pandas: powerful Python data analysis toolkit

Release 0.19.2

Wes McKinney & PyData Development Team

Dec 24, 2016
What's New

1. **v0.19.2 (December 24, 2016)**
 - **Enhancements**
 - **Performance Improvements**
 - **Bug Fixes**

2. **v0.19.1 (November 3, 2016)**
 - **Performance Improvements**
 - **Bug Fixes**

3. **v0.19.0 (October 2, 2016)**
 - **New features**
 - `merge_asof` for asof-style time-series joining
 - `.rolling()` is now time-series aware
 - `read_csv` has improved support for duplicate column names
 - `read_csv` supports parsing `Categorical` directly
 - Categorical Concatenation
 - Semi-Month Offsets
 - New Index methods
 - Google BigQuery Enhancements
 - Fine-grained numpy erstat
 - `get_dummies` now returns integer dtypes
 - Downcast values to smallest possible dtype in `.to_numeric`
 - pandas development API
 - Other enhancements
 - **API changes**
 - `Series.tolist()` will now return Python types
 - `Series` operators for different indexes
 - `Series` type promotion on assignment
 - `.to_datetime()` changes
 - Merging changes
 - `.describe()` changes
 - Period changes
 - Index `+ / -` no longer used for set operations
 - `Index.difference` and `.symmetric_difference` changes
 - `Index.unique` consistently returns `Index`
 - `MultiIndex` constructors, `groupby` and `set_index` preserve categorical dtypes
 - `read_csv` will progressively enumerate chunks
 - Sparse Changes
 - Indexer dtype changes
 - Other API Changes
 - **Deprecations**
1.3.4 Removal of prior version deprecations/changes ... 39
1.3.5 Performance Improvements .. 40
1.3.6 Bug Fixes .. 40
1.4 v0.18.1 (May 3, 2016) ... 46
1.4.1 New features .. 47
 Custom Business Hour .. 47
 .groupby(...) syntax with window and resample operations 47
 Method chaining improvements .. 49
 Partial string indexing on `DateTimeIndex` when part of a `MultiIndex` 51
 Assembling Datetimes .. 52
 Other Enhancements .. 53
1.4.2 Sparse changes ... 54
1.4.3 API changes .. 55
 .groupby(...).nth() changes .. 55
 numpy function compatibility .. 57
 Using .apply on groupby resampling .. 57
 Changes in `read_csv` exceptions ... 58
 `to_datetime` error changes .. 59
 Other API changes .. 59
 Deprecations .. 60
1.4.4 Performance Improvements ... 60
1.4.5 Bug Fixes .. 60
1.5 v0.18.0 (March 13, 2016) .. 63
1.5.1 New features .. 65
 Window functions are now methods .. 65
 Changes to rename ... 67
 Range Index .. 67
 Changes to str.extract .. 68
 Addition of str.extractall .. 69
 Changes to str.cat .. 70
 Datetimelike rounding .. 70
 Formatting of Integers in FloatIndex .. 72
 Changes to dtype assignment behaviors ... 72
 to_xarray ... 74
 Latex Representation .. 74
 `pd.read_sas()` changes .. 75
 Other enhancements ... 75
1.5.2 Backwards incompatible API changes ... 75
 NaT and Timedelta operations .. 76
 Changes to msgpack .. 77
 Signature change for .rank .. 77
 Bug in QuarterBegin with n=0 ... 78
 Resample API .. 79
 Changes to eval .. 83
 Other API Changes .. 85
 Deprecations .. 86
 Removal of deprecated float indexers .. 87
 Removal of prior version deprecations/changes .. 90
1.5.3 Performance Improvements .. 90
1.5.4 Bug Fixes .. 90
1.6 v0.17.1 (November 21, 2015) ... 93
1.6.1 New features .. 94
 Conditional HTML Formatting .. 94
1.6.2 Enhancements ... 94
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.23</td>
<td>v0.9.0 (October 7, 2012)</td>
<td>API changes, New features, Bug Fixes</td>
</tr>
<tr>
<td>1.22</td>
<td>v0.9.1 (November 14, 2012)</td>
<td>New features, API changes</td>
</tr>
<tr>
<td>1.21</td>
<td>v0.10.0 (December 17, 2012)</td>
<td>File parsing new features, API changes, New features, Bug Fixes</td>
</tr>
<tr>
<td>1.20</td>
<td>v0.10.1 (January 22, 2013)</td>
<td>API changes, New features, HDFStore</td>
</tr>
<tr>
<td>1.19</td>
<td>v0.11.0 (April 22, 2013)</td>
<td>Selection Choices, Selection Deprecations, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.18</td>
<td>v0.12.0 (July 24, 2013)</td>
<td>API changes, I/O Enhancements, Experimental</td>
</tr>
<tr>
<td>1.17</td>
<td>v0.13.0 (January 3, 2014)</td>
<td>API changes, Prior Version Deprecations/Changes, Indexing API Changes, Float64Index API Change, HDFStore API Changes, DataFrame repr Changes, Enhancements, Experimental</td>
</tr>
<tr>
<td>1.16</td>
<td>v0.13.1 (February 3, 2014)</td>
<td>Output Formatting Enhancements, API changes, Prior Version Deprecations/Changes, Deprecations, Enhancements, Performance, Experimental, Bug Fixes</td>
</tr>
<tr>
<td>1.15</td>
<td>v0.14.0 (August 18, 2013)</td>
<td>Performance, Experimental, Bug Fixes</td>
</tr>
<tr>
<td>1.14</td>
<td>v0.15.0 (July 24, 2013)</td>
<td>API changes, Selection Deprecations, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.13</td>
<td>v0.16.0 (July 24, 2013)</td>
<td>API changes, Selection choices, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.12</td>
<td>v0.17.0 (July 24, 2013)</td>
<td>API changes, Selection Deprecations, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.11</td>
<td>v0.18.0 (July 24, 2013)</td>
<td>API changes, Selection choices, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.10</td>
<td>v0.19.0 (July 24, 2013)</td>
<td>API changes, Selection Deprecations, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.9</td>
<td>v0.20.0 (July 24, 2013)</td>
<td>API changes, Selection choices, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.8</td>
<td>v0.21.0 (July 24, 2013)</td>
<td>API changes, Selection Deprecations, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.7</td>
<td>v0.22.0 (July 24, 2013)</td>
<td>API changes, Selection choices, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.6</td>
<td>v0.23.0 (July 24, 2013)</td>
<td>API changes, Selection Deprecations, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.5</td>
<td>v0.24.0 (July 24, 2013)</td>
<td>API changes, Selection choices, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.4</td>
<td>v0.25.0 (July 24, 2013)</td>
<td>API changes, Selection Deprecations, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.3</td>
<td>v0.26.0 (July 24, 2013)</td>
<td>API changes, Selection choices, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.2</td>
<td>v0.27.0 (July 24, 2013)</td>
<td>API changes, Selection Deprecations, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
<tr>
<td>1.1</td>
<td>v0.28.0 (July 24, 2013)</td>
<td>API changes, Selection choices, Dtype Conversion, Dtype Gotchas, Datetimes Conversion, API changes, Enhancements</td>
</tr>
</tbody>
</table>

v
8.5 Grouping ... 393
 8.5.1 Expanding Data .. 398
 8.5.2 Splitting .. 398
 8.5.3 Pivot ... 398
 8.5.4 Apply ... 400
8.6 Timeseries ... 402
 8.6.1 Resampling ... 403
8.7 Merge ... 403
8.8 Plotting ... 404
8.9 Data In/Out .. 405
 8.9.1 CSV ... 405
 8.9.2 SQL ... 408
 8.9.3 Excel .. 408
 8.9.4 HTML .. 408
 8.9.5 HDFStore ... 408
 8.9.6 Binary Files ... 409
8.10 Computation .. 410
8.11 Timedeltas ... 410
8.12 Aliasing Axis Names .. 412
8.13 Creating Example Data ... 412
9 Intro to Data Structures .. 415
 9.1 Series ... 415
 9.1.1 Series is ndarray-like ... 417
 9.1.2 Series is dict-like ... 417
 9.1.3 Vectorized operations and label alignment with Series .. 418
 9.1.4 Name attribute .. 419
 9.2 DataFrame .. 420
 9.2.1 From dict of Series or dicts 420
 9.2.2 From dict of ndarrays / lists 421
 9.2.3 From structured or record array 421
 9.2.4 From a list of dicts ... 422
 9.2.5 From a dict of tuples ... 422
 9.2.6 From a Series .. 423
 9.2.7 Alternate Constructors 423
 9.2.8 Column selection, addition, deletion 424
 9.2.9 Assigning New Columns in Method Chains 425
 9.2.10 Indexing / Selection ... 427
 9.2.11 Data alignment and arithmetic 428
 9.2.12 Transposing .. 430
 9.2.13 DataFrame interoperability with NumPy functions 431
 9.2.14 Console display .. 432
 9.2.15 DataFrame column attribute access and IPython completion 434
 9.3 Panel ... 435
 9.3.1 From 3D ndarray with optional axis labels 435
 9.3.2 From dict of DataFrame objects 435
 9.3.3 From DataFrame using to_panel method 437
 9.3.4 Item selection / addition / deletion 437
 9.3.5 Transposing .. 437
 9.3.6 Indexing / Selection ... 438
 9.3.7 Squeezing ... 438
 9.3.8 Conversion to DataFrame 439
 9.4 Panel4D and PanelND (Depreciated) 439
10 Essential Basic Functionality

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Head and Tail</td>
<td>441</td>
</tr>
<tr>
<td>10.2</td>
<td>Attributes and the raw ndarray(s)</td>
<td>442</td>
</tr>
<tr>
<td>10.3</td>
<td>Accelerated operations</td>
<td>443</td>
</tr>
<tr>
<td>10.4</td>
<td>Flexible binary operations</td>
<td>443</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Matching / broadcasting behavior</td>
<td>443</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Missing data / operations with fill values</td>
<td>447</td>
</tr>
<tr>
<td>10.4.3</td>
<td>Flexible Comparisons</td>
<td>448</td>
</tr>
<tr>
<td>10.4.4</td>
<td>Boolean Reductions</td>
<td>448</td>
</tr>
<tr>
<td>10.4.5</td>
<td>Comparing if objects are equivalent</td>
<td>449</td>
</tr>
<tr>
<td>10.4.6</td>
<td>Comparing array-like objects</td>
<td>450</td>
</tr>
<tr>
<td>10.4.7</td>
<td>Combining overlapping data sets</td>
<td>451</td>
</tr>
<tr>
<td>10.4.8</td>
<td>General DataFrame Combine</td>
<td>452</td>
</tr>
<tr>
<td>10.5</td>
<td>Descriptive statistics</td>
<td>452</td>
</tr>
<tr>
<td>10.5.1</td>
<td>Summarizing data: describe</td>
<td>454</td>
</tr>
<tr>
<td>10.5.2</td>
<td>Index of Min/Max Values</td>
<td>457</td>
</tr>
<tr>
<td>10.5.3</td>
<td>Value counts (histogramming) / Mode</td>
<td>458</td>
</tr>
<tr>
<td>10.5.4</td>
<td>Discretization and quantiling</td>
<td>459</td>
</tr>
<tr>
<td>10.6</td>
<td>Function application</td>
<td>460</td>
</tr>
<tr>
<td>10.6.1</td>
<td>Tablewise Function Application</td>
<td>460</td>
</tr>
<tr>
<td>10.6.2</td>
<td>Row or Column-wise Function Application</td>
<td>461</td>
</tr>
<tr>
<td>10.6.3</td>
<td>Applying elementwise Python functions</td>
<td>463</td>
</tr>
<tr>
<td>10.6.4</td>
<td>Applying with a Panel</td>
<td>464</td>
</tr>
<tr>
<td>10.7</td>
<td>Reindexing and altering labels</td>
<td>467</td>
</tr>
<tr>
<td>10.7.1</td>
<td>Reindexing to align with another object</td>
<td>468</td>
</tr>
<tr>
<td>10.7.2</td>
<td>Aligning objects with each other with align</td>
<td>469</td>
</tr>
<tr>
<td>10.7.3</td>
<td>Filling while reindexing</td>
<td>471</td>
</tr>
<tr>
<td>10.7.4</td>
<td>Limits on filling while reindexing</td>
<td>472</td>
</tr>
<tr>
<td>10.7.5</td>
<td>Dropping labels from an axis</td>
<td>473</td>
</tr>
<tr>
<td>10.7.6</td>
<td>Renaming / mapping labels</td>
<td>474</td>
</tr>
<tr>
<td>10.8</td>
<td>Iteration</td>
<td>475</td>
</tr>
<tr>
<td>10.8.1</td>
<td>items</td>
<td>476</td>
</tr>
<tr>
<td>10.8.2</td>
<td>iterrows</td>
<td>476</td>
</tr>
<tr>
<td>10.8.3</td>
<td>itertuples</td>
<td>478</td>
</tr>
<tr>
<td>10.9</td>
<td>.dt accessor</td>
<td>478</td>
</tr>
<tr>
<td>10.10</td>
<td>Vectorized string methods</td>
<td>481</td>
</tr>
<tr>
<td>10.11</td>
<td>Sorting</td>
<td>482</td>
</tr>
<tr>
<td>10.11.1</td>
<td>By Index</td>
<td>482</td>
</tr>
<tr>
<td>10.11.2</td>
<td>By Values</td>
<td>483</td>
</tr>
<tr>
<td>10.11.3</td>
<td>searchsorted</td>
<td>484</td>
</tr>
<tr>
<td>10.11.4</td>
<td>smallest / largest values</td>
<td>484</td>
</tr>
<tr>
<td>10.11.5</td>
<td>Sorting by a multi-index column</td>
<td>486</td>
</tr>
<tr>
<td>10.12</td>
<td>Copying</td>
<td>486</td>
</tr>
<tr>
<td>10.13</td>
<td>dtypes</td>
<td>486</td>
</tr>
<tr>
<td>10.13.1</td>
<td>defaults</td>
<td>489</td>
</tr>
<tr>
<td>10.13.2</td>
<td>upcasting</td>
<td>489</td>
</tr>
<tr>
<td>10.13.3</td>
<td>astype</td>
<td>490</td>
</tr>
<tr>
<td>10.13.4</td>
<td>object conversion</td>
<td>491</td>
</tr>
<tr>
<td>10.13.5</td>
<td>gotchas</td>
<td>493</td>
</tr>
<tr>
<td>10.14</td>
<td>Selecting columns based on dtype</td>
<td>495</td>
</tr>
</tbody>
</table>

11 Working with Text Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Splitting and Replacing Strings</td>
<td>501</td>
</tr>
<tr>
<td>11.2</td>
<td>Indexing with .str</td>
<td>503</td>
</tr>
</tbody>
</table>
12 Options and Settings

12.1 Overview ... 511
12.2 Getting and Setting Options 512
12.3 Setting Startup Options in python/ipython Environment ... 513
12.4 Frequently Used Options 513
12.5 Available Options 519
12.6 Number Formatting 520
12.7 Unicode Formatting 521

13 Indexing and Selecting Data

13.1 Different Choices for Indexing 524
13.2 Basics .. 525
13.3 Attribute Access 527
13.4 Slicing ranges 529
13.5 Selection By Label 531
13.6 Selection By Position 533
13.7 Selection By Callable 537
13.8 Selecting Random Samples 539
13.9 Setting With Enlargement 541
13.10 Fast scalar value getting and setting 542
13.11 Boolean indexing 543
13.12 Indexing with isin 544
13.13 The where() Method and Masking 547
13.14 The query() Method (Experimental) 550
 13.14.1 MultiIndex query() Syntax 553
 13.14.2 query() Use Cases 554
 13.14.3 query() Python versus pandas Syntax Comparison ... 555
 13.14.4 The in and not in operators 556
 13.14.5 Special use of the == operator with list objects 557
 13.14.6 Boolean Operators 559
 13.14.7 Performance of query() 560
13.15 Duplicate Data 561
13.16 Dictionary-like get() method 564
13.17 The select() Method 564
13.18 The lookup() Method 564
13.19 Index objects 564
 13.19.1 Setting metadata 565
 13.19.2 Set operations on Index objects 566
 13.19.3 Missing values 567
13.20 Set / Reset Index 567
 13.20.1 Set an index 568
 13.20.2 Reset the index 569
 13.20.3 Adding an ad hoc index 570
13.21 Returning a view versus a copy 570
 13.21.1 Why does assignment fail when using chained indexing? 571
 13.21.2 Evaluation order matters 572
14 MultiIndex / Advanced Indexing
14.1 Hierarchical indexing (MultiIndex) ... 575
 14.1.1 Creating a MultiIndex (hierarchical index) object 575
 14.1.2 Reconstructing the level labels .. 578
 14.1.3 Basic indexing on axis with MultiIndex ... 579
 14.1.4 Data alignment and using reindex .. 580
14.2 Advanced indexing with hierarchical index .. 581
 14.2.1 Using slicers ... 582
 14.2.2 Cross-section .. 587
 14.2.3 Advanced reindexing and alignment .. 588
 14.2.4 Swapping levels with swaplevel() ... 589
 14.2.5 Reordering levels with reorder_levels() ... 590
14.3 Sorting a MultiIndex .. 590
14.4 Take Methods .. 593
14.5 Index Types .. 594
 14.5.1 CategoricalIndex .. 594
 14.5.2 Int64Index and RangeIndex ... 597
 14.5.3 Float64Index .. 597
15 Computational tools ... 601
15.1 Statistical Functions .. 601
 15.1.1 Percent Change ... 601
 15.1.2 Covariance .. 601
 15.1.3 Correlation .. 602
 15.1.4 Data ranking ... 604
15.2 Window Functions .. 605
 15.2.1 Method Summary ... 609
 15.2.2 Rolling Windows ... 610
 15.2.3 Time-aware Rolling .. 612
 15.2.4 Time-aware Rolling vs. Resampling .. 614
 15.2.5 Centering Windows .. 615
 15.2.6 Binary Window Functions .. 615
 15.2.7 Computing rolling pairwise covariances and correlations 616
15.3 Aggregation ... 617
 15.3.1 Applying multiple functions at once .. 619
 15.3.2 Applying different functions to DataFrame columns 620
15.4 Expanding Windows .. 621
 15.4.1 Method Summary ... 622
15.5 Exponentially Weighted Windows ... 623
16 Working with missing data ... 627
16.1 Missing data basics .. 627
 16.1.1 When / why does data become missing? ... 627
 16.1.2 Values considered “missing” ... 628
16.2 Datetimes ... 629
16.3 Inserting missing data .. 630
16.4 Calculations with missing data ... 631
 16.4.1 NA values in GroupBy ... 632
16.5 Cleaning / filling missing data ... 632
 16.5.1 Filling missing values: fillna ... 632
 16.5.2 Filling with a PandasObject ... 634
 16.5.3 Dropping axis labels with missing data: dropna 635
 16.5.4 Interpolation ... 636
 Interpolation Limits ... 641
16.5.5 Replacing Generic Values ... 642
16.5.6 String/Regular Expression Replacement............................... 643
16.5.7 Numeric Replacement .. 645
16.6 Missing data casting rules and indexing 647

17 Group By: split-apply-combine 649
17.1 Splitting an object into groups ... 650
17.1.1 GroupBy sorting ... 651
17.1.2 GroupBy object attributes ... 652
17.1.3 GroupBy with MultiIndex ... 653
17.1.4 DataFrame column selection in GroupBy 655
17.2 Iterating through groups .. 655
17.3 Selecting a group .. 656
17.4 Aggregation .. 656
17.4.1 Applying multiple functions at once 658
17.4.2 Applying different functions to DataFrame columns 659
17.4.3 Cython-optimized aggregation functions 660
17.5 Transformation .. 660
17.5.1 New syntax to window and resample operations 664
17.6 Filtration ... 666
17.7 Dispatching to instance methods ... 668
17.8 Flexible apply .. 669
17.9 Other useful features .. 671
17.9.1 Automatic exclusion of “nuisance” columns 671
17.9.2 NA and NaT group handling ... 672
17.9.3 Grouping with ordered factors ... 672
17.9.4 Grouping with a Grouper specification 672
17.9.5 Taking the first rows of each group 674
17.9.6 Taking the nth row of each group 674
17.9.7 Enumerate group items ... 676
17.9.8 Plotting ... 677
17.10 Examples ... 678
17.10.1 Regrouping by factor .. 678
17.10.2 Groupby by Indexer to ‘resample’ data 679
17.10.3 Returning a Series to propagate names 679

18 Merge, join, and concatenate 681
18.1 Concatenating objects .. 681
18.1.1 Set logic on the other axes ... 684
18.1.2 Concatenating using append .. 685
18.1.3 Ignoring indexes on the concatenation axis 687
18.1.4 Concatenating with mixed ndims 688
18.1.5 More concatenating with group keys 689
18.1.6 Appending rows to a DataFrame 692
18.2 Database-style DataFrame joining/merging 693
18.2.1 Brief primer on merge methods (relational algebra) 694
18.2.2 The merge indicator ... 697
18.2.3 Joining on index ... 698
18.2.4 Joining key columns on an index 699
18.2.5 Joining a single Index to a Multi-index 701
18.2.6 Joining with two multi-indexes 702
18.2.7 Overlapping value columns .. 703
18.2.8 Joining multiple DataFrame or Panel objects 704
18.2.9 Merging together values within Series or DataFrame columns 705
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3 Timeseries friendly merging</td>
<td>705</td>
</tr>
<tr>
<td>18.3.1 Merging Ordered Data</td>
<td>705</td>
</tr>
<tr>
<td>18.3.2 Merging AsOf</td>
<td>706</td>
</tr>
<tr>
<td>19 Reshaping and Pivot Tables</td>
<td>709</td>
</tr>
<tr>
<td>19.1 Reshaping by pivoting DataFrame objects</td>
<td>709</td>
</tr>
<tr>
<td>19.2 Reshaping by stacking and unstacking</td>
<td>710</td>
</tr>
<tr>
<td>19.2.1 Multiple Levels</td>
<td>712</td>
</tr>
<tr>
<td>19.2.2 Missing Data</td>
<td>713</td>
</tr>
<tr>
<td>19.2.3 With a MultiIndex</td>
<td>715</td>
</tr>
<tr>
<td>19.3 Reshaping by Melt</td>
<td>716</td>
</tr>
<tr>
<td>19.4 Combining with stats and GroupBy</td>
<td>717</td>
</tr>
<tr>
<td>19.5 Pivot tables</td>
<td>718</td>
</tr>
<tr>
<td>19.5.1 Adding margins</td>
<td>721</td>
</tr>
<tr>
<td>19.6 Cross tabulations</td>
<td>721</td>
</tr>
<tr>
<td>19.6.1 Normalization</td>
<td>723</td>
</tr>
<tr>
<td>19.6.2 Adding Margins</td>
<td>723</td>
</tr>
<tr>
<td>19.7 Tiling</td>
<td>724</td>
</tr>
<tr>
<td>19.8 Computing indicator / dummy variables</td>
<td>724</td>
</tr>
<tr>
<td>19.9 Factorizing values</td>
<td>727</td>
</tr>
<tr>
<td>20 Time Series / Date functionality</td>
<td>729</td>
</tr>
<tr>
<td>20.1 Overview</td>
<td>730</td>
</tr>
<tr>
<td>20.2 Time Stamps vs. Time Spans</td>
<td>730</td>
</tr>
<tr>
<td>20.3 Converting to Timestamps</td>
<td>731</td>
</tr>
<tr>
<td>20.3.1 Invalid Data</td>
<td>733</td>
</tr>
<tr>
<td>20.3.2 Epoch Timestamps</td>
<td>733</td>
</tr>
<tr>
<td>20.4 Generating Ranges of Timestamps</td>
<td>734</td>
</tr>
<tr>
<td>20.5 Timestamp limitations</td>
<td>736</td>
</tr>
<tr>
<td>20.6 DatetimeIndex</td>
<td>736</td>
</tr>
<tr>
<td>20.6.1 DatetimeIndex Partial String Indexing</td>
<td>737</td>
</tr>
<tr>
<td>20.6.2 Datetime Indexing</td>
<td>742</td>
</tr>
<tr>
<td>20.6.3 Truncating & Fancy Indexing</td>
<td>743</td>
</tr>
<tr>
<td>20.6.4 Time/Date Components</td>
<td>743</td>
</tr>
<tr>
<td>20.7 DateOffset objects</td>
<td>744</td>
</tr>
<tr>
<td>20.7.1 Parametric offsets</td>
<td>746</td>
</tr>
<tr>
<td>20.7.2 Using offsets with Series/DatetimeIndex</td>
<td>747</td>
</tr>
<tr>
<td>20.7.3 Custom Business Days (Experimental)</td>
<td>748</td>
</tr>
<tr>
<td>20.7.4 Business Hour</td>
<td>750</td>
</tr>
<tr>
<td>20.7.5 Custom Business Hour</td>
<td>752</td>
</tr>
<tr>
<td>20.7.6 Offset Aliases</td>
<td>752</td>
</tr>
<tr>
<td>20.7.7 Combining Aliases</td>
<td>753</td>
</tr>
<tr>
<td>20.7.8 Anchored Offsets</td>
<td>754</td>
</tr>
<tr>
<td>20.7.9 Anchored Offset Semantics</td>
<td>755</td>
</tr>
<tr>
<td>20.7.10 Holidays / Holiday Calendars</td>
<td>756</td>
</tr>
<tr>
<td>20.8 Time series-related instance methods</td>
<td>758</td>
</tr>
<tr>
<td>20.8.1 Shifting / lagging</td>
<td>758</td>
</tr>
<tr>
<td>20.8.2 Frequency conversion</td>
<td>759</td>
</tr>
<tr>
<td>20.8.3 Filling forward / backward</td>
<td>759</td>
</tr>
<tr>
<td>20.8.4 Converting to Python datetimes</td>
<td>760</td>
</tr>
<tr>
<td>20.9 Resampling</td>
<td>760</td>
</tr>
<tr>
<td>20.9.1 Up Sampling</td>
<td>761</td>
</tr>
<tr>
<td>20.9.2 Sparse Resampling</td>
<td>762</td>
</tr>
<tr>
<td>20.9.3 Aggregation</td>
<td>763</td>
</tr>
</tbody>
</table>
22.11.3 Categorical is not a numpy array .. 824
22.11.4 dtype in apply .. 825
22.11.5 Categorical Index .. 825
22.11.6 Side Effects .. 826

23 Visualization ... 829
23.1 Basic Plotting: plot ... 829
23.2 Other Plots ... 832
 23.2.1 Bar plots ... 834
 23.2.2 Histograms ... 837
 23.2.3 Box Plots ... 843
 23.2.4 Area Plot ... 851
 23.2.5 Scatter Plot .. 853
 23.2.6 Hexagonal Bin Plot ... 857
 23.2.7 Pie plot ... 859
23.3 Plotting with Missing Data .. 863
23.4 Plotting Tools .. 864
 23.4.1 Scatter Matrix Plot .. 864
 23.4.2 Density Plot .. 865
 23.4.3 Andrews Curves ... 866
 23.4.4 Parallel Coordinates .. 867
 23.4.5 Lag Plot ... 868
 23.4.6 Autocorrelation Plot ... 869
 23.4.7 Bootstrap Plot .. 870
 23.4.8 RadViz ... 871
23.5 Plot Formatting .. 872
 23.5.1 Controlling the Legend .. 873
 23.5.2 Scales ... 874
 23.5.3 Plotting on a Secondary Y-axis 875
 23.5.4 Suppressing Tick Resolution Adjustment 878
 23.5.5 Subplots .. 881
 23.5.6 Using Layout and Targeting Multiple Axes 882
 23.5.7 Plotting With Error Bars ... 885
 23.5.8 Plotting Tables .. 887
 23.5.9 Colormaps .. 890
23.6 Plotting directly with matplotlib 895
23.7 Trellis plotting interface .. 896

24 Style .. 897

25 IO Tools (Text, CSV, HDF5, ...) .. 899
25.1 CSV & Text files ... 900
 25.1.1 Parsing options .. 900
 Basic ... 900
 Column and Index Locations and Names 900
 General Parsing Configuration .. 901
 NA and Missing Data Handling ... 902
 Datetime Handling ... 902
 Iteration ... 902
 Quoting, Compression, and File Format 903
 Error Handling .. 903
 25.1.2 Specifying column data types 905
 25.1.3 Specifying Categorical dtype .. 907
 25.1.4 Naming and Using Columns ... 908
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1.19 Indexes</td>
</tr>
<tr>
<td>25.1.20 Automatically “sniffing” the delimiter</td>
</tr>
<tr>
<td>25.1.21 Iterating through files chunk by chunk</td>
</tr>
<tr>
<td>25.1.22 Specifying the parser engine</td>
</tr>
<tr>
<td>25.1.23 Writing out Data</td>
</tr>
<tr>
<td>Writing a formatted string</td>
</tr>
<tr>
<td>Writing to CSV format</td>
</tr>
<tr>
<td>25.2 JSON</td>
</tr>
<tr>
<td>25.2.1 Writing JSON</td>
</tr>
<tr>
<td>Orient Options</td>
</tr>
<tr>
<td>Date Handling</td>
</tr>
<tr>
<td>Fallback Behavior</td>
</tr>
<tr>
<td>25.2.2 Reading JSON</td>
</tr>
<tr>
<td>Data Conversion</td>
</tr>
<tr>
<td>The Numpy Parameter</td>
</tr>
<tr>
<td>25.2.3 Normalization</td>
</tr>
<tr>
<td>25.2.4 Line delimited json</td>
</tr>
<tr>
<td>25.3 HTML</td>
</tr>
<tr>
<td>25.3.1 Reading HTML Content</td>
</tr>
<tr>
<td>25.3.2 Writing to HTML files</td>
</tr>
<tr>
<td>25.4 Excel files</td>
</tr>
<tr>
<td>25.4.1 Reading Excel Files</td>
</tr>
<tr>
<td>ExcelFile class</td>
</tr>
<tr>
<td>Specifying Sheets</td>
</tr>
<tr>
<td>Reading a MultiIndex</td>
</tr>
<tr>
<td>Parsing Specific Columns</td>
</tr>
<tr>
<td>Cell Converters</td>
</tr>
<tr>
<td>25.4.2 Writing Excel Files</td>
</tr>
<tr>
<td>Writing Excel Files to Disk</td>
</tr>
</tbody>
</table>
34.6.3 By Group Processing ... 1091
34.7 Other Considerations ... 1092
34.7.1 Disk vs Memory .. 1092
34.7.2 Data Interop ... 1092

35 API Reference ... 1093

35.1 Input/Output .. 1093
 35.1.1 Pickling ... 1093
 pandas.read_pickle ... 1093
 35.1.2 Flat File ... 1093
 pandas.read_table .. 1094
 pandas.read_csv .. 1099
 pandas.read_fwf .. 1104
 pandas.read_msgpack ... 1109
 35.1.3 Clipboard .. 1109
 pandas.read_clipboard .. 1109
 35.1.4 Excel .. 1109
 pandas.read_excel .. 1110
 pandas.ExcelFile.parse 1112
 35.1.5 JSON .. 1112
 pandas.read_json ... 1112
 pandas.io.json.json_normalize 1114
 35.1.6 HTML .. 1115
 pandas.read_html .. 1115
 35.1.7 HDFStore: PyTables (HDF5) 1118
 pandas.read_hdf .. 1118
 pandas.HDFStore.put ... 1118
 pandas.HDFStore.append 1119
 pandas.HDFStore.get .. 1119
 pandas.HDFStore.select 1120
 35.1.8 SAS .. 1120
 pandas.read_sas .. 1120
 35.1.9 SQL .. 1121
 35.1.10 Google BigQuery .. 1121
 35.1.11 STATA ... 1121
 pandas.read_stata .. 1121
 pandas.io.stata.StataReader.data 1122
 pandas.io.stata.StataReader.data_label 1123
 pandas.io.stata.StataReader.value_labels 1123
 pandas.io.stata.StataReader.variable_labels 1123
 pandas.io.stata.StataWriter.write_file 1123
 35.2 General functions .. 1123
 35.2.1 Data manipulations .. 1123
 pandas.melt ... 1124
 pandas.pivot .. 1126
 pandas.pivot_table .. 1127
 pandas.cut .. 1129
 pandas.qcut .. 1130
 pandas.merge ... 1131
 pandas.merge_ordered ... 1132
 pandas.merge_asof ... 1134
 pandas.concat .. 1137
 pandas.get_dummies .. 1138
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.3 Series</td>
<td></td>
</tr>
<tr>
<td>35.3.1 Constructor</td>
<td>1151</td>
</tr>
<tr>
<td>pandas.Series</td>
<td></td>
</tr>
<tr>
<td>35.3.2 Attributes</td>
<td>1255</td>
</tr>
<tr>
<td>35.3.3 Conversion</td>
<td>1255</td>
</tr>
<tr>
<td>35.3.4 Indexing, iteration</td>
<td>1256</td>
</tr>
<tr>
<td>pandas.Series.iter</td>
<td>1256</td>
</tr>
<tr>
<td>35.3.5 Binary operator functions</td>
<td>1256</td>
</tr>
<tr>
<td>35.3.6 Function application, GroupBy & Window</td>
<td>1257</td>
</tr>
<tr>
<td>35.3.7 Computations / Descriptive Stats</td>
<td>1257</td>
</tr>
<tr>
<td>35.3.8 Reindexing / Selection / Label manipulation</td>
<td>1259</td>
</tr>
<tr>
<td>35.3.9 Missing data handling</td>
<td>1259</td>
</tr>
<tr>
<td>35.3.10 Reshaping, sorting</td>
<td>1260</td>
</tr>
<tr>
<td>35.3.11 Combining / joining / merging</td>
<td>1260</td>
</tr>
<tr>
<td>35.3.12 Time series-related</td>
<td>1260</td>
</tr>
<tr>
<td>35.3.13 Datetimelike Properties</td>
<td>1260</td>
</tr>
<tr>
<td>pandas.Series.dt.date</td>
<td>1261</td>
</tr>
<tr>
<td>pandas.Series.dt.time</td>
<td>1261</td>
</tr>
<tr>
<td>pandas.Series.dt.year</td>
<td>1261</td>
</tr>
<tr>
<td>pandas.Series.dt.month</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.day</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.hour</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.minute</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.second</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.microsecond</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.nanosecond</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.week</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.weekofyear</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.dayofweek</td>
<td>1262</td>
</tr>
<tr>
<td>pandas.Series.dt.weekday</td>
<td>1263</td>
</tr>
<tr>
<td>pandas.Series.dt.weekday_name</td>
<td>1263</td>
</tr>
<tr>
<td>pandas.Series.dt.dayofyear</td>
<td>1263</td>
</tr>
<tr>
<td>pandas.Series.dt.monthyear</td>
<td>1263</td>
</tr>
<tr>
<td>pandas.Series.dt.is_month_start</td>
<td>1263</td>
</tr>
<tr>
<td>pandas.Series.dt.is_month_end</td>
<td>1263</td>
</tr>
<tr>
<td>pandas.Series.dt.is_month_end</td>
<td>1263</td>
</tr>
<tr>
<td>pandas.Series.dt.is_quarter_start</td>
<td>1263</td>
</tr>
<tr>
<td>pandas.Series.dt.is_quarter_start</td>
<td>1263</td>
</tr>
</tbody>
</table>
35.3.14 String handling

- pandas.Series.str.rpartition
- pandas.Series.str.rjust
- pandas.Series.str.rindex
- pandas.Series.str.rfind
- pandas.Series.str.replace
- pandas.Series.str.repeat
- pandas.Series.str.partition
- pandas.Series.str.pad
- pandas.Series.str.normalize
- pandas.Series.str.match
- pandas.Series.str.lstrip
- pandas.Series.str.lower
- pandas.Series.str.ljust
- pandas.Series.str.len
- pandas.Series.str.join
- pandas.Series.str.index
- pandas.Series.str.join
- pandas.Series.str.len
- pandas.Series.str.ljust
- pandas.Series.str.lower
- pandas.Series.str.lstrip
- pandas.Series.str.match
- pandas.Series.str.pad
- pandas.Series.str.partition
35.7.2 Attributes
35.7.3 Modifying and Computations
35.7.4 Conversion
pandas.MultiIndex.argmin ... 1631
pandas.MultiIndex.argmax ... 1631
pandas.MultiIndex.append ... 1631
pandas.MultiIndex.any .. 1631
pandas.MultiIndex.all .. 1631
pandas.MultiIndex.values ... 1628
pandas.MultiIndex.strides ... 1628
pandas.MultiIndex.size .. 1628
pandas.MultiIndex.shape ... 1628
pandas.MultiIndex.nlevels ... 1627
pandas.MultiIndex.ndim .. 1627
pandas.MultiIndex.nbytes ... 1627
pandas.MultiIndex.names ... 1627
pandas.MultiIndex.name ... 1627
pandas.MultiIndex.lexsort_depth 1627
pandas.MultiIndex.levshape ... 1627
pandas.MultiIndex.labels ... 1627
pandas.MultiIndex.itemsize .. 1627
pandas.MultiIndex.is_unique .. 1627
pandas.MultiIndex.is_monotonic 1626
pandas.MultiIndex.is_monotonic_decreasing 1626
pandas.MultiIndex.is_monotonic_increasing 1626
pandas.MultiIndex.is_unique .. 1627
pandas.MultiIndex.itemsize .. 1627
pandas.MultiIndex.labels ... 1627
pandas.MultiIndex.levels .. 1627
pandas.MultiIndex.levshape ... 1627
pandas.MultiIndex.labels ... 1627
pandas.MultiIndex.itemsize .. 1627
pandas.MultiIndex.is_unique .. 1627
pandas.MultiIndex.is_monotonic 1626
pandas.MultiIndex.is_monotonic_decreasing 1626
pandas.MultiIndex.is_monotonic_increasing 1626
pandas.MultiIndex.is_unique .. 1627
pandas.MultiIndex.itemsize .. 1627
pandas.MultiIndex.levels .. 1627
pandas.multiIndex.levshape ... 1627
pandas.MultiIndex.values ... 1628
pandas.MultiIndex.size .. 1628
pandas.MultiIndex.strides ... 1628
pandas.MultiIndex.values ... 1628
pandas.MultiIndex.all .. 1631
pandas.MultiIndex.any .. 1631
pandas.MultiIndex.append ... 1631
pandas.MultiIndex.argmax ... 1631
pandas.MultiIndex.argmin ... 1631
<table>
<thead>
<tr>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pandas.DatetimeIndex.dtype_str</td>
<td>1657</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.flags</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.freq</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.freqstr</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.has_duplicates</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.hasnans</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.hour</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.inferred_freq</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.inferred_type</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_all_dates</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_leap_year</td>
<td>1658</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_monotonic</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_monotonic_decreasing</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_monotonic_increasing</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_month_end</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_month_start</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_normalized</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_quarter_end</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_quarter_start</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_unique</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_year_end</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.is_year_start</td>
<td>1659</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.itemsize</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.microsecond</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.minute</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.month</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.name</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.names</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.nanosecond</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.nbytes</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.ndim</td>
<td>1660</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.nlevels</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.offset</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.quarter</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.resolution</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.second</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.shape</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.size</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.strides</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.time</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.tz</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.tzinfo</td>
<td>1661</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.values</td>
<td>1662</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.week</td>
<td>1662</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.weekday</td>
<td>1662</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.weekday_name</td>
<td>1662</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.weekofyear</td>
<td>1662</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.year</td>
<td>1662</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.all</td>
<td>1665</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.any</td>
<td>1665</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.append</td>
<td>1665</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.argmax</td>
<td>1665</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.argmin</td>
<td>1666</td>
</tr>
<tr>
<td>pandas.DatetimeIndex.argsort</td>
<td>1666</td>
</tr>
</tbody>
</table>
35.11 TimedeltaIndex .. 1687
35.11.1 pandas.TimedeltaIndex 1687
35.10.5 Conversion .. 1686
35.10.4 Time-specific operations 1686
35.10.3 Selecting .. 1686
35.10.2 Time/Date Components 1685
pandas.TimedeltaIndex.dtype_str 1690
pandas.TimedeltaIndex.dtype 1690
pandas.TimedeltaIndex.days .. 1690
pandas.TimedeltaIndex.data 1690
pandas.TimedeltaIndex.components 1690
pandas.TimedeltaIndex.base 1690
pandas.TimedeltaIndex.asobject 1690
pandas.TimedeltaIndex.asi8 .. 1690
pandas.TimedeltaIndex.T ... 1689
pandas.DatetimeIndex.where 1685
pandas.DatetimeIndex.view .. 1685
pandas.DatetimeIndex.value_counts 1684
pandas.DatetimeIndex.unique 1684
pandas.DatetimeIndex.union_many 1684
pandas.DatetimeIndex.union 1684
pandas.DatetimeIndex.tz_localize 1683
pandas.DatetimeIndex.tz_convert 1683
pandas.DatetimeIndex.transpose 1683
pandas.DatetimeIndex.tolist 1683
pandas.DatetimeIndex.rename 1676
pandas.DatetimeIndex.reindex 1676
pandas.DatetimeIndex.rename 1676
pandas.DatetimeIndex.repeat 1676
pandas.DatetimeIndex.reshape 1676
pandas.DatetimeIndex.round 1677
pandas.DatetimeIndex.searchsorted 1677
pandas.DatetimeIndex.set_names 1678
pandas.DatetimeIndex.set_value 1679
pandas.DatetimeIndex.shift 1679
pandas.DatetimeIndex.slice_indexer 1679
pandas.DatetimeIndex.slice_locs 1679
pandas.DatetimeIndex.snap .. 1679
pandas.DatetimeIndex.sort .. 1679
pandas.DatetimeIndex.sort_values 1680
pandas.DatetimeIndex.sortlevel 1680
pandas.DatetimeIndex.str ... 1680
pandas.DatetimeIndex.strptime 1680
pandas.DatetimeIndex.summary 1680
pandas.DatetimeIndex.sym_diff 1680
pandas.DatetimeIndex.symmetric_difference 1681
pandas.DatetimeIndex.take .. 1681
pandas.DatetimeIndex.to_datetime 1682
pandas.DatetimeIndex.to_julian_date 1682
pandas.DatetimeIndex.to_native_types 1682
pandas.DatetimeIndex.to_period 1682
pandas.DatetimeIndex.to_perioddelta 1682
pandas.DatetimeIndex.to_pydatetime 1682
pandas.DatetimeIndex.to_series 1682
pandas.DatetimeIndex.to_period 1682
pandas.DatetimeIndex.to_julian_date 1682
pandas.DatetimeIndex.to_datetime 1682
pandas.DatetimeIndex.transpose 1683
pandas.DatetimeIndex.tolist 1683
pandas.DatetimeIndex.rename 1676
pandas.DatetimeIndex.reindex 1676
35.11 TimedeltaIndex .. 1687
35.11.1 pandas.TimedeltaIndex 1687
pandas.TimedeltaIndex.T ... 1689
pandas.TimedeltaIndex.asi8 .. 1690
pandas.TimedeltaIndex.asobject 1690
pandas.TimedeltaIndex.base 1690
pandas.TimedeltaIndex.components 1690
pandas.TimedeltaIndex.data 1690
pandas.TimedeltaIndex.days 1690
pandas.TimedeltaIndex.dtype 1690
pandas.TimedeltaIndex.dtype_str 1690

xxxvi
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pandas.core.groupby.Grouper</td>
<td>1725</td>
</tr>
<tr>
<td>35.13.2 Function application</td>
<td>1726</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.apply</td>
<td>1726</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.aggregate</td>
<td>1727</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.transform</td>
<td>1727</td>
</tr>
<tr>
<td>35.13.3 Computations / Descriptive Stats</td>
<td>1727</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.count</td>
<td>1727</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.cumcount</td>
<td>1727</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.first</td>
<td>1728</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.head</td>
<td>1728</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.last</td>
<td>1729</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.max</td>
<td>1729</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.mean</td>
<td>1729</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.median</td>
<td>1729</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.min</td>
<td>1730</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.nth</td>
<td>1730</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.ohlc</td>
<td>1731</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.prod</td>
<td>1731</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.size</td>
<td>1731</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.sem</td>
<td>1731</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.std</td>
<td>1732</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.sum</td>
<td>1732</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.var</td>
<td>1732</td>
</tr>
<tr>
<td>pandas.core.groupby.GroupBy.tail</td>
<td>1732</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.agg</td>
<td>1734</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.all</td>
<td>1734</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.any</td>
<td>1735</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.bfill</td>
<td>1735</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.corr</td>
<td>1735</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.count</td>
<td>1736</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.cov</td>
<td>1736</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.cummax</td>
<td>1736</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.cummin</td>
<td>1736</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.cumprod</td>
<td>1736</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.cumsum</td>
<td>1737</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.describe</td>
<td>1737</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.diff</td>
<td>1738</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.fillna</td>
<td>1738</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.hist</td>
<td>1738</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.idxmax</td>
<td>1740</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.idxmin</td>
<td>1740</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.mad</td>
<td>1740</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.pct_change</td>
<td>1741</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.plot</td>
<td>1741</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.quartile</td>
<td>1741</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.rank</td>
<td>1742</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.resample</td>
<td>1743</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.shift</td>
<td>1743</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.size</td>
<td>1743</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.skew</td>
<td>1744</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.take</td>
<td>1744</td>
</tr>
<tr>
<td>pandas.core.groupby.DataFrameGroupBy.tshift</td>
<td>1744</td>
</tr>
<tr>
<td>pandas.core.groupby.SeriesGroupBy.nlargest</td>
<td>1745</td>
</tr>
</tbody>
</table>
36 Internals

36.1 Indexing .. 1781
 36.1.1 MultiIndex ... 1782
36.2 Subclassing pandas Data Structures ... 1782
 36.2.1 Override Constructor Properties .. 1783
 36.2.2 Define Original Properties .. 1784

37 Release Notes .. 1787

37.1 pandas 0.19.2 ... 1787
 37.1.1 Thanks .. 1787
37.2 pandas 0.19.1 ... 1788
 37.2.1 Thanks .. 1789
37.3 pandas 0.19.0 ... 1789
 37.3.1 Thanks .. 1790
37.4 pandas 0.18.1 .. 1793
 37.4.1 Thanks .. 1794
37.5 pandas 0.18.0 .. 1795
 37.5.1 Thanks .. 1796
37.6 pandas 0.17.1 .. 1799
 37.6.1 Thanks .. 1799
37.7 pandas 0.17.0 .. 1801
 37.7.1 Thanks .. 1801
37.8 pandas 0.16.2 .. 1805
 37.8.1 Thanks .. 1805
37.9 pandas 0.16.1 .. 1806
 37.9.1 Thanks .. 1806
37.10 pandas 0.16.0 ... 1808
 37.10.1 Thanks .. 1808
37.11 pandas 0.15.2 .. 1810
 37.11.1 Thanks .. 1810
37.12 pandas 0.15.1 .. 1811
 37.12.1 Thanks .. 1812
37.13 pandas 0.15.0 .. 1812
 37.13.1 Thanks .. 1813
37.14 pandas 0.14.1 .. 1815
 37.14.1 Thanks .. 1815
37.15 pandas 0.14.0 .. 1817
 37.15.1 Thanks .. 1817
37.16 pandas 0.13.1 .. 1820
 37.16.1 New Features ... 1820
 37.16.2 API Changes .. 1820
 37.16.3 Experimental Features 1820
 37.16.4 Improvements to existing features 1820
 37.16.5 Bug Fixes .. 1821
37.17 pandas 0.13.0 .. 1823
 37.17.1 New Features ... 1823
 37.17.2 Experimental Features 1823
 37.17.3 Improvements to existing features 1824
 37.17.4 API Changes .. 1826
 37.17.5 Internal Refactoring 1829
 37.17.6 Bug Fixes .. 1831
37.18 pandas 0.12.0 .. 1837
 37.18.1 New Features ... 1837
 37.18.2 Improvements to existing features 1837
<table>
<thead>
<tr>
<th>Version</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.29</td>
<td>pandas 0.11.0</td>
<td>1843</td>
</tr>
<tr>
<td></td>
<td>37.29.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.28</td>
<td>pandas 0.10.1</td>
<td>1849</td>
</tr>
<tr>
<td></td>
<td>37.28.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.27</td>
<td>pandas 0.9.0</td>
<td>1856</td>
</tr>
<tr>
<td></td>
<td>37.27.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.26</td>
<td>pandas 0.8.1</td>
<td>1862</td>
</tr>
<tr>
<td></td>
<td>37.26.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.25</td>
<td>pandas 0.7.3</td>
<td>1868</td>
</tr>
<tr>
<td></td>
<td>37.25.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.24</td>
<td>pandas 0.6.0</td>
<td>1874</td>
</tr>
<tr>
<td></td>
<td>37.24.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.23</td>
<td>pandas 0.5.0</td>
<td>1880</td>
</tr>
<tr>
<td></td>
<td>37.23.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.22</td>
<td>pandas 0.4.0</td>
<td>1886</td>
</tr>
<tr>
<td></td>
<td>37.22.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.21</td>
<td>pandas 0.3.0</td>
<td>1892</td>
</tr>
<tr>
<td></td>
<td>37.21.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.20</td>
<td>pandas 0.2.0</td>
<td>1898</td>
</tr>
<tr>
<td></td>
<td>37.20.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.19</td>
<td>pandas 0.1.0</td>
<td>1904</td>
</tr>
<tr>
<td></td>
<td>37.19.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.18</td>
<td>pandas 0.0.0</td>
<td>1910</td>
</tr>
<tr>
<td></td>
<td>37.18.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.17</td>
<td>pandas 0.0.0</td>
<td>1916</td>
</tr>
<tr>
<td></td>
<td>37.17.1 New Features</td>
<td></td>
</tr>
<tr>
<td>37.16</td>
<td>pandas 0.0.0</td>
<td>1922</td>
</tr>
<tr>
<td></td>
<td>37.16.1 New Features</td>
<td></td>
</tr>
</tbody>
</table>
37.29.3 Improvements to existing features .. 1876
37.29.4 Bug Fixes ... 1877
37.29.5 Thanks ... 1880
37.30 pandas 0.6.1 .. 1881
 37.30.1 API Changes ... 1881
 37.30.2 New Features ... 1881
 37.30.3 Improvements to existing features 1881
 37.30.4 Bug Fixes ... 1882
 37.30.5 Thanks ... 1883
37.31 pandas 0.6.0 .. 1883
 37.31.1 API Changes ... 1883
 37.31.2 New Features ... 1883
 37.31.3 Improvements to existing features 1884
 37.31.4 Bug Fixes ... 1885
 37.31.5 Thanks ... 1886
37.32 pandas 0.5.0 .. 1887
 37.32.1 API Changes ... 1887
 37.32.2 Deprecations Removed ... 1888
 37.32.3 New Features ... 1888
 37.32.4 Improvements to existing features 1889
 37.32.5 Bug Fixes ... 1890
 37.32.6 Thanks ... 1891
37.33 pandas 0.4.3 .. 1891
 37.33.1 New Features ... 1891
 37.33.2 Improvements to existing features 1891
 37.33.3 API Changes ... 1891
 37.33.4 Bug Fixes ... 1891
 37.33.5 Thanks ... 1892
37.34 pandas 0.4.2 .. 1892
 37.34.1 New Features ... 1892
 37.34.2 Improvements to existing features 1892
 37.34.3 API Changes ... 1893
 37.34.4 Bug Fixes ... 1893
 37.34.5 Thanks ... 1893
37.35 pandas 0.4.1 .. 1893
 37.35.1 New Features ... 1893
 37.35.2 Improvements to existing features 1894
 37.35.3 API Changes ... 1894
 37.35.4 Bug Fixes ... 1894
 37.35.5 Thanks ... 1894
37.36 pandas 0.4.0 .. 1895
 37.36.1 New Features ... 1895
 37.36.2 Improvements to existing features 1896
 37.36.3 API Changes ... 1897
 37.36.4 Bug Fixes ... 1898
 37.36.5 Thanks ... 1899
37.37 pandas 0.3.0 .. 1899
 37.37.1 New features .. 1900
 37.37.2 Improvements to existing features 1900
 37.37.3 API Changes ... 1900
 37.37.4 Bug Fixes ... 1900
pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

- Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet
- Ordered and unordered (not necessarily fixed-frequency) time series data.
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels
- Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

- Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
- Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
- Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
- Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
- Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
- Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
- Intuitive merging and joining data sets
- Flexible reshaping and pivoting of data sets
- Hierarchical labeling of axes (possible to have multiple labels per tick)
- Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format
- Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.
Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Some other notes

- pandas is **fast**. Many of the low-level algorithmic bits have been extensively tweaked in Cython code. However, as with anything else generalization usually sacrifices performance. So if you focus on one feature for your application you may be able to create a faster specialized tool.

- pandas is a dependency of *statsmodels*, making it an important part of the statistical computing ecosystem in Python.

- pandas has been used extensively in production in financial applications.

Note: This documentation assumes general familiarity with NumPy. If you haven’t used NumPy much or at all, do invest some time in learning about NumPy first.

See the package overview for more detail about what’s in the library.
WHAT’S NEW

These are new features and improvements of note in each release.

v0.19.2 (December 24, 2016)

This is a minor bug-fix release in the 0.19.x series and includes some small regression fixes, bug fixes and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

• Compatibility with Python 3.6
• Added a Pandas Cheat Sheet. (GH13202).

What’s new in v0.19.2

• Enhancements
• Performance Improvements
• Bug Fixes

Enhancements

The `pd.merge_asof()`, added in 0.19.0, gained some improvements:

• `pd.merge_asof()` gained `left_index/right_index` and `left_by/right_by` arguments (GH14253)
• `pd.merge_asof()` can take multiple columns in `by` parameter and has specialized dtypes for better performance (GH13936)

Performance Improvements

• Performance regression with `PeriodIndex` (GH14822)
• Performance regression in indexing with `getitem` (GH14930)
• Improved performance of `.replace()` (GH12745)
• Improved performance of `Series` creation with a datetime index and dictionary data (GH14894)
Bug Fixes

- Compat with python 3.6 for pickling of some offsets (GH14685)
- Compat with python 3.6 for some indexing exception types (GH14684, GH14689)
- Compat with python 3.6 for deprecation warnings in the test suite (GH14681)
- Compat with python 3.6 for Timestamp pickles (GH14689)
- Compat with dateutil==2.6.0; segfault reported in the testing suite (GH14621)
- Allow nanoseconds in Timestamp.replace as a kwarg (GH14621)
- Bug in pd.read_csv in which aliasing was being done for na_values when passed in as a dictionary (GH14203)
- Bug in pd.read_csv in which column indices for a dict-like na_values were not being respected (GH14203)
- Bug in pd.read_csv where reading files fails, if the number of headers is equal to the number of lines in the file (GH14515)
- Bug in pd.read_csv for the Python engine in which an unhelpful error message was being raised when multi-char delimiters were not being respected with quotes (GH14582)
- Fix bugs (GH14734, GH13654) in pd.read_sas and pandas.io.sas.sas7bdat.SAS7BDATReader that caused problems when reading a SAS file incrementally.
- Bug in pd.read_csv for the Python engine in which an unhelpful error message was being raised when skipfooter was not being respected by Python’s CSV library (GH13879)
- Bug in .fillna() in which timezone aware datetime64 values were incorrectly rounded (GH14872)
- Bug in .groupby(..., sort=True) of a non-lexsorted MultiIndex when grouping with multiple levels (GH14776)
- Bug in pd.cut with negative values and a single bin (GH14652)
- Bug in pd.to_numeric where a 0 was not unsigned on a downcast='unsigned' argument (GH14401)
- Bug in plotting regular and irregular timeseries using shared axes (sharex=True or ax.twinx()) (GH13341, GH14322).
- Bug in not propagating exceptions in parsing invalid datetimes, noted in python 3.6 (GH14561)
- Bug in resampling a DatetimeIndex in local TZ, covering a DST change, which would raise AmbiguousTimeError (GH14682)
- Bug in indexing that transformed RecursionError into KeyError or IndexingError (GH14554)
- Bug in HDFStore when writing a MultiIndex when using data_columns=True (GH14435)
- Bug in HDFStore.append() when writing a Series and passing a min_itemsize argument containing a value for the index (GH11412)
- Bug when writing to a HDFStore in table format with a min_itemsize value for the index and without asking to append (GH10381)
- Bug in Series.groupby.nunique() raising an IndexError for an empty Series (GH12553)
- Bug in DataFrame.nlargest and DataFrame.nsmallest when the index had duplicate values (GH13412)
- Bug in clipboard functions on linux with python2 with unicode and separators (GH13747)
- Bug in clipboard functions on Windows 10 and python 3 (GH14362, GH12807)
• Bug in `.to_clipboard()` and Excel compat (GH12529)
• Bug in DataFrame.combine_first() for integer columns (GH14687).
• Bug in pd.read_csv() in which the `dtype` parameter was not being respected for empty data (GH14712)
• Bug in pd.read_csv() in which the `nrows` parameter was not being respected for large input when using the C engine for parsing (GH7626)
• Bug in pd.merge_asof() could not handle timezone-aware DatetimeIndex when a tolerance was specified (GH14844)
• Explicit check in to_stata and StataWriter for out-of-range values when writing doubles (GH14618)
• Bug in `.plot(kind='kde')` which did not drop missing values to generate the KDE Plot, instead generating an empty plot. (GH14821)
• Bug in unstack() if called with a list of column(s) as an argument, regardless of the dtypes of all columns, they get coerced to `object` (GH11847)

v0.19.1 (November 3, 2016)

This is a minor bug-fix release from 0.19.0 and includes some small regression fixes, bug fixes and performance improvements. We recommend that all users upgrade to this version.

What’s new in v0.19.1

• Performance Improvements
• Bug Fixes

Performance Improvements

• Fixed performance regression in factorization of Period data (GH14338)
• Fixed performance regression in Series.asof(where) when where is a scalar (GH14461)
• Improved performance in DataFrame.asof(where) when where is a scalar (GH14461)
• Improved performance in `.to_json()` when `lines=True` (GH14408)
• Improved performance in certain types of `loc` indexing with a MultiIndex (GH14551).

Bug Fixes

• Source installs from PyPI will now again work without cython installed, as in previous versions (GH14204)
• Compats with Cython 0.25 for building (GH14496)
• Fixed regression where user-provided file handles were closed in read_csv (c engine) (GH14418).
• Fixed regression in DataFrame.quantile when missing values were present in some columns (GH14357).
• Fixed regression in Index.difference where the freq of a DatetimeIndex was incorrectly set (GH14323)
• Added back pandas.core.common.array_equivalent with a deprecation warning (GH14555).
• Bug in `pd.read_csv` for the C engine in which quotation marks were improperly parsed in skipped rows (GH14459)
• Bug in `pd.read_csv` for Python 2.x in which Unicode quote characters were no longer being respected (GH14477)
• Fixed regression in `Index.append` when categorical indices were appended (GH14545).
• Fixed regression in `pd.DataFrame` where constructor fails when given dict with `None` value (GH14381)
• Fixed regression in `DatetimeIndex._maybe_cast_slice_bound` when index is empty (GH14354).
• Bug in localizing an ambiguous timezone when a boolean is passed (GH14402)
• Bug in `TimedeltaIndex` addition with a Datetime-like object where addition overflow in the negative direction was not being caught (GH14068, GH14453)
• Bug in string indexing against data with `objectIndex` may raise `AttributeError` (GH14424)
• Correctly raise `ValueError` on empty input to `pd.eval()` and `df.query()` (GH13139)
• Bug in `groupby-transform` intersection when result is an empty set (GH14364).
• Bug in `Series._setitem__` which allowed mutating read-only arrays (GH14359).
• Bug in `DataFrame.insert` where multiple calls with duplicate columns can fail (GH14291)
• `pd.merge()` will raise `ValueError` with non-boolean parameters in passed boolean type arguments (GH14434)
• Bug in `Timestamp` where dates very near the minimum (1677-09) could underflow on creation (GH14415)
• Bug in `pd.concat` where names of the keys were not propagated to the resulting `MultiIndex` (GH14252)
• Bug in `pd.concat` where `axis` cannot take string parameters 'rows' or 'columns' (GH14369)
• Bug in `pd.concat` with dataframes heterogeneous in length and tuple keys (GH14438)
• Bug in `MultiIndex.set_levels` where illegal level values were still set after raising an error (GH13754)
• Bug in `DataFrame.to_json` where `lines=True` and a value contained a `}` character (GH14391)
• Bug in `df.groupby` causing an `AttributeError` when grouping a single index frame by a column and the index level (:issue:`14327`)
• Bug in `df.groupby` where `TypeError` raised when `pd.Grouper(key=...)` is passed in a list (GH14334)
• Bug in `pd.pivot_table` may raise `TypeError` or `ValueError` when index or columns is not scalar and values is not specified (GH14380)

v0.19.0 (October 2, 2016)

This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

• `merge_asof()` for asof-style time-series joining, see [here](#)
• `.rolling()` is now time-series aware, see [here](#)
• `read_csv()` now supports parsing Categorical data, see here
• A function `union_categorical()` has been added for combining categoricals, see here
• PeriodIndex now has its own period dtype, and changed to be more consistent with other Index classes. See here
• Sparse data structures gained enhanced support of int and bool dtypes, see here
• Comparison operations with Series no longer ignores the index, see here for an overview of the API changes.
• Introduction of a pandas development API for utility functions, see here.
• Deprecation of Panel4D and PanelND. We recommend to represent these types of n-dimensional data with the xarray package.
• Removal of the previously deprecated modules pandas.io.data, pandas.io.wb, pandas.tools.rplot.

Warning: pandas >= 0.19.0 will no longer silence numpy ufunc warnings upon import, see here.

What’s new in v0.19.0

• New features
 – `merge_asof` for asof-style time-series joining
 – `.rolling()` is now time-series aware
 – `read_csv` has improved support for duplicate column names
 – `read_csv` supports parsing Categorical directly
 – Categorical Concatenation
 – Semi-Month Offsets
 – New Index methods
 – Google BigQuery Enhancements
 – Fine-grained numpy errstate
 – `get_dummies` now returns integer dtypes
 – Downcast values to smallest possible dtype in `to_numeric`
 – pandas development API
 – Other enhancements

• API changes
 – `Series.tolist()` will now return Python types
 – Series operators for different indexes
 * Arithmetic operators
 * Comparison operators
 * Logical operators
 * Flexible comparison methods
New features

merge_asof for asof-style time-series joining

A long-time requested feature has been added through the `merge_asof()` function, to support asof style joining of time-series (GH1870, GH13695, GH13709, GH13902). Full documentation is here.

The `merge_asof()` performs an asof merge, which is similar to a left-join except that we match on nearest key rather than equal keys.

```
In [1]: left = pd.DataFrame({'a': [1, 5, 10],
                        'left_val': ['a', 'b', 'c']})
In [2]: right = pd.DataFrame({'a': [1, 2, 3, 6, 7],
                          'right_val': [1, 2, 3, 6, 7]})
```
```python
In [3]: left
Out[3]:
     left_val
0    a
1    b
2    c

In [4]: right
Out[4]:
    right_val
0     1
1     2
2     3
3     6
4     7

We typically want to match exactly when possible, and use the most recent value otherwise.

```python
In [5]: pd.merge_asof(left, right, on='a')
Out[5]:
 left_val right_val
0 a 1
1 b 3
2 c 7

We can also match rows ONLY with prior data, and not an exact match.

```python
In [6]: pd.merge_asof(left, right, on='a', allow_exact_matches=False)
Out[6]:
     left_val  right_val
0      a       NaN
1      b       3.0
2      c       7.0

In a typical time-series example, we have trades and quotes and we want to asof-join them. This also illustrates using the by parameter to group data before merging.

```python
In [7]: trades = pd.DataFrame({
 ...: 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.038', '20160525 13:30:00.048', '20160525 13:30:00.048', '20160525 13:30:00.048']),
 ...: 'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'],
 ...: 'price': [51.95, 51.95, 720.77, 720.92, 98.00],
 ...: 'quantity': [75, 155, 100, 100, 100],
 ...: columns=['time', 'ticker', 'price', 'quantity'])

In [8]: quotes = pd.DataFrame({
 ...: 'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.030', '20160525 13:30:00.041', '20160525 13:30:00.048', '20160525 13:30:00.048'])
```
In [9]: trades
Out[9]:

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.038</td>
<td>MSFT</td>
<td>51.95</td>
<td>155</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.77</td>
<td>100</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.92</td>
<td>100</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>AAPL</td>
<td>98.00</td>
<td>100</td>
</tr>
</tbody>
</table>

In [10]: quotes
Out[10]:

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>51.96</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.030</td>
<td>MSFT</td>
<td>51.97</td>
<td>51.98</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.041</td>
<td>MSFT</td>
<td>51.99</td>
<td>52.00</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.049</td>
<td>AAPL</td>
<td>97.99</td>
<td>98.01</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.072</td>
<td>GOOG</td>
<td>720.50</td>
<td>720.88</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.075</td>
<td>MSFT</td>
<td>52.01</td>
<td>52.03</td>
</tr>
</tbody>
</table>

An asof merge joins on the `on`, typically a datetimelike field, which is ordered, and in this case we are using a grouper in the `by` field. This is like a left-outer join, except that forward filling happens automatically taking the most recent non-NaN value.

In [11]: pd.merge_asof(trades, quotes, on='time', by='ticker')
Out[11]:

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
<td>51.95</td>
<td>51.96</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.038</td>
<td>MSFT</td>
<td>51.95</td>
<td>155</td>
<td>51.97</td>
<td>51.98</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.77</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.92</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>AAPL</td>
<td>98.00</td>
<td>100</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

This returns a merged DataFrame with the entries in the same order as the original left passed DataFrame (`trades` in this case), with the fields of the `quotes` merged.

`.rolling()` is now time-series aware

`.rolling()` objects are now time-series aware and can accept a time-series offset (or convertible) for the `window`
argument (GH13327, GH12995). See the full documentation here.

```python
In [12]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
 index=pd.date_range('20130101 09:00:00', periods=5, freq='s'))

In [13]: dft
Out[13]:
 B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 2.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 4.0
```

This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

```python
In [14]: dft.rolling(2).sum()
Out[14]:
 B
2013-01-01 09:00:00 NaN
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 NaN
2013-01-01 09:00:04 NaN
```

```python
In [15]: dft.rolling(2, min_periods=1).sum()
Out[15]:
 B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
```

Specifying an offset allows a more intuitive specification of the rolling frequency.

```python
In [16]: dft.rolling('2s').sum()
Out[16]:
 B
2013-01-01 09:00:00 0.0
2013-01-01 09:00:01 1.0
2013-01-01 09:00:02 3.0
2013-01-01 09:00:03 2.0
2013-01-01 09:00:04 4.0
```

Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

```python
In [17]: dft = DataFrame({'B': [0, 1, 2, np.nan, 4]},
 index = pd.Index([pd.Timestamp('20130101 09:00:00'),
 pd.Timestamp('20130101 09:00:02'),
 pd.Timestamp('20130101 09:00:03'),
 pd.Timestamp('20130101 09:00:05'),
 pd.Timestamp('20130101 09:00:06')],
 name='foo'))

In [18]: dft
```
Using the time-specification generates variable windows for this sparse data.

Furthermore, we now allow an optional `on` parameter to specify a column (rather than the default of the index) in a DataFrame.

**read_csv** has improved support for duplicate column names

*Duplicate column names* are now supported in `read_csv()` whether they are in the file or passed in as the `names`
parameter (GH7160, GH9424)

```python
In [24]: data = '0,1,2
 :3,4,5'
In [25]: names = ['a', 'b', 'a']
```

### Previous behavior:

```python
In [2]: pd.read_csv(StringIO(data), names=names)
Out[2]:
 a b a
0 2 1 2
1 5 4 5
```

The first a column contained the same data as the second a column, when it should have contained the values $[0,3]$.

### New behavior:

```python
In [26]: pd.read_csv(StringIO(data), names=names)
Out[26]:
 a b a.1
0 0 1 2
1 3 4 5
```

**read_csv supports parsing Categorical directly**

The `read_csv()` function now supports parsing a `Categorical` column when specified as a `dtype` (GH10153). Depending on the structure of the data, this can result in a faster parse time and lower memory usage compared to converting to `Categorical` after parsing. See the io docs here.

```python
In [27]: data = 'col1,col2,col3
 :a,b,1
 :a,b,2
 :c,d,3'
In [28]: pd.read_csv(StringIO(data))
Out[28]:
 col1 col2 col3
0 a b 1
1 a b 2
2 c d 3
In [29]: pd.read_csv(StringIO(data)).dtypes
Out[29]:
 col1 object
 col2 object
 col3 int64
dtype: object
In [30]: pd.read_csv(StringIO(data), dtype='category').dtypes
Out[30]:
 col1 category
 col2 category
 col3 category
dtype: object
```

Individual columns can be parsed as a `Categorical` using a dict specification

```python
In [31]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
Out[31]:
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

<table>
<thead>
<tr>
<th>col1</th>
<th>category</th>
</tr>
</thead>
<tbody>
<tr>
<td>col2</td>
<td>object</td>
</tr>
<tr>
<td>col3</td>
<td>int64</td>
</tr>
</tbody>
</table>

dtype: object

Note: The resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can be converted using the `to_numeric()` function, or as appropriate, another converter such as `to_datetime()`.

```
In [32]: df = pd.read_csv(StringIO(data), dtype='category')
In [33]: df.dtypes
Out[33]:
col1 category
col2 category
col3 category
dtype: object

In [34]: df['col3']
Out[34]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, object): [1, 2, 3]

In [35]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)
In [36]: df['col3']
Out[36]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, int64): [1, 2, 3]
```

Categorical Concatenation

- A function `union_categoricals()` has been added for combining categoricals, see `Unioning Categoricals (GH13361, GH:13763, issue:13846, GH14173)`

```
In [37]: from pandas.types.concat import union_categoricals
In [38]: a = pd.Categorical(['b', 'c'])
In [39]: b = pd.Categorical(['a', 'b'])
In [40]: union_categoricals([a, b])
Out[40]:
[b, c, a, b]
Categories (3, object): [b, c, a]
```

- `concat` and `append` now can concat category dtypes with different categories as object dtype (`GH13524`)
In [41]: s1 = pd.Series(['a', 'b'], dtype='category')
In [42]: s2 = pd.Series(['b', 'c'], dtype='category')

Previous behavior:
In [1]: pd.concat([s1, s2])
ValueError: incompatible categories in categorical concat

New behavior:
In [43]: pd.concat([s1, s2])
Out[43]:
   0   a
   1   b
   0   b
   1   c
dtype: object

Semi-Month Offsets

Pandas has gained new frequency offsets, SemiMonthEnd (‘SM’) and SemiMonthBegin (‘SMS’). These provide date offsets anchored (by default) to the 15th and end of month, and 15th and 1st of month respectively. (GH1543)

In [44]: from pandas.tseries.offsets import SemiMonthEnd, SemiMonthBegin

SemiMonthEnd:
In [45]: Timestamp('2016-01-01') + SemiMonthEnd()
Out[45]: Timestamp('2016-01-15 00:00:00')
In [46]: pd.date_range('2015-01-01', freq='SM', periods=4)
                     dtype='datetime64[ns]', freq='SM-15')

SemiMonthBegin:
In [47]: Timestamp('2016-01-01') + SemiMonthBegin()
Out[47]: Timestamp('2016-01-15 00:00:00')
In [48]: pd.date_range('2015-01-01', freq='SMS', periods=4)
                      dtype='datetime64[ns]', freq='SMS-15')

Using the anchoring suffix, you can also specify the day of month to use instead of the 15th.
In [49]: pd.date_range('2015-01-01', freq='SMS-16', periods=4)
Out[49]: DatetimeIndex(['2015-01-01', '2015-01-16', '2015-02-01', '2015-02-16'],
                      dtype='datetime64[ns]', freq='SMS-16')
In [50]: pd.date_range('2015-01-01', freq='SM-14', periods=4)
                      dtype='datetime64[ns]', freq='SM-14')
New Index methods

The following methods and options are added to Index, to be more consistent with the Series and DataFrame API.

Index now supports the .where() function for same shape indexing (GH13170)

```
In [51]: idx = pd.Index(["a", "b", "c")

In [52]: idx.where([True, False, True])
Out[52]: Index([u'a', nan, u'c'], dtype='object')
```

Index now supports .dropna() to exclude missing values (GH6194)

```
In [53]: idx = pd.Index([1, 2, np.nan, 4])
In [54]: idx.dropna()
Out[54]: Float64Index([1.0, 2.0, 4.0], dtype='float64')
```

For MultiIndex, values are dropped if any level is missing by default. Specifying how='all' only drops values where all levels are missing.

```
In [55]: midx = pd.MultiIndex.from_arrays([[1, 2, np.nan, 4],
 [1, 2, np.nan, np.nan]]
In [56]: midx
Out[56]: MultiIndex(levels=[[1, 2, 4], [1, 2]],
 labels=[[0, 1, -1, 2], [0, 1, -1, -1]])
In [57]: midx.dropna()
Out[57]: MultiIndex(levels=[[1, 2, 4], [1, 2]],
 labels=[[0, 1, 2], [0, 1, -1]])
In [58]: midx.dropna(how='all')
Out[58]: MultiIndex(levels=[[1, 2, 4], [1, 2]],
 labels=[[0, 1, 2], [0, 1, -1]])
```

Index now supports .str.extractall() which returns a DataFrame, see the docs here (GH10008, GH13156)

```
In [59]: idx = pd.Index(["a1a2", "b1", "c1")
In [60]: idx.str.extractall("[ab](?P<digit>\d)")
Out[60]:
 digit
match
0 0 1
1 1 2
1 0 1
```

Index.astype() now accepts an optional boolean argument copy, which allows optional copying if the requirements on dtype are satisfied (GH13209)
Google BigQuery Enhancements

- The `read_gbq()` method has gained the `dialect` argument to allow users to specify whether to use BigQuery’s legacy SQL or BigQuery’s standard SQL. See the docs for more details (GH13615).

- The `to_gbq()` method now allows the DataFrame column order to differ from the destination table schema (GH11359).

