting DataFrame’s index, these must be explicitly specified now

- Parsing functions like `read_csv` no longer parse dates by default (GH GH225)

- Removed `weights` option in panel regression which was not doing anything principled (GH155)

- Changed `buffer` argument name in `Series.to_string` to `buf`

- `Series.to_string` and `DataFrame.to_string` now return strings by default instead of printing to sys.stdout

- Deprecated `nanRep` argument in various `to_string` and `to_csv` functions in favor of `na_rep`. Will be removed in 0.6 (GH275)

- Renamed `delimiter` to `sep` in `DataFrame.from_csv` for consistency

- Changed order of `Series.clip` arguments to match those of `numpy.clip` and added (unimplemented) `out` argument so `numpy.clip` can be called on a Series (GH272)

- Series functions renamed (and thus deprecated) in 0.4 series have been removed:
 - `asOf`, use `asof`
 - `toDict`, use `to_dict`
 - `toString`, use `to_string`
 - `toCSV`, use `to_csv`
 - `merge`, use `map`
 - `applymap`, use `apply`
 - `combineFirst`, use `combine_first`
 - `_firstTimeWithValue` use `first_valid_index`
- `_lastTimeWithValue` use `last_valid_index`

- DataFrame functions renamed / deprecated in 0.4 series have been removed:
 - `asMatrix` method, use `as_matrix` or `values` attribute
 - `combineFirst`, use `combine_first`
 - `getXS`, use `xs`
 - `merge`, use `join`
 - `fromRecords`, use `from_records`
 - `fromcsv`, use `from_csv`
 - `toRecords`, use `to_records`
 - `toDict`, use `to_dict`
 - `toString`, use `to_string`
 - `toCSV`, use `to_csv`
 - `_firstTimeWithValue` use `first_valid_index`
 - `_lastTimeWithValue` use `last_valid_index`
 - `toDataMatrix` is no longer needed
 - `rows()` method, use `index` attribute
 - `cols()` method, use `columns` attribute
 - `dropEmptyRows()`, use `dropna(how='all')`
 - `dropIncompleteRows()`, use `dropna()`
 - `tapply(f)`, use `apply(f, axis=1)`
 - `tgroupby(keyfunc, aggfunc)`, use `groupby with axis=1`

35.21.2 Deprecations Removed

- `indexField` argument in `DataFrame.from_records`
- `missingAtEnd` argument in `Series.order`. Use `na_last` instead
- `Series.fromValue` classmethod, use regular `Series` constructor instead
- Functions `parseCSV`, `parseText`, and `parseExcel` methods in `pandas.io.parsers` have been removed
- `Index.asOfDate` function
- `Panel.getMinorXS` (use `minor_xs`) and `Panel.getMajorXS` (use `major_xs`)
- `Panel.toWide`, use `Panel.to_wide` instead

35.21.3 New Features

- Added `DataFrame.align` method with standard join options
- Added `parse_dates` option to `read_csv` and `read_table` methods to optionally try to parse dates in the index columns
• Add `nrows`, `chunksize`, and `iterator` arguments to `read_csv` and `read_table`. The last two return a new `TextParser` class capable of lazily iterating through chunks of a flat file (GH242)
• Added ability to join on multiple columns in `DataFrame.join` (GH214)
• Added private `_get_duplicates` function to `Index` for identifying duplicate values more easily
• Added column attribute access to DataFrame, e.g. `df.A` equivalent to `df[‘A’]` if ‘A’ is a column in the DataFrame (GH213)
• Added IPython tab completion hook for DataFrame columns. (GH233, GH230)
• Implement `Series.describe` for Series containing objects (GH241)
• Add inner join option to `DataFrame.join` when joining on key(s) (GH248)
• Can select set of DataFrame columns by passing a list to `__getitem__` (GH GH253)
• Can use & and | to intersection / union Index objects, respectively (GH GH261)
• Added `pivot_table` convenience function to pandas namespace (GH234)
• Implemented `Panel.rename_axis` function (GH243)
• DataFrame will show index level names in console output
• Implemented `Panel.take`
• Add `set_eng_float_format` function for setting alternate DataFrame floating point string formatting
• Add convenience `set_index` function for creating a DataFrame index from its existing columns

