pandas.DataFrame.from_csv¶
- 
classmethod DataFrame.from_csv(path, header=0, sep=', ', index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)[source]¶
- Read CSV file (DISCOURAGED, please use - pandas.read_csv()instead).- It is preferable to use the more powerful - pandas.read_csv()for most general purposes, but- from_csvmakes for an easy roundtrip to and from a file (the exact counterpart of- to_csv), especially with a DataFrame of time series data.- This method only differs from the preferred - pandas.read_csv()in some defaults:- index_col is 0instead ofNone(take first column as index by default)
- parse_dates is Trueinstead ofFalse(try parsing the index as datetime by default)
 - So a - pd.DataFrame.from_csv(path)can be replaced by- pd.read_csv(path, index_col=0, parse_dates=True).- Parameters: - path : string file path or file handle / StringIO - header : int, default 0 - Row to use as header (skip prior rows) - sep : string, default ‘,’ - Field delimiter - index_col : int or sequence, default 0 - Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table - parse_dates : boolean, default True - Parse dates. Different default from read_table - tupleize_cols : boolean, default False - write multi_index columns as a list of tuples (if True) or new (expanded format) if False) - infer_datetime_format: boolean, default False - If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. - Returns: - y : DataFrame - See also 
- index_col is