Fine-grained numpy errstate

Previous versions of pandas would permanently silence numpy’s ufunc error handling when pandas was imported. Pandas did this in order to silence the warnings that would arise from using numpy ufuncs on missing data, which are usually represented as NaNs. Unfortunately, this silenced legitimate warnings arising in non-pandas code in the application. Starting with 0.19.0, pandas will use the `numpy.errstate` context manager to silence these warnings in a more fine-grained manner, only around where these operations are actually used in the pandas codebase. (GH13109, GH13145)

After upgrading pandas, you may see new `RuntimeWarnings` being issued from your code. These are likely legitimate, and the underlying cause likely existed in the code when using previous versions of pandas that simply silenced the warning. Use `numpy.errstate` around the source of the `RuntimeWarning` to control how these conditions are handled.

get_dummies now returns integer dtypes

The `pd.get_dummies` function now returns dummy-encoded columns as small integers, rather than floats (GH8725). This should provide an improved memory footprint.

**Previous behavior:**

```
In [1]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[1]:
a float64
b float64
c float64
dtype: object
```

**New behavior:**

```
In [61]: pd.get_dummies(['a', 'b', 'a', 'c']).dtypes
Out[61]:
a uint8
b uint8
c uint8
dtype: object
```

Downcast values to smallest possible dtype in `to_numeric`

`pd.to_numeric()` now accepts a `downcast` parameter, which will downcast the data if possible to smallest specified numerical dtype (GH13352)

```
In [62]: s = ['1', 2, 3]
In [63]: pd.to_numeric(s, downcast='unsigned')
Out[63]: array([1, 2, 3], dtype=uint8)
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

In [64]: pd.to_numeric(s, downcast='integer')
Out[64]: array([1, 2, 3], dtype=int8)

pandas development API

As part of making pandas API more uniform and accessible in the future, we have created a standard sub-package of pandas, pandas.api to hold public API's. We are starting by exposing type introspection functions in pandas.api.types. More sub-packages and officially sanctioned API's will be published in future versions of pandas (GH13147, GH13634)

The following are now part of this API:

In [65]: import pprint

In [66]: from pandas.api import types

In [67]: funcs = [ f for f in dir(types) if not f.startswith('_') ]

In [68]: pprint.pprint(funcs)
['is_any_int_dtype',
 'is_bool',
 'is_bool_dtype',
 'is_categorical',
 'is_categorical_dtype',
 'is_complex',
 'is_complex_dtype',
 'is_datetime64_any_dtype',
 'is_datetime64_dtype',
 'is_datetime64_ns_dtype',
 'is_datetime64tz_dtype',
 'is_datetimetz',
 'is_dict_like',
 'is_dtype_equal',
 'is_extension_type',
 'is_float',
 'is_float_dtype',
 'is_floating_dtype',
 'is_hashable',
 'is_int64_dtype',
 'is_integer',
 'is_integer_dtype',
 'is_iterator',
 'is_list_like',
 'is_named_tuple',
 'is_number',
 'is_numeric_dtype',
 'is_object_dtype',
 'is_period',
 'is_period_dtype',
 'is_re',
 'is_re_compilable',
 'is_scalar',
 'is_sequence',
 'is_sparse',
 'is_string_dtype',
 'is_timedelta64_dtype',
]


'b_is_timedelta64_ns_dtype',
'pandas_dtype']

Note: Calling these functions from the internal module pandas.core.common will now show a DeprecationWarning (GH13990)

Other enhancements

- **Timestamp** can now accept positional and keyword parameters similar to datetime.datetime() (GH10758, GH11630)

  ```python
 In [69]: pd.Timestamp(2012, 1, 1)
 Out[69]: Timestamp('2012-01-01 00:00:00')

 In [70]: pd.Timestamp(year=2012, month=1, day=1, hour=8, minute=30)
 Out[70]: Timestamp('2012-01-01 08:30:00')
  ```

- The `.resample()` function now accepts a `on=` or `level=` parameter for resampling on a datetimelike column or MultiIndex level (GH13500)

  ```python
 In [71]: df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5),
 'a': np.arange(5),
 index=pd.MultiIndex.from_arrays([
 [1,2,3,4,5],
 pd.date_range('2015-01-01', freq='W', periods=5)],
 names=['v','d']))

 In [72]: df
 Out[72]:
 a date
 v d
 1 2015-01-04 0 2015-01-04
 2 2015-01-11 1 2015-01-11
 3 2015-01-18 2 2015-01-18
 4 2015-01-25 3 2015-01-25
 5 2015-02-01 4 2015-02-01

 In [73]: df.resample('M', on='date').sum()
 Out[73]:
 a
 date
 2015-01-31 6
 2015-02-28 4

 In [74]: df.resample('M', level='d').sum()
 Out[74]:
 a
 d
 2015-01-31 6
 2015-02-28 4
  ```
• The `.get_credentials()` method of `GbqConnector` can now first try to fetch the application default credentials. See the docs for more details (GH13577).

• The `.tz_localize()` method of `DatetimeIndex` and `Timestamp` has gained the `errors` keyword, so you can potentially coerce nonexistent timestamps to `NaT`. The default behavior remains to raising a `NonExistingTimeError` (GH13057).

• The `.to_hdf/read_hdf()` now accept path objects (e.g. `pathlib.Path`, `py.path.local`) for the file path (GH11773).

• The `pd.read_csv()` with `engine='python'` has gained support for the `decimal` (GH12933), `na_filter` (GH13321) and the `memory_map` option (GH13381).

• Consistent with the Python API, `pd.read_csv()` will now interpret `+inf` as positive infinity (GH13274).

• The `pd.read_html()` has gained support for the `na_values`, `converters`, `keep_default_na` options (GH13461).

• `Categorical.astype()` now accepts an optional boolean argument `copy`, effective when `dtype` is categorical (GH13209).

• `DataFrame` has gained the `.asof()` method to return the last non-NaN values according to the selected subset (GH13358).

• The DataFrame constructor will now respect key ordering if a list of `OrderedDict` objects are passed in (GH13304).

• `pd.read_html()` has gained support for the `decimal` option (GH12907).

• Series has gained the properties `.is_monotonic`, `.is_monotonic_increasing`, `.is_monotonic_decreasing`, similar to Index (GH13336).

• `DataFrame.to_sql()` now allows a single value as the SQL type for all columns (GH11886).

• Series.append now supports the `ignore_index` option (GH13677).

• `.to_stata()` and `StataWriter` can now write variable labels to Stata dta files using a dictionary to make column names to labels (GH13535, GH13536).

• `.to_stata()` and `StataWriter` will automatically convert `datetime64[ns]` columns to Stata format `%tc`, rather than raising a `ValueError` (GH12259).

• `read_stata()` and `StataReader` raise with a more explicit error message when reading Stata files with repeated value labels when `convert_categoricals=True` (GH13923).

• `DataFrame.style` will now render sparsified MultiIndexes (GH11655).

• `DataFrame.style` will now show column level names (e.g. `DataFrame.columns.names`) (GH13775).

• `DataFrame` has gained support to re-order the columns based on the values in a row using `df.sort_values(by='...', axis=1)` (GH10806).

```
In [75]: df = pd.DataFrame({
'A': [2, 7],
'B': [3, 5],
'C': [4, 8],
},
 index=['row1', 'row2'])

In [76]: df
Out[76]:
 A B C
row1 2 3 4
row2 7 5 8

In [77]: df.sort_values(by='row2', axis=1)
Out[77]:
```

Chapter 1. What’s New
• Added documentation to I/O regarding the perils of reading in columns with mixed dtypes and how to handle it (GH13746)

• `to_html()` now has a `border` argument to control the value in the opening `<table>` tag. The default is the value of the `html.border` option, which defaults to 1. This also affects the notebook HTML repr, but since Jupyter’s CSS includes a border-width attribute, the visual effect is the same. (GH11563).

• Raise ImportError in the sql functions when sqlalchemy is not installed and a connection string is used (GH11920).

• Compatibility with matplotlib 2.0. Older versions of pandas should also work with matplotlib 2.0 (GH13333)

• `Timestamp`, `Period`, `DatetimeIndex`, `PeriodIndex` and `.dt` accessor have gained a `.is_leap_year` property to check whether the date belongs to a leap year. (GH13727)

• `astype()` will now accept a dict of column name to data types mapping as the `dtype` argument. (GH12086)

• The `pd.read_json` and `DataFrame.to_json` has gained support for reading and writing json lines with `lines` option see Line delimited json (GH9180)

• `read_excel()` now supports the `true_values` and `false_values` keyword arguments (GH13347)

• `groupby()` will now accept a scalar and a single-element list for specifying `level` on a non-MultiIndex grouper. (GH13907)

• Non-convertible dates in an excel date column will be returned without conversion and the column will be object dtype, rather than raising an exception (GH10001).

• `pd.Timedelta(None)` is now accepted and will return `NaT`, mirroring `pd.Timestamp` (GH13687)

• `pd.read_stata()` can now handle some format 111 files, which are produced by SAS when generating Stata dta files (GH11526)

• Series and Index now support `divmod` which will return a tuple of series or indices. This behaves like a standard binary operator with regards to broadcasting rules (GH14208).

### API changes

`Series.tolist()` will now return Python types

`Series.tolist()` will now return Python types in the output, mimicking NumPy `.tolist()` behavior (GH10904)

```
In [78]: s = pd.Series([1,2,3])

Previous behavior:

In [7]: type(s.tolist()[0])
Out[7]:
<class 'numpy.int64'>

New behavior:

In [79]: type(s.tolist()[0])
Out[79]: int
```
Series operators for different indexes

Following Series operators have been changed to make all operators consistent, including DataFrame (GH1134, GH4581, GH13538)

- Series comparison operators now raise ValueError when index are different.
- Series logical operators align both index of left and right hand side.

Warning: Until 0.18.1, comparing Series with the same length, would succeed even if the .index are different (the result ignores .index). As of 0.19.0, this will raises ValueError to be more strict. This section also describes how to keep previous behavior or align different indexes, using the flexible comparison methods like .eq.

As a result, Series and DataFrame operators behave as below:

Arithmetic operators

Arithmetic operators align both index (no changes).

In [80]: s1 = pd.Series([1, 2, 3], index=list('ABC'))
In [81]: s2 = pd.Series([2, 2, 2], index=list('ABD'))
In [82]: s1 + s2
Out[82]:
       A    3.0
       B    4.0
       C   NaN
       D   NaN
       dtype: float64
In [83]: df1 = pd.DataFrame([1, 2, 3], index=list('ABC'))
In [84]: df2 = pd.DataFrame([2, 2, 2], index=list('ABD'))
In [85]: df1 + df2
Out[85]:
        0
     A    3.0
     B    4.0
     C   NaN
     D   NaN

Comparison operators

Comparison operators raise ValueError when .index are different.

Previous Behavior (Series):
Series compared values ignoring the .index as long as both had the same length:

In [1]: s1 == s2
Out[1]:
New behavior (Series):

```python
In [2]: s1 == s2
Out[2]:
ValueError: Can only compare identically-labeled Series objects
```

Note: To achieve the same result as previous versions (compare values based on locations ignoring `.index`), compare both `.values`.

```python
In [86]: s1.values == s2.values
Out[86]: array([False, True, False], dtype=bool)
```

If you want to compare Series aligning its `.index`, see flexible comparison methods section below:

```python
In [87]: s1.eq(s2)
Out[87]:
A False
B True
C False
D False
dtype: bool
```

Current Behavior (DataFrame, no change):

```python
In [3]: df1 == df2
Out[3]:
ValueError: Can only compare identically-labeled DataFrame objects
```

**Logical operators**

Logical operators align both `.index` of left and right hand side.

Previous behavior (Series), only left hand side index was kept:

```python
In [4]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [5]: s2 = pd.Series([True, True, True], index=list('ABD'))
In [6]: s1 & s2
Out[6]:
A True
B False
C False
dtype: bool
```

New behavior (Series):

```python
In [88]: s1 = pd.Series([True, False, True], index=list('ABC'))
In [89]: s2 = pd.Series([True, True, True], index=list('ABD'))
```
In [90]: s1 & s2
Out[90]:
A   True
B   False
C   False
D   False
dtype: bool

Note: Series logical operators fill a NaN result with False.

Note: To achieve the same result as previous versions (compare values based on only left hand side index), you can use `reindex_like`:

In [91]: s1 & s2.reindex_like(s1)
Out[91]:
A   True
B   False
C   False
dtype: bool

Current Behavior (DataFrame, no change):

In [92]: df1 = pd.DataFrame([True, False, True], index=list('ABC'))
In [93]: df2 = pd.DataFrame([True, True, True], index=list('ABD'))
In [94]: df1 & df2
Out[94]:
    0
A   True
B   False
C   NaN
D   NaN

Flexible comparison methods

Series flexible comparison methods like `eq`, `ne`, `le`, `lt`, `ge` and `gt` now align both index. Use these operators if you want to compare two Series which has the different index.

In [95]: s1 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
In [96]: s2 = pd.Series([2, 2, 2], index=['b', 'c', 'd'])
In [97]: s1.eq(s2)
Out[97]:
a   False
b   True
c   False
d   False
dtype: bool
In [98]: s1.ge(s2)
Previously, this worked the same as comparison operators (see above).

**Series type promotion on assignment**

A `Series` will now correctly promote its dtype for assignment with incompat values to the current dtype (GH13234)

```python
In [99]: s = pd.Series()

Previous behavior:

```python
In [2]: s['a'] = pd.Timestamp('2016-01-01')
In [3]: s['b'] = 3.0
TypeError: invalid type promotion
```

New behavior:

```python
In [100]: s['a'] = pd.Timestamp('2016-01-01')
In [101]: s['b'] = 3.0
```

```
In [102]: s
dtype: object
```

```
In [103]: s.dtype
Out[103]: dtype('O')
```

`.to_datetime()` changes

Previously if `.to_datetime()` encountered mixed integers/floats and strings, but no datetimes with errors='coerce' it would convert all to NaT.

Previous behavior:

```python
In [2]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[2]: DatetimeIndex([NaT, NaT], dtype=datetime64[ns], freq=None)
```

Current behavior:

This will now convert integers/floats with the default unit of ns.

```python
In [104]: pd.to_datetime([1, 'foo'], errors='coerce')
Out[104]: DatetimeIndex(['1970-01-01 00:00:00.000000001', 'NaT'], dtype='datetime64[ns]', freq=None)
```

Bug fixes related to `.to_datetime()`:
• Bug in `pd.to_datetime()` when passing integers or floats, and no `unit` and `errors='coerce'` (GH13180).

• Bug in `pd.to_datetime()` when passing invalid datatypes (e.g. bool); will now respect the `errors` keyword (GH13176)

• Bug in `pd.to_datetime()` which overflowed on `int8`, and `int16` dtypes (GH13451)

• Bug in `pd.to_datetime()` raise `AttributeError` with NaN and the other string is not valid when `errors='ignore'` (GH12424)

• Bug in `pd.to_datetime()` did not cast floats correctly when `unit` was specified, resulting in truncated datetime (GH13834)

Merging changes

Merging will now preserve the dtype of the join keys (GH8596)

```
In [105]: df1 = pd.DataFrame({'key': [1], 'v1': [10]})

In [106]: df1
Out[106]:
   key  v1
0    1  10

In [107]: df2 = pd.DataFrame({'key': [1, 2], 'v1': [20, 30]})

In [108]: df2
Out[108]:
   key  v1
0    1  20
1    2  30
```

Previous behavior:

```
In [5]: pd.merge(df1, df2, how='outer')
Out[5]:
   key  v1
0    1  10.0
1    1  20.0
2    2  30.0

In [6]: pd.merge(df1, df2, how='outer').dtypes
Out[6]:
   key     float64
  v1     float64
dtype: object
```

New behavior:

We are able to preserve the join keys

```
In [109]: pd.merge(df1, df2, how='outer')
Out[109]:
   key  v1
0    1  10
1    1  20
2    2  30
```
Of course if you have missing values that are introduced, then the resulting dtype will be upcast, which is unchanged from previous.

```
In [111]: pd.merge(df1, df2, how='outer', on='key')
Out[111]:
 key  v1_x  v1_y
0 1  1.0  20
1 2   NaN  30
```

```
In [112]: pd.merge(df1, df2, how='outer', on='key').dtypes
Out[112]:
 key  int64
v1_x float64
v1_y  int64
dtype: object
```

.describe() changes

Percentile identifiers in the index of a `.describe()` output will now be rounded to the least precision that keeps them distinct (GH13104)

```
In [113]: s = pd.Series([0, 1, 2, 3, 4])
In [114]: df = pd.DataFrame([0, 1, 2, 3, 4])
```

Previous behavior:

The percentiles were rounded to at most one decimal place, which could raise `ValueError` for a data frame if the percentiles were duplicated.

```
In [3]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[3]:
 count    5.000000
 mean     2.000000
 std      1.581139
 min      0.000000
 0.0%     0.000040
 0.1%     0.000200
 0.1%     0.004000
 50%      2.000000
 99.9%    3.996000
100.0%    3.998000
100.0%    3.999600
 max      4.000000
dtype: float64
```

```
In [4]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[4]:
 ...  
ValueError: cannot reindex from a duplicate axis
```
New behavior:

```python
In [115]: s.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[115]:
   count      5.000000
       mean    2.000000
       std    1.581139
       min     0.000000
  0.01%     0.000400
  0.05%     0.002000
  0.1%     0.004000
   50%    2.000000
 99.9%    3.996000
 99.95%   3.998000
 99.99%   3.999600
   max    4.000000
dtype: float64

In [116]: df.describe(percentiles=[0.0001, 0.0005, 0.001, 0.999, 0.9995, 0.9999])
Out[116]:
    0
   count    5.000000
       mean    2.000000
       std    1.581139
       min     0.000000
  0.01%     0.000400
  0.05%     0.002000
  0.1%     0.004000
   50%    2.000000
 99.9%    3.996000
 99.95%   3.998000
 99.99%   3.999600
   max    4.000000

Furthermore:

- Passing duplicated percentiles will now raise a ValueError.
- Bug in `.describe()` on a DataFrame with a mixed-dtype column index, which would previously raise a TypeError (GH13288)

Period changes

**PeriodIndex now has period dtype**

PeriodIndex now has its own period dtype. The period dtype is a pandas extension dtype like category or the timezone aware dtype (datetime64[ns, tz]) (GH13941). As a consequence of this change, PeriodIndex no longer has an integer dtype:

Previous behavior:

```python
In [1]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')

In [2]: pi
Out[2]: PeriodIndex(['2016-08-01'], dtype='int64', freq='D')

In [3]: pd.api.types.is_integer_dtype(pi)
Out[3]: True
```
In [4]: pi.dtype
Out[4]: dtype('int64')

New behavior:

In [117]: pi = pd.PeriodIndex(['2016-08-01'], freq='D')
In [118]: pi
Out[118]: PeriodIndex(['2016-08-01'], dtype='period[D]', freq='D')
In [119]: pd.api.types.is_integer_dtype(pi)
Out[119]: False
In [120]: pd.api.types.is_period_dtype(pi)
Out[120]: True
In [121]: pi.dtype
Out[121]: period[D]
In [122]: type(pi.dtype)
Out[122]: pandas.types.dtypes.PeriodDtype

Period('NaT') now returns pd.NaT

Previously, Period has its own Period('NaT') representation different from pd.NaT. Now Period('NaT') has been changed to return pd.NaT. (GH12759, GH13582)

Previous behavior:

In [5]: pd.Period('NaT', freq='D')
Out[5]: Period('NaT', 'D')

New behavior:

These result in pd.NaT without providing freq option.

In [123]: pd.Period('NaT')
Out[123]: NaT
In [124]: pd.Period(None)
Out[124]: NaT

To be compatible with Period addition and subtraction, pd.NaT now supports addition and subtraction with int. Previously it raised ValueError.

Previous behavior:

In [5]: pd.NaT + 1
... Value Error: Cannot add integral value to Timestamp without freq.

New behavior:

In [125]: pd.NaT + 1
Out[125]: NaT
PeriodIndex.values now returns array of Period object

.values is changed to return an array of Period objects, rather than an array of integers (GH13988).

Previous behavior:

```python
In [6]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [7]: pi.values
array([492, 493])
```

New behavior:

```python
In [127]: pi = pd.PeriodIndex(['2011-01', '2011-02'], freq='M')
In [128]: pi.values
Out[128]: array([Period('2011-01', 'M'), Period('2011-02', 'M')], dtype=object)
```

Index + / — no longer used for set operations

Addition and subtraction of the base Index type and of DatetimeIndex (not the numeric index types) previously performed set operations (set union and difference). This behavior was already deprecated since 0.15.0 (in favor using the specific .union() and .difference() methods), and is now disabled. When possible, + and - are now used for element-wise operations, for example for concatenating strings or subtracting datetimes (GH8227, GH14127).

Previous behavior:

```python
In [1]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
```

```python
FutureWarning: using '+' to provide set union with Indexes is deprecated, use '|' or .union()
Out[1]: Index(['a', 'b', 'c'], dtype='object')
```

New behavior: the same operation will now perform element-wise addition:

```python
In [129]: pd.Index(['a', 'b']) + pd.Index(['a', 'c'])
Out[129]: Index(['aa', 'bc'], dtype='object')
```

Note that numeric Index objects already performed element-wise operations. For example, the behavior of adding two integer Indexes is unchanged. The base Index is now made consistent with this behavior.

```python
In [130]: pd.Index([1, 2, 3]) + pd.Index([2, 3, 4])
Out[130]: Int64Index([3, 5, 7], dtype='int64')
```

Further, because of this change, it is now possible to subtract two DatetimeIndex objects resulting in a TimedeltaIndex:

Previous behavior:

```python
In [1]: pd.DatetimeIndex(['2016-01-01', '2016-01-02']) - pd.DatetimeIndex(['2016-01-02', '2016-01-03'])
```

```python
FutureWarning: using '-' to provide set differences with datetimelike Indexes is deprecated, use .difference()
Out[1]: DatetimeIndex(['2016-01-01'], dtype='datetime64[ns]', freq=None)
```
New behavior:

```
In [131]: pd.DatetimeIndex(['2016-01-01', '2016-01-02']) - pd.DatetimeIndex(['2016-01-02', '2016-01-03'])
Out[131]: TimedeltaIndex(['-1 days', '-1 days'], dtype='timedelta64[ns]', freq=None)
```

**Index.difference and .symmetric_difference changes**

Index.difference and Index.symmetric_difference will now, more consistently, treat NaN values as any other values. (GH13514)

```
In [132]: idx1 = pd.Index([1, 2, 3, np.nan])
In [133]: idx2 = pd.Index([0, 1, np.nan])

Previous behavior:
```
In [3]: idx1.difference(idx2)
Out[3]: Float64Index([nan, 2.0, 3.0], dtype='float64')
In [4]: idx1.symmetric_difference(idx2)
Out[4]: Float64Index([0.0, nan, 2.0, 3.0], dtype='float64')
```

```
New behavior:
```
```
In [134]: idx1.difference(idx2)
Out[134]: Float64Index([2.0, 3.0], dtype='float64')
In [135]: idx1.symmetric_difference(idx2)
Out[135]: Float64Index([0.0, 2.0, 3.0], dtype='float64')
```

Index.unique consistently returns Index

Index.unique() now returns unique values as an Index of the appropriate dtype. (GH13395). Previously, most Index classes returned np.ndarray, and DatetimeIndex, TimedeltaIndex and PeriodIndex returned Index to keep metadata like timezone.

```
Previous behavior:
```
```
In [1]: pd.Index([1, 2, 3]).unique()
Out[1]: array([1, 2, 3])
```
```
In [2]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo').unique()
Out[2]: DatetimeIndex(['2011-01-01 00:00:00+09:00', '2011-01-02 00:00:00+09:00',
                     '2011-01-03 00:00:00+09:00'],
                    dtype='datetime64[ns, Asia/Tokyo]', freq=None)
```

```
New behavior:
```
```
In [136]: pd.Index([1, 2, 3]).unique()
Out[136]: Int64Index([1, 2, 3], dtype='int64')
```
```
In [137]: pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz='Asia/Tokyo').unique()
```

1.3. v0.19.0 (October 2, 2016)
MultiIndex constructors, groupby and set_index preserve categorical dtypes

MultiIndex.from_arrays and MultiIndex.from_product will now preserve categorical dtype in MultiIndex levels (GH13743, GH13854).

```python
In [138]: cat = pd.Categorical(['a', 'b'], categories=list('bac'))
In [139]: lvl1 = ['foo', 'bar']
In [140]: midx = pd.MultiIndex.from_arrays([cat, lvl1])
In [141]: midx
Out[141]: MultiIndex(levels=[['b', 'a', 'c'], ['bar', 'foo']], labels=[[1, 0], [1, 0]])
```

Previous behavior:

```python
In [4]: midx.levels[0]
Out[4]: Index(['b', 'a', 'c'], dtype='object')
In [5]: midx.get_level_values[0]
Out[5]: Index(['a', 'b'], dtype='object')
```

New behavior: the single level is now a CategoricalIndex:

```python
In [142]: midx.levels[0]
Out[142]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'], ordered=False, dtype='category')
In [143]: midx.get_level_values[0]
Out[143]: CategoricalIndex(['a', 'b'], categories=['b', 'a', 'c'], ordered=False, dtype='category')
```

An analogous change has been made to MultiIndex.from_product. As a consequence, groupby and set_index also preserve categorical dtypes in indexes

```python
In [144]: df = pd.DataFrame({'A': [0, 1], 'B': [10, 11], 'C': cat})
In [145]: df_grouped = df.groupby(by=['A', 'C']).first()
In [146]: df_set_idx = df.set_index(['A', 'C'])
```

Previous behavior:

```python
In [11]: df_grouped.index.levels[1]
Out[11]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [12]: df_grouped.reset_index().dtypes
Out[12]:
     A  int64
     C  object
```
B float64
dtype: object

In [13]: df_set_idx.index.levels[1]
Out[13]: Index(['b', 'a', 'c'], dtype='object', name='C')
In [14]: df_set_idx.reset_index().dtypes
Out[14]:
A int64
C object
B int64
dtype: object

New behavior:

In [147]: df_grouped.index.levels[1]
Out[147]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'],
ordered=False, name='C', dtype='category')
In [148]: df_grouped.reset_index().dtypes
Out[148]:
A int64
C category
B float64
dtype: object
In [149]: df_set_idx.index.levels[1]
Out[149]: CategoricalIndex(['b', 'a', 'c'], categories=['b', 'a', 'c'],
ordered=False, name='C', dtype='category')
In [150]: df_set_idx.reset_index().dtypes
Out[150]:
A int64
C category
B int64
dtype: object

read_csv will progressively enumerate chunks

When `read_csv()` is called with `chunksize=n` and without specifying an index, each chunk used to have an independently generated index from 0 to n-1. They are now given instead a progressive index, starting from 0 for the first chunk, from n for the second, and so on, so that, when concatenated, they are identical to the result of calling `read_csv()` without the `chunksize=` argument (GH12185).

In [151]: data = 'A,B
0,1
2,3
4,5
6,7'

Previous behavior:

In [2]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[2]:
A B
0 0 1
1 2 3
0 4 5
1 6 7

New behavior:
In [152]: pd.concat(pd.read_csv(StringIO(data), chunksize=2))
Out[152]:
 A B
0 0 1
1 2 3
2 4 5
3 6 7

Sparse Changes

These changes allow pandas to handle sparse data with more dtypes, and for work to make a smoother experience with data handling.

int64 and bool support enhancements

Sparse data structures now gained enhanced support of int64 and bool dtype (GH667, GH13849).

Previously, sparse data were float64 dtype by default, even if all inputs were of int or bool dtype. You had to specify dtype explicitly to create sparse data with int64 dtype. Also, fill_value had to be specified explicitly because the default was np.nan which doesn’t appear in int64 or bool data.

In [1]: pd.SparseArray([1, 2, 0, 0])
Out[1]:
[1.0, 2.0, 0.0, 0.0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)

specifying int64 dtype, but all values are stored in sp_values because fill_value default is np.nan
In [2]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[2]:
[1, 2, 0, 0]
Fill: nan
IntIndex
Indices: array([0, 1, 2, 3], dtype=int32)

In [3]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64, fill_value=0)
Out[3]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)

As of v0.19.0, sparse data keeps the input dtype, and uses more appropriate fill_value defaults (0 for int64 dtype, False for bool dtype).

In [153]: pd.SparseArray([1, 2, 0, 0], dtype=np.int64)
Out[153]:
[1, 2, 0, 0]
Fill: 0
IntIndex
Indices: array([0, 1], dtype=int32)

In [154]: pd.SparseArray([True, False, False, False])
Out[154]:
[True, False, False, False]
Fill: False
IntIndex
Indices: array([0], dtype=int32)

See the docs for more details.

Operators now preserve dtypes

- Sparse data structure now can preserve dtype after arithmetic ops (GH13848)

```
In [155]: s = pd.SparseSeries([0, 2, 0, 1], fill_value=0, dtype=np.int64)
In [156]: s.dtype
Out[156]: dtype('int64')
In [157]: s + 1
Out[157]:
0  1
1  3
2  1
3  2
dtype: int64
BlockIndex
Block locations: array([1, 3], dtype=int32)
Block lengths: array([1, 1], dtype=int32)
```

- Sparse data structure now support astype to convert internal dtype (GH13900)

```
In [158]: s = pd.SparseSeries([1., 0., 2., 0.], fill_value=0)
In [159]: s
Out[159]:
0  1.0
1  0.0
2  2.0
3  0.0
dtype: float64
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 1], dtype=int32)
In [160]: s.astype(np.int64)
Out[160]:
0  1
1  0
2  2
3  0
dtype: int64
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 1], dtype=int32)
```

astype fails if data contains values which cannot be converted to specified dtype. Note that the limitation is applied to fill_value which default is np.nan.
In [7]: pd.SparseSeries([1., np.nan, 2., np.nan], fill_value=np.nan).astype(np.int64)
Out[7]:
ValueError: unable to coerce current fill_value nan to int64 dtype

Other sparse fixes

- Subclassed SparseDataFrame and SparseSeries now preserve class types when slicing or transposing. (GH13787)
- SparseArray with bool dtype now supports logical (bool) operators (GH14000)
- Bug in SparseSeries with MultiIndex [] indexing may raise IndexError (GH13144)
- Bug in SparseSeries with MultiIndex [] indexing result may have normal Index (GH13144)
- Bug in SparseDataFrame in which axis=None did not default to axis=0 (GH13048)
- Bug in SparseSeries and SparseDataFrame creation with object dtype may raise TypeError (GH11633)
- Bug in SparseDataFrame doesn’t respect passed SparseArray or SparseSeries ‘s dtype and fill_value (GH13866)
- Bug in SparseArray and SparseSeries don’t apply ufunc to fill_value (GH13853)
- Bug in SparseSeries.abs incorrectly keeps negative fill_value (GH13853)
- Bug in single row slicing on multi-type SparseDataFrame s, types were previously forced to float (GH13917)
- Bug in SparseSeries slicing changes integer dtype to float (GH8292)
- Bug in SparseDataFrame comparison ops may raise TypeError (GH13001)
- Bug in SparseDataFrame.isnull raises ValueError (GH8276)
- Bug in SparseSeries representation with bool dtype may raise IndexError (GH13110)
- Bug in SparseSeries and SparseDataFrame of bool or int64 dtype may display its values like float64 dtype (GH13110)
- Bug in sparse indexing using SparseArray with bool dtype may return incorrect result (GH13985)
- Bug in SparseArray created from SparseSeries may lose dtype (GH13999)
- Bug in SparseSeries comparison with dense returns normal Series rather than SparseSeries (GH13999)

Indexer dtype changes

Note: This change only affects 64 bit python running on Windows, and only affects relatively advanced indexing operations

Methods such as Index.get_indexer that return an indexer array, coerce that array to a “platform int”, so that it can be directly used in 3rd party library operations like numpy.take. Previously, a platform int was defined as np.int_, which corresponds to a C integer, but the correct type, and what is being used now, is np.intp, which corresponds to the C integer size that can hold a pointer (GH3033, GH13972).
These types are the same on many platform, but for 64 bit python on Windows, np.int_ is 32 bits, and np.intp is 64 bits. Changing this behavior improves performance for many operations on that platform.

Previous behavior:

```
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int32')
```

New behavior:

```
In [1]: i = pd.Index(['a', 'b', 'c'])
In [2]: i.get_indexer(['b', 'b', 'c']).dtype
Out[2]: dtype('int64')
```

Other API Changes

- `Timestamp.to_pydatetime` will issue a `UserWarning` when `warn=True`, and the instance has a non-zero number of nanoseconds, previously this would print a message to stdout (GH14101).
- `Series.unique()` with datetime and timezone now returns return array of `Timestamp` with timezone (GH13565).
- `Panel.to_sparse()` will raise a `NotImplementedError` exception when called (GH13778).
- `Index.reshape()` will raise a `NotImplementedError` exception when called (GH12882).
- `.filter()` enforces mutual exclusion of the keyword arguments (GH12399).
- `eval`'s upcasting rules for `float32` types have been updated to be more consistent with NumPy's rules. New behavior will not upcast to `float64` if you multiply a pandas `float32` object by a scalar `float64` (GH12388).
- An `UnsupportedFunctionCall` error is now raised if NumPy ufuncs like `np.mean` are called on groupby or resample objects (GH12811).
- `__setitem__` will no longer apply a callable rhs as a function instead of storing it. Call where directly to get the previous behavior (GH13299).
- Calls to `.sample()` will respect the random seed set via `numpy.random.seed(n)` (GH13161)
- `Styler.apply` is now more strict about the outputs your function must return. For `axis=0` or `axis=1`, the output shape must be identical. For `axis=None`, the output must be a DataFrame with identical columns and index labels (GH13222).
- `Float64Index.astype(int)` will now raise `ValueError` if `Float64Index` contains NaN values (GH13149)
- `TimedeltaIndex.astype(int)` and `DatetimeIndex.astype(int)` will now return `Int64Index` instead of `np.array` (GH13209)
- Passing `Period` with multiple frequencies to normal `Index` now returns `Index` with `object` dtype (GH13664)
- `PeriodIndex.fillna` with `Period` has different freq now coerces to `object` dtype (GH13664)
- Faceted boxplots from `DataFrame.boxplot(by=col)` now return a `Series` when `return_type` is not None. Previously these returned an `OrderedDict`. Note that when `return_type=None`, the default, these still return a 2-D NumPy array (GH12216, GH7096).
pandas: powerful Python data analysis toolkit, Release 0.19.2

• `pd.read_hdf` will now raise a `ValueError` instead of `KeyError`, if a mode other than `r`, `r+` and `a` is supplied. (GH13623)

• `pd.read_csv()`, `pd.read_table()`, and `pd.read_hdf()` raise the `builtins.FileNotFoundError` exception for Python 3.x when called on a nonexistent file; this is back-ported as `IOError` in Python 2.x (GH14086)

• More informative exceptions are passed through the `csv` parser. The exception type would now be the original exception type instead of `CParserError` (GH13652).

• `pd.read_csv()` in the C engine will now issue a `ParserWarning` or raise a `ValueError` when `sep` encoded is more than one character long (GH14065)

• `DataFrame.values` will now return `float64` with a `DataFrame` of mixed `int64` and `uint64` dtypes, conforming to `np.find_common_type` (GH10364, GH13917)

• `.groupby.groups` will now return a dictionary of `Index` objects, rather than a dictionary of `np.ndarray` or `lists` (GH14293)

Deprecations

• `Series.reshape` and `Categorical.reshape` have been deprecated and will be removed in a subsequent release (GH12882, GH12882)

• `PeriodIndex.to_datetime` has been deprecated in favor of `PeriodIndex.to_timestamp` (GH8254)

• `Timestamp.to_datetime` has been deprecated in favor of `Timestamp.to_pydatetime` (GH8254)

• `Index.to_datetime` and `DatetimeIndex.to_datetime` have been deprecated in favor of `pd.to_datetime` (GH8254)

• `pandas.core.datetools` module has been deprecated and will be removed in a subsequent release (GH14094)

• `SparseList` has been deprecated and will be removed in a future version (GH13784)

• `DataFrame.to_html()` and `DataFrame.to_latex()` have dropped the `colSpace` parameter in favor of `col_space` (GH13857)

• `DataFrame.to_sql()` has deprecated the `flavor` parameter, as it is superfluous when SQLAlchemy is not installed (GH13611)

• Deprecated `read_csv` keywords:
 - `compact_ints` and `use_unsigned` have been deprecated and will be removed in a future version (GH13320)
 - `buffer_lines` has been deprecated and will be removed in a future version (GH13360)
 - `as_recarray` has been deprecated and will be removed in a future version (GH13373)
 - `skip_footer` has been deprecated in favor of `skipfooter` and will be removed in a future version (GH13349)

• top-level `pd.ordered_merge()` has been renamed to `pd.merge_ordered()` and the original name will be removed in a future version (GH13358)

• `Timestamp.offset` property (and named arg in the constructor), has been deprecated in favor of `freq` (GH12160)

• `pd.tseries.util.pivot_annual` is deprecated. Use `pivot_table` as alternative, an example is `here` (GH736)
pd.tseries.util.isleapyear has been deprecated and will be removed in a subsequent release. Datetime-likes now have a `is_leap_year` property (GH13727)

Panel4D and PanelND constructors are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the `xarray` package. Pandas provides a `to_xarray()` method to automate this conversion (GH13564).

`pandas.tseries.frequencies.get_standard_freq` is deprecated. Use `pandas.tseries.frequencies.to_offset(freq).rule_code` instead (GH13874)

`pandas.tseries.frequencies.to_offset`'s `freqstr` keyword is deprecated in favor of `freq` (GH13874)

Categorical.from_array has been deprecated and will be removed in a future version (GH13854)

Removal of prior version deprecations/changes

- The SparsePanel class has been removed (GH13778)
- The `pd.sandbox` module has been removed in favor of the external library pandas-qt (GH13670)
- The `pandas.io.data` and `pandas.io.wb` modules are removed in favor of the pandas-datareader package (GH13724).
- The `pandas.tools.rplot` module has been removed in favor of the seaborn package (GH13855)
- `DataFrame.to_csv()` has dropped the `engine` parameter, as was deprecated in 0.17.1 (GH11274, GH13419)
- `DataFrame.to_dict()` has dropped the `outtype` parameter in favor of `orient` (GH13627, GH8486)
- `pd.Categorical` has dropped setting of the `ordered` attribute directly in favor of the `set_ordered` method (GH13671)
- `pd.Categorical` has dropped the `levels` attribute in favor of `categories` (GH8376)
- `DataFrame.to_sql()` has dropped the `mysql` option for the `flavor` parameter (GH13611)
- `Panel.shift()` has dropped the `lags` parameter in favor of `periods` (GH14041)
- `pd.Index` has dropped the `diff` method in favor of `difference` (GH13669)
- `pd.DataFrame` has dropped the `to_wide` method in favor of `to_panel` (GH14039)
- `Series.to_csv` has dropped the `nanRep` parameter in favor of `na_rep` (GH13804)
- `Series.xs`, `DataFrame.xs`, `Panel.xs`, `Panel.major_xs`, and `Panel.minor_xs` have dropped the `copy` parameter (GH13781)
- `str.split` has dropped the `return_type` parameter in favor of `expand` (GH13701)
- Removal of the legacy time rules (offset aliases), deprecated since 0.17.0 (this has been alias since 0.8.0) (GH13590, GH13868). Now legacy time rules raises `ValueError`. For the list of currently supported offsets, see [here](#).
- The default value for the `return_type` parameter for `DataFrame.plot.box` and `DataFrame.boxplot` changed from `None` to "axes". These methods will now return a matplotlib axes by default instead of a dictionary of artists. See [here](#) (GH6581).
- The `tquery` and `uquery` functions in the `pandas.io.sql` module are removed (GH5950).
Performance Improvements

- Improved performance of sparse `IntIndex.intersect` (GH13082)
- Improved performance of sparse arithmetic with `BlockIndex` when the number of blocks are large, though recommended to use `IntIndex` in such cases (GH13082)
- Improved performance of `DataFrame.quantile()` as it now operates per-block (GH11623)
- Improved performance of float64 hash table operations, fixing some very slow indexing and groupby operations in python 3 (GH13166, GH13334)
- Improved performance of `DataFrameGroupBy.transform` (GH12737)
- Improved performance of `Index` and `Series.duplicated` (GH10235)
- Improved performance of `Index.difference` (GH12044)
- Improved performance of `RangeIndex.is_monotonic_increasing` and `is_monotonic_decreasing` (GH13749)
- Improved performance of datetime string parsing in `DatetimeIndex` (GH13692)
- Improved performance of hashing `Period` (GH12817)
- Improved performance of `factorize` of datetime with timezone (GH13750)
- Improved performance of by lazily creating indexing hash tables on larger Indexes (GH14266)
- Improved performance of `groupby.groups` (GH14293)
- Unnecessary materializing of a MultiIndex when introspecting for memory usage (GH14308)

Bug Fixes

- Bug in `groupby().shift()`, which could cause a segfault or corruption in rare circumstances when grouping by columns with missing values (GH13813)
- Bug in `groupby().cumsum()` calculating `cumprod` when `axis=1` (GH13994)
- Bug in `pd.to_timedelta()` in which the `errors` parameter was not being respected (GH13613)
- Bug in `io.json.json_normalize()` where non-ascii keys raised an exception (GH13213)
- Bug when passing a not-default-indexed `Series` as `xerr` or `yerr` in `.plot()` (GH11858)
- Bug in area plot draws legend incorrectly if subplot is enabled or legend is moved after plot (matplotlib 1.5.0 is required to draw area plot legend properly) (GH9161, GH13544)
- Bug in `DataFrame` assignment with an object-dtyped `Index` where the resultant column is mutable to the original object. (GH13522)
- Bug in matplotlib `AutoDataFormatter`; this restores the second scaled formatting and re-adds micro-second scaled formatting (GH13131)
- Bug in selection from a `HDFStore` with a fixed format and `start` and/or `stop` specified will now return the selected range (GH8287)
- Bug in `Categorical.from_codes()` where an unhelpful error was raised when an invalid `ordered` parameter was passed in (GH14058)
- Bug in `Series` construction from a tuple of integers on windows not returning default dtype (int64) (GH13646)
- Bug in `TimedeltaIndex` addition with a Datetime-like object where addition overflow was not being caught (GH14068)
• Bug in `.groupby(..).resample(..)` when the same object is called multiple times (GH13174)
• Bug in `.to_records()` when index name is a unicode string (GH13172)
• Bug in calling `.memory_usage()` on object which doesn’t implement (GH12924)
• Regression in `Series.quantile` with nans (also shows up in `.median()` and `.describe()`); furthermore now names the Series with the quantile (GH13098, GH13146)
• Bug in `SeriesGroupBy.transform` with datetime values and missing groups (GH13191)
• Bug where empty `Series` were incorrectly coerced in datetime-like numeric operations (GH13844)
• Bug in Categorical constructor when passed a Categorical containing datetimes with timezones (GH14190)
• Bug in `Series.str.extractall()` with str index raises `ValueError` (GH13156)
• Bug in `Series.str.extractall()` with single group and quantifier (GH13382)
• Bug in `DatetimeIndex` and `Period` subtraction raises `ValueError` or `AttributeError` rather than `TypeError` (GH13078)
• Bug in `Index` and `Series` created with NaN and NaT mixed data may not have datetime64 dtype (GH13324)
• Bug in `Index` and `Series` may ignore `np.datetime64('nat')` and `np.timedelta64('nat')` to infer dtype (GH13324)
• Bug in `PeriodIndex` and `Period` subtraction raises `AttributeError` (GH13071)
• Bug in `PeriodIndex` construction returning a float64 index in some circumstances (GH13067)
• Bug in `.resample(..)` with a `PeriodIndex` not changing its freq appropriately when empty (GH13067)
• Bug in `.resample(..)` with a `PeriodIndex` not retaining its type or name with an empty DataFrame appropriately when empty (GH13212)
• Bug in `groupby(..).apply(..)` when the passed function returns scalar values per group (GH13468).
• Bug in `groupby(..).resample(..)` where passing some keywords would raise an exception (GH13235)
• Bug in `.tz_convert` on a tz-aware `DateTimeIndex` that relied on index being sorted for correct results (GH13306)
• Bug in `.tz_localize` with dateutil.tz.tzlocal may return incorrect result (GH13583)
• Bug in DatetimeTZDtype dtype with dateutil.tz.tzlocal cannot be regarded as valid dtype (GH13583)
• Bug in `pd.read_hdf()` where attempting to load an HDF file with a single dataset, that had one or more categorical columns, failed unless the key argument was set to the name of the dataset. (GH13231)
• Bug in `.rolling()` that allowed a negative integer window in contruction of the `Rolling()` object, but would later fail on aggregation (GH13383)
• Bug in `Series` indexing with tuple-valued data and a numeric index (GH13509)
• Bug in printing `pd.DataFrame` where unusual elements with the object dtype were causing segfaults (GH13717)
• Bug in ranking `Series` which could result in segfaults (GH13445)
• Bug in various index types, which did not propagate the name of passed index (GH12309)
• Bug in `DatetimeIndex`, which did not honour the `copy=True` (GH13205)
- Bug in `DatetimeIndex.is_normalized` returns incorrectly for normalized date_range in case of local timezones (GH13459)
- Bug in `pd.concat` and `.append` may coerce `datetime64` and `timedelta` to object dtype containing python built-in `datetime` or `timedelta` rather than `Timestamp` or `Timedelta` (GH13626)
- Bug in `PeriodIndex.append` may raise `AttributeError` when the result is object dtype (GH13221)
- Bug in `CategoricalIndex.append` may accept normal list (GH13626)
- Bug in `pd.concat` and `.append` with the same timezone get reset to UTC (GH7795)
- Bug in `Series` and `DataFrame .append` raises `AmbiguousTimeError` if data contains datetime near DST boundary (GH13626)
- Bug in `DataFrame.to_csv()` in which float values were being quoted even though quotations were specified for non-numeric values only (GH12922, GH13259)
- Bug in `DataFrame.describe()` raising `ValueError` with only boolean columns (GH13898)
- Bug in `MultiIndex` slicing where extra elements were returned when level is non-unique (GH12896)
- Bug in `.str.replace` does not raise `TypeError` for invalid replacement (GH13438)
- Bug in `MultiIndex.from_arrays` which didn’t check for input array lengths matching (GH13599)
- Bug in `cartesian_product` and `MultiIndex.from_product` which may raise with empty input arrays (GH12258)
- Bug in `pd.read_csv()` which may cause a segfault or corruption when iterating in large chunks over a stream/file under rare circumstances (GH13703)
- Bug in `pd.read_csv()` which caused errors to be raised when a dictionary containing scalars is passed in for `na_values` (GH12224)
- Bug in `pd.read_csv()` which caused BOM files to be incorrectly parsed by not ignoring the BOM (GH4793)
- Bug in `pd.read_csv()` with engine='python' which raised errors when a numpy array was passed in for `usecols` (GH12546)
- Bug in `pd.read_csv()` where the index columns were being incorrectly parsed when parsed as dates with a `thousands` parameter (GH14066)
- Bug in `pd.read_csv()` with engine='python' in which NaN values weren’t being detected after data was converted to numeric values (GH13314)
- Bug in `pd.read_csv()` in which the `nrows` argument was not properly validated for both engines (GH10476)
- Bug in `pd.read_csv()` with engine='python' in which infinities of mixed-case forms were not being interpreted properly (GH13274)
- Bug in `pd.read_csv()` with engine='python' in which trailing NaN values were not being parsed (GH13320)
- Bug in `pd.read_csv()` with engine='python' when reading from a `tempfile.TemporaryFile` on Windows with Python 3 (GH13398)
- Bug in `pd.read_csv()` that prevents `usecols` kwarg from accepting single-byte unicode strings (GH13219)
- Bug in `pd.read_csv()` that prevents `usecols` from being an empty set (GH13402)
- Bug in `pd.read_csv()` in the C engine where the NULL character was not being parsed as NULL (GH14012)
• Bug in `pd.read_csv()` with engine='c' in which NULL quotechar was not accepted even though quoting was specified as None (GH13411)

• Bug in `pd.read_csv()` with engine='c' in which fields were not properly cast to float when quoting was specified as non-numeric (GH13411)

• Bug in `pd.read_csv()` in Python 2.x with non-UTF8 encoded, multi-character separated data (GH3404)

• Bug in `pd.read_csv()`, where aliases for utf-xx (e.g. UTF-xx, UTF_xx, utf_xx) raised UnicodeDecodeError (GH13549)

• Bug in `pd.read_csv()`, `pd.read_table`, `pd.read_fwf`, `pd.read_stata` and `pd.read_sas` where files were opened by parsers but not closed if both chunksize and iterator were None. (GH13940)

• Bug in StataReader, StataWriter, XportReader and SAS7BDATReader where a file was not properly closed when an error was raised. (GH13940)

• Bug in `pd.pivot_table()` where margins_name is ignored when aggfunc is a list (GH13354)

• Bug in `pd.Series.str.zfill`, `center`, `ljust`, `rjust`, and `pad` when passing non-integers, did not raise TypeError (GH13598)

• Bug in checking for any null objects in a TimedeltaIndex, which always returned True (GH13603)

• Bug in Series arithmetic raises TypeError if it contains datetime-like as object dtype (GH13043)

• Bug Series.isnull() and Series.notnull() ignore Period('NaT') (GH13737)

• Bug Series.fillna() and Series.dropna() don't affect to Period('NaT') (GH13737)

• Bug in .fillna(value=np.nan) incorrectly raises KeyError on a category dtype (GH14021)

• Bug in extension dtype creation where the created types were not is/identical (GH13285)

• Bug in .resample(...) where incorrect warnings were triggered by IPython introspection (GH13618)

• Bug in NaT - Period raises AttributeError (GH13071)

• Bug in Series comparison may output incorrect result if rhs contains NaT (GH9005)

• Bug in Series and Index comparison may output incorrect result if it contains NaT with object dtype (GH13592)

• Bug in Period addition raises TypeError if Period is on right hand side (GH13069)

• Bug in Period and Series or Index comparison raises TypeError (GH13200)

• Bug in pd.set_eng_float_format() that would prevent NaN and Inf from formatting (GH11981)

• Bug in .unstack with Categorical dtype resets .ordered to True (GH13249)

• Clean some compile time warnings in datetime parsing (GH13607)

• Bug in factorize raises AmbiguousTimeError if data contains datetime near DST boundary (GH13750)

• Bug in .set_index raises AmbiguousTimeError if new index contains DST boundary and multi levels (GH12920)

• Bug in .shift raises AmbiguousTimeError if data contains datetime near DST boundary (GH13926)

• Bug in pd.read_hdf() returns incorrect result when a DataFrame with a categorical column and a query which doesn't match any values (GH13792)

• Bug in .iloc when indexing with a non lex-sorted MultiIndex (GH13797)

• Bug in .loc when indexing with date strings in a reverse sorted DatetimeIndex (GH14316)
• Bug in `Series` comparison operators when dealing with zero dim NumPy arrays (GH13006)
• Bug in `.combine_first` may return incorrect dtype (GH7630, GH10567)
• Bug in `groupby` where `apply` returns different result depending on whether first result is None or not (GH12824)
• Bug in `groupby(...)`.nth() where the group key is included inconsistently if called after `head()`/.tail() (GH12839)
• Bug in `.to_html`, `.to_latex` and `.to_string` silently ignore custom datetime formatter passed through the formatters key word (GH10690)
• Bug in DataFrame.iterrows(), not yielding a Series subclass if defined (GH13977)
• Bug in `pd.to_numeric` when errors='coerce' and input contains non-hashable objects (GH13324)
• Bug in invalid Timedelta arithmetic and comparison may raise ValueError rather than TypeError (GH13624)
• Bug in invalid datetime parsing in `to_datetime` and `DatetimeIndex` may raise TypeError rather than ValueError (GH11169, GH11287)
• Bug in `Index` created with tz-aware `Timestamp` and mismatched `tz` option incorrectly coerces timezone (GH13692)
• Bug in `DatetimeIndex` with nanosecond frequency does not include timestamp specified with `end` (GH13672)
• Bug in `Series` when setting a slice with a `np.timedelta64` (GH14155)
• Bug in `Index` raises `OutOfBoundsDatetime` if datetime exceeds `datetime64[ns]` bounds, rather than coercing to object dtype (GH13663)
• Bug in `Index` may ignore specified `datetime64` or `timedelta64` passed as dtype (GH13981)
• Bug in `.value_counts()` raises `OutOfBoundsDatetime` if data exceeds `datetime64[ns]` bounds (GH13663)
• Bug in `DatetimexIndex` may raise `OutOfBoundsDatetime` if input `np.datetime64` has other unit than `ns` (GH19114)
• Bug in `Series` creation with `np.datetime64` which has other unit than `ns` as object dtype results in incorrect values (GH13876)
• Bug in `resample` with timedelta data where data was casted to float (GH13119).
• Bug in `pd.isnull()` `pd.notnull()` raise TypeError if input datetime-like has other unit than `ns` (GH13389)
• Bug in `pd.merge()` may raise TypeError if input datetime-like has other unit than `ns` (GH13389)
• Bug in `HDFStore/read_hdf()` discarded `DatetimeIndex`.name if `tz` was set (GH13884)
• Bug in `Categorical.remove_unused_categories()` changes `.codes` dtype to platform int (GH13261)
• Bug in `groupby` with `as_index=False` returns all NaN’s when grouping on multiple columns including a categorical one (GH13204)
• Bug in `df.groupby(...)`[...], where `getitem` with `Int64Index` raised an error (GH13731)
- Bug in the CSS classes assigned to DataFrame.style for index names. Previously they were assigned "col_heading level<n> col<c>" where n was the number of levels + 1. Now they are assigned "index_name level<n>" where n is the correct level for that MultiIndex.

- Bug where pd.read_gbq() could throw ImportError: No module named discovery as a result of a naming conflict with another python package called apiclient (GH13454)

- Bug in Index.union returns an incorrect result with a named empty index (GH13432)

- Bugs in Index.difference and DataFrame.join raise in Python3 when using mixed-integer indexes (GH13432, GH12814)

- Bug in subtract tz-aware datetime.datetime from tz-aware datetime64 series (GH14088)

- Bug in .to_excel() when DataFrame contains a MultiIndex which contains a label with a NaN value (GH13511)

- Bug in invalid frequency offset string like “D1”, “-2-3H” may not raise ValueError (GH13930)

- Bug in concat and groupby for hierarchical frames with RangeIndex levels (GH13542).

- Bug in Series.str.contains() for Series containing only NaN values of object dtype (GH14171)

- Bug in agg() function on groupby dataframe changes dtype of datetime64[ns] column to float64 (GH12821)

- Bug in using NumPy ufunc with PeriodIndex to add or subtract integer raise IncompatibleFrequency. Note that using standard operator like + or - is recommended, because standard operators use more efficient path (GH13980)

- Bug in operations on NaT returning float instead of datetime64[ns] (GH12941)

- Bug in Series flexible arithmetic methods (like .add()) raises ValueError when axis=None (GH13894)

- Bug in DataFrame.to_csv() with MultiIndex columns in which a stray empty line was added (GH6618)

- Bug in DatetimeIndex, TimedeltaIndex and PeriodIndex.equals() may return True when input isn’t Index but contains the same values (GH13107)

- Bug in assignment against datetime with timezone may not work if it contains datetime near DST boundary (GH14146)

- Bug in pd.eval() and HDFStore query truncating long float literals with python 2 (GH14241)

- Bug in Index raises KeyError displaying incorrect column when column is not in the df and columns contains duplicate values (GH13822)

- Bug in Period and PeriodIndex creating wrong dates when frequency has combined offset aliases (GH13874)

- Bug in .to_string() when called with an integer line_width and index=False raises an Unbound-LocalError exception because idx referenced before assignment.

- Bug in eval() where the resolvers argument would not accept a list (GH14095)

- Bugs in stack, get_dummies, make_axis_dummies which don’t preserve categorical dtypes in (multi)indexes (GH13854)

- PeriodIndex can now accept list and array which contains pd.NaT (GH13430)

- Bug in df.groupby where .median() returns arbitrary values if grouped dataframe contains empty bins (GH13629)

- Bug in Index.copy() where name parameter was ignored (GH14302)
v0.18.1 (May 3, 2016)

This is a minor bug-fix release from 0.18.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

• `.groupby(...)` has been enhanced to provide convenient syntax when working with `.rolling(...)`, `.expanding(...)` and `.resample(...) per group, see [here](#)

• `pd.to_datetime()` has gained the ability to assemble dates from a `DataFrame`, see [here](#)

• Method chaining improvements, see [here](#).

• Custom business hour offset, see [here](#).

• Many bug fixes in the handling of sparse, see [here](#)

• Expanded the `Tutorials section` with a feature on modern pandas, courtesy of @TomAugsburger. (GH13045).

What’s new in v0.18.1

• **New features**

 – *Custom Business Hour*

 – `.groupby(...) syntax with window and resample operations`

 – *Method chaining improvements*

 * `.where() and .mask()`

 * `.loc[], .iloc[], .ix[]`

 * [] indexing

 – *Partial string indexing on DateTimeIndex when part of a MultiIndex*

 – *Assembling Datetimes*

 – *Other Enhancements*

• **Sparse changes**

• **API changes**

 – `.groupby(...).nth()` changes

 – *numpy.function compatibility*

 – *Using .apply on groupby resampling*

 – *Changes in read_csv exceptions*

 – *to_datetime error changes*

 – *Other API changes*

 – *Deprecations*

• **Performance Improvements**

• **Bug Fixes**
New features

Custom Business Hour

The CustomBusinessHour is a mixture of BusinessHour and CustomBusinessDay which allows you to specify arbitrary holidays. For details, see Custom Business Hour (GH11514)

```
In [1]: from pandas.tseries.offsets import CustomBusinessHour
In [2]: from pandas.tseries.holiday import USFederalHolidayCalendar
In [3]: bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())
```

Friday before MLK Day

```
In [4]: dt = datetime(2014, 1, 17, 15)
In [5]: dt + bhour_us
Out[5]: Timestamp('2014-01-17 16:00:00')
```

Tuesday after MLK Day (Monday is skipped because it's a holiday)

```
In [6]: dt + bhour_us * 2
Out[6]: Timestamp('2014-01-21 09:00:00')
```

.groupby(..) syntax with window and resample operations

.groupby(…) has been enhanced to provide convenient syntax when working with .rolling(..), .expanding(..) and .resample(..) per group, see (GH12486, GH12738).

You can now use .rolling(..) and .expanding(..) as methods on groupbys. These return another deferred object (similar to what .rolling() and .expanding() do on ungrouped pandas objects). You can then operate on these RollingGroupby objects in a similar manner.

Previously you would have to do this to get a rolling window mean per-group:

```
                      ...:                       'B': np.arange(40)})
In [8]: df
Out[8]:
         A     B
0       1     0
1       1     1
2       2     2
3       3     3
4       1     4
5       1     5
6       1     6
...     ...   ...
33      3     33
34      3     34
35      3     35
36      3     36
37      3     37
38      3     38
```

1.4. v0.18.1 (May 3, 2016)
In [9]: df.groupby('A').apply(lambda x: x.rolling(4).B.mean())
Out[9]:
 A
1 0 NaN
 1 NaN
 2 NaN
 3 1.5
 4 2.5
 5 3.5
 6 4.5
 ...
3 33 NaN
 34 NaN
 35 33.5
 36 34.5
 37 35.5
 38 36.5
 39 37.5
Name: B, dtype: float64

Now you can do:

In [10]: df.groupby('A').rolling(4).B.mean()
Out[10]:
 A
1 0 NaN
 1 NaN
 2 NaN
 3 1.5
 4 2.5
 5 3.5
 6 4.5
 ...
3 33 NaN
 34 NaN
 35 33.5
 36 34.5
 37 35.5
 38 36.5
 39 37.5
Name: B, dtype: float64

For .resample(..) type of operations, previously you would have to:

In [11]: df = pd.DataFrame({'date': pd.date_range(start='2016-01-01',
 periods=4,
 freq='W'),
 'group': [1, 1, 2, 2],
 'val': [5, 6, 7, 8]}).set_index('date')

In [12]: df
Out[12]:
 group val
0 1 5
1 1 6
2 2 7
3 2 8
In [13]: df.groupby('group').apply(lambda x: x.resample('1D').ffill())

Out[13]:

<table>
<thead>
<tr>
<th>group</th>
<th>date</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2016-01-03</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-04</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-05</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-06</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-07</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-08</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-09</td>
<td>1 5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>2016-01-18</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-19</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-20</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-21</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-22</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-23</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-24</td>
<td>2 8</td>
</tr>
</tbody>
</table>

[16 rows x 2 columns]

Now you can do:

In [14]: df.groupby('group').resample('1D').ffill()

Out[14]:

<table>
<thead>
<tr>
<th>group</th>
<th>date</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2016-01-03</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-04</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-05</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-06</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-07</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-08</td>
<td>1 5</td>
</tr>
<tr>
<td></td>
<td>2016-01-09</td>
<td>1 5</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>2016-01-18</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-19</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-20</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-21</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-22</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-23</td>
<td>2 7</td>
</tr>
<tr>
<td></td>
<td>2016-01-24</td>
<td>2 8</td>
</tr>
</tbody>
</table>

[16 rows x 2 columns]

Method chaining improvements

The following methods/indexers now accept a *callable*. It is intended to make these more useful in method chains, see the [documentation](https://pandas.pydata.org/pandas-docs/stable/indexing.html#method-chaining). (GH11485, GH12533)
• `.where()` and `.mask()`
• `.loc[]`, `.iloc[]` and `.ix[]`
• `[]` indexing

`.where()` and `.mask()`

These can accept a callable for the condition and other arguments.

```python
In [15]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

In [16]: df.where(lambda x: x > 4, lambda x: x + 10)
Out[16]:
  A  B  C
0  5  9  7
1  6  5  8
2  7  6  9
```

`.loc[]`, `.iloc[]`, `.ix[]`

These can accept a callable, and a tuple of callable as a slicer. The callable can return a valid boolean indexer or anything which is valid for these indexer's input.

```python
# callable returns bool indexer
In [17]: df.loc[lamba x: x.A >= 2, lambda x: x.sum() > 10]
Out[17]:
  B  C
1  5  8
2  6  9

# callable returns list of labels
In [18]: df.loc[lamba x: [1, 2], lambda x: ['A', 'B']]
Out[18]:
  A  B
1  2  5
2  3  6
```

`[]` indexing

Finally, you can use a callable in `[]` indexing of Series, DataFrame and Panel. The callable must return a valid input for `[]` indexing depending on its class and index type.

```python
In [19]: df[lamba x: 'A']
Out[19]:
  0  1
  1  2
  2  3
Name: A, dtype: int64
```

Using these methods/indexers, you can chain data selection operations without using temporary variable.
In [20]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [21]: (bb.groupby(['year', 'team'])
 : .sum()
 : .loc[lambda df: df.r > 100]
 :)

Out[21]:

<table>
<thead>
<tr>
<th>year</th>
<th>team</th>
<th>stint</th>
<th>g</th>
<th>ab</th>
<th>r</th>
<th>h</th>
<th>X2b</th>
<th>X3b</th>
<th>hr</th>
<th>rbi</th>
<th>sb</th>
<th>cs</th>
<th>bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>CIN</td>
<td>6</td>
<td>379</td>
<td>745</td>
<td>101</td>
<td>203</td>
<td>35</td>
<td>36</td>
<td>125.0</td>
<td>10.0</td>
<td>1.0</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DET</td>
<td>5</td>
<td>301</td>
<td>1062</td>
<td>162</td>
<td>283</td>
<td>54</td>
<td>47</td>
<td>144.0</td>
<td>24.0</td>
<td>7.0</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOU</td>
<td>4</td>
<td>311</td>
<td>926</td>
<td>109</td>
<td>218</td>
<td>47</td>
<td>64</td>
<td>77.0</td>
<td>10.0</td>
<td>4.0</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LAN</td>
<td>11</td>
<td>413</td>
<td>1021</td>
<td>153</td>
<td>293</td>
<td>61</td>
<td>36</td>
<td>154.0</td>
<td>7.0</td>
<td>5.0</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NYN</td>
<td>13</td>
<td>622</td>
<td>1854</td>
<td>240</td>
<td>509</td>
<td>101</td>
<td>3</td>
<td>243.0</td>
<td>22.0</td>
<td>4.0</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SFN</td>
<td>5</td>
<td>482</td>
<td>1305</td>
<td>198</td>
<td>337</td>
<td>67</td>
<td>6</td>
<td>171.0</td>
<td>26.0</td>
<td>7.0</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEX</td>
<td>2</td>
<td>198</td>
<td>729</td>
<td>115</td>
<td>200</td>
<td>40</td>
<td>4</td>
<td>115.0</td>
<td>21.0</td>
<td>4.0</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOR</td>
<td>4</td>
<td>459</td>
<td>1408</td>
<td>187</td>
<td>378</td>
<td>96</td>
<td>2</td>
<td>223.0</td>
<td>4.0</td>
<td>2.0</td>
<td>190</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>year</th>
<th>team</th>
<th>so</th>
<th>ibb</th>
<th>hbp</th>
<th>sh</th>
<th>sf</th>
<th>gidp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>CIN</td>
<td>127.0</td>
<td>14.0</td>
<td>1.0</td>
<td>1.0</td>
<td>15.0</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>DET</td>
<td>176.0</td>
<td>3.0</td>
<td>10.0</td>
<td>4.0</td>
<td>8.0</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>HOU</td>
<td>212.0</td>
<td>3.0</td>
<td>9.0</td>
<td>16.0</td>
<td>6.0</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>LAN</td>
<td>141.0</td>
<td>8.0</td>
<td>9.0</td>
<td>3.0</td>
<td>8.0</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>NYN</td>
<td>310.0</td>
<td>24.0</td>
<td>23.0</td>
<td>18.0</td>
<td>15.0</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td>SFN</td>
<td>188.0</td>
<td>51.0</td>
<td>8.0</td>
<td>16.0</td>
<td>6.0</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>TEX</td>
<td>140.0</td>
<td>4.0</td>
<td>5.0</td>
<td>2.0</td>
<td>8.0</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>TOR</td>
<td>265.0</td>
<td>16.0</td>
<td>12.0</td>
<td>4.0</td>
<td>16.0</td>
<td>38.0</td>
</tr>
</tbody>
</table>

Partial string indexing on DataFrame when part of a MultiIndex

Partial string indexing now matches on DateTimeIndex when part of a MultiIndex (GH10331)

In [22]: dft2 = pd.DataFrame(np.random.randn(20, 1),
 columns=['A'],
 index=pd.MultiIndex.from_product([pd.date_range('20130101','20130401', periods=10, freq='12H')],
 names=['year', 'team'])

Out[23]:

<table>
<thead>
<tr>
<th>year</th>
<th>team</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-01 00:00:00</td>
<td>a</td>
<td>1.129167</td>
</tr>
<tr>
<td>b</td>
<td>0.231299</td>
<td></td>
</tr>
<tr>
<td>2013-01-01 12:00:00</td>
<td>a</td>
<td>-0.184695</td>
</tr>
<tr>
<td>b</td>
<td>-0.238561</td>
<td></td>
</tr>
<tr>
<td>2013-01-02 00:00:00</td>
<td>a</td>
<td>-0.924325</td>
</tr>
<tr>
<td>b</td>
<td>0.232465</td>
<td></td>
</tr>
<tr>
<td>2013-01-02 12:00:00</td>
<td>a</td>
<td>-0.789552</td>
</tr>
<tr>
<td>b</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2013-01-04 00:00:00</td>
<td>b</td>
<td>1.813962</td>
</tr>
</tbody>
</table>
On other levels

```
In [25]: idx = pd.IndexSlice

In [26]: dft2 = dft2.swaplevel(0, 1).sort_index()

In [27]: dft2
Out[27]:
     a 2013-01-01 00:00:00 1.129167  
   2013-01-01 12:00:00 -0.184695  
   2013-01-02 00:00:00 -0.924325  
   2013-01-02 12:00:00 -0.789552  
   2013-01-03 00:00:00 -0.534541  
   2013-01-03 12:00:00 -0.443109  
   2013-01-04 00:00:00 -0.460149  
   ...   ...                   
   2013-01-02 12:00:00 -0.364308  
   2013-01-03 00:00:00  0.822239  
   2013-01-03 12:00:00 -2.119990  
   2013-01-04 00:00:00  1.813962  
   2013-01-04 12:00:00  0.009412  
   2013-01-05 00:00:00 -0.848662  
   2013-01-05 12:00:00 -0.176421  
[20 rows x 1 columns]
```

Assembling Datetimes

`pd.to_datetime()` has gained the ability to assemble datetimes from a passed in `DataFrame` or a dict. (GH8158).
In [29]: df = pd.DataFrame({'year': [2015, 2016],
....: 'month': [2, 3],
....: 'day': [4, 5],
....: 'hour': [2, 3]})

In [30]: df
Out[30]:
 day hour month year
0 4 2 2 2015
1 5 3 3 2016

Assembling using the passed frame.

In [31]: pd.to_datetime(df)
Out[31]:
0 2015-02-04 02:00:00
1 2016-03-05 03:00:00
dtype: datetime64[ns]

You can pass only the columns that you need to assemble.

In [32]: pd.to_datetime(df[['year', 'month', 'day']])
Out[32]:
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]

Other Enhancements

- pd.read_csv() now supports delim_whitespace=True for the Python engine (GH12958)
- pd.read_csv() now supports opening ZIP files that contains a single CSV, via extension inference or explicit compression='zip' (GH12175)
- pd.read_csv() now supports opening files using xz compression, via extension inference or explicit compression='xz' is specified; xz compressions is also supported by DataFrame.to_csv in the same way (GH11852)
- pd.read_msgpack() now always gives writeable ndarrays even when compression is used (GH12359).
- pd.read_msgpack() now supports serializing and de-serializing categoricals with msgpack (GH12573)
- .to_json() now supports NDFrames that contain categorical and sparse data (GH10778)
- interpolate() now supports method='akima' (GH7588).
- pd.read_excel() now accepts path objects (e.g. pathlib.Path, py.path.local) for the file path, in line with other read_* functions (GH12655)
- Added .weekday_name property as a component to DatetimeIndex and the .dt accessor. (GH11128)
- Index.take now handles allow_fill and fill_value consistently (GH12631)

In [33]: idx = pd.Index([1., 2., 3., 4.], dtype='float')

 # default, allow_fill=True, fill_value=None
In [34]: idx.take([2, -1])
Out[34]: Float64Index([3.0, 4.0], dtype='float64')
Index now supports .str.get_dummies() which returns MultiIndex, see Creating Indicator Variables (GH10008, GH10103)

\[
\textbf{In } [35]: \text{idx.take([2, -1], fill_value=True)} \\
\textbf{Out}[35]: \text{Float64Index([3.0, nan], dtype=’float64’)}
\]

\begin{itemize}
 \item pd.crosstab() has gained a normalize argument for normalizing frequency tables (GH12569). Examples in the updated docs here.
 \item .resample(..).interpolate() is now supported (GH12925)
 \item .isin() now accepts passed sets (GH12988)
\end{itemize}

Sparse changes

These changes conform sparse handling to return the correct types and work to make a smoother experience with indexing.

\texttt{SparseArray.take} now returns a scalar for scalar input, \texttt{SparseArray} for others. Furthermore, it handles a negative indexer with the same rule as \texttt{Index} (GH10560, GH12796)

\[
\begin{align*}
\textbf{In } [38]: & \text{s = pd.SparseArray([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6])} \\
\textbf{In } [39]: & \text{s.take(0)} \\
\textbf{Out}[39]: & \text{nan} \\
\textbf{In } [40]: & \text{s.take([1, 2, 3])} \\
\textbf{Out}[40]: & \text{[nan, 1.0, 2.0]} \\
& \text{Fill: nan} \\
& \text{IntIndex} \\
& \text{Indices: array([1, 2], dtype=int32)}
\end{align*}
\]

\begin{itemize}
 \item Bug in \texttt{SparseSeries[]} indexing with Ellipsis raises \texttt{KeyError} (GH9467)
 \item Bug in \texttt{SparseArray[]} indexing with tuples are not handled properly (GH12966)
 \item Bug in \texttt{SparseSeries.loc[]} with list-like input raises \texttt{TypeError} (GH10560)
 \item Bug in \texttt{SparseSeries.iloc[]} with scalar input may raise \texttt{IndexError} (GH10560)
 \item Bug in \texttt{SparseSeries.loc[], .iloc[]} with slice returns \texttt{SparseArray}, rather than \texttt{SparseSeries} (GH10560)
 \item Bug in \texttt{SparseDataFrame.loc[], .iloc[]} may results in dense \texttt{Series}, rather than \texttt{SparseSeries} (GH12787)
 \item Bug in \texttt{SparseArray} addition ignores fill_value of right hand side (GH12910)
 \item Bug in \texttt{SparseArray} mod raises AttributeError (GH12910)
\end{itemize}
- Bug in `SparseArray` pow calculates `1 ** np.nan` as `np.nan` which must be 1 (GH12910)
- Bug in `SparseArray` comparison output may incorrect result or raise ValueError (GH12971)
- Bug in `SparseSeries.__repr__` raises TypeError when it is longer than `max_rows` (GH10560)
- Bug in `SparseSeries.shape` ignores fill_value (GH10452)
- Bug in `SparseSeries` and `SparseArray` may have different dtype from its dense values (GH12908)
- Bug in `SparseSeries` and `SparseArray` may have different dtype from its dense values (GH12908)
- Bug in `SparseSeries` reindex incorrectly handle fill_value (GH12797)
- Bug in `SparseArray.to_frame()` results in DataFrame, rather than SparseDataFrame (GH9850)
- Bug in `SparseSeries.value_counts()` does not count fill_value (GH6749)
- Bug in `SparseArray.to_dense()` does not preserve dtype (GH10648)
- Bug in `SparseArray.to_dense()` incorrectly handle fill_value (GH12797)
- Bug in `pd.concat()` of `SparseSeries` results in dense (GH10536)
- Bug in `pd.concat()` of `SparseSeries` results in dense (GH10536)
- Bug in `pd.concat()` of `SparseDataFrame` incorrectly handle fill_value (GH9765)
- Bug in `pd.concat()` of `SparseDataFrame` may raise AttributeError (GH12174)
- Bug in `SparseArray.shift()` may raise NameError or TypeError (GH12908)

API changes

`.groupby(..).nth()` changes

The index in `.groupby(..).nth()` output is now more consistent when the as_index argument is passed (GH11039):

```
In [41]: df = DataFrame({'A' : ['a', 'b', 'a'],
                            'B' : [1, 2, 3]})

In [42]: df
Out[42]:
   A  B
0  a  1
1  b  2
2  a  3
```

Previous Behavior:

```
In [3]: df.groupby('A', as_index=True)['B'].nth(0)
Out[3]:
   0  1
   1  2
Name: B, dtype: int64
```

```
In [4]: df.groupby('A', as_index=False)['B'].nth(0)
Out[4]:
   0  1
   1  2
Name: B, dtype: int64
```

New Behavior:
In [43]: df.groupby('A', as_index=True)['B'].nth(0)
Out[43]:
A
a 1
b 2
Name: B, dtype: int64

In [44]: df.groupby('A', as_index=False)['B'].nth(0)
Out[44]:
0 1
1 2
Name: B, dtype: int64

Furthermore, previously, a .groupby would always sort, regardless if sort=False was passed with .nth().