35.21.4 Improvements to existing features

• Major performance improvements in file parsing functions `read_csv` and `read_table`
• Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations
• File parsing functions like `read_csv` and `read_table` will explicitly check if a parsed index has duplicates and raise a more helpful exception rather than deferring the check until later
• Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)
• Improved speed of `DataFrame.xs` on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)
• With new `DataFrame.align` method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%.
• Significantly sped up conversion of nested dict into DataFrame (GH212)
• Can pass hierarchical index level name to `groupby` instead of the level number if desired (GH223)
• Add support for different delimiters in `DataFrame.to_csv` (GH244)
• Add more helpful error message when importing pandas post-installation from the source directory (GH250)
• Significantly speed up `DataFrame.__repr__` and `count` on large mixed-type DataFrame objects
• Better handling of pyc file dependencies in Cython module build (GH271)
35.21.5 Bug Fixes

- `read_csv` / `read_table` fixes
 - Be less aggressive about converting float->int in cases of floating point representations of integers like 1.0, 2.0, etc.
 - “True”/“False” will not get correctly converted to boolean
 - Index name attribute will get set when specifying an index column
 - Passing column names should force `header=None` (GH257)
 - Don’t modify passed column names when `index_col` is not None (GH258)
 - Can sniff CSV separator in zip file (since seek is not supported, was failing before)

- Worked around matplotlib “bug” in which `series[:, np.newaxis]` fails. Should be reported upstream to matplotlib (GH224)

- DataFrame.iteritems was not returning Series with the name attribute set. Also neither was DataFrame._series

- Can store datetime.date objects in HDFStore (GH231)

- Index and Series names are now stored in HDFStore

- Fixed problem in which data would get upcasted to object dtype in GroupBy.apply operations (GH237)

- Fixed outer join bug with empty DataFrame (GH238)

- Can create empty Panel (GH239)

- Fix join on single key when passing list with 1 entry (GH246)

- Don’t raise Exception on plotting DataFrame with an all-NA column (GH251, GH254)

- Bug min/max errors when called on integer DataFrames (GH241)

- `DataFrame.iteritems` and `DataFrame._series` not assigning name attribute

- Panel.__repr__ raised exception on length-0 major/minor axes

- `DataFrame.join` on key with empty DataFrame produced incorrect columns

- Implemented `MultiIndex.diff` (GH260)

- `Int64Index.take` and `MultiIndex.take` lost name field, fix downstream issue GH262

- Can pass list of tuples to `Series` (GH270)

- Can pass level name to `DataFrame.stack`

- Support set operations between MultiIndex and Index

- Fix many corner cases in MultiIndex set operations - Fix MultiIndex-handling bug with GroupBy.apply when returned groups are not indexed the same

- Fix corner case bugs in DataFrame.apply

- Setting DataFrame index did not cause Series cache to get cleared

- Various int32 -> int64 platform-specific issues

- Don’t be too aggressive converting to integer when parsing file with MultiIndex (GH285)

- Fix bug when slicing Series with negative indices before beginning
35.21.6 Thanks

- Thomas Kluyver
- Daniel Fortunov
- Aman Thakral
- Luca Beltrame
- Wouter Overmeire

35.22 pandas 0.4.3

Release date: 10/9/2011

is is largely a bugfix release from 0.4.2 but also includes a handful of new d enhanced features. Also, pandas can now be installed and used on Python 3 hanks Thomas Kluyver!.

35.22.1 New Features

- Python 3 support using 2to3 (GH200, Thomas Kluyver)
- Add `name` attribute to `Series` and added relevant logic and tests. Name now prints as part of `Series.__repr__`
- Add `isnull` and `notnull` as instance methods on `Series` (GH209, GH203)

35.22.2 Improvements to existing features

- Skip xlrd-related unit tests if not installed
- `Index.append` and `MultiIndex.append` can accept a list of Index objects to concatenate together
- Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
- Refactored `Series.__repr__` to be a bit more clean and consistent

