Table Of Contents

Search

Enter search terms or a module, class or function name.

pandas.core.groupby.DataFrameGroupBy.quantile

DataFrameGroupBy.quantile(q=0.5, axis=0, numeric_only=True, interpolation='linear')

Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters:

q : float or array-like, default 0.5 (50% quantile)

0 <= q <= 1, the quantile(s) to compute

axis : {0, 1, ‘index’, ‘columns’} (default 0)

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}

New in version 0.18.0.

This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:

  • linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
  • lower: i.
  • higher: j.
  • nearest: i or j whichever is nearest.
  • midpoint: (i + j) / 2.
Returns:

quantiles : Series or DataFrame

  • If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles.
  • If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Examples

>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
                   columns=['a', 'b'])
>>> df.quantile(.1)
a    1.3
b    3.7
dtype: float64
>>> df.quantile([.1, .5])
       a     b
0.1  1.3   3.7
0.5  2.5  55.0