In [45]: np.random.seed(1234)
In [46]: df = pd.DataFrame(np.random.randn(100, 2), columns=['a', 'b'])
In [47]: df['c'] = np.random.randint(0, 4, 100)

Previous Behavior:

In [4]: df.groupby('c', sort=True).nth(1)
Out[4]:
 a b
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

In [5]: df.groupby('c', sort=False).nth(1)
Out[5]:
 a b
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

New Behavior:

In [48]: df.groupby('c', sort=True).nth(1)
Out[48]:
 a b
0 -0.334077 0.002118
1 0.036142 -2.074978
2 -0.720589 0.887163
3 0.859588 -0.636524

In [49]: df.groupby('c', sort=False).nth(1)
Out[49]:
 a b
2 -0.720589 0.887163
3 0.859588 -0.636524
narray function compatibility

Compatibility between pandas array-like methods (e.g. \texttt{sum} and \texttt{take}) and their numpy counterparts has been greatly increased by augmenting the signatures of the pandas methods so as to accept arguments that can be passed in from numpy, even if they are not necessarily used in the pandas implementation (GH12644, GH12638, GH12687)

- \texttt{.searchsorted()} for Index and TimedeltaIndex now accept a \texttt{sorter} argument to maintain compatibility with numpy's \texttt{searchsorted} function (GH12238)
- Bug in numpy compatibility of \texttt{np.round()} on a Series (GH12600)

An example of this signature augmentation is illustrated below:

```python
In [50]: sp = pd.SparseDataFrame([1, 2, 3])
In [51]: sp
Out[51]:
   0
  0 1
  1 2
  2 3
```

Previous behaviour:

```python
In [2]: np.cumsum(sp, axis=0)
...:
TypeError: cumsum() takes at most 2 arguments (4 given)
```

New behaviour:

```python
In [52]: np.cumsum(sp, axis=0)
Out[52]:
   0
  0 1
  1 3
  2 6
```

Using \texttt{.apply} on groupby resampling

Using \texttt{apply} on resampling groupby operations (using a \texttt{pd.TimeGrouper}) now has the same output types as similar apply calls on other groupby operations. (GH11742).

```python
In [53]: df = pd.DataFrame({'date': pd.to_datetime(['10/10/2000', '11/10/2000']), 'value': [10, 13]})
   ....:
   ....:
In [54]: df
Out[54]:
   date  value
  0 2000-10-10  10
  1 2000-11-10  13
```

Previous behavior:
In [1]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x.value.
 ...: sum())
Out[1]:
...:
TypeError: cannot concatenate a non-NDFrame object

Output is a Series
In [2]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x[['value']].
 ...: sum())
Out[2]:
date
2000-10-31 value 10
2000-11-30 value 13
dtype: int64

New Behavior:

Output is a Series
In [55]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x.value.
 ...: sum())
Out[55]:
date
2000-10-31 10
2000-11-30 13
Freq: M, dtype: int64

Output is a DataFrame
In [56]: df.groupby(pd.TimeGrouper(key='date', freq='M')).apply(lambda x: x[['value
 ...: ']].sum())
Out[56]:
 value
date
2000-10-31 10
2000-11-30 13

Changes in read_csv exceptions

In order to standardize the read_csv API for both the c and python engines, both will now raise an
EmptyDataError, a subclass of ValueError, in response to empty columns or header (GH12493, GH12506)

Previous behaviour:

In [1]: df = pd.read_csv(StringIO(''), engine='c')
 ...:
ValueError: No columns to parse from file
In [2]: df = pd.read_csv(StringIO(''), engine='python')
 ...:
StopIteration

New behaviour:

In [1]: df = pd.read_csv(StringIO(''), engine='c')
 ...:
pandas.io.common.EmptyDataError: No columns to parse from file
In [2]: df = pd.read_csv(StringIO(''), engine='python')
In addition to this error change, several others have been made as well:

- CParseError now sub-classes ValueError instead of just a Exception (GH12551)
- A CParseError is now raised instead of a generic Exception in read_csv when the c engine cannot parse a column (GH12506)
- A ValueError is now raised instead of a generic Exception in read_csv when the c engine encounters a NaN value in an integer column (GH12506)
- A ValueError is now raised instead of a generic Exception in read_csv when true_values is specified, and the c engine encounters an element in a column containing unencodable bytes (GH12506)
- pandas.parser.OverflowError exception has been removed and has been replaced with Python's built-in OverflowError exception (GH12506)
- pd.read_csv() no longer allows a combination of strings and integers for the usecols parameter (GH12678)

to_datetime error changes

Bugs in pd.to_datetime() when passing a unit with convertible entries and errors='coerce' or non-convertible with errors='ignore'. Furthermore, an OutOfBoundsDatetme exception will be raised when an out-of-range value is encountered for that unit when errors='raise'. (GH11758, GH13052, GH13059)

Previous behaviour:

```python
In [27]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[27]: NaT

In [28]: pd.to_datetime(11111111, unit='D', errors='ignore')
OverflowError: Python int too large to convert to C long

In [29]: pd.to_datetime(11111111, unit='D', errors='raise')
OverflowError: Python int too large to convert to C long
```

New behaviour:

```python
In [2]: pd.to_datetime(1420043460, unit='s', errors='coerce')
Out[2]: Timestamp('2014-12-31 16:31:00')

In [3]: pd.to_datetime(11111111, unit='D', errors='ignore')
Out[3]: 11111111

In [4]: pd.to_datetime(11111111, unit='D', errors='raise')
OutOfBoundsDatetime: cannot convert input with unit 'D'
```

Other API changes

- .swaplevel() for Series, DataFrame, Panel, and MultiIndex now features defaults for its first two parameters i and j that swap the two innermost levels of the index. (GH12934)
- .searchsorted() for Index and TimedeltaIndex now accept a sorter argument to maintain compatibility with numpy's searchsorted function (GH12238)
• **Period** and **PeriodIndex** now raises **IncompatibleFrequency** error which inherits **ValueError** rather than raw **ValueError** (GH12615)
• **Series.apply** for category dtype now applies the passed function to each of the **.categories** (and not the **.codes**), and returns a category dtype if possible (GH12473)
• **read_csv** will now raise a **TypeError** if **parse_dates** is neither a boolean, list, or dictionary (matches the doc-string) (GH5636)
• The default for **.query()/.eval()** is now **engine=None**, which will use **numexpr** if it’s installed; otherwise it will fallback to the **python** engine. This mimics the pre-0.18.1 behavior if **numexpr** is installed (and which, previously, if **numexpr** was not installed, **.query()/.eval()** would raise). (GH12749)
• **pd.show_versions()** now includes **pandas_datareader** version (GH12740)
• Provide a proper **__name__** and **__qualname__** attributes for generic functions (GH12021)
• **pd.concat(ignore_index=True)** now uses **RangeIndex** as default (GH12695)
• **pd.merge()** and **DataFrame.join()** will show a **UserWarning** when merging/joining a single- with a multi-leveled dataframe (GH9455, GH12219)
• **Compat with scipy > 0.17** for deprecated piecewise_polynomial interpolation method; support for the replacement from_derivatives method (GH12887)

Deprecations

• The method name **Index.sym_diff()** is deprecated and can be replaced by **Index.symmetric_difference()** (GH12591)
• The method name **Categorical.sort()** is deprecated in favor of **Categorical.sort_values()** (GH12882)

Performance Improvements

• Improved speed of SAS reader (GH12656, GH12961)
• Performance improvements in **.groupby(..).cumcount()** (GH11039)
• Improved memory usage in **pd.read_csv()** when using **skiprows=an_integer** (GH13005)
• Improved performance of **DataFrame.to_sql** when checking case sensitivity for tables. Now only checks if table has been created correctly when table name is not lower case. (GH12876)
• Improved performance of **Period construction and time series plotting** (GH12903, GH11831).
• Improved performance of **.str.encode()** and **.str.decode()** methods (GH13008)
• Improved performance of **to_numeric** if input is numeric dtype (GH12777)
• Improved performance of sparse arithmetic with **IntIndex** (GH13036)

Bug Fixes

• **usecols** parameter in **pd.read_csv** is now respected even when the lines of a CSV file are not even (GH12203)
• Bug in **groupby.transform(..)** when **axis=1** is specified with a non-monotonic ordered index (GH12713)
• Bug in `Period` and `PeriodIndex` creation raises `KeyError` if `freq="Minute"` is specified. Note that "Minute" freq is deprecated in v0.17.0, and recommended to use `freq="T"` instead (GH11854)

• Bug in `.resample(...).count()` with a `PeriodIndex` always raising a `TypeError` (GH12774)

• Bug in `.resample(...)` with a `PeriodIndex` casting to a `DatetimeIndex` when empty (GH12868)

• Bug in `.resample(...)` with a `PeriodIndex` when resampling to an existing frequency (GH12770)

• Bug in printing data which contains `Period` with different `freq` raises `ValueError` (GH12615)

• Bug in `Series` construction with `Categorical` and `dtype='category'` is specified (GH12574)

• Bugs in concatenation with a coercable dtype was too aggressive, resulting in different dtypes in output formatting when an object was longer than `display.max_rows` (GH12411, GH12045, GH11594, GH10571, GH12211)

• Bug in `float_format` option with option not being validated as a callable. (GH12706)

• Bug in `GroupBy.filter` when `dropna=False` and no groups fulfilled the criteria (GH12768)

• Bug in `__name__` of `.cum*` functions (GH12021)

• Bug in `.astype()` of a `Float64Index/Int64Index` to an `Int64Index` (GH12881)

• Bug in roundtripping an integer based index in `.to_json()/.read_json()` when `orient='index'` (the default) (GH12866)

• Bug in plotting `Categorical` dtypes cause error when attempting stacked bar plot (GH13019)

• Compat with >= numpy 1.11 for NaT comparisons (GH12969)

• Bug in `.drop()` with a non-unique `MultiIndex`. (GH12701)

• Bug in `.concat` of datetime tz-aware and naive DataFrames (GH12467)

• Bug in correctly raising a `ValueError` in `.resample(..).fillna(..)` when passing a non-string (GH12952)

• Bug fixes in various encoding and header processing issues in `pd.read_sas()` (GH12659, GH12654, GH12647, GH12809)

• Bug in `pd.crosstab()` where would silently ignore `aggfunc if values=None` (GH12569).

• Potential segfault in `DataFrame.to_json` when serialising `datetime.time` (GH11473).

• Potential segfault in `DataFrame.to_json` when attempting to serialise 0d array (GH11299).

• Segfault in `to_json` when attempting to serialise a `DataFrame` or `Series` with non-ndarray values; now supports serialization of category, sparse, and `datetime64[ns,tz]` dtypes (GH10778).

• Bug in `DataFrame.to_json` with unsupported dtype not passed to default handler (GH12554).

• Bug in `.align` not returning the sub-class (GH12983)

• Bug in aligning a `Series` with a `DataFrame` (GH13037)

• Bug in ABCPanel in which Panel4D was not being considered as a valid instance of this generic type (GH12810)

• Bug in consistency of `.name` on `.groupby(...)`.apply(...) cases (GH12363)

• Bug in `Timestamp.__repr__` that caused `pprint` to fail in nested structures (GH12622)

• Bug in `Timedelta.min` and `Timedelta.max`, the properties now report the true minimum/maximum `timedeltas` as recognized by pandas. See the documentation. (GH12727)

• Bug in `.quantile()` with interpolation may coerce to `float` unexpectedly (GH12772)
• Bug in `.quantile()` with empty Series may return scalar rather than empty Series (GH12772)
• Bug in `.loc` with out-of-bounds in a large indexer would raise `IndexError` rather than `KeyError` (GH12527)
• Bug in resampling when using a TimedeltaIndex and `.asfreq()`, would previously not include the final fencepost (GH12926)
• Bug in equality testing with a Categorical in a DataFrame (GH12564)
• Bug in GroupBy.first(), .last() returns incorrect row when TimeGrouper is used (GH7453)
• Bug in `pd.read_csv()` with the c engine when specifying skiprows with newlines in quoted items (GH10911, GH12775)
• Bug in DataFrame timezone lost when assigning tz-aware datetime Series with alignment (GH12981)
• Bug in .value_counts() when normalize=True and dropna=True where nulls still contributed to the normalized count (GH12558)
• Bug in Series.value_counts() loses name if its dtype is category (GH12835)
• Bug in Series.value_counts() loses timezone info (GH12835)
• Bug in Series.value_counts(normalize=True) with Categorical raises UnboundLocalError (GH12835)
• Bug in `Panel.fillna()` ignoring inplace=True (GH12633)
• Bug in `pd.read_csv()` when specifying names, usecols, and parse_dates simultaneously with the c engine (GH9755)
• Bug in `pd.read_csv()` when specifying delim_whitespace=True and lineterminator simultaneously with the c engine (GH12912)
• Bug in Series.rename, DataFrame.rename and DataFrame.rename_axis not treating Series as mappings to relabel (GH12623).
• Clean in `.rolling.min` and `.rolling.max` to enhance dtype handling (GH12373)
• Bug in groupby where complex types are coerced to float (GH12902)
• Bug in Series.map raises TypeError if its dtype is category or tz-aware datetime (GH12473)
• Bugs on 32bit platforms for some test comparisons (GH12972)
• Bug in index coercion when falling back from RangeIndex construction (GH12893)
• Better error message in window functions when invalid argument (e.g. a float window) is passed (GH12669)
• Bug in slicing subclassed DataFrame defined to return subclassed Series may return normal Series (GH11559)
• Bug in `.str` accessor methods may raise `ValueError` if input has name and the result is DataFrame or MultiIndex (GH12617)
• Bug in DataFrame.last_valid_index() and DataFrame.first_valid_index() on empty frames (GH12800)
• Bug in CategoricalIndex.get_loc returns different result from regular Index (GH12531)
• Bug in PeriodIndex.resample where name not propagated (GH12769)
• Bug in date_range closed keyword and timezones (GH12684).
• Bug in `pd.concat` raises `AttributeError` when input data contains tz-aware datetime and timedelta (GH12620)
• Bug in `pd.concat` did not handle empty Series properly (GH11082)
• Bug in `.plot.bar` alignment when width is specified with int (GH12979)
• Bug in `fill_value` is ignored if the argument to a binary operator is a constant (GH12723)
• Bug in `pd.read_html()` when using bs4 flavor and parsing table with a header and only one column (GH9178)
• Bug in `.pivot_table` when margins=True and dropna=True where nulls still contributed to margin count (GH12577)
• Bug in `.pivot_table` when dropna=False where table index/column names disappear (GH12133)
• Bug in `pd.crosstab()` when margins=False and dropna=False which raised (GH12642)
• Bug in Series.name when name attribute can be a hashable type (GH12610)
• Bug in `.describe()` resets categorical columns information (GH11558)
• Bug where `loffset` argument was not applied when calling `resample().count()` on a timeseries (GH12725)
• `pd.read_excel()` now accepts column names associated with keyword argument `names` (GH12870)
• Bug in `pd.to_numeric()` with Index returns np.ndarray, rather than Index (GH12777)
• Bug in `pd.to_numeric()` with datetime-like may raise TypeError (GH12777)
• Bug in `pd.to_numeric()` with scalar raises ValueError (GH12777)

v0.18.0 (March 13, 2016)

This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Warning: pandas >= 0.18.0 no longer supports compatibility with Python version 2.6 and 3.3 (GH7718, GH11273)

Warning: numexpr version 2.4.4 will now show a warning and not be used as a computation back-end for pandas because of some buggy behavior. This does not affect other versions (>= 2.1 and >= 2.4.6). (GH12489)

Highlights include:

• Moving and expanding window functions are now methods on Series and DataFrame, similar to `.groupby`, see here.
• Adding support for a `RangeIndex` as a specialized form of the `Int64Index` for memory savings, see here.
• API breaking change to the `.resample` method to make it more `.groupby` like, see here.
• Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise a `TypeError`, see here.
• The `.to_xarray()` function has been added for compatibility with the xarray package, see here.
• The `read_sas` function has been enhanced to read sas7bdat files, see here.
• Addition of the `.str.extractall()` method, and API changes to the `.str.extract()` method and `.str.cat()` method.
• `pd.test()` top-level nose test runner is available (GH4327).

Check the API Changes and deprecations before updating.

What’s new in v0.18.0

• New features
 • Window functions are now methods
 • Changes to rename
 • Range Index
 • Changes to `str.extract`
 • Addition of `str.extractall`
 • Changes to `str.cat`
 • Datetimelike rounding
 • Formatting of Integers in `FloatIndex`
 • Changes to dtype assignment behaviors
 • `to_xarray`
 • Latex Representation
 • `pd.read_sas()` changes
 • Other enhancements
• Backwards incompatible API changes
 • `NaT` and Timedelta operations
 • Changes to msgpack
 • Signature change for `.rank`
 • Bug in QuarterBegin with n=0
 • Resample API
 • Downsampling
 • Upsampling
 • Previous API will work but with deprecations
 • Changes to `eval`
 • Other API Changes
 • Deprecations
 • Removal of deprecated float indexers
 • Removal of prior version deprecations/changes
• Performance Improvements
• Bug Fixes
New features

Window functions are now methods

Window functions have been refactored to be methods on Series/DataFrame objects, rather than top-level functions, which are now deprecated. This allows these window-type functions, to have a similar API to that of .groupby. See the full documentation here (GH11603, GH12373)

In [1]: np.random.seed(1234)
In [2]: df = pd.DataFrame({'A' : range(10), 'B' : np.random.randn(10)})
In [3]: df
Out[3]:
 A B
 0 0 0.471435
 1 1 -1.190976
 2 2 1.432707
 3 3 -0.312652
 4 4 -0.720589
 5 5 0.887163
 6 6 0.859588
 7 7 -0.636524
 8 8 0.015696
 9 9 -2.242685

Previous Behavior:

In [8]: pd.rolling_mean(df,window=3)
FutureWarning: pd.rolling_mean is deprecated for DataFrame and will be removed in a future version, replace with DataFrame.rolling(window=3,center=False).mean()
Out[8]:
 A B
 0 NaN NaN
 1 NaN NaN
 2 1 0.237722
 3 2 -0.023640
 4 3 0.133155
 5 4 -0.048693
 6 5 0.342054
 7 6 0.370076
 8 7 0.079587
 9 8 -0.954504

New Behavior:

In [4]: r = df.rolling(window=3)

These show a descriptive repr

In [5]: r
Out[5]: Rolling [window=3,center=False,axis=0]

with tab-completion of available methods and properties.
In [9]:
```
r.A      r.agg     r.apply  r.count r.exclusions r.max r.
   median r.name    r.skew    r.sum
r.B      r.aggregate r.corr   r.cov  r.kurt    r.mean r.
   min   r.quantile r.std   r.var
```

The methods operate on the `Rolling` object itself.

In [6]:
```
r.mean()
```
```
Out[6]:
A    B
0  NaN   NaN
1  NaN   NaN
2  1.0  0.237722
3  2.0 -0.023640
4  3.0  0.133155
5  4.0 -0.048693
6  5.0  0.342054
7  6.0  0.370076
8  7.0  0.079587
9  8.0 -0.954504
```

They provide getitem accessors.

In [7]:
```
r['A'].mean()
```
```
Out[7]:
A
0  NaN
1  NaN
2  1.0
3  2.0
4  3.0
5  4.0
6  5.0
7  6.0
8  7.0
9  8.0
Name: A, dtype: float64
```

And multiple aggregations.

In [8]:
```
r.agg({'A': ['mean', 'std'],
       ...:      'B': ['mean', 'std']})
```
```
Out[8]:
A      B
mean  std     mean  std
0  NaN   NaN  NaN   NaN
1  NaN   NaN  NaN   NaN
2  1.0  1.0  0.237722 1.327364
3  2.0  1.0 -0.023640 1.335505
4  3.0  1.0  0.133155 1.143778
5  4.0  1.0 -0.048693 0.835747
6  5.0  1.0  0.342054 1.143778
7  6.0  1.0  0.370076 0.835747
8  7.0  1.0  0.079587 0.750099
9  8.0  1.0 -0.954504 1.162285
Changes to rename

Series.rename and NDFrame.rename_axis can now take a scalar or list-like argument for altering the Series or axis name, in addition to their old behaviors of altering labels. (GH9494, GH11965)

```python
In [9]: s = pd.Series(np.random.randn(5))
In [10]: s.rename('newname')
Out[10]:
0 1.150036
1 0.991946
2 0.953324
3 -2.021255
4 -0.334077
Name: newname, dtype: float64
```

```python
In [11]: df = pd.DataFrame(np.random.randn(5, 2))
In [12]: (df.rename_axis("indexname")
 ...: .rename_axis("columns_name", axis="columns"))
 ...
Out[12]:
columns_name 0 1
indexname
0 0.002118 0.405453
1 0.289092 1.321158
2 -1.546906 -0.202646
3 -0.655969 0.193421
4 0.553439 1.318152
```

The new functionality works well in method chains. Previously these methods only accepted functions or dicts mapping a label to a new label. This continues to work as before for function or dict-like values.

Range Index

A RangeIndex has been added to the Int64Index sub-classes to support a memory saving alternative for common use cases. This has a similar implementation to the python range object (xrange in python 2), in that it only stores the start, stop, and step values for the index. It will transparently interact with the user API, converting to Int64Index if needed.

This will now be the default constructed index for NDFrame objects, rather than previous an Int64Index. (GH939, GH12070, GH12071, GH12109, GH12888)

Previous Behavior:

```python
In [3]: s = pd.Series(range(1000))
In [4]: s.index
Out[4]:
Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', length=1000)
In [6]: s.index.nbytes
Out[6]: 8000
```
New Behavior:

```python
In [13]: s = pd.Series(range(1000))
In [14]: s.index
Out[14]: RangeIndex(start=0, stop=1000, step=1)
In [15]: s.index.nbytes
Out[15]: 72
```

### Changes to `str.extract`

The `str.extract` method takes a regular expression with capture groups, finds the first match in each subject string, and returns the contents of the capture groups (GH11386).

In v0.18.0, the `expand` argument was added to `extract`:

- `expand=False`: it returns a Series, Index, or DataFrame, depending on the subject and regular expression pattern (same behavior as pre-0.18.0).
- `expand=True`: it always returns a DataFrame, which is more consistent and less confusing from the perspective of a user.

Currently the default is `expand=None` which gives a FutureWarning and uses `expand=False`. To avoid this warning, please explicitly specify `expand`.

```python
In [1]: pd.Series(['a1', 'b2', 'c3']).str.extract('ab\d', expand=None)
FutureWarning: currently extract(expand=None) means expand=False (return Index/Series/DataFrame)
but in a future version of pandas this will be changed to expand=True (return DataFrame)
Out[1]:
0 1
1 2
2 NaN
 dtype: object
```

Extracting a regular expression with one group returns a Series if `expand=False`.

```python
In [16]: pd.Series(['a1', 'b2', 'c3']).str.extract('ab\d', expand=False)
Out[16]:
0 1
1 2
2 NaN
 dtype: object
```

It returns a DataFrame with one column if `expand=True`.

```python
In [17]: pd.Series(['a1', 'b2', 'c3']).str.extract('ab\d', expand=True)
Out[17]:
 0
0 1
1 2
2 NaN
```

Calling on an Index with a regex with exactly one capture group returns an Index if `expand=False`.
In [18]: s = pd.Series(['a1', 'b2', 'c3'], ['A11', 'B22', 'C33'])

In [19]: s.index
Out[19]: Index(['A11', 'B22', 'C33'], dtype='object')

In [20]: s.index.str.extract('(?P<letter>\[a-zA-Z\])', expand=False)
Out[20]: Index(['A', 'B', 'C'], dtype='object', name='letter')

It returns a DataFrame with one column if expand=True.

In [21]: s.index.str.extract('(?P<letter>\[a-zA-Z\])', expand=True)
Out[21]:
   letter
0   A
1   B
2   C

Calling on an Index with a regex with more than one capture group raises ValueError if expand=False.

>>> s.index.str.extract('(?P<letter>\[a-zA-Z\])(\[0-9\]+)', expand=False)
ValueError: only one regex group is supported with Index

It returns a DataFrame if expand=True.

In [22]: s.index.str.extract('(?P<letter>\[a-zA-Z\])(\[0-9\]+)', expand=True)
Out[22]:
   letter  1
0   A     11
1   B     22
2   C     33

In summary, extract (expand=True) always returns a DataFrame with a row for every subject string, and a column for every capture group.

Addition of str.extractall

The .str.extractall method was added (GH11386). Unlike extract, which returns only the first match.

In [23]: s = pd.Series(['ala2', 'b1', 'c1'], ['A', 'B', 'C'])

In [24]: s
Out[24]:
   A   ala2
   B    b1
   C    c1
dtype: object

In [25]: s.str.extract('(?P<letter>(?P<digit>\d)+)', expand=False)
Out[25]:
   letter digit
0   a      1
1   b      1
2  NaN    NaN

The extractall method returns all matches.
Changes to str.cat

The method `.str.cat()` concatenates the members of a `Series`. Before, if `NaN` values were present in the `Series`, calling `.str.cat()` on it would return `NaN`, unlike the rest of the `Series.str.*` API. This behavior has been amended to ignore `NaN` values by default. (GH11435).

A new, friendlier `ValueError` is added to protect against the mistake of supplying the `sep` as an arg, rather than as a kwarg. (GH11334).

Datetimelike rounding

`DatetimeIndex`, `Timestamp`, `TimedeltaIndex`, `Timedelta` have gained the `.round()`, `.floor()` and `.ceil()` method for datetimelike rounding, flooring and ceiling. (GH4314, GH11963)

Naive datetimes

Tz-aware are rounded, floored and ceiled in local times
In [34]: dr = dr.tz_localize('US/Eastern')

In [35]: dr
Out[35]:
DatetimeIndex(['2013-01-01 09:12:56.123400-05:00',
               '2013-01-02 09:12:56.123400-05:00',
               '2013-01-03 09:12:56.123400-05:00'],
dtype='datetime64[ns, US/Eastern]', freq='D')

In [36]: dr.round('s')
Out[36]:
DatetimeIndex(['2013-01-01 09:12:56-05:00', '2013-01-02 09:12:56-05:00',
               '2013-01-03 09:12:56-05:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)

Timedeltas

In [37]: t = timedelta_range('1 days 2 hr 13 min 45 us', periods=3, freq='d')

In [38]: t
Out[38]:
TimedeltaIndex(['1 days 02:13:00.000045', '2 days 02:13:00.000045',
                '3 days 02:13:00.000045'],
dtype='timedelta64[ns]', freq='D')

In [39]: t.round('10min')
Out[39]: TimedeltaIndex(['1 days 02:10:00', '2 days 02:10:00', '3 days 02:10:00'],
                        dtype='timedelta64[ns]', freq=None)

# Timedelta scalar
In [40]: t[0]
Out[40]: Timedelta('1 days 02:13:00.000045')

In [41]: t[0].round('2h')
Out[41]: Timedelta('1 days 02:00:00')

In addition, .round(), .floor() and .ceil() will be available thru the .dt accessor of Series.

In [42]: s = pd.Series(dr)

In [43]: s
Out[43]:
0  2013-01-01 09:12:56.123400-05:00
1  2013-01-02 09:12:56.123400-05:00
2  2013-01-03 09:12:56.123400-05:00
dtype: datetime64[ns, US/Eastern]

In [44]: s.dt.round('D')
Out[44]:
0  2013-01-01 00:00:00-05:00
1  2013-01-02 00:00:00-05:00
2  2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]
Formatting of Integers in FloatIndex

Integers in FloatIndex, e.g. 1., are now formatted with a decimal point and a 0 digit, e.g. 1.0 (GH11713) This change not only affects the display to the console, but also the output of IO methods like .to_csv or .to_html.

Previous Behavior:

```python
In [2]: s = pd.Series([1,2,3], index=np.arange(3.))
In [3]: s
Out[3]:
0 1
1 2
2 3
dtype: int64
In [4]: s.index
Out[4]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [5]: print(s.to_csv(path=None))
0,1
1,2
2,3
```

New Behavior:

```python
In [45]: s = pd.Series([1,2,3], index=np.arange(3.))
In [46]: s
Out[46]:
0.0 1
1.0 2
2.0 3
dtype: int64
In [47]: s.index
Out[47]: Float64Index([0.0, 1.0, 2.0], dtype='float64')
In [48]: print(s.to_csv(path=None))
0.0,1
1.0,2
2.0,3
```

Changes to dtype assignment behaviors

When a DataFrame’s slice is updated with a new slice of the same dtype, the dtype of the DataFrame will now remain the same. (GH10503)

Previous Behavior:

```python
In [5]: df = pd.DataFrame({'a': [0, 1, 1],
 'b': pd.Series([100, 200, 300], dtype='uint32')})
In [7]: df.dtypes
Out[7]:
a int64
b uint32
```
In [8]: ix = df['a'] == 1
In [9]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [11]: df.dtypes
Out[11]:
   a  int64
   b  int64
dtype: object

New Behavior:

In [49]: df = pd.DataFrame({'a': [0, 1, 1],
                       'b': pd.Series([100, 200, 300], dtype='uint32'))
In [50]: df.dtypes
Out[50]:
   a  int64
   b  uint32
dtype: object
In [51]: ix = df['a'] == 1
In [52]: df.loc[ix, 'b'] = df.loc[ix, 'b']
In [53]: df.dtypes
Out[53]:
   a  int64
   b  uint32
dtype: object

When a DataFrame’s integer slice is partially updated with a new slice of floats that could potentially be downcasted
to integer without losing precision, the dtype of the slice will be set to float instead of integer.

Previous Behavior:

In [4]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
                     columns=list('abc'),
                     index=[[4,4,8], [8,10,12]])
In [5]: df
Out[5]:
     a  b  c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
In [7]: df.ix[4, 'c'] = np.array([0., 1.])
In [8]: df
Out[8]:
     a  b  c
4 8 1 2 0
10 4 5 1
8 12 7 8 9
New Behavior:

```python
In [54]: df = pd.DataFrame(np.array(range(1,10)).reshape(3,3),
....: columns=list('abc'),
....: index=[[4,4,8], [8,10,12]])
....:
In [55]: df
Out[55]:
 a b c
4 8 1 2 3
10 4 5 6
8 12 7 8 9
In [56]: df.ix[4, 'c'] = np.array([0., 1.])
In [57]: df
Out[57]:
 a b c
4 8 1 2 0.0
10 4 5 1.0
8 12 7 8 9.0
```

**to_xarray**

In a future version of pandas, we will be deprecating `Panel` and other > 2 ndim objects. In order to provide for continuity, all `NDFrame` objects have gained the `.to_xarray()` method in order to convert to `xarray` objects, which has a pandas-like interface for > 2 ndim. (GH11972)

See the `xarray` full-documentation here.

```python
In [1]: p = Panel(np.arange(2*3*4).reshape(2,3,4))
In [2]: p.to_xarray()
Out[2]:
<xarray.DataArray (items: 2, major_axis: 3, minor_axis: 4)>
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]])
Coordinates:
* items (items) int64 0 1
* major_axis (major_axis) int64 0 1 2
* minor_axis (minor_axis) int64 0 1 2 3
```

**Latex Representation**

DataFrame has gained a `.repr_latex_()` method in order to allow for conversion to latex in a ipython/jupyter notebook using nbconvert. (GH11778)

Note that this must be activated by setting the option `pd.display.latex.repr=True` (GH12182)

For example, if you have a jupyter notebook you plan to convert to latex using nbconvert, place the statement `pd.display.latex.repr=True` in the first cell to have the contained DataFrame output also stored as latex.
The options `display.latex.escape` and `display.latex.longtable` have also been added to the configuration and are used automatically by the `to_latex` method. See the available options docs for more info.

**pd.read_sas() changes**

`read_sas` has gained the ability to read SAS7BDAT files, including compressed files. The files can be read in entirety, or incrementally. For full details see here. (GH4052)

**Other enhancements**

- Handle truncated floats in SAS xport files (GH11713)
- Added option to hide index in `Series.to_string` (GH11729)
- `read_excel` now supports s3 urls of the format `s3://bucketname/filename` (GH11447)
- add support for `AWS_S3_HOST` env variable when reading from s3 (GH12198)
- A simple version of `Panel.round()` is now implemented (GH11763)
- For Python 3.x, `round(DataFrame), round(Series), round(Panel)` will work (GH11763)
- `sys.getsizeof(obj)` returns the memory usage of a pandas object, including the values it contains (GH11597)
- `Series` gained an `is_unique` attribute (GH11946)
- `DataFrame.quantile` and `Series.quantile` now accept interpolation keyword (GH10174)
- `DataFrame.style.format` for more flexible formatting of cell values (GH11692)
- `DataFrame.select_dtypes` now allows the `np.float16` typecode (GH11990)
- `pivot_table()` now accepts most iterables for the values parameter (GH12017)
- Added Google BigQuery service account authentication support, which enables authentication on remote servers. (GH11881, GH12572). For further details see here
- `HDFStore` is now iterable: for `k` in `store` is equivalent to `for k in store.keys()` (GH12221).
- Add missing methods/fields to `.dt` for Period (GH8848)
- The entire codebase has been PEP-ified (GH12096)

**Backwards incompatible API changes**

- the leading whitespaces have been removed from the output of `.to_string(index=False)` method (GH11833)
- the `out` parameter has been removed from the `Series.round()` method. (GH11763)
- `DataFrame.round()` leaves non-numeric columns unchanged in its return, rather than raises. (GH11885)
- `DataFrame.head(0)` and `DataFrame.tail(0)` return empty frames, rather than `self`. (GH11937)
- `Series.head(0)` and `Series.tail(0)` return empty series, rather than `self`. (GH11937)
- `to_msgpack` and `read_msgpack` encoding now defaults to 'utf-8'. (GH12170)
- the order of keyword arguments to text file parsing functions (.read_csv(), .read_table(), .read_fwf()) changed to group related arguments. (GH11555)
- `NaTType.isoformat` now returns the string 'NaT to allow the result to be passed to the constructor of `Timestamp`. (GH12300)

**NaT and Timedelta operations**

NaT and Timedelta have expanded arithmetic operations, which are extended to Series arithmetic where applicable. Operations defined for `datetime64[ns]` or `timedelta64[ns]` are now also defined for NaT (GH11564).

NaT now supports arithmetic operations with integers and floats.

```python
In [58]: pd.NaT * 1
Out[58]: NaT

In [59]: pd.NaT * 1.5
Out[59]: NaT

In [60]: pd.NaT / 2
Out[60]: NaT

In [61]: pd.NaT * np.nan
Out[61]: NaT
```

NaT defines more arithmetic operations with `datetime64[ns]` and `timedelta64[ns]`.

```python
In [62]: pd.NaT / pd.NaT
Out[62]: nan

In [63]: pd.Timedelta('1s') / pd.NaT
Out[63]: nan
```

NaT may represent either a `datetime64[ns]` null or a `timedelta64[ns]` null. Given the ambiguity, it is treated as a `timedelta64[ns]`, which allows more operations to succeed.

```python
In [64]: pd.NaT + pd.NaT
Out[64]: NaT

same as
In [65]: pd.Timedelta('1s') + pd.Timedelta('1s')
Out[65]: Timedelta('0 days 00:00:02')
```

as opposed to

```python
In [3]: pd.Timestamp('19900315') + pd.Timestamp('19900315')
TypeError: unsupported operand type(s) for +: 'Timestamp' and 'Timestamp'
```

However, when wrapped in a Series whose `dtype` is `datetime64[ns]` or `timedelta64[ns]`, the `dtype` information is respected.

```python
In [1]: pd.Series([pd.NaT], dtype='<M8[ns]') + pd.Series([pd.NaT], dtype='<M8[ns]')
TypeError: can only operate on a datetimes for subtraction, but the operator [__add__] was passed

In [66]: pd.Series([pd.NaT], dtype='<m8[ns]') + pd.Series([pd.NaT], dtype='<m8[ns]')
Out[66]:
0 NaT
dtype: timedelta64[ns]
```
Timedelta division by floats now works.

```
In [67]: pd.Timedelta('1s') / 2.0
Out[67]: Timedelta('0 days 00:00:00.500000')
```

Subtraction by Timedelta in a Series by a Timestamp works (GH11925)

```
In [68]: ser = pd.Series(pd.timedelta_range('1 day', periods=3))
In [69]: ser
Out[69]:
0 1 days
1 2 days
2 3 days
dtype: timedelta64[ns]
In [70]: pd.Timestamp('2012-01-01') - ser
Out[70]:
0 2011-12-31
1 2011-12-30
2 2011-12-29
dtype: datetime64[ns]
```

NaT.isoformat() now returns 'NaT'. This change allows allows pd.Timestamp to rehydrate any timestamp like object from its isoformat (GH12300).

Changes to msgpack

Forward incompatible changes in msgpack writing format were made over 0.17.0 and 0.18.0; older versions of pandas cannot read files packed by newer versions (GH12129, GH10527)

Bugs in to_msgpack and read_msgpack introduced in 0.17.0 and fixed in 0.18.0, caused files packed in Python 2 unreadable by Python 3 (GH12142). The following table describes the backward and forward compat of msgpacks.

<table>
<thead>
<tr>
<th>Packed with</th>
<th>Can be unpacked with</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-0.17 / Python 2</td>
<td>any</td>
</tr>
<tr>
<td>pre-0.17 / Python 3</td>
<td>any</td>
</tr>
<tr>
<td>0.17 / Python 2</td>
<td>• ==0.17 / Python 2</td>
</tr>
<tr>
<td></td>
<td>• &gt;=0.18 / any Python</td>
</tr>
<tr>
<td>0.17 / Python 3</td>
<td>&gt;=0.18 / any Python</td>
</tr>
<tr>
<td>0.18</td>
<td>&gt;= 0.18</td>
</tr>
</tbody>
</table>

0.18.0 is backward-compatible for reading files packed by older versions, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.

Signature change for .rank

Series.rank and DataFrame.rank now have the same signature (GH11759)

Previous signature
In [3]: pd.Series([0,1]).rank(method='average', na_option='keep',
    ascending=True, pct=False)
Out[3]:
      0   1
0   1   2
dtype: float64

In [4]: pd.DataFrame([0,1]).rank(axis=0, numeric_only=None,
    method='average', na_option='keep',
    ascending=True, pct=False)
Out[4]:
   0
0  1  2

New signature

In [71]: pd.Series([0,1]).rank(axis=0, method='average', numeric_only=None,
    ....:     na_option='keep', ascending=True, pct=False)
    ....:
Out[71]:
      0   1
0   1.0  2.0
dtype: float64

In [72]: pd.DataFrame([0,1]).rank(axis=0, method='average', numeric_only=None,
    ....:     na_option='keep', ascending=True, pct=False)
    ....:
Out[72]:
   0
0  1.0  2.0

Bug in QuarterBegin with n=0

In previous versions, the behavior of the QuarterBegin offset was inconsistent depending on the date when the \( n \) parameter was 0. (GH11406)

The general semantics of anchored offsets for \( n=0 \) is to not move the date when it is an anchor point (e.g., a quarter start date), and otherwise roll forward to the next anchor point.

In [73]: d = pd.Timestamp('2014-02-01')
In [74]: d
Out[74]: Timestamp('2014-02-01 00:00:00')
In [75]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[75]: Timestamp('2014-02-01 00:00:00')
In [76]: d + pd.offsets.QuarterBegin(n=0, startingMonth=1)
Out[76]: Timestamp('2014-04-01 00:00:00')

For the QuarterBegin offset in previous versions, the date would be rolled \textit{backwards} if date was in the same month as the quarter start date.
In [3]: d = pd.Timestamp('2014-02-15')
In [4]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[4]: Timestamp('2014-02-01 00:00:00')

This behavior has been corrected in version 0.18.0, which is consistent with other anchored offsets like MonthBegin and YearBegin.

In [77]: d = pd.Timestamp('2014-02-15')
In [78]: d + pd.offsets.QuarterBegin(n=0, startingMonth=2)
Out[78]: Timestamp('2014-05-01 00:00:00')

Resample API

Like the change in the window functions API above, .resample(...) is changing to have a more groupby-like API. (GH11732, GH12702, GH12202, GH12332, GH12334, GH12348, GH12448).

In [79]: np.random.seed(1234)
In [80]: df = pd.DataFrame(np.random.rand(10,4),
    ...:    columns=list('ABCD'),
    ...:    index=pd.date_range('2010-01-01 09:00:00', periods=10,
    ...:    →freq='s'))
    ...:
In [81]: df
Out[81]:
    A    B     C    D
2010-01-01 09:00:00 0.191519 0.622109 0.437728 0.785359
2010-01-01 09:00:01 0.779976 0.272593 0.276464 0.801872
2010-01-01 09:00:02 0.958139 0.875933 0.357817 0.500995
2010-01-01 09:00:03 0.683463 0.712702 0.370251 0.561196
2010-01-01 09:00:04 0.503083 0.013768 0.772827 0.882641
2010-01-01 09:00:05 0.364886 0.615396 0.075381 0.368824
2010-01-01 09:00:06 0.933140 0.651378 0.397203 0.788730
2010-01-01 09:00:07 0.316836 0.568099 0.869127 0.436173
2010-01-01 09:00:08 0.802148 0.143767 0.704261 0.704581
2010-01-01 09:00:09 0.218792 0.924868 0.442141 0.909316

Previous API:

You would write a resampling operation that immediately evaluates. If a how parameter was not provided, it would default to how='mean'.

In [6]: df.resample('2s')
Out[6]:
    A    B     C    D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949

You could also specify a how directly
New API:

Now, you can write `.resample(..)` as a 2-stage operation like `.groupby(...)`, which yields a Resampler.

```
In [82]: r = df.resample('2s')
```

```
In [83]: r
Out[83]: DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, _convention=start, base=0]
```

Downsampling

You can then use this object to perform operations. These are downsampling operations (going from a higher frequency to a lower one).

```
In [84]: r.mean()
Out[84]:
 A B C D
2010-01-01 09:00:00 0.485748 0.447351 0.357096 0.793615
2010-01-01 09:00:02 0.820801 0.794317 0.364034 0.531096
2010-01-01 09:00:04 0.433985 0.314582 0.424104 0.625733
2010-01-01 09:00:06 0.624988 0.609738 0.633165 0.612452
2010-01-01 09:00:08 0.510470 0.534317 0.573201 0.806949
```

```
In [85]: r.sum()
Out[85]:
 A B C D
2010-01-01 09:00:00 0.971495 0.894701 0.714192 1.587231
2010-01-01 09:00:02 1.641602 1.588635 0.728068 1.062191
2010-01-01 09:00:04 0.867969 0.629165 0.648208 1.251465
2010-01-01 09:00:06 1.249976 1.219477 1.266330 1.224904
2010-01-01 09:00:08 1.020940 1.068634 1.146402 1.613897
```

Furthermore, resample now supports `getitem` operations to perform the resample on specific columns.

```
In [86]: r[['A','C']].mean()
Out[86]:
 A C
2010-01-01 09:00:00 0.485748 0.357096
2010-01-01 09:00:02 0.820801 0.364034
2010-01-01 09:00:04 0.433985 0.424104
2010-01-01 09:00:06 0.624988 0.633165
2010-01-01 09:00:08 0.510470 0.573201
```

and `.aggregate` type operations.
In [87]: r.agg({'A': 'mean', 'B': 'sum'})
Out[87]:
   A    B
2010-01-01 09:00:00 0.485748 0.894701
2010-01-01 09:00:02 0.820801 1.588635
2010-01-01 09:00:04 0.433985 0.629165
2010-01-01 09:00:06 0.624988 1.219477
2010-01-01 09:00:08 0.510470 1.068634

These accessors can of course, be combined

In [88]: r[['A','B']].agg(['mean','sum'])
Out[88]:
   mean    sum    mean    sum
2010-01-01 09:00:00 0.485748 0.894701 0.447351 0.894701
2010-01-01 09:00:02 0.820801 1.588635 0.794317 1.588635
2010-01-01 09:00:04 0.433985 0.629165 0.314582 0.629165
2010-01-01 09:00:06 0.624988 1.219477 0.609738 1.219477
2010-01-01 09:00:08 0.510470 1.068634 0.534317 1.068634

Upsampling

Upsampling operations take you from a lower frequency to a higher frequency. These are now performed with the Resampler objects with backfill(), ffill(), fillna() and asfreq() methods.

In [89]: s = pd.Series(np.arange(5,dtype='int64'),
    index=date_range('2010-01-01', periods=5, freq='Q'))

In [90]: s
Out[90]:
2010-03-31  0
2010-06-30  1
2010-09-30  2
2010-12-31  3
2011-03-31  4
Freq: Q-DEC, dtype: int64

Previously

In [6]: s.resample('M', fill_method='ffill')
Out[6]:
2010-03-31  0
2010-04-30  0
2010-05-31  0
2010-06-30  1
2010-07-31  1
2010-08-31  1
2010-09-30  2
2010-10-31  2
2010-11-30  2
2010-12-31  3
2011-01-31  3
2011-02-28  3
New API

```python
In [91]: s.resample('M').ffill()
Out[91]:
2010-03-31 0
2010-04-30 0
2010-05-31 0
2010-06-30 1
2010-07-31 1
2010-08-31 1
2010-09-30 2
2010-10-31 2
2010-11-30 2
2010-12-31 3
2011-01-31 3
2011-02-28 3
2011-03-31 4
Freq: M, dtype: int64
```

**Note:** In the new API, you can either downsample OR upsample. The prior implementation would allow you to pass an aggregator function (like `mean`) even though you were upsampling, providing a bit of confusion.

Previous API will work but with deprecations

```python
Warning: This new API for resample includes some internal changes for the prior-to-0.18.0 API, to work with a deprecation warning in most cases, as the resample operation returns a deferred object. We can intercept operations and just do what the (pre 0.18.0) API did (with a warning). Here is a typical use case:
```

```python
In [4]: r = df.resample('2s')

In [6]: r*10
```

```
pandas/tseries/resample.py:80: FutureWarning: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
```

```
Out[6]:
 A B C D
2010-01-01 09:00:00 4.857476 4.473507 3.570960 7.936154
2010-01-01 09:00:02 8.208011 7.943173 3.640340 5.310957
2010-01-01 09:00:04 4.339846 3.145823 4.241039 6.257326
2010-01-01 09:00:06 6.249881 6.097384 6.331650 6.124518
2010-01-01 09:00:08 5.104699 5.343172 5.732009 8.069486
```

```
However, getting and assignment operations directly on a Resampler will raise a ValueError:
```

```python
In [7]: r.iloc[0] = 5
ValueError: .resample() is now a deferred operation
use .resample(...).mean() instead of .resample(...)
```

There is a situation where the new API can not perform all the operations when using original code. This code is
intending to resample every 2s, take the mean AND then take the min of those results.

```python
In [4]: df.resample('2s').min()
Out[4]:
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
```

The new API will:

```python
In [92]: df.resample('2s').min()
```

```
2010-01-01 09:00:00 0.191519 0.272593 0.276464 0.785359
2010-01-01 09:00:02 0.683463 0.712702 0.357817 0.500995
2010-01-01 09:00:04 0.364886 0.013768 0.075381 0.368824
2010-01-01 09:00:06 0.316836 0.568099 0.397203 0.436173
2010-01-01 09:00:08 0.218792 0.143767 0.442141 0.704581
```

The good news is the return dimensions will differ between the new API and the old API, so this should loudly raise an exception.

To replicate the original operation

```python
In [93]: df.resample('2s').mean().min()
```

```
A 0.433985
B 0.314582
C 0.357096
D 0.531096
dtype: float64
```

**Changes to eval**

In prior versions, new columns assignments in an `eval` expression resulted in an inplace change to the DataFrame. (GH9297, GH8664, GH10486)

```python
In [94]: df = pd.DataFrame({'a': np.linspace(0, 10, 5), 'b': range(5)})
```

```python
In [95]: df
Out[95]:
 a b
0 0 0
1 2.5 1
2 5.0 2
3 7.5 3
4 10.0 4
```

```python
In [12]: df.eval('c = a + b')
```

```
FutureWarning: eval expressions containing an assignment currently default to operating inplace.
This will change in a future version of pandas, use inplace=True to avoid this warning.
```

```python
In [13]: df
```
In version 0.18.0, a new `inplace` keyword was added to choose whether the assignment should be done inplace or return a copy.

```python
In [96]: df
Out[96]:
 a b c
0 0.0 0.0 0.0
1 2.5 1.0 3.5
2 5.0 2.0 7.0
3 7.5 3.0 10.5
4 10.0 4.0 14.0

In [97]: df.eval('d = c - b', inplace=False)
Out[97]:
 a b c d
0 0.0 0.0 0.0 0.0
1 2.5 1.0 3.5 2.5
2 5.0 2.0 7.0 5.0
3 7.5 3.0 10.5 7.5
4 10.0 4.0 14.0 10.0

In [98]: df
Out[98]:
 a b c
0 0.0 0.0 0.0
1 2.5 1.0 3.5
2 5.0 2.0 7.0
3 7.5 3.0 10.5
4 10.0 4.0 14.0

In [99]: df.eval('d = c - b', inplace=True)

In [100]: df
Out[100]:
 a b c d
0 0.0 0.0 0.0 0.0
1 2.5 1.0 3.5 2.5
2 5.0 2.0 7.0 5.0
3 7.5 3.0 10.5 7.5
4 10.0 4.0 14.0 10.0
```

**Warning:** For backwards compatibility, `inplace` defaults to `True` if not specified. This will change in a future version of pandas. If your code depends on an inplace assignment you should update to explicitly set `inplace=True`.

The `inplace` keyword parameter was also added to the `query` method.
In [101]: df.query('a > 5')
Out[101]:
   a    b    c    d
3  7.5  10.5   7.5
4 10.0  14.0  10.0

In [102]: df.query('a > 5', inplace=True)

In [103]: df
Out[103]:
   a    b    c    d
3  7.5  10.5   7.5
4 10.0  14.0  10.0

**Warning:** Note that the default value for `inplace` in a query is `False`, which is consistent with prior versions.

eval has also been updated to allow multi-line expressions for multiple assignments. These expressions will be evaluated one at a time in order. Only assignments are valid for multi-line expressions.

Other API Changes

- `DataFrame.between_time` and `Series.between_time` now only parse a fixed set of time strings. Parsing of date strings is no longer supported and raises a `ValueError`. (GH11818)

```
In [104]: df
Out[104]:
 a b c d
3 7.5 10.5 7.5
4 10.0 14.0 10.0

In [105]: df.eval("""......: e = d + a
......: f = e - 22
......: g = f / 2.0""", inplace=True)
......:

In [106]: df
Out[106]:
 a b c d e f g
3 7.5 10.5 7.5 15.0 -7.0 -3.5
4 10.0 14.0 10.0 20.0 -2.0 -1.0
```

This will now raise.
pandas: powerful Python data analysis toolkit, Release 0.19.2

• `.memory_usage()` now includes values in the index, as does `memory_usage` in `.info()` (GH11597)
• `DataFrame.to_latex()` now supports non-ascii encodings (e.g., `utf-8`) in Python 2 with the parameter `encoding` (GH7061)
• `pandas.merge()` and `DataFrame.merge()` will show a specific error message when trying to merge with an object that is not of type `DataFrame` or a subclass (GH12081)
• `DataFrame.unstack` and `Series.unstack` now take `fill_value` keyword to allow direct replacement of missing values when an unstack results in missing values in the resulting `DataFrame`. As an added benefit, specifying `fill_value` will preserve the data type of the original stacked data. (GH9746)
• As part of the new API for `window functions` and `resampling`, aggregation functions have been clarified, raising more informative error messages on invalid aggregations. (GH9052). A full set of examples are presented in `groupby`.
• Statistical functions for `NDFrame` objects (like `sum()`, `mean()`, `min()`) will now raise if non-numpy-compatible arguments are passed in for `**kwargs` (GH12301)
• `.to_latex` and `.to_html` gain a `decimal` parameter like `.to_csv`; the default is `'.'` (GH12031)
• More helpful error message when constructing a `DataFrame` with empty data but with indices (GH8020)
• `.describe()` will now properly handle bool dtype as a categorical (GH6625)
• More helpful error message with an invalid `.transform` with user defined input (GH10165)
• Exponentially weighted functions now allow specifying alpha directly (GH10789) and raise `ValueError` if parameters violate $0 < \alpha \leq 1$ (GH12492)

Deprecations

• The functions `pd.rolling_*`, `pd.expanding_*`, and `pd.ewm*` are deprecated and replaced by the corresponding method call. Note that the new suggested syntax includes all of the arguments (even if default) (GH11603)
The `freq` and `how` arguments to the `.rolling`, `.expanding`, and `.ewm` (new) functions are deprecated, and will be removed in a future version. You can simply resample the input prior to creating a window function. (GH11603).

For example, instead of `s.rolling(window=5, freq='D').max()` to get the max value on a rolling 5 Day window, one could use `s.resample('D').mean().rolling(window=5).max()`, which first resamples the data to daily data, then provides a rolling 5 day window.

- `pd.tseries.frequencies.get_offset_name` function is deprecated. Use offset's `.freqstr` property as alternative (GH11192)
- `pandas.stats.fama_macbeth` routines are deprecated and will be removed in a future version (GH6077)
- `pandas.stats.ols`, `pandas.stats.plm` and `pandas.stats.var` routines are deprecated and will be removed in a future version (GH6077)
- show a `FutureWarning` rather than a `DeprecationWarning` on using long-time deprecated syntax in `HDFStore.select`, where the where clause is not a string-like (GH12027)
- The `pandas.options.display.mpl_style` configuration has been deprecated and will be removed in a future version of pandas. This functionality is better handled by matplotlib’s style sheets (GH11783).

### Removal of deprecated float indexers

In GH4892 indexing with floating point numbers on a non-`Float64Index` was deprecated (in version 0.14.0). In 0.18.0, this deprecation warning is removed and these will now raise a `TypeError`. (GH12165, GH12333)

```
In [109]: s = pd.Series([1, 2, 3], index=[4, 5, 6])
In [110]: s
Out[110]:
4 1
5 2
6 3
dtype: int64

In [111]: s2 = pd.Series([1, 2, 3], index=list('abc'))
In [112]: s2
Out[112]:
a 1
b 2
c 3
dtype: int64
```

Previous Behavior:

```
this is label indexing
In [2]: s[5.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
Out[2]: 2

this is positional indexing
In [3]: s.ioc[1.0]
FutureWarning: scalar indexers for index type Int64Index should be integers and not floating point
```
### New Behavior:

For `iloc`, getting & setting via a float scalar will always raise.

```
In [3]: s.iloc[2.0]
TypeError: cannot do label indexing on <class 'pandas.indexes.numeric.Int64Index'> with these indexes [2.0] of <type 'float'>
```

Other indexers will coerce to a like integer for both getting and setting. The `FutureWarning` has been dropped for `.loc`, `.ix` and `[]`.

```
In [13]: s[5.0]
Out[13]: 2

In [14]: s.loc[5.0]
Out[14]: 2

In [15]: s.ix[5.0]
Out[15]: 2
```

and setting

```
In [16]: s_copy = s.copy()

In [17]: s_copy[5.0] = 10

In [18]: s_copy
Out[18]:
 4 1
 5 10
 6 3
dtype: int64

In [19]: s_copy = s.copy()

In [20]: s_copy.loc[5.0] = 10

In [21]: s_copy
```

---

88 Chapter 1. What’s New
Out[121]:
4   1
5  10
6   3
dtype: int64

In [122]: s_copy = s.copy()

In [123]: s_copy.ix[5.0] = 10

In [124]: s_copy
Out[124]:
4   1
5  10
6   3
dtype: int64

Positional setting with .ix and a float indexer will ADD this value to the index, rather than previously setting the value by position.

In [125]: s2.ix[1.0] = 10

In [126]: s2
Out[126]:
a  1
b  2
c  3
1.0 10
dtype: int64

Slicing will also coerce integer-like floats to integers for a non-Float64Index.

In [127]: s.loc[5.0:6]
Out[127]:
5   2
6   3
dtype: int64

In [128]: s.ix[5.0:6]
Out[128]:
5   2
6   3
dtype: int64

Note that for floats that are NOT coercible to ints, the label based bounds will be excluded.

In [129]: s.loc[5.1:6]
Out[129]:
6   3
dtype: int64

In [130]: s.ix[5.1:6]
Out[130]:
6   3
dtype: int64

Float indexing on a Float64Index is unchanged.
In [131]: s = pd.Series([1, 2, 3], index=np.arange(3.))

In [132]: s[1.0]
Out[132]: 2

In [133]: s[1.0:2.5]
Out[133]:
   1.0  2
   2.0  3
dtype: int64

Removal of prior version deprecations/changes

- Removal of `rolling_corr_pairwise` in favor of `.rolling().corr(pairwise=True)` (GH4950)
- Removal of `expanding_corr_pairwise` in favor of `.expanding().corr(pairwise=True)` (GH4950)
- Removal of `DataMatrix` module. This was not imported into the pandas namespace in any event (GH12111)
- Removal of `cols` keyword in favor of `subset` in `DataFrame.duplicated()` and `DataFrame.drop_duplicates()` (GH6680)
- Removal of the `read_frame` and `frame_query` (both aliases for `pd.read_sql`) and `write_frame` (alias of `to_sql`) functions in the `pd.io.sql` namespace, deprecated since 0.14.0 (GH6292).
- Removal of the `order` keyword from `.factorize()` (GH6930)

Performance Improvements

- Improved performance of `andrews_curves` (GH11534)
- Improved huge `DatetimeIndex`, `PeriodIndex` and `TimedeltaIndex`’s ops performance including `NaT` (GH10277)
- Improved performance of `pandas.concat` (GH11958)
- Improved performance of `StataReader` (GH11591)
- Improved performance in construction of `Categoricals` with `Series` of datetimes containing `NaT` (GH12077)
- Improved performance of ISO 8601 date parsing for dates without separators (GH11899), leading zeros (GH11871) and with whitespace preceding the time zone (GH9714)

Bug Fixes

- Bug in `GroupBy.size` when data-frame is empty. (GH11699)
- Bug in `Period.end_time` when a multiple of time period is requested (GH11738)
- Regression in `.clip` with tz-aware datetimes (GH11838)
- Bug in `date_range` when the boundaries fell on the frequency (GH11804, GH12409)
- Bug in consistency of passing nested dicts to `.groupby(...).agg(...)` (GH9052)
- Accept unicode in `Timedelta` constructor (GH11995)
• Bug in value label reading for StataReader when reading incrementally (GH12014)
• Bug in vectorized DateOffset when n parameter is 0 (GH11370)
• Compats for numpy 1.11 w.r.t. NaT comparison changes (GH12049)
• Bug in read_csv when reading from a StringIO in threads (GH11790)
• Bug in not treating NaT as a missing value in datetimelikes when factorizing & with Categoricals (GH12077)
• Bug in getitem when the values of a Series were tz-aware (GH12089)
• Bug in Series.str.get_dummies when one of the variables was 'name' (GH12180)
• Bug in pd.concat while concatenating tz-aware NaT series. (GH11693, GH11755, GH12217)
• Bug in pd.read_stata with version <= 108 files (GH12232)
• Bug in Series.resample using a frequency of Nano when the index is a DatetimeIndex and contains non-zero nanosecond parts (GH12037)
• Bug in resampling with .nunique and a sparse index (GH12352)
• Removed some compiler warnings (GH12471)
• Work around compat issues with boto in python 3.5 (GH11915)
• Bug in NaT subtraction from Timestamp or DatetimeIndex with timezones (GH11718)
• Bug in subtraction of Series of a single tz-aware Timestamp (GH12290)
• Use compat iterators in PY2 to support .next() (GH12299)
• Bug in Timedelta.round with negative values (GH11690)
• Bug in .loc against CategoricalIndex may result in normal Index (GH11586)
• Bug in DataFrame.info when duplicated column names exist (GH11761)
• Bug in .copy of datetime tz-aware objects (GH11794)
• Bug in Series.apply and Series.map where timedelta64 was not boxed (GH11349)
• Bug in DataFrame.set_index() with tz-aware Series (GH12358)
• Bug in subclasses of DataFrame where AttributeError did not propagate (GH11808)
• Bug groupby on tz-aware data where selection not returning Timestamp (GH11616)
• Bug in pd.read_clipboard and pd.to_clipboard functions not supporting Unicode; upgrade included pyperclip to v1.5.15 (GH9263)
• Bug in DataFrame.query containing an assignment (GH8664)
• Bug in from_msgpack where __contains__() fails for columns of the unpacked DataFrame, if the DataFrame has object columns. (GH11880)
• Bug in .resample on categorical data with TimedeltaIndex (GH12169)
• Bug in timezone info lost when broadcasting scalar datetime to DataFrame (GH11682)
• Bug in Index creation from Timestamp with mixed tz coerces to UTC (GH11488)
• Bug in to_numeric where it does not raise if input is more than one dimension (GH11776)
• Bug in parsing timezone offset strings with non-zero minutes (GH11708)
• Bug in df.plot using incorrect colors for bar plots under matplotlib 1.5+ (GH11614)

1.5. v0.18.0 (March 13, 2016)
• Bug in the `groupby plot` method when using keyword arguments (GH11805).
• Bug in `DataFrame.duplicated` and `drop_duplicates` causing spurious matches when setting `keep=False` (GH11864)
• Bug in `.loc` result with duplicated key may have Index with incorrect dtype (GH11497)
• Bug in `pd.rolling_median` where memory allocation failed even with sufficient memory (GH11696)
• Bug in `DataFrame.style` with spurious zeros (GH12134)
• Bug in `DataFrame.style` with integer columns not starting at 0 (GH12125)
• Bug in `.style.bar` may not rendered properly using specific browser (GH11678)
• Bug in rich comparison of `Timedelta` with a `numpy.array` of `Timedelta` that caused an infinite recursion (GH11835)
• Bug in `DataFrame.round` dropping column index name (GH11986)
• Bug in `df.replace` while replacing value in mixed dtype Dataframe (GH11698)
• Bug in Index prevents copying name of passed Index, when a new name is not provided (GH11193)
• Bug in `read_excel` failing to read any non-empty sheets when empty sheets exist and `sheetname=None` (GH11711)
• Bug in `read_excel` failing to raise `NotImplemented` error when keywords `parse_dates` and `date_parser` are provided (GH11544)
• Bug in `read_sql` with `pymysql` connections failing to return chunked data (GH11522)
• Bug in `.to_csv` ignoring formatting parameters `decimal`, `na_rep`, `float_format` for float indexes (GH11553)
• Bug in `Int64Index` and `Float64Index` preventing the use of the modulo operator (GH9244)
• Bug in `MultiIndex.drop` for not lexsorted multi-indexes (GH12078)
• Bug in `DataFrame` when masking an empty DataFrame (GH11859)
• Bug in `.plot` potentially modifying the `colors` input when the number of columns didn’t match the number of series provided (GH12039).
• Bug in `Series.plot` failing when index has a `CustomBusinessDay` frequency (GH7222).
• Bug in `.to_sql` for `datetime.time` values with sqlite fallback (GH8341)
• Bug in `read_excel` failing to read data with one column when `squeeze=True` (GH12157)
• Bug in `read_excel` failing to read one empty column (GH12292, GH9002)
• Bug in `.groupby` where a `KeyError` was not raised for a wrong column if there was only one row in the dataframe (GH11741)
• Bug in `.read_csv` with `dtype` specified on empty data producing an error (GH12048)
• Bug in `.read_csv` where strings like `'2E'` are treated as valid floats (GH12237)
• Bug in building `pandas` with debugging symbols (GH12123)
• Removed millisecond property of `DatetimeIndex`. This would always raise a `ValueError` (GH12019).
• Bug in `Series` constructor with read-only data (GH11502)
• Removed `pandas.util.testing.choice()`. Should use `np.random.choice()`, instead. (GH12386)
• Bug in .loc setitem indexer preventing the use of a TZ-aware DatetimeIndex (GH12050)
• Bug in .style indexes and multi-indexes not appearing (GH11655)
• Bug in to_msgpack and from_msgpack which did not correctly serialize or deserialize NaT (GH12307).
• Bug in .skew and .kurt due to roundoff error for highly similar values (GH11974)
• Bug in Timestamp constructor where microsecond resolution was lost if HHMMSS were not separated with ‘:’ (GH10041)
• Bug in buffer_rd_bytes src->buffer could be freed more than once if reading failed, causing a segfault (GH12098)
• Bug in crosstab where arguments with non-overlapping indexes would return a KeyError (GH10291)
• Bug in DataFrame.apply in which reduction was not being prevented for cases in which dtype was not a numpy dtype (GH12244)
• Bug when initializing categorical series with a scalar value. (GH12336)
• Bug when specifying a UTC DatetimeIndex by setting utc=True in .to_datetime (GH11934)
• Bug when increasing the buffer size of CSV reader in read_csv (GH12494)
• Bug when setting columns of a DataFrame with duplicate column names (GH12344)

v0.17.1 (November 21, 2015)

Note: We are proud to announce that pandas has become a sponsored project of the (NUMFocus organization). This will help ensure the success of development of pandas as a world-class open-source project.

This is a minor bug-fix release from 0.17.0 and includes a large number of bug fixes along several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:

• Support for Conditional HTML Formatting, see here
• Releasing the GIL on the csv reader & other ops, see here
• Fixed regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values (GH11376)

What’s new in v0.17.1

• New features
  – Conditional HTML Formatting

• Enhancements

• API changes
  – Deprecations

• Performance Improvements

• Bug Fixes
New features

Conditional HTML Formatting

**Warning:** This is a new feature and is under active development. We’ll be adding features an possibly making breaking changes in future releases. Feedback is welcome.

We’ve added *experimental* support for conditional HTML formatting: the visual styling of a DataFrame based on the data. The styling is accomplished with HTML and CSS. Acesses the styler class with the `pandas.DataFrame.style` attribute, an instance of `Styler` with your data attached.

Here’s a quick example:

```python
In [1]: np.random.seed(123)
In [2]: df = DataFrame(np.random.randn(10, 5), columns=list('abcde'))
In [3]: html = df.style.background_gradient(cmap='viridis', low=.5)
```

We can render the HTML to get the following table. 

Styler interacts nicely with the Jupyter Notebook. See the documentation for more.

Enhancements

- `DatetimeIndex` now supports conversion to strings with `astype(str)` (GH10442)
- Support for compression (gzip/bz2) in `pandas.DataFrame.to_csv()` (GH7615)
- `pd.read_*` functions can now also accept `pathlib.Path` or `py._path.local.LocalPath` objects for the `filepath_or_buffer` argument. (GH11033) - The `DataFrame` and `Series` functions `.to_csv()`, `.to_html()` and `.to_latex()` can now handle paths beginning with tildes (e.g. `~/Documents/`) (GH11438)
- `DataFrame` now uses the fields of a `namedtuple` as columns, if columns are not supplied (GH11181)
- `DataFrame.itertuples()` now returns `namedtuple` objects, when possible. (GH11269, GH11625)
- Added `axvlines_kwds` to parallel coordinates plot (GH10709)
- Option to `.info()` and `.memory_usage()` to provide for deep introspection of memory consumption. Note that this can be expensive to compute and therefore is an optional parameter. (GH11595)

```python
In [4]: df = DataFrame({'A': ['foo']*1000})
In [5]: df['B'] = df['A'].astype('category')
shows the '+' as we have object dtypes
In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
A 1000 non-null object
B 1000 non-null category
dtypes: category(1), object(1)
memory usage: 8.9+ KB
```
In [7]: df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 2 columns):
   A  1000 non-null object
   B  1000 non-null category
dtypes: category(1), object(1)
memory usage: 48.0 KB

• Index now has a fillna method (GH10089)

In [8]: pd.Index([1, np.nan, 3]).fillna(2)
Out[8]: Float64Index([1.0, 2.0, 3.0], dtype='float64')

• Series of type category now make .str.<...> and .dt.<...> accessor methods / properties available, if the categories are of that type. (GH10661)

In [9]: s = pd.Series(list('aabb')).astype('category')

In [10]: s
Out[10]:
0    a
1    a
2    b
3    b
dtype: category
Categories (2, object): [a, b]

In [11]: s.str.contains("a")
Out[11]:
0   True
1   True
2  False
3  False
dtype: bool

In [12]: date = pd.Series(pd.date_range('1/1/2015', periods=5)).astype('category')

In [13]: date
Out[13]:
0  2015-01-01
1  2015-01-02
2  2015-01-03
3  2015-01-04
4  2015-01-05
dtype: category

In [14]: date.dt.day
Out[14]:
0    1
1    2
2    3
3    4
4    5
dtype: int64
pandas: powerful Python data analysis toolkit, Release 0.19.2

- `pivot_table` now has a `margins_name` argument so you can use something other than the default of ‘All’ (GH3335)
- Implement export of `datetime64[ns,tz]` dtypes with a fixed HDF5 store (GH11411)
- Pretty printing sets (e.g. in DataFrame cells) now uses set literal syntax (`{x,y}`) instead of Legacy Python syntax (`set([x,y])`) (GH1215)
- Improve the error message in `pandas.io.gbq.to_gbq()` when a streaming insert fails (GH11285) and when the DataFrame does not match the schema of the destination table (GH11359)

**API changes**

- `raise` `NotImplementedError` in `Index.shift` for non-supported index types (GH8038)
- `min` and `max` reductions on `datetime64` and `timedelta64` dtyped series now result in `NaT` and not `nan` (GH11245).
- Indexing with a null key will raise a `TypeError`, instead of a `ValueError` (GH11356)
- `Series.ptp` will now ignore missing values by default (GH11163)

**Deprecations**

- The `pandas.io.ga` module which implements `google-analytics` support is deprecated and will be removed in a future version (GH11308)
- Deprecate the `engine` keyword in `.to_csv()`, which will be removed in a future version (GH11274)

**Performance Improvements**

- Checking monotonic-ness before sorting on an index (GH11080)
- `Series.dropna` performance improvement when its dtype can’t contain `NaN` (GH11159)
- Release the GIL on most datetime field operations (e.g. `DatetimeIndex.year`, `Series.dt.year`), normalization, and conversion to and from `Period`, `DatetimeIndex.to_period` and `PeriodIndex.to_timestamp` (GH11263)
- Release the GIL on some rolling algos: `rolling_median`, `rolling_mean`, `rolling_max`, `rolling_min`, `rolling_var`, `rolling_kurt`, `rolling_skew` (GH11450)
- Release the GIL when reading and parsing text files in `read_csv`, `read_table` (GH11272)
- Improved performance of `rolling_median` (GH11450)
- Improved performance of `to_excel` (GH11352)
- Performance bug in repr of `Categorical` categories, which was rendering the strings before chopping them for display (GH11305)
- Performance improvement in `Categorical.remove_unused_categories`, (GH11643).
- Improved performance of `Series` constructor with no data and `DatetimeIndex` (GH11433)
- Improved performance of `shift`, `cumprod`, and `cumsum` with groupby (GH4095)
Bug Fixes

- SparseArray.__iter__() now does not cause PendingDeprecationWarning in Python 3.5 (GH11622)
- Regression from 0.16.2 for output formatting of long floats/nan, restored in (GH11302)
- Series.sort_index() now correctly handles the inplace option (GH11402)
- Incorrectly distributed .c file in the build on PyPi when reading a csv of floats and passing na_values=<a scalar> would show an exception (GH11374)
- Bug in .to_latex() output broken when the index has a name (GH10660)
- Bug in HDFStore.append with strings whose encoded length exceeded the max unencoded length (GH11234)
- Bug in merging datetime64[ns,tz] dtypes (GH11405)
- Bug in HDFStore.select when comparing with a numpy scalar in a where clause (GH11283)
- Bug in using DataFrame.ix with a multi-index indexer (GH11372)
- Bug in date_range with ambiguous endpoints (GH11626)
- Prevent adding new attributes to the accessors .str, .dt and .cat. Retrieving such a value was not possible, so error out on setting it. (GH10673)
- Bug in tz-conversions with an ambiguous time and .dt accessors (GH11295)
- Bug in output formatting when using an index of ambiguous times (GH11619)
- Bug in comparisons of Series vs list-likes (GH11339)
- Bug in DataFrame.replace with a datetime64[ns,tz] and a non-compat to_replace (GH11326, GH11153)
- Bug in isnull where numpy.datetime64('NaT') in a numpy.array was not determined to be null(GH11206)
- Bug in list-like indexing with a mixed-integer Index (GH11320)
- Bug in pivot_table with margins=True when indexes are of Categorical dtype (GH10993)
- Bug in DataFrame.plot cannot use hex strings colors (GH10299)
- Regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values (GH11376)
- Bug in pd.eval where unary ops in a list error (GH11235)
- Bug in squeeze() with zero length arrays (GH11230, GH8999)
- Bug in describe() dropping column names for hierarchical indexes (GH11517)
- Bug in DataFrame.pct_change() not propagating axis keyword on .fillna method (GH11150)
- Bug in .to_csv() when a mix of integer and string column names are passed as the columns parameter (GH11637)
- Bug in indexing with a range, (GH11652)
- Bug in inference of numpy scalars and preserving dtype when setting columns (GH11638)
- Bug in to_sql using unicode column names giving UnicodeEncodeError with (GH11431).
- Fix regression in setting of xticks in plot (GH11529).
• Bug in `holiday.dates` where observance rules could not be applied to holiday and doc enhancement (GH11477, GH11533)
• Fix plotting issues when having plain `Axes` instances instead of `SubplotAxes` (GH11520, GH11556).
• Bug in `DataFrame.to_latex()` produces an extra rule when `header=False` (GH7124)
• Bug in `df.groupby(...).apply(func)` when a func returns a `Series` containing a new datetimelike column (GH11324)
• Bug in `pandas.json` when file to load is big (GH11344)
• Bugs in `to_excel` with duplicate columns (GH11007, GH10982, GH10970)
• Fixed a bug that prevented the construction of an empty series of dtype `datetime64[ns,tz]` (GH11245).
• Bug in `read_excel` with multi-index containing integers (GH11317)
• Bug in `to_excel` with openpyxl 2.2+ and merging (GH11408)
• Bug in `DataFrame.to_dict()` produces a `np.datetime64` object instead of `Timestamp` when only datetime is present in data (GH11327)
• Bug in `DataFrame.corr()` raises exception when computes Kendall correlation for DataFrames with boolean and not boolean columns (GH11560)
• Bug in the link-time error caused by C inline functions on FreeBSD 10+ (with `clang`) (GH10510)
• Bug in `DataFrame.to_csv` in passing through arguments for formatting MultiIndexes, including date_format (GH7791)
• Bug in `DataFrame.join()` with how='right' producing a TypeError (GH11519)
• Bug in `Series.quantile` with empty list results has Index with object dtype (GH11588)
• Bug in `pd.merge` results in empty `Int64Index` rather than `Index(dtype=object)` when the merge result is empty (GH11588)
• Bug in `Categorical.remove_unused_categories` when having NaN values (GH11599)
• Bug in `DataFrame.to_sparse()` loses column names for MultiIndexes (GH11600)
• Bug in `DataFrame.round()` with non-unique column index producing a Fatal Python error (GH11611)
• Bug in `DataFrame.round()` with decimals being a non-unique indexed Series producing extra columns (GH11618)

v0.17.0 (October 9, 2015)

This is a major release from 0.16.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Warning: pandas >= 0.17.0 will no longer support compatibility with Python version 3.2 (GH9118)

Warning: The `pandas.io.data` package is deprecated and will be replaced by the `pandas-datareader` package. This will allow the data modules to be independently updated to your pandas installation. The API for `pandas-datareader v0.1.1` is exactly the same as in pandas v0.17.0 (GH8961, GH10861).
After installing pandas-datareader, you can easily change your imports:

```python
from pandas.io import data, wb
```

becomes

```python
from pandas_datareader import data, wb
```

Highlights include:

- Release the Global Interpreter Lock (GIL) on some cython operations, see [here](#)
- Plotting methods are now available as attributes of the `.plot` accessor, see [here](#)
- The sorting API has been revamped to remove some long-time inconsistencies, see [here](#)
- Support for a `datetime64[ns]` with timezones as a first-class dtype, see [here](#)
- The default for `to_datetime` will now be to raise when presented with unparsable formats, previously this would return the original input. Also, date parse functions now return consistent results. See [here](#)
- The default for `dropna` in `HDFStore` has changed to `False`, to store by default all rows even if they are all NaN, see [here](#)
- Datetime accessor (`dt`) now supports `Series.dt.strptime` to generate formatted strings for datetime-likes, and `Series.dt.total_seconds` to generate each duration of the timedelta in seconds. See [here](#)
- Period and `PeriodIndex` can handle multiplied freq like `3D`, which corresponding to 3 days span. See [here](#)
- Development installed versions of pandas will now have PEP440 compliant version strings (GH9518)
- Development support for benchmarking with the Air Speed Velocity library (GH8361)
- Support for reading SAS xport files, see [here](#)
- Documentation comparing SAS to `pandas`, see [here](#)
- Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see [here](#)
- Display format with plain text can optionally align with Unicode East Asian Width, see [here](#)
- Compatibility with Python 3.5 (GH11097)
- Compatibility with matplotlib 1.5.0 (GH11111)

Check the [API Changes](#) and [deprecations](#) before updating.

### What’s new in v0.17.0

- **New features**
  - Datetime with TZ
  - Releasing the GIL
  - Plot submethods
  - Additional methods for `dt` accessor
    - `strfmt`
    - `total_seconds`
  - Period Frequency Enhancement
New features

Datetime with TZ

We are adding an implementation that natively supports datetime with timezones. A Series or a DataFrame column previously could be assigned a datetime with timezones, and would work as an object dtype. This had performance issues with a large number rows. See the docs for more details. (GH8260, GH10763, GH11034).

The new implementation allows for having a single-timezone across all rows, with operations in a performant manner.