35.22.3 API Changes

- `Series.describe` and `DataFrame.describe` now bring the 25% and 75% quartiles instead of the 10% and 90% deciles. The other outputs have not changed
- `Series.toString` will print deprecation warning, has been de-camelCased to `to_string`

35.22.4 Bug Fixes

- Fix broken interaction between `Index` and `Int64Index` when calling intersection. Implement `Int64Index.intersection`
- `MultiIndex.sortlevel` discarded the level names (GH202)
- Fix bugs in groupby, join, and append due to improper concatenation of `MultiIndex` objects (GH201)
• Fix regression from 0.4.1, isnull and notnull ceased to work on other kinds of Python scalar objects like date-time.datetime

• Raise more helpful exception when attempting to write empty DataFrame or LongPanel to HDFStore (GH204)

• Use stdlib csv module to properly escape strings with commas in DataFrame.to_csv (GH206, Thomas Kluyver)

• Fix Python ndarray access in Cython code for sparse blocked index integrity check

• Fix bug writing Series to CSV in Python 3 (GH209)

• Miscellaneous Python 3 bugfixes

35.22.5 Thanks

• Thomas Kluyver

• rsamson

35.23 pandas 0.4.2

Release date: 10/3/2011

is a performance optimization release with several bug fixes. The new t64Index and new merging / joining Cython code and related Python infrastructure are the main new additions

35.23.1 New Features

• Added fast Int64Index type with specialized join, union, intersection. Will result in significant performance enhancements for int64-based time series (e.g. using NumPy’s datetime64 one day) and also faster operations on DataFrame objects storing record array-like data.

• Refactored Index classes to have a join method and associated data alignment routines throughout the codebase to be able to leverage optimized joining / merging routines.

• Added Series.align method for aligning two series with choice of join method

• Wrote faster Cython data alignment / merging routines resulting in substantial speed increases

• Added is_monotonic property to Index classes with associated Cython code to evaluate the monotonicity of the Index values

• Add method get_level_values to MultiIndex

• Implemented shallow copy of BlockManager object in DataFrame internals

35.23.2 Improvements to existing features

• Improved performance of isnull and notnull, a regression from v0.3.0 (GH187)

• Wrote templating / code generation script to auto-generate Cython code for various functions which need to be available for the 4 major data types used in pandas (float64, bool, object, int64)

• Refactored code related to DataFrame.join so that intermediate aligned copies of the data in each DataFrame argument do not need to be created. Substantial performance increases result (GH176)

• Substantially improved performance of generic Index.intersection and Index.union
• Improved performance of `DateRange.union` with overlapping ranges and non-cacheable offsets (like Minute). Implemented analogous fast `DateRange.intersection` for overlapping ranges.
• Implemented `BlockManager.take` resulting in significantly faster `take` performance on mixed-type `DataFrame` objects (GH104)
• Improved performance of `Series.sort_index`
• Significant groupby performance enhancement: removed unnecessary integrity checks in `DataFrame` internals that were slowing down slicing operations to retrieve groups
• Added informative Exception when passing dict to `DataFrame` groupby aggregation with axis != 0

35.23.3 API Changes

35.23.4 Bug Fixes

• Fixed minor unhandled exception in Cython code implementing fast groupby aggregation operations
• Fixed bug in unstacking code manifesting with more than 3 hierarchical levels
• Throw exception when step specified in label-based slice (GH185)
• Fix isnull to correctly work with np.float32. Fix upstream bug described in GH182
• Finish implementation of `as_index=False` in groupby for `DataFrame` aggregation (GH181)
• Raise SkipTest for pre-epoch HDFStore failure. Real fix will be sorted out via datetime64 dtype

35.23.5 Thanks

• Uri Laserson
• Scott Sinclair

35.24 pandas 0.4.1

Release date: 9/25/2011

is is primarily a bug fix release but includes some new features and improvements

35.24.1 New Features

• Added new `DataFrame` methods `get_dtype_counts` and property `dtypes`
• Setting of values using `.ix` indexing attribute in mixed-type `DataFrame` objects has been implemented (fixes GH135)
• `read_csv` can read multiple columns into a `MultiIndex`. `DataFrame`’s `to_csv` method will properly write out a `MultiIndex` which can be read back (GH151, thanks to Skipper Seabold)
• Wrote fast time series merging / joining methods in Cython. Will be integrated later into `DataFrame.join` and related functions
• Added `ignore_index` option to `DataFrame.append` for combining unindexed records stored in a `DataFrame`
35.24.2 Improvements to existing features

