pandas.tseries.resample.Resampler.apply¶
- Resampler.apply(arg, *args, **kwargs)¶
Apply aggregation function or functions to resampled groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function
Parameters: func_or_funcs : function or list / dict of functions
List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict
Returns: Series or DataFrame
See also
Notes
agg is an alias for aggregate. Use it.
Examples
>>> s = Series([1,2,3,4,5], index=pd.date_range('20130101', periods=5,freq='s')) 2013-01-01 00:00:00 1 2013-01-01 00:00:01 2 2013-01-01 00:00:02 3 2013-01-01 00:00:03 4 2013-01-01 00:00:04 5 Freq: S, dtype: int64
>>> r = s.resample('2s') DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0]
>>> r.agg(np.sum) 2013-01-01 00:00:00 3 2013-01-01 00:00:02 7 2013-01-01 00:00:04 5 Freq: 2S, dtype: int64
>>> r.agg(['sum','mean','max']) sum mean max 2013-01-01 00:00:00 3 1.5 2 2013-01-01 00:00:02 7 3.5 4 2013-01-01 00:00:04 5 5.0 5
>>> r.agg({'result' : lambda x: x.mean() / x.std(), 'total' : np.sum}) total result 2013-01-01 00:00:00 3 2.121320 2013-01-01 00:00:02 7 4.949747 2013-01-01 00:00:04 5 NaN