```
In [1]: df = DataFrame({'A' : date_range('20130101', periods=3),
 ...: 'B' : date_range('20130101', periods=3, tz='US/Eastern'),
 ...: 'C' : date_range('20130101', periods=3, tz='CET'))

In [2]: df
Out[2]:
 A B C
0 2013-01-01 00:00:00+00:00 2013-01-01 00:00:00+01:00
1 2013-01-02 00:00:00+00:00 2013-01-02 00:00:00+01:00
```
This uses a new-dtype representation as well, that is very similar in look-and-feel to its numpy cousin `datetime64[ns]`

```
In [6]: df['B'].dtype
Out[6]: datetime64[ns, US/Eastern]

In [7]: type(df['B'].dtype)
Out[7]: pandas.types.dtypes.DatetimeTZDtype
```

Note: There is a slightly different string repr for the underlying `DateTimeIndex` as a result of the dtype changes, but functionally these are the same.

Previous Behavior:

```
In [1]: pd.date_range('20130101', periods=3, tz='US/Eastern')
Out[1]: DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00', '2013-01-03 00:00:00-05:00'],
 dtype='datetime64[ns]', freq='D', tz='US/Eastern')

In [2]: pd.date_range('20130101', periods=3, tz='US/Eastern').dtype
Out[2]: dtype('<M8[ns]')
```

New Behavior:

```
In [8]: pd.date_range('20130101', periods=3, tz='US/Eastern')
Out[8]:
DatetimeIndex(['2013-01-01 00:00:00-05:00', '2013-01-02 00:00:00-05:00',
 '2013-01-03 00:00:00-05:00'],
 dtype='datetime64[ns, US/Eastern]', freq='D')

In [9]: pd.date_range('20130101', periods=3, tz='US/Eastern').dtype
Out[9]: datetime64[ns, US/Eastern]
```
Releasing the GIL

We are releasing the global-interpreter-lock (GIL) on some cython operations. This will allow other threads to run simultaneously during computation, potentially allowing performance improvements from multi-threading. Notably `groupby`, `nsmallest`, `value_counts` and some indexing operations benefit from this. (GH8882)

For example the `groupby` expression in the following code will have the GIL released during the factorization step, e.g. `df.groupby('key')` as well as the `.sum()` operation.

```python
N = 1000000
ngroups = 10
df = DataFrame({'key' : np.random.randint(0,ngroups,size=N),
 'data' : np.random.randn(N) })
df.groupby('key')['data'].sum()
```

Releasing of the GIL could benefit an application that uses threads for user interactions (e.g. QT), or performing multi-threaded computations. A nice example of a library that can handle these types of computation-in-parallel is the dask library.

Plot submethods

The Series and DataFrame `.plot()` method allows for customizing plot types by supplying the kind keyword arguments. Unfortunately, many of these kinds of plots use different required and optional keyword arguments, which makes it difficult to discover what any given plot kind uses out of the dozens of possible arguments.

To alleviate this issue, we have added a new, optional plotting interface, which exposes each kind of plot as a method of the `.plot` attribute. Instead of writing `series.plot(kind=<kind>,...)`, you can now also use `series.plot.<kind>(...)`:

```python
In [10]: df = pd.DataFrame(np.random.rand(10, 2), columns=['a', 'b'])
In [11]: df.plot.bar()
```

As a result of this change, these methods are now all discoverable via tab-completion:
Each method signature only includes relevant arguments. Currently, these are limited to required arguments, but in the future these will include optional arguments, as well. For an overview, see the new Plotting API documentation.

**Additional methods for dt accessor**

**strftime**

We are now supporting a `Series.dt.strftime` method for datetime-likes to generate a formatted string (GH10110). Examples:

```python
DatetimeIndex
In [13]: s = pd.Series(pd.date_range('20130101', periods=4))

In [14]: s
Out[14]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: datetime64[ns]

In [15]: s.dt.strftime('%Y/%m/%d')
Out[15]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object

PeriodIndex
In [16]: s = pd.Series(pd.period_range('20130101', periods=4))

In [17]: s
Out[17]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [18]: s.dt.strftime('%Y/%m/%d')
Out[18]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object
```

The string format is as the python standard library and details can be found [here](#).
**total_seconds**

`pd.Series` of type `timedelta64` has new method `.dt.total_seconds()` returning the duration of the timedelta in seconds (GH10817)

```python
TimedeltaIndex
In [19]: s = pd.Series(pd.timedelta_range('1 minutes', periods=4))

In [20]: s
Out[20]:
0 0 days 00:01:00
1 1 days 00:01:00
2 2 days 00:01:00
3 3 days 00:01:00
dtype: timedelta64[ns]

In [21]: s.dt.total_seconds()
Out[21]:
0 60.0
1 86460.0
2 172860.0
3 259260.0
dtype: float64
```

**Period Frequency Enhancement**

`Period`, `PeriodIndex` and `period_range` can now accept multiplied freq. Also, `Period.freq` and `PeriodIndex.freq` are now stored as a `DateOffset` instance like `DatetimeIndex`, and not as str (GH7811)

A multiplied freq represents a span of corresponding length. The example below creates a period of 3 days. Addition and subtraction will shift the period by its span.

```python
In [22]: p = pd.Period('2015-08-01', freq='3D')

In [23]: p
Out[23]: Period('2015-08-01', '3D')

In [24]: p + 1
Out[24]: Period('2015-08-04', '3D')

In [25]: p - 2
Out[25]: Period('2015-07-26', '3D')

In [26]: p.to_timestamp()
Out[26]: Timestamp('2015-08-01 00:00:00')

In [27]: p.to_timestamp(how='E')
Out[27]: Timestamp('2015-08-03 00:00:00')
```

You can use the multiplied freq in `PeriodIndex` and `period_range`.

```python
In [28]: idx = pd.period_range('2015-08-01', periods=4, freq='2D')

In [29]: idx
Out[29]: PeriodIndex(['2015-08-01', '2015-08-03', '2015-08-05', '2015-08-07'], dtype='period[2D]', freq='2D')
```
Support for SAS XPORT files

read_sas() provides support for reading SAS XPORT format files. (GH4052).

```python
df = pd.read_sas('sas_xport.xpt')
```

It is also possible to obtain an iterator and read an XPORT file incrementally.

```python
for df in pd.read_sas('sas_xport.xpt', chunksize=10000)
do_something(df)
```

See the docs for more details.

Support for Math Functions in .eval()

eval() now supports calling math functions (GH4893)

```python
df = pd.DataFrame({'a': np.random.randn(10)})
df.eval("b = sin(a)")
```

The support math functions are sin, cos, exp, log, expm1, log1p, sqrt, sinh, cosh, tanh, arcsin, arccos, arctan, arccosh, arcsinh, arctanh, abs and arctan2.

These functions map to the intrinsics for the NumExpr engine. For the Python engine, they are mapped to NumPy calls.

Changes to Excel with MultiIndex

In version 0.16.2 a DataFrame with MultiIndex columns could not be written to Excel via to_excel. That functionality has been added (GH10564), along with updating read_excel so that the data can be read back with, no loss of information, by specifying which columns/rows make up the MultiIndex in the header and index_col parameters (GH4679)

See the documentation for more details.
Previously, it was necessary to specify the `has_index_names` argument in `read_excel`, if the serialized data had index names. For version 0.17.0 the output format of `to_excel` has been changed to make this keyword unnecessary - the change is shown below.

### Old

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-07 00:00:00</td>
<td>0.968129</td>
<td>0.906529</td>
<td>0.05343</td>
</tr>
<tr>
<td>2000-01-10 00:00:00</td>
<td>-0.16632</td>
<td>1.981993</td>
<td>1.83093</td>
</tr>
<tr>
<td>2000-01-11 00:00:00</td>
<td>0.121057</td>
<td>0.36946</td>
<td>-0.02888</td>
</tr>
<tr>
<td>2000-01-12 00:00:00</td>
<td>-1.70456</td>
<td>-0.73098</td>
<td>-0.38088</td>
</tr>
<tr>
<td>2000-01-13 00:00:00</td>
<td>-1.20024</td>
<td>1.907733</td>
<td>0.629318</td>
</tr>
<tr>
<td>2000-01-14 00:00:00</td>
<td>-0.66344</td>
<td>0.073188</td>
<td>1.583482</td>
</tr>
</tbody>
</table>
```

### New

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-07 00:00:00</td>
<td>0.968129</td>
<td>0.906529</td>
<td>0.05343</td>
</tr>
<tr>
<td>2000-01-10 00:00:00</td>
<td>-0.16632</td>
<td>1.981993</td>
<td>1.83093</td>
</tr>
<tr>
<td>2000-01-11 00:00:00</td>
<td>0.121057</td>
<td>0.36946</td>
<td>-0.02888</td>
</tr>
<tr>
<td>2000-01-12 00:00:00</td>
<td>-1.70456</td>
<td>-0.73098</td>
<td>-0.38088</td>
</tr>
<tr>
<td>2000-01-13 00:00:00</td>
<td>-1.20024</td>
<td>1.907733</td>
<td>0.629318</td>
</tr>
<tr>
<td>2000-01-14 00:00:00</td>
<td>-0.66344</td>
<td>0.073188</td>
<td>1.583482</td>
</tr>
</tbody>
</table>
```

**Warning:** Excel files saved in version 0.16.2 or prior that had index names will still able to be read in, but the `has_index_names` argument must specified to `True`. 
Google BigQuery Enhancements

- Added ability to automatically create a table/dataset using the `pandas.io.gbq.to_gbq()` function if the destination table/dataset does not exist. (GH8325, GH11121).
- Added ability to replace an existing table and schema when calling the `pandas.io.gbq.to_gbq()` function via the `if_exists` argument. See the docs for more details (GH8325).
- `InvalidColumnOrder` and `InvalidPageToken` in the gbq module will raise `ValueError` instead of `IOError`.
- The `generate_bq_schema()` function is now deprecated and will be removed in a future version (GH11121)
- The gbq module will now support Python 3 (GH11094).

Display Alignment with Unicode East Asian Width

**Warning:** Enabling this option will affect the performance for printing of `DataFrame` and `Series` (about 2 times slower). Use only when it is actually required.

Some East Asian countries use Unicode characters its width is corresponding to 2 alphabets. If a `DataFrame` or `Series` contains these characters, the default output cannot be aligned properly. The following options are added to enable precise handling for these characters.

- `display.unicode.east_asian_width`: Whether to use the Unicode East Asian Width to calculate the display text width. (GH2612)
- `display.unicode.ambiguous_as_wide`: Whether to handle Unicode characters belong to Ambiguous as Wide. (GH11102)

```python
In [36]: df = pd.DataFrame({u'' : ['UK', u''], u'' : ['Alice', u'']})
In [37]: df;

In [38]: pd.set_option('display.unicode.east_asian_width', True)
In [39]: df;

In [40]: pd.set_option('display.unicode.east_asian_width', True)

For further details, see [here](#)
"""
Other enhancements

- Support for openpyxl >= 2.2. The API for style support is now stable (GH10125)
- `merge` now accepts the argument `indicator` which adds a Categorical-type column (by default called `_merge`) to the output object that takes on the values (GH8790)

<table>
<thead>
<tr>
<th>Observation Origin</th>
<th>_merge value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge key only in 'left' frame</td>
<td>left_only</td>
</tr>
<tr>
<td>Merge key only in 'right' frame</td>
<td>right_only</td>
</tr>
<tr>
<td>Merge key in both frames</td>
<td>both</td>
</tr>
</tbody>
</table>

```python
In [40]: df1 = pd.DataFrame({"col1":[0,1], 'col_left':['a','b']})
In [41]: df2 = pd.DataFrame({"col1":[1,2,2], 'col_right':[2,2,2]})
In [42]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[42]:
    col1  col_left  col_right  _merge
0     0        a        NaN     left_only
1     1        b         2.0    both
2     2        NaN       2.0     right_only
3     2        NaN       2.0     right_only
```

For more, see the updated docs

- `pd.to_numeric` is a new function to coerce strings to numbers (possibly with coercion) (GH11133)
- `pd.merge` will now allow duplicate column names if they are not merged upon (GH10639).
- `pd.pivot` will now allow passing index as None (GH3962).
- `pd.concat` will now use existing Series names if provided (GH10698).

```python
In [43]: foo = pd.Series([1,2], name='foo')
In [44]: bar = pd.Series([1,2])
In [45]: baz = pd.Series([4,5])
```

Previous Behavior:

```python
In [1]: pd.concat([foo, bar, baz], 1)
Out[1]:
     0  1  2
    0  1  1  4
    1  2  2  5
```

New Behavior:

```python
In [46]: pd.concat([foo, bar, baz], 1)
Out[46]:
   foo  0  1
   0  1  1  4
   1  2  2  5
```

- DataFrames have gained the `nlargest` and `nsmallest` methods (GH10393)
- Add a `limit_direction` keyword argument that works with `limit` to enable `interpolate` to fill NaN values forward, backward, or both (GH9218, GH10420, GH11115)
In [47]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13])

In [48]: ser.interpolate(limit=1, limit_direction='both')
Out[48]:
0 NaN
1 5.0
2 5.0
3 7.0
4 NaN
5 11.0
6 13.0
dtype: float64

• Added a DataFrame.round method to round the values to a variable number of decimal places (GH10568).

In [49]: df = pd.DataFrame(np.random.random((3, 3)), columns=['A', 'B', 'C'],
....: index=['first', 'second', 'third'])
....:

In [50]: df
Out[50]:
 A B C
first 0.342764 0.304121 0.417022
second 0.681301 0.875457 0.510422
third 0.669314 0.585937 0.624904

In [51]: df.round(2)
Out[51]:
 A B C
first 0.34 0.30 0.42
second 0.68 0.88 0.51
third 0.67 0.59 0.62

In [52]: df.round({'A': 0, 'C': 2})
Out[52]:
 A B C
first 0.0 0.304121 0.42
second 1.0 0.875457 0.51
third 1.0 0.585937 0.62

• drop_duplicates and duplicated now accept a keep keyword to target first, last, and all duplicates. The take_last keyword is deprecated, see here (GH6511, GH8505)

In [53]: s = pd.Series(['A', 'B', 'C', 'A', 'B', 'D'])

In [54]: s.drop_duplicates()
Out[54]:
0 A
1 B
2 C
5 D
dtype: object

In [55]: s.drop_duplicates(keep='last')
Out[55]:
2 C
3 A
4 B
Reindex now has a tolerance argument that allows for finer control of *limits on filling while reindexing* (GH10411):

```python
In [57]: df = pd.DataFrame({'x': range(5),
                       't': pd.date_range('2000-01-01', periods=5))

In [58]: df.reindex([0.1, 1.9, 3.5],
                   method='nearest',
                   tolerance=0.2)
```

When used on a DatetimeIndex, TimedeltaIndex or PeriodIndex, tolerance will coerced into a Timedelta if possible. This allows you to specify tolerance with a string:

```python
In [59]: df = df.set_index('t')

In [60]: df.reindex(pd.to_datetime(['1999-12-31']),
                   method='nearest',
                   tolerance='1 day')
```

tolerance is also exposed by the lower level Index.get_indexer and Index.get_loc methods.

- Added functionality to use the base argument when resampling a TimeDeltaIndex (GH10530)
- DatetimeIndex can be instantiated using strings contains NaT (GH7599)
- to_datetime can now accept the yearfirst keyword (GH7599)
- pandas.tseries.offsets larger than the Day offset can now be used with a Series for addition/subtraction (GH10699). See the docs for more details.
- pd.Timedelta.total_seconds() now returns Timedelta duration to ns precision (previously microsecond precision) (GH10939)
- PeriodIndex now supports arithmetic with np.ndarray (GH10638)
- Support pickling of Period objects (GH10439)
- .as_blocks will now take a copy optional argument to return a copy of the data, default is to copy (no change in behavior from prior versions) (GH9607)
- regex argument to DataFrame.filter now handles numeric column names instead of raising ValueError (GH10384).
- Enable reading gzip compressed files via URL, either by explicitly setting the compression parameter or by inferring from the presence of the HTTP Content-Encoding header in the response (GH8685).
- Enable writing Excel files in memory using StringIO/BytesIO (GH7074).
- Enable serialization of lists and dicts to strings in ExcelWriter (GH8188).
- SQL io functions now accept a SQLAlchemy connectable. (GH7877)
- pd.read_sql and to_sql can accept database URI as con parameter (GH10214).
- read_sql_table will now allow reading from views (GH10750).
- Enable writing complex values to HDFStores when using the table format (GH10447).
- Enable pd.read_hdf to be used without specifying a key when the HDF file contains a single dataset (GH10443).
- pd.read_stata will now read Stata 118 type files. (GH9882)
- msgpack submodule has been updated to 0.4.6 with backward compatibility (GH10581).
- DataFrame.to_dict now accepts orient='index' keyword argument (GH10844).
- DataFrame.apply will return a Series of dicts if the passed function returns a dict and reduce=True (GH8735).
- Allow passing kwargs to the interpolation methods (GH10378).
- Improved error message when concatenating an empty iterable of DataFrame objects (GH9157).
- pd.read_csv can now read bz2-compressed files incrementally, and the C parser can read bz2-compressed files from AWS S3 (GH11070, GH11072).
- In pd.read_csv, recognize s3n:// and s3a:// URLs as designating S3 file storage (GH11070, GH11071).
- Read CSV files from AWS S3 incrementally, instead of first downloading the entire file. (Full file download still required for compressed files in Python 2.) (GH11070, GH11073)
- pd.read_csv is now able to infer compression type for files read from AWS S3 storage (GH11070, GH11074).

Backwards incompatible API changes

Changes to sorting API

The sorting API has had some longtime inconsistencies. (GH9816, GH8239).

Here is a summary of the API PRIOR to 0.17.0:

- Series.sort is INPLACE while DataFrame.sort returns a new object.
- Series.order returns a new object
- It was possible to use Series/DataFrame.sort_index to sort by values by passing the by keyword.
- Series/DataFrame.sortlevel worked only on a MultiIndex for sorting by index.

To address these issues, we have revamped the API:
• We have introduced a new method, `DataFrame.sort_values()`, which is the merger of `DataFrame.sort()`, `Series.sort()`, and `Series.order()`, to handle sorting of values.

• The existing methods `Series.sort()`, `Series.order()`, and `DataFrame.sort()` have been deprecated and will be removed in a future version.

• The `by` argument of `DataFrame.sort_index()` has been deprecated and will be removed in a future version.

• The existing method `.sort_index()` will gain the `level` keyword to enable level sorting.

We now have two distinct and non-overlapping methods of sorting. A * marks items that will show a `FutureWarning`.

To sort by the values:

<table>
<thead>
<tr>
<th>Previous</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>* <code>Series.order()</code></td>
<td><code>Series.sort_values()</code></td>
</tr>
<tr>
<td>* <code>Series.sort()</code></td>
<td><code>Series.sort_values(inplace=True)</code></td>
</tr>
<tr>
<td>* <code>DataFrame.sort(columns=...)</code></td>
<td><code>DataFrame.sort_values(by=...)</code></td>
</tr>
</tbody>
</table>

To sort by the index:

<table>
<thead>
<tr>
<th>Previous</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.sort_index()</code></td>
<td><code>Series.sort_index()</code></td>
</tr>
<tr>
<td><code>Series.sortlevel(level=...)</code></td>
<td><code>Series.sort_index(level=...)</code></td>
</tr>
<tr>
<td><code>DataFrame.sort_index()</code></td>
<td><code>DataFrame.sort_index()</code></td>
</tr>
<tr>
<td><code>DataFrame.sortlevel(level=...)</code></td>
<td><code>DataFrame.sort_index(level=...)</code></td>
</tr>
<tr>
<td>* <code>DataFrame.sort()</code></td>
<td><code>DataFrame.sort_index()</code></td>
</tr>
</tbody>
</table>

We have also deprecated and changed similar methods in two Series-like classes, `Index` and `Categorical`.

<table>
<thead>
<tr>
<th>Previous</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>* <code>Index.order()</code></td>
<td><code>Index.sort_values()</code></td>
</tr>
<tr>
<td>* <code>Categorical.order()</code></td>
<td><code>Categorical.sort_values()</code></td>
</tr>
</tbody>
</table>

Changes to `to_datetime` and `to_timedelta`

Error handling

The default for `pd.to_datetime` error handling has changed to `errors='raise'`. In prior versions it was `errors='ignore'`. Furthermore, the `coerce` argument has been deprecated in favor of `errors='coerce'`. This means that invalid parsing will raise rather that return the original input as in previous versions. *(GH10636)*

Previous Behavior:

```python
In [2]: pd.to_datetime(['2009-07-31', 'asd'])
Out[2]: array(['2009-07-31', 'asd'], dtype=object)
```

New Behavior:

```python
In [3]: pd.to_datetime(['2009-07-31', 'asd'])
ValueError: Unknown string format
```

Of course you can coerce this as well.

```python
In [61]: to_datetime(['2009-07-31', 'asd'], errors='coerce')
Out[61]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)
```
To keep the previous behavior, you can use `errors='ignore'`:

```python
In [62]: to_datetime(['2009-07-31', 'asd'], errors='ignore')
Out[62]: array(['2009-07-31', 'asd'], dtype=object)
```

Furthermore, `pd.to_timedelta` has gained a similar API, of `errors='raise'|'ignore'|'coerce'`, and the `coerce` keyword has been deprecated in favor of `errors='coerce'`.

Consistent Parsing

The string parsing of `to_datetime`, `Timestamp` and `DatetimeIndex` has been made consistent. (GH7599)

Prior to v0.17.0, `Timestamp` and `to_datetime` may parse year-only datetime-string incorrectly using today's date, otherwise `DatetimeIndex` uses the beginning of the year. `Timestamp` and `to_datetime` may raise `ValueError` in some types of datetime-string which `DatetimeIndex` can parse, such as a quarterly string.

Previous Behavior:

```python
In [1]: Timestamp('2012Q2')
Traceback...
ValueError: Unable to parse 2012Q2
# Results in today's date.
In [2]: Timestamp('2014')
Out [2]: 2014-08-12 00:00:00
```

v0.17.0 can parse them as below. It works on `DatetimeIndex` also.

New Behavior:

```python
In [63]: Timestamp('2012Q2')
Out[63]: Timestamp('2012-04-01 00:00:00')

In [64]: Timestamp('2014')
Out[64]: Timestamp('2014-01-01 00:00:00')

In [65]: DatetimeIndex(['2012Q2', '2014'])
Out[65]: DatetimeIndex(['2012-04-01', '2014-01-01'], dtype='datetime64[ns]', ...
    freq=None)
```

Note: If you want to perform calculations based on today's date, use `Timestamp.now()` and `pandas.tseries.offsets`.

```python
In [66]: import pandas.tseries.offsets as offsets

In [67]: Timestamp.now()
Out[67]: Timestamp('2016-12-24 19:42:29.278027')

In [68]: Timestamp.now() + offsets.DateOffset(years=1)
Out[68]: Timestamp('2017-12-24 19:42:29.279580')
```

Changes to Index Comparisons

Operator equal on `Index` should behavior similarly to `Series` (GH9947, GH10637)
Starting in v0.17.0, comparing Index objects of different lengths will raise a ValueError. This is to be consistent with the behavior of Series.

Previous Behavior:

```
In [2]: pd.Index([1, 2, 3]) == pd.Index([1, 4, 5])
Out[2]: array([ True, False, False], dtype=bool)
```

```
In [3]: pd.Index([1, 2, 3]) == pd.Index([2])
Out[3]: array([False, True, False], dtype=bool)
```

```
In [4]: pd.Index([1, 2, 3]) == pd.Index([1, 2])
Out[4]: False
```

New Behavior:

```
In [8]: pd.Index([1, 2, 3]) == pd.Index([1, 4, 5])
Out[8]: array([ True, False, False], dtype=bool)
```

```
In [9]: pd.Index([1, 2, 3]) == pd.Index([2])
ValueError: Lengths must match to compare
```

```
In [10]: pd.Index([1, 2, 3]) == pd.Index([1, 2])
ValueError: Lengths must match to compare
```

Note that this is different from the numpy behavior where a comparison can be broadcast:

```
In [69]: np.array([1, 2, 3]) == np.array([1])
Out[69]: array([ True, False, False], dtype=bool)
```

or it can return False if broadcasting cannot be done:

```
In [70]: np.array([1, 2, 3]) == np.array([1, 2])
Out[70]: False
```

Changes to Boolean Comparisons vs. None

Boolean comparisons of a Series vs None will now be equivalent to comparing with np.nan, rather than raise TypeError. (GH1079).

```
In [71]: s = Series(range(3))
```

```
In [72]: s.iloc[1] = None
```

```
In [73]: s
Out[73]:
0 0.0
1 NaN
2 2.0
dtype: float64
```

Previous Behavior:

```
In [5]: s==None
TypeError: Could not compare <type 'NoneType'> type with Series
```

New Behavior:
Usually you simply want to know which values are null.

```
In [74]: s==None
Out[74]:
0   False
1   False
2   False
dtype: bool
```

```
In [75]: s.isnull()
Out[75]:
0   False
1    True
2   False
dtype: bool
```

Warning: You generally will want to use `isnull/notnull` for these types of comparisons, as `isnull/notnull` tells you which elements are null. One has to be mindful that `nan`'s don’t compare equal, but `None`’s do. Note that Pandas/numpy uses the fact that `np.nan != np.nan`, and treats `None` like `np.nan`.

```
In [76]: None == None
Out[76]: True

In [77]: np.nan == np.nan
Out[77]: False
```

HDFStore dropna behavior

The default behavior for HDFStore write functions with `format='table'` is now to keep rows that are all missing. Previously, the behavior was to drop rows that were all missing save the index. The previous behavior can be replicated using the `dropna=True` option. (GH9382)

Previous Behavior:

```
In [78]: df_with_missing = pd.DataFrame({'col1':[0, np.nan, 2],
....:'col2':[1, np.nan, np.nan]})
....:
```

```
In [79]: df_with_missing
Out[79]:
       col1  col2
0   0.00  1.00
1   NaN   NaN
2   2.00   NaN
```

```
In [27]:
df_with_missing.to_hdf('file.h5',
    'df_with_missing',
    format='table',
    mode='w')

In [28]: pd.read_hdf('file.h5', 'df_with_missing')
Out [28]:
```
New Behavior:

```python
In [80]: df_with_missing.to_hdf('file.h5',
   ....: 'df_with_missing',
   ....: format='table',
   ....: mode='w')

In [81]: pd.read_hdf('file.h5', 'df_with_missing')
```

See the `docs` for more details.

Changes to `display.precision` option

The `display.precision` option has been clarified to refer to decimal places (GH10451). Earlier versions of pandas would format floating point numbers to have one less decimal place than the value in `display.precision`.

```python
In [1]: pd.set_option('display.precision', 2)
In [2]: pd.DataFrame({'x': [123.456789]})
```

If interpreting precision as “significant figures” this did work for scientific notation but that same interpretation did not work for values with standard formatting. It was also out of step with how numpy handles formatting.

Going forward the value of `display.precision` will directly control the number of places after the decimal, for regular formatting as well as scientific notation, similar to how numpy’s `precision` print option works.

```python
In [82]: pd.set_option('display.precision', 2)
In [83]: pd.DataFrame({'x': [123.456789]})
```

To preserve output behavior with prior versions the default value of `display.precision` has been reduced to 6 from 7.

Changes to `Categorical.unique`

`Categorical.unique` now returns new `Categoricals` with categories and codes that are unique, rather than returning `np.array` (GH10508)
• unordered category: values and categories are sorted by appearance order.
• ordered category: values are sorted by appearance order, categories keep existing order.

```python
In [84]: cat = pd.Categorical(['C', 'A', 'B', 'C'], 
                       categories=['A', 'B', 'C'], 
                       ordered=True)

In [85]: cat
Out[85]:
[C, A, B, C]
Categories (3, object): [A < B < C]

In [86]: cat.unique()
Out[86]:
[C, A, B]
Categories (3, object): [A < B < C]

In [87]: cat = pd.Categorical(['C', 'A', 'B', 'C'], 
                       categories=['A', 'B', 'C'])

In [88]: cat
Out[88]:
[C, A, B, C]
Categories (3, object): [A, B, C]

In [89]: cat.unique()
Out[89]:
[C, A, B]
Categories (3, object): [C, A, B]
```

Changes to bool passed as header in Parsers

In earlier versions of pandas, if a bool was passed the `header` argument of `read_csv`, `read_excel`, or `read_html` it was implicitly converted to an integer, resulting in `header=0` for `False` and `header=1` for `True` (GH6113)

A `bool` input to `header` will now raise a `TypeError`

```python
In [29]: df = pd.read_csv('data.csv', header=False)
TypeError: Passing a bool to header is invalid. Use header=None for no header or header=int or list-like of ints to specify the row(s) making up the column names
```

Other API Changes

- Line and kde plot with `subplots=True` now uses default colors, not all black. Specify `color='k'` to draw all lines in black (GH9894)
- Calling the `.value_counts()` method on a Series with a categorical dtype now returns a Series with a CategoricalIndex (GH10704)
- The metadata properties of subclasses of pandas objects will now be serialized (GH10553).
- `groupby` using `Categorical` follows the same rule as `Categorical.unique` described above (GH10508)
• When constructing DataFrame with an array of complex64 dtype previously meant the corresponding column was automatically promoted to the complex128 dtype. Pandas will now preserve the itemsize of the input for complex data (GH10952)

• some numeric reduction operators would return ValueError, rather than TypeError on object types that includes strings and numbers (GH11131)

• Passing currently unsupported chunksize argument to read_excel or ExcelFile.parse will now raise NotImplementError (GH8011)

• Allow an ExcelFile object to be passed into read_excel (GH11198)

• DatetimeIndex.union does not infer freq if self and the input have None as freq (GH11086)

• NaT's methods now either raise ValueError, or return np.nan or NaT (GH9513)

<table>
<thead>
<tr>
<th>Behavior</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>return np.nan</td>
<td>weekday, isoweekday</td>
</tr>
<tr>
<td>return NaT</td>
<td>date, now, replace, to_datetime, today</td>
</tr>
<tr>
<td>return np.datetime64('NaT')</td>
<td>to_datetime64 (unchanged)</td>
</tr>
<tr>
<td>raise ValueError</td>
<td>All other public methods (names not beginning with underscores)</td>
</tr>
</tbody>
</table>

Deprecations

• For Series the following indexing functions are deprecated (GH10177).

<table>
<thead>
<tr>
<th>Deprecated Function</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>.irow(i)</td>
<td>.iloc[i] or .iat[i]</td>
</tr>
<tr>
<td>.iget(i)</td>
<td>.iloc[i] or .iat[i]</td>
</tr>
<tr>
<td>.iget_value(i)</td>
<td>.iloc[i] or .iat[i]</td>
</tr>
</tbody>
</table>

• For DataFrame the following indexing functions are deprecated (GH10177).

<table>
<thead>
<tr>
<th>Deprecated Function</th>
<th>Replacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>.irow(i)</td>
<td>.iloc[i]</td>
</tr>
<tr>
<td>.iget_value(i,j)</td>
<td>.iloc[i,j] or .iat[i,j]</td>
</tr>
<tr>
<td>.icol(j)</td>
<td>.iloc[:,j]</td>
</tr>
</tbody>
</table>

Note: These indexing function have been deprecated in the documentation since 0.11.0.

• Categorical.name was deprecated to make Categorical more numpy.ndarray like. Use Series(cat, name="whatever") instead (GH10482).

• Setting missing values (NaN) in a Categorical's categories will issue a warning (GH10748). You can still have missing values in the values.

• drop_duplicates and duplicated's take_last keyword was deprecated in favor of keep. (GH6511, GH8505)

• Series.nsmallest and nlargest's take_last keyword was deprecated in favor of keep. (GH10792)

• DataFrame.combineAdd and DataFrame.combineMult are deprecated. They can easily be replaced by using the add and mul methods: DataFrame.add(other, fill_value=0) and DataFrame.mul(other, fill_value=1.). (GH10735).

• TimeSeries deprecated in favor of Series (note that this has been an alias since 0.13.0), (GH10890)

• SparsePanel deprecated and will be removed in a future version (GH11157).

• Series.is_time_series deprecated in favor of Series.index.is_all_dates (GH11135)
• Legacy offsets (like 'A@JAN') are deprecated (note that this has been alias since 0.8.0) (GH10878)
• WidePanel deprecated in favor of Panel, LongPanel in favor of DataFrame (note these have been aliases since < 0.11.0), (GH10892)
• DataFrame.convert_objects has been deprecated in favor of type-specific functions pd.to_datetime, pd.to_timestamp and pd.to_numeric (new in 0.17.0) (GH11133).

Removal of prior version deprecations/changes

• Removal of na_last parameters from Series.order() and Series.sort(), in favor of na_position. (GH5231)
• Remove of percentile_width from .describe(), in favor of percentiles. (GH7088)
• Removal of colSpace parameter from DataFrame.to_string(), in favor of col_space, circa 0.8.0 version.
• Removal of automatic time-series broadcasting (GH2304)

```
In [90]: np.random.seed(1234)

In [91]: df = DataFrame(np.random.randn(5,2),columns=list('AB'),index=date_range('20130101',periods=5))

In [92]: df
Out[92]:
   A     B
2013-01-01  0.471435 -1.190976
2013-01-02  1.432707 -0.312652
2013-01-03  0.720589  0.887163
2013-01-04  0.859588  0.887163
2013-01-05  0.015696 -2.242685
```

Previously

```
In [3]: df + df.A
FutureWarning: TimeSeries broadcasting along DataFrame index by default is deprecated.
Please use DataFrame.<op> to explicitly broadcast arithmetic operations along the index.

Out[3]:
   A     B
2013-01-01  0.942870 -0.719541
2013-01-02  2.865414  1.120055
2013-01-03 -1.441177  0.166574
2013-01-04  1.719177  0.223065
2013-01-05  0.031393 -2.226989
```

Current

```
In [93]: df.add(df.A,axis='index')
Out[93]:
   A     B
2013-01-01  0.942870 -0.719541
2013-01-02  2.865414  1.120055
2013-01-03 -1.441177  0.166574
2013-01-04  1.719177  0.223065
2013-01-05  0.031393 -2.226989
```
2013-01-04 1.719177 0.223065
2013-01-05 0.031393 -2.226989

- Remove table keyword in HDFStore.put/append, in favor of using format= (GH4645)
- Remove kind in read_excel/ExcelFile as its unused (GH4712)
- Remove infer_type keyword from pd.read_html as its unused (GH4770, GH7032)
- Remove offset and timeRule keywords from Series.tshift/shift, in favor of freq (GH4853, GH4864)
- Remove pd.load/pd.save aliases in favor of pd.to_pickle/pd.read_pickle (GH3787)

Performance Improvements

- Development support for benchmarking with the Air Speed Velocity library (GH8361)
- Added vbench benchmarks for alternative ExcelWriter engines and reading Excel files (GH7171)
- Performance improvements in Categorical.value_counts (GH10804)
- Performance improvements in SeriesGroupBy.nunique and SeriesGroupBy.value_counts and SeriesGroupby.transform (GH10820, GH11077)
- Performance improvements in DataFrame.drop_duplicates with integer dtypes (GH10917)
- Performance improvements in DataFrame.duplicated with wide frames. (GH10161, GH11180)
- 4x improvement in timedelta string parsing (GH6755, GH10426)
- 8x improvement in timedelta64 and datetime64 ops (GH6755)
- Significantly improved performance of indexing MultiIndex with slicers (GH10287)
- 8x improvement in iloc using list-like input (GH10791)
- Improved performance of Series.isin for datetimelike/integer Series (GH10287)
- 20x improvement in concat of Categoricals when categories are identical (GH10587)
- Improved performance of to_datetime when specified format string is ISO8601 (GH10178)
- 2x improvement of Series.value_counts for float dtype (GH10821)
- Enable infer_datetime_format in to_datetime when date components do not have 0 padding (GH11142)
- Regression from 0.16.1 in constructing DataFrame from nested dictionary (GH11084)
- Performance improvements in addition/subtraction operations for DateOffset with Series or DatetimeIndex (GH10744, GH11205)

Bug Fixes

- Bug in incorrection computation of .mean() on timedelta64 [ns] because of overflow (GH9442)
- Bug in .isin on older numpies ([issue: 11232]
- Bug in DataFrame.to_html(index=False) renders unnecessary name row (GH10344)
- Bug in DataFrame.to_latex() the column_format argument could not be passed (GH9402)
- Bug in DatetimeIndex when localizing with NaT (GH10477)
• Bug in `Series.dt` ops in preserving meta-data (GH10477)
• Bug in preserving NaT when passed in an otherwise invalid to_datetime construction (GH10477)
• Bug in `DataFrame.apply` when function returns categorical series. (GH9573)
• Bug in to_datetime with invalid dates and formats supplied (GH10154)
• Bug in `Index.drop_duplicates` dropping name(s) (GH10115)
• Bug in `Series.quantile` dropping name (GH10881)
• Bug in `pd.Series` when setting a value on an empty Series whose index has a frequency. (GH10193)
• Bug in pd.Series.interpolate with invalid order keyword values. (GH10633)
• Bug in `DataFrame.plot` raises ValueError when color name is specified by multiple characters (GH10387)
• Bug in `Index` construction with a mixed list of tuples (GH10697)
• Bug in `DataFrame.reset_index` when index contains NaT. (GH10388)
• Bug in `ExcelReader` when worksheet is empty (GH6403)
• Bug in BinGrouper.group_info where returned values are not compatible with base class (GH10914)
• Bug in clearing the cache on `DataFrame.pop` and a subsequent inplace op (GH10912)
• Bug in indexing with a mixed-integer Index causing an ImportError (GH10610)
• Bug in `Series.count` when index has nulls (GH10946)
• Bug in picking of a non-regular freq `DatetimeIndex` (GH11002)
• Bug causing `DataFrame.where` to not respect the axis parameter when the frame has a symmetric shape. (GH9736)
• Bug in `Table.select_column` where name is not preserved (GH10392)
• Bug in offsets.generate_range where start and end have finer precision than offset (GH9907)
• Bug in pd.rolling_* where Series.name would be lost in the output (GH10565)
• Bug in stack when index or columns are not unique. (GH10417)
• Bug in setting a Panel when an axis has a multi-index (GH10360)
• Bug in `USFederalHolidayCalendar` where USMemorialDay and USMartinLutherKingJr were incorrect (GH10278 and GH9760)
• Bug in .sample() where returned object, if set, gives unnecessary SettingWithCopyWarning (GH10738)
• Bug in .sample() where weights passed as Series were not aligned along axis before being treated positionally, potentially causing problems if weight indices were not aligned with sampled object. (GH10738)
• Regression fixed in (GH9311, GH6620, GH9345), where groupby with a datetime-like converting to float with certain aggregators (GH10979)
• Bug in `DataFrame.interpolate` with axis=1 and inplace=True (GH10395)
• Bug in io.sql.get_schema when specifying multiple columns as primary key (GH10385).
• Bug in groupby(sort=False) with datetime-like Categorical raises ValueError (GH10505)
• Bug in groupby(axis=1) with filter() throws IndexError (GH11041)
• Bug in test_categorical on big-endian builds (GH10425)
• Bug in `Series.shift` and `DataFrame.shift` not supporting categorical data (GH9416)
• Bug in `Series.map` using categorical `Series` raises `AttributeError` (GH10324)
• Bug in `MultiIndex.get_level_values` including `Categorical` raises `AttributeError` (GH10460)
• Bug in `pd.get_dummies` with `sparse=True` not returning `SparseDataFrame` (GH10531)
• Bug in `Index` subtypes (such as `PeriodIndex`) not returning their own type for `.drop` and `.insert` methods (GH10620)
• Bug in `algos.outer_join_indexer` when right array is empty (GH10618)
• Bug in `filter` (regression from 0.16.0) and `transform` when grouping on multiple keys, one of which is datetime-like (GH10114)
• Bug in `to_datetime` and `to_timedelta` causing `Index` name to be lost (GH10875)
• Bug in `len(DataFrame.groupby)` causing `IndexError` when there’s a column containing only NaNs (issue: 11016)
• Bug that caused segfault when resampling an empty `Series` (GH10228)
• Bug in `DatetimeIndex` and `PeriodIndex.value_counts` resets name from its result, but retains in result’s `Index`. (GH10150)
• Bug in `pd.eval` using `numexpr` engine coerces 1 element `numpy` array to scalar (GH10546)
• Bug in `pd.concat` with `axis=0` when column is of dtype `category` (GH10177)
• Bug in `read_msgpack` where input type is not always checked (GH10369, GH10630)
• Bug in `pd.read_csv` with `kwarg` `index_col=False, index_col=['a', 'b']` or `dtype` (GH10413, GH10467, GH10577)
• Bug in `Series.from_csv` with `header` kwarg not setting the `Series.name` or the `Series.index.name` (GH10483)
• Bug in `groupby.var` which caused variance to be inaccurate for small float values (GH10448)
• Bug in `Series.plot` (kind='hist') Y Label not informative (GH10485)
• Bug in `read_csv` when using a converter which generates a `uint8` type (GH9266)
• Bug causes memory leak in time-series line and area plot (GH9003)
• Bug when setting a `Panel` sliced along the major or minor axes when the right-hand side is a `DataFrame` (GH11014)
• Bug that returns `None` and does not raise `NotImplementedError` when operator functions (e.g. `.add`) of `Panel` are not implemented (GH7692)
• Bug in line and kde plot cannot accept multiple colors when `subplots=True` (GH9894)
• Bug in `DataFrame.plot` raises `ValueError` when color name is specified by multiple characters (GH10387)
• Bug in left and right `align` of `Series` with `MultiIndex` may be inverted (GH10665)
• Bug in left and right `join` of with `MultiIndex` may be inverted (GH10741)
• Bug in `read_stata` when reading a file with a different order set in `columns` (GH10757)
• Bug in `Categorical` may not representing properly when category contains `tz` or `Period` (GH10713)
• Bug in `Categorical.__iter__` may not returning correct `datetime` and `Period` (GH10713)
- Bug in indexing with a `PeriodIndex` on an object with a `PeriodIndex` (GH4125)
- Bug in `read_csv` with `engine='c'`: EOF preceded by a comment, blank line, etc. was not handled correctly (GH10728, GH10548)
- Reading “famafrench” data via `DataReader` results in HTTP 404 error because of the website url is changed (GH10591).
- Bug in `read_msgpack` where DataFrame to decode has duplicate column names (GH9618)
- Bug in `io.common.get_filepath_or_buffer` which caused reading of valid S3 files to fail if the bucket also contained keys for which the user does not have read permission (GH10604)
- Bug in vectorised setting of timestamp columns with `python datetime.date` and `numpy datetime64` (GH10408, GH10412)
- Bug in `Index.take` may add unnecessary `freq` attribute (GH10791)
- Bug in `merge` with empty DataFrame may raise `IndexError` (GH10824)
- Bug in `to_latex` where unexpected keyword argument for some documented arguments (GH10888)
- Bug in indexing of large DataFrame where `IndexError` is uncaught (GH10645 and GH10692)
- Bug in `read_csv` when using the `nrows` or `chunksize` parameters if file contains only a header line (GH9535)
- Bug in serialization of category types in HDF5 in presence of alternate encodings. (GH10366)
- Bug in `pd.DataFrame` when constructing an empty DataFrame with a string dtype (GH9428)
- Bug in `pd.DataFrame.diff` when DataFrame is not consolidated (GH10907)
- Bug in `pd.unique` for arrays with the `datetime64` or `timedelta64` dtype that meant an array with object dtype was returned instead the original dtype (GH9431)
- Bug in `Timedelta` raising error when slicing from 0s (GH10583)
- Bug in `DatetimeIndex.take` and `TimedeltaIndex.take` may not raise `IndexError` against invalid index (GH10295)
- Bug in `Series([np.nan]).astype('M8[ms]')`, which now returns `Series([pd.NaT])` (GH10747)
- Bug in `PeriodIndex.order reset freq` (GH10295)
- Bug in `date_range` when `freq` divides end as nanos (GH10885)
- Bug in `iloc` allowing memory outside bounds of a Series to be accessed with negative integers (GH10779)
- Bug in `read_msgpack` where encoding is not respected (GH10581)
- Bug preventing access to the first index when using `iloc` with a list containing the appropriate negative integer (GH10547, GH10779)
- Bug in `TimedeltaIndex` formatter causing error while trying to save DataFrame with `TimedeltaIndex` using `to_csv` (GH10833)
- Bug in `DataFrame.where` when handling Series slicing (GH10218, GH9558)
- Bug where `pd.read_gbq` throws `ValueError` when Bigquery returns zero rows (GH10273)
- Bug in `to_json` which was causing segmentation fault when serializing 0-rank `ndarray` (GH9576)
- Bug in plotting functions may raise `IndexError` when plotted on `GridSpec` (GH10819)
- Bug in plot result may show unnecessary minor ticklabels (GH10657)
• Bug in `groupby` incorrect computation for aggregation on `DataFrame` with `NaT` (E.g. `first`, `last`, `min`). (GH10590, GH11010)
• Bug when constructing `DataFrame` where passing a dictionary with only scalar values and specifying columns did not raise an error (GH10856)
• Bug in `.var()` causing roundoff errors for highly similar values (GH10242)
• Bug in `DataFrame.plot(subplots=True)` with duplicated columns outputs incorrect result (GH10962)
• Bug in `Index` arithmetic may result in incorrect class (GH10638)
• Bug in `date_range` results in empty if freq is negative annually, quarterly and monthly (GH11018)
• Bug in `DatetimeIndex` cannot infer negative freq (GH11018)
• Remove use of some deprecated numpy comparison operations, mainly in tests. (GH10569)
• Bug in `Index` dtype may not applied properly (GH11017)
• Bug in `io.gbq` when testing for minimum google api client version (GH10652)
• Bug in `DataFrame` construction from nested `dict` with `timedelta` keys (GH11129)
• Bug in `.fillna` against may raise `TypeError` when data contains datetime dtype (GH7095, GH11153)
• Bug in `.groupby` when number of keys to group by is same as length of index (GH11185)
• Bug in `convert_objects` where converted values might not be returned if all null and `coerce` (GH9589)
• Bug in `convert_objects` where `copy` keyword was not respected (GH9589)

v0.16.2 (June 12, 2015)

This is a minor bug-fix release from 0.16.1 and includes a a large number of bug fixes along some new features (pipe() method), enhancements, and performance improvements.

We recommend that all users upgrade to this version.

Highlights include:

• A new `pipe` method, see here
• Documentation on how to use numba with pandas, see here

What’s new in v0.16.2

• **New features**
 – `Pipe`
 – **Other Enhancements**
• **API Changes**
• **Performance Improvements**
• **Bug Fixes**
New features

Pipe

We’ve introduced a new method `DataFrame.pipe()`. As suggested by the name, `pipe` should be used to pipe data through a chain of function calls. The goal is to avoid confusing nested function calls like

```python
# df is a DataFrame
# f, g, and h are functions that take and return DataFrames
f(g(h(df), arg1=1), arg2=2, arg3=3)
```

The logic flows from inside out, and function names are separated from their keyword arguments. This can be rewritten as

```python
(df.pipe(h)
    .pipe(g, arg1=1)
    .pipe(f, arg2=2, arg3=3)
)
```

Now both the code and the logic flow from top to bottom. Keyword arguments are next to their functions. Overall the code is much more readable.

In the example above, the functions `f`, `g`, and `h` each expected the DataFrame as the first positional argument. When the function you wish to apply takes its data anywhere other than the first argument, pass a tuple of `(function, keyword)` indicating where the DataFrame should flow. For example:

```python
In [1]: import statsmodels.formula.api as sm

In [2]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [3]: (bb.query('h > 0')
    ...: .assign(ln_h = lambda df: np.log(df.h))
    ...: .pipe((sm.poisson, 'data'), 'hr ~ ln_h + year + g + C(lg)')
    ...: .fit()
    ...: .summary())
```

```
Optimization terminated successfully.
Current function value: 2.116284
Iterations 24

Poisson Regression Results
================================================================================
Dep. Variable: hr   No. Observations: 68
Model: Poisson   DF Residuals: 63
Method: MLE   DF Model: 4
Date: Sat, 24 Dec 2016   Pseudo R-squ.: -143.91
Time: 19:42:30   -143.91
converged: True   LL-Null: -460.91
LLR p-value: 6.774e-136 6.774e-136
```

| coef | std err | z | P>|z| | [95.0% Conf. Int.] |
|--------|---------|-------|-----|------------------|
| Intercept | -1267.3636 | 457.867 | -2.768 | 0.006 | -2164.767 -369.960 |
| C(lg)[T.NL] | -0.2057 | 0.101 | -2.044 | 0.041 | -0.403 -0.008 |
The pipe method is inspired by unix pipes, which stream text through processes. More recently dplyr and magrittr have introduced the popular (%>%) pipe operator for R. See the documentation for more. (GH10129)

Other Enhancements

• Added rsplit to Index/Series StringMethods (GH10303)
• Removed the hard-coded size limits on the DataFrame HTML representation in the IPython notebook, and leave this to IPython itself (only for IPython v3.0 or greater). This eliminates the duplicate scroll bars that appeared in the notebook with large frames (GH10231).

Note that the notebook has a toggle output scrolling feature to limit the display of very large frames (by clicking left of the output). You can also configure the way DataFrames are displayed using the pandas options, see here.

• axis parameter of DataFrame.quantile now accepts also index and column. (GH9543)

API Changes

• Holiday now raises NotImplementedError if both offset and observance are used in the constructor instead of returning an incorrect result (GH10217).

Performance Improvements

• Improved Series.resample performance with dtype= datetime64[ns] (GH7754)
• Increase performance of str.split when expand=True (GH10081)

Bug Fixes

• Bug in Series.hist raises an error when a one row Series was given (GH10214)
• Bug where HDFStore.select modifies the passed columns list (GH7212)
• Bug in Categorical repr with display.width of None in Python 3 (GH10087)
• Bug in to_json with certain orients and a CategoricalIndex would segfault (GH10317)
• Bug where some of the nan funcs do not have consistent return dtypes (GH10251)
• Bug in DataFrame.quantile on checking that a valid axis was passed (GH9543)
• Bug in groupby.apply aggregation for Categorical not preserving categories (GH10138)
• Bug into_csv where date_format is ignored if the datetime is fractional (GH10209)
• Bug in DataFrame.to_json with mixed data types (GH10289)
• Bug in cache updating when consolidating (GH10264)
• Bug in `mean()` where integer dtypes can overflow (GH10172)
• Bug where `Panel.from_dict` does not set dtype when specified (GH10058)
• Bug in `Index.union` raises `AttributeError` when passing array-likes. (GH10149)
• Bug in `Timestamp`'s `microsecond`, `quarter`, `dayofyear`, `week` and `daysinmonth` properties return `np.int` type, not built-in `int`. (GH10050)
• Bug in `NaT` raises `AttributeError` when accessing to `daysinmonth`, `dayofweek` properties. (GH10096)
• Bug in `Index` repr when using the `max_seq_items=None` setting (GH10182).
• Bug in getting timezone data with `dateutil` on various platforms (GH9059, GH8639, GH9663, GH10121)
• Bug in displaying datetimes with mixed frequencies; display ‘ms’ datetimes to the proper precision. (GH10170)
• Bug in `setItem` where type promotion is applied to the entire block (GH10280)
• Bug in `Series` arithmetic methods may incorrectly hold names (GH10068)
• Bug in `GroupBy.get_group` when grouping on multiple keys, one of which is categorical. (GH10132)
• Bug in `DatetimeIndex` and `TimedeltaIndex` names are lost after timedelta arithmetics (GH9926)
• Bug in `DataFrame` construction from nested `dict` with `datetime64` (GH10160)
• Bug in `Series` construction from `dict` with `datetime64` keys (GH9456)
• Bug in `Series.plot` (label="LABEL") not correctly setting the label (GH10119)
• Bug in `plot` not defaulting to matplotlib `axes.grid` setting (GH9792)
• Bug causing strings containing an exponent, but no decimal to be parsed as int instead of float in `engine='python'` for the `read_csv` parser (GH9565)
• Bug in `Series.align` resets name when `fill_value` is specified (GH10067)
• Bug in `read_csv` causing index name not to be set on an empty DataFrame (GH10184)
• Bug in `SparseSeries.abs` resets name (GH10241)
• Bug in `TimedeltaIndex` slicing may reset freq (GH10292)
• Bug in `GroupBy.get_group` raises `ValueError` when group key contains `NaT` (GH6992)
• Bug in `SparseSeries` constructor ignores input data name (GH10258)
• Bug in `Categorical.remove_categories` causing a `ValueError` when removing the NaN category if underlying dtype is floating-point (GH10156)
• Bug where `infer_freq` infers timerule (WOM-5XXX) unsupported by `to_offset` (GH9425)
• Bug in `DataFrame.to_hdf()` where table format would raise a seemingly unrelated error for invalid (non-string) column names. This is now explicitly forbidden. (GH9057)
• Bug to handle masking empty `DataFrame` (GH10126).
• Bug where `MySQL` interface could not handle numeric table/column names (GH10255)
• Bug in `read_csv` with a `date_parser` that returned a `datetime64` array of other time resolution than [ns] (GH10245)
• Bug in `Panel.apply` when the result has n_dim=0 (GH10332)
• Bug in `read_hdf` where `auto_close` could not be passed (GH9327).
• Bug in `read_hdf` where `open stores` could not be used (GH10330).
• Bug in adding empty DataFrame's, now results in a DataFrame that .equals an empty DataFrame (GH10181).
• Bug in to_hdf and HDFStore which did not check that complib choices were valid (GH4582, GH8874).

v0.16.1 (May 11, 2015)

This is a minor bug-fix release from 0.16.0 and includes a large number of bug fixes along several new features, enhancements, and performance improvements. We recommend that all users upgrade to this version.

Highlights include:
• Support for a CategoricalIndex, a category based index, see here
• New section on how-to-contribute to pandas, see here
• Revised “Merge, join, and concatenate” documentation, including graphical examples to make it easier to understand each operations, see here
• New method sample for drawing random samples from Series, DataFrames and Panels. See here
• The default Index printing has changed to a more uniform format, see here
• BusinessHour datetime-offset is now supported, see here
• Further enhancement to the .str accessor to make string operations easier, see here

What’s new in v0.16.1

• Enhancements
 – CategoricalIndex
 – Sample
 – String Methods Enhancements
 – Other Enhancements
• API changes
 – Deprecations
• Index Representation
• Performance Improvements
• Bug Fixes

Warning: In pandas 0.17.0, the sub-package pandas.io.data will be removed in favor of a separately installable package. See here for details (GH8961)

Enhancements
CategoricalIndex

We introduce a CategoricalIndex, a new type of index object that is useful for supporting indexing with duplicates. This is a container around a Categorical (introduced in v0.15.0) and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a DataFrame/Series with a category dtype would convert this to regular object-based Index.

```
In [1]: df = DataFrame({'A' : np.arange(6),
...:                    'B' : Series(list('aabbca')).astype('category',
...:                                        categories=list('cab'))
...:                 })
...

In [2]: df
Out[2]:
   A  B
0  0  a
1  1  a
2  2  b
3  3  b
4  4  c
5  5  a

In [3]: df.dtypes
Out[3]:
A   int64
B  category
dtype: object

In [4]: df.B.cat.categories
Out[4]: Index([u'c', u'a', u'b'], dtype='object')
```

setting the index, will create create a CategoricalIndex

```
In [5]: df2 = df.set_index('B')

In [6]: df2.index
Out[6]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B', dtype='category')
```

indexing with __getitem__/iloc/.loc/.ix works similarly to an Index with duplicates. The indexers MUST be in the category or the operation will raise.

```
In [7]: df2.loc['a']
Out[7]:
   A
0  a
1  a
5  a

and preserves the CategoricalIndex

```
In [8]: df2.loc['a'].index
Out[8]: CategoricalIndex([u'a', u'a', u'a'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B', dtype='category')
```

sorting will order by the order of the categories
In [9]: df2.sort_index()
Out[9]:
   A  
   B  
   c  4  
   a  0  
   a  1  
   a  5  
   b  2  
   b  3

Groupby operations on the index will preserve the index nature as well.

In [10]: df2.groupby(level=0).sum()
Out[10]:
   A  
   B  
   c  4  
   a  6  
   b  5

In [11]: df2.groupby(level=0).sum().index
Out[11]: CategoricalIndex([u'c', u'a', u'b'], categories=[u'c', u'a', u'b'],
                        ordered=False, name=u'B', dtype='category')

Reindexing operations, will return a resulting index based on the type of the passed indexer, meaning that passing a list will return a plain-old-Index; indexing with a Categorical will return a CategoricalIndex, indexed according to the categories of the PASSED Categorical dtype. This allows one to arbitrarily index these even with values NOT in the categories, similarly to how you can reindex ANY pandas index.

In [12]: df2.reindex(['a','e'])
Out[12]:
   A  
   B  
   a  0.0  
   a  1.0  
   a  5.0  
   e  NaN

In [13]: df2.reindex(['a','e']).index
Out[13]: Index([u'a', u'a', u'a', u'e'], dtype='object', name=u'B')

In [14]: df2.reindex(pd.Categorical(['a','e'], categories=list('abcde')))
Out[14]:
   A  
   B  
   a  0.0  
   a  1.0  
   a  5.0  
   e  NaN

In [15]: df2.reindex(pd.Categorical(['a','e'], categories=list('abcde'))).index
Out[15]: CategoricalIndex([u'a', u'a', u'a', u'e'], categories=[u'a', u'b', u'c', u'd', u'e'], ordered=False, name=u'B', dtype='category')

See the documentation for more. (GH7629, GH10038, GH10039)
Sample

Series, DataFrames, and Panels now have a new method: `sample()`. The method accepts a specific number of rows or columns to return, or a fraction of the total number of rows or columns. It also has options for sampling with or without replacement, for passing in a column for weights for non-uniform sampling, and for setting seed values to facilitate replication. (GH2419)

```python
In [16]: example_series = Series([0,1,2,3,4,5])

When no arguments are passed, returns 1
In [17]: example_series.sample()
Out[17]:
3 3
dtype: int64

One may specify either a number of rows:
In [18]: example_series.sample(n=3)
Out[18]:
5 5
1 1
4 4
dtype: int64

Or a fraction of the rows:
In [19]: example_series.sample(frac=0.5)
Out[19]:
4 4
1 1
0 0
dtype: int64

weights are accepted.
In [20]: example_weights = [0, 0, 0, 0, 2, 4]

In [21]: example_series.sample(n=3, weights=example_weights)
Out[21]:
2 2
3 3
5 5
dtype: int64

weights will also be normalized if they do not sum to one,
and missing values will be treated as zeros.
In [22]: example_weights2 = [0.5, 0, 0, 0, None, np.nan]

In [23]: example_series.sample(n=1, weights=example_weights2)
Out[23]:
0 0
dtype: int64
```

When applied to a DataFrame, one may pass the name of a column to specify sampling weights when sampling from rows.

```python
In [24]: df = DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})

In [25]: df.sample(n=3, weights='weight_column')
Out[25]:
 col1 weight_column
0 9.0 0.5
3 6.0 0.1
```

1.9. v0.16.1 (May 11, 2015)
String Methods Enhancements

*Continuing from v0.16.0,* the following enhancements make string operations easier and more consistent with standard python string operations.

- **Added** *StringMethods* (*.str accessor*) **to Index** *(GH9068)*
  
  The *str accessor* is now available for both *Series* and *Index*.

  ```python
 In [26]: idx = Index([' jack', ' jill ', ' jesse ', ' frank'])
 In [27]: idx.str.strip()
 Out[27]: Index([u'jack', u'jill', u'jesse', u'frank'], dtype='object')
  ```

  One special case for the *str accessor* on *Index* is that if a string method returns *bool*, the *str accessor* will return a *np.array* instead of a boolean *Index* *(GH8875)*. This enables the following expression to work naturally:

  ```python
 In [28]: idx = Index(['a1', 'a2', 'b1', 'b2'])
 In [29]: s = Series(range(4), index=idx)
 In [30]: s
 Out[30]:
 a1 0
 a2 1
 b1 2
 b2 3
 dtype: int64
 In [31]: idx.str.startswith('a')
 Out[31]: array([True, True, False, False], dtype=bool)
 In [32]: s[s.index.str.startswith('a')]
 Out[32]:
 a1 0
 a2 1
 dtype: int64
  ```

- **The following new methods are accesible via *.str accessor* to apply the function to each values.** *(GH9766, GH9773, GH10031, GH10045, GH10052)*

  Methods
<table>
<thead>
<tr>
<th>capitalize()</th>
<th>swapcase()</th>
<th>normalize()</th>
<th>partition()</th>
<th>rpartition()</th>
</tr>
</thead>
<tbody>
<tr>
<td>index()</td>
<td>rindex()</td>
<td>translate()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

  - **split** now takes **expand keyword** to specify whether to expand dimensionality. **return_type** is deprecated. *(GH9847)*

  ```python
 In [33]: s = Series(['a,b', 'a,c', 'b,c'])
 # return Series
 In [34]: s.str.split(',')
  ```
Out[34]:
0  [a, b]
1  [a, c]
2  [b, c]
dtype: object

# return DataFrame
In [35]: s.str.split(',', expand=True)
Out[35]:
   0  1
0  a  b
1  a  c
2  b  c

In [36]: idx = Index(['a,b', 'a,c', 'b,c'])

# return Index
In [37]: idx.str.split(',')
Out[37]: Index([['a', 'b'], ['a', 'c'], ['b', 'c']], dtype='object')

# return MultiIndex
In [38]: idx.str.split(',', expand=True)
Out[38]: MultiIndex(levels=[['a', 'b'], ['b', 'c']],
labels=[[0, 0, 1], [0, 1, 1]])

• Improved extract and get_dummies methods for Index.str (GH9980)

Other Enhancements

• BusinessHour offset is now supported, which represents business hours starting from 09:00 - 17:00 on BusinessDay by default. See Here for details. (GH7905)

In [39]: from pandas.tseries.offsets import BusinessHour

In [40]: Timestamp('2014-08-01 09:00') + BusinessHour()
Out[40]: Timestamp('2014-08-01 10:00:00')

In [41]: Timestamp('2014-08-01 07:00') + BusinessHour()
Out[41]: Timestamp('2014-08-01 10:00:00')

In [42]: Timestamp('2014-08-01 16:30') + BusinessHour()
Out[42]: Timestamp('2014-08-04 09:30:00')

• DataFrame.diff now takes an axis parameter that determines the direction of differencing (GH9727)

• Allow clip, clip_lower, and clip_upper to accept array-like arguments as thresholds (This is a regression from 0.11.0). These methods now have an axis parameter which determines how the Series or DataFrame will be aligned with the threshold(s). (GH6966)

• DataFrame.mask() and Series.mask() now support same keywords as where (GH8801)

• drop function can now accept errors keyword to suppress ValueError raised when any of label does not exist in the target data. (GH6736)

In [43]: df = DataFrame(np.random.randn(3, 3), columns=['A', 'B', 'C'])
• Add support for separating years and quarters using dashes, for example 2014-Q1. (GH9688)
• Allow conversion of values with dtype datetime64 or timedelta64 to strings using astype(str) (GH9757)
• get_dummies function now accepts sparse keyword. If set to True, the return DataFrame is sparse, e.g. SparseDataFrame. (GH8823)
• Period now accepts datetime64 as value input. (GH9054)
• Allow timedelta string conversion when leading zero is missing from time definition, ie 0:00:00 vs 00:00:00. (GH9570)
• Allow Panel.shift with axis='items' (GH9890)
• Trying to write an excel file now raises NotImplementedError if the DataFrame has a MultiIndex instead of writing a broken Excel file. (GH9794)
• Allow Categorical.add_categories to accept Series or np.array. (GH9927)
• Add/delete str/dt/cat accessors dynamically from __dir__. (GH9910)
• Add normalize as a dt accessor method. (GH10047)
• DataFrame and Series now have _constructor_expanddim property as overridable constructor for one higher dimensionality data. This should be used only when it is really needed, see here
• pd.lib.infer_dtype now returns 'bytes' in Python 3 where appropriate. (GH10032)

API changes

• When passing in an ax to df.plot( ...,ax=ax), the sharex kwarg will now default to False. The result is that the visibility of xlabels and xticklabels will not anymore be changed. You have to do that by yourself for the right axes in your figure or set sharex=True explicitly (but this changes the visible for all axes in the figure, not only the one which is passed in!). If pandas creates the subplots itself (e.g. no passed in ax kwarg), then the default is still sharex=True and the visibility changes are applied.
• assign() now inserts new columns in alphabetical order. Previously the order was arbitrary. (GH9777)
• By default, read_csv and read_table will now try to infer the compression type based on the file extension. Set compression=None to restore the previous behavior (no decompression). (GH9770)

Deprecations

• Series.str.split's return_type keyword was removed in favor of expand (GH9847)

Index Representation

The string representation of Index and its sub-classes have now been unified. These will show a single-line display if there are few values; a wrapped multi-line display for a lot of values (but less than display.max_seq_items; if lots of items (> display.max_seq_items) will show a truncated display (the head and tail of the data). The
formatting for MultiIndex is unchanged (a multi-line wrapped display). The display width responds to the option display.max_seq_items, which is defaulted to 100. (GH6482)

Previous Behavior

```python
In [2]: pd.Index(range(4), name='foo')
Out[2]: Int64Index([0, 1, 2, 3], dtype='int64')

In [3]: pd.Index(range(104), name='foo')
Out[3]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...], dtype='int64')

In [4]: pd.date_range('20130101', periods=4, name='foo', tz='US/Eastern')
Out[4]: <class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-01-04 00:00:00-05:00]
Length: 4, Freq: D, Timezone: US/Eastern

In [5]: pd.date_range('20130101', periods=104, name='foo', tz='US/Eastern')
Out[5]: <class 'pandas.tseries.index.DatetimeIndex'>
[2013-01-01 00:00:00-05:00, ..., 2013-04-14 00:00:00-04:00]
Length: 104, Freq: D, Timezone: US/Eastern
```

New Behavior

```python
In [45]: pd.set_option('display.width', 80)
In [46]: pd.Index(range(4), name='foo')
Out[46]: Int64Index([0, 1, 2, 3], dtype='int64', name='foo'

In [47]: pd.Index(range(30), name='foo')
Out[47]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
 dtype='int64', name='foo')

In [48]: pd.Index(range(104), name='foo')
Out[48]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
 ... 94, 95, 96, 97, 98, 99, 100, 101, 102, 103],
 dtype='int64', name='foo', length=104)

In [49]: pd.CategoricalIndex(['a', 'bb', 'ccc', 'ddddd'], ordered=True, name='foobar')
Out[49]: CategoricalIndex(['a', 'bb', 'ccc', 'ddddd'], categories=['a', 'bb', 'ccc', 'ddddd'], ordered=True, name='foobar', dtype='category')

In [50]: pd.CategoricalIndex(['a', 'bb', 'ccc', 'ddddd']*10, ordered=True, name='foobar')
Out[50]: CategoricalIndex(['a', 'bb', 'ccc', 'ddddd', 'a', 'bb', 'ccc', 'ddddd',
 'a', 'bb', 'ccc', 'ddddd', 'a', 'bb', 'ccc', 'ddddd'],
 categories=['a', 'bb', 'ccc', 'ddddd'], ordered=True, name='foobar')
```
Performance Improvements

- Improved csv write performance with mixed dtypes, including datetimes by up to 5x (GH9940)
- Improved csv write performance generally by 2x (GH9940)
- Improved the performance of `pd.lib.max_len_string_array` by 5-7x (GH10024)
Bug Fixes

- Bug where labels did not appear properly in the legend of `DataFrame.plot()`, passing `label` arguments works, and Series indices are no longer mutated. (GH9542)
- Bug in json serialization causing a segfault when a frame had zero length. (GH9805)
- Bug in `read_csv` where missing trailing delimiters would cause segfault. (GH5664)
- Bug in retaining index name on appending (GH9862)
- Bug in `scatter_matrix` draws unexpected axis ticklabels (GH5662)
- Fixed bug in `StataWriter` resulting in changes to input `DataFrame` upon save (GH9795).
- Bug in `transform` causing length mismatch when null entries were present and a fast aggregator was being used (GH9697)
- Bug in `equals` causing false negatives when block order differed (GH9330)
- Bug in grouping with multiple `pd.Grouper` where one is non-time based (GH10063)
- Bug in `read_sql_table` error when reading postgres table with timezone (GH7139)
- Bug in `DataFrame` slicing may not retain metadata (GH9776)
- Bug where `TimedeltaIndex` were not properly serialized in fixed `HDFStore` (GH9635)
- Bug with `TimedeltaIndex` constructor ignoring name when given another `TimedeltaIndex` as data (GH10025).
- Bug in `DataFrameFormatter._get_formatted_index` with not applying `max_colwidth` to the `DataFrame` index (GH7856)
- Bug in `.loc` with a read-only ndarray data source (GH10043)
- Bug in `groupby.apply()` that would raise if a passed user defined function either returned only `None` (for all input). (GH9685)
- Always use temporary files in pytables tests (GH9992)
- Bug in plotting continuously using `secondary_y` may not show legend properly. (GH9610, GH9779)
- Bug in `DataFrame.plot(kind="hist")` results in `TypeError` when `DataFrame` contains non-numeric columns (GH9853)
- Bug where repeated plotting of `DataFrame` with a `DatetimeIndex` may raise `TypeError` (GH9852)
- Bug in `setup.py` that would allow an incompat cython version to build (GH9827)
- Bug in plotting `secondary_y` incorrectly attaches `right_ax` property to secondary axes specifying itself recursively. (GH9861)
- Bug in `Series.quantile` on empty `Series` of type `Datetime` or `Timedelta` (GH9675)
- Bug in `where` causing incorrect results when upcasting was required (GH9731)
- Bug in `FloatArrayFormatter` where decision boundary for displaying “small” floats in decimal format is off by one order of magnitude for a given display.precision (GH9764)
- Fixed bug where `DataFrame.plot()` raised an error when both `color` and `style` keywords were passed and there was no color symbol in the style strings (GH9671)
- Not showing a `DeprecationWarning` on combining list-likes with an `Index` (GH10083)
- Bug in `read_csv` and `read_table` when using `skip_rows` parameter if blank lines are present. (GH9832)
- Bug in `read_csv()` interprets `index_col=True` as 1 (GH9798)
• Bug in index equality comparisons using == failing on Index/MultiIndex type incompatibility (GH9785)
• Bug in which SparseDataFrame could not take nan as a column name (GH8822)
• Bug in to_msgpack and read_msgpack zlib and blosc compression support (GH9783)
• Bug GroupBy.size doesn’t attach index name properly if grouped by TimeGrouper (GH9925)
• Bug causing an exception in slice assignments because length_of_indexer returns wrong results (GH9995)
• Bug in csv parser causing lines with initial whitespace plus one non-space character to be skipped. (GH9710)
• Bug in C csv parser causing spurious NaNs when data started with newline followed by whitespace. (GH10022)
• Bug causing elements with a null group to spill into the final group when grouping by a Categorical (GH9603)
• Bug where .iloc and .loc behavior is not consistent on empty dataframes (GH9964)
• Bug in invalid attribute access on a TimedeltaIndex incorrectly raised ValueError instead of AttributeError (GH9680)
• Bug in unequal comparisons between categorical data and a scalar, which was not in the categories (e.g. Series(Categorical(list("abc"), ordered=True)) > "d". This returned False for all elements, but now raises a TypeError. Equality comparisons also now return False for == and True for !=. (GH9848)
• Bug in DataFrame __setitem__ when right hand side is a dictionary (GH9874)
• Bug in where when dtype is datetime64/timedelta64, but dtype of other is not (GH9804)
• Bug in MultiIndex.sortlevel() results in unicode level name breaks (GH9856)
• Bug in which groupby.transform incorrectly enforced output dtypes to match input dtypes. (GH9807)
• Bug in DataFrame constructor when columns parameter is set, and data is an empty list (GH9939)
• Bug in bar plot with log=True raises TypeError if all values are less than 1 (GH9905)
• Bug in horizontal bar plot ignores log=True (GH9905)
• Bug in PyTables queries that did not return proper results using the index (GH8265, GH9676)
• Bug where dividing a dataframe containing values of type Decimal by another Decimal would raise. (GH9787)
• Bug where using DataFrames asfreq would remove the name of the index. (GH9885)
• Bug causing extra index point when resample BM/BQ (GH9756)
• Changed caching in AbstractHolidayCalendar to be at the instance level rather than at the class level as the latter can result in unexpected behaviour. (GH9552)
• Fixed latex output for multi-indexed dataframes (GH9778)
• Bug causing an exception when setting an empty range using DataFrame.loc (GH9596)
• Bug in hiding ticklabels with subplots and shared axes when adding a new plot to an existing grid of axes (GH9158)
• Bug in transform and filter when grouping on a categorical variable (GH9921)
• Bug in transform when groups are equal in number and dtype to the input index (GH9700)
• Google BigQuery connector now imports dependencies on a per-method basis. (GH9713)
• Updated BigQuery connector to no longer use deprecated oauth2client.tools.run() (GH8327)
pandas: powerful Python data analysis toolkit, Release 0.19.2

• Bug in subclassed DataFrame. It may not return the correct class, when slicing or subsetting it. (GH9632)
• Bug in .median() where non-float null values are not handled correctly (GH10040)
• Bug in Series.fillna() where it raises if a numerically convertible string is given (GH10092)

v0.16.0 (March 22, 2015)

This is a major release from 0.15.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

• DataFrame.assign method, see here
• Series.to_coo/from_coo methods to interact with scipy.sparse, see here
• Backwards incompatible change to Timedelta to conform the .seconds attribute with datetime.timedelta, see here
• Changes to the .loc slicing API to conform with the behavior of .ix see here
• Changes to the default for ordering in the Categorical constructor, see here
• Enhancement to the .str accessor to make string operations easier, see here
• The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpy modules are deprecated. We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see here

Check the API Changes and deprecations before updating.

What’s new in v0.16.0

• New features
  – DataFrame Assign
  – Interaction with scipy.sparse
  – String Methods Enhancements
  – Other enhancements
• Backwards incompatible API changes
  – Changes in Timedelta
  – Indexing Changes
  – Categorical Changes
  – Other API Changes
  – Deprecations
  – Removal of prior version deprecations/changes
• Performance Improvements
• Bug Fixes
New features

DataFrame Assign

Inspired by dplyr's `mutate` verb, DataFrame has a new `assign()` method. The function signature for `assign` is simply `**kwargs`. The keys are the column names for the new fields, and the values are either a value to be inserted (for example, a `Series` or NumPy array), or a function of one argument to be called on the DataFrame. The new values are inserted, and the entire DataFrame (with all original and new columns) is returned.