- Some speed enhancements with internal Index type-checking function
- \texttt{DataFrame.rename} has a new \texttt{copy} parameter which can rename a DataFrame in place
- Enable unstacking by level name (GH142)
- Enable sortlevel to work by level name (GH141)
- \texttt{read_csv} can automatically “sniff” other kinds of delimiters using \texttt{csv.Sniffer} (GH146)
- Improved speed of unit test suite by about 40%
- Exception will not be raised calling \texttt{HDFStore.remove} on non-existent node with where clause
- Optimized \texttt{_ensure_index} function resulting in performance savings in type-checking Index objects

35.24.3 API Changes

35.24.4 Bug Fixes

- Fixed DataFrame constructor bug causing downstream problems (e.g. \texttt{.copy()} failing) when passing a Series as the values along with a column name and index
- Fixed single-key groupby on DataFrame with \texttt{as_index=False} (GH160)
- \texttt{Series.shift} was failing on integer Series (GH154)
- \texttt{unstack} methods were producing incorrect output in the case of duplicate hierarchical labels. An exception will now be raised (GH147)
- Calling \texttt{count} with level argument caused reduceat failure or segfault in earlier NumPy (GH169)
- Fixed \texttt{DataFrame.corrwith} to automatically exclude non-numeric data (GH GH144)
- Unicode handling bug fixes in \texttt{DataFrame.to_string} (GH138)
- Excluding OLS degenerate unit test case that was causing platform specific failure (GH149)
- Skip blosc-dependent unit tests for PyTables < 2.2 (GH137)
- Calling \texttt{copy} on \texttt{DateRange} did not copy over attributes to the new object (GH168)
- Fix bug in \texttt{HDFStore} in which Panel data could be appended to a Table with different item order, thus resulting in an incorrect result read back

35.24.5 Thanks

- Yaroslav Halchenko
- Jeff Reback
- Skipper Seabold
- Dan Lovell
- Nick Pentreath
35.25 pandas 0.4.0

Release date: 9/12/2011

35.25.1 New Features

- `pandas.core.sparse` module: “Sparse” (mostly-NA, or some other fill value) versions of `Series`, `DataFrame`, and `Panel`. For low-density data, this will result in significant performance boosts, and smaller memory footprint. Added `to_sparse` methods to `Series`, `DataFrame`, and `Panel`. See online documentation for more on these.

- Fancy indexing operator on `Series` / `DataFrame`, e.g. via `.ix` operator. Both getting and setting of values is supported; however, setting values will only currently work on homogeneously-typed `DataFrame` objects. Things like:
 - `series.ix[[d1, d2, d3]]`
 - `frame.ix[5:10, ['C', 'B', 'A']`, `frame.ix[5:10, 'A':'C']`
 - `frame.ix[date1:date2]`

- Significantly enhanced `groupby` functionality
 - Can `groupby` multiple keys, e.g. `df.groupby(['key1', 'key2'])`. Iteration with multiple groupings produces a flattened tuple
 - “Nuisance” columns (non-aggregatable) will automatically be excluded from `DataFrame` aggregation operations
 - Added automatic “dispatching to `Series` / `DataFrame` methods to more easily invoke methods on groups. e.g. `s.groupby(crit).std()` will work even though `std` is not implemented on the `GroupBy` class

- Hierarchical / multi-level indexing
 - New the `MultiIndex` class. Integrated `MultiIndex` into `Series` and `DataFrame` fancy indexing, slicing, `__getitem__` and `__setitem`, reindexing, etc. Added `level` keyword argument to `groupby` to enable grouping by a level of a `MultiIndex`

- New data reshaping functions: `stack` and `unstack` on `DataFrame` and `Series`
 - Integrate with `MultiIndex` to enable sophisticated reshaping of data

- `Index` objects (labels for axes) are now capable of holding tuples

- `Series.describe`, `DataFrame.describe`: produces an R-like table of summary statistics about each data column

- `DataFrame.quantile`, `Series.quantile` for computing sample quantiles of data across requested axis

- Added general `DataFrame.dropna` method to replace `dropIncompleteRows` and `dropEmptyRows`, deprecated those.

