pandas.CategoricalIndex¶
- class pandas.CategoricalIndex¶
- Immutable Index implementing an ordered, sliceable set. CategoricalIndex represents a sparsely populated Index with an underlying Categorical. - New in version 0.16.1. - Parameters: - data : array-like or Categorical, (1-dimensional) - categories : optional, array-like - categories for the CategoricalIndex - ordered : boolean, - designating if the categories are ordered - copy : bool - Make a copy of input ndarray - name : object - Name to be stored in the index - Attributes - T - return the transpose, which is by definition self - asi8 - base - return the base object if the memory of the underlying data is - categories - codes - data - return the data pointer of the underlying data - dtype - dtype_str - flags - has_duplicates - hasnans - inferred_type - is_all_dates - is_monotonic - alias for is_monotonic_increasing (deprecated) - is_monotonic_decreasing - return if the index is monotonic decreasing (only equal or - is_monotonic_increasing - return if the index is monotonic increasing (only equal or - is_unique - itemsize - return the size of the dtype of the item of the underlying data - name - names - nbytes - return the number of bytes in the underlying data - ndim - return the number of dimensions of the underlying data, - nlevels - ordered - shape - return a tuple of the shape of the underlying data - size - return the number of elements in the underlying data - strides - return the strides of the underlying data - values - return the underlying data, which is a Categorical - Methods - add_categories(*args, **kwargs) - Add new categories. - all([other]) - any([other]) - append(other) - Append a collection of CategoricalIndex options together - argmax([axis]) - return a ndarray of the maximum argument indexer - argmin([axis]) - return a ndarray of the minimum argument indexer - argsort(*args, **kwargs) - as_ordered(*args, **kwargs) - Sets the Categorical to be ordered - as_unordered(*args, **kwargs) - Sets the Categorical to be unordered - asof(label) - For a sorted index, return the most recent label up to and including the passed label. - asof_locs(where, mask) - where : array of timestamps - astype(dtype) - copy([name, deep, dtype]) - Make a copy of this object. - delete(loc) - Make new Index with passed location(-s) deleted - diff(*args, **kwargs) - difference(other) - Return a new Index with elements from the index that are not in other. - drop(labels[, errors]) - Make new Index with passed list of labels deleted - drop_duplicates(*args, **kwargs) - Return Index with duplicate values removed - duplicated(*args, **kwargs) - Return boolean np.array denoting duplicate values - equals(other) - Determines if two CategorialIndex objects contain the same elements. - factorize([sort, na_sentinel]) - Encode the object as an enumerated type or categorical variable - fillna(value[, downcast]) - Fill NA/NaN values with the specified value - format([name, formatter]) - Render a string representation of the Index - get_duplicates() - get_indexer(target[, method, limit, tolerance]) - Compute indexer and mask for new index given the current index. - get_indexer_for(target, **kwargs) - guaranteed return of an indexer even when non-unique - get_indexer_non_unique(target) - this is the same for a CategoricalIndex for get_indexer; the API - get_level_values(level) - Return vector of label values for requested level, equal to the length - get_loc(key[, method]) - Get integer location for requested label - get_slice_bound(label, side, kind) - Calculate slice bound that corresponds to given label. - get_value(series, key) - Fast lookup of value from 1-dimensional ndarray. - get_values() - return the underlying data as an ndarray - groupby(to_groupby) - Group the index labels by a given array of values. - holds_integer() - identical(other) - Similar to equals, but check that other comparable attributes are - insert(loc, item) - Make new Index inserting new item at location. - intersection(other) - Form the intersection of two Index objects. - is_(other) - More flexible, faster check like is but that works through views - is_boolean() - is_categorical() - is_floating() - is_integer() - is_lexsorted_for_tuple(tup) - is_mixed() - is_numeric() - is_object() - is_type_compatible(kind) - isin(values[, level]) - Compute boolean array of whether each index value is found in the passed set of values. - item() - return the first element of the underlying data as a python - join(other[, how, level, return_indexers]) - this is an internal non-public method - map(mapper) - max(*args, **kwargs) - The maximum value of the object. - memory_usage([deep]) - Memory usage of my values - min(*args, **kwargs) - The minimum value of the object. - nunique([dropna]) - Return number of unique elements in the object. - order([return_indexer, ascending]) - Return sorted copy of Index - putmask(mask, value) - return a new Index of the values set with the mask - ravel([order]) - return an ndarray of the flattened values of the underlying data - reindex(target[, method, level, limit, ...]) - Create index with target’s values (move/add/delete values as necessary) - remove_categories(*args, **kwargs) - Removes the specified categories. - remove_unused_categories(*args, **kwargs) - Removes categories which are not used. - rename(name[, inplace]) - Set new names on index. - rename_categories(*args, **kwargs) - Renames categories. - reorder_categories(*args, **kwargs) - Reorders categories as specified in new_categories. - repeat(n) - return a new Index of the values repeated n times - searchsorted(key[, side]) - np.ndarray searchsorted compat - set_categories(*args, **kwargs) - Sets the categories to the specified new_categories. - set_names(names[, level, inplace]) - Set new names on index. - set_value(arr, key, value) - Fast lookup of value from 1-dimensional ndarray. - shift([periods, freq]) - Shift Index containing datetime objects by input number of periods and - slice_indexer([start, end, step, kind]) - For an ordered Index, compute the slice indexer for input labels and - slice_locs([start, end, step, kind]) - Compute slice locations for input labels. - sort(*args, **kwargs) - sort_values([return_indexer, ascending]) - Return sorted copy of Index - sortlevel([level, ascending, sort_remaining]) - For internal compatibility with with the Index API - str - alias of StringMethods - summary([name]) - sym_diff(other[, result_name]) - Compute the sorted symmetric difference of two Index objects. - take(indexer[, axis, allow_fill, fill_value]) - For internal compatibility with numpy arrays. - to_datetime([dayfirst]) - For an Index containing strings or datetime.datetime objects, attempt - to_native_types([slicer]) - slice and dice then format - to_series(**kwargs) - Create a Series with both index and values equal to the index keys - tolist() - return a list of the Index values - transpose() - return the transpose, which is by definition self - union(other) - Form the union of two Index objects and sorts if possible. - unique() - Return array of unique values in the object. - value_counts([normalize, sort, ascending, ...]) - Returns object containing counts of unique values. - view([cls])