```
In [1]: iris = read_csv('data/iris.data')
In [2]: iris.head()
Out[2]:
 SepalLength SepalWidth PetalLength PetalWidth Name
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
In [3]: iris.assign(sepal_ratio=iris['SepalWidth'] / iris['SepalLength']).head()
Out[3]:
 SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275
1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245
2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851
3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913
4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000
```

Above was an example of inserting a precomputed value. We can also pass in a function to be evaluated.

```
In [4]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] / x['SepalLength'])).head()
Out[4]:
 SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.686275
1 4.9 3.0 1.4 0.2 Iris-setosa 0.612245
2 4.7 3.2 1.3 0.2 Iris-setosa 0.680851
3 4.6 3.1 1.5 0.2 Iris-setosa 0.673913
4 5.0 3.6 1.4 0.2 Iris-setosa 0.720000
```

The power of `assign` comes when used in chains of operations. For example, we can limit the DataFrame to just those with a Sepal Length greater than 5, calculate the ratio, and plot.

```
In [5]: (iris.query('SepalLength > 5')
 ...: .assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
 ...: PetalRatio = lambda x: x.PetalWidth / x.PetalLength)
 ...: .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6d1cd285d0>
```
See the documentation for more. (GH9229)

**Interaction with scipy.sparse**

Added `SparseSeries.to_coo()` and `SparseSeries.from_coo()` methods (GH8048) for converting to and from `scipy.sparse.coo_matrix` instances (see here). For example, given a SparseSeries with MultiIndex we can convert to a `scipy.sparse.coo_matrix` by specifying the row and column labels as index levels:

```python
In [6]: from numpy import nan

In [7]: s = Series([3.0, nan, 1.0, 3.0, nan, nan])

In [8]: s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),
 (1, 2, 'a', 1),
 (1, 1, 'b', 0),
 (1, 1, 'b', 1),
 (2, 1, 'b', 0),
 (2, 1, 'b', 1)],
 names=['A', 'B', 'C', 'D'])

In [9]: s
Out[9]:
 A B C D
 1 2 a 0 3.0
 1 NaN
 1 1 b 0 1.0
 1 3.0
 2 1 b 0 NaN
 1 NaN
dtype: float64

SparseSeries
In [10]: ss = s.to_sparse()

In [11]: ss
Out[11]:
 A B C D
 1 2 a 0 3.0
 1 NaN
The `from_coo` method is a convenience method for creating a `SparseSeries` from a `scipy.sparse.coo_matrix`:

```python
In [17]: from scipy import sparse

In [18]: A = sparse.coo_matrix(([3.0, 1.0, 2.0], ([1, 0, 0], [0, 2, 3])),
                        shape=(3, 4))

In [19]: A
Out[19]:
<3x4 sparse matrix of type '<type 'numpy.float64'>'
 with 3 stored elements in COOrdinate format>

A.todense()

Out[20]:
matrix([[ 3.,  0.,  0.,  2.],
        [ 0.,  0.,  1.,  3.],
        [ 0.,  0.,  0.,  0.]])

In [21]: ss = SparseSeries.from_coo(A)

In [22]: ss
Out[22]:
  0  2  1.0
  3  2.0
  1  0  3.0
```
String Methods Enhancements

- Following new methods are accesible via `.str` accessor to apply the function to each values. This is intended to make it more consistent with standard methods on strings. (GH9282, GH9352, GH9386, GH9387, GH9439)

<table>
<thead>
<tr>
<th>Methods</th>
<th>isalnum()</th>
<th>isalpha()</th>
<th>isdigit()</th>
<th>isdigit()</th>
<th>isspace()</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>islower()</td>
<td></td>
<td></td>
<td>isnumeric()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rfind()</td>
<td>ljust()</td>
<td>rjust()</td>
<td>zfill()</td>
</tr>
</tbody>
</table>

```python
In [23]: s = Series(['abcd', '3456', 'EFGH'])

In [24]: s.str.isalpha()
Out[24]:
0     True  
1    False  
2     True  
dtype: bool

In [25]: s.str.find('ab')
Out[25]:
0     0  
1    -1  
2    -1  
dtype: int64
```

- Series.str.pad() and Series.str.center() now accept fillchar option to specify filling character (GH9352)

```python
In [26]: s = Series(['12', '300', '25'])

In [27]: s.str.pad(5, fillchar='_')
Out[27]:
0 ___12  
1 __300  
2 ___25  
dtype: object
```

- Added Series.str.slice_replace(), which previously raised NotImplementedError (GH8888)

```python
In [28]: s = Series(['ABCD', 'EFGH', 'IJK'])

In [29]: s.str.slice_replace(1, 3, 'X')
Out[29]:
0    AXD  
1    EXH  
2     IX  
dtype: object

# replaced with empty char
In [30]: s.str.slice_replace(0, 1)
```

1.10. v0.16.0 (March 22, 2015)
Other enhancements

- Reindex now supports method='nearest' for frames or series with a monotonic increasing or decreasing index (GH9258):

```plaintext
In [31]: df = pd.DataFrame({'x': range(5)})
In [32]: df.reindex([0.2, 1.8, 3.5], method='nearest')
Out[32]:
   x
0  0
1  2
2  4
```

This method is also exposed by the lower level `Index.get_indexer` and `Index.get_loc` methods.

- The `read_excel()` function’s `sheetname` argument now accepts a list and None, to get multiple or all sheets respectively. If more than one sheet is specified, a dictionary is returned. (GH9450)

```plaintext
# Returns the 1st and 4th sheet, as a dictionary of DataFrames.
pd.read_excel('path_to_file.xls', sheetname=['Sheet1', 3])
```

- Allow Stata files to be read incrementally with an iterator; support for long strings in Stata files. See the docs here (GH9493).
- Paths beginning with ~ will now be expanded to begin with the user’s home directory (GH9066)
- Added time interval selection in `get_data_yahoo` (GH9071)
- Added `Timestamp.to_datetime64()` to complement `Timedelta.to_timedelta64()` (GH9255)
- `tseries.frequencies.to_offset()` now accepts `Timedelta` as input (GH9064)
- Lag parameter was added to the autocorrelation method of `Series`, defaults to lag-1 autocorrelation (GH9192)
- `Timedelta` will now accept nanoseconds keyword in constructor (GH9273)
- SQL code now safely escapes table and column names (GH8986)
- Added auto-complete for `Series.str.<tab>`, `Series.dt.<tab>` and `Series.cat.<tab>` (GH9322)
- `Index.get_indexer` now supports method='pad' and method='backfill' even for any target array, not just monotonic targets. These methods also work for monotonic decreasing as well as monotonic increasing indexes (GH9258).
- `Index.asof` now works on all index types (GH9258).
- A `verbose` argument has been augmented in `io.read_excel()`, defaults to False. Set to True to print sheet names as they are parsed. (GH9450)
- Added `days_in_month` (compatibility alias `daysinmonth`) property to `Timestamp`, `DatetimeIndex`, `Period`, `PeriodIndex`, and `Series.dt` (GH9572)
- Added `decimal` option in `to_csv` to provide formatting for non-`.` decimal separators (GH781)
• Added normalize option for Timestamp to normalized to midnight (GH8794)
• Added example for DataFrame import to R using HDF5 file and rhdf5 library. See the documentation for more (GH9636).

Backwards incompatible API changes

Changes in Timedelta

In v0.15.0 a new scalar type Timedelta was introduced, that is a sub-class of datetime.timedelta. Mentioned here was a notice of an API change w.r.t. the .seconds accessor. The intent was to provide a user-friendly set of accessors that give the ‘natural’ value for that unit, e.g. if you had a Timedelta('1 day,10:11:12'), then .seconds would return 12. However, this is at odds with the definition of datetime.timedelta, which defines .seconds as 10 * 3600 + 11 * 60 + 12 == 36672.

So in v0.16.0, we are restoring the API to match that of datetime.timedelta. Further, the component values are still available through the .components accessor. This affects the .seconds and .microseconds accessors, and removes the .hours, .minutes, .milliseconds accessors. These changes affect TimedeltaIndex and the Series .dt accessor as well. (GH9185, GH9139)

Previous Behavior

```
in [2]: t = pd.Timedelta('1 day, 10:11:12.100123')

In [3]: t.days
Out[3]: 1

In [4]: t.seconds
Out[4]: 12

In [5]: t.microseconds
Out[5]: 123
```

New Behavior

```
in [33]: t = pd.Timedelta('1 day, 10:11:12.100123')

In [34]: t.days
Out[34]: 1

In [35]: t.seconds
Out[35]: 36672

In [36]: t.microseconds
Out[36]: 100123
```

Using .components allows the full component access

```
in [37]: t.components
Out[37]: Components(days=1, hours=10, minutes=11, seconds=12, milliseconds=100, microseconds=123, nanoseconds=0)

In [38]: t.components.seconds
Out[38]: 12
```
Indexing Changes

The behavior of a small sub-set of edge cases for using \code{.loc} have changed (GH8613). Furthermore we have improved the content of the error messages that are raised:

- Slicing with \code{.loc} where the start and/or stop bound is not found in the index is now allowed; this previously would raise a \code{KeyError}. This makes the behavior the same as \code{.ix} in this case. This change is only for slicing, not when indexing with a single label.

```
In [39]: df = DataFrame(np.random.randn(5,4),
        ....:             columns=list('ABCD'),
        ....:             index=date_range('20130101',periods=5))

In [40]: df
Out[40]:
         A         B         C         D
2013-01-01 -0.322795  0.841675  2.390961  0.076200
2013-01-02 -0.566446  0.036142 -2.074978  0.247792
2013-01-03 -0.897157 -0.136795  0.018289  0.755414
2013-01-04  0.215269  0.841009 -1.445810 -1.401973
2013-01-05 -0.100918 -0.548242 -0.144620  0.354020

In [41]: s = Series(range(5),[-2,-1,1,2,3])

In [42]: s
Out[42]:
       -2    0
       -1    1
        1    2
        2    3
        3    4
dtype: int64
```

Previous Behavior

```
In [4]: df.loc['2013-01-02':'2013-01-10']
KeyError: 'stop bound [2013-01-10] is not in the [index]'

In [6]: s.loc[-10:3]
KeyError: 'start bound [-10] is not the [index]'
```

New Behavior

```
In [43]: df.loc['2013-01-02':'2013-01-10']
Out[43]:
         A         B         C         D
2013-01-02 -0.566446  0.036142 -2.074978  0.247792
2013-01-03 -0.897157 -0.136795  0.018289  0.755414
2013-01-04  0.215269  0.841009 -1.445810 -1.401973
2013-01-05 -0.100918 -0.548242 -0.144620  0.354020

In [44]: s.loc[-10:3]
Out[44]:
       -2    0
       -1    1
        1    2
        2    3
```
• Allow slicing with float-like values on an integer index for .ix. Previously this was only enabled for .loc:

 Previous Behavior

```python
In [8]: s.ix[-1.0:2]
TypeError: the slice start value [-1.0] is not a proper indexer for this index
```

New Behavior

```python
In [45]: s.ix[-1.0:2]
Out[45]:
-1  1
 1  2
2  3
dtype: int64
```

• Provide a useful exception for indexing with an invalid type for that index when using .loc. For example trying to use .loc on an index of type DatetimeIndex or PeriodIndex or TimedeltaIndex, with an integer (or a float).

 Previous Behavior

```python
In [4]: df.loc[2:3]
KeyError: 'start bound [2] is not the [index]'
```

New Behavior

```python
In [4]: df.loc[2:3]
TypeError: Cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with <type 'int'> keys
```

Categorical Changes

In prior versions, Categoricals that had an unspecified ordering (meaning no ordered keyword was passed) were defaulted as ordered Categoricals. Going forward, the ordered keyword in the Categorical constructor will default to False. Ordering must now be explicit.

Furthermore, previously you could change the ordered attribute of a Categorical by just setting the attribute, e.g. cat.ordered=True; This is now deprecated and you should use cat.as_ordered() or cat.as_unordered(). These will by default return a new object and not modify the existing object. (GH9347, GH9190)

 Previous Behavior

```python
In [3]: s = Series([0,1,2], dtype='category')
In [4]: s
Out[4]:
0  0
1  1
2  2
dtype: category
Categories (3, int64): [0 < 1 < 2]
```
In [5]: s.cat.ordered
Out[5]: True

In [6]: s.cat.ordered = False

In [7]: s
Out[7]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0, 1, 2]

New Behavior

In [46]: s = Series([0,1,2], dtype='category')

In [47]: s
Out[47]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0, 1, 2]

In [48]: s.cat.ordered
Out[48]: False

In [49]: s = s.cat.as_ordered()

In [50]: s
Out[50]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]

In [51]: s.cat.ordered
Out[51]: True

you can set in the constructor of the Categorical
In [52]: s = Series(Categorical([0,1,2],ordered=True))

In [53]: s
Out[53]:
0 0
1 1
2 2
dtype: category
Categories (3, int64): [0 < 1 < 2]

In [54]: s.cat.ordered
Out[54]: True

For ease of creation of series of categorical data, we have added the ability to pass keywords when calling .astype(). These are passed directly to the constructor.
In [55]: s = Series(["a","b","c","a"]).astype('category', ordered=True)

In [56]: s
Out[56]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a < b < c]

In [57]: s = Series(["a","b","c","a"]).astype('category', categories=list('abcdef'), ordered=False)

In [58]: s
Out[58]:
0 a
1 b
2 c
3 a
dtype: category
Categories (6, object): [a, b, c, d, e, f]

Other API Changes

- `Index.duplicated` now returns `np.array(dtype=bool)` rather than `Index(dtype=object)` containing bool values. (GH8875)

- `DataFrame.to_json` now returns accurate type serialisation for each column for frames of mixed dtype (GH9037)

 Previously data was coerced to a common dtype before serialisation, which for example resulted in integers being serialised to floats:

 In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json()
Out[2]: {'f':{"0":3.0,"1":4.2},"i":{"0":1.0,"1":2.0}}'

 Now each column is serialised using its correct dtype:

 In [2]: pd.DataFrame({'i': [1,2], 'f': [3.0, 4.2]}).to_json()
Out[2]: {'f':{"0":3.0,"1":4.2},"i":{"0":1,"1":2}}'

- `DatetimeIndex`, `PeriodIndex` and `TimedeltaIndex.summary` now output the same format. (GH9116)

- `TimedeltaIndex.freqstr` now output the same string format as `DatetimeIndex`. (GH9116)

- Bar and horizontal bar plots no longer add a dashed line along the info axis. The prior style can be achieved with matplotlib's `axhline` or `axvline` methods (GH9088).

- Series accessors `.dt`, `.cat` and `.str` now raise `AttributeError` instead of `TypeError` if the series does not contain the appropriate type of data (GH9617). This follows Python's built-in exception hierarchy more closely and ensures that tests like `hasattr(s, 'cat')` are consistent on both Python 2 and 3.

- Series now supports bitwise operation for integral types (GH9016). Previously even if the input dtypes were integral, the output dtype was coerced to `bool`.

 Previous Behavior
New Behavior. If the input dtypes are integral, the output dtype is also integral and the output values are the result of the bitwise operation.

• During division involving a Series or DataFrame, 0/0 and 0//0 now give np.nan instead of np.inf. (GH9144, GH8445)

Previous Behavior

• Series.values_counts and Series.describe for categorical data will now put NaN entries at the end. (GH9443)

• Series.describe for categorical data will now give counts and frequencies of 0, not NaN, for unused
categories (GH9443)

- Due to a bug fix, looking up a partial string label with `DatetimeIndex.asof` now includes values that match the string, even if they are after the start of the partial string label (GH9258).

Old behavior:

```plaintext
In [4]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02')
Out[4]: Timestamp('2000-01-31 00:00:00')
```

Fixed behavior:

```plaintext
In [62]: pd.to_datetime(['2000-01-31', '2000-02-28']).asof('2000-02')
Out[62]: Timestamp('2000-02-28 00:00:00')
```

To reproduce the old behavior, simply add more precision to the label (e.g., use `2000-02-01` instead of `2000-02`).

Deprecations

- The `rplot` trellis plotting interface is deprecated and will be removed in a future version. We refer to external packages like `seaborn` for similar but more refined functionality (GH3445). The documentation includes some examples how to convert your existing code using `rplot` to `seaborn`: [rplot docs](#).

- The `pandas.sandbox.qtpandas` interface is deprecated and will be removed in a future version. We refer users to the external package `pandas-qt` (GH9615)

- The `pandas.rpy` interface is deprecated and will be removed in a future version. Similar functionality can be accessed thru the `rpy2` project (GH9602)

- Adding `DatetimeIndex/PeriodIndex` to another `DatetimeIndex/PeriodIndex` is being deprecated as a set-operation. This will be changed to a `TypeError` in a future version. `.union()` should be used for the union set operation. (GH9094)

- Subtracting `DatetimeIndex/PeriodIndex` from another `DatetimeIndex/PeriodIndex` is being deprecated as a set-operation. This will be changed to an actual numeric subtraction yielding a `TimeDeltaIndex` in a future version. `.difference()` should be used for the differencing set operation. (GH9094)

Removal of prior version deprecations/changes

- `DataFrame.pivot_table` and `crosstab`'s `rows` and `cols` keyword arguments were removed in favor of `index` and `columns` (GH6581)

- `DataFrame.to_excel` and `DataFrame.to_csv` `cols` keyword argument was removed in favor of `columns` (GH6581)

- Removed `convert_dummies` in favor of `get_dummies` (GH6581)

- Removed `value_range` in favor of `describe` (GH6581)

Performance Improvements

- Fixed a performance regression for `.loc` indexing with an array or list-like (GH9126).

- `DataFrame.to_json` 30x performance improvement for mixed dtype frames. (GH9037)
- Performance improvements in `MultiIndex.duplicated` by working with labels instead of values (GH9125)
- Improved the speed of `nunique` by calling `unique` instead of `value_counts` (GH9129, GH7771)
- Performance improvement of up to 10x in `DataFrame.count` and `DataFrame.dropna` by taking advantage of homogeneous/heterogeneous dtypes appropriately (GH9136)
- Performance improvement of up to 20x in `DataFrame.count` when using a `MultiIndex` and the level keyword argument (GH9163)
- Performance and memory usage improvements in `merge` when key space exceeds `int64` bounds (GH9151)
- Performance improvements in multi-key `groupby` (GH9429)
- Performance improvements in `MultiIndex.sortlevel` (GH9445)
- Performance and memory usage improvements in `DataFrame.duplicated` (GH9398)
- Cythonized `Period` (GH9440)
- Decreased memory usage on `to_hdf` (GH9648)

Bug Fixes

- Changed `.to_html` to remove leading/trailing spaces in table body (GH4987)
- Fixed issue using `read_csv` on s3 with Python 3 (GH9452)
- Fixed compatibility issue in `DatetimeIndex` affecting architectures where `numpy.int_` defaults to `numpy.int32` (GH8943)
- Bug in Panel indexing with an object-like (GH9140)
- Bug in the returned `Series.dt.components` index was reset to the default index (GH9247)
- Bug in `Categorical.__getitem__/__setitem__` with listlike input getting incorrect results from indexer coercion (GH9469)
- Bug in partial setting with a `DatetimeIndex` (GH9478)
- Bug in groupby for integer and datetime64 columns when applying an aggregator that caused the value to be changed when the number was sufficiently large (GH9311, GH6620)
- Fixed bug in `to_sql` when mapping a `Timestamp` object column (datetime column with timezone info) to the appropriate SQLAlchemy type (GH9085).
- Fixed bug in `to_sql dtype` argument not accepting an instantiated SQLAlchemy type (GH9083).
- Bug in `.loc` partial setting with a np.datetime64 (GH9516)
- Incorrect dtypes inferred on datetimelike looking `Series & on .xs` slices (GH9477)
- Items in `Categorical.unique()` (and `s.unique()` if `s` is of dtype `category`) now appear in the order in which they are originally found, not in sorted order (GH9331). This is now consistent with the behavior for other dtypes in pandas.
- Fixed bug on big endian platforms which produced incorrect results in `StataReader` (GH8688).
- Bug in `MultiIndex.has_duplicates` when having many levels causes an indexer overflow (GH9075, GH5873)
- Bug in `pivot` and `unstack` where `nan` values would break index alignment (GH4862, GH7401, GH7403, GH7405, GH7466, GH9497)
- Bug in `left join` on multi-index with `sort=True` or null values (GH9210).
• Bug in MultiIndex where inserting new keys would fail (GH9250).
• Bug in groupby when key space exceeds int64 bounds (GH9096).
• Bug in unstack with TimedeltaIndex or DatetimeIndex and nulls (GH9491).
• Bug in rank where comparing floats with tolerance will cause inconsistent behaviour (GH8365).
• Fixed character encoding bug in read_stata and StataReader when loading data from a URL (GH9231).
• Bug in adding offsets.Nano to other offsets raises TypeError (GH9284)
• Bug in DatetimeIndex iteration, related to (GH8890), fixed in (GH9100)
• Bugs in resample around DST transitions. This required fixing offset classes so they behave correctly on DST transitions. (GH5172, GH8744, GH8653, GH9173, GH9468).
• Bug in binary operator method (eg .mul()) alignment with integer levels (GH9463).
• Bug in boxplot, scatter and hexbin plot may show an unnecessary warning (GH8877)
• Bug in subplot with layout kw may show unnecessary warning (GH9464)
• Bug in using grouper functions that need passed thru arguments (e.g. axis), when using wrapped function (e.g. fillna), (GH9221)
• DataFrame now properly supports simultaneous copy and dtype arguments in constructor (GH9099)
• Bug in read_csv when using skiprows on a file with CR line endings with the c engine. (GH9079)
• isnull now detects NaT in PeriodIndex (GH9129)
• Bug in groupby .nth() with a multiple column groupby (GH8979)
• Bug in DataFrame.where and Series.where coerce numerics to string incorrectly (GH9280)
• Bug in DataFrame.where and Series.where raise ValueError when string list-like is passed. (GH9280)
• Accessing Series.str methods on with non-string values now raises TypeError instead of producing incorrect results (GH9184)
• Bug in DatetimeIndex.__contains__ when index has duplicates and is not monotonic increasing (GH9512)
• Fixed division by zero error for Series.kurt() when all values are equal (GH9197)
• Fixed issue in the xlsxwriter engine where it added a default ‘General’ format to cells if no other format was applied. This prevented other row or column formatting being applied. (GH9167)
• Fixes issue with index_col=False when usecols is also specified in read_csv. (GH9082)
• Bug where wide_to_long would modify the input stubnames list (GH9204)
• Bug in to_sql not storing float64 values using double precision. (GH9009)
• SparseSeries and SparsePanel now accept zero argument constructors (same as their non-sparse counterparts) (GH9272).
• Regression in merging Categorical and object dtypes (GH9426)
• Bug in read_csv with buffer overflows with certain malformed input files (GH9205)
• Bug in groupby MultiIndex with missing pair (GH9049, GH9344)
• Fixed bug in Series.groupby where grouping on MultiIndex levels would ignore the sort argument (GH9444)
• Fix bug in DataFrame.Groupby where sort=False is ignored in the case of Categorical columns. (GH8868)
• Fixed bug with reading CSV files from Amazon S3 on python 3 raising a TypeError (GH9452)
• Bug in the Google BigQuery reader where the ‘jobComplete’ key may be present but False in the query results (GH8728)
• Bug in Series.values_counts with excluding NaN for categorical type Series with dropna=True (GH9443)
• Fixed missing numeric_only option for DataFrame.std/var/sem (GH9201)
• Support constructing Panel or Panel4D with scalar data (GH8285)
• Series text representation disconnected from max_rows/max_columns (GH7508).
• Series number formatting inconsistent when truncated (GH8532).

Previous Behavior

```python
In [2]: pd.options.display.max_rows = 10
In [3]: s = pd.Series([1,1,1,1,1,1,1,1,1,1,0.9999,1,1]*10)
In [4]: s
```

```
Out[4]:
     0  1
     1  1
     2  1
     ...  
    127 0.9999
    128 1.0000
    129 1.0000
Length: 130, dtype: float64
```

New Behavior

```python
0    1.0000
1    1.0000
2    1.0000
3    1.0000
4    1.0000
...  
125  1.0000
126  1.0000
127  0.9999
128  1.0000
129  1.0000
dtype: float64
```

• A Spurious SettingWithCopy Warning was generated when setting a new item in a frame in some cases (GH8730)

The following would previously report a SettingWithCopy Warning.

```python
In [1]: df1 = DataFrame({'x': Series(['a','b','c']), 'y': Series(['d','e','f'])})
In [2]: df2 = df1[['x']] 
In [3]: df2['y'] = ['g', 'h', 'i']
```
v0.15.2 (December 12, 2014)

This is a minor release from 0.15.1 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs. We recommend that all users upgrade to this version.

- **Enhancements**
- **API Changes**
- **Performance Improvements**
- **Bug Fixes**

API changes

- Indexing in `MultiIndex` beyond lex-sort depth is now supported, though a lexically sorted index will have a better performance. (GH2646)

```python
In [1]: df = pd.DataFrame({'jim':[0, 0, 1, 1],
                        ...
                        'joe':['x', 'x', 'z', 'y'],
                        ...
                        'jolie':np.random.rand(4))).set_index(['jim', 'joe'])

In [2]: df
Out[2]:
      jolie
     jim    joe
0  x  0.123943
   x  0.119381
1  z  0.738523
   y  0.587304

In [3]: df.index.lexsort_depth
Out[3]: 1

# in prior versions this would raise a KeyError
# will now show a PerformanceWarning
In [4]: df.loc[(1, 'z')]
Out[4]:
      jolie
     jim    joe
1  z  0.738523

# lexically sorting
In [5]: df2 = df.sortlevel()

In [6]: df2
Out[6]:
      jolie
     jim    joe
0  x  0.123943
   x  0.119381
1  y  0.587304
   z  0.738523

In [7]: df2.index.lexsort_depth
Out[7]: 2
```
• Bug in unique of Series with category dtype, which returned all categories regardless whether they were “used” or not (see GH8559 for the discussion). Previous behaviour was to return all categories:

```python
In [3]: cat = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c'])
In [4]: cat
Out[4]:
[a, b, a]
Categories (3, object): [a < b < c]
In [5]: cat.unique()
Out[5]: array(['a', 'b', 'c'], dtype=object)
```

Now, only the categories that do effectively occur in the array are returned:

```python
In [9]: cat = pd.Categorical(['a', 'b', 'a'], categories=['a', 'b', 'c'])
In [10]: cat.unique()
Out[10]:
[a, b]
Categories (2, object): [a, b]
```

• Series.all and Series.any now support the level and skipna parameters. Series.all, Series.any, Index.all, and Index.any no longer support the out and keepdims parameters, which existed for compatibility with ndarray. Various index types no longer support the all and any aggregation functions and will now raise TypeError (GH8302).

• Allow equality comparisons of Series with a categorical dtype and object dtype; previously these would raise TypeError (GH8938)

• Bug in NDFrame: conflicting attribute/column names now behave consistently between getting and setting. Previously, when both a column and attribute named y existed, data.y would return the attribute, while data.y = z would update the column (GH8994)

```python
In [11]: data = pd.DataFrame({'x':[1, 2, 3]})
In [12]: data.y = 2
In [13]: data['y'] = [2, 4, 6]
In [14]: data
Out[14]:
   x  y
0  1  2
1  2  4
2  3  6
# this assignment was inconsistent
```

Old behavior:
In [6]: data.y
Out[6]: 2

In [7]: data['y'].values
Out[7]: array([5, 5, 5])

New behavior:

In [16]: data.y
Out[16]: 5

In [17]: data['y'].values
Out[17]: array([2, 4, 6])

• Timestamp ('now') is now equivalent to Timestamp.now() in that it returns the local time rather than UTC. Also, Timestamp ('today') is now equivalent to Timestamp.today() and both have tz as a possible argument. (GH9000)

• Fix negative step support for label-based slices (GH8753)

Old behavior:

In [1]: s = pd.Series(np.arange(3), ['a', 'b', 'c'])
Out[1]:
a 0
b 1
c 2
dtype: int64

In [2]: s.loc['c':'a':-1]
Out[2]:
c 2
b 1
a 0
dtype: int64

New behavior:

In [18]: s = pd.Series(np.arange(3), ['a', 'b', 'c'])

In [19]: s.loc['c':'a':-1]
Out[19]:
c 2
b 1
a 0
dtype: int64

Enhancements

Categorical enhancements:

• Added ability to export Categorical data to Stata (GH8633). See here for limitations of categorical variables exported to Stata data files.

• Added flag order_categoricals to StataReader and read_stata to select whether to order imported categorical data (GH8836). See here for more information on importing categorical variables from Stata data files.
• Added ability to export Categorical data to/to from HDF5 (GH7621). Queries work the same as if it was an object array. However, the category dtyped data is stored in a more efficient manner. See here for an example and caveats w.r.t. prior versions of pandas.

• Added support for searchsorted() on Categorical class (GH8420).

Other enhancements:

• Added the ability to specify the SQL type of columns when writing a DataFrame to a database (GH8778). For example, specifying to use the sqlalchemy String type instead of the default Text type for string columns:

```python
from sqlalchemy.types import String
data.to_sql('data_dtype', engine, dtype={'Col_1': String})
```

• Series.all and Series.any now support the level and skipna parameters (GH8302):

```python
In [20]: s = pd.Series([False, True, False], index=[0, 0, 1])
In [21]: s.any(level=0)
Out[21]:
0  True
1  False
dtype: bool
```

• Panel now supports the all and any aggregation functions. (GH8302):

```python
In [22]: p = pd.Panel(np.random.rand(2, 5, 4) > 0.1)
In [23]: p.all()
Out[23]:
0   1
  0  True  True
  1  True  True
  2  False False
  3  True  True
```

• Added support for utcfromtimestamp(), fromtimestamp(), and combine() on Timestamp class (GH5351).

• Added Google Analytics (pandas.io.ga) basic documentation (GH8835). See here.

• Timedelta arithmetic returns NotImplemented in unknown cases, allowing extensions by custom classes (GH8813).

• Timedelta now supports arithmetic with numpy.ndarray objects of the appropriate dtype (numpy 1.8 or newer only) (GH8884).

• Added Timedelta.to_timedelta64() method to the public API (GH8884).

• Added gbq.generate_bq_schema() function to the gbq module (GH8325).

• Series now works with map objects the same way as generators (GH8909).

• Added context manager to HDFStore for automatic closing (GH8791).

• to_datetime gains an exact keyword to allow for a format to not require an exact match for a provided format string (if its False). exact defaults to True (meaning that exact matching is still the default) (GH8904).

• Added axvlines boolean option to parallel_coordinates plot function, determines whether vertical lines will be printed, default is True.

• Added ability to read table footers to read_html (GH8552).
• to_sql now infers datatypes of non-NA values for columns that contain NA values and have dtype object (GH8778).

Performance
• Reduce memory usage when skiprows is an integer in read_csv (GH8681)
• Performance boost for to_datetime conversions with a passed format=, and the exact=False (GH8904)

Bug Fixes
• Bug in concat of Series with category dtype which were coercing to object. (GH8641)
• Bug in Timestamp-Timestamp not returning a Timedelta type and datelike-datelike ops with timezones (GH8865)
• Made consistent a timezone mismatch exception (either tz operated with None or incompatible timezone), will now return TypeError rather than ValueError (a couple of edge cases only), (GH8865)
• Bug in using a pd.Grouper(key=...) with no level/axis or level only (GH8795, GH8866)
• Report a TypeError when invalid/no parameters are passed in a groupby (GH8015)
• Bug in packaging pandas with py2app/cx_Freeze (GH8602, GH8831)
• Bug in groupby signatures that didn’t include *args or **kwargs (GH8733).
• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo and when it receives no data from Yahoo (GH8761), (GH8783).
• Unclear error message in csv parsing when passing dtype and names and the parsed data is a different data type (GH8833)
• Bug in slicing a multi-index with an empty list and at least one boolean indexer (GH8781)
• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo (GH8761).
• Timedelta kwargs may now be numpy ints and floats (GH8757).
• Fixed several outstanding bugs for Timedelta arithmetic and comparisons (GH8813, GH5963, GH5436).
• sql_schema now generates dialect appropriate CREATE TABLE statements (GH8697)
• slice string method now takes step into account (GH8754)
• Bug in BlockManager where setting values with different type would break block integrity (GH8850)
• Bug in DatetimeIndex when using time object as key (GH8667)
• Bug in merge where how='left' and sort=False would not preserve left frame order (GH7331)
• Bug in MultiIndex.reindex where reindexing at level would not reorder labels (GH4088)
• Bug in certain operations with dateutil timezones, manifesting with dateutil 2.3 (GH8639)
• Regression in DatetimeIndex iteration with a Fixed/Local offset timezone (GH8890)
• Bug in to_datetime when parsing a nanoseconds using the %f format (GH8989)
• io.data.Options now raises RemoteDataError when no expiry dates are available from Yahoo and when it receives no data from Yahoo (GH8761), (GH8783).
• Fix: The font size was only set on x axis if vertical or the y axis if horizontal. (GH8765)
• Fixed division by 0 when reading big csv files in python 3 (GH8621)
• Bug in outputing a Multiindex with to_html, index=False which would add an extra column (GH8452)
• Imported categorical variables from Stata files retain the ordinal information in the underlying data (GH8836).
• Defined .size attribute across NDFrame objects to provide compat with numpy >= 1.9.1; buggy with np.array_split (GH8846)
• Skip testing of histogram plots for matplotlib <= 1.2 (GH8648).
• Bug where get_data_google returned object dtypes (GH3995)
• Bug in DataFrame.stack(..., dropna=False) when the DataFrame's columns is a MultiIndex whose labels do not reference all its levels. (GH8844)
• Bug in that Option context applied on __enter__ (GH8514)
• Bug in resample that causes a ValueError when resampling across multiple days and the last offset is not calculated from the start of the range (GH8683)
• Bug where DataFrame.plot(kind='scatter') fails when checking if an np.array is in the DataFrame (GH8852)
• Bug in pd.infer_freq/DataFrame.inferred_freq that prevented proper sub-daily frequency inference when the index contained DST days (GH8772).
• Bug where index name was still used when plotting a series with use_index=False (GH8558).
• Bugs when trying to stack multiple columns, when some (or all) of the level names are numbers (GH8584).
• Bug in MultiIndex where __contains__ returns wrong result if index is not lexically sorted or unique (GH7724)
• BUG CSV: fix problem with trailing whitespace in skipped rows, (GH8679), (GH8661), (GH8983)
• Regression in Timestamp does not parse ‘Z’ zone designator for UTC (GH8771)
• Bug in StataWriter the produces writes strings with 244 characters irrespective of actual size (GH8969)
• Fixed ValueError raised by cummin/cummax when datetime64 Series contains NaT. (GH8965)
• Bug in Datareader returns object dtype if there are missing values (GH8980)
• Bug in plotting if sharex was enabled and index was a timeseries, would show labels on multiple axes (GH3964).
• Bug where passing a unit to the TimedeltaIndex constructor applied the to nano-second conversion twice. (GH9011).
• Bug in plotting of a period-like array (GH9012)

v0.15.1 (November 9, 2014)

This is a minor bug-fix release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Enhancements
• API Changes
• Bug Fixes
API changes

- `s.dt.hour` and other `.dt` accessors will now return `np.nan` for missing values (rather than previously `-1`), (GH8689)

```python
In [1]: s = Series(date_range('20130101', periods=5, freq='D'))
In [2]: s.iloc[2] = np.nan
In [3]: s
Out[3]:
      0 2013-01-01
      1 2013-01-02
      2 NaT
      3 2013-01-04
      4 2013-01-05
dtype: datetime64[ns]
```

previous behavior:

```python
In [6]: s.dt.hour
Out[6]:
0   0
1   0
2  -1
3   0
4   0
dtype: int64
```

current behavior:

```python
In [4]: s.dt.hour
Out[4]:
0   0.0
1   0.0
2  NaN
3   0.0
4   0.0
dtype: float64
```

- `groupby` with `as_index=False` will not add erroneous extra columns to result (GH8582):

```python
In [5]: np.random.seed(2718281)
In [6]: df = pd.DataFrame(np.random.randint(0, 100, (10, 2)), columns=['jim', 'joe'])
   ...:
   ...
In [7]: df.head()
Out[7]:
     jim  joe
0    61   81
1    96   49
2    55   65
3    72   51
4    77   12
In [8]: ts = pd.Series(5 * np.random.randint(0, 3, 10))
```
previous behavior:

```python
In [4]: df.groupby(ts, as_index=False).max()
Out[4]:
   NaN  jim  joe
0    0    72   83
1    5    77   84
2   10    96   65
```

current behavior:

```python
In [9]: df.groupby(ts, as_index=False).max()
Out[9]:
     jim  joe
0     72   83
1     77   84
2    96   65
```

- `groupby` will not erroneously exclude columns if the column name conflicts with the grouper name (GH8112):

```python
In [10]: df = pd.DataFrame({'jim': range(5), 'joe': range(5, 10)})
In [11]: df
Out[11]:
   jim  joe
0     0    5
1     1    6
2     2    7
3     3    8
4     4    9
In [12]: gr = df.groupby(df['jim'] < 2)
```

previous behavior (excludes 1st column from output):

```python
In [4]: gr.apply(sum)
Out[4]:
     joe
    jim
False  24
True   11
```

current behavior:

```python
In [13]: gr.apply(sum)
Out[13]:
    jim  joe
   False  9   24
     True  1   11
```

- Support for slicing with monotonic decreasing indexes, even if `start` or `stop` is not found in the index (GH7860):

```python
In [14]: s = pd.Series(['a', 'b', 'c', 'd'], [4, 3, 2, 1])
In [15]: s
Out[15]:
```

162 Chapter 1. What's New
previous behavior:

```python
In [8]: s.loc[3.5:1.5]
KeyError: 3.5
```

current behavior:

```python
In [16]: s.loc[3.5:1.5]
Out[16]:
3   b
2   c
dtype: object
```

• `io.data.Options` has been fixed for a change in the format of the Yahoo Options page (GH8612), (GH8741)

Note: As a result of a change in Yahoo’s option page layout, when an expiry date is given, `Options` methods now return data for a single expiry date. Previously, methods returned all data for the selected month.

The `month` and `year` parameters have been undeprecated and can be used to get all options data for a given month.

If an expiry date that is not valid is given, data for the next expiry after the given date is returned.

Option data frames are now saved on the instance as `callsYYMMDD` or `putsYYMMDD`. Previously they were saved as `callsMMYY` and `putsMMYY`. The next expiry is saved as `calls` and `puts`.

New features:

– The expiry parameter can now be a single date or a list-like object containing dates.
– A new property `expiry_dates` was added, which returns all available expiry dates.

Current behavior:

```python
In [17]: from pandas.io.data import Options
In [18]: aapl = Options('aapl','yahoo')
In [19]: aapl.get_call_data().iloc[0:5,0:1]
Out[19]:
   Strike  Expiry       Type  Symbol  Last
0      80  2014-11-14    call  AAPL141114C00080000  29.05
1      84  2014-11-14    call  AAPL141114C00084000  24.80
2      85  2014-11-14    call  AAPL141114C00085000  24.05
3      86  2014-11-14    call  AAPL141114C00086000  22.76
4      87  2014-11-14    call  AAPL141114C00087000  21.74
In [20]: aapl.expiry_dates
Out[20]:
[datetime.date(2014, 11, 14),
  datetime.date(2014, 12, 12),
  datetime.date(2014, 12, 19)]
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
datetime.date(2014, 11, 22),
datetime.date(2014, 11, 28),
datetime.date(2014, 12, 5),
datetime.date(2014, 12, 12),
datetime.date(2014, 12, 20),
datetime.date(2015, 1, 17),
datetime.date(2015, 2, 20),
datetime.date(2015, 4, 17),
datetime.date(2015, 7, 17),
datetime.date(2016, 1, 15),
datetime.date(2017, 1, 20)
```

```python
In [21]: aapl.get_near_stock_price(expiry=aapl.expiry_dates[0:3]).iloc[0:5,0:1]
Out[21]:
   Last  Strike  Expiry  Type  Symbol
   109    1.48  2014-11-22  call  AAPL141122C00109000
   2014-11-28  call  AAPL141128C00109000  1.79
   110    0.55  2014-11-14  call  AAPL141114C00110000  0.55
   2014-11-22  call  AAPL141122C00110000  1.02
   2014-11-28  call  AAPL141128C00110000  1.32
```

- pandas now also registers the `datetime64` dtype in matplotlib’s units registry to plot such values as date-times. This is activated once pandas is imported. In previous versions, plotting an array of `datetime64` values will have resulted in plotted integer values. To keep the previous behaviour, you can do `del matplotlib.units.registry[np.datetime64]` (GH8614).

Enhancements

- `concat` permits a wider variety of iterables of pandas objects to be passed as the first parameter (GH8645):

  ```python
  In [17]: from collections import deque
  In [18]: df1 = pd.DataFrame([1, 2, 3])
  In [19]: df2 = pd.DataFrame([4, 5, 6])
  ```

 previous behavior:

  ```python
  In [7]: pd.concat(deque((df1, df2)))
  TypeError: first argument must be a list-like of pandas objects, you passed an object of type "deque"
  ```

 current behavior:

  ```python
  In [20]: pd.concat(deque((df1, df2)))
  Out[20]:
  0   1
  1   2
  2   3
  0   4
  1   5
  2   6
  ```

- Represent `MultiIndex` labels with a dtype that utilizes memory based on the level size. In prior versions,
In

previous behavior:

```python
# this was underreported in prior versions
In [1]: dfi.memory_usage(index=True)
Out[1]:
   Index    8000 # took about 24008 bytes in < 0.15.1
   A     8000
dtype: int64
```

current behavior:

```python
In [22]: dfi.memory_usage(index=True)
Out[22]:
   Index   11040
   A    8000
dtype: int64
```

- Added Index properties `is_monotonic_increasing` and `is_monotonic_decreasing` (GH8680).
- Added option to select columns when importing Stata files (GH7935)
- Qualify memory usage in `DataFrame.info()` by adding + if it is a lower bound (GH8578)
- Raise errors in certain aggregation cases where an argument such as `numeric_only` is not handled (GH8592).
- Added support for 3-character ISO and non-standard country codes in `io.wb.download()` (GH8482)
- World Bank data requests now will warn/raise based on an `errors` argument, as well as a list of hard-coded country codes and the World Bank’s JSON response. In prior versions, the error messages didn’t look at the World Bank’s JSON response. Problem-inducing input were simply dropped prior to the request. The issue was that many good countries were cropped in the hard-coded approach. All countries will work now, but some bad countries will raise exceptions because some edge cases break the entire response. (GH8482)
- Added option to `Series.str.split()` to return a DataFrame rather than a Series (GH8428)
- Added option to `df.info(null_counts=None|True|False)` to override the default display options and force showing of the null-counts (GH8701)

Bug Fixes

- Bug in unpickling of a `CustomBusinessDay` object (GH8591)
- Bug in coercing `Categorical` to a records array, e.g. `df.to_records()` (GH8626)
- Bug in `Categorical` not created properly with `Series.to_frame()` (GH8626)
- Bug in coercing in `astype` of a `Categorical` of a passed `pd.Categorical` (this now raises `TypeError` correctly), (GH8626)
- Bug in `cut/qcut` when using `Series` and `retbins=True` (GH8589)
- Bug in writing `Categorical` columns to an SQL database with `to_sql` (GH8624).
- Bug in comparing `Categorical` of a datetime raising when being compared to a scalar datetime (GH8687)
• Bug in selecting from a Categorical with .iloc (GH8623)
• Bug in groupby-transform with a Categorical (GH8623)
• Bug in duplicated/drop_duplicates with a Categorical (GH8623)
• Bug in Categorical reflected comparison operator raising if the first argument was a numpy array scalar (e.g. np.int64) (GH8658)
• Bug in Panel indexing with a list-like (GH8710)
• Compat issue is DataFrame.dtypes when options.mode.use_inf_as_null is True (GH8722)
• Bug in read_csv.dialect parameter would not take a string (issue: 8703)
• Bug in slicing a multi-index level with an empty-list (GH8737)
• Bug in numeric index operations of add/sub with Float/Index Index with numpy arrays (GH8608)
• Bug in setitem with empty indexer and unwanted coercion of dtyes (GH8669)
• Bug in ix/loc block splitting on setitem (manifests with integer-like dtypes, e.g. datetime64) (GH8607)
• Bug when doing label based indexing with integers not found in the index for non-unique but monotonic indexes (GH8680).
• Bug when indexing a Float64Index with np.nan on numpy 1.7 (GH8980).
• Fix shape attribute for MultiIndex (GH8609)
• Bug in GroupBy where a name conflict between the grouper and columns would break groupby operations (GH7115, GH8112)
• Fixed a bug where plotting a column y and specifying a label would mutate the index name of the original DataFrame (GH8494)
• Fix regression in plotting of a DatetimeIndex directly with matplotlib (GH8614).
• Bug in date_range where partially-specified dates would incorporate current date (GH6961)
• Bug in Setting by indexer to a scalar value with a mixed-dtype Panel4d was failing (GH8702)
• Bug where DataReader's would fail if one of the symbols passed was invalid. Now returns data for valid symbols and np.nan for invalid (GH8494)
• Bug in get_quote_yahoo that wouldn’t allow non-float return values (GH5229).

v0.15.0 (October 18, 2014)

This is a major release from 0.14.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Warning: pandas >= 0.15.0 will no longer support compatibility with NumPy versions < 1.7.0. If you want to use the latest versions of pandas, please upgrade to NumPy >= 1.7.0 (GH7711)

• Highlights include:
 – The Categorical type was integrated as a first-class pandas type, see here
 – New scalar type Timedelta, and a new index type TimedeltaIndex, see here
 – New datetimelike properties accessor .dt for Series, see Datetimelike Properties
- New DataFrame default display for df.info() to include memory usage, see Memory Usage
- read_csv will now by default ignore blank lines when parsing, see here
- API change in using Indexes in set operations, see here
- Enhancements in the handling of timezones, see here
- A lot of improvements to the rolling and expanding moment functions, see here
- Internal refactoring of the Index class to no longer sub-class ndarray, see Internal Refactoring
- dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)
- Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing
- Split out string methods documentation into Working with Text Data

- Check the API Changes and deprecations before updating
- Other Enhancements
- Performance Improvements
- Bug Fixes

Warning: In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

Warning: The refactorings in Categorical changed the two argument constructor from “codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use Categorical directly, please audit your code before updating to this pandas version and change it to use the from_codes() constructor. See more on Categorical here

New features

Categoricals in Series/DataFrame

Categorical can now be included in Series and DataFrames and gained new methods to manipulate. Thanks to Jan Schulz for much of this API/implementation. (GH3943, GH5313, GH5314, GH7444, GH7839, GH7848, GH7864, GH7914, GH7768, GH8006, GH3678, GH8075, GH8076, GH8143, GH8453, GH8518).

For full docs, see the categorical introduction and the API documentation.

```python
In [1]: df = DataFrame({"id": [1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e'])

In [2]: df["grade"] = df["raw_grade"].astype("category")

In [3]: df["grade"]
Out[3]:
0  a
1  b
2  b
3  a
```

1.13. v0.15.0 (October 18, 2014)
In [4]: df["grade"].cat.categories = ["very good", "good", "very bad"]

Reorder the categories and simultaneously add the missing categories
In [5]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", ...
→ "good", "very good"])

In [6]: df["grade"]
Out[6]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

In [7]: df.sort("grade")
Out[7]:
<table>
<thead>
<tr>
<th>id</th>
<th>raw_grade</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>e</td>
<td>very bad</td>
</tr>
<tr>
<td>1</td>
<td>b</td>
<td>good</td>
</tr>
<tr>
<td>2</td>
<td>b</td>
<td>good</td>
</tr>
<tr>
<td>0</td>
<td>a</td>
<td>very good</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>very good</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>a</td>
</tr>
</tbody>
</table>

In [8]: df.groupby("grade").size()
Out[8]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64

- `pandas.core.group_agg` and `pandas.core.factor_agg` were removed. As an alternative, construct a dataframe and use `df.groupby(<group>).agg(<func>).`

- Supplying “codes/labels and levels” to the `Categorical` constructor is not supported anymore. Supplying two arguments to the constructor is now interpreted as “values and levels (now called ‘categories’)”. Please change your code to use the `from_codes()` constructor.

- The `Categorical.labels` attribute was renamed to `Categorical.codes` and is read only. If you want to manipulate codes, please use one of the `API methods on Categoricals`.

- The `Categorical.levels` attribute is renamed to `Categorical.categories`.

• pandas.core.group_agg and pandas.core.factor_agg were removed. As an alternative, construct a dataframe and use df.groupby(<group>).agg(<func>).

• Supplying “codes/labels and levels” to the Categorical constructor is not supported anymore. Supplying two arguments to the constructor is now interpreted as “values and levels (now called ‘categories’)”. Please change your code to use the from_codes() constructor.

• The Categorical.labels attribute was renamed to Categorical.codes and is read only. If you want to manipulate codes, please use one of the API methods on Categoricals.

• The Categorical.levels attribute is renamed to Categorical.categories.
TimedeltaIndex/Scalar

We introduce a new scalar type Timedelta, which is a subclass of datetime.timedelta, and behaves in a similar manner, but allows compatibility with np.timedelta64 types as well as a host of custom representation, parsing, and attributes. This type is very similar to how Timestamp works for datetimes. It is a nice-API box for the type. See the docs. (GH3009, GH4533, GH8209, GH8187, GH8190, GH7869, GH7661, GH8345, GH8471)

Warning: Timedelta scalars (and TimedeltaIndex) component fields are not the same as the component fields on a datetime.timedelta object. For example, .seconds on a datetime.timedelta object returns the total number of seconds combined between hours, minutes and seconds. In contrast, the pandas Timedelta breaks out hours, minutes, microseconds and nanoseconds separately.

```
# Timedelta accessor
In [9]: tds = Timedelta('31 days 5 min 3 sec')
In [10]: tds.minutes
Out[10]: 5L
In [11]: tds.seconds
Out[11]: 3L

# datetime.timedelta accessor
# this is 5 minutes * 60 + 3 seconds
In [12]: tds.to_pytimedelta().seconds
Out[12]: 303
```

Note: this is no longer true starting from v0.16.0, where full compatibility with datetime.timedelta is introduced. See the 0.16.0 whatsnew entry

Warning: Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input.

The arguments to pd.to_timedelta are now (arg,unit='ns',box=True,coerce=False), previously were (arg,box=True,unit='ns') as these are more logical.

Construct a scalar

```
In [9]: Timedelta('1 days 06:05:01.00003')
Out[9]: Timedelta('1 days 06:05:01.000030')

In [10]: Timedelta('15.5us')
Out[10]: Timedelta('0 days 00:00:00.000015')

In [11]: Timedelta('1 hour 15.5us')
Out[11]: Timedelta('0 days 01:00:00.000015')

# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [12]: Timedelta('-1us')
Out[12]: Timedelta('-1 days +23:59:59.999999')

# a NaT
In [13]: Timedelta('nan')
```
Access fields for a Timedelta

```python
In [14]: td = Timedelta('1 hour 3m 15.5us')
In [15]: td.seconds
Out[15]: 3780
In [16]: td.microseconds
Out[16]: 15
In [17]: td.nanoseconds
Out[17]: 500
```

Construct a TimedeltaIndex

```python
In [18]: TimedeltaIndex(['1 days','1 days, 00:00:05',
                   ....:
                   np.timedelta64(2,'D'),timedelta(days=2,seconds=2))]
       ....:
Out[18]: TimedeltaIndex(['1 days 00:00:00', '1 days 00:00:05', '2 days 00:00:00',
                        '2 days 00:00:02'],
                        dtype='timedelta64[ns]', freq=None)
```

Constructing a TimedeltaIndex with a regular range

```python
In [19]: timedelta_range('1 days',periods=5,freq='D')
Out[19]: TimedeltaIndex([ '1 days', '2 days', '3 days', '4 days', '5 days'],
                       dtype='timedelta64[ns]', freq='D')

In [20]: timedelta_range(start='1 days',end='2 days',freq='30T')
Out[20]: TimedeltaIndex([ '1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
                        '1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
                        '1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
                        '1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
                        '1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
                        '1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
                        '1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
                        '1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
                        '1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
                        '1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
                        '1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
                        '1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
                        '1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
                        '1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
                        '1 days 21:00:00', '1 days 21:30:00', '1 days 22:00:00',
                        '1 days 22:30:00', '1 days 23:00:00', '1 days 23:30:00',
                        '2 days 00:00:00'],
                       dtype='timedelta64[ns]', freq='30T')
```

You can now use a TimedeltaIndex as the index of a pandas object

```python
In [21]: s = Series(np.arange(5),
                   ....:
                   index=timedelta_range('1 days',periods=5,freq='s'))
```

170 Chapter 1. What's New
You can select with partial string selections

```python
In [23]: s['1 day 00:00:02']
Out[23]: 2
```

```python
In [24]: s['1 day':'1 day 00:00:02']
Out[24]:
1 days 00:00:00 0
1 days 00:00:01 1
1 days 00:00:02 2
Freq: S, dtype: int64
```

Finally, the combination of TimedeltaIndex with DatetimeIndex allow certain combination operations that are NaT preserving:

```python
In [25]: tdi = TimedeltaIndex(['1 days',pd.NaT,'2 days'])
In [26]: tdi.tolist()  
Out[26]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]

In [27]: dti = date_range('20130101',periods=3)
In [28]: dti.tolist()  
Out[28]: [Timestamp('2013-01-01 00:00:00', freq='D'),
Timestamp('2013-01-02 00:00:00', freq='D'),
Timestamp('2013-01-03 00:00:00', freq='D')]

In [29]: (dti + tdi).tolist()  
Out[29]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]

In [30]: (dti - tdi).tolist()  
Out[30]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]
```

- iteration of a Series e.g. list(Series(...)) of timedelta64[ns] would prior to v0.15.0 return np.timedelta64 for each element. These will now be wrapped in Timedelta.

Memory Usage

Implemented methods to find memory usage of a DataFrame. See the *FAQ* for more. (GH6852).

A new display option display.memory_usage (see *Options and Settings*) sets the default behavior of the memory_usage argument in the df.info() method. By default display.memory_usage is True.

```python
In [31]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
           'complex128', 'object', 'bool']
```
```python
In [32]: n = 5000

In [33]: data = dict((t, np.random.randint(100, size=n).astype(t))
                   for t in dtypes)

In [34]: df = DataFrame(data)

In [35]: df['categorical'] = df['object'].astype('category')

In [36]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool 5000 non-null bool
complex128 5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64 5000 non-null float64
int64 5000 non-null int64
object 5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),
→object(1), timedelta64[ns](1)
memory usage: 284.1 KB
```

Additionally, `memory_usage()` is an available method for a dataframe object which returns the memory usage of each column.

```python
In [37]: df.memory_usage(index=True)
Out[37]:
Index 72
bool 5000
complex128 80000
datetime64[ns] 40000
float64 40000
int64 40000
object 40000
timedelta64[ns] 40000
categorical 5800
dtype: int64
```

`.dt accessor`

Series has gained an accessor to succinctly return datetime like properties for the `values` of the Series, if its a datetime/period like Series. (GH7207) This will return a Series, indexed like the existing Series. See the docs

```python
# datetime
In [38]: s = Series(date_range('20130101 09:10:12', periods=4))

In [39]: s
Out[39]:
0  2013-01-01 09:10:12
1  2013-01-02 09:10:12
2  2013-01-03 09:10:12
3  2013-01-04 09:10:12
```

172 Chapter 1. What's New
```python
dtype: datetime64[ns]

In [40]: s.dt.hour
Out[40]:
0  9
1  9
2  9
3  9
dtype: int64

In [41]: s.dt.second
Out[41]:
0  12
1  12
2  12
3  12
dtype: int64

In [42]: s.dt.day
Out[42]:
0  1
1  2
2  3
3  4
dtype: int64

In [43]: s.dt.freq
Out[43]: <Day>

This enables nice expressions like this:

In [44]: s[s.dt.day==2]
Out[44]:
1  2013-01-02 09:10:12

dtype: datetime64[ns]

You can easily produce tz aware transformations:

In [45]: stz = s.dt.tz_localize('US/Eastern')

In [46]: stz
Out[46]:
0  2013-01-01 09:10:12-05:00
1  2013-01-02 09:10:12-05:00
2  2013-01-03 09:10:12-05:00
3  2013-01-04 09:10:12-05:00
dtype: datetime64[ns, US/Eastern]

In [47]: stz.dt.tz
Out[47]: <DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>

You can also chain these types of operations:

In [48]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[48]:
0  2013-01-01 04:10:12-05:00
1  2013-01-02 04:10:12-05:00
2  2013-01-03 04:10:12-05:00
```
The `.dt` accessor works for period and timedelta dtypes.

```python
# period
In [49]: s = Series(period_range('20130101', periods=4, freq='D'))

In [50]: s
Out[50]:
0  2013-01-01
1  2013-01-02
2  2013-01-03
3  2013-01-04
dtype: object

In [51]: s.dt.year
Out[51]:
0  2013
1  2013
2  2013
3  2013
dtype: int64

In [52]: s.dt.day
Out[52]:
0  1
1  2
2  3
3  4
dtype: int64
```

```python
# timedelta
In [53]: s = Series(timedelta_range('1 day 00:00:05', periods=4, freq='s'))

In [54]: s
Out[54]:
0  1 days 00:00:05
1  1 days 00:00:06
2  1 days 00:00:07
3  1 days 00:00:08
dtype: timedelta64[ns]

In [55]: s.dt.days
Out[55]:
0  1
1  1
2  1
3  1
dtype: int64

In [56]: s.dt.seconds
Out[56]:
0   5
1   6
2   7
3   8
dtype: int64
```

174 Chapter 1. What's New
In [57]: s.dt.components
Out[57]:
<table>
<thead>
<tr>
<th>days</th>
<th>hours</th>
<th>minutes</th>
<th>seconds</th>
<th>milliseconds</th>
<th>microseconds</th>
<th>nanoseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Timezone handling improvements

- `tz_localize(None)` for tz-aware `Timestamp` and `DatetimeIndex` now removes timezone holding local time, previously this resulted in `Exception` or `TypeError` (GH7812)

```
In [58]: ts = Timestamp('2014-08-01 09:00', tz='US/Eastern')

In [59]: ts
Out[59]: Timestamp('2014-08-01 09:00:00-04:00', tz='US/Eastern')

In [60]: ts.tz_localize(None)
Out[60]: Timestamp('2014-08-01 09:00:00')

In [61]: didx = DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')

In [62]: didx
Out[62]: DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
 '2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
 '2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
 '2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
 '2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
 dtype='datetime64[ns, US/Eastern]', freq='H')

In [63]: didx.tz_localize(None)
Out[63]: DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
 '2014-08-01 11:00:00', '2014-08-01 12:00:00',
 '2014-08-01 13:00:00', '2014-08-01 14:00:00',
 '2014-08-01 15:00:00', '2014-08-01 16:00:00',
 '2014-08-01 17:00:00', '2014-08-01 18:00:00'],
 dtype='datetime64[ns]', freq='H')
```

- `tz_localize` now accepts the ambiguous keyword which allows for passing an array of bools indicating whether the date belongs in DST or not, ‘NaT’ for setting transition times to NaT, ‘infer’ for inferring DST/non-DST, and ‘raise’ (default) for an `AmbiguousTimeError` to be raised. See the docs for more details (GH7943)

- `DataFrame.tz_localize` and `DataFrame.tz_convert` now accepts an optional `level` argument for localizing a specific level of a MultiIndex (GH7846)

- `Timestamp.tz_localize` and `Timestamp.tz_convert` now raise `TypeError` in error cases, rather than `Exception` (GH8025)

- A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone (rather than being a naive `datetime64[ns]`) as object dtype (GH8411)

- `Timestamp.__repr__` displays `dateutil.tz.tzoffset` info (GH7907)
Rolling/Expanding Moments improvements

- `rolling_min()`, `rolling_max()`, `rolling_cov()`, and `rolling_corr()` now return objects with all NaN when `len(arg) < min_periods <= window` rather than raising. (This makes all rolling functions consistent in this behavior). (GH7766)

Prior to 0.15.0

In [64]: s = Series([10, 11, 12, 13])
In [15]: rolling_min(s, window=10, min_periods=5)
ValueError: min_periods (5) must be <= window (4)

New behavior

In [4]: pd.rolling_min(s, window=10, min_periods=5)
Out[4]:
0 NaN
1 NaN
2 NaN
3 NaN
dtype: float64

- `rolling_max()`, `rolling_min()`, `rolling_sum()`, `rolling_mean()`, `rolling_median()`, `rolling_std()`, `rolling_var()`, `rolling_skew()`, `rolling_kurt()`, `rolling_quantile()`, `rolling_cov()`, `rolling_corr()`, `rolling_corr_pairwise()`, `rolling_window()`, and `rolling_apply()` with `center=True` previously would return a result of the same structure as the input `arg` with NaN in the final (window-1)/2 entries. Now the final (window-1)/2 entries of the result are calculated as if the input `arg` were followed by (window-1)/2 NaN values (or with shrinking windows, in the case of `rolling_apply()`). (GH7925, GH8269)

Prior behavior (note final value is NaN):

In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 NaN
dtype: float64

New behavior (note final value is 5 = sum([2,3,NaN])):

In [7]: rolling_sum(Series(range(4)), window=3, min_periods=0, center=True)
Out[7]:
0 1
1 3
2 6
3 5
dtype: float64

- `rolling_window()` now normalizes the weights properly in rolling mean mode (`mean=True`) so that the calculated weighted means (e.g. ‘triang’, ‘gaussian’) are distributed about the same means as those calculated without weighting (i.e. ‘boxcar’). See the note on normalization for further details. (GH7618)
In [65]: s = Series([10.5, 8.8, 11.4, 9.7, 9.3])

Behavior prior to 0.15.0:

In [39]: rolling_window(s, window=3, win_type='triang', center=True)
Out[39]:
0 NaN
1 6.583333
2 6.883333
3 6.683333
4 NaN
dtype: float64

New behavior

In [10]: pd.rolling_window(s, window=3, win_type='triang', center=True)
Out[10]:
0 NaN
1 9.875
2 10.325
3 10.025
4 NaN
dtype: float64

- Removed center argument from all expanding_ functions (see list), as the results produced when center=True did not make much sense. (GH7925)
- Added optional ddof argument to expanding_cov() and rolling_cov(). The default value of 1 is backwards-compatible. (GH8279)
- Documented the ddof argument to expanding_var(), expanding_std(), rolling_var(), and rolling_std(). These functions’ support of a ddof argument (with a default value of 1) was previously undocumented. (GH8064)
- ewma(), ewmstd(), ewmvol(), ewmvar(), ewmcorr(), and ewmcov() now interpret min_periods in the same manner that the rolling_*() and expanding_*() functions do: a given result entry will be NaN if the (expanding, in this case) window does not contain at least min_periods values. The previous behavior was to set to NaN the min_periods entries starting with the first non-NaN value. (GH7977)

Prior behavior (note values start at index 2, which is min_periods after index 0 (the index of the first non-empty value)):

In [66]: s = Series([1, None, None, None, 2, 3])

In [51]: ewma(s, com=3., min_periods=2)
Out[51]:
0 NaN
1 NaN
2 1.000000
3 1.000000
4 1.571429
5 2.189189
dtype: float64

New behavior (note values start at index 4, the location of the 2nd (since min_periods=2) non-empty value):

In [2]: pd.ewma(s, com=3., min_periods=2)
Out[2]:

• ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now have an optional adjust argument, just like ewma() does, affecting how the weights are calculated. The default value of adjust is True, which is backwards-compatible. See Exponentially weighted moment functions for details. (GH7911)

• ewma(), ewmstd(), ewmvol(), ewmvar(), ewmcov(), and ewmcorr() now have an optional ignore_na argument. When ignore_na=False (the default), missing values are taken into account in the weights calculation. When ignore_na=True (which reproduces the pre-0.15.0 behavior), missing values are ignored in the weights calculation. (GH7543)

In [7]: pd.ewma(Series([None, 1., 8.]), com=2.)
Out[7]:
0 NaN
1 1.0
2 5.2
dtype: float64

In [8]: pd.ewma(Series([1., None, 8.]), com=2., ignore_na=True) # pre-0.15.0 → behavior
Out[8]:
0 1.0
1 1.0
2 5.2
dtype: float64

In [9]: pd.ewma(Series([1., None, 8.]), com=2., ignore_na=False) # new default
Out[9]:
0 1.00000
1 1.00000
2 5.84615

dtype: float64

Warning: By default (ignore_na=False) the ewm*() functions’ weights calculation in the presence of missing values is different than in pre-0.15.0 versions. To reproduce the pre-0.15.0 calculation of weights in the presence of missing values one must specify explicitly ignore_na=True.

• Bug in expanding_cov(), expanding_corr(), rolling_cov(), rolling_cor(), ewmcov(), and ewmcorr() returning results with columns sorted by name and producing an error for non-unique columns; now handles non-unique columns and returns columns in original order (except for the case of two DataFrames with pairwise=False, where behavior is unchanged) (GH7542)

• Bug in rolling_count() and expanding_*() functions unnecessarily producing error message for zero-length data (GH8056)

• Bug in rolling_apply() and expanding_apply() interpreting min_periods=0 as min_periods=1 (GH8080)

• Bug in expanding_std() and expanding_var() for a single value producing a confusing error message (GH7900)
• Bug in `rolling_std()` and `rolling_var()` for a single value producing 0 rather than NaN (GH7900)

• Bug in `ewmstd()`, `ewmvol()`, `ewmvar()`, and `ewmcov()` calculation of de-biasing factors when `bias=False` (the default). Previously an incorrect constant factor was used, based on `adjust=True`, `ignore_na=True`, and an infinite number of observations. Now a different factor is used for each entry, based on the actual weights (analogous to the usual \(\frac{N}{N-1} \) factor). In particular, for a single point a value of NaN is returned when `bias=False`, whereas previously a value of (approximately) 0 was returned.

For example, consider the following pre-0.15.0 results for `ewmvar(...,bias=False)`, and the corresponding debiasing factors:

```python
In [67]: s = Series([1., 2., 0., 4.])

In [89]: ewmvar(s, com=2., bias=False)
Out[89]:
0  -2.775558e-16
1   3.000000e-01
2   9.556787e-01
3   3.585799e+00
dtype: float64

In [90]: ewmvar(s, com=2., bias=False) / ewmvar(s, com=2., bias=True)
Out[90]:
0   1.25
1   1.25
2   1.25
3   1.25
dtype: float64
```

Note that entry 0 is approximately 0, and the debiasing factors are a constant 1.25. By comparison, the following 0.15.0 results have a NaN for entry 0, and the debiasing factors are decreasing (towards 1.25):

```python
In [14]: pd.ewmvar(s, com=2., bias=False)
Out[14]:
0    NaN
1  0.500000
2  1.210526
3  4.089069
dtype: float64

In [15]: pd.ewmvar(s, com=2., bias=False) / pd.ewmvar(s, com=2., bias=True)
Out[15]:
0    NaN
1  2.083333
2  1.583333
3  1.425439
dtype: float64
```

See *Exponentially weighted moment functions* for details. (GH7912)

Improvements in the sql io module

• Added support for a `chunksize` parameter to `to_sql` function. This allows DataFrame to be written in chunks and avoid packet-size overflow errors (GH8062).

• Added support for a `chunksize` parameter to `read_sql` function. Specifying this argument will return an iterator through chunks of the query result (GH2908).
pandas: powerful Python data analysis toolkit, Release 0.19.2

- Added support for writing `datetime.date` and `datetime.time` object columns with `to_sql` (GH6932).
- Added support for specifying a schema to read from/write to with `read_sql_table` and `to_sql` (GH7441, GH7952). For example:

```python
df.to_sql('table', engine, schema='other_schema')
pd.read_sql_table('table', engine, schema='other_schema')
```

- Added support for writing NaN values with `to_sql` (GH2754).
- Added support for writing datetime64 columns with `to_sql` for all database flavors (GH7103).

Backwards incompatible API changes

Breaking changes

API changes related to `Categorical` (see [here](#) for more details):

- The `Categorical` constructor with two arguments changed from “codes/labels and levels” to “values and levels (now called ‘categories’)”. This can lead to subtle bugs. If you use `Categorical` directly, please audit your code by changing it to use the `from_codes()` constructor.

An old function call like (prior to 0.15.0):

```python
pd.Categorical([0,1,0,2,1], levels=['a', 'b', 'c'])
```

will have to adapted to the following to keep the same behaviour:

```python
In [2]: pd.Categorical.from_codes([0,1,0,2,1], categories=['a', 'b', 'c'])
Out[2]:
[a, b, a, c, b]
Categories (3, object): [a, b, c]
```

API changes related to the introduction of the `Timedelta` scalar (see [above](#) for more details):

- Prior to 0.15.0 `to_timedelta()` would return a `Series` for list-like/Series input, and a `np.timedelta64` for scalar input. It will now return a `TimedeltaIndex` for list-like input, `Series` for Series input, and `Timedelta` for scalar input.

For API changes related to the rolling and expanding functions, see detailed overview [above](#).

Other notable API changes:

- Consistency when indexing with `.loc` and a list-like indexer when no values are found.

```python
In [68]: df = DataFrame([[a],[b]],index=[1,2])
In [69]: df
Out[69]:
   0  a
  1  b
```

In prior versions there was a difference in these two constructs:
- `df.loc[[3]]` would return a frame reindexed by 3 (with all `np.nan` values)
- `df.loc[[3],[i]]` would raise `KeyError`

180 Chapter 1. What’s New
Both will now raise a `KeyError`. The rule is that at least 1 indexer must be found when using a list-like and `.loc` (GH7999)

Furthermore in prior versions these were also different:

- `df.loc[[1,3]]` would return a frame reindexed by [1,3]
- `df.loc[[1,3],:]` would raise `KeyError`.