- `Series` arithmetic methods with optional `fill_value` for missing data, e.g. `a.add(b, fill_value=0)`. If a location is missing for both it will still be missing in the result though.

- `fill_value` option has been added to `DataFrame.{add, mul, sub, div}` methods similar to `Series`

- Boolean indexing with `DataFrame` objects: `data[data > 0.1] = 0.1` or `data[data> other] = 1.`

- `pytz / tzinfo` support in `DateRange`
 - `tz_localize`, `tz_normalize`, and `tz_validate` methods added

- Added `ExcelFile` class to `pandas.io.parsers` for parsing multiple sheets out of a single Excel 2003 document
• GroupBy aggregations can now optionally broadcast, e.g. produce an object of the same size with the aggregated value propagated
• Added select function in all data structures: reindex axis based on arbitrary criterion (function returning boolean value), e.g. frame.select(lambda x: ‘foo’ in x, axis=1)
• DataFrame.consolidate method, API function relating to redesigned internals
• DataFrame.insert method for inserting column at a specified location rather than the default __setitem__ behavior (which puts it at the end)
• HDFStore class in pandas.io.pytables has been largely rewritten using patches from Jeff Reback from others. It now supports mixed-type DataFrame and Series data and can store Panel objects. It also has the option to query DataFrame and Panel data. Loading data from legacy HDFStore files is supported explicitly in the code
• Added set_printoptions method to modify appearance of DataFrame tabular output
• rolling_quantile functions; a moving version of Series.quantile / DataFrame.quantile
• Generic rolling_apply moving window function
• New drop method added to Series, DataFrame, etc. which can drop a set of labels from an axis, producing a new object
• reindex methods now sport a copy option so that data is not forced to be copied then the resulting object is indexed the same
• Added sort_index methods to Series and Panel. Renamed DataFrame.sort to sort_index. Leaving DataFrame.sort for now.
• Added skipna option to statistical instance methods on all the data structures
• pandas.io.data module providing a consistent interface for reading time series data from several different sources

35.25.2 Improvements to existing features

• The 2-dimensional DataFrame and DataMatrix classes have been extensively redesigned internally into a single class DataFrame, preserving where possible their optimal performance characteristics. This should reduce confusion from users about which class to use.
 – Note that under the hood there is a new essentially “lazy evaluation” scheme within respect to adding columns to DataFrame. During some operations, like-typed blocks will be “consolidated” but not before.
• DataFrame accessing columns repeatedly is now significantly faster than DataMatrix used to be in 0.3.0 due to an internal Series caching mechanism (which are all views on the underlying data)
• Column ordering for mixed type data is now completely consistent in DataFrame. In prior releases, there was inconsistent column ordering in DataMatrix
• Improved console / string formatting of DataMatrix with negative numbers
• Improved tabular data parsing functions, read_table and read_csv:
 – Added skiprows and na_values arguments to pandas.io.parsers functions for more flexible IO
 – parseCSV / read_csv functions and others in pandas.io.parsers now can take a list of custom NA values, and also a list of rows to skip
• Can slice DataFrame and get a view of the data (when homogeneously typed), e.g. frame.xs(idx, copy=False) or frame.ix[idx]
• Many speed optimizations throughout Series and DataFrame
• Eager evaluation of groups when calling `groupby` functions, so if there is an exception with the grouping function it will raised immediately versus sometime later on when the groups are needed.

• `datetools.WeekOfMonth` offset can be parameterized with `n` different than 1 or -1.

• Statistical methods on DataFrame like `mean`, `std`, `var`, `skew` will now ignore non-numerical data. Before a not very useful error message was generated. A flag `numeric_only` has been added to `DataFrame.sum` and `DataFrame.count` to enable this behavior in those methods if so desired (disabled by default).

• `DataFrame.pivot` generalized to enable pivoting multiple columns into a `DataFrame` with hierarchical columns.

