pandas.io.gbq.to_gbq¶
-
pandas.io.gbq.
to_gbq
(dataframe, destination_table, project_id, chunksize=10000, verbose=True, reauth=False, if_exists='fail', private_key=None)[source]¶ Write a DataFrame to a Google BigQuery table.
THIS IS AN EXPERIMENTAL LIBRARY
The main method a user calls to export pandas DataFrame contents to Google BigQuery table.
Google BigQuery API Client Library v2 for Python is used. Documentation is available at https://developers.google.com/api-client-library/python/apis/bigquery/v2
Authentication to the Google BigQuery service is via OAuth 2.0.
If “private_key” is not provided:
By default “application default credentials” are used.
New in version 0.19.0.
If default application credentials are not found or are restrictive, user account credentials are used. In this case, you will be asked to grant permissions for product name ‘pandas GBQ’.
If “private_key” is provided:
Service account credentials will be used to authenticate.
Parameters: dataframe : DataFrame
DataFrame to be written
destination_table : string
Name of table to be written, in the form ‘dataset.tablename’
project_id : str
Google BigQuery Account project ID.
chunksize : int (default 10000)
Number of rows to be inserted in each chunk from the dataframe.
verbose : boolean (default True)
Show percentage complete
reauth : boolean (default False)
Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.
if_exists : {‘fail’, ‘replace’, ‘append’}, default ‘fail’
‘fail’: If table exists, do nothing. ‘replace’: If table exists, drop it, recreate it, and insert data. ‘append’: If table exists, insert data. Create if does not exist.
private_key : str (optional)
Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host)