Both will now return a frame reindex by [1,3]. E.g.

```
In [70]: df.loc[[1,3]]
Out[70]:
   0 1 3 NaN

In [71]: df.loc[[1,3],:]
Out[71]:
   0 1 3 NaN
```

This can also be seen in multi-axis indexing with a `Panel`.

```
In [72]: p = Panel(np.arange(2*3*4).reshape(2,3,4),
               items=['ItemA','ItemB'],
               major_axis=[1,2,3],
               minor_axis=['A','B','C','D'])

In [73]: p
Out[73]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemB
Major_axis axis: 1 to 3
Minor_axis axis: A to D
```

The following would raise `KeyError` prior to 0.15.0:

```
In [74]: p.loc[['ItemA','ItemD'],:,'D']
Out[74]:
     ItemA  ItemD
   1   3   NaN
   2   7   NaN
   3  11   NaN
```

Furthermore, `.loc` will raise If no values are found in a multi-index with a list-like indexer:

```
In [75]: s = Series(np.arange(3,dtype='int64'),
               index=MultiIndex.from_product([[A],['foo','bar','baz']],
                                            names=['one','two'])).sortlevel()
```

```
In [76]: s
Out[76]:
one  two
  A    bar  1
```
• Assigning values to `None` now considers the dtype when choosing an ‘empty’ value (GH7941).

Previously, assigning to `None` in numeric containers changed the dtype to object (or errored, depending on the call). It now uses NaN:

```python
In [78]: s = Series([1, 2, 3])
In [79]: s.loc[0] = None
```

NaT is now used similarly for datetime containers.

For object containers, we now preserve `None` values (previously these were converted to NaN values).

```python
In [81]: s = Series(["a", "b", "c")
In [82]: s.loc[0] = None
```

To insert a NaN, you must explicitly use `np.nan`. See the docs.

• In prior versions, updating a pandas object inplace would not reflect in other python references to this object. (GH8511, GH5104)

```python
In [84]: s = Series([1, 2, 3])
In [85]: s2 = s
In [86]: s += 1.5
```

Behavior prior to v0.15.0

```python
# the original object
In [5]: s
Out[5]:
0    2.5
```

baz 2
foo 0
dtype: int64

```
In [77]: try:
    ....: s.loc["D"]
    ....: except KeyError as e:
    ....:    print("KeyError: " + str(e))
    ....:
KeyError: 'cannot index a multi-index axis with these keys'
```
1 3.5
2 4.5
dtype: float64

a reference to the original object
In [7]: s2
Out[7]:
0 1
1 2
2 3
dtype: int64

This is now the correct behavior

the original object
In [87]: s
Out[87]:
0 2.5
1 3.5
2 4.5
dtype: float64

a reference to the original object
In [88]: s2
Out[88]:
0 2.5
1 3.5
2 4.5
dtype: float64

- Made both the C-based and Python engines for read_csv and read_table ignore empty lines in input as well as whitespace-filled lines, as long as sep is not whitespace. This is an API change that can be controlled by the keyword parameter skip_blank_lines. See the docs (GH4466)
- A timeseries/index localized to UTC when inserted into a Series/DataFrame will preserve the UTC timezone and inserted as object dtype rather than being converted to a naive datetime64[ns] (GH8411).
- Bug in passing a DatetimeIndex with a timezone that was not being retained in DataFrame construction from a dict (GH7822)

In prior versions this would drop the timezone, now it retains the timezone, but gives a column of object dtype:

```python
In [89]: i = date_range('1/1/2011', periods=3, freq='10s', tz = 'US/Eastern')
In [90]: i
Out[90]:
DateRange(['2011-01-01 00:00:00-05:00', '2011-01-01 00:00:10-05:00',
          '2011-01-01 00:00:20-05:00'],
          freq='10S', tz='US/Eastern', dtype='datetime64[ns, US/Eastern]', closed=None)

In [91]: df = DataFrame( {'a' : i } )
In [92]: df
Out[92]:
            a
0  2011-01-01 00:00:00-05:00
1  2011-01-01 00:00:10-05:00
2  2011-01-01 00:00:20-05:00
```
Previously this would have yielded a column of `datetime64` dtype, but without timezone info.

The behaviour of assigning a column to an existing dataframe as `df['a'] = i` remains unchanged (this already returned an `object` column with a timezone).

- When passing multiple levels to `stack()`, it will now raise a `ValueError` when the levels aren’t all level names or all level numbers (GH7660). See Reshaping by stacking and unstacking.

- Raise a `ValueError` in `df.to_hdf` with ‘fixed’ format, if `df` has non-unique columns as the resulting file will be broken (GH7761)

- `SettingWithCopy` raise/warnings (according to the option `mode.chained_assignment`) will now be issued when setting a value on a sliced mixed-dtype DataFrame using chained-assignment. (GH7845, GH7950)

```
In [1]: df = DataFrame(np.arange(0,9), columns=['count'])
In [2]: df['group'] = 'b'
In [3]: df.iloc[0:5]['group'] = 'a'
/usr/local/bin/ipython:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
```

- `merge`, `DataFrame.merge`, and `ordered_merge` now return the same type as the left argument (GH7737).

- Previously an enlargement with a mixed-dtype frame would act unlike `.append` which will preserve dtypes (related GH2578, GH8176):

```
In [94]: df = DataFrame([[True, 1],[False, 2]],
                 columns=['female','fitness'])
In [95]: df
Out[95]:
   female  fitness
0   True       1
1  False       2

In [96]: df.dtypes
Out[96]:
female   bool
fitness  int64
dtype: object

# dtypes are now preserved
In [98]: df
```
Out[98]:
 female fitness
0 True 1
1 False 2
2 False 2

In [99]: df.dtypes
Out[99]:
 female bool
 fitness int64
dtype: object

• Series.to_csv() now returns a string when path=None, matching the behaviour of DataFrame.to_csv() (GH8215).

• read_hdf now raises IOError when a file that doesn’t exist is passed in. Previously, a new, empty file was created, and a KeyError raised (GH7715).

• DataFrame.info() now ends its output with a newline character (GH8114)

• Concatenating no objects will now raise a ValueError rather than a bare Exception.

• Merge errors will now be sub-classes of ValueError rather than raw Exception (GH8501)

• DataFrame.plot and Series.plot keywords are now have consistent orders (GH8037)

Internal Refactoring

In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This change allows very easy sub-classing and creation of new index types. This should be a transparent change with only very limited API implications (GH5080, GH7439, GH7796, GH8024, GH8367, GH7997, GH8522):

• you may need to unpickle pandas version < 0.15.0 pickles using pd.read_pickle rather than pickle.load. See pickle docs

• when plotting with a PeriodIndex, the matplotlib internal axes will now be arrays of Period rather than a PeriodIndex (this is similar to how a DatetimeIndex passes arrays of datetimes now)

• MultiIndexes will now raise similary to other pandas objects w.r.t. truth testing, see here (GH7897).

• When plotting a DatetimeIndex directly with matplotlib’s plot function, the axis labels will no longer be formatted as dates but as integers (the internal representation of a datetime64). UPDATE This is fixed in 0.15.1, see here.

Deprecations

• The attributes Categorical labels and levels attributes are deprecated and renamed to codes and categories.

• The outtype argument to pd.DataFrame.to_dict has been deprecated in favor of orient. (GH7840)

• The convert_dummies method has been deprecated in favor of get_dummies (GH8140)

• The infer_dst argument in tz_localize will be deprecated in favor of ambiguous to allow for more flexibility in dealing with DST transitions. Replace infer_dst=True with ambiguous='infer' for the same behavior (GH7943). See the docs for more details.

• The top-level pd.value_range has been deprecated and can be replaced by .describe() (GH8481)
The Index set operations + and - were deprecated in order to provide these for numeric type operations on certain index types. + can be replaced by .union() or |, and - by .difference(). Further the method name Index.diff() is deprecated and can be replaced by Index.difference() (GH8226)

```python
# +
Index(['a', 'b', 'c']) + Index(['b', 'c', 'd'])
# should be replaced by
Index(['a', 'b', 'c']).union(Index(['b', 'c', 'd']))

# -
Index(['a', 'b', 'c']) - Index(['b', 'c', 'd'])
# should be replaced by
Index(['a', 'b', 'c']).difference(Index(['b', 'c', 'd']))
```

The infer_types argument to read_html() now has no effect and is deprecated (GH7762, GH7032).

Removal of prior version deprecations/changes

- Remove DataFrame.delevel method in favor of DataFrame.reset_index

Enhancements

Enhancements in the importing/exporting of Stata files:

- Added support for bool, uint8, uint16 and uint32 datatypes in to_stata (GH7097, GH7365)
- Added conversion option when importing Stata files (GH8527)
- DataFrame.to_stata and StataWriter check string length for compatibility with limitations imposed in dta files where fixed-width strings must contain 244 or fewer characters. Attempting to write Stata dta files with strings longer than 244 characters raises a ValueError. (GH7858)
- read_stata and StataReader can import missing data information into a DataFrame by setting the argument convert_missing to True. When using this options, missing values are returned as StataMissingValue objects and columns containing missing values have object data type. (GH8045)

Enhancements in the plotting functions:

- Added layout keyword to DataFrame.plot. You can pass a tuple of (rows,columns), one of which can be -1 to automatically infer (GH6667, GH8071).
- Allow to pass multiple axes to DataFrame.plot.hist and boxplot (GH5353, GH6970, GH7069)
- Added support for c, colormap and colorbar arguments for DataFrame.plot with kind='scatter' (GH7780)
- Histogram from DataFrame.plot with kind='hist' (GH7809), See the docs.
- Boxplot from DataFrame.plot with kind='box' (GH7998), See the docs.

Other:

- read_csv now has a keyword parameter float_precision which specifies which floating-point converter the C engine should use during parsing, see here (GH8002, GH8044)
- Added searchsorted method to Series objects (GH7447)
• `describe()` on mixed-types DataFrames is more flexible. Type-based column filtering is now possible via the `include/exclude` arguments. See the docs (GH8164).

```python
In [100]: df = DataFrame({'catA': ['foo', 'foo', 'bar'] * 8,
       .....:     'catB': ['a', 'b', 'c', 'd'] * 6,
       .....:     'numC': np.arange(24),
       .....:     'numD': np.arange(24.) + .5})
        
In [101]: df.describe(include=['object'])
Out[101]:
   catA  catB
count 24  24
unique 2  4
top foo  d
freq  16  6

In [102]: df.describe(include=['number', 'object'], exclude=['float'])
Out[102]:
   catA  catB  numC
count 24  24  24.000000
unique 2  4  NaN
top foo  d  NaN
freq  16  6  NaN
mean  NaN  NaN  11.500000
std  NaN  NaN  7.071068
min  NaN  NaN  0.000000
25%  NaN  NaN  5.750000
50%  NaN  NaN  11.500000
75%  NaN  NaN  17.250000
max  NaN  NaN  23.000000
```

Requesting all columns is possible with the shorthand ‘all’

```python
In [103]: df.describe(include='all')
Out[103]:
   catA  catB  numC  numD
count 24  24  24.000000  24.000000
unique 2  4  NaN  NaN
top foo  d  NaN  NaN
freq  16  6  NaN  NaN
mean  NaN  NaN  11.500000  12.000000
std  NaN  NaN  7.071068  7.071068
min  NaN  NaN  0.000000  0.500000
25%  NaN  NaN  5.750000  6.250000
50%  NaN  NaN  11.500000  12.000000
75%  NaN  NaN  17.250000  17.750000
max  NaN  NaN  23.000000  23.500000
```

Without those arguments, ‘describe’ will behave as before, including only numerical columns or, if none are, only categorical columns. See also the docs

• Added split as an option to the orient argument in `pd.DataFrame.to_dict` (GH7840)

• The `get_dummies` method can now be used on DataFrames. By default only categorical columns are encoded as 0’s and 1’s, while other columns are left untouched.

```python
In [104]: df = DataFrame({'A': ['a', 'b', 'a'],
       .....:     'B': ['c', 'c', 'b'],
       .....:     'C': [1, 2, 3]})
```
• PeriodIndex supports resolution as the same as DatetimeIndex (GH7708)
• pandas.tseries.holiday has added support for additional holidays and ways to observe holidays (GH7070)
• pandas.tseries.holiday.Holiday now supports a list of offsets in Python3 (GH7070)
• pandas.tseries.holiday.Holiday now supports a days_of_week parameter (GH7070)
• GroupBy.nth() now supports selecting multiple nth values (GH7910)

In [105]: pd.get_dummies(df)
Out[105]:
 C A_a A_b B_b B_c
0 1 1 0 0 1
1 2 0 1 0 1
2 3 1 0 1 0

In [106]: business_dates = date_range(start='4/1/2014', end='6/30/2014', freq='B')
In [107]: df = DataFrame(1, index=business_dates, columns=['a', 'b'])
get the first, 4th, and last date index for each month
In [108]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[108]:
 a b
2014 4 1 1
 4 1 1
 5 1 1
 5 1 1
 6 1 1
 6 1 1

• Period and PeriodIndex supports addition/subtraction with timedelta-likes (GH7966)
 If Period freq is D,H,T,S,L,U,N,Timedelta-like can be added if the result can have same freq. Otherwise, only the same offsets can be added.

In [109]: idx = pd.period_range('2014-07-01 09:00', periods=5, freq='H')
In [110]: idx
Out[110]:
PeriodIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00',
 '2014-07-01 12:00', '2014-07-01 13:00'],
 dtype='period[H]', freq='H')

In [111]: idx + pd.offsets.Hour(2)
Out[111]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
 '2014-07-01 14:00', '2014-07-01 15:00'],
 dtype='period[H]', freq='H')

In [112]: idx + Timedelta('120m')
Out[112]:
PeriodIndex(['2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00',
 '2014-07-01 14:00', '2014-07-01 15:00'],
 dtype='period[H]', freq='H')
In [113]: idx = pd.period_range('2014-07', periods=5, freq='M')

In [114]: idx
 dtype='period[M]', freq='M')

In [115]: idx + pd.offsets.MonthEnd(3)
 dtype='period[M]', freq='M')

• Added experimental compatibility with openpyxl1 for versions >= 2.0. The DataFrame.to_excel method engine keyword now recognizes openpyxl1 and openpyxl2 which will explicitly require openpyxl v1 and v2 respectively, failing if the requested version is not available. The openpyxl engine is a now a meta-engine that automatically uses whichever version of openpyxl is installed. (GH7177)

• DataFrame.fillna can now accept a DataFrame as a fill value (GH8377)

• Passing multiple levels to stack() will now work when multiple level numbers are passed (GH7660). See Reshaping by stacking and unstacking.

• set_names(), set_labels(), and set_levels() methods now take an optional level keyword argument to all modification of specific level(s) of a MultiIndex. Additionally set_names() now accepts a scalar string value when operating on an Index or on a specific level of a MultiIndex (GH7792)

In [116]: idx = MultiIndex.from_product([['a'], range(3), list("pqr")], names=['foo', 'bar', 'baz'])

In [117]: idx.set_names('qux', level=0)
Out[117]:
MultiIndex(levels=[[u'a'], [0, 1, 2], [u'p', u'q', u'r']],
 labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
 names=[u'qux', u'bar', u'baz'])

In [118]: idx.set_names(['qux', 'baz'], level=[0,1])
Out[118]:
MultiIndex(levels=[[u'a'], [0, 1, 2], [u'p', u'q', u'r']],
 labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
 names=[u'qux', u'baz', u'baz'])

In [119]: idx.set_levels(['a','b','c'], level='bar')
Out[119]:
MultiIndex(levels=[[u'a'], [u'a', u'b', u'c'], [u'p', u'q', u'r']],
 labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
 names=[u'foo', u'bar', u'baz'])

In [120]: idx.set_levels(['a','b','c'],[1,2,3], level=[1,2])
Out[120]:
MultiIndex(levels=[[u'a'], [u'a', u'b', u'c'], [1, 2, 3]],
 labels=[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]],
 names=[u'foo', u'bar', u'baz'])

• Index.isin now supports a level argument to specify which index level to use for membership tests
Index now supports duplicated and drop_duplicates. (GH4060)

Add copy=True argument to pd.concat to enable pass thru of complete blocks (GH8252)

Added support for numpy 1.8+ data types (bool_, int_, float_, string_) for conversion to R dataframe (GH8400)

Performance

- Performance improvements in DatetimeIndex.__iter__ to allow faster iteration (GH7683)
- Performance improvements in Period creation (and PeriodIndex setitem) (GH5155)
- Improvements in Series.transform for significant performance gains (revised) (GH6496)
- Performance improvements in StataReader when reading large files (GH8040, GH8073)
- Performance improvements in StataWriter when writing large files (GH8079)
- Performance and memory usage improvements in multi-key groupby (GH8128)
- Performance improvements in groupby .agg and .apply where builtins max/min were not mapped to numpy/cythonized versions (GH7722)
- Performance improvement in writing to sql (to_sql) of up to 50% (GH8208).
- Performance benchmarking of groupby for large value of ngroups (GH6787)
- Performance improvement in CustomBusinessDay, CustomBusinessMonth (GH8236)
- Performance improvement for MultiIndex.values for multi-level indexes containing datetimes (GH8543)

Bug Fixes

- Bug in pivot_table, when using margins and a dict aggfunc (GH8349)
- Bug in read_csv where squeeze=True would return a view (GH8217)
- Bug in checking of table name in read_sql in certain cases (GH7826).
• Bug in DataFrame.groupby where Grouper does not recognize level when frequency is specified (GH7885)
• Bug in multiindexes dtypes getting mixed up when DataFrame is saved to SQL table (GH8021)
• Bug in Series 0-division with a float and integer operand dtypes (GH7785)
• Bug in Series.astype("unicode") not calling unicode on the values correctly (GH7758)
• Bug in DataFrame.as_matrix() with mixed datetime64[ns] and timedelta64[ns] dtypes (GH7778)
• Bug in HDFStore.select_column() not preserving UTC timezone info when selecting a DatetimeIndex (GH7777)
• Bug in to_datetime when format='%Y%m%d' and coerce=True are specified, where previously an object array was returned (rather than a coerced time-series with NaT), (GH7930)
• Bug in DatetimeIndex and PeriodIndex in-place addition and subtraction cause different result from normal one (GH6527)
• Bug in adding and subtracting PeriodIndex with PeriodIndex raise TypeError (GH7741)
• Bug in combine_first with PeriodIndex data raises TypeError (GH3367)
• Bug in multi-index slicing with missing indexers (GH7866)
• Bug in multi-index slicing with various edge cases (GH8132)
• Regression in multi-index indexing with a non-scalar type object (GH7914)
• Bug in Timestamp comparisons with == and int64 dtype (GH8058)
• Bug in pickles contains DateOffset may raise AttributeError when normalize attribute is referred internally (GH7748)
• Bug in Panel when using major_xs and copy=False is passed (deprecation warning fails because of missing warnings) (GH8152).
• Bug in pickle deserialization that failed for pre-0.14.1 containers with dup items trying to avoid ambiguity when matching block and manager items, when there’s only one block there’s no ambiguity (GH7794)
• Bug in putting a PeriodIndex into a Series would convert to int64 dtype, rather than object of Periods (GH7932)
• Bug in HDFStore iteration when passing a where (GH8014)
• Bug in DataFrameGroupby.transform when transforming with a passed non-sorted key (GH8046, GH8430)
• Bug in repeated timeseries line and area plot may result in ValueError or incorrect kind (GH7733)
• Bug in inference in a MultiIndex with datetime.date inputs (GH7888)
• Bug in get where an IndexError would not cause the default value to be returned (GH7725)
• Bug in offsets.apply, rollforward and rollback may reset nanosecond (GH7697)
• Bug in offsets.apply, rollforward and rollback may raise AttributeError if Timestamp has dateutil.tzinfo (GH7697)
• Bug in sorting a multi-index frame with a Float64Index (GH8017)
• Bug in inconsistent panel setitem with a rhs of a DataFrame for alignment (GH7763)
• Bug in is_superperiod and is_subperiod cannot handle higher frequencies than S (GH7776, GH7772, GH7803)
• Bug in 32-bit platforms with Series.shift (GH8129)
• Bug in PeriodIndex.unique returns int64 np.ndarray (GH7540)
• Bug in groupby.apply with a non-affecting mutation in the function (GH8467)
• Bug in DataFrame.reset_index which has MultiIndex contains PeriodIndex or
 DatetimeIndex with tz raises ValueError (GH7746, GH7793)
• Bug in DataFrame.plot with subplots=True may draw unnecessary minor xticks and yticks (GH7801)
• Bug in StataReader which did not read variable labels in 117 files due to difference between Stata documenta-
 tion and implementation (GH7816)
• Bug in StataReader where strings were always converted to 244 characters-fixed width irrespective of un-
 derlying string size (GH7858)
• Bug in DataFrame.plot and Series.plot may ignore rot and fontsize keywords (GH7844)
• Bug in DatetimeIndex.value_counts doesn’t preserve tz (GH7735)
• Bug in PeriodIndex.value_counts results in Int64Index (GH7735)
• Bug in DataFrame.join when doing left join on index and there are multiple matches (GH5391)
• Bug in GroupBy.transform() where int groups with a transform that didn’t preserve the index were in-
 correctly truncated (GH7972).
• Bug in groupby where callable objects without name attributes would take the wrong path, and produce a
 DataFrame instead of a Series (GH7929)
• Bug in groupby error message when a DataFrame grouping column is duplicated (GH7511)
• Bug in read_html where the infer_types argument forced coercion of date-likes incorrectly (GH7762,
 GH7032).
• Bug in Series.str.cat with an index which was filtered as to not include the first item (GH7857)
• Bug in.Timestamp cannot parse nanosecond from string (GH7878)
• Bug in Timestamp with string offset and tz results incorrect (GH7833)
• Bug in tslib.tz_convert and tslib.tz_convert_single may return different results (GH7798)
• Bug in DatetimeIndex.intersection of non-overlapping timestamps with tz raises IndexError
 (GH7880)
• Bug in alignment with TimeOps and non-unique indexes (GH8363)
• Bug in GroupBy.filter() where fast path vs. slow path made the filter return a non scalar value that
 appeared valid but wasn’t (GH7870).
• Bug in date_range() / DatetimeIndex() when the timezone was inferred from input dates yet incorrect
 times were returned when crossing DST boundaries (GH7835, GH7901).
• Bug in to_excel() where a negative sign was being prepended to positive infinity and was absent for negative
 infinity (GH7949)
• Bug in area plot draws legend with incorrect alpha when stacked=True (GH8027)
• Period and PeriodIndex addition/subtraction with np.timedelta64 results in incorrect internal rep-
 resentations (GH7740)
• Bug in Holiday with no offset or observance (GH7987)
• Bug in DataFrame.to_latex formatting when columns or index is a MultiIndex (GH7982).
• Bug in DateOffset around Daylight Savings Time produces unexpected results (GH5175).
• Bug in `DataFrame.shift` where empty columns would throw `ZeroDivisionError` on numpy 1.7 (GH8019)
• Bug in installation where `html_encoding/*.html` wasn’t installed and therefore some tests were not running correctly (GH7927).
• Bug in `read_html` where bytes objects were not tested for in `_read` (GH7927).
• Bug in `DataFrame.stack()` when one of the column levels was a datelike (GH8039)
• Bug in broadcasting numpy scalars with `DataFrame` (GH8116)
• Bug in `pivot_table` performed with nameless index and columns raises `KeyError` (GH8103)
• Bug in `DataFrame.plot(kind='scatter')` draws points and errorbars with different colors when the color is specified by `c` keyword (GH8081)
• Bug in `Float64Index` where `iat` and `at` were not testing and were failing (GH8092).
• Bug in `DataFrame.boxplot()` where y-limits were not set correctly when producing multiple axes (GH7528, GH5517).
• Bug in `read_csv` where line comments were not handled correctly given a custom line terminator or `delim_whitespace=True` (GH8122).
• Bug in `read_html` where empty tables caused a `StopIteration` (GH7575)
• Bug in casting when setting a column in a same-dtype block (GH7704)
• Bug in accessing groups from a `GroupBy` when the original grouper was a tuple (GH8121).
• Bug in `.at` that would accept integer indexers on a non-integer index and do fallback (GH7814)
• Bug with kde plot and NaNs (GH8182)
• Bug in `GroupBy.count` with float32 data type were nan values were not excluded (GH8169).
• Bug with stacked barplots and NaNs (GH8175).
• Bug in resample with non evenly divisible offsets (e.g. ‘7s’) (GH8371)
• Bug in interpolation methods with the `limit` keyword when no values needed interpolating (GH7173).
• Bug where `col_space` was ignored in `DataFrame.to_string()` when `header=False` (GH8230).
• Bug with `DatetimeIndex.asof` incorrectly matching partial strings and returning the wrong date (GH8245).
• Bug in plotting methods modifying the global matplotlib rcParams (GH8242).
• Bug in `DataFrame.__setitem__` that caused errors when setting a dataframe column to a sparse array (GH8131)
• Bug where `Dataframe.boxplot()` failed when entire column was empty (GH8181).
• Bug with messed variables in `radviz` visualization (GH8199).
• Bug in interpolation methods with the `limit` keyword when no values needed interpolating (GH7173).
• Bug where `col_space` was ignored in `DataFrame.to_string()` when `header=False` (GH8230).
• Bug in `to_clipboard` that would clip long column data (GH8305)
• Bug in `DataFrame` terminal display: Setting max_column/max_rows to zero did not trigger auto-resizing of dfs to fit terminal width/height (GH7180).
• Bug in OLS where running with “cluster” and “nw_lags” parameters did not work correctly, but also did not throw an error (GH5884).
• Bug in `DataFrame.dropna` that interpreted non-existent columns in the subset argument as the ‘last column’ (GH8303)
• Bug in `Index.intersection` on non-monotonic non-unique indexes (GH8362).
• Bug in masked series assignment where mismatching types would break alignment (GH8387)
• Bug in `NDFrame.equals` gives false negatives with `dtype=object` (GH8437)
• Bug in assignment with indexer where type diversity would break alignment (GH8258)
• Bug in `NDFrame.loc` indexing when row/column names were lost when target was a list/ndarray (GH6552)
• Regression in `NDFrame.loc` indexing when rows/columns were converted to Float64Index if target was an empty list/ndarray (GH7774)
• Bug in `Series` that allows it to be indexed by a `DataFrame` which has unexpected results. Such indexing is no longer permitted (GH8444)
• Bug in item assignment of a `DataFrame` with multi-index columns where right-hand-side columns were not aligned (GH7655)
• Suppress FutureWarning generated by NumPy when comparing object arrays containing NaN for equality (GH7065)
• Bug in `DataFrame.eval()` where the dtype of the `not` operator (~) was not correctly inferred as `bool`.

v0.14.1 (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Highlights include:
 – New methods `select_dtypes()` to select columns based on the dtype and `sem()` to calculate the standard error of the mean.
 – Support for dateutil timezones (see docs).
 – Support for ignoring full line comments in the `read_csv()` text parser.
 – New documentation section on `Options and Settings`.
 – Lots of bug fixes.

• Enhancements
• API Changes
• Performance Improvements
• Experimental Changes
• Bug Fixes

API changes

• Openpyxl now raises a ValueError on construction of the openpyxl writer instead of warning on pandas import (GH7284).
• For `StringMethods.extract`, when no match is found, the result - only containing NaN values - now also has dtype=object instead of float (GH7242)

• Period objects no longer raise a TypeError when compared using `==` with another object that isn’t a Period. Instead when comparing a Period with another object using `==` if the other object isn’t a Period False is returned. (GH7376)

• Previously, the behaviour on resetting the time or not in offsets.apply, rollforward and rollback operations differed between offsets. With the support of the normalize keyword for all offsets(see below) with a default value of False (preserve time), the behaviour changed for certain offsets (BusinessMonthBegin, MonthEnd, BusinessMonthEnd, CustomBusinessMonthEnd, BusinessYearBegin, LastWeekOfMonth, FY5253Quarter, LastWeekOfMonth, Easter):

```python
In [6]: from pandas.tseries import offsets
In [7]: d = pd.Timestamp('2014-01-01 09:00')
# old behaviour < 0.14.1
In [8]: d + offsets.MonthEnd()
Out[8]: Timestamp('2014-01-31 00:00:00')

Starting from 0.14.1 all offsets preserve time by default. The old behaviour can be obtained with normalize=True

# new behaviour
In [1]: d + offsets.MonthEnd()
Out[1]: Timestamp('2014-01-31 09:00:00')
In [2]: d + offsets.MonthEnd(normalize=True)
Out[2]: Timestamp('2014-01-31 00:00:00')
```

Note that for the other offsets the default behaviour did not change.

• Add back #N/A N/A as a default NA value in text parsing. (regresion from 0.12) (GH5521)

• Raise a TypeError on inplace-setting with a `.where` and a non np.nan value as this is inconsistent with a set-item expression like `df[mask] = None` (GH7656)

Enhancements

• Add dropna argument to `value_counts` and `nunique` (GH5569).

• Add `select_dtypes()` method to allow selection of columns based on dtype (GH7316). See the docs.

• All offsets supports the normalize keyword to specify whether offsets.apply, rollforward and rollback resets the time (hour, minute, etc) or not (default False, preserves time) (GH7156):

```python
In [3]: import pandas.tseries.offsets as offsets
In [4]: day = offsets.Day()
In [5]: day.apply(Timestamp('2014-01-01 09:00'))
Out[5]: Timestamp('2014-01-02 09:00:00')
In [6]: day = offsets.Day(normalize=True)
In [7]: day.apply(Timestamp('2014-01-01 09:00'))
Out[7]: Timestamp('2014-01-02 00:00:00')
```

1.14. v0.14.1 (July 11, 2014)
pandas: powerful Python data analysis toolkit, Release 0.19.2

- **PeriodIndex** is represented as the same format as **DatetimeIndex** (GH7601)
- **StringMethods** now work on empty Series (GH7242)
- The file parsers **read_csv** and **read_table** now ignore line comments provided by the parameter **comment**, which accepts only a single character for the C reader. In particular, they allow for comments before file data begins (GH2685)
- Add **NotImplementedError** for simultaneous use of **chunksize** and **nrows** for **read_csv()** (GH6774).
- Tests for basic reading of public S3 buckets now exist (GH7281).
- **read_html** now sports an **encoding** argument that is passed to the underlying parser library. You can use this to read non-ascii encoded web pages (GH7323).
- **read_excel** now supports reading from URLs in the same way that **read_csv** does. (GH6809)
- Support for dateutil timezones, which can now be used in the same way as pytz timezones across pandas. (GH4688)

```
In [8]: rng = date_range('3/6/2012 00:00', periods=10, freq='D',
                   tz='dateutil/Europe/London')
...
In [9]: rng.tz
Out[9]: tzfile('/usr/share/zoneinfo/Europe/London')
```

See the docs.

- Implemented **sem** (standard error of the mean) operation for **Series**,**DataFrame**,**Panel**, and **Groupby** (GH6897)
- Add **nlargest** and **nsmallest** to the **Series groupby** whitelist, which means you can now use these methods on a **SeriesGroupBy** object (GH7053).
- All offsets **apply**, **rollforward** and **rollback** can now handle np.datetime64, previously results in **ApplyTypeError** (GH7452)
- **Period** and **PeriodIndex** can contain **NaT** in its values (GH7485)
- Support pickling **Series**, **DataFrame** and **Panel** objects with non-unique labels along **item** axis (index, columns and items respectively) (GH7370).
- Improved inference of datetime/timedelta with mixed null objects. Regression from 0.13.1 in interpretation of an object Index with all null elements (GH7431)

Performance

- Improvements in dtypes inference for numeric operations involving yielding performance gains for dtypes: int64, timedelta64, datetime64 (GH7223)
- Improvements in **Series.transform** for significant performance gains (GH6496)
- Improvements in **DataFrame.transform** with ufuncs and built-in grouper functions for significant performance gains (GH7383)
- Regression in groupby aggregation of datetime64 dtypes (GH7555)
- Improvements in **MultiIndex.from_product** for large iterables (GH7627)
Experimental

- pandas.io.data.Options has a new method, get_all_data method, and now consistently returns a multi-indexed DataFrame (GH5602)
- io.gbq.read_gbq and io.gbq.to_gbq were refactored to remove the dependency on the Google bq.py command line client. This submodule now uses httplib2 and the Google apiclient and oauth2client API client libraries which should be more stable and, therefore, reliable than bq.py. See the docs. (GH6937).

Bug Fixes

- Bug in DataFrame.where with a symmetric shaped frame and a passed other of a DataFrame (GH7506)
- Bug in Panel indexing with a multi-index axis (GH7516)
- Regression in datetimelike slice indexing with a duplicated index and non-exact end-points (GH7523)
- Bug in setitem with list-of-lists and single vs mixed types (GH7551)
- Bug in timeops with non-aligned Series (GH7500)
- Bug in timedelta inference when assigning an incomplete Series (GH7592)
- Bug in groupby .nth with a Series and integer-like column name (GH7559)
- Bug in Series.get with a boolean accessor (GH7407)
- Bug in value_counts where NaT did not qualify as missing (NaN) (GH7423)
- Bug in to_timedelta that accepted invalid units and misinterpreted ‘m/h’ (GH7611, GH6423)
- Bug in line plot doesn’t set correct xlim if secondary_y=True (GH7459)
- Bug in grouped hist and scatter plots use old figsize default (GH7394)
- Bug in plotting subplots with DataFrame.plot, hist clears passed ax even if the number of subplots is one (GH7391).
- Bug in plotting subplots with DataFrame.boxplot with by kw raises ValueError if the number of subplots exceeds 1 (GH7391).
- Bug in subplots displays ticklabels and labels in different rule (GH5897)
- Bug in Panel.apply with a multi-index as an axis (GH7469)
- Bug in DatetimeIndex.insert doesn’t preserve name and tz (GH7299)
- Bug in DatetimeIndex.asobject doesn’t preserve name (GH7299)
- Bug in multi-index slicing with datetimelike ranges (strings and Timestamps), (GH7429)
- Bug in Index.min and max doesn’t handle nan and NaT properly (GH7261)
- Bug in PeriodIndex.min/max results in int (GH7609)
- Bug in resample where fill_method was ignored if you passed how (GH2073)
- Bug in TimeGrouper doesn’t exclude column specified by key (GH7227)
- Bug in DataFrame and Series bar and barh plot raises TypeError when bottom and left keyword is specified (GH7226)
- Bug in DataFrame.hist raises TypeError when it contains non numeric column (GH7277)
- Bug in Index.delete does not preserve name and freq attributes (GH7302)
- Bug in `DataFrame.query()`/`eval` where local string variables with the @ sign were being treated as temporaries attempting to be deleted (GH7300).
- Bug in `Float64Index` which didn’t allow duplicates (GH7149).
- Bug in `DataFrame.replace()` where truthy values were being replaced (GH7140).
- Bug in `StringMethods.extract()` where a single match group Series would use the matcher’s name instead of the group name (GH7313).
- Bug in `isnull()` when `mode.use_inf_as_null == True` where `isnull` wouldn’t test `True` when it encountered an `inf/-inf` (GH7315).
- Bug in `inferred_freq` results in `None` for eastern hemisphere timezones (GH7310)
- Bug in `Easter` returns incorrect date when offset is negative (GH7195)
- Bug in broadcasting with `.div`, integer dtypes and divide-by-zero (GH7325)
- Bug in `CustomBusinessDay.apply` raises `NameError` when `np.datetime64` object is passed (GH7196)
- Bug in `MultiIndex.append`, `concat` and `pivot_table` don’t preserve timezone (GH6606)
- Bug in `.loc` with a list of indexers on a single-multi index level (that is not nested) (GH7349)
- Bug in `Series.map` when mapping a dict with tuple keys of different lengths (GH7333)
- Bug all `StringMethods` now work on empty Series (GH7242)
- Fix delegation of `read_sql` to `read_sql_query` when query does not contain ‘select’ (GH7324).
- Bug where a string column name assignment to a `DataFrame` with a `Float64Index` raised a `TypeError` during a call to `np.isnan` (GH7366).
- Bug where `NDFrame.replace()` didn’t correctly replace objects with `Period` values (GH7379).
- Bug in `.ix` getitem should always return a Series (GH7150)
- Bug in multi-index slicing with incomplete indexers (GH7399)
- Bug in multi-index slicing with a step in a sliced level (GH7400)
- Bug where negative indexers in `DatetimeIndex` were not correctly sliced (GH7408)
- Bug where NaT wasn’t repr’d correctly in a `MultiIndex` (GH7406, GH7409).
- Bug where bool objects were converted to `nan` in `convert_objects` (GH7416).
- Bug in `quantile` ignoring the axis keyword argument (:issue:`7306`)
- Bug where `nanops._maybe_null_out` doesn’t work with complex numbers (GH7353)
- Bug in several `nanops` functions when `axis==0` for 1-dimensional `nan` arrays (GH7354)
- Bug where `nanops.nanmedian` doesn’t work when `axis==None` (GH7352)
- Bug where `nanops._has_infs` doesn’t work with many dtypes (GH7357)
- Bug in `StataReader.data` where reading a 0-observation `dta` failed (GH7369)
- Bug in `StataReader` when reading Stata 13 (117) files containing fixed width strings (GH7360)
- Bug in `StataWriter` where encoding was ignored (GH7286)
- Bug in `DatetimeIndex` comparison doesn’t handle `NaT` properly (GH7529)
- Bug in passing input with `tzinfo` to some offsets `apply`, `rollforward` or `rollback` resets `tzinfo` or raises `ValueError` (GH7465)
• Bug in DatetimeIndex.to_period, PeriodIndex.asobject, PeriodIndex.to_timestamp doesn’t preserve name (GH7485)

• Bug in DatetimeIndex.to_period and PeriodIndex.to_timestamp handle NaT incorrectly (GH7228)

• Bug in offsets.apply, rollforward and rollback may return normal datetime (GH7502)

• Bug in resample raises ValueError when target contains NaT (GH7227)

• Bug in Timestamp.tz_localize resets nanosecond info (GH7534)

• Bug in DatetimeIndex.asobject raises ValueError when it contains NaT (GH7539)

• Bug in Timestamp.__new__ doesn’t preserve nanosecond properly (GH7610)

• Bug in Index.astype(float) where it would return an object dtype Index (GH7464).

• Bug in DataFrame.reset_index loses tz (GH3950)

• Bug in DatetimeIndex.freqstr raises AttributeError when freq is None (GH7606)

• Bug in GroupBy.size created by TimeGrouper raises AttributeError (GH7453)

• Bug in single column bar plot is misaligned (GH7498).

• Bug in area plot with tz-aware time series raises ValueError (GH7471)

• Bug in non-monotonic Index.union may preserve name incorrectly (GH7458)

• Bug in DatetimeIndex.intersection doesn’t preserve timezone (GH4690)

• Bug in rolling_var where a window larger than the array would raise an error(GH7297)

• Bug with last plotted timeseries dictating xlim (GH2960)

• Bug with secondary_y axis not being considered for timeseries xlim (GH3490)

• Bug in Float64Index assignment with a non scalar indexer (GH7586)

• Bug in pandas.core.strings.str_contains does not properly match in a case insensitive fashion when regex=False and case=False (GH7505)

• Bug in expanding_cov, expanding_corr, rolling_cov, and rolling_corr for two arguments with mismatched index (GH7512)

• Bug in to_sql taking the boolean column as text column (GH7678)

• Bug in grouped hist doesn’t handle rot kw and sharex kw properly (GH7234)

• Bug in .loc performing fallback integer indexing with object dtype indices (GH7496)

• Bug (regression) in PeriodIndex constructor when passed Series objects (GH7701).

v0.14.0 (May 31, 2014)

This is a major release from 0.13.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

• Highlights include:
 – Officially support Python 3.4
 – SQL interfaces updated to use sqlalchemy, See Here.
– Display interface changes, See *Here*
– MultiIndexing Using Slicers, See *Here*.
– Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see *Here*
– More consistency in groupby results and more flexible groupby specifications, See *Here*
– Holiday calendars are now supported in `CustomBusinessDay`, see *Here*
– Several improvements in plotting functions, including: hexbin, area and pie plots, see *Here*.
– Performance doc section on I/O operations, See *Here*

Other Enhancements

API Changes

Text Parsing API Changes

Groupby API Changes

Performance Improvements

Prior Deprecations

Deprecations

Known Issues

Bug Fixes

Warning: In 0.14.0 all `NDFrame` based containers have undergone significant internal refactoring. Before that each block of homogeneous data had its own labels and extra care was necessary to keep those in sync with the parent container’s labels. This should not have any visible user/API behavior changes (GH6745)

API changes

- `read_excel` uses 0 as the default sheet (GH6573)
- `iloc` will now accept out-of-bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed. These will be excluded. This will make pandas conform more with python/numpy indexing of out-of-bounds values. A single indexer that is out-of-bounds and drops the dimensions of the object will still raise `IndexError` (GH6296, GH6299). This could result in an empty axis (e.g. an empty DataFrame being returned)

```python
In [1]: df1 = DataFrame(np.random.randn(5,2),columns=list('AB'))
In [2]: df1
Out[2]:
          A         B
0  1.583584 -0.438313
1  0.402537 -0.780572
2  0.141685  0.542241
3  0.370966 -0.251642
4  0.787484  1.666563
In [3]: df1.iloc[:,2:3]
Out[3]:
Empty DataFrame
Columns: []
```
Index: [0, 1, 2, 3, 4]

In [4]: dfl.iloc[:,1:3]
Out[4]:
 B
0 -0.438313
1 -0.780572
2 0.542241
3 -0.251642
4 1.666563

In [5]: dfl.iloc[4:6]
Out[5]:
 A B
4 0.787484 1.666563

These are out-of-bounds selections

dfl.iloc[[4,5,6]]
IndexError: positional indexers are out-of-bounds

dfl.iloc[:,4]
IndexError: single positional indexer is out-of-bounds

• Slicing with negative start, stop & step values handles corner cases better (GH6531):
 – df.iloc[::−len(df)] is now empty
 – df.iloc[len(df)::−1] now enumerates all elements in reverse

• The DataFrame.interpolate() keyword downcast default has been changed from infer to None. This is to preserve the original dtype unless explicitly requested otherwise (GH6290).

• When converting a dataframe to HTML it used to return Empty DataFrame. This special case has been removed, instead a header with the column names is returned (GH6062).

• Series and Index now internall share more common operations, e.g. factorize(),nunique(),value_counts() are now supported on Index types as well. The Series.weekday property from is removed from Series for API consistency. Using a DatetimeIndex/PeriodIndex method on a Series will now raise a TypeError. (GH4551, GH4056, GH5519, GH6380, GH7206).

• Add is_month_start, is_month_end, is_quarter_start, is_quarter_end, is_year_start, is_year_end accessors for DateTimeIndex / Timestamp which return a boolean array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the frequency of the DateTimeIndex / Timestamp (GH4565, GH6998)

• Local variable usage has changed in pandas.eval() / DataFrame.eval() / DataFrame.query() (GH5987). For the DataFrame methods, two things have changed
 – Column names are now given precedence over locals
 – Local variables must be referred to explicitly. This means that even if you have a local variable that is not a column you must still refer to it with the '@' prefix.
 – You can have an expression like df.query('@a < a') with no complaints from pandas about ambiguity of the name a.
 – The top-level pandas.eval() function does not allow you use the '@' prefix and provides you with an error message telling you so.
NameResolutionError was removed because it isn’t necessary anymore.

- Define and document the order of column vs index names in query/eval (GH6676)
- concat will now concatenate mixed Series and DataFrames using the Series name or numbering columns as needed (GH2385). See the docs
- Slicing and advanced/boolean indexing operations on Index classes as well as Index.delete() and Index.drop() methods will no longer change the type of the resulting index (GH6440, GH7040)

```
In [6]: i = pd.Index([1, 2, 3, 'a', 'b', 'c'])
In [7]: i[[0,1,2]]
Out[7]: Index([1, 2, 3], dtype='object')
In [8]: i.drop(['a', 'b', 'c'])
Out[8]: Index([1, 2, 3], dtype='object')
```

Previously, the above operation would return Int64Index. If you’d like to do this manually, use index.astype()

```
In [9]: i[[0,1,2]].astype(np.int_)
Out[9]: Int64Index([1, 2, 3], dtype='int64')
```

- set_index no longer converts MultiIndexes to an Index of tuples. For example, the old behavior returned an Index in this case (GH6459):

```
# Old behavior, casted MultiIndex to an Index
In [10]: tuple_ind
Out[10]: Index([(u'a', u'c'), (u'a', u'd'), (u'b', u'c'), (u'b', u'd')], dtype='object')
In [11]: df_multi.set_index(tuple_ind)
Out[11]:
   0  1
(a, c) 0.471435 -1.190976
(a, d) 1.432707 -0.312652
(b, c) -0.720589  0.887163
(b, d)  0.859588 -0.636524

# New behavior
In [12]: mi
Out[12]: MultiIndex(levels=[['a', 'b'], ['c', 'd']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
In [13]: df_multi.set_index(mi)
Out[13]:
   0  1
a c 0.471435 -1.190976
d  1.432707 -0.312652
b c -0.720589  0.887163
d  0.859588 -0.636524
```

This also applies when passing multiple indices to set_index:

```
# Old output, 2-level MultiIndex of tuples
In [14]: df_multi.set_index([df_multi.index, df_multi.index])
Out[14]:
   0  1
```

202 Chapter 1. What’s New
• pairwise keyword was added to the statistical moment functions rolling_cov, rolling_corr, ewmcov, ewmcorr, expanding_cov, expanding_corr to allow the calculation of moving window covariance and correlation matrices (GH4950). See Computing rolling pairwise covariances and correlations in the docs.

```python
In [1]: df = DataFrame(np.random.randn(10,4),columns=list('ABCD'))
In [4]: covs = pd.rolling_cov(df[['A','B','C']], df[['B','C','D']], 5, pairwise=True)
In [5]: covs[df.index[-1]]
```

```plaintext
Out[5]:
       B  C  D
A  0.035310 0.326593 -0.505430
B  0.137748 -0.006888 -0.005383
C -0.006888 0.861040 0.020762
```

• Series.iteritems() is now lazy (returns an iterator rather than a list). This was the documented behavior prior to 0.14. (GH6760)

• Added nunique and value_counts functions to Index for counting unique elements. (GH6734)

• stack and unstack now raise a ValueError when the level keyword refers to a non-unique item in the Index (previously raised a KeyError). (GH6738)

• drop unused order argument from Series.sort; args now are in the same order as Series.order; add na_position arg to conform to Series.order (GH6847)

• default sorting algorithm for Series.order is now quicksort, to conform with Series.sort (and numPy defaults)

• add inplace keyword to Series.order/sort to make them inverses (GH6859)

• DataFrame.sort now places NaNs at the beginning or end of the sort according to the na_position parameter. (GH3917)

• accept TextFileReader in concat, which was affecting a common user idiom (GH6583), this was a regression from 0.13.1

• Added factorize functions to Index and Series to get indexer and unique values (GH7090)

• describe on a DataFrame with a mix of Timestamp and string like objects returns a different Index (GH7088). Previously the index was unintentionally sorted.

• Arithmetic operations with only bool dtypes now give a warning indicating that they are evaluated in Python space for +, -, and * operations and raise for all others (GH7011, GH6762, GH7015, GH7210)
```python
x = pd.Series(np.random.rand(10) > 0.5)
y = True
x + y  # warning generated: should do x | y instead
x / y  # this raises because it doesn't make sense
NotImplementedError: operator '/' not implemented for bool dtypes
```

- In HDFStore, `select_as_multiple` will always raise a KeyError, when a key or the selector is not found (GH6177)
- `df['col'] = value` and `df.loc[:, 'col'] = value` are now completely equivalent; previously the `.loc` would not necessarily coerce the dtype of the resultant series (GH6149)
- `dtypes` and `ftypes` now return a series with `dtype=object` on empty containers (GH5740)
- `df.to_csv` will now return a string of the CSV data if neither a target path nor a buffer is provided (GH6061)
- `pd.infer_freq()` will now raise a TypeError if given an invalid Series/Index type (GH6407, GH6463)
- A tuple passed to `DataFrame.sort_index` will be interpreted as the levels of the index, rather than requiring a list of tuple (GH4370)
- all offset operations now return `Timestamp` types (rather than `datetime`), Business/Week frequencies were incorrect (GH4069)
- `to_excel` now converts `np.inf` into a string representation, customizable by the `inf_rep` keyword argument (Excel has no native `inf` representation) (GH6782)
- Replace `pandas.compat.scipy.scoreatpercentile` with `numpy.percentile` (GH6810)
- `.quantile` on a `datetime[ns]` series now returns `Timestamp` instead of `np.datetime64` objects (GH6810)
- change `AssertionError` to `TypeError` for invalid types passed to `concat` (GH6583)
- Raise a `TypeError` when `DataFrame` is passed an iterator as the `data` argument (GH5357)

Display Changes

- The default way of printing large DataFrames has changed. DataFrames exceeding `max_rows` and/or `max_columns` are now displayed in a centrally truncated view, consistent with the printing of a `pandas.Series` (GH5603).

 In previous versions, a DataFrame was truncated once the dimension constraints were reached and an ellipse (...) signaled that part of the data was cut off.
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: pd.options.display.max_rows = 6
In [4]: pd.options.display.max_columns = 6
In [5]: index = pd.DatetimeIndex(start='2001-01-01', freq='D', periods=10)
In [6]: pd.DataFrame(np.arange(10*10).reshape((10,10)),index=index)
Out[6]:
 0 1 2 3 4 5
2001-01-01 0 1 2 3 4 5 ...
2001-01-02 6 7 8 9 10 11...
2001-01-03 12 13 14 15 16 17...
2001-01-04 18 19 20 21 22 23...
2001-01-05 24 25 26 27 28 29...
2001-01-06 30 31 32 33 34 35...
2001-01-07 36 37 38 39 40 41...
2001-01-08 42 43 44 45 46 47...
2001-01-09 48 49 50 51 52 53...
2001-01-10 54 55 56 57 58 59...
[10 rows x 10 columns]

In the current version, large DataFrames are centrally truncated, showing a preview of head and tail in both dimensions.

In [24]: pd.DataFrame(np.arange(10*10).reshape((10,10)),index=index)
Out[24]:
 0 1 2 ... 7 8 9
2001-01-01 0 1 2 ... 7 8 9
2001-01-02 6 7 8 ... 17 18 19
2001-01-03 24 25 26 ... 27 28 29
...
2001-01-08 70 71 72 ... 77 78 79
2001-01-09 80 81 82 ... 87 88 89
2001-01-10 90 91 92 ... 97 98 99
[10 rows x 10 columns]

• allow option 'truncate' for display.show_dimensions to only show the dimensions if the frame is truncated (GH6547).

The default for display.show_dimensions will now be truncate. This is consistent with how Series display length.

In [16]: dfd = pd.DataFrame(np.arange(25).reshape(-1,5), index=[0,1,2,3,4],
columns=[0,1,2,3,4])
show dimensions since this is truncated
In [17]: with pd.option_context('display.max_rows', 2, 'display.max_columns', 2,
 ...: 'display.show_dimensions', 'truncate'):
 ...: print(dfd)
 ...:
 0 ... 4
Regression in the display of a MultiIndex Series with `display.max_rows` is less than the length of the series (GH7101)

- Fixed a bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the `large_repr` set to 'info' (GH7105)
- The `verbose` keyword in `DataFrame.info()`, which controls whether to shorten the info representation, is now `None` by default. This will follow the global setting in `display.max_info_columns`. The global setting can be overridden with `verbose=True` or `verbose=False`.
- Fixed a bug with the `info` repr not honoring the `display.max_info_columns` setting (GH6939)
- Offset/freq info now in Timestamp __repr__ (GH4553)

Text Parsing API Changes

`read_csv()/read_table()` will now be noiser w.r.t invalid options rather than falling back to the PythonParser.

- Raise `ValueError` when `sep` specified with `delim_whitespace=True` in `read_csv()/read_table()` (GH6607)
- Raise `ValueError` when `engine='c'` specified with unsupported options in `read_csv()/read_table()` (GH6607)
- Raise `ValueError` when fallback to python parser causes options to be ignored (GH6607)
- Produce `ParserWarning` on fallback to python parser when no options are ignored (GH6607)
- Translate `sep='\s+'` to `delim_whitespace=True` in `read_csv()/read_table()` if no other C-unsupported options specified (GH6607)

Groupby API Changes

More consistent behaviour for some groupby methods:

- `groupby head and tail` now act more like `filter` rather than an aggregation:
In [19]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])

In [20]: g = df.groupby('A')

In [21]: g.head(1) # filters DataFrame
Out[21]:
 A B
0 1 2
2 5 6

In [22]: g.apply(lambda x: x.head(1)) # used to simply fall-through
Out[22]:
 A B
A
1 0 1 2
5 2 5 6

• groupby head and tail respect column selection:

In [23]: g[['B']].head(1)
Out[23]:
 B
0 2
2 6

• groupby nth now reduces by default; filtering can be achieved by passing as_index=False. With an optional dropna argument to ignore NaN. See the docs.

Reducing

In [24]: df = DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])

In [25]: g = df.groupby('A')

In [26]: g.nth(0)
Out[26]:
 B
A
1 NaN
5 6.0

this is equivalent to g.first()
In [27]: g.nth(0, dropna='any')
Out[27]:
 B
A
1 4.0
5 6.0

this is equivalent to g.last()
In [28]: g.nth(-1, dropna='any')
Out[28]:
 B
A
1 4.0
5 6.0

Filtering
In [29]: gf = df.groupby('A', as_index=False)

In [30]: gf.nth(0)
Out[30]:
 A B
0 1 NaN
2 5 6.0

In [31]: gf.nth(0, dropna='any')
Out[31]:
 A B
 1 4.0
 5 6.0

- groupby will now not return the grouped column for non-cython functions (GH5610, GH5614, GH6732), as its already the index

In [32]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [33]: g = df.groupby('A')

In [34]: g.count()
Out[34]:
 B
 A
 1 1
 5 2

In [35]: g.describe()
Out[35]:
 B
 A
 1 count 1.000000
 mean 4.000000
 std NaN
 min 4.000000
 25% 4.000000
 50% 4.000000
 75% 4.000000

 5 mean 7.000000
 std 1.414214
 min 6.000000
 25% 6.500000
 50% 7.000000
 75% 7.500000
 max 8.000000

[16 rows x 1 columns]

- passing as_index will leave the grouped column in-place (this is not change in 0.14.0)

In [36]: df = DataFrame([[1, np.nan], [1, 4], [5, 6], [5, 8]], columns=['A', 'B'])

In [37]: g = df.groupby('A', as_index=False)

In [38]: g.count()
pandas: powerful Python data analysis toolkit, Release 0.19.2

Out[38]:
A B
0 1 1
1 5 2

In [39]: g.describe()
Out[39]:
A B
0 count 2.0 1.000000
 mean 1.0 4.000000
 std 0.0 NaN
 min 1.0 4.000000
 25% 1.0 4.000000
 50% 1.0 4.000000
 75% 1.0 4.000000
 mean 5.0 7.000000
 std 0.0 1.414214
 min 5.0 6.000000
 25% 5.0 6.500000
 50% 5.0 7.000000
 75% 5.0 7.500000
 max 5.0 8.000000
[16 rows x 2 columns]

• Allow specification of a more complex groupby via pd.Grouper, such as grouping by a Time and a string field simultaneously. See the docs. (GH3794)

• Better propagation/preservation of Series names when performing groupby operations:
 - SeriesGroupBy.agg will ensure that the name attribute of the original series is propagated to the result (GH6265).
 - If the function provided to GroupBy.apply returns a named series, the name of the series will be kept as the name of the column index of the DataFrame returned by GroupBy.apply (GH6124). This facilitates DataFrame.stack operations where the name of the column index is used as the name of the inserted column containing the pivoted data.

SQL

The SQL reading and writing functions now support more database flavors through SQLAlchemy (GH2717, GH4163, GH5950, GH6292). All databases supported by SQLAlchemy can be used, such as PostgreSQL, MySQL, Oracle, Microsoft SQL server (see documentation of SQLAlchemy on included dialects).

The functionality of providing DBAPI connection objects will only be supported for sqlite3 in the future. The 'mysql' flavor is deprecated.

The new functions read_sql_query() and read_sql_table() are introduced. The function read_sql() is kept as a convenience wrapper around the other two and will delegate to specific function depending on the provided input (database table name or sql query).

In practice, you have to provide a SQLAlchemy engine to the sql functions. To connect with SQLAlchemy you use the create_engine() function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For an in-memory sqlite database:

In [40]: from sqlalchemy import create_engine
Create your connection.
In [41]: engine = create_engine('sqlite:///memory:)

This engine can then be used to write or read data to/from this database:

In [42]: df = pd.DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'c']})
In [43]: df.to_sql('db_table', engine, index=False)

You can read data from a database by specifying the table name:

In [44]: pd.read_sql_table('db_table', engine)
Out[44]:
 A B
0 1 a
1 2 b
2 3 c

or by specifying a sql query:

In [45]: pd.read_sql_query('SELECT * FROM db_table', engine)
Out[45]:
 A B
0 1 a
1 2 b
2 3 c

Some other enhancements to the sql functions include:

- support for writing the index. This can be controlled with the index keyword (default is True).
- specify the column label to use when writing the index with index_label.
- specify string columns to parse as datetimes withh the parse_dates keyword in read_sql_query() and read_sql_table().

Warning: Some of the existing functions or function aliases have been deprecated and will be removed in future versions. This includes: tquery, uquery, read_frame, frame_query, write_frame.

Warning: The support for the 'mysql' flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).

MultiIndexing Using Slicers

In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.

You can use slice(\(\text{None}\)) to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as slice(\(\text{None}\)).

As usual, both sides of the slicers are included as this is label indexing.
Warning: You should specify all axes in the .loc specifier, meaning the indexer for the index and for the columns. Their are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex for the rows.

You should do this:
```
df.loc[(slice('A1','A3'),.....),:]  
```
rather than this:
```
df.loc[(slice('A1','A3'),.....)] 
```

Warning: You will need to make sure that the selection axes are fully lexsorted!

In [46]: def mklbl(prefix,n):
 : return "%s%s" % (prefix,i) for i in range(n)
 :

In [47]: index = MultiIndex.from_product([mklbl('A',4),
 : mklbl('B',2),
 : mklbl('C',4),
 : mklbl('D',2)])
 :

In [48]: columns = MultiIndex.from_tuples([('a','foo'),('a','bar'),
 : ('b','foo'),('b','bah')],
 : names=['lvl0', 'lvl1'])
 :

In [49]: df = DataFrame(np.arange(len(index)\nlen(columns)).reshape((len(index),
 : len(columns))),
 : index=index,
 : columns=columns).sortlevel().sortlevel(axis=1)
 :

In [50]: df
Out[50]:
 lvl0 a b
 lvl1
 A0 B0 C0 D0 1 0 3 2
 C1 D1 9 8 11 10
 D1 C1 13 12 15 14
 C2 D2 17 16 19 18
 D2 C2 21 20 23 22
 C3 D3 25 24 27 26

 A3 B1 C0 D1 229 228 231 230
 C1 D1 233 232 235 234
 D1 C1 237 236 239 238
 C2 D2 241 240 243 242
 D2 C2 245 244 247 246
 C3 D3 249 248 251 250
Basic multi-index slicing using slices, lists, and labels.

```python
In [51]: df.loc[(slice('A1','A3'), slice(None), ['C1','C3']),:]
Out[51]:
lvl0  a  b
lvl1 bar foo bah foo
A1 B0 C1 D0 73 72 75 74
   D1 77 76 79 78
   C3 D0 89 88 91 90
   D1 93 92 95 94
B1 C1 D0 105 104 107 106
   D1 109 108 111 110
   C3 D0 121 120 123 122
   ... ... ... ... ...
A3 B0 C1 D1 205 204 207 206
   C3 D0 217 216 219 218
   D1 221 220 223 222
   B1 C1 D0 233 232 235 234
   D1 237 236 239 238
   C3 D0 249 248 251 250
   D1 253 252 255 254
[24 rows x 4 columns]
```

You can use a `pd.IndexSlice` to shortcut the creation of these slices

```python
In [52]: idx = pd.IndexSlice

In [53]: df.loc[idx[:,:,['C1','C3']],idx[:,'foo']]
Out[53]:
lvl0  a  b
lvl1 bar foo bah foo
A0 B0 C1 D0 8 10
   D1 12 14
   C3 D0 24 26
   D1 28 30
B1 C1 D0 40 42
   D1 44 46
   C3 D0 56 58
   ... ... ...
A3 B0 C1 D1 204 206
   C3 D0 216 218
   D1 220 222
   B1 C1 D0 232 234
   D1 236 238
   C3 D0 248 250
   D1 252 254
[32 rows x 2 columns]
```

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

```python
In [54]: df.loc['A1',(slice(None),'foo')]
Out[54]:
```

212 Chapter 1. What’s New
In [55]: df.loc[idx[:,:,['C1','C3']],idx[:,['foo']]]
Out[55]:
lv0 a b
lv1 foo foo
B0 C0 D0 64 66
 D1 68 70
 C1 D0 72 74
 D1 76 78
 C2 D0 80 82
 D1 84 86
 C3 D0 88 90
...
B1 C0 D1 100 102
 C1 D0 104 106
 D1 108 110
 C2 D0 112 114
 D1 116 118
 C3 D0 120 122
 D1 124 126
[16 rows x 2 columns]

Using a boolean indexer you can provide selection related to the values.

In [56]: mask = df[('a','foo')]>200

In [57]: df.loc[idx[mask,:,['C1','C3']],idx[:,['foo']]]
Out[57]:
lv0 a b
lv1 foo foo
A0 B0 C1 D0 8 10
 D1 12 14
 C3 D0 24 26
 D1 28 30
 B1 C1 D0 40 42
 D1 44 46
 C3 D0 56 58
...
A3 B0 C1 D1 204 206
 C3 D0 216 218
 D1 220 222
 B1 C1 D0 232 234
 D1 236 238
 C3 D0 248 250
 D1 252 254
[32 rows x 2 columns]
You can also specify the `axis` argument to `.loc` to interpret the passed slicers on a single axis.

```
In [58]: df.loc(axis=0)[::, ['C1', 'C3']]
Out[58]:
   lv10  a  b
  lv11
A0  B0  C1  D0  9  8  11  10
  D1  13  12  15  14
  C3  D0  25  24  27  26
  D1  29  28  31  30
B1  C1  D0  41  40  43  42
  D1  45  44  47  46
  C3  D0  57  56  59  58
...   ... ... ... ...
A3  B0  C1  D1  205 204 207 206
  C3  D0  217 216 219 218
  D1  221 220 223 222
B1  C1  D0  233 232 235 234
  D1  237 236 239 238
  C3  D0  249 248 251 250
  D1  253 252 255 254
[32 rows x 4 columns]
```

Furthermore you can set the values using these methods.

```
In [59]: df2 = df.copy()

In [60]: df2.loc(axis=0)[::, ['C1', 'C3']] = -10

In [61]: df2
Out[61]:
   lv10  a  b
  lv11
A0  B0  C1  D0  1  0  3  2
  D1  4  7  6
  C1  D0 -10 -10 -10 -10
  D1 -10 -10 -10 -10
  C2  D0  17  16  19  18
  D1  21  20  23  22
  C3  D0 -10 -10 -10 -10
...   ... ... ... ...
A3  B1  C0  D1  229 228 231 230
  C1  D0 -10 -10 -10 -10
  D1 -10 -10 -10 -10
  C2  D0  241 240 243 242
  D1  245 244 247 246
  C3  D0 -10 -10 -10 -10
  D1 -10 -10 -10 -10
[64 rows x 4 columns]
```

You can use a right-hand-side of an alignable object as well.

```
In [62]: df2 = df.copy()

In [63]: df2.loc[idx[::, ['C1', 'C3']], ::] = df2*1000

In [64]: df2
```
Plotting

- Hexagonal bin plots from `DataFrame.plot` with `kind='hexbin'` (GH5478), See the docs.
- `DataFrame.plot` and `Series.plot` now supports area plot with specifying `kind='area'` (GH6656), See the docs.
- Pie plots from `Series.plot` and `DataFrame.plot` with `kind='pie'` (GH6976), See the docs.
- Plotting with Error Bars is now supported in the `.plot` method of `DataFrame` and `Series` objects (GH3796, GH6834), See the docs.
- `DataFrame.plot` and `Series.plot` now support a `table` keyword for plotting `matplotlib.Table`, See the docs. The `table` keyword can receive the following values.
 - False: Do nothing (default).
 - True: Draw a table using the `DataFrame` or `Series` called `plot` method. Data will be transposed to meet `matplotlib`'s default layout.
 - `DataFrame` or `Series`: Draw `matplotlib.table` using the passed data. The data will be drawn as displayed in print method (not transposed automatically). Also, helper function `pandas.tools.plotting.table` is added to create a table from `DataFrame` and `Series`, and add it to an `matplotlib.Axes`.
- `plot(legend='reverse')` will now reverse the order of legend labels for most plot kinds. (GH6014)
- Line plot and area plot can be stacked by `stacked=True` (GH6656)
- Following keywords are now acceptable for `DataFrame.plot()` with `kind='bar'` and `kind='barh'`:
 - `width`: Specify the bar width. In previous versions, static value 0.5 was passed to `matplotlib` and it cannot be overwritten. (GH6604)
 - `align`: Specify the bar alignment. Default is `center` (different from `matplotlib`). In previous versions, `pandas` passes `align='edge'` to `matplotlib` and adjust the location to `center` by itself, and it results `align` keyword is not applied as expected. (GH4525)
- **position**: Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1(right/top-end). Default is 0.5 (center). *(GH6004)*

Because of the default *align* value changes, coordinates of bar plots are now located on integer values (0.0, 1.0, 2.0 ...). This is intended to make bar plot be located on the same coordinates as line plot. However, bar plot may differs unexpectedly when you manually adjust the bar location or drawing area, such as using *set_xlim, set_ylim*, etc. In this cases, please modify your script to meet with new coordinates.

- The `parallel_coordinates()` function now takes argument *color* instead of *colors*. A `FutureWarning` is raised to alert that the old *colors* argument will not be supported in a future release. *(GH6956)*

- The `parallel_coordinates()` and `andrews_curves()` functions now take positional argument *frame* instead of *data*. A `FutureWarning` is raised if the old *data* argument is used by name. *(GH6956)*

- `DataFrame.boxplot()` now supports *layout* keyword *(GH6769)*

- `DataFrame.boxplot()` has a new keyword argument, *return_type*. It accepts 'dict', 'axes', or 'both', in which case a namedtuple with the matplotlib axes and a dict of matplotlib Lines is returned.

Prior Version Deprecations/Changes

There are prior version deprecations that are taking effect as of 0.14.0.

- Remove `DateRange` in favor of `DatetimeIndex` *(GH6816)*
- Remove *column* keyword from `DataFrame.sort` *(GH4370)*
- Remove *precision* keyword from `set_eng_float_format()` *(GH395)*
- Remove `force_unicode` keyword from `DataFrame.to_string(),DataFrame.to_latex(),DataFrame.to_html()`; these function encode in unicode by default *(GH2244,GH2225)*
- Remove `nanRep` keyword from `DataFrame.to_csv()` and `DataFrame.to_string()` *(GH275)*
- Remove *unique* keyword from `HDFStore.select_column()` *(GH3256)*
- Remove `inferTimeRule` keyword from `Timestamp.offset()` *(GH391)*
- Remove *name* keyword from `get_data_yahoo()` and `get_data_google()` *(commit b921d1a)*
- Remove `offset` keyword from `DatetimeIndex` constructor *(commit 3136390)*
- Remove `time_rule` from several rolling-moment statistical functions, such as `rolling_sum()` *(GH1042)*
- Removed neg – boolean operations on numpy arrays in favor of `inv ~`, as this is going to be deprecated in numpy 1.9 *(GH6960)*

Deprecations

- The `pivot_table()/DataFrame.pivot_table()` and `crosstab()` functions now take arguments *index and columns* instead of *rows and cols*. A `FutureWarning` is raised to alert that the old *rows and cols* arguments will not be supported in a future release *(GH5505)*

- The `DataFrame.drop_duplicates()` and `DataFrame.duplicated()` methods now take argument *subset* instead of *cols* to better align with `DataFrame.dropna()`. A `FutureWarning` is raised to alert that the old *cols* arguments will not be supported in a future release *(GH6680)*

- The `DataFrame.to_csv()` and `DataFrame.to_excel()` functions now takes argument *columns* instead of *cols*. A `FutureWarning` is raised to alert that the old *cols* arguments will not be supported in a future release *(GH6645)*
• Indexers will warn FutureWarning when used with a scalar indexer and a non-floating point Index (GH4892, GH6960)

```python
# non-floating point indexes can only be indexed by integers / labels
In [1]: Series(1,np.arange(5))[3.0]
    pandas/core/index.py:469: FutureWarning: scalar indexers for index type, Int64Index should be integers and not floating point
Out[1]: 1

In [2]: Series(1,np.arange(5)).iloc[3.0]
    pandas/core/index.py:469: FutureWarning: scalar indexers for index type, Int64Index should be integers and not floating point
Out[2]: 1

In [3]: Series(1,np.arange(5)).iloc[3.0:4]
    pandas/core/index.py:527: FutureWarning: slice indexers when using iloc, should be integers and not floating point
Out[3]:
   3  1
   dtype: int64

# these are Float64Indexes, so integer or floating point is acceptable
In [4]: Series(1,np.arange(5.))[3]
Out[4]: 1

In [5]: Series(1,np.arange(5.))[3.0]
Out[6]: 1
```

• Numpy 1.9 compat w.r.t. deprecation warnings (GH6960)

• Panel.shift() now has a function signature that matches DataFrame.shift(). The old positional argument lags has been changed to a keyword argument periods with a default value of 1. A FutureWarning is raised if the old argument lags is used by name. (GH6910)

• The order keyword argument of factorize() will be removed. (GH6926)

• Remove the copy keyword from DataFrame.xs(), Panel.major_xs(), Panel.minor_xs(). A view will be returned if possible, otherwise a copy will be made. Previously the user could think that copy=False would ALWAYS return a view. (GH6894)

• The parallel_coordinates() function now takes argument color instead of colors. A FutureWarning is raised to alert that the old colors argument will not be supported in a future release. (GH6956)

• The parallel_coordinates() and andrews_curves() functions now take positional argument frame instead of data. A FutureWarning is raised if the old data argument is used by name. (GH6956)

• The support for the 'mysql' flavor when using DBAPI connection objects has been deprecated. MySQL will be further supported with SQLAlchemy engines (GH6900).

• The following io.sql functions have been deprecated: tquery, uquery, read_frame, frame_query, write_frame.

• The percentile_width keyword argument in describe() has been deprecated. Use the percentiles keyword instead, which takes a list of percentiles to display. The default output is unchanged.