• `DataFrame` constructor can accept structured / record arrays.

• `Panel` constructor can accept a dict of DataFrame-like objects. Do not need to use `from_dict` anymore (from_dict is there to stay, though).

35.25.3 API Changes

• The `DataMatrix` variable now refers to `DataFrame`, will be removed within two releases.

• `WidePanel` is now known as `Panel`. The `WidePanel` variable in the pandas namespace now refers to the renamed `Panel` class.

• `LongPanel` and `Panel / WidePanel` now no longer have a common subclass. `LongPanel` is now a subclass of `DataFrame` having a number of additional methods and a hierarchical index instead of the old `LongPanelIndex` object, which has been removed. Legacy `LongPanel` pickles may not load properly.

• Cython is now required to build `pandas` from a development branch. This was done to avoid continuing to check in cythonized C files into source control. Builds from released source distributions will not require Cython.

• Cython code has been moved up to a top level `pandas/src` directory. Cython extension modules have been renamed and promoted from the `lib` subpackage to the top level, i.e.

 - `pandas.lib.tseries -> pandas._tseries`
 - `pandas.lib.sparse -> pandas._sparse`

• `DataFrame` pickling format has changed. Backwards compatibility for legacy pickles is provided, but it’s recommended to consider PyTables-based `HDFStore` for storing data with a longer expected shelf life.

• A `copy` argument has been added to the `DataFrame` constructor to avoid unnecessary copying of data. Data is no longer copied by default when passed into the constructor.

• Handling of boolean dtype in `DataFrame` has been improved to support storage of boolean data with `NA` / `NaN` values. Before it was being converted to float64 so this should not (in theory) cause API breakage.

• To optimize performance, Index objects now only check that their labels are unique when uniqueness matters (i.e. when someone goes to perform a lookup). This is a potentially dangerous tradeoff, but will lead to much better performance in many places (like groupby).

• Boolean indexing using Series must now have the same indices (labels).

• Backwards compatibility support for begin/end/nPeriods keyword arguments in DateRange class has been removed.

• More intuitive / shorter filling aliases `ffill` (for `pad`) and `bfill` (for `backfill`) have been added to the functions that use them: `reindex`, `asfreq`, `fillna`.

• `pandas.core.mixins` code moved to `pandas.core.generic`.

• `buffer` keyword arguments (e.g. `DataFrame.toString`) renamed to `buf` to avoid using Python built-in name.

• `DataFrame.rows()` removed (use `DataFrame.index`).
• Added deprecation warning to DataFrame.cols(), to be removed in next release

• DataFrame deprecations and de-camelCasing: merge, asMatrix, toDataMatrix, _firstTimeWithValue, _lastTimeWithValue, toRecords, fromRecords, tgroupby, toString

• pandas.io.parsers method deprecations
 – parseCSV is now read_csv and keyword arguments have been de-camelCased
 – parseText is now read_table
 – parseExcel is replaced by the ExcelFile class and its parse method

• fillMethod arguments (deprecated in prior release) removed, should be replaced with method

• Series.fill, DataFrame.fill, and Panel.fill removed, use fillna instead

• groupby functions now exclude NA / NaN values from the list of groups. This matches R behavior with NAs in factors e.g. with the tapply function

• Removed parseText, parseCSV and parseExcel from pandas namespace

• Series.combineFunc renamed to Series.combine and made a bit more general with a fill_value keyword argument defaulting to NaN

• Removed pandas.core.pytools module. Code has been moved to pandas.core.common

• Tacked on groupName attribute for groups in GroupBy renamed to name

• Panel/LongPanel dims attribute renamed to shape to be more conformant

• Slicing a Series returns a view now

• More Series deprecations / renaming: toCSV to to_csv, asOf to asof, merge to map, applymap to apply, toDict to to_dict, combineFirst to combine_first. Will print FutureWarning.