• The default return type of boxplot() will change from a dict to a matplotlib Axes in a future release. You can use the future behavior now by passing return_type='axes' to boxplot.
Known Issues

- OpenPyXL 2.0.0 breaks backwards compatibility (GH7169)

Enhancements

- DataFrame and Series will create a MultiIndex object if passed a tuples dict, See the docs (GH3323)

```
In [65]: Series({(('a', 'b')): 1, ('a', 'a')): 0,
.....:    ('a', 'c')): 2, ('b', 'a')): 3, ('b', 'b')): 4})
.....:
Out[65]:
 a a 0
 b 1
 c 2
 b a 3
 b 4
dtype: int64

In [66]: DataFrame({(('a', 'b')): {('A', 'B')): 1, ('A', 'C')): 2,
.....:    ('a', 'a')): {('A', 'C')): 3, ('A', 'B')): 4},
.....:     ('a', 'c')): {('A', 'B')): 5, ('A', 'C')): 6},
.....:     ('b', 'a')): {('A', 'C')): 7, ('A', 'B')): 8},
.....:     ('b', 'b')): {('A', 'D')): 9, ('A', 'B')): 10})
.....:
Out[66]:
   a b
  a b c a b
 A B 4.0 1.0 5.0 8.0 10.0
 C 3.0 2.0 6.0 7.0 NaN
 D NaN NaN NaN NaN 9.0
```

- Added the sym_diff method to Index (GH5543)

- DataFrame.to_latex now takes a longtable keyword, which if True will return a table in a longtable environment. (GH6617)

- Add option to turn off escaping in DataFrame.to_latex (GH6472)

- pd.read_clipboard will, if the keyword sep is unspecified, try to detect data copied from a spreadsheet and parse accordingly. (GH6223)

- Joining a singly-indexed DataFrame with a multi-indexed DataFrame (GH3662)

 See the docs. Joining multi-index DataFrames on both the left and right is not yet supported ATM.
In [69]: portfolio = DataFrame(dict(household_id = [1,2,2,3,3,3,4],
 asset_id = ["nl0000301109","nl0000289783",
 "gb00b03mlx29","gb00b03mlx29","lu0197800237",
 "n10000289965",np.nan],
 name = ["ABN Amro","Robeco","Royal Dutch Shell",
 "Royal Dutch Shell","AAB Eastern Europe Equity Fund",
 "Postbank BioTech Fonds",np.nan],
 share = [1.0,0.4,0.6,0.15,0.6,0.25,1.0]),
 columns = ['household_id','asset_id','name','share']).set_index(['household_id','asset_id'])

In [70]: portfolio
Out[70]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>asset_id</th>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nl0000301109</td>
<td>ABN Amro</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>n10000289783</td>
<td>Robeco</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>gb00b03mlx29</td>
<td>Royal Dutch Shell</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
<td>Royal Dutch Shell</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>lu0197800237</td>
<td>AAB Eastern Europe Equity Fund</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>n10000289965</td>
<td>Postbank BioTech Fonds</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>NaN</td>
<td>NaN</td>
<td>1.00</td>
</tr>
</tbody>
</table>

In [71]: household.join(portfolio, how='inner')
Out[71]:

<table>
<thead>
<tr>
<th>household_id</th>
<th>asset_id</th>
<th>male</th>
<th>wealth</th>
<th>name</th>
<th>share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>nl0000301109</td>
<td>0</td>
<td>196087.3</td>
<td>ABN Amro</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>n10000289783</td>
<td>1</td>
<td>316478.7</td>
<td>Robeco</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>gb00b03mlx29</td>
<td>1</td>
<td>316478.7</td>
<td>Royal Dutch Shell</td>
<td>0.60</td>
</tr>
<tr>
<td>3</td>
<td>gb00b03mlx29</td>
<td>0</td>
<td>294750.0</td>
<td>Royal Dutch Shell</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>lu0197800237</td>
<td>0</td>
<td>294750.0</td>
<td>AAB Eastern Europe Equity Fund</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>n10000289965</td>
<td>0</td>
<td>294750.0</td>
<td>Postbank BioTech Fonds</td>
<td>0.25</td>
</tr>
</tbody>
</table>

- `quotechar`, `doublequote`, and `escapechar` can now be specified when using `DataFrame.to_csv` (GH5414, GH4528)
- Partially sort by only the specified levels of a MultiIndex with the `sort_remaining` boolean kwarg. (GH3984)
- Added `to_julian_date` to `TimeStamp` and `DatetimeIndex`. The Julian Date is used primarily in astronomy and represents the number of days from noon, January 1, 4713 BC. Because nanoseconds are used to define the time in pandas the actual range of dates that you can use is 1678 AD to 2262 AD. (GH4041)
pandas: powerful Python data analysis toolkit, Release 0.19.2

- DataFrame.to_stata will now check data for compatibility with Stata data types and will upcast when needed. When it is not possible to losslessly upcast, a warning is issued (GH6327)
- DataFrame.to_stata and StataWriter will accept keyword arguments time_stamp and data_label which allow the time stamp and dataset label to be set when creating a file. (GH6545)
- pandas.io.gbq now handles reading unicode strings properly. (GH5940)
- Holidays Calendars are now available and can be used with the CustomBusinessDay offset (GH6719)
- Float64Index is now backed by a float64 dtype ndarray instead of an object dtype array (GH6471).
- Implemented Panel.pct_change (GH6904)
- Added how option to rolling-moment functions to dictate how to handle resampling: rolling_max() defaults to max, rolling_min() defaults to min, and all others default to mean (GH6297)
- CustomBusinessMonthBegin and CustomBusinessMonthEnd are now available (GH6866)
- Series.quantile() and DataFrame.quantile() now accept an array of quantiles.
- describe() now accepts an array of percentiles to include in the summary statistics (GH4196)
- pivot_table can now accept Group by index and columns keywords (GH6913)

In [72]: import datetime

In [73]: df = DataFrame({
 'Branch': 'A A A A A B'.split(),
 'Buyer': 'Carl Mark Carl Joe Joe'.split(),
 'Quantity': [1, 3, 5, 1, 8, 1],
 'Date': [datetime.datetime(2013,11,1,13,0), datetime.datetime(2013,9,
 ˓→1,13,5),
 datetime.datetime(2013,10,1,20,0), datetime.datetime(2013,10,
 ˓→2,10,0),
 datetime.datetime(2013,11,1,20,0), datetime.datetime(2013,10,
 ˓→2,10,0)],
 'PayDay': [datetime.datetime(2013,10,4,0,0), datetime.datetime(2013,
 ˓→10,15,13,5),
 datetime.datetime(2013,9,5,20,0), datetime.datetime(2013,
 ˓→11,2,10,0),
 datetime.datetime(2013,10,7,20,0), datetime.datetime(2013,
 ˓→9,5,10,0)])})

In [74]: df

Out[74]:
 Branch Buyer Date PayDay Quantity
0 A Carl 2013-11-01 13:00:00 2013-10-04 00:00:00 1
1 A Mark 2013-09-01 13:05:00 2013-10-15 13:05:00 3
2 A Carl 2013-10-01 20:00:00 2013-09-05 20:00:00 5
3 A Carl 2013-10-02 10:00:00 2013-11-02 10:00:00 1
4 A Joe 2013-11-01 20:00:00 2013-10-07 20:00:00 8
5 B Joe 2013-10-02 10:00:00 2013-09-05 10:00:00 1

In [75]: pivot_table(df, index=Grouper(freq='M', key='Date'),
 columns=Grouper(freq='M', key='PayDay'),
 values='Quantity', aggfunc=np.sum)

Out[75]:
 PayDay Date
• Arrays of strings can be wrapped to a specified width (`str.wrap`) (GH6999)

• Add `nsmallest()` and `Series.nlargest()` methods to `Series`, See the docs (GH3960)

• `PeriodIndex` fully supports partial string indexing like `DatetimeIndex` (GH7043)

```
In [76]: prng = period_range('2013-01-01 09:00', periods=100, freq='H')
In [77]: ps = Series(np.random.randn(len(prng)), index=prng)
In [78]: ps
Out[78]:
2013-01-01 09:00  0.015696
2013-01-01 10:00 -2.242685
2013-01-01 11:00  1.150036
2013-01-01 12:00  0.991946
2013-01-01 13:00  0.953324
2013-01-01 14:00 -2.021255
2013-01-01 15:00  0.334077
...  
2013-01-05 06:00  0.566534
2013-01-05 07:00  0.503592
2013-01-05 08:00  0.285296
2013-01-05 09:00  0.484288
2013-01-05 10:00  1.363482
2013-01-05 11:00 -0.781105
2013-01-05 12:00 -0.468018
Freq: H, dtype: float64
```

```
In [79]: ps['2013-01-02']
Out[79]:
2013-01-02 00:00  0.553439
2013-01-02 01:00  1.318152
2013-01-02 02:00 -0.469305
2013-01-02 03:00  0.675554
2013-01-02 04:00 -1.817027
2013-01-02 05:00 -0.183109
2013-01-02 06:00  1.058969
...  
2013-01-02 17:00  0.076200
2013-01-02 18:00 -0.566446
2013-01-02 19:00  0.036142
2013-01-02 20:00 -2.074978
2013-01-02 21:00  0.247792
2013-01-02 22:00 -0.897157
2013-01-02 23:00 -0.136795
Freq: H, dtype: float64
```

• `read_excel` can now read milliseconds in Excel dates and times with `xlrd >= 0.9.3`. (GH5945)

• `pd.stats.moments.rolling_var` now uses Welford’s method for increased numerical stability (GH6817)

• `pd.expanding_apply` and `pd.rolling_apply` now take args and kwargs that are passed on to the func (GH6289)

• `DataFrame.rank()` now has a percentage rank option (GH5971)
• Series.rank() now has a percentage rank option (GH5971)
• Series.rank() and DataFrame.rank() now accept method='dense' for ranks without gaps (GH6514)
• Support passing encoding with xlwt (GH3710)
• Refactor Block classes removing Block.items attributes to avoid duplication in item handling (GH6745, GH6988).
• Testing statements updated to use specialized asserts (GH6175)

Performance

• Performance improvement when converting DatetimeIndex to floating ordinals using DatetimeConverter (GH6636)
• Performance improvement for DataFrame.shift (GH5609)
• Performance improvement in indexing into a multi-indexed Series (GH5567)
• Performance improvements in single-dtyped indexing (GH6484)
• Improve performance of DataFrame construction with certain offsets, by removing faulty caching (e.g. MonthEnd,BusinessMonthEnd), (GH6479)
• Improve performance of CustomBusinessDay (GH6584)
• improve performance of slice indexing on Series with string keys (GH6341, GH6372)
• Performance improvement for DataFrame.from_records when reading a specified number of rows from an iterable (GH6700)
• Performance improvements in timedelta conversions for integer dtypes (GH6754)
• Improved performance of compatible pickles (GH6899)
• Improve performance in certain reindexing operations by optimizing take_2d (GH6749)
• GroupBy.count() is now implemented in Cython and is much faster for large numbers of groups (GH7016).

Experimental

There are no experimental changes in 0.14.0

Bug Fixes

• Bug in Series ValueError when index doesn’t match data (GH6532)
• Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
• Bug in pd.DataFrame.sort_index where mergesort wasn't stable when ascending=False (GH6399)
• Bug in pd.tseries.frequencies.to_offset when argument has leading zeroes (GH6391)
• Bug in version string gen. for dev versions with shallow clones / install from tarball (GH6127)
• Inconsistent tz parsing Timestamp/to_datetime for current year (GH5958)
• Indexing bugs with reordered indexes (GH6252, GH6254)
• Bug in `.xs` with a Series multiindex (GH6258, GH5684)
• Bug in conversion of a string types to a DatetimeIndex with a specified frequency (GH6273, GH6274)
• Bug in `eval` where type-promotion failed for large expressions (GH6205)
• Bug in interpolate with `inplace=True` (GH6281)
• `HDFStore.remove` now handles start and stop (GH6177)
• `HDFStore.select_as_multiple` handles start and stop the same way as `select` (GH6177)
• `HDFStore.select_as_coordinates` and `select_column` works with a where clause that results in filters (GH6177)
• Regression in join of non_unique_indexes (GH6329)
• Issue with groupby `agg` with a single function and a a mixed-type frame (GH6337)
• Bug in `DataFrame.replace()` when passing a non-bool to_replace argument (GH6332)
• Raise when trying to align on different levels of a multi-index assignment (GH3738)
• Bug in setting complex dtypes via boolean indexing (GH6345)
• Bug in TimeGrouper/resample when presented with a non-monotonic DatetimeIndex that would return invalid results. (GH4161)
• Bug in index name propogation in TimeGrouper/resample (GH4161)
• TimeGrouper has a more compatible API to the rest of the groupers (e.g. groups was missing) (GH3881)
• Bug in multiple grouping with a TimeGrouper depending on target column order (GH6764)
• Bug in `pd.eval` when parsing strings with possible tokens like `&` (GH6351)
• Bug correctly handle placements of `-inf` in Panels when dividing by integer 0 (GH6178)
• `DataFrame.shift` with `axis=1` was raising (GH6371)
• Disabled clipboard tests until release time (run locally with `nose tests -A disabled`) (GH6048).
• Bug in `DataFrame.replace()` when passing a nested dict that contained keys not in the values to be replaced (GH6342)
• `str.match` ignored the na flag (GH6609).
• Bug in take with duplicate columns that were not consolidated (GH6240)
• Bug in interpolate changing dtypes (GH6290)
• Bug in `Series.get`, was using a buggy access method (GH6383)
• Bug in `hdfstore` queries of the form `where=[('date','>=',datetime(2013,1,1)),('date','<=',datetime(2014,1,1))]>` (GH6313)
• Bug in `DataFrame.dropna` with duplicate indices (GH6355)
• Regression in chained getitem indexing with embedded list-like from 0.12 (GH6394)
• `Float64Index` with nans not comparing correctly (GH6401)
• `eval/query` expressions with strings containing the `@` character will now work (GH6366).
• Bug in `Series.reindex` when specifying a method with some nan values was inconsistent (noted on a resample) (GH6418)
• Bug in `DataFrame.replace()` where nested dicts were erroneously depending on the order of dictionary keys and values (GH5338).
- Perf issue in concatting with empty objects (GH3259)
- Clarify sorting of `sym_diff` on Index objects with NaN values (GH6444)
- Regression in `MultiIndex.from_product` with a DatetimeIndex as input (GH6439)
- Bug in `str.extract` when passed a non-default index (GH6348)
- Bug in `str.split` when passed `pat=None` and `n=1` (GH6466)
- Bug in `io.data.DataReader` when passed "F-F_Momentum_Factor" and `data_source="famafrench" (GH6460)
- Bug in `sum` of a timedelta64[ns] series (GH6462)
- Bug in `resample` with a timezone and certain offsets (GH6397)
- Bug in `iat/iloc` with duplicate indices on a Series (GH6493)
- Bug in `read_html` where nan’s were incorrectly being used to indicate missing values in text. Should use the empty string for consistency with the rest of pandas (GH5129).
- Bug in `read_html` tests where redirected invalid URLs would make one test fail (GH6445).
- Bug in multi-axis indexing using `.loc` on non-unique indices (GH6504)
- Bug that caused `_ref_locs` corruption when slice indexing across columns axis of a DataFrame (GH6525)
- Regression from 0.13 in the treatment of numpy `datetime64` non-ns dtypes in Series creation (GH6529)
- `.names` attribute of MultiIndexes passed to `set_index` are now preserved (GH6459).
- Bug in `setitem` with a duplicate index and an alignable rhs (GH6541)
- Bug in `setitem` with `.loc` on mixed integer Indexes (GH6546)
- Bug in `pd.read_stata` which would use the wrong data types and missing values (GH6327)
- Bug in `DataFrame.to_stata` that lead to data loss in certain cases, and could be exported using the wrong data types and missing values (GH6335)
- `StataWriter` replaces missing values in string columns by empty string (GH6802)
- Inconsistent types in `Timestamp` addition/subtraction (GH6543)
- Bug in preserving frequency across `Timestamp` addition/subtraction (GH4547)
- Bug in empty list lookup caused `IndexError` exceptions (GH6536, GH6551)
- `Series.quantile` raising on an object dtype (GH6555)
- Bug in `.xs` with a nan in level when dropped (GH6574)
- Bug in `fillna` with method='bfill/ffill' and datetime64[ns] dtype (GH6587)
- Bug in `sql writing` with mixed dtypes possibly leading to data loss (GH6509)
- Bug in `Series.pop` (GH6600)
- Bug in `iloc` indexing when positional indexer matched `Int64Index` of the corresponding axis and no re-ordering happened (GH6612)
- Bug in `fillna` with limit and value specified
- Bug in `DataFrame.to_stata` when columns have non-string names (GH4558)
- Bug in compat with `np.compress`, surfaced in (GH6658)
- Bug in binary operations with a rhs of a Series not aligning (GH6681)
• Bug in `DataFrame.to_stata` which incorrectly handles NaN values and ignores `with_index` keyword argument (GH6685)
• Bug in resample with extra bins when using an evenly divisible frequency (GH4076)
• Bug in consistency of groupby aggregation when passing a custom function (GH6715)
• Bug in resample when `how=None` re-sample freq is the same as the axis frequency (GH5955)
• Bug in downcasting inference with empty arrays (GH6733)
• Bug in `obj.blocks` on sparse containers dropping all but the last items of same for dtype (GH6748)
• Bug in unpickling `NaT` (NaTType) (GH4606)
• Bug in `DataFrame.replace()` where regex metacharacters were being treated as regexes even when `regex=False` (GH6777).
• Bug in timedelta ops on 32-bit platforms (GH6808)
• Bug in setting a tz-aware index directly via `.index` (GH6785)
• Bug in expressions.py where numexpr would try to evaluate arithmetic ops (GH6762).
• Bug in Makefile where it didn’t remove Cython generated C files with `make clean` (GH6166)
• Bug in `DataFrame._reduce` where non bool-like (0/1) integers were being converted into bools. (GH6806)
• Regression from 0.13 with `fillna` and a Series on datetime-like (GH6344)
• Bug in adding `np.timedelta64` to `DatetimeIndex` with timezone outputs incorrect results (GH6818)
• Bug in `DataFrame.replace()` where changing a dtype through replacement would only replace the first occurrence of a value (GH6689)
• Better error message when passing a frequency of ‘MS’ in `Period` construction (GH5332)
• Bug in `Series._unicode__` when max_rows=None and the Series has more than 1000 rows. (GH6863)
• Bug in `groupby.get_group` where a datetlike wasn’t always accepted (GH5267)
• Bug in `groupBy.get_group created by TimeGrouper raises AttributeError` (GH6914)
• Bug in `DatetimeIndex.tz_localize` and `DatetimeIndex.tz_convert` converting `NaT` incorrectly (GH5546)
• Bug in arithmetic operations affecting `NaT` (GH6873)
• Bug in `Series.str.extract` where the resulting `Series` from a single group match wasn’t renamed to the group name
• Bug in `DataFrame.to_csv` where setting `index=False` ignored the header kwarg (GH6186)
• Bug in `DataFrame.plot` and `Series.plot`, where the legend behave inconsistently when plotting to the same axes repeatedly (GH6678)
• Internal tests for patching __finalize__/ bug in merge not finalizing (GH6923, GH6927)
• accept `TextFileReader` in `concat`, which was affecting a common user idiom (GH6583)
• Bug in C parser with leading whitespace (GH3374)
• Bug in C parser with `delim_whitespace=True` and `\r-delimited lines`
• Bug in python parser with explicit multi-index in row following column header (GH6893)
• Bug in Series.rank and DataFrame.rank that caused small floats (<1e-13) to all receive the same rank (GH6886)
• Bug in DataFrame.apply with functions that used *args or **kwargs and returned an empty result (GH6952)
• Bug in sum/mean on 32-bit platforms on overflows (GH6915)
• Moved Panel.shift to NDFrame.slice_shift and fixed to respect multiple dtypes. (GH6959)
• Bug in enabling subplots=True in DataFrame.plot only has single column raises TypeError, and Series.plot raises AttributeError (GH6951)
• Bug in DataFrame.plot draws unnecessary axes when enabling subplots and kind=scatter (GH6951)
• Bug in read_csv from a filesystem with non-utf-8 encoding (GH6807)
• Bug in iloc when setting / aligning (GH6766)
• Bug causing UnicodeEncodeError when get_dummies called with unicode values and a prefix (GH6885)
• Bug in timeseries-with-frequency plot cursor display (GH5453)
• Bug surfaced in groupby.plot when using a Float64Index (GH7025)
• Stopped tests from failing if options data isn’t able to be downloaded from Yahoo (GH7034)
• Bug in parallel_coordinates and radviz where reordering of class column caused possible color/class mismatch (GH6956)
• Bug in radviz and andrews_curves where multiple values of ‘color’ were being passed to plotting method (GH6956)
• Bug in Float64Index.isin() where containing nans would make indices claim that they contained all the things (GH7066).
• Bug in DataFrame.boxplot where it failed to use the axis passed as the ax argument (GH3578)
• Bug in the XlsxWriter and XlwtWriter implementations that resulted in datetime columns being formatted without the time (GH7075) were being passed to plotting method
• read_fwf() treats None in colspec like regular python slices. It now reads from the beginning or until the end of the line when colspec contains a None (previously raised a TypeError)
• Bug in cache coherence with chained indexing and slicing; add _is_view property to NDFrame to correctly predict views; mark is_copy on xs only if its an actual copy (and not a view) (GH7084)
• Bug in DatetimeIndex creation from string ndarray with dayfirst=True (GH5917)
• Bug in MultiIndex.from_arrays created from DatetimeIndex doesn’t preserve freq and tz (GH7090)
• Bug in unstack raises ValueError when MultiIndex contains PeriodIndex (GH4342)
• Bug in boxplot and hist draws unnecessary axes (GH6769)
• Regression in groupby.nth() for out-of-bounds indexers (GH6621)
• Bug in quantile with datetime values (GH6965)
• Bug in Dataframe.set_index, reindex and pivot don’t preserve DatetimeIndex and PeriodIndex attributes (GH3950, GH5878, GH6631)
• Bug in MultiIndex.get_level_values doesn’t preserve DatetimeIndex and PeriodIndex attributes (GH7092)
• Bug in Groupby doesn’t preserve tz (GH3950)
• Bug in PeriodIndex partial string slicing (GH6716)
• Bug in the HTML repr of a truncated Series or DataFrame not showing the class name with the large_repr set to ‘info’ (GH7105)
• Bug in DatetimeIndex specifying freq raises ValueError when passed value is too short (GH7098)
• Fixed a bug with the info repr not honoring the display.max_info_columns setting (GH6939)
• Bug PeriodIndex string slicing with out of bounds values (GH5407)
• Fixed a memory error in the hashtable implementation/factorizer on resizing of large tables (GH7157)
• Bug in isnull when applied to 0-dimensional object arrays (GH7176)
• Bug in query/eval where global constants were not looked up correctly (GH7178)
• Bug in recognizing out-of-bounds positional list indexers with iloc and a multi-axis tuple indexer (GH7189)
• Bug in setitem with a single value, multi-index and integer indices (GH7190, GH7218)
• Bug in expressions evaluation with reversed ops, showing in series-dataframe ops (GH7198, GH7192)
• Bug in multi-axis indexing with > 2 ndim and a multi-index (GH7199)
• Fix a bug where invalid eval/query operations would blow the stack (GH5198)

v0.13.1 (February 3, 2014)

This is a minor release from 0.13.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:
• Added infer_datetime_format keyword to read_csv/to_datetime to allow speedups for homogeneously formatted datetimes.
• Will intelligently limit display precision for datetime/timedelta formats.
• Enhanced Panel apply() method.
• Suggested tutorials in new Tutorials section.
• Our pandas ecosystem is growing, We now feature related projects in a new Pandas Ecosystem section.
• Much work has been taking place on improving the docs, and a new Contributing section has been added.
• Even though it may only be of interest to devs, we <3 our new CI status page: ScatterCI.

Warning: 0.13.1 fixes a bug that was caused by a combination of having numpy < 1.8, and doing chained assignment on a string-like array. Please review the docs, chained indexing can have unexpected results and should generally be avoided.

This would previously segfault:
In [1]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))

In [2]: df['A'].iloc[0] = np.nan

In [3]: df
Out[3]:
 A
0 NaN
1 bar
2 bah
3 foo
4 bar

The recommended way to do this type of assignment is:

In [4]: df = DataFrame(dict(A = np.array(['foo','bar','bah','foo','bar'])))

In [5]: df.ix[0,'A'] = np.nan

In [6]: df
Out[6]:
 A
0 NaN
1 bar
2 bah
3 foo
4 bar

Output Formatting Enhancements

- `df.info()` view now display dtype info per column (GH5682)
- `df.info()` now honors the option `max_info_rows`, to disable null counts for large frames (GH5974)

In [7]: max_info_rows = pd.get_option('max_info_rows')

In [8]: df = DataFrame(dict(A = np.random.randn(10),
 B = np.random.randn(10),
 C = date_range('20130101',periods=10)))

In [9]: df.iloc[3:6,[0,2]] = np.nan

In [10]: pd.set_option('max_info_rows',0)

In [11]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 3 columns):
A float64
B float64
C datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 312.0 bytes
this is the default (same as in 0.13.0)
In [12]: pd.set_option('max_info_rows', max_info_rows)

In [13]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 3 columns):
 A 7 non-null float64
 B 10 non-null float64
 C 7 non-null datetime64[ns]
dtypes: datetime64[ns](1), float64(2)
memory usage: 312.0 bytes

- Add `show_dimensions` display option for the new DataFrame repr to control whether the dimensions print.

In [14]: df = DataFrame([[1, 2], [3, 4]])

In [15]: pd.set_option('show_dimensions', False)

In [16]: df
Out[16]:
 0 1
0 1 2
1 3 4

In [17]: pd.set_option('show_dimensions', True)

In [18]: df
Out[18]:
 0 1
0 1 2
1 3 4
[2 rows x 2 columns]

- The `ArrayFormatter` for `datetime` and `timedelta64` now intelligently limit precision based on the values in the array (GH3401)

Previously output might look like:

<table>
<thead>
<tr>
<th>age</th>
<th>today</th>
<th>diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-01-01 00:00:00</td>
<td>2013-04-19 00:00:00</td>
<td>4491 days, 00:00:00</td>
</tr>
<tr>
<td>2004-06-01 00:00:00</td>
<td>2013-04-19 00:00:00</td>
<td>3244 days, 00:00:00</td>
</tr>
</tbody>
</table>

Now the output looks like:

In [19]: df = DataFrame([Timestamp('20010101'),
 : Timestamp('20040601')], columns=['age'])

In [20]: df['today'] = Timestamp('20130419')

In [21]: df['diff'] = df['today']-df['age']

In [22]: df
Out[22]:
 age today diff
0 2001-01-01 2013-04-19 4491 days
API changes

- **Add ~NaN and ~nan to the default set of NA values** (GH5952). See *NA Values*.
- **Added Series.str.get_dummies vectorized string method** (GH6021), to extract dummy/indicator variables for separated string columns:

  ```python
  In [23]: s = Series(['a', 'a|b', np.nan, 'a|c'])
  In [24]: s.str.get_dummies(sep='|')
  Out[24]:
   a  b  c
  0  1  0  0
  1  1  1  0
  2  0  0  0
  3  1  0  1
  [4 rows x 3 columns]
  ```

- **Added the NDFrame.equals() method to compare if two NDFrames are equal have equal axes, dtypes, and values.** Added the *array_equivalent* function to compare if two ndarrays are equal. NaNs in identical locations are treated as equal. (GH5283) See also *the docs* for a motivating example.

  ```python
  In [25]: df = DataFrame({'col':['foo', 0, np.nan]})
  In [26]: df2 = DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])
  In [27]: df.equals(df2)
  Out[27]: False
  In [28]: df.equals(df2.sort())
  Out[28]: True
  In [29]: import pandas.core.common as com
  In [30]: com.array_equivalent(np.array([0, np.nan]), np.array([0, np.nan]))
  Out[30]: True
  In [31]: np.array_equal(np.array([0, np.nan]), np.array([0, np.nan]))
  Out[31]: False
  ```

- **DataFrame.apply will use the reduce argument to determine whether a Series or a DataFrame should be returned when the DataFrame is empty** (GH6007).

 Previously, calling DataFrame.apply an empty DataFrame would return either a DataFrame if there were no columns, or the function being applied would be called with an empty Series to guess whether a Series or DataFrame should be returned:

  ```python
  In [32]: def applied_func(col):
         ....:     print("Apply function being called with: ", col)
         ....:     return col.sum()
         ....:
  ```
In [33]: empty = DataFrame(columns=['a', 'b'])

In [34]: empty.apply(applied_func)
('Apply function being called with: ', Series([], dtype: float64))
Out[34]:
a NaN
b NaN
dtype: float64

Now, when apply is called on an empty DataFrame: if the reduce argument is True a Series will returned, if it is False a DataFrame will be returned, and if it is None (the default) the function being applied will be called with an empty series to try and guess the return type.

In [35]: empty.apply(applied_func, reduce=True)
Out[35]:
a NaN
b NaN
dtype: float64

In [36]: empty.apply(applied_func, reduce=False)
Out[36]:
Empty DataFrame
Columns: [a, b]
Index: []
[0 rows x 2 columns]

Prior Version Deprecations/Changes

There are no announced changes in 0.13 or prior that are taking effect as of 0.13.1

Deprecations

There are no deprecations of prior behavior in 0.13.1

Enhancements

- pd.read_csv and pd.to_datetime learned a new infer_datetime_format keyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490, GH6021)

 If parse_dates is enabled and this flag is set, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

 # Try to infer the format for the index column
 df = pd.read_csv('foo.csv', index_col=0, parse_dates=True, infer_datetime_format=True)

- date_format and datetime_format keywords can now be specified when writing to excel files (GH4133)
• **MultiIndex.from_product** convenience function for creating a MultiIndex from the cartesian product of a set of iterables (GH6055):

```python
In [37]: shades = ['light', 'dark']
In [38]: colors = ['red', 'green', 'blue']
In [39]: MultiIndex.from_product([shades, colors], names=['shade', 'color'])
Out[39]:
MultiIndex(levels=[['dark', 'light'], ['blue', 'green', 'red']],
labels=[[1, 1, 1, 0, 0, 0], [2, 1, 0, 2, 1, 0]],
names=['shade', 'color'])
```

• **Panel apply()** will work on non-ufuncs. See the docs.

```python
In [40]: import pandas.util.testing as tm
In [41]: panel = tm.makePanel(5)
In [42]: panel
Out[42]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
In [43]: panel['ItemA']
Out[43]:
            A  B  C  D
2000-01-03 0.694103 1.893534 -1.735349 -0.850346
2000-01-04 0.678630 0.639633  1.210384  1.176812
2000-01-05 0.239556 -0.962029  0.797435 -0.524336
2000-01-06 0.151227 -2.085266 -0.379811  0.700908
2000-01-07 0.816127  1.930247  0.702562  0.984188
[5 rows x 4 columns]
```

Specifying an apply that operates on a Series (to return a single element)

```python
In [44]: panel.apply(lambda x: x.dtype, axis='items')
Out[44]:
            A       B       C       D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
2000-01-06 float64 float64 float64 float64
2000-01-07 float64 float64 float64 float64
[5 rows x 4 columns]
```

A similar reduction type operation

```python
In [45]: panel.apply(lambda x: x.sum(), axis='major_axis')
Out[45]:
           ItemA     ItemB     ItemC
A  2.579643  3.062757  0.379252
B  1.416120 -1.960855  0.923558
C  0.595222 -1.079772 -3.118269
```
This is equivalent to

```
In [46]: panel.sum('major_axis')
Out[46]:
    ItemA  ItemB  ItemC
A    2.579643  3.062757  0.379252
B    1.416120 -1.960855  0.923558
C    0.595222 -1.079772 -3.118269
D    1.487226 -0.734611 -1.979310
```

A transformation operation that returns a Panel, but is computing the z-score across the major_axis

```
In [47]: result = panel.apply(
        ....:     lambda x: (x-x.mean())/x.std(),
        ....:     axis='major_axis')

In [48]: result
Out[48]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D

In [49]: result['ItemA']
Out[49]:
    A   B   C   D
2000-01-03  0.595800  0.907552 -1.556260 -1.244875
2000-01-04  0.544058  0.200868  0.915883  0.953747
2000-01-05 -0.924165 -0.701810  0.569325 -0.891290
2000-01-06 -1.219530 -1.334852 -0.418654  0.437589
2000-01-07  1.003837  0.928242  0.489705  0.744830
```

- Panel `apply()` operating on cross-sectional slabs. (GH1148)
This is equivalent to the following

```
In [54]: result = Panel(dict((ax,f(panel.loc[:,:,ax]))
                           for ax in panel.minor_axis))

In [55]: result
Out[55]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
```

```
In [56]: result.loc[:,:,'ItemA']
Out[56]:
A    B          C          D
2000-01-03 0.331409  1.071034 -0.914540 -0.510587
2000-01-04 -0.741017 -0.118794  0.383277  0.537212
2000-01-05  0.065042 -0.767353  0.655436  0.069467
2000-01-06  0.027932 -0.569477  0.908202  0.610585
2000-01-07  1.116434  1.133591  0.871287  1.004064
```

Performance

Performance improvements for 0.13.1

- Series datetime/timedelta binary operations (GH5801)
- DataFrame `count/dropna` for `axis=1`
- Series.{str.contains, str.extract} now has a `regex=False` keyword which can be faster for plain (non-regex) string patterns (GH5879)
- Series.{str.contains, str.extract} (GH5944)
- dtypes/ftypes methods (GH5968)
- indexing with object dtypes (GH5968)
- DataFrame.{apply, applymap} (GH6013)
- Regression in JSON IO (GH5765)
- Index construction from Series (GH6150)
Experimental

There are no experimental changes in 0.13.1

Bug Fixes

See V0.13.1 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.1.

See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.

v0.13.0 (January 3, 2014)

This is a major release from 0.12.0 and includes a number of API changes, several new features and enhancements along with a large number of bug fixes.

Highlights include:

• support for a new index type Float64Index, and other Indexing enhancements
• HDFStore has a new string based syntax for query specification
• support for new methods of interpolation
• updated timedelta operations
• a new string manipulation method extract
• Nanosecond support for Offsets
• isin for DataFrames

Several experimental features are added, including:

• new eval/query methods for expression evaluation
• support for msgpack serialization
• an i/o interface to Google’s BigQuery

There are several new or updated docs sections including:

• Comparison with SQL, which should be useful for those familiar with SQL but still learning pandas.
• Comparison with R, idiom translations from R to pandas.
• Enhancing Performance, ways to enhance pandas performance with eval/query.

Warning: In 0.13.0 Series has internally been refactored to no longer sub-class ndarray but instead subclass NDFrame, similar to the rest of the pandas containers. This should be a transparent change with only very limited API implications. See Internal Refactoring

API changes

• read_excel now supports an integer in its sheetname argument giving the index of the sheet to read in (GH4301).
• Text parser now treats anything that reads like inf ("inf", "Inf", "-Inf", "iNf", etc.) as infinity. (GH4220, GH4219), affecting read_table, read_csv, etc.

• pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into compat. (GH4384, GH4375, GH4372)

• pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat. pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting and pandas constructors.(GH4384, GH4375, GH4372)

• Series.get with negative indexers now returns the same as [] (GH4390)

• Changes to how Index and MultiIndex handle metadata (levels, labels, and names) (GH4039):

```python
# previously, you would have set levels or labels directly
index.levels = [[1, 2, 3, 4], [1, 2, 4, 4]]

# now, you use the set_levels or set_labels methods
index = index.set_levels([[1, 2, 3, 4], [1, 2, 4, 4]])

# similarly, for names, you can rename the object
# but setting names is not deprecated
index = index.set_names(["bob", "cranberry"])

# and all methods take an inplace kwarg - but return None
index.set_names(["bob", "cranberry"], inplace=True)
```

• All division with NDFrame objects is now truedivision, regardless of the future import. This means that operating on pandas objects will by default use floating point division, and return a floating point dtype. You can use // and floordiv to do integer division.

```
Integer division

In [3]: arr = np.array([1, 2, 3, 4])

In [4]: arr2 = np.array([5, 3, 2, 1])

In [5]: arr / arr2
Out[5]: array([0.2, 0.666667, 1.5, 4.])

In [6]: Series(arr) // Series(arr2)
Out[6]:
0 0
1 0
2 1
3 4
dtype: int64
```

```
True Division

In [7]: pd.Series(arr) / pd.Series(arr2)  # no future import required
Out[7]:
0 0.20000
1 0.666667
2 1.50000
3 4.000000
```

236 Chapter 1. What’s New
- Infer and downcast dtypes if downcast='infer' is passed to fillna/ffill/bfill (GH4604)

- `__nonzero__` for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073, GH4633) behavior. See gotchas for a more detailed discussion.

This prevents doing boolean comparison on entire pandas objects, which is inherently ambiguous. These all will raise a ValueError.

```python
if df:
    ....
df1 and df2
s1 and s2
```

Added the `.bool()` method to NDFrame objects to facilitate evaluating of single-element boolean Series:

```python
In [1]: Series([True]).bool()
Out[1]: True

In [2]: Series([False]).bool()
Out[2]: False

In [3]: DataFrame([[True]]).bool()
Out[3]: True

In [4]: DataFrame([[False]]).bool()
Out[4]: False
```

- All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not support pow or mod with non-scalars. (GH3765)

- Series and DataFrame now have a `mode()` method to calculate the statistical mode(s) by axis/Series. (GH5367)

- Chained assignment will now by default warn if the user is assigning to a copy. This can be changed with the option `mode.chained_assignment`, allowed options are raise/warn/None. See the docs.

```python
In [5]: dfc = DataFrame({'A':['aaa','bbb','ccc'],'B':[1,2,3]})
In [6]: pd.set_option('chained_assignment','warn')
The following warning / exception will show if this is attempted.
In [7]: dfc.loc[0]['A'] = 1111
Traceback (most recent call last)
  ...
SettingWithCopyWarning:
  A value is trying to be set on a copy of a slice from a DataFrame.
  Try using .loc[row_indexer,col_indexer] = value instead
```

Here is the correct method of assignment.

```python
In [8]: dfc.loc[0,'A'] = 11
In [9]: dfc
Out[9]:
```

1.17. v0.13.0 (January 3, 2014)
Panel.reindex has the following call signature Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs) to conform with other NDFrame objects. See Internal Refactoring for more information.

Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element. (GH6214)

Prior Version Deprecations/Changes

These were announced changes in 0.12 or prior that are taking effect as of 0.13.0

- Remove deprecated Factor (GH3650)
- Remove deprecated set_printoptions/reset_printoptions (GH3046)
- Remove deprecated _verbose_info (GH3215)
- Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter from pandas.io.parsers (GH3717) These are available as functions in the main pandas namespace (e.g. pd.read_clipboard)
- default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12 (GH3604)
- default for display.max_seq_len is now 100 rather then None. This activates truncated display (“...”) of long sequences in various places. (GH3391)

Deprecations

Deprecated in 0.13.0

- deprecated iterkv, which will be removed in a future release (this was an alias of iteritems used to bypass 2to3's changes). (GH4384, GH4375, GH4372)

- deprecated the string method match, whose role is now performed more idiomatically by extract. In a future release, the default behavior of match will change to become analogous to contains, which returns a boolean indexer. (Their distinction is strictness: match relies on re.match while contains relies on re.search.) In this release, the deprecated behavior is the default, but the new behavior is available through the keyword argument as_indexer=True.

Indexing API Changes

Prior to 0.13, it was impossible to use a label indexer (.loc/.ix) to set a value that was not contained in the index of a particular axis. (GH2578). See the docs

In the Series case this is effectively an appending operation
In [10]: s = Series([1,2,3])

In [11]: s
Out[11]:
0 1
1 2
2 3
dtype: int64

In [13]: s
Out[13]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64

In [14]: dfi = DataFrame(np.arange(6).reshape(3,2),
 columns=['A','B'])

In [15]: dfi
Out[15]:
 A B
0 0 1
1 2 3
2 4 5
[3 rows x 2 columns]

This would previously KeyError

In [16]: dfi.loc[:, 'C'] = dfi.loc[:, 'A']

In [17]: dfi
Out[17]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4
[3 rows x 3 columns]

This is like an append operation.

In [18]: dfi.loc[3] = 5

In [19]: dfi
Out[19]:
 A B C
0 0 1 0
1 2 3 2
2 4 5 4
3 5 5 5
[4 rows x 3 columns]
A Panel setting operation on an arbitrary axis aligns the input to the Panel

```python
In [20]: p = pd.Panel(np.arange(16).reshape(2,4,2),
                   items=['Item1','Item2'],
                   major_axis=pd.date_range('2001/1/12',periods=4),
                   minor_axis=['A','B'],dtype='float64')
```

```python
In [21]: p
Out[21]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to B
```

```python
In [22]: p.loc[:,:,'C'] = Series([30,32],index=p.items)
```

```python
In [23]: p
Out[23]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2001-01-12 00:00:00 to 2001-01-15 00:00:00
Minor_axis axis: A to C
```

```python
In [24]: p.loc[:,:,'C']
Out[24]:
          Item1  Item2
2001-01-12  30.0  32.0
2001-01-13  30.0  32.0
2001-01-14  30.0  32.0
2001-01-15  30.0  32.0
```

Float64Index API Change

- Added a new index type, Float64Index. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes [],ix,loc for scalar indexing and slicing work exactly the same. See the docs, (GH263)

Construction is by default for floating type values.

```python
In [25]: index = Index([1.5, 2, 3, 4.5, 5])
```

```python
In [26]: index
Out[26]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')
```

```python
In [27]: s = Series(range(5),index=index)
```

```python
In [28]: s
Out[28]:
1.5  0
2.0  1
```
Scalar selection for [], .ix, .loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

```
In [29]: s[3]
Out[29]: 2

In [30]: s.ix[3]
Out[30]: 2

In [31]: s.loc[3]
Out[31]: 2
```

The only positional indexing is via iloc

```
In [32]: s.iloc[3]
Out[32]: 3
```

A scalar index that is not found will raise KeyError

Slicing is ALWAYS on the values of the index, for [], ix, loc and ALWAYS positional with iloc

```
In [33]: s[2:4]
Out[33]:
2.0  1
3.0  2
dtype: int64

In [34]: s.ix[2:4]
Out[34]:
2.0  1
3.0  2
dtype: int64

In [35]: s.loc[2:4]
Out[35]:
2.0  1
3.0  2
dtype: int64

In [36]: s.iloc[2:4]
Out[36]:
3.0  2
4.5  3
dtype: int64
```

In float indexes, slicing using floats are allowed

```
In [37]: s[2.1:4.6]
Out[37]:
3.0  2
4.5  3
dtype: int64
```
Indexing on other index types are preserved (and positional fallback for [], ix), with the exception, that floating point slicing on indexes on non Float64Index will now raise a TypeError.

Using a scalar float indexer will be deprecated in a future version, but is allowed for now.

HDFStore API Changes

- Query Format Changes. A much more string-like query format is now supported. See the docs.

Use boolean expressions, with in-line function evaluation.

Use an inline column reference
• the format keyword now replaces the table keyword; allowed values are fixed(f) or table(t) the same defaults as prior < 0.13.0 remain, e.g. put implies fixed format and append implies table format. This default format can be set as an option by setting io.hdf.default_format.

In [44]: path = 'test.h5'
In [45]: df = DataFrame(randn(10,2))
In [46]: df.to_hdf(path,'df_table',format='table')
In [47]: df.to_hdf(path,'df_table2',append=True)
In [48]: df.to_hdf(path,'df_fixed')

In [49]: with get_store(path) as store:
 : print(store)
 : <class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df_fixed frame (shape->[10,2])
 ...
/df_table frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df_table2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

• Significant table writing performance improvements
• handle a passed Series in table format (GH4330)
• can now serialize a timedelta64[ns] dtype in a table (GH3577), See the docs.
• added an is_open property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)
• a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise ClosedFileError

In [50]: path = 'test.h5'
In [51]: df = DataFrame(randn(10,2))
In [52]: store1 = HDFStore(path)
In [53]: store2 = HDFStore(path)
In [54]: store1.append('df', df)
In [55]: store2.append('df2', df)
In [56]: store1
Out[56]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [57]: store2
Out[57]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [58]: store1.close()
In [59]: store2
Out[59]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
/df frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])
/df2 frame_table (typ->appendable,nrows->10,ncols->2,indexers->[index])

In [60]: store2.close()
In [61]: store2
Out[61]:
<class 'pandas.io.pytables.HDFStore'>
File path: test.h5
File is CLOSED

• removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table (GH4367)
• removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if you try to use mode='w' with an OPEN file handle (GH4367)
• allow a passed locations array or mask as a where condition (GH4467). See the docs for an example.
• add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625)
• pass thru store creation arguments; can be used to support in-memory stores
DataFrame repr Changes

The HTML and plain text representations of DataFrame now show a truncated view of the table once it exceeds a certain size, rather than switching to the short info view (GH4886, GH5550). This makes the representation more consistent as small DataFrames get larger.

![Table Example](image)

771 rows x 6 columns

To get the info view, call DataFrame.info(). If you prefer the info view as the repr for large DataFrames, you can set this by running set_option('display.large_repr','info').

Enhancements

- `df.to_clipboard()` learned a new excel keyword that lets you paste df data directly into excel (enabled by default). (GH5070).
- `read_html` now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305)
- Added a test for `read_clipboard()` and `to_clipboard()` (GH4282)
- Clipboard functionality now works with PySide (GH4282)
- Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402)
- `to_dict` now takes records as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)
- NaN handing in `get_dummies` (GH4446) with `dummy_na`

```python
# previously, nan was erroneously counted as 2 here
# now it is not counted at all
In [62]: get_dummies([1, 2, np.nan])
Out[62]:
   1  2
0 1 0
1 0 1
2 0 0
[3 rows x 2 columns]

# unless requested
In [63]: get_dummies([1, 2, np.nan], dummy_na=True)
Out[63]:
   1.0 2.0  NaN
0   1   0   0
1   0   1   0
2   0   0   1
[3 rows x 3 columns]
```
timedelta64[ns] operations. See the docs.

Warning: Most of these operations require numpy >= 1.7

Using the new top-level to_timedelta, you can convert a scalar or array from the standard timedelta format (produced by to_csv) into a timedelta type (np.timedelta64 in nanoseconds).

```
In [64]: to_timedelta('1 days 06:05:01.00003')
Out[64]: Timedelta('1 days 06:05:01.000030')

In [65]: to_timedelta('15.5us')
Out[65]: Timedelta('0 days 00:00:00.000015')

In [66]: to_timedelta(['1 days 06:05:01.00003','15.5us','nan'])
Out[66]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
 → dtype='timedelta64[ns]', freq=None)

In [67]: to_timedelta(np.arange(5),unit='s')
Out[67]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04 →'], dtype='timedelta64[ns]', freq=None)

In [68]: to_timedelta(np.arange(5),unit='d')
Out[68]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype=
 → 'timedelta64[ns]', freq=None)
```

A Series of dtype timedelta64[ns] can now be divided by another timedelta64[ns] object, or astyped to yield a float64 dtype Series. This is frequency conversion. See the docs for the docs.

```
In [69]: from datetime import timedelta

In [70]: td = Series(date_range('20130101',periods=4))-Series(date_range('20121201 →',periods=4))

In [71]: td[2] += np.timedelta64(timedelta(minutes=5,seconds=3))

In [72]: td[3] = np.nan

In [73]: td
Out[73]:
0    31 days 00:00:00
1    31 days 00:00:00
2    31 days 00:05:03
3    NaT
dtype: timedelta64[ns]

# to days
In [74]: td / np.timedelta64(1,'D')
Out[74]:
0   31.000000
1   31.000000
2   31.003507
3   NaN
dtype: float64

In [75]: td.astype('timedelta64[D]')
Out[75]:
0   31.0
```
```python
1   31.0
2   31.0
3   NaN
dtype: float64

# to seconds
In [76]: td / np.timedelta64(1,'s')
Out[76]:
0    2678400.0
1    2678400.0
2    2678703.0
3      NaN
dtype: float64

In [77]: td.astype('timedelta64[ns]')
Out[77]:
0    2678400.0
1    2678400.0
2    2678703.0
3      NaN
dtype: float64
```

Dividing or multiplying a `timedelta64[ns]` Series by an integer or integer Series

```python
In [78]: td * -1
Out[78]:
0   -31 days  00:00:00
1   -31 days  00:00:00
2   -32 days  23:54:57
3       NaT
dtype: timedelta64[ns]

In [79]: td * Series([1,2,3,4])
Out[79]:
0   31 days  00:00:00
1   62 days  00:00:00
2   93 days  01:15:09
3       NaT
dtype: timedelta64[ns]
```

Absolute `DateOffset` objects can act equivalently to `timedeltas`

```python
In [80]: from pandas import offsets

In [81]: td + offsets.Minute(5) + offsets.Milli(5)
Out[81]:
0   31 days  00:05:00.005000
1   31 days  00:05:00.005000
2   31 days  00:10:03.005000
3       NaT
dtype: timedelta64[ns]
```

Fillna is now supported for `timedeltas`

```python
In [82]: td.fillna(0)
Out[82]:
0   31 days  00:00:00
1   31 days  00:00:00
```

1.17. v0.13.0 (January 3, 2014)
You can do numeric reduction operations on timedelta.

```
In [84]: td.mean()
Out[84]: Timedelta('31 days 00:01:41')
```

```
In [85]: td.quantile(.1)
Out[85]: Timedelta('31 days 00:00:00')
```

- `plot(kind='kde')` now accepts the optional parameters `bw_method` and `ind`, passed to `scipy.stats.gaussian_kde()` (for scipy >= 0.11.0) to set the bandwidth, and to `gkde.evaluate()` to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)

- DataFrame constructor now accepts a numpy masked record array (GH3478)

- The new vectorized string method `extract` return regular expression matches more conveniently.

```
In [86]: Series([‘a1’, ‘b2’, ‘c3’]).str.extract(‘[ab](\d)’)   
Out[86]:
   0   1  
   1   2  
   2  NaN  
```

Elements that do not match return NaN. Extracting a regular expression with more than one group returns a DataFrame with one column per group.

```
In [87]: Series([‘a1’, ‘b2’, ‘c3’]).str.extract(‘([ab])\d’)   
Out[87]:
   0   a   1  
   1   b   2  
   2  NaN  NaN  
[3 rows x 2 columns]
```

Elements that do not match return a row of NaN. Thus, a Series of messy strings can be converted into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating `get()` to access tuples or `re.match` objects.

Named groups like

```
In [88]: Series([‘a1’, ‘b2’, ‘c3’]).str.extract(       
    ‘(?P<letter>[ab])(?P<digit>\d)’)
   ....:       
Out[88]:
    letter digit
```
and optional groups can also be used.

```python
In [89]: Series(['a1', 'b2', '3']).str.extract(
           '(?P<letter>[ab])?(?P<digit>\d)')
Out[89]:
  letter digit
0    a    1
1    b    2
2   NaN    3
```

- `read_stata` now accepts Stata 13 format (GH4291)
- `read_fwf` now infers the column specifications from the first 100 rows of the file if the data has correctly separated and properly aligned columns using the delimiter provided to the function (GH4488).
- support for nanosecond times as an offset

Warning: These operations require `numpy` >= 1.7

Period conversions in the range of seconds and below were reworked and extended up to nanoseconds. Periods in the nanosecond range are now available.

```python
In [90]: date_range('2013-01-01', periods=5, freq='5N')
Out[90]:
dtype='datetime64[ns]', freq='5N')
```

or with frequency as offset

```python
In [91]: date_range('2013-01-01', periods=5, freq=pd.offsets.Nano(5))
Out[91]:
dtype='datetime64[ns]', freq='5N')
```

Timestamps can be modified in the nanosecond range

```python
In [92]: t = Timestamp('20130101 09:01:02')
In [93]: t + pd.tseries.offsets.Nano(123)
Out[93]: Timestamp('2013-01-01 09:01:02.000000123')
```

- A new method, `isin` for DataFrames, which plays nicely with boolean indexing. The argument to `isin`, what we're comparing the DataFrame to, can be a DataFrame, Series, dict, or array of values. See the docs for more.

To get the rows where any of the conditions are met:
In [94]: dfi = DataFrame({'A': [1, 2, 3, 4], 'B': ['a', 'b', 'f', 'n']})

In [95]: dfi
Out[95]:
 A B
0 1 a
1 2 b
2 3 f
3 4 n
[4 rows x 2 columns]

In [96]: other = DataFrame({'A': [1, 3, 3, 7], 'B': ['e', 'f', 'f', 'e']})

In [97]: mask = dfi.isin(other)

In [98]: mask
Out[98]:
 A B
0 True False
1 False False
2 True True
3 False False
[4 rows x 2 columns]

In [99]: dfi[mask.any(1)]
Out[99]:
 A B
0 1 a
2 3 f
[2 rows x 2 columns]

• Series now supports a `to_frame` method to convert it to a single-column DataFrame (GH5164)

• All R datasets listed here http://stat.ethz.ch/R-manual/R-devel/library/datasets/html/00Index.html can now be loaded into Pandas objects

note that pandas.rpy was deprecated in v0.16.0
import pandas.rpy.common as com
com.load_data('Titanic')

• `tz_localize` can infer a fall daylight savings transition based on the structure of the unlocalized data (GH4230), see the docs

• `DatetimeIndex` is now in the API documentation, see the docs

• `json_normalize()` is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067)

• Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.

• Python csv parser now supports usecols (GH4335)

• Frequencies gained several new offsets:
 - `LastWeekOfMonth` (GH4637)
 - `FY5253`, and `FY5253Quarter` (GH4511)
• DataFrame has a new interpolate method, similar to Series (GH4434, GH1892)

```python
In [100]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
                    'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})

In [101]: df.interpolate()
Out[101]:
   A  B
0  1.0  0.25
1  2.1  1.50
2  3.4  2.75
3  4.7  4.00
4  5.6  12.20
5  6.8  14.40
```

Additionally, the method argument to interpolate has been expanded to include 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'piecewise_polynomial', 'polynomial', 'spline'. The new methods require scipy. Consult the Scipy reference guide and documentation for more information about when the various methods are appropriate. See the docs.

Interpolate now also accepts a limit keyword argument. This works similar to fillna's limit:

```python
In [102]: ser = Series([1, 3, np.nan, np.nan, np.nan, 11])

In [103]: ser.interpolate(limit=2)
Out[103]:
   0  1.0
   1  3.0
   2  5.0
   3  7.0
   4  NaN
   5  11.0
dtype: float64
```

• Added wide_to_long panel data convenience function. See the docs.

```python
In [104]: np.random.seed(123)

In [105]: df = pd.DataFrame({'A1970' : {0 : 'a', 1 : 'b', 2 : 'c'},
                    'A1980' : {0 : 'd', 1 : 'e', 2 : 'f'},
                    'B1970' : {0 : 2.5, 1 : 1.2, 2 : .7},
                    'B1980' : {0 : 3.2, 1 : 1.3, 2 : .1},
                    'X' : dict(zip(range(3), np.random.randn(3)))})

In [106]: df['id'] = df.index

In [107]: df
Out[107]:
0    a     d    2.5   3.2  1.085631  0
1    b     e    1.2   1.3  0.997345  1
2    c     f    0.7   0.1  0.282978  2
```

1.17. v0.13.0 (January 3, 2014)
In [108]: wide_to_long(df, ["A", "B"], i="id", j="year")
Out[108]:
<table>
<thead>
<tr>
<th>X</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>id year</td>
<td>0 1970</td>
<td>-1.085631 a 2.5</td>
</tr>
<tr>
<td></td>
<td>1 1970</td>
<td>0.997345 b 1.2</td>
</tr>
<tr>
<td></td>
<td>2 1970</td>
<td>0.282978 c 0.7</td>
</tr>
<tr>
<td></td>
<td>0 1980</td>
<td>-1.085631 d 3.2</td>
</tr>
<tr>
<td></td>
<td>1 1980</td>
<td>0.997345 e 1.3</td>
</tr>
<tr>
<td></td>
<td>2 1980</td>
<td>0.282978 f 0.1</td>
</tr>
</tbody>
</table>
[6 rows x 3 columns]

• `to_csv` now takes a `date_format` keyword argument that specifies how output datetime objects should be formatted. Datetimes encountered in the index, columns, and values will all have this formatting applied. (GH4313)

• `DataFrame.plot` will scatter plot x versus y by passing `kind='scatter'` (GH2215)

• Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

Experimental

• The new `eval()` function implements expression evaluation using `numexpr` behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series. For example,

In [109]: nrows, ncols = 20000, 100

In [110]: df1, df2, df3, df4 = [DataFrame(randn(nrows, ncols))
 : for _ in range(4)]
 :

eval with NumExpr backend
In [111]: %timeit pd.eval('df1 + df2 + df3 + df4')
100 loops, best of 3: 8.73 ms per loop

pure Python evaluation
In [112]: %timeit df1 + df2 + df3 + df4
10 loops, best of 3: 23.4 ms per loop

For more details, see the the docs

• Similar to pandas.eval, `DataFrame` has a new `DataFrame.eval` method that evaluates an expression in the context of the DataFrame. For example,

In [113]: df = DataFrame(randn(10, 2), columns=['a', 'b'])

In [114]: df.eval('a + b')
Out[114]:
0 -0.685204
1 1.589745
2 0.325441
3 -1.784153
4 -0.432893
5 0.171850
query() method has been added that allows you to select elements of a DataFrame using a natural query syntax nearly identical to Python syntax. For example,

```
In [115]: n = 20
In [116]: df = DataFrame(np.random.randint(n, size=(n, 3)), columns=['a', 'b', 'c'])
In [117]: df.query('a < b < c')
Out[117]:
   a  b  c
11  1  5  8
15  8 16 19
```

selects all the rows of df where \(a < b < c\) evaluates to True. For more details see the the docs.

- `pd.read_msgpack()` and `pd.to_msgpack()` are now a supported method of serialization of arbitrary pandas (and python objects) in a lightweight portable binary format. See the docs

Warning: Since this is an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.
You can pass `iterator=True` to iterator over the unpacked results

```python
In [124]: for o in pd.read_msgpack('foo.msg', iterator=True):
......:     print o
......:
    0.251082  0.017357
    0.347915  0.929879
    0.546233  0.203368
    0.064942  0.031722
    0.355309  0.524575
```

• `pandas.io.gbq` provides a simple way to extract from, and load data into, Google’s BigQuery Data Sets by way of pandas DataFrames. BigQuery is a high performance SQL-like database service, useful for performing ad-hoc queries against extremely large datasets. See the docs

```python
from pandas.io import gbq

# A query to select the average monthly temperatures in the
# year 2000 across the USA. The dataset,
# publicdata:samples.gsod, is available on all BigQuery accounts,
# and is based on NOAA gsd data.
query = "SELECT station_number as STATION,
    month as MONTH, AVG(mean_temp) as MEAN_TEMP
FROM publicdata:samples.gsod
WHERE YEAR = 2000
GROUP BY STATION, MONTH
ORDER BY STATION, MONTH ASC"

# Fetch the result set for this query

# Your Google BigQuery Project ID
# To find this, see your dashboard:
# https://console.developers.google.com/iam-admin/projects?authuser=0
projectid = xxxxxxxxxx;

df = gbq.read_gbq(query, project_id = projectid)

# Use pandas to process and reshape the dataset
```
df2 = df.pivot(index='STATION', columns='MONTH', values='MEAN_TEMP')
df3 = pandas.concat([df2.min(), df2.mean(), df2.max()],
 axis=1, keys=['Min Temp', 'Mean Temp', 'Max Temp'])

The resulting DataFrame is:

<table>
<thead>
<tr>
<th>MONTH</th>
<th>Min Temp</th>
<th>Mean Temp</th>
<th>Max Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-53.33667</td>
<td>39.827892</td>
<td>89.770968</td>
</tr>
<tr>
<td></td>
<td>-49.837500</td>
<td>43.685219</td>
<td>93.437932</td>
</tr>
<tr>
<td></td>
<td>-77.926087</td>
<td>48.708355</td>
<td>96.099998</td>
</tr>
<tr>
<td></td>
<td>-82.892858</td>
<td>55.070087</td>
<td>97.317240</td>
</tr>
<tr>
<td></td>
<td>-92.378261</td>
<td>61.428117</td>
<td>102.042856</td>
</tr>
<tr>
<td></td>
<td>-77.703334</td>
<td>65.858888</td>
<td>102.900000</td>
</tr>
<tr>
<td></td>
<td>-87.821428</td>
<td>68.169663</td>
<td>106.510714</td>
</tr>
<tr>
<td></td>
<td>-89.431999</td>
<td>68.614215</td>
<td>105.500000</td>
</tr>
<tr>
<td></td>
<td>-86.611112</td>
<td>63.436935</td>
<td>107.142856</td>
</tr>
<tr>
<td></td>
<td>-78.209677</td>
<td>56.880838</td>
<td>92.103333</td>
</tr>
<tr>
<td></td>
<td>-50.125000</td>
<td>48.861228</td>
<td>94.996428</td>
</tr>
<tr>
<td></td>
<td>-50.332258</td>
<td>42.286879</td>
<td>94.396774</td>
</tr>
</tbody>
</table>

Warning: To use this module, you will need a BigQuery account. See https://cloud.google.com/products/big-query for details.

As of 10/10/13, there is a bug in Google’s API preventing result sets from being larger than 100,000 rows. A patch is scheduled for the week of 10/14/13.

Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass `Series` from `NDFrame`, which is the base class currently for `DataFrame` and `Panel`, to unify methods and behaviors. `Series` formerly subclassed directly from `ndarray`. (GH4080, GH3862, GH816)

Warning: There are two potential incompatibilities from < 0.13.0

- Using certain `numpy` functions would previously return a `Series` if passed a `Series` as an argument. This seems only to affect `np.ones_like`, `np.empty_like`, `np.diff` and `np.where`. These now return `ndarrays`.

```
In [125]: s = Series([1,2,3,4])
```

Numpy Usage

```
In [126]: np.ones_like(s)
Out[126]: array([1, 1, 1, 1])
```

```
In [127]: np.diff(s)
Out[127]: array([1, 1, 1])
```

```
In [128]: np.where(s>1,s,np.nan)
Out[128]: array([ nan, 2., 3., 4.])
```

Pandonic Usage

```
In [129]: df2.min()
Out[129]: Min Temp
```

```
In [130]: df2.mean()
Out[130]: Mean Temp
```

```
In [131]: df2.max()
Out[131]: Max Temp
```
• Passing a `Series` directly to a cython function expecting an `ndarray` type will no long work directly, you must pass `Series.values`, see `Enhancing Performance`.

• `Series(0.5)` would previously return the scalar 0.5, instead this will return a 1-element `Series`.

• This change breaks `rpy2<=2.3.8`. An issue has been opened against rpy2 and a workaround is detailed in `GH5698`. Thanks @JanSchulz.

• Pickle compatibility is preserved for pickles created prior to 0.13. These must be unpickled with `pd.read_pickle`, see `Pickling`.

• Refactor of `series.py/frame.py/panel.py` to move common code to `generic.py`:
 – added `_setup_axes` to created generic `NDFrame` structures
 – moved methods
 * `from_axes, _wrap_array, axes, ix, loc, iloc, shape, empty, swapaxes, transpose, pop`
 * `__iter__, keys, __contains__, __len__, __neg__, __invert__`
 * `convert_objects, as_blocks, as_matrix, values`
 * `__getstate__, __setstate__` (compat remains in frame/panel)
 * `__getattr__, __setattr__`
 * `_indexed_same, reindex_like, align, where, mask`
 * `fillna, replace (Series replace is now consistent with DataFrame)`
 * `filter (also added axis argument to selectively filter on a different axis)`
 * `reindex, reindex_axis, take`
 * `truncate (moved to become part of NDFrame)`

• These are API changes which make `Panel` more consistent with `DataFrame`.
- swapaxes on a Panel with the same axes specified now return a copy
- support attribute access for setting
- filter supports the same API as the original DataFrame filter

- Reindex called with no arguments will now return a copy of the input object
- TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if desired)
- Refactor of Sparse objects to use BlockManager
 - Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is non-consolidatable. SparseSeries and SparseDataFrame now inherit more methods from there hierarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of the SparseBlock)
 - Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)
 - Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient
 - enable setitem on SparseSeries for boolean/integer/slices
 - SparsePanels implementation is unchanged (e.g. not using BlockManager, needs work)
- added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense (as well as the dtype)
- All NDFrame objects can now use __finalize__() to specify various values to propagate to new objects from an existing one (e.g. name in Series will follow more automatically now)
- Internal type checking is now done via a suite of generated classes, allowing isinstance(value,klass) without having to directly import the klass, courtesy of @jtratner
- Bug in Series update where the parent frame is not updating its cache based on changes (GH4080) or types (GH3217), fillna (GH3386)
- Indexing with dtype conversions fixed (GH4463, GH4204)
- Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work
- Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy
- Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with the same signature for Panel
- Refactor clip methods to core/generic.py (GH4798)
- Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality
- Series (for index)/Panel (for items) now allow attribute access to its elements (GH1903)

```
In [132]: s = Series([1,2,3],index=list('abc'))
In [133]: s.b
Out[133]: 2
In [134]: s.a = 5
In [135]: s
```
Bug Fixes

See V0.13.0 Bug Fixes for an extensive list of bugs that have been fixed in 0.13.0.

See the full release notes or issue tracker on GitHub for a complete list of all API changes, Enhancements and Bug Fixes.

v0.12.0 (July 24, 2013)

This is a major release from 0.11.0 and includes several new features and enhancements along with a large number of bug fixes.

Highlights include a consistent I/O API naming scheme, routines to read html, write multi-indexes to csv files, read & write STATA data files, read & write JSON format files, Python 3 support for HDFStore, filtering of groupby expressions via filter, and a revamped replace routine that accepts regular expressions.

API changes

• The I/O API is now much more consistent with a set of top level reader functions accessed like pd.read_csv() that generally return a pandas object.

 - read_csv
 - read_excel
 - read_hdf
 - read_sql
 - read_json
 - read_html
 - read_stata
 - read_clipboard

The corresponding writer functions are object methods that are accessed like df.to_csv()

 - to_csv
 - to_excel
 - to_hdf
 - to_sql
 - to_json
 - to_html
 - to_stata
pandas: powerful Python data analysis toolkit, Release 0.19.2

– to_clipboard
• Fix modulo and integer division on Series,DataFrames to act similary to float dtypes to return np.nan
or np.inf as appropriate (GH3590). This correct a numpy bug that treats integer and float dtypes
differently.
In [1]: p = DataFrame({ 'first' : [4,5,8], 'second' : [0,0,3] })
In [2]: p % 0
Out[2]:
first second
0
NaN
NaN
1
NaN
NaN
2
NaN
NaN
[3 rows x 2 columns]
In [3]: p % p
Out[3]:
first second
0
0.0
NaN
1
0.0
NaN
2
0.0
0.0
[3 rows x 2 columns]
In [4]: p / p
Out[4]:
first second
0
1.0
NaN
1
1.0
NaN
2
1.0
1.0
[3 rows x 2 columns]
In [5]: p / 0
Out[5]:
first second
0
inf
NaN
1
inf
NaN
2
inf
inf
[3 rows x 2 columns]

• Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. This
is a Regression from 0.10.1. We are reverting back to the prior behavior. This means groupby will return the
same shaped objects whether the groups are unique or not. Revert this issue (GH2893) with (GH3596).
In [6]: df2 = DataFrame([{"val1": 1, "val2" : 20}, {"val1":1, "val2": 19},
...:
{"val1":1, "val2": 27}, {"val1":1, "val2": 12}])
...:
In [7]: def func(dataf):
...:
return dataf["val2"]
...:

- dataf["val2"].mean()

squeezing the result frame to a series (because we have unique groups)
In [8]: df2.groupby("val1", squeeze=True).apply(func)
Out[8]:

1.18. v0.12.0 (July 24, 2013)

259


0 0.5
1 -0.5
2 7.5
3 -7.5
Name: 1, dtype: float64

no squeezing (the default, and behavior in 0.10.1)
In [9]: df2.groupby("val1").apply(func)
Out[9]:
val1
 val2 0 1 2 3
val1
 1 0.5 -0.5 7.5 -7.5
[1 rows x 4 columns]

- Raise on `iloc` when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Since `iloc` is purely positional based, the labels on the Series are not alignable (GH3631) This case is rarely used, and there are plenty of alternatives. This preserves the `iloc` API to be purely positional based.

In [10]: df = DataFrame(lrange(5), list('ABCDE'), columns=['a'])
In [11]: mask = (df.a%2 == 0)
In [12]: mask
Out[12]:
A True
B False
C True
D False
E True
Name: a, dtype: bool

this is what you should use
In [13]: df.loc[mask]
Out[13]:
 a
A 0
C 2
E 4
[3 rows x 1 columns]

this will work as well
In [14]: df.iloc[mask.values]
Out[14]:
 a
A 0
C 2
E 4
[3 rows x 1 columns]

`df.iloc[mask]` will raise a `ValueError`

- The `raise_on_error` argument to plotting functions is removed. Instead, plotting functions raise a `TypeError` when the `dtype` of the object is `object` to remind you to avoid `object` arrays whenever
possible and thus you should cast to an appropriate numeric dtype if you need to plot something.

- Add colormap keyword to DataFrame plotting methods. Accepts either a matplotlib colormap object (ie, matplotlib.cm.jet) or a string name of such an object (ie, 'jet'). The colormap is sampled to select the color for each column. Please see Colormaps for more information. (GH3860)

- DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and DataFrame.replace() instead. (GH3582, GH3675, GH3676)

- the method and axis arguments of DataFrame.replace() are deprecated

- DataFrame.replace’s infer_types parameter is removed and now performs conversion by default. (GH3907)

- Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted if True, default is False (same as prior to 0.12) (GH3679)

- Implement __nonzero__ for NDFrame objects (GH3691, GH3696)

- IO api
 - added top-level function read_excel to replace the following. The original API is deprecated and will be removed in a future version
  ```python
  from pandas.io.parsers import ExcelFile
  xls = ExcelFile('path_to_file.xls')
  xls.parse('Sheet1', index_col=None, na_values=['NA'])
  ```
 With
  ```python
  import pandas as pd
  pd.read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
  ```
 - added top-level function read_sql that is equivalent to the following
  ```python
  from pandas.io.sql import read_frame
  read_frame(.....)
  ```

- DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)

- Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int (GH3425)

- The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a TypeError when performed on a Series and return an empty Series when performed on a DataFrame similar to performing these operations on, for example, a DataFrame of slice objects:
 - sum, prod, mean, std, var, skew, kurt, corr, and cov

- read_html now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to parse. a list of parsers to try until success is also valid

- The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently, PandasObject provides string methods (from StringMixin). (GH4090, GH4092)

- New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)
I/O Enhancements

- `pd.read_html()` can now parse HTML strings, files or urls and return DataFrames, courtesy of @cpcloud. (GH3477, GH3605, GH3606, GH3616). It works with a single parser backend: BeautifulSoup4 + html5lib See the docs

You can use `pd.read_html()` to read the output from `DataFrame.to_html()` like so

```python
In [15]: df = DataFrame({'a': range(3), 'b': list('abc')})

In [16]: print(df)
   a b
0 0 a
1 1 b
2 2 c

[3 rows x 2 columns]

In [17]: html = df.to_html()

In [18]: alist = pd.read_html(html, index_col=0)

In [19]: print(df == alist[0])
   a b
0 True True
1 True True
2 True True

[3 rows x 2 columns]
```

Note that `alist` here is a Python list so `pd.read_html()` and `DataFrame.to_html()` are not inverses.

- `pd.read_html()` no longer performs hard conversion of date strings (GH3656).

Warning: You may have to install an older version of BeautifulSoup4. See the installation docs

- Added module for reading and writing Stata files: pandas.io.stata (GH1512) accessible via `read_stata` top-level function for reading, and `to_stata` DataFrame method for writing, See the docs

- Added module for reading and writing json format files: pandas.io.json accessible via `read_json` top-level function for reading, and `to_json` DataFrame method for writing, See the docs various issues (GH1226, GH3804, GH3876, GH3867, GH1305)

- MultiIndex column support for reading and writing csv format files
 - The `header` option in `read_csv` now accepts a list of the rows from which to read the index.
 - The option, `tupleize_cols` can now be specified in both `to_csv` and `read_csv`, to provide compatibility for the pre 0.12 behavior of writing and reading MultiIndex columns via a list of tuples. The default in 0.12 is to write lists of tuples and not interpret list of tuples as a MultiIndex column.

Note: The default behavior in 0.12 remains unchanged from prior versions, but starting with 0.13, the default to write and read MultiIndex columns will be in the new format. (GH3571, GH1651, GH3141)

- If an `index_col` is not specified (e.g. you don’t have an index, or wrote it with `df.to_csv(..., index=False)`), then any names on the columns index will be lost.
In [20]: from pandas.util.testing import makeCustomDataframe as mkdf

In [21]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)

In [22]: df.to_csv('mi.csv',tupleize_cols=False)

In [23]: print(open('mi.csv').read())

C0,,C_{l0_g0},C_{l0_g1},C_{l0_g2}
C1,,C_{l1_g0},C_{l1_g1},C_{l1_g2}
C2,,C_{l2_g0},C_{l2_g1},C_{l2_g2}
C3,,C_{l3_g0},C_{l3_g1},C_{l3_g2}
R0,R1,,
R_{l0_g0},R_{l1_g0},R0C0,R0C1,R0C2
R_{l0_g1},R_{l1_g1},R1C0,R1C1,R1C2
R_{l0_g2},R_{l1_g2},R2C0,R2C1,R2C2
R_{l0_g3},R_{l1_g3},R3C0,R3C1,R3C2
R_{l0_g4},R_{l1_g4},R4C0,R4C1,R4C2

In [24]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1],tupleize_cols=False)

Out[24]:
C0 C_{l0_g0} C_{l0_g1} C_{l0_g2}
C1 C_{l1_g0} C_{l1_g1} C_{l1_g2}
C2 C_{l2_g0} C_{l2_g1} C_{l2_g2}
C3 C_{l3_g0} C_{l3_g1} C_{l3_g2}
R0 R1,
R_{l0_g0} R_{l1_g0} R0C0 R0C1 R0C2
R_{l0_g1} R_{l1_g1} R1C0 R1C1 R1C2
R_{l0_g2} R_{l1_g2} R2C0 R2C1 R2C2
R_{l0_g3} R_{l1_g3} R3C0 R3C1 R3C2
R_{l0_g4} R_{l1_g4} R4C0 R4C1 R4C2
[5 rows x 3 columns]

- Support for HDFStore (via PyTables 3.0.0) on Python3
- Iterator support via `read_hdf` that automatically opens and closes the store when iteration is finished. This is only for `tables`

In [25]: path = 'store_iterator.h5'

In [26]: DataFrame(randn(10,2)).to_hdf(path,'df',table=True)

In [27]: for df in read_hdf(path,'df', chunksize=3):
.....: print df
.....:
 0 1
0 0.713216 -0.778461
1 -0.661062 0.862877
2 0.344342 0.149565
3 0.949965 -0.442354
4 0.402985 0.60477
pandas: powerful Python data analysis toolkit, Release 0.19.2

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.049355</td>
<td>0.632633</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>-1.502767</td>
<td>-1.225492</td>
</tr>
</tbody>
</table>

- `read_csv` will now throw a more informative error message when a file contains no columns, e.g., all newline characters

Other Enhancements

- `DataFrame.replace()` now allows regular expressions on contained Series with object dtype. See the examples section in the regular docs *Replacing via String Expression*

 For example you can do

  ```
  In [25]: df = DataFrame({'a': list('ab..'), 'b': [1, 2, 3, 4]})
  
  In [26]: df.replace(regex=r'\s*\.\s*', value=np.nan)
  Out[26]:
   a  b
  0  a  1
  1  b  2
  2  NaN  3
  3  NaN  4
  [4 rows x 2 columns]
  ```

 to replace all occurrences of the string `. ` with zero or more instances of surrounding whitespace with NaN.

 Regular string replacement still works as expected. For example, you can do

  ```
  In [27]: df.replace('.', np.nan)
  Out[27]:
   a  b
  0  a  1
  1  b  2
  2  NaN  3
  3  NaN  4
  [4 rows x 2 columns]
  ```

 to replace all occurrences of the string `. ` with NaN.

- `pd.melt()` now accepts the optional parameters `var_name` and `value_name` to specify custom column names of the returned DataFrame.

- `pd.set_option()` now allows N option, value pairs (GH3667).

 Let’s say that we had an option `'a.b'` and another option `'b.c'`. We can set them at the same time:

  ```
  In [28]: pd.set_option('a.b', 1, 'b.c', 4)
  ```
The `filter` method for group objects returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.

```python
In [33]: sf = Series([1, 1, 2, 3, 3, 3])
In [34]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[34]:
3  3
4  3
5  3
dtype: int64
```

The argument of `filter` must a function that, applied to the group as a whole, returns `True` or `False`.