• DataFrame.to_csv does not write an “index” column label by default anymore since the output file can be read back without it. However, there is a new index_label argument. So you can do index_label='index' to emulate the old behavior

• datetools.Week argument renamed from dayOfWeek to weekday

• timeRule argument in shift has been deprecated in favor of using the offset argument for everything. So you can still pass a time rule string to offset

• Added optional encoding argument to read_csv, read_table, to_csv, from_csv to handle unicode in python 2.x

35.25.4 Bug Fixes

• Column ordering in pandas.io.parsers.parseCSV will match CSV in the presence of mixed-type data

• Fixed handling of Excel 2003 dates in pandas.io.parsers

• DateRange caching was happening with high resolution DateOffset objects, e.g. DateOffset(seconds=1). This has been fixed

• Fixed __truediv__ issue in DataFrame

• Fixed DataFrame.toCSV bug preventing IO round trips in some cases

• Fixed bug in Series.plot causing matplotlib to barf in exceptional cases

• Disabled Index objects from being hashable, like ndarrays

• Added __ne__ implementation to Index so that operations like ts[ts != idx] will work

• Added __ne__ implementation to DataFrame
• Bug / unintuitive result when calling `fillna` on unordered labels
• Bug calling `sum` on boolean DataFrame
• Bug fix when creating a DataFrame from a dict with scalar values
• Series.{sum, mean, std, ...} now return NA/NaN when the whole Series is NA
• NumPy 1.4 through 1.6 compatibility fixes
• Fixed bug in bias correction in `rolling_cov`, was affecting `rolling_corr` too
• R-square value was incorrect in the presence of fixed and time effects in the `PanelOLS` classes
• `HDFStore` can handle duplicates in table format, will take

35.25.5 Thanks

• Joon Ro
• Michael Pennington
• Chris Uga
• Chris Withers
• Jeff Reback
• Ted Square
• Craig Austin
• William Ferreira
• Daniel Fortunov
• Tony Roberts
• Martin Felder
• John Marino
• Tim McNamara
• Justin Berka
• Dieter Vandenbussche
• Shane Conway
• Skipper Seabold
• Chris Jordan-Squire

35.26 pandas 0.3.0

Release date: February 20, 2011
35.26.1 New features

- `corrwith` function to compute column- or row-wise correlations between two DataFrame objects
- Can boolean-index DataFrame objects, e.g. \(df[df > 2] = 2, px[px > last_px] = 0 \)
- Added comparison magic methods (_lt_, _gt_, etc.)
- Flexible explicit arithmetic methods (add, mul, sub, div, etc.)
- Added `reindex_like` method
- Added `reindex_like` method to WidePanel
- Convenience functions for accessing SQL-like databases in `pandas.io.sql` module
- Added (still experimental) HDFStore class for storing pandas data structures using HDF5 / PyTables in `pandas.io.pytables` module
- Added WeekOfMonth date offset
- `pandas.rpy` (experimental) module created, provide some interfacing / conversion between rpy2 and pandas

35.26.2 Improvements to existing features

- Unit test coverage: 100% line coverage of core data structures
- Speed enhancement to rolling_{median, max, min}\}
- Column ordering between DataFrame and DataMatrix is now consistent: before DataFrame would not respect column order
- Improved \{Series, DataFrame\}.plot methods to be more flexible (can pass matplotlib Axis arguments, plot DataFrame columns in multiple subplots, etc.)

35.26.3 API Changes

- Exponentially-weighted moment functions in `pandas.stats.moments` have a more consistent API and accept a _min_periods argument like their regular moving counterparts.
- _fillMethod_ argument in Series, DataFrame changed to `method`, `FutureWarning` added.
- _fill_ method in Series, DataFrame/DataMatrix, WidePanel renamed to `fillna`, `FutureWarning` added to fill
- Renamed `DataFrame.getXS` to `xs`, `FutureWarning` added
- Removed `cap` and `floor` functions from DataFrame, renamed to `clip_upper` and `clip_lower` for consistency with NumPy

35.26.4 Bug Fixes

- Fixed bug in IndexableSkiplist Cython code that was breaking rolling_max function
- Numerous numpy.int64-related indexing fixes
- Several NumPy 1.4.0 NaN-handling fixes
- Bug fixes to pandas.io.parsers.parseCSV
- Fixed `DateRange` caching issue with unusual date offsets
- Fixed bug in `DateRange.union`
• Fixed corner case in *IndexableSkipList* implementation
pandas, 1