Another useful operation is filtering out elements that belong to groups with only a couple members.

```python
In [35]: dff = DataFrame({'A': np.arange(8), 'B': list('aabbbbcc')})
In [36]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[36]:
    A  B
  2  2  b
  3  3  b
  4  4  b
  5  5  b
[4 rows x 2 columns]
```

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

```python
In [37]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[37]:
    A  B
  0  NaN NaN
  1  NaN NaN
  2  2.0  b
  3  3.0  b
  4  4.0  b
  5  5.0  b
  6  NaN NaN
  7  NaN NaN
[8 rows x 2 columns]
```

- Series and DataFrame hist methods now take a `figsize` argument (GH3834)
- DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)
- Timestamp.min and Timestamp.max now represent valid Timestamp instances instead of the default date-time.min and date-time.max (respectively), thanks @SleepingPills
- `read_html` now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)
Experimental Features

- Added experimental `CustomBusinessDay` class to support `DateOffsets` with custom holiday calendars and custom weekmasks. (GH2301)

Note: This uses the `numpy.busdaycalendar` API introduced in Numpy 1.7 and therefore requires Numpy 1.7.0 or newer.

```python
In [38]: from pandas.tseries.offsets import CustomBusinessDay
In [39]: from datetime import datetime

# As an interesting example, let's look at Egypt where
# a Friday-Saturday weekend is observed.
In [40]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

# They also observe International Workers' Day so let's
# add that for a couple of years
In [41]: holidays = ['2012-05-01', datetime(2013, 5, 1), np.datetime64('2014-05-01')]

In [42]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)

In [43]: dt = datetime(2013, 4, 30)
In [44]: print(dt + 2 * bday_egypt)
2013-05-05 00:00:00

In [45]: dts = date_range(dt, periods=5, freq=bday_egypt)
In [46]: print(Series(dts.weekday, dts).map(Series('Mon Tue Wed Thu Fri Sat Sun'.split())))
2013-04-30 Tue
2013-05-02 Thu
2013-05-05 Sun
2013-05-06 Mon
2013-05-07 Tue
Freq: C, dtype: object
```

Bug Fixes

- Plotting functions now raise a `TypeError` before trying to plot anything if the associated objects have a `dtype` of `object` (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.

- `fillna` methods now raise a `TypeError` if the `value` parameter is a list or tuple.

- `Series.str` now supports iteration (GH3638). You can iterate over the individual elements of each string in the `Series`. Each iteration yields a `Series` with either a single character at each index of the original `Series` or `NaN`. For example,

```python
In [47]: strs = 'go', 'bow', 'joe', 'slow'
```
The last element yielded by the iterator will be a `Series` containing the last element of the longest string in the `Series` with all other elements being NaN. Here since 'slow' is the longest string and there are no other strings with the same length 'w' is the only non-null string in the yielded `Series`.

- **HDFStore**
 - will retain index attributes (freq.tz.name) on recreation (GH3499)
 - will warn with an `AttributeConflictWarning` if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing
 - support datelike columns with a timezone as data_columns (GH2852)

- **Non-unique index support clarified** (GH3468).
 - Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
 - Fix construction of a DataFrame with a duplicate index
 - `ref_locs` support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194)
- applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
- Fix to_csv to handle non-unique columns (GH3495)
- Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
- Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
- Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
- Allow insert/delete to non-unique columns (GH3679)
- Non-unique indexing with a slice via loc and friends fixed (GH3659)
- Allow insert/delete to non-unique columns (GH3679)
- Extend reindex to correctly deal with non-unique indices (GH3679)
- DataFrame.itertuples() now works with frames with duplicate column names (GH3873)
- Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for location-based taking
- Allow non-unique indexing in series via .ix/.loc and __getitem__ (GH4246)
- Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)
- DataFrame.from_records did not accept empty recarrays (GH3682)
- read_html now correctly skips tests (GH3741)
- Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument wasn’t working (GH3907)
- Improved network test decorator to catch IOError (and therefore URLError as well). Added with_connectivity_check decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, new optional_args decorator factory for decorators. (GH3910, GH3914)
- Fixed testing issue where too many sockets were open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)
- Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)
- Series.hist will now take the figure from the current environment if one is not passed
- Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)
- Fixed running of tox under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)
- Fixed bug where sharex and sharey were not being passed to grouped_hist (GH4089)
- Fixed bug in DataFrame.replace where a nested dict wasn’t being iterated over when regex=False (GH4115)
- Fixed bug in the parsing of microseconds when using the format argument in to_datetime (GH4152)
- Fixed bug in PandasAutoDateLocator where invert_xaxis triggered incorrectly MilliSecondLocator (GH3990)
- Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
- Fixed the legend displaying in DataFrame.plot(kind='kde') (GH4216)
- Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
• Fixed bug in initializing `DatetimeIndex` with an array of strings in a certain time zone (GH4229)
• Fixed bug where `html5lib` wasn’t being properly skipped (GH4265)
• Fixed bug where `get_data_famafrench` wasn’t using the correct file edges (GH4281)

See the full release notes or issue tracker on GitHub for a complete list.

v0.11.0 (April 22, 2013)

This is a major release from 0.10.1 and includes many new features and enhancements along with a large number of bug fixes. The methods of Selecting Data have had quite a number of additions, and Dtype support is now full-fledged. There are also a number of important API changes that long-time pandas users should pay close attention to.

There is a new section in the documentation, 10 Minutes to Pandas, primarily geared to new users.

There is a new section in the documentation, Cookbook, a collection of useful recipes in pandas (and that we want contributions!).

There are several libraries that are now Recommended Dependencies

Selection Choices

Starting in 0.11.0, object selection has had a number of user-requested additions in order to support more explicit location based indexing. Pandas now supports three types of multi-axis indexing.

• `.loc` is strictly label based, will raise `KeyError` when the items are not found, allowed inputs are:
 – A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
 – A list or array of labels ['a', 'b', 'c']
 – A slice object with labels 'a':'f', (note that contrary to usual python slices, both the start and the stop are included!)
 – A boolean array

See more at Selection by Label

• `.iloc` is strictly integer position based (from 0 to length-1 of the axis), will raise `IndexError` when the requested indicies are out of bounds. Allowed inputs are:
 – An integer e.g. 5
 – A list or array of integers [4, 3, 0]
 – A slice object with ints 1:7
 – A boolean array

See more at Selection by Position

• `.ix` supports mixed integer and label based access. It is primarily label based, but will fallback to integer positional access. `.ix` is the most general and will support any of the inputs to `.loc` and `.iloc`, as well as support for floating point label schemes. `.ix` is especially useful when dealing with mixed positional and label based hierarchial indexes.

As using integer slices with `.ix` have different behavior depending on whether the slice is interpreted as position based or label based, it’s usually better to be explicit and use `.iloc` or `.loc`.

See more at Advanced Indexing and Advanced Hierarchical.
Selection Deprecations

Starting in version 0.11.0, these methods may be deprecated in future versions.

- irow
- icol
- iget_value

See the section Selection by Position for substitutes.

Dtypes

Numeric dtypes will propagate and can coexist in DataFrames. If a dtype is passed (either directly via the dtype keyword, a passed ndarray, or a passed Series), then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will NOT be combined. The following example will give you a taste.

```
In [1]: df1 = DataFrame(randn(8, 1), columns = ['A'], dtype = 'float32')
In [2]: df1
Out[2]:
    A
0   1.392665
1  -0.123497
2  -0.402761
3  -0.246604
4  -0.288433
5  -0.763434
6   2.069526
7  -1.203569
[8 rows x 1 columns]
In [3]: df1.dtypes
Out[3]:
    A    float32
dtype: object
In [4]: df2 = DataFrame(dict(A = Series(randn(8),dtype='float16'),
                        B = Series(randn(8)),
                        C = Series(randn(8),dtype='uint8')))
In [5]: df2
Out[5]:
    A   B    C
0  0.591797 -0.038605   0
1  0.841309 -0.460478   1
2 -0.500977 -0.310458   0
3 -0.816406  0.866493  254
4  0.207031  0.245972   0
5 -0.664062  0.319442   1
6  0.580566  1.378512   1
7 -0.965820  0.292502  255
[8 rows x 3 columns]
```
```python
In [6]: df2.dtypes
Out[6]:
A   float16
B   float64
C   uint8
dtype: object

# here you get some upcasting
In [7]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [8]: df3
Out[8]:
   A         B        C
0  1.984462 -0.038605  0.0
1  0.717812 -0.460478  1.0
2 -0.903737 -0.310458  0.0
3 -1.063011  0.866493 254.0
4 -0.495465  0.245972  0.0
5 -1.427497  0.319442  1.0
6  2.650092  1.378512  1.0
7 -2.169390  0.292502 255.0
[8 rows x 3 columns]

In [9]: df3.dtypes
Out[9]:
A   float32
B   float64
C   float64
dtype: object

Dtype Conversion

This is lower-common-denominator upcasting, meaning you get the dtype which can accomodate all of the types

In [10]: df3.values.dtype
Out[10]: dtype('float64')

Conversion

In [11]: df3.astype('float32').dtypes
Out[11]:
A   float32
B   float32
C   float32
dtype: object

Mixed Conversion

In [12]: df3['D'] = '1.'
In [13]: df3['E'] = '1'

In [14]: df3.convert_objects(convert_numeric=True).dtypes
Out[14]:
A   float32
```
Forcing Date coercion (and setting NaT when not datelike)

```
In [18]: from datetime import datetime

In [19]: s = Series([datetime(2001,1,1,0,0), 'foo', 1.0, 1,
                     Timestamp('20010104'), '20010105'], dtype='O')

In [20]: s.convert_objects(convert_dates='coerce')
```

```
Out[20]:
0  2001-01-01
1    NaT
2    NaT
3    NaT
4  2001-01-04
5  2001-01-05
```

Dtype Gotchas

Platform Gotchas

Starting in 0.11.0, construction of DataFrame/Series will use default dtypes of int64 and float64, regardless of platform. This is not an apparent change from earlier versions of pandas. If you specify dtypes, they WILL be respected, however (GH2837).

The following will all result in int64 dtypes

```
In [21]: DataFrame([[1,2]],columns=['a']).dtypes
Out[21]:
a    int64
dtype: object

In [22]: DataFrame({'a' : [1,2]}).dtypes
Out[22]:
a    int64
dtype: object
```
Keep in mind that `DataFrame(np.array([1, 2]))` **WILL result in int32 on 32-bit platforms!**

Upcasting Gotchas

Performing indexing operations on integer type data can easily upcast the data. The dtype of the input data will be preserved in cases where `nans` are not introduced.

```python
In [24]: dfi = df3.astype('int32')

In [25]: dfi['D'] = dfi['D'].astype('int64')

In [26]: dfi
```

```
A  B  C  D  E
0  1  0  0  1  1
1  0  0  1  1  1
2  0  0  0  1  1
3 -1  0  254 1  1
4  0  0  0  1  1
5 -1  0  1  1  1
6  2  1  1  1  1
7 -2  0  255 1  1

[8 rows x 5 columns]
```

```python
In [27]: dfi.dtypes
```

```
A  int32
B  int32
C  int32
D  int64
E  int32
dtype: object
```

```python
In [28]: casted = dfi[dfi>0]

In [29]: casted
```

```
A  B  C  D  E
0  1.0  NaN  NaN  1  1
1  NaN  NaN  1.0  1  1
2  NaN  NaN  NaN  1  1
3  NaN  NaN  254.0  1  1
4  NaN  NaN  NaN  1  1
5  NaN  NaN  1.0  1  1
6  2.0  1.0  1.0  1  1
7  NaN  NaN  255.0  1  1

[8 rows x 5 columns]
```

```python
In [30]: casted.dtypes
```

```
A  float64
```

While float dtypes are unchanged.

```python
In [31]: df4 = df3.copy()

In [32]: df4['A'] = df4['A'].astype('float32')

In [33]: df4.dtypes
Out[33]:
A float32
B float64
C float64
D float16
E int32
dtype: object

In [34]: casted = df4[df4>0]

In [35]: casted
Out[35]:
   A    B    C    D    E
0  1.98  NaN  NaN   1.0   1.0
1  0.72  NaN  NaN   1.0   1.0
2  NaN  NaN  NaN   1.0   1.0
3  NaN  0.86  254.0  1.0  1.0
4  NaN  0.25  NaN  1.0  1.0
5  NaN  0.32  1.0  1.0  1.0
6  2.65  1.38  255.0  1.0  1.0
7  NaN  0.29  255.0  1.0  1.0
[8 rows x 5 columns]

In [36]: casted.dtypes
Out[36]:
A float32
B float64
C float64
D float16
E int32
dtype: object
```

Datetimes Conversion

Datet ime64[ns] columns in a DataFrame (or a Series) allow the use of `np.nan` to indicate a nan value, in addition to the traditional `NaT`, or not-a-time. This allows convenient nan setting in a generic way. Furthermore `datetime64[ns]` columns are created by default, when passed datetimelike objects (this change was introduced in 0.10.1) (GH2809, GH2810)

```python
In [37]: df = DataFrame(randn(6,2), date_range('20010102', periods=6), columns=['A','B'])

In [38]: df['timestamp'] = Timestamp('20010103')
```
In [39]: df
Out[39]:
 A B timestamp
2001-01-02 1.023958 0.660103 2001-01-03
2001-01-03 1.236475 -2.170629 2001-01-03
2001-01-04 -0.270630 -1.685677 2001-01-03
2001-01-05 -0.440747 -0.115070 2001-01-03
2001-01-06 -0.632102 -0.585977 2001-01-03
2001-01-07 -1.444787 -0.201135 2001-01-03
[6 rows x 3 columns]

datetime64[ns] out of the box
In [40]: df.get_dtypes()
Out[40]:
datetime64[ns] 1
float64 2
dtype: int64

use the traditional nan, which is mapped to NaT internally
In [41]: df.ix[2:4, ['A', 'timestamp']] = np.nan

In [42]: df
Out[42]:
 A B timestamp
2001-01-02 1.023958 0.660103 2001-01-03
2001-01-03 1.236475 -2.170629 2001-01-03
2001-01-04 NaN -1.685677 NaT
2001-01-05 NaN -0.115070 NaT
2001-01-06 -0.632102 -0.585977 2001-01-03
2001-01-07 -1.444787 -0.201135 2001-01-03
[6 rows x 3 columns]

Astype conversion on datetime64[ns] to object, implicitly converts NaT to np.nan

In [43]: import datetime

In [44]: s = Series([datetime.datetime(2001, 1, 2, 0, 0) for i in range(3)])

In [45]: s.dtype
Out[45]: dtype('<M8[ns]')

In [46]: s[1] = np.nan

In [47]: s
Out[47]:
0 2001-01-02
1 NaT
2 2001-01-02
dtype: datetime64[ns]

In [48]: s.dtype
Out[48]: dtype('<M8[ns]')

In [49]: s = s.astype('O')
In [50]: s
Out[50]:
0 2001-01-02 00:00:00
1 NaT
2 2001-01-02 00:00:00
dtype: object

In [51]: s.dtype
Out[51]: dtype('O')

API changes

- Added to_series() method to indices, to facilitate the creation of indexers (GH3275)

- HDFStore
 - added the method select_column to select a single column from a table as a Series.
 - deprecated the unique method, can be replicated by select_column(key,column).unique()
 - min_itemsize parameter to append will now automatically create data_columns for passed keys

Enhancements

- Improved performance of df.to_csv() by up to 10x in some cases. (GH3059)
- Numexpr is now a Recommended Dependencies, to accelerate certain types of numerical and boolean operations
- Bottleneck is now a Recommended Dependencies, to accelerate certain types of nan operations

- HDFStore
 - support read_hdf/to_hdf API similar to read_csv/to_csv

In [52]: df = DataFrame(dict(A=lrange(5), B=lrange(5)))
In [53]: df.to_hdf('store.h5','table',append=True)
In [54]: read_hdf('store.h5', 'table', where = ['index>2'])
Out[54]:
 A B
0 3 3
1 4 4
[2 rows x 2 columns]
 - provide dotted attribute access to get from stores, e.g. store.df == store['df']
 - new keywords iterator=boolean, and chunksize=number_in_a_chunk are provided to support iteration on select and select_as_multiple (GH3076)

- You can now select timestamps from an unordered timeseries similarly to an ordered timeseries (GH2437)

- You can now select with a string from a DataFrame with a datelike index, in a similar way to a Series (GH3070)
In [57]: ts['2001']
Out[57]:
2001-10-31 0.663256
2001-11-30 0.079126
2001-12-31 0.587699
Freq: M, dtype: float64

In [58]: df = DataFrame(dict(A = ts))
In [59]: df['2001']
Out[59]:
 A
2001-10-31 0.663256
2001-11-30 0.079126
2001-12-31 0.587699

[3 rows x 1 columns]

• Squeeze to possibly remove length 1 dimensions from an object.

In [60]: p = Panel(randn(3,4,4),items=['ItemA','ItemB','ItemC'],
....: major_axis=date_range('20010102',periods=4),
....: minor_axis=['A','B','C','D'])

In [61]: p
Out[61]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00
Minor_axis axis: A to D

In [62]: p.reindex(items=['ItemA']).squeeze()
Out[62]:
 A B C D
2001-01-02 -1.203403 0.425882 -0.436045 -0.982462
2001-01-03 0.348090 -0.969649 0.121731 0.202798
2001-01-04 1.215695 -0.218549 -0.631381 -0.337116
2001-01-05 0.404238 0.907213 -0.865657 0.483186

[4 rows x 4 columns]

In [63]: p.reindex(items=['ItemA'],minor=['B']).squeeze()
Out[63]:
2001-01-02 0.425882
2001-01-03 -0.969649
2001-01-04 -0.218549
2001-01-05 0.907213
Freq: D, Name: B, dtype: float64

• In pd.io.data.Options,
 – Fix bug when trying to fetch data for the current month when already past expiry.
 – Now using lxml to scrape html instead of BeautifulSoup (lxml was faster).
 – New instance variables for calls and puts are automatically created when a method that creates them is called. This works for current month where the instance variables are simply calls and puts. Also
works for future expiry months and save the instance variable as callsMMYY or putsMMYY, where MMYY are, respectively, the month and year of the option’s expiry.

- `Options.get_near_stock_price` now allows the user to specify the month for which to get relevant options data.

- `Options.get_forward_data` now has optional kwargs `near` and `above_below`. This allows the user to specify if they would like to only return forward looking data for options near the current stock price. This just obtains the data from `Options.get_near_stock_price` instead of `Options.get_xxx_data()` (GH2758).

• Cursor coordinate information is now displayed in time-series plots.

• added option `display.max_seq_items` to control the number of elements printed per sequence pprinting it. (GH2979)

• added option `display.chop_threshold` to control display of small numerical values. (GH2739)

• added option `display.max_info_rows` to prevent `verbose_info` from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)

• `value_counts()` now accepts a “normalize” argument, for normalized histograms. (GH2710).

• `DataFrame.from_records` now accepts not only dicts but any instance of the collections.Mapping ABC.

• added option `display.mpl_style` providing a sleeker visual style for plots. Based on https://gist.github.com/huyng/816622 (GH3075).

• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)

• `to_html()` now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes & in addition to < and >. (GH2919)

See the full release notes or issue tracker on GitHub for a complete list.

v0.10.1 (January 22, 2013)

This is a minor release from 0.10.0 and includes new features, enhancements, and bug fixes. In particular, there is substantial new HDFStore functionality contributed by Jeff Reback.

An undesired API breakage with functions taking the `inplace` option has been reverted and deprecation warnings added.

API changes

• Functions taking an `inplace` option return the calling object as before. A deprecation message has been added.

• Groupby aggregations Max/Min no longer exclude non-numeric data (GH2700)

• Resampling an empty DataFrame now returns an empty DataFrame instead of raising an exception (GH2640)

• The file reader will now raise an exception when NA values are found in an explicitly specified integer column instead of converting the column to float (GH2631)

• `DatetimeIndex.unique` now returns a `DatetimeIndex` with the same name and timezone instead of an array (GH2563)
New features

- MySQL support for database (contribution from Dan Allan)

HDFStore

You may need to upgrade your existing data files. Please visit the compatibility section in the main docs.

You can designate (and index) certain columns that you want to be able to perform queries on a table, by passing a list to data_columns

```python
In [1]: store = HDFStore('store.h5')
In [2]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
...: columns=['A', 'B', 'C'])
...:
In [3]: df['string'] = 'foo'
In [4]: df.ix[4:6,'string'] = np.nan
In [5]: df.ix[7:9,'string'] = 'bar'
In [6]: df['string2'] = 'cool'
```

```python
In [7]: df
Out[7]:
   A     B     C   string  string2
0  NaN  1.89  1.69    NaN      NaN
1  0.28  0.89  0.70    NaN      NaN
2  0.73  0.47 -0.56    NaN      NaN
3 -0.54 -0.47  0.51    NaN      NaN
4  0.50  0.57  0.03    NaN      NaN
5 -0.28  0.37 -0.14    NaN      NaN
6 -0.19 -0.43 -0.26    NaN      NaN
7 -0.05  0.18  0.24    NaN      NaN

[8 rows x 5 columns]
```

on-disk operations

```python
In [8]: store.append('df', df, data_columns=['B','C','string','string2'])
In [9]: store.select('df',[ 'B > 0', 'string == foo' ])  
Out[9]:
Empty DataFrame
Columns: [A, B, C, string, string2]
Index: []
```

this is in-memory version of this type of selection

```python
In [10]: df[(df.B > 0) & (df.string == 'foo')]
Out[10]:
   A    B    C   string  string2
0  1.88  1.70 -0.19     NaN      NaN
1  1.30  0.90 -0.45     NaN      NaN
2  0.43  0.38  0.09    NaN      NaN
3 -0.38 -0.10  0.28    NaN      NaN
```

1.20. v0.10.1 (January 22, 2013) 279
Retrieving unique values in an indexable or data column.

```python
# note that this is deprecated as of 0.14.0
# can be replicated by: store.select_column('df','index').unique()
store.unique('df','index')
store.unique('df','string')
```

You can now store `datetime64` in data columns

```python
In [11]: df_mixed = df.copy()

In [12]: df_mixed['datetime64'] = Timestamp('20010102')

In [13]: df_mixed.ix[3:4,[A','B']] = np.nan

In [14]: store.append('df_mixed', df_mixed)

In [15]: df_mixed1 = store.select('df_mixed')

In [16]: df_mixed1
```

```bash
Out[16]:
A  B  C  string  string2  datetime64
2000-01-01 1.885136 -0.183873 2.550850  foo  cool  2001-01-02
2000-01-02 0.180759 -1.117089 0.061462  foo  cool  2001-01-02
2000-01-03 -0.294467 -0.591411 -0.876691  foo  cool  2001-01-02
2000-01-04 NaN NaN 0.045152  cool  2001-01-02
2000-01-05 -0.242846 1.195819 1.533294  NaN  cool  2001-01-02
2000-01-06 0.820521 -0.281201 1.651561  NaN  cool  2001-01-02
2000-01-07 -0.034086 0.252394 -0.498772  foo  cool  2001-01-02
2000-01-08 -2.290958 -1.601262 -0.256718  bar  cool  2001-01-02
```

```python
In [17]: df_mixed1.get_dtype_counts()
```

```bash
Out[17]:
datetime64[ns] 1
float64 3
object 2
dtype: int64
```

You can pass `columns` keyword to select to filter a list of the return columns, this is equivalent to passing a `Term('columns',list_of_columns_to_filter)`

```python
In [18]: store.select('df',columns = [A','B'])
```

```bash
Out[18]:
A  B
2000-01-01 1.885136 -0.183873
2000-01-02 0.180759 -1.117089
2000-01-03 -0.294467 -0.591411
2000-01-04 3.127110 1.451130
2000-01-05 -0.242846 1.195819
2000-01-06 0.820521 -0.281201
2000-01-07 -0.034086 0.252394
2000-01-08 -2.290958 -1.601262
```

[8 rows x 2 columns]
HDFStore now serializes multi-index dataframes when appending tables.

```
In [19]: index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
                         ['one', 'two', 'three'],
                         [0, 1, 2, 0, 1, 2, 0, 1, 2]],
                         names=['foo', 'bar'])

In [20]: df = DataFrame(np.random.randn(10, 3), index=index,
                          columns=['A', 'B', 'C'])

In [21]: df
Out[21]:
   A          B         C
foo one  0.239369  0.174122 -1.131794
two -1.948006  0.980347  0.674429
three -0.361633 -0.761218  1.768215
bar one  0.152288 -0.862613 -0.210968
two -0.859278  1.498195  0.462413
baz two -0.647604  1.511487 -0.727189
three -0.342928 -0.007364  1.427674
qux one  0.104020  2.052171 -1.230963
two -0.019240 -1.713238  0.838912
three -0.637855  0.215109 -1.515362

[10 rows x 3 columns]

In [22]: store.append('mi', df)

In [23]: store.select('mi')
Out[23]:
   A          B         C
foo one  0.239369  0.174122 -1.131794
two -1.948006  0.980347  0.674429
three -0.361633 -0.761218  1.768215
bar one  0.152288 -0.862613 -0.210968
two -0.859278  1.498195  0.462413
baz two -0.647604  1.511487 -0.727189
three -0.342928 -0.007364  1.427674
qux one  0.104020  2.052171 -1.230963
two -0.019240 -1.713238  0.838912
three -0.637855  0.215109 -1.515362

[10 rows x 3 columns]

# the levels are automatically included as data columns
In [24]: store.select('mi', Term('foo=bar'))
Out[24]: Empty DataFrame
Columns: [A, B, C]
Index: []

[0 rows x 3 columns]
```

Multi-table creation via `append_to_multiple` and selection via `select_as_multiple` can create/select from
multiple tables and return a combined result, by using \texttt{where} on a selector table.

\begin{Verbatim}
\begin{footnotesize}
\begin{verbatim}
In [25]: df_mt = DataFrame(randn(8, 6), index=date_range('1/1/2000', periods=8),
 columns=['A', 'B', 'C', 'D', 'E', 'F'])

In [26]: df_mt['foo'] = 'bar'

you can also create the tables individually
In [27]: store.append_to_multiple({ 'df1_mt' : ['A','B'], 'df2_mt' : None }, df_mt, ...
 selector = 'df1_mt')

In [28]: store
Out[28]: <class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->6,indexers->[index],dc->[B,C,string,string2])
/mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo])

individual tables were created
In [29]: store.select('df1_mt')
Out[29]:
 A B
2000-01-01 1.586924 -0.447974
2000-01-02 -0.102206 0.870302
2000-01-03 -0.071659 1.458210
2000-01-04 -0.616293 0.150468
2000-01-05 -0.431163 0.016640
2000-01-06 0.800353 -0.451572
2000-01-07 -0.040863 0.290110
2000-01-08 -0.096145 0.290110
[8 rows x 2 columns]

In [30]: store.select('df2_mt')
Out[30]:
 C D E F foo
2000-01-01 -1.573998 0.630925 -0.071659 -1.277640 bar
2000-01-02 1.275280 -1.199212 1.607800 1.673018 bar
2000-01-03 1.249874 -1.560789 1.557329 1.993441 bar
2000-01-04 0.132104 0.825392 1.557329 1.993441 bar
2000-01-05 0.904578 0.825392 1.557329 1.993441 bar
2000-01-06 0.904578 0.825392 1.557329 1.993441 bar
2000-01-07 -0.540770 -0.370038 1.298390 1.662964 bar
2000-01-08 -0.096145 1.717830 -0.462446 -0.112019 bar
[8 rows x 5 columns]

as a multiple
In [31]: store.select_as_multiple(['df1_mt','df2_mt'], where = ['A>0','B>0'],
 selector = 'df1_mt')
\end{verbatim}
\end{footnotesize}
\end{Verbatim}
pandas: powerful Python data analysis toolkit, Release 0.19.2

Enhancements

• **HDFStore** now can read native PyTables table format tables

• You can pass `nan_rep = 'my_nan_rep'` to append, to change the default nan representation on disk (which converts to/from `np.nan`), this defaults to `nan`.

• You can pass `index` to append. This defaults to True. This will automagically create indices on the `indexables` and `data columns` of the table

• You can pass `chunksize=an integer` to append, to change the writing chunksize (default is 50000). This will significantly lower your memory usage on writing.

• You can pass `expectedrows=an integer` to the first `append`, to set the TOTAL number of expectedrows that PyTables will expect. This will optimize read/write performance.

• **Select** now supports passing `start` and `stop` to provide selection space limiting in selection.

• Greatly improved ISO8601 (e.g., `yyyy-mm-dd`) date parsing for file parsers (GH2698)

• Allow `DataFrame.merge` to handle combinatorial sizes too large for 64-bit integer (GH2690)

• Series now has unary negation (`-series`) and inversion (`~series`) operators (GH2686)

• `DataFrame.plot` now includes a `logx` parameter to change the x-axis to log scale (GH2327)

• Series arithmetic operators can now handle constant and ndarray input (GH2574)

• ExcelFile now takes a `kind` argument to specify the file type (GH2613)

• A faster implementation for Series.str methods (GH2602)

Bug Fixes

• **HDFStore** tables can now store `float32` types correctly (cannot be mixed with `float64` however)

• Fixed Google Analytics prefix when specifying request segment (GH2713).

• Function to reset Google Analytics token store so users can recover from improperly setup client secrets (GH2687).

• Fixed groupby bug resulting in segfault when passing in MultiIndex (GH2706)

• Fixed bug where passing a Series with datetime64 values into `to_datetime` results in bogus output values (GH2699)

• Fixed bug in pattern in `HDFStore` expressions when pattern is not a valid regex (GH2694)

• Fixed performance issues while aggregating boolean data (GH2692)

• When given a boolean mask key and a Series of new values, Series `__setitem__` will now align the incoming values with the original Series (GH2686)

• Fixed MemoryError caused by performing counting sort on sorting MultiIndex levels with a very large number of combinatorial values (GH2684)

• Fixed bug that causes plotting to fail when the index is a DatetimeIndex with a fixed-offset timezone (GH2683)
• Corrected businessday subtraction logic when the offset is more than 5 bdays and the starting date is on a weekend (GH2680)
• Fixed C file parser behavior when the file has more columns than data (GH2668)
• Fixed file reader bug that misaligned columns with data in the presence of an implicit column and a specified usecols value
• DataFrames with numerical or datetime indices are now sorted prior to plotting (GH2609)
• Fixed DataFrame.from_records error when passed columns, index, but empty records (GH2633)
• Several bug fixed for Series operations when dtype is datetime64 (GH2689, GH2629, GH2626)

See the full release notes or issue tracker on GitHub for a complete list.

v0.10.0 (December 17, 2012)

This is a major release from 0.9.1 and includes many new features and enhancements along with a large number of bug fixes. There are also a number of important API changes that long-time pandas users should pay close attention to.

File parsing new features

The delimited file parsing engine (the guts of read_csv and read_table) has been rewritten from the ground up and now uses a fraction the amount of memory while parsing, while being 40% or more faster in most use cases (in some cases much faster).

There are also many new features:
• Much-improved Unicode handling via the encoding option.
• Column filtering (usecols)
• Dtype specification (dtype argument)
• Ability to specify strings to be recognized as True/False
• Ability to yield NumPy record arrays (as_recarray)
• High performance delim_whitespace option
• Decimal format (e.g. European format) specification
• Easier CSV dialect options: escapechar, lineterminator, quotechar, etc.
• More robust handling of many exceptional kinds of files observed in the wild

API changes

Deprecated DataFrame BINOP TimeSeries special case behavior

The default behavior of binary operations between a DataFrame and a Series has always been to align on the DataFrame’s columns and broadcast down the rows, except in the special case that the DataFrame contains time series. Since there are now method for each binary operator enabling you to specify how you want to broadcast, we are phasing out this special case (Zen of Python: Special cases aren’t special enough to break the rules). Here’s what I’m talking about:
In [1]: import pandas as pd

In [2]: df = pd.DataFrame(np.random.randn(6, 4),
 index=pd.date_range('1/1/2000', periods=6))

In [3]: df

```
   0         1         2         3
2000-01-01 -0.134024 -0.205969  1.348944 -1.198246
2000-01-02 -1.626124  0.982041  0.059493 -0.460111
2000-01-03 -1.565401 -0.025706  0.942864  2.502156
2000-01-04 -0.302741  0.261551 -0.066342  0.897097
2000-01-05  0.268766 -1.225092  0.582752 -1.490764
2000-01-06 -0.639757 -0.952750 -0.892402  0.505987
```

[6 rows x 4 columns]

deprecated now

In [4]: df - df[0]

```
   2000-01-01 00:00:00  2000-01-02 00:00:00  2000-01-03 00:00:00  \\
2000-01-01  NaN  NaN  NaN  NaN
2000-01-02  NaN  NaN  NaN  NaN
2000-01-03  NaN  NaN  NaN  NaN
2000-01-04  NaN  NaN  NaN  NaN
2000-01-05  NaN  NaN  NaN  NaN
2000-01-06  NaN  NaN  NaN  NaN

   2000-01-04 00:00:00  2000-01-05 00:00:00  2000-01-06 00:00:00  0  \\
2000-01-01  NaN  NaN  NaN  NaN
2000-01-02  NaN  NaN  NaN  NaN
2000-01-03  NaN  NaN  NaN  NaN
2000-01-04  NaN  NaN  NaN  NaN
2000-01-05  NaN  NaN  NaN  NaN
2000-01-06  NaN  NaN  NaN  NaN
```

1 2 3
2000-01-01 NaN NaN NaN
2000-01-02 NaN NaN NaN
2000-01-03 NaN NaN NaN
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN

[6 rows x 10 columns]

Change your code to

In [5]: df.sub(df[0], axis=0) # align on axis 0 (rows)

```
   0          1          2          3
2000-01-01  0.0   -0.071946  1.482967 -1.064223
2000-01-02  0.0   2.608165  1.685618  1.166013
2000-01-03  0.0   1.539695  2.508265  4.067556
2000-01-04  0.0   0.564293  0.236399  1.199839
2000-01-05  0.0  -1.493857  0.313986 -1.759530
2000-01-06  0.0  -0.312993  0.252645  1.145744
```

1.21. v0.10.0 (December 17, 2012) 285
You will get a deprecation warning in the 0.10.x series, and the deprecated functionality will be removed in 0.11 or later.

Altered resample default behavior

The default time series `resample` binning behavior of daily D and higher frequencies has been changed to `closed='left', label='left'`. Lower frequencies are unaffected. The prior defaults were causing a great deal of confusion for users, especially resampling data to daily frequency (which labeled the aggregated group with the end of the interval: the next day).

```
In [1]: dates = pd.date_range('1/1/2000', '1/5/2000', freq='4h')
In [2]: series = Series(np.arange(len(dates)), index=dates)
In [3]: series
Out[3]:
2000-01-01 00:00:00    0
2000-01-01 04:00:00    1
2000-01-01 08:00:00    2
2000-01-01 12:00:00    3
2000-01-01 16:00:00    4
2000-01-01 20:00:00    5
2000-01-02 00:00:00    6
2000-01-02 04:00:00    7
2000-01-02 08:00:00    8
2000-01-02 12:00:00    9
2000-01-02 16:00:00   10
2000-01-02 20:00:00   11
2000-01-03 00:00:00   12
2000-01-03 04:00:00   13
2000-01-03 08:00:00   14
2000-01-03 12:00:00   15
2000-01-03 16:00:00   16
2000-01-03 20:00:00   17
2000-01-04 00:00:00   18
2000-01-04 04:00:00   19
2000-01-04 08:00:00   20
2000-01-04 12:00:00   21
2000-01-04 16:00:00   22
2000-01-04 20:00:00   23
2000-01-05 00:00:00   24
Freq: 4H, dtype: int64

In [4]: series.resample('D', how='sum')
Out[4]:
2000-01-01    15
2000-01-02    51
2000-01-03    87
2000-01-04   123
2000-01-05    24
Freq: D, dtype: int64

In [5]: # old behavior
In [6]: series.resample('D', how='sum', closed='right', label='right')
Out[6]:
2000-01-01     0
```
• Infinity and negative infinity are no longer treated as NA by `isnull` and `notnull`. That they ever were was a relic of early pandas. This behavior can be re-enabled globally by the `mode.use_inf_as_null` option:

```python
In [6]: s = pd.Series([1.5, np.inf, 3.4, -np.inf])
In [7]: pd.isnull(s)
Out[7]:
0  False
1  False
2  False
3  False
dtype: bool
In [8]: s.fillna(0)
Out[8]:
0  1.500000
1  inf
2  3.400000
3  -inf
dtype: float64
In [9]: pd.set_option('use_inf_as_null', True)
In [10]: pd.isnull(s)
Out[10]:
0  False
1  True
2  False
3  True
dtype: bool
In [11]: s.fillna(0)
Out[11]:
0  1.5
1  0.0
2  3.4
3  0.0
dtype: float64
In [12]: pd.reset_option('use_inf_as_null')
```

• Methods with the `inplace` option now all return `None` instead of the calling object. E.g. code written like `df = df.fillna(0,inplace=True)` may stop working. To fix, simply delete the unnecessary variable assignment.

• `pandas.merge` no longer sorts the group keys (`sort=False`) by default. This was done for performance reasons: the group-key sorting is often one of the more expensive parts of the computation and is often unnecessary.

• The default column names for a file with no header have been changed to the integers 0 through N - 1. This is to create consistency with the DataFrame constructor with no columns specified. The v0.9.0 behavior (names X0, X1, ...) can be reproduced by specifying `prefix='X'`:
In [13]: data = 'a,b,c
1,Yes,2
3,No,4'

In [14]: print(data)
a,b,c
1,Yes,2
3,No,4

In [15]: pd.read_csv(StringIO(data), header=None)
Out[15]:
 0 1 2
0 a b c
1 1 Yes 2
2 3 No 4
[3 rows x 3 columns]

In [16]: pd.read_csv(StringIO(data), header=None, prefix='X')
Out[16]:
 X0 X1 X2
0 a b c
1 1 Yes 2
2 3 No 4
[3 rows x 3 columns]

- Values like 'Yes' and 'No' are not interpreted as boolean by default, though this can be controlled by new `true_values` and `false_values` arguments:

In [17]: print(data)
a,b,c
1,Yes,2
3,No,4

In [18]: pd.read_csv(StringIO(data))
Out[18]:
 a b c
0 1 Yes 2
1 3 No 4
[2 rows x 3 columns]

In [19]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No'])
Out[19]:
 a b c
0 1 True 2
1 3 False 4
[2 rows x 3 columns]

- The file parsers will not recognize non-string values arising from a converter function as NA if passed in the `na_values` argument. It’s better to do post-processing using the `replace` function instead.
- Calling `fillna` on Series or DataFrame with no arguments is no longer valid code. You must either specify a `fill value` or an interpolation method:

In [20]: s = Series([np.nan, 1., 2., np.nan, 4])

In [21]: s
Out[21]:
0 NaN
1 1.0
2 2.0
3 NaN
4 4.0
dtype: float64

In [22]: s.fillna(0)
Out[22]:
0 0.0
1 1.0
2 2.0
3 0.0
4 4.0
dtype: float64

In [23]: s.fillna(method='pad')
Out[23]:
0 NaN
1 1.0
2 2.0
3 2.0
4 4.0
dtype: float64

Convenience methods ffill and bfill have been added:

In [24]: s.ffill()
Out[24]:
0 NaN
1 1.0
2 2.0
3 2.0
4 4.0
dtype: float64

• Series.apply will now operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame

In [25]: def f(x):
 : return Series([x, x**2], index = ['x', 'x^2'])
 :

In [26]: s = Series(np.random.rand(5))

In [27]: s
Out[27]:
0 0.717478
1 0.815199
2 0.452478
3 0.848385
4 0.235477
dtype: float64

In [28]: s.apply(f)
Out[28]:
 x x^2
0 0.717478
1 0.815199
2 0.452478
3 0.848385
4 0.235477
• New API functions for working with pandas options (GH2097):
 – get_option / set_option - get/set the value of an option. Partial names are accepted. – reset_option - reset one or more options to their default value. Partial names are accepted. – describe_option - print a description of one or more options. When called with no arguments, print all registered options.

Note: set_printoptions/ reset_printoptions are now deprecated (but functioning), the print options now live under “display.XYZ”. For example:

```python
In [29]: get_option("display.max_rows")
Out[29]: 15
```

• to_string() methods now always return unicode strings (GH2224).

New features

Wide DataFrame Printing

Instead of printing the summary information, pandas now splits the string representation across multiple rows by default:

```python
In [30]: wide_frame = DataFrame(randn(5, 16))
In [31]: wide_frame
Out[31]:
   0    1    2    3    4   5    6
0 -0.681624 0.191356 1.180274 -0.834179 0.703043 0.166568 -0.583599
1  0.441522 -0.316864 -0.017062 1.570114 -0.360875 -0.880096 0.235532
2 -0.412451 -0.462580 0.422194 0.288403 -0.487393 -0.777639 0.055865
3 -0.277255 1.331263 0.585174 -0.568825 -0.719412 1.191340 -0.456362
4 -1.642511 0.432560 1.218080 -0.564705 -0.581790 0.286071 0.048725
   7    8    9   10   11   12   13
0 -1.201796 -1.422811 -0.882554 1.209871 -0.941235 0.863067 -0.336232
1  0.207232 -1.983857 -1.702547 -1.621234 -0.906840 1.014601 -0.475108
2  1.383381 0.085638 0.246392 0.965887 0.246354 -0.727728 -0.094414
3  0.089931 0.776079 0.752889 -1.195795 -1.425911 -0.548829 0.774225
4  1.002440 1.276582 0.054399 0.241963 -0.471786 0.314510 -0.059986
   14   15
0 -0.976847 0.033862
1 -0.358944 1.262942
2  0.276854 0.158399
3  0.740501 1.510263
4 -2.069319 -1.115104
[5 rows x 16 columns]```
The old behavior of printing out summary information can be achieved via the ‘expand_frame_repr’ print option:

```python
In [32]: pd.set_option('expand_frame_repr', False)
```

```python
default
```

```python
In [33]: wide_frame
```

```
Out[33]:
```

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>-0.681624</td>
<td>0.191356</td>
<td>1.180274</td>
<td>-0.834179</td>
<td>0.703043</td>
<td>0.166568</td>
<td>-0.583599</td>
</tr>
<tr>
<td>1</td>
<td>0.441522</td>
<td>-0.316864</td>
<td>-0.017062</td>
<td>1.570114</td>
<td>-0.360875</td>
<td>-0.880996</td>
<td>0.235532</td>
</tr>
<tr>
<td>2</td>
<td>-0.412451</td>
<td>-0.462580</td>
<td>0.422194</td>
<td>0.288403</td>
<td>-0.487393</td>
<td>-0.777639</td>
<td>0.055865</td>
</tr>
<tr>
<td>3</td>
<td>-0.277255</td>
<td>1.331263</td>
<td>0.585174</td>
<td>-0.568825</td>
<td>-0.719412</td>
<td>1.191340</td>
<td>-0.456362</td>
</tr>
<tr>
<td>4</td>
<td>-1.642511</td>
<td>0.432560</td>
<td>1.218080</td>
<td>-0.564705</td>
<td>-0.581790</td>
<td>0.286071</td>
<td>0.048725</td>
</tr>
</tbody>
</table>
```

The width of each line can be changed via ‘line_width’ (80 by default):

```python
In [34]: pd.set_option('line_width', 40)
```

```python
line_width has been deprecated, use display.width instead (currently both are identical)
```

```python
In [35]: wide_frame
```

```
Out[35]:
```

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>-0.681624</td>
<td>0.191356</td>
<td>1.180274</td>
<td>-0.834179</td>
<td>0.703043</td>
<td>0.166568</td>
<td>-0.583599</td>
</tr>
<tr>
<td>1</td>
<td>0.441522</td>
<td>-0.316864</td>
<td>-0.017062</td>
<td>1.570114</td>
<td>-0.360875</td>
<td>-0.880996</td>
<td>0.235532</td>
</tr>
<tr>
<td>2</td>
<td>-0.412451</td>
<td>-0.462580</td>
<td>0.422194</td>
<td>0.288403</td>
<td>-0.487393</td>
<td>-0.777639</td>
<td>0.055865</td>
</tr>
<tr>
<td>3</td>
<td>-0.277255</td>
<td>1.331263</td>
<td>0.585174</td>
<td>-0.568825</td>
<td>-0.719412</td>
<td>1.191340</td>
<td>-0.456362</td>
</tr>
<tr>
<td>4</td>
<td>-1.642511</td>
<td>0.432560</td>
<td>1.218080</td>
<td>-0.564705</td>
<td>-0.581790</td>
<td>0.286071</td>
<td>0.048725</td>
</tr>
</tbody>
</table>
```

1.21. v0.10.0 (December 17, 2012)
pandas: powerful Python data analysis toolkit, Release 0.19.2

Updated PyTables Support

*Docs* for PyTables Table format & several enhancements to the api. Here is a taste of what to expect.

```
In [36]: store = HDFStore('store.h5')

In [37]: df = DataFrame(randn(8, 3), index=date_range('1/1/2000', periods=8),
 : columns=['A', 'B', 'C'])

In [38]: df
Out[38]:
 A B C
0 -0.370517 -1.502617 -0.379717
1 0.511936 -0.116412 -0.622567
2 -0.550627 1.261433 -0.552429
3 1.695803 -1.025917 -0.909425
4 0.426805 -0.131749 0.432600
5 -0.044671 -0.341265 1.844536
6 -0.898872 -0.725411 0.059904
[8 rows x 3 columns]

appending data frames
In [39]: df1 = df[0:4]

In [40]: df2 = df[4:]

In [41]: store.append('df', df1)

In [42]: store.append('df', df2)

In [43]: store
Out[43]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

selecting the entire store
In [44]: store.select('df')
```
In [44]:
   : A    B    C
2000-01-01 -0.369325 -1.502617 -0.376280
2000-01-02  0.511936 -0.116412 -0.625256
2000-01-03 -0.550627  1.261433 -0.552429
2000-01-04  1.695803 -1.025917 -0.910942
2000-01-05  0.426805 -0.131749  0.432600
2000-01-06  0.044671 -0.341265  1.844536
2000-01-07 -2.036047  0.000830 -0.955697
2000-01-08 -0.898872 -0.725411  0.059904
[8 rows x 3 columns]

In [45]: wp = Panel(randn(2, 5, 4), items=['Item1', 'Item2'],
   ....:     major_axis=date_range('1/1/2000', periods=5),
   ....:     minor_axis=['A', 'B', 'C', 'D'])

In [46]: wp
Out[46]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

# storing a panel
In [47]: store.append('wp',wp)

# selecting via A QUERY
In [48]: store.select('wp',
   ....:     [ Term('major_axis>20000102'), Term('minor_axis', '=', ['A','B']) ] )

Out[48]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to B

# removing data from tables
In [49]: store.remove('wp', Term('major_axis>20000103'))
Out[49]:

In [50]: store.select('wp')
Out[50]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to D

# deleting a store
In [51]: del store['df']

In [52]: store
Out[52]:
<class 'pandas.io.pytables.HDFStore'>
Enhancements

- added ability to hierarchical keys

```python
In [53]: store.put('foo/bar/bah', df)
In [54]: store.append('food/orange', df)
In [55]: store.append('food/apple', df)
In [56]: store
Out[56]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/foo/bar/bah frame (shape->[8,3])
/food/orange frame_table (typ->appendable,nrows->8,ncols->3,
indexers->[index])
/food/apple frame_table (typ->appendable,nrows->8,ncols->3,
indexers->[index])
/wp wide_table (typ->appendable,nrows->12,ncols->2,
indexers->[major_axis,minor_axis])
```

# remove all nodes under this level
```python
In [57]: store.remove('food')
In [58]: store
Out[58]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/foo/bar/bah frame (shape->[8,3])
/wp wide_table (typ->appendable,nrows->12,ncols->2,
indexers->[major_axis,minor_axis])
```

- added mixed-dtype support!

```python
In [59]: df['string'] = 'string'
In [60]: df['int'] = 1
In [61]: store.append('df', df)
In [62]: df1 = store.select('df')
In [63]: df1
Out[63]:
 A B C string int
0 2000-01-01 -0.369325 -1.502617 string 1
1 2000-01-02 0.511936 -0.116412 string 1
2 2000-01-03 -0.550627 1.261433 string 1
3 2000-01-04 1.695803 -1.025917 string 1
4 2000-01-05 0.426805 -0.131749 string 1
5 2000-01-06 0.044671 -0.341265 string 1
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

2000-01-07 -2.036047 0.000830 -0.955697 string 1
2000-01-08 -0.898872 -0.725411 0.059904 string 1

[8 rows x 5 columns]

In [64]: df1.get_dtype_counts()
Out[64]:
float64 3
int64 1
object 1
dtype: int64

- performance improvements on table writing
- support for arbitrarily indexed dimensions
- SparseSeries now has a density property (GH2384)
- enable Series.str.strip/lstrip/rstrip methods to take an input argument to strip arbitrary characters (GH2411)
- implement value_vars in melt to limit values to certain columns and add melt to pandas namespace (GH2412)

Bug Fixes
- added Term method of specifying where conditions (GH1996).
- del store['df'] now call store.remove('df') for store deletion
- deleting of consecutive rows is much faster than before
- min_itemsize parameter can be specified in table creation to force a minimum size for indexing columns (the previous implementation would set the column size based on the first append)
- indexing support via create_table_index (requires PyTables >= 2.3) (GH698).
- appending on a store would fail if the table was not first created via put
- fixed issue with missing attributes after loading a pickled dataframe (GH2431)
- minor change to select and remove: require a table ONLY if where is also provided (and not None)

Compatibility
0.10 of HDFStore is backwards compatible for reading tables created in a prior version of pandas, however, query terms using the prior (undocumented) methodology are unsupported. You must read in the entire file and write it out using the new format to take advantage of the updates.

N Dimensional Panels (Experimental)

Adding experimental support for Panel4D and factory functions to create n-dimensional named panels. Docs for NDim. Here is a taste of what to expect.

In [65]: p4d = Panel4D(randn(2, 2, 5, 4),
                labels=['Label1', 'Label2'],
                items=['Item1', 'Item2'],
                major_axis=date_range('1/1/2000', periods=5),
                minor_axis=['A', 'B', 'C', 'D'])

In [66]: p4d
See the full release notes or issue tracker on GitHub for a complete list.

v0.9.1 (November 14, 2012)

This is a bugfix release from 0.9.0 and includes several new features and enhancements along with a large number of bug fixes. The new features include by-column sort order for DataFrame and Series, improved NA handling for the rank method, masking functions for DataFrame, and intraday time-series filtering for DataFrame.

New features

- *Series.sort, DataFrame.sort, and DataFrame.sort_index* can now be specified in a per-column manner to support multiple sort orders (GH928)

```python
In [1]: df = DataFrame(np.random.randint(0, 2, (6, 3)), columns=['A', 'B', 'C'])
In [2]: df.sort(['A', 'B'], ascending=[1, 0])
```
```
Out[2]:
 A B C
0 0 1 0
2 0 0 1
1 1 1 1
5 1 1 0
3 1 0 0
4 1 0 1
```

- *DataFrame.rank* now supports additional argument values for the na_option parameter so missing values can be assigned either the largest or the smallest rank (GH1508, GH2159)

```python
In [3]: df = DataFrame(np.random.randn(6, 3), columns=['A', 'B', 'C'])
In [4]: df.ix[2:4] = np.nan
In [5]: df.rank()
```
```
Out[5]:
 A B C
0 3.0 2.0 1.0
1 1.0 3.0 3.0
2 NaN NaN NaN
3 NaN NaN NaN
4 NaN NaN NaN
5 2.0 1.0 2.0
```
In [6]: df.rank(na_option='top')
Out[6]:
     A  B  C
0  6.0 5.0 4.0
1  4.0 6.0 6.0
2  2.0 2.0 2.0
3  2.0 2.0 2.0
4  2.0 2.0 2.0
5  5.0 4.0 5.0
[6 rows x 3 columns]

In [7]: df.rank(na_option='bottom')
Out[7]:
     A  B  C
0  3.0 2.0 1.0
1  1.0 3.0 3.0
2  5.0 5.0 5.0
3  5.0 5.0 5.0
4  5.0 5.0 5.0
5  2.0 1.0 2.0
[6 rows x 3 columns]

- DataFrame has new `where` and `mask` methods to select values according to a given boolean mask (GH2109, GH2151)

DataFrame currently supports slicing via a boolean vector the same length as the DataFrame (inside the []). The returned DataFrame has the same number of columns as the original, but is sliced on its index.

In [8]: df = DataFrame(np.random.randn(5, 3), columns = [‘A’, ‘B’, ‘C’])

In [9]: df
Out[9]:
     A   B   C
0 -0.187239 -1.703664  0.613136
1 -0.948528  0.505346  0.017228
2 -2.391256  1.207381  0.853174
3  0.124213 -0.625597 -1.211224
4 -0.476548  0.649425  0.004610
[5 rows x 3 columns]

In [10]: df[df['A'] > 0]
Out[10]:
     A   B   C
3  0.124213 -0.625597 -1.211224
[1 rows x 3 columns]

If a DataFrame is sliced with a DataFrame based boolean condition (with the same size as the original DataFrame), then a DataFrame the same size (index and columns) as the original is returned, with elements that do not meet the boolean condition as `NaN`. This is accomplished via the new method `DataFrame.where`. In addition, `where` takes an optional `other` argument for replacement.

In [11]: df[df>0]
### What's New

**Pandas** is a powerful Python data analysis toolkit, Release 0.19.2.

**Table Example:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>0.613136</td>
</tr>
<tr>
<td>1</td>
<td>NaN</td>
<td>0.505346</td>
<td>0.017228</td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td>1.207381</td>
<td>0.853174</td>
</tr>
<tr>
<td>3</td>
<td>0.124213</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>NaN</td>
<td>0.649425</td>
<td>0.004610</td>
</tr>
</tbody>
</table>

[5 rows x 3 columns]

**In [12]:** df.where(df>0)

**Out[12]:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>0.613136</td>
</tr>
<tr>
<td>1</td>
<td>NaN</td>
<td>0.505346</td>
<td>0.017228</td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td>1.207381</td>
<td>0.853174</td>
</tr>
<tr>
<td>3</td>
<td>0.124213</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>4</td>
<td>NaN</td>
<td>0.649425</td>
<td>0.004610</td>
</tr>
</tbody>
</table>

[5 rows x 3 columns]

**In [13]:** df.where(df>0,-df)

**Out[13]:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.187239</td>
<td>1.703664</td>
<td>0.613136</td>
</tr>
<tr>
<td>1</td>
<td>0.948528</td>
<td>0.505346</td>
<td>0.017228</td>
</tr>
<tr>
<td>2</td>
<td>2.391256</td>
<td>1.207381</td>
<td>0.853174</td>
</tr>
<tr>
<td>3</td>
<td>0.124213</td>
<td>0.625597</td>
<td>1.211224</td>
</tr>
<tr>
<td>4</td>
<td>0.476548</td>
<td>0.649425</td>
<td>0.004610</td>
</tr>
</tbody>
</table>

[5 rows x 3 columns]

Furthermore, `where` now aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analagous to partial setting via `.ix` (but on the contents rather than the axis labels)

**In [14]:** df2 = df.copy()

**In [15]:** df2[ df2[1:4] > 0 ] = 3

**In [16]:** df2

**Out[16]:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.187239</td>
<td>-1.703664</td>
<td>0.613136</td>
</tr>
<tr>
<td>1</td>
<td>-0.948528</td>
<td>3.000000</td>
<td>3.000000</td>
</tr>
<tr>
<td>2</td>
<td>-2.391256</td>
<td>3.000000</td>
<td>3.000000</td>
</tr>
<tr>
<td>3</td>
<td>3.000000</td>
<td>-0.625597</td>
<td>-1.211224</td>
</tr>
<tr>
<td>4</td>
<td>-0.476548</td>
<td>0.649425</td>
<td>0.004610</td>
</tr>
</tbody>
</table>

[5 rows x 3 columns]

`DataFrame.mask` is the inverse boolean operation of `where`.

**In [17]:** df.mask(df<=0)

**Out[17]:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>NaN</td>
<td>NaN</td>
<td>0.613136</td>
</tr>
<tr>
<td>1</td>
<td>NaN</td>
<td>0.505346</td>
<td>0.017228</td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td>1.207381</td>
<td>0.853174</td>
</tr>
</tbody>
</table>

Chapter 1. What's New
• Enable referencing of Excel columns by their column names (GH1936)

```python
In [18]: xl = ExcelFile('data/test.xls')

In [19]: xl.parse('Sheet1', index_col=0, parse_dates=True,
 : parse_cols='A:D')
 :

NotImplementedError Traceback (most recent call last)
<ipython-input-19-7ac41df80d31> in <module>()
 1 xl.parse('Sheet1', index_col=0, parse_dates=True,
 ---> 2 parse_cols='A:D')
/home/joris/scipy/pandas/pandas/io/excel.pyc in parse(self, sheetname, header,
 skiprows, skip_footer, names, index_col, parse_cols, parse_dates, date_parser,
 na_values, thousands, convert_float, has_index_names, converters, true_values,
 false_values, squeeze, **kwds)
 279 false_values=false_values,
 280 squeeze=squeeze,
--> 281 def _should_parse(self, i, parse_cols):
 282
 283 def _should_parse(self, i, parse_cols):
/home/joris/scipy/pandas/pandas/io/excel.pyc in _parse_excel(self, sheetname,
 header, skiprows, names, index_col, has_index_names, parse_cols, parse_dates,
 date_parser, na_values, thousands, convert_float, true_values,
 false_values, verbose, squeeze, **kwds)
 337 "is not implemented")
 338 if parse_dates:
--> 339 raise NotImplementedError("parse_dates keyword of read_excel "
 340 "is not implemented")
 341
NotImplementedError: parse_dates keyword of read_excel is not implemented
```

• Added option to disable pandas-style tick locators and formatters using `series.plot(x_compat=True) or pandas.plot_params['x_compat'] = True` (GH2205)

• Existing TimeSeries methods `at_time` and `between_time` were added to DataFrame (GH2149)

• DataFrame.dot can now accept ndarrays (GH2042)

• DataFrame.drop now supports non-unique indexes (GH2101)

• Panel.shift now supports negative periods (GH2164)

• DataFrame now support unary ~ operator (GH2110)

**API changes**

• Upsampling data with a PeriodIndex will result in a higher frequency TimeSeries that spans the original time window
In [1]: prng = period_range('2012Q1', periods=2, freq='Q')

In [2]: s = Series(np.random.randn(len(prng)), prng)

In [4]: s.resample('M')

Out[4]:
2012-01 -1.471992
2012-02 NaN
2012-03 NaN
2012-04 -0.493593
2012-05 NaN
2012-06 NaN
Freq: M, dtype: float64

• Period.end_time now returns the last nanosecond in the time interval (GH2124, GH2125, GH1764)

In [20]: p = Period('2012')

In [21]: p.end_time

Out[21]: Timestamp('2012-12-31 23:59:59.999999999')

• File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

In [22]: data = 'A,B,C

00001,001,5
00002,002,6'

In [23]: read_csv(StringIO(data), converters={'A' : lambda x: x.strip()})

Out[23]:
A  B  C
0  1  5
1  2  6
[2 rows x 3 columns]

See the full release notes or issue tracker on GitHub for a complete list.

v0.9.0 (October 7, 2012)

This is a major release from 0.8.1 and includes several new features and enhancements along with a large number of bug fixes. New features include vectorized unicode encoding/decoding for Series.str, to_latex method to DataFrame, more flexible parsing of boolean values, and enabling the download of options data from Yahoo! Finance.

New features

• Add encode and decode for unicode handling to vectorized string processing methods in Series.str (GH1706)
• Add DataFrame.to_latex method (GH1735)
• Add convenient expanding window equivalents of all rolling_* ops (GH1785)
• Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
• More flexible parsing of boolean values (Yes, No, TRUE, FALSE, etc) (GH1691, GH1295)
• Add level parameter to Series.reset_index
• TimeSeries.between_time can now select times across midnight (GH1871)
• Series constructor can now handle generator as input (GH1679)
• DataFrame.dropna can now take multiple axes (tuple/list) as input (GH924)
• Enable skip_footer parameter in ExcelFile.parse (GH1843)

API changes

• The default column names when header=None and no columns names passed to functions like read_csv has changed to be more Pythonic and amenable to attribute access:

```python
In [1]: data = '0,0,1
 ...: 1,1,0
 ...: 0,1,0'
In [2]: df = read_csv(StringIO(data), header=None)
In [3]: df
Out[3]:
 0 1 2
 0 0 0 1
 1 1 1 0
 2 0 1 0
[3 rows x 3 columns]
```

• Creating a Series from another Series, passing an index, will cause reindexing to happen inside rather than treating the Series like an ndarray. Technically improper usages like Series(df[col1], index=df[col2]) that worked before “by accident” (this was never intended) will lead to all NA Series in some cases. To be perfectly clear:

```python
In [4]: s1 = Series([1, 2, 3])
In [5]: s1
Out[5]:
0 1
1 2
2 3
dtype: int64
In [6]: s2 = Series(s1, index=['foo', 'bar', 'baz'])
In [7]: s2
Out[7]:
foo NaN
bar NaN
baz NaN
dtype: float64
```

• Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723)
• Don’t modify NumPy suppress printoption to True at import time
• The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
• Legacy cruft removed: pandas.stats.misc.quantileTS
• Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
• Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
• Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
  • first and last methods in GroupBy no longer drop non-numeric columns (GH1809)
  • Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer override default NAs unless keep_default_na is set to false explicitly (GH1657)
• DataFrame.dot will not do data alignment, and also work with Series (GH1915)

See the full release notes or issue tracker on GitHub for a complete list.

v0.8.1 (July 22, 2012)

This release includes a few new features, performance enhancements, and over 30 bug fixes from 0.8.0. New features include notably NA friendly string processing functionality and a series of new plot types and options.

New features

• Add vectorized string processing methods accessible via Series.str (GH620)
• Add option to disable adjustment in EWMA (GH1584)
  • Radviz plot (GH1566)
  • Parallel coordinates plot
  • Bootstrap plot
• Per column styles and secondary y-axis plotting (GH1559)
• New datetime converters millisecond plotting (GH1599)
• Add option to disable “sparse” display of hierarchical indexes (GH1538)
• Series/DataFrame’s set_index method can append levels to an existing Index/MultiIndex (GH1569, GH1577)

Performance improvements

• Improved implementation of rolling min and max (thanks to Bottleneck !)
• Add accelerated 'median' GroupBy option (GH1358)
• Significantly improve the performance of parsing ISO8601-format date strings with DatetimeIndex or to_datetime (GH1571)
• Improve the performance of GroupBy on single-key aggregations and use with Categorical types
• Significant datetime parsing performance improvements
v0.8.0 (June 29, 2012)

This is a major release from 0.7.3 and includes extensive work on the time series handling and processing infrastructure as well as a great deal of new functionality throughout the library. It includes over 700 commits from more than 20 distinct authors. Most pandas 0.7.3 and earlier users should not experience any issues upgrading, but due to the migration to the NumPy datetime64 dtype, there may be a number of bugs and incompatibilities lurking. Lingering incompatibilities will be fixed ASAP in a 0.8.1 release if necessary. See the full release notes or issue tracker on GitHub for a complete list.

Support for non-unique indexes

All objects can now work with non-unique indexes. Data alignment / join operations work according to SQL join semantics (including, if application, index duplication in many-to-many joins)

NumPy datetime64 dtype and 1.6 dependency

Time series data are now represented using NumPy’s datetime64 dtype; thus, pandas 0.8.0 now requires at least NumPy 1.6. It has been tested and verified to work with the development version (1.7+) of NumPy as well which includes some significant user-facing API changes. NumPy 1.6 also has a number of bugs having to do with nanosecond resolution data, so I recommend that you steer clear of NumPy 1.6’s datetime64 API functions (though limited as they are) and only interact with this data using the interface that pandas provides.

See the end of the 0.8.0 section for a “porting” guide listing potential issues for users migrating legacy codebases from pandas 0.7 or earlier to 0.8.0.

Bug fixes to the 0.7.x series for legacy NumPy < 1.6 users will be provided as they arise. There will be no more further development in 0.7.x beyond bug fixes.

Time series changes and improvements

Note: With this release, legacy scikits.timeseries users should be able to port their code to use pandas.

Note: See documentation for overview of pandas timeseries API.

- New datetime64 representation speeds up join operations and data alignment, reduces memory usage, and improve serialization / deserialization performance significantly over datetime.datetime
- High performance and flexible resample method for converting from high-to-low and low-to-high frequency. Supports interpolation, user-defined aggregation functions, and control over how the intervals and result labeling are defined. A suite of high performance Cython/C-based resampling functions (including Open-High-Low-Close) have also been implemented.
- Revamp of frequency aliases and support for frequency shortcuts like ‘15min’, or ‘1h30min’
- New DatetimeIndex class supports both fixed frequency and irregular time series. Replaces now deprecated DateRange class
- New PeriodIndex and Period classes for representing time spans and performing calendar logic, including the 12 fiscal quarterly frequencies <timeseries.quarterly>. This is a partial port of, and a substantial enhancement to, elements of the scikits.timeseries codebase. Support for conversion between PeriodIndex and DatetimeIndex
• New Timestamp data type subclasses `datetime.datetime`, providing the same interface while enabling working with nanosecond-resolution data. Also provides easy time zone conversions.

• Enhanced support for time zones. Add `tz_convert` and `tz_localize` methods to TimeSeries and DataFrame. All timestamps are stored as UTC; Timestamps from DatetimeIndex objects with time zone set will be localized to localtime. Time zone conversions are therefore essentially free. User needs to know very little about pytz library now; only time zone names as as strings are required. Time zone-aware timestamps are equal if and only if their UTC timestamps match. Operations between time zone-aware time series with different time zones will result in a UTC-indexed time series.

• Time series string indexing conveniences/shortcuts: slice years, year and month, and index values with strings

• Enhanced time series plotting: adaptation of scikits.timeseries matplotlib-based plotting code

• New `date_range`, `bdate_range`, and `period_range` factory functions

• Robust frequency inference function `infer_freq` and `inferred_freq` property of DatetimeIndex, with option to infer frequency on construction of DatetimeIndex

• `to_datetime` function efficiently parses array of strings to DatetimeIndex. DatetimeIndex will parse array or list of strings to datetime64

• Optimized support for datetime64-dtype data in Series and DataFrame columns

• New NaT (Not-a-Time) type to represent NA in timestamp arrays

• Optimize Series.asof for looking up “as of” values for arrays of timestamps

• Milli, Micro, Nano date offset objects

• Can index time series with datetime.time objects to select all data at particular time of day (`TimeSeries.at_time`) or between two times (`TimeSeries.between_time`)

• Add `tshift` method for leading/lagging using the frequency (if any) of the index, as opposed to a naive lead/lag using shift

Other new features

• New `cut` and `qcut` functions (like R’s cut function) for computing a categorical variable from a continuous variable by binning values either into value-based (`cut`) or quantile-based (`qcut`) bins

• Rename `Factor` to `Categorical` and add a number of usability features

• Add `limit` argument to fillna/reindex

• More flexible multiple function application in GroupBy, and can pass list (name, function) tuples to get result in particular order with given names

• Add flexible `replace` method for efficiently substituting values

• Enhanced `read_csv/read_table` for reading time series data and converting multiple columns to dates

• Add `comments` option to parser functions: `read_csv`, etc.

• Add :ref:`dayfirst <io.dayfirst>` option to parser functions for parsing international DD/MM/YYYY dates

• Allow the user to specify the CSV reader `dialect` to control quoting etc.

• Handling `thousands` separators in `read_csv` to improve integer parsing.

• Enable unstacking of multiple levels in one shot. Alleviate `pivot_table` bugs (empty columns being introduced)

• Move to klib-based hash tables for indexing; better performance and less memory usage than Python’s dict
• Add first, last, min, max, and prod optimized GroupBy functions
• New *ordered_merge* function
• Add flexible *comparison* instance methods eq, ne, lt, gt, etc. to DataFrame, Series
• Improve *scatter_matrix* plotting function and add histogram or kernel density estimates to diagonal
• Add ‘kde’ plot option for density plots
• Support for converting DataFrame to R data.frame through rpy2
• Improved support for complex numbers in Series and DataFrame
• Add *pct_change* method to all data structures
• Add max_colwidth configuration option for DataFrame console output
• *Interpolate* Series values using index values
• Can select multiple columns from GroupBy
• Add *update* methods to Series/DataFrame for updating values in place
• Add *any* and *all* method to DataFrame

**New plotting methods**

*Series.plot* now supports a *secondary_y* option:

```
In [1]: plt.figure()
Out[1]: <matplotlib.figure.Figure at 0x7f6d1b0cb790>

In [2]: fx['FR'].plot(style='g')
Out[2]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6d1b0e5090>

In [3]: fx['IT'].plot(style='k--', secondary_y=True)
Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6d1b03c190>
```

Vytuata Jancauskas, the 2012 GSOC participant, has added many new plot types. For example, 'kde' is a new option:

```
In [4]: s = Series(np.concatenate((np.random.randn(1000),
 ...: np.random.randn(1000) * 0.5 + 3)))

In [5]: plt.figure()
Out[5]: <matplotlib.figure.Figure at 0x7f6d1b0cbfd0>

In [6]: s.hist(normed=True, alpha=0.2)
Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6d1ccc8610>

In [7]: s.plot(kind='kde')
Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6d1ccc8610>
```
other API changes

- Deprecation of offset, time_rule, and timeRule arguments names in time series functions. Warnings will be printed until pandas 0.9 or 1.0.

potential porting issues for pandas <= 0.7.3 users

The major change that may affect you in pandas 0.8.0 is that time series indexes use NumPy's datetime64 data type instead of dtype=object arrays of Python's built-in datetime.datetime objects. DateRange has been replaced by DatetimeIndex but otherwise behaved identically. But, if you have code that converts DateRange or Index objects that used to contain datetime.datetime values to plain NumPy arrays, you may have bugs lurking with code using scalar values because you are handing control over to NumPy:

```python
In [8]: import datetime
In [9]: rng = date_range('1/1/2000', periods=10)
In [10]: rng[5]
Out[10]: Timestamp('2000-01-06 00:00:00', freq='D')
In [11]: isinstance(rng[5], datetime.datetime)
Out[11]: True
In [12]: rng_asarray = np.asarray(rng)
In [13]: scalar_val = rng_asarray[5]
In [14]: type(scalar_val)
Out[14]: numpy.datetime64
```

pandas's Timestamp object is a subclass of datetime.datetime that has nanosecond support (the nanosecond field store the nanosecond value between 0 and 999). It should substitute directly into any code that used datetime.datetime values before. Thus, I recommend not casting DatetimeIndex to regular NumPy arrays.

If you have code that requires an array of datetime.datetime objects, you have a couple of options. First, the asobject property of DatetimeIndex produces an array of Timestamp objects:

```python
In [15]: stamp_array = rng.asobject
In [16]: stamp_array
Out[16]: Index([2000-01-01 00:00:00, 2000-01-02 00:00:00, 2000-01-03 00:00:00, 2000-01-04 00:00:00, 2000-01-05 00:00:00, 2000-01-06 00:00:00, 2000-01-07 00:00:00, 2000-01-08 00:00:00, 2000-01-09 00:00:00, 2000-01-10 00:00:00],
```
dtype='object')

In [17]: stamp_array[5]
Out[17]: Timestamp('2000-01-06 00:00:00', freq='D')

To get an array of proper `datetime.datetime` objects, use the `to_pydatetime` method:

```python
In [18]: dt_array = rng.to_pydatetime()
In [19]: dt_array
Out[19]:
array([datetime.datetime(2000, 1, 1, 0, 0),
 datetime.datetime(2000, 1, 2, 0, 0),
 datetime.datetime(2000, 1, 3, 0, 0),
 datetime.datetime(2000, 1, 4, 0, 0),
 datetime.datetime(2000, 1, 5, 0, 0),
 datetime.datetime(2000, 1, 6, 0, 0),
 datetime.datetime(2000, 1, 7, 0, 0),
 datetime.datetime(2000, 1, 8, 0, 0),
 datetime.datetime(2000, 1, 9, 0, 0),
 datetime.datetime(2000, 1, 10, 0, 0)], dtype=object)
In [20]: dt_array[5]
Out[20]: datetime.datetime(2000, 1, 6, 0, 0)
```

`matplotlib` knows how to handle `datetime.datetime` but not `Timestamp` objects. While I recommend that you plot time series using `TimeSeries.plot`, you can either use `to_pydatetime` or register a converter for the `Timestamp` type. See `matplotlib` documentation for more on this.

```
Warning: There are bugs in the user-facing API with the nanosecond `datetime64` unit in NumPy 1.6. In particular, the string version of the array shows garbage values, and conversion to `dtype=object` is similarly broken.
```

```python
In [21]: rng = date_range('1/1/2000', periods=10)
In [22]: rng
Out[22]:
 '2000-01-09', '2000-01-10'],
 dtype='datetime64[ns]', freq='D')
In [23]: np.asarray(rng)
Out[23]:
array(['2000-01-01T00:00:00.000000000', '2000-01-02T00:00:00.000000000',
 '2000-01-03T00:00:00.000000000', '2000-01-04T00:00:00.000000000',
 '2000-01-05T00:00:00.000000000', '2000-01-06T00:00:00.000000000',
 '2000-01-07T00:00:00.000000000', '2000-01-08T00:00:00.000000000',
 '2000-01-09T00:00:00.000000000', '2000-01-10T00:00:00.000000000'], dtype=
 '<M8[ns]')
In [24]: converted = np.asarray(rng, dtype=object)
In [25]: converted[5]
Out[25]: 947116800000000000L
```

**Trust me: don’t panic.** If you are using NumPy 1.6 and restrict your interaction with `datetime64` values to pandas’s API you will be just fine. There is nothing wrong with the data-type (a 64-bit integer internally); all of the
important data processing happens in pandas and is heavily tested. I strongly recommend that you do not work directly with datetime64 arrays in NumPy 1.6 and only use the pandas API.

Support for non-unique indexes: In the latter case, you may have code inside a try:... catch: block that failed due to the index not being unique. In many cases it will no longer fail (some method like append still check for uniqueness unless disabled). However, all is not lost: you can inspect index.is_unique and raise an exception explicitly if it is False or go to a different code branch.

v.0.7.3 (April 12, 2012)

This is a minor release from 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug fixes” even though they do constitute a change in behavior. See the full release notes or issue tracker on GitHub for a complete list.

New features

- New fixed width file reader, read_fwf
- New scatter_matrix function for making a scatter plot matrix

```python
from pandas.tools.plotting import scatter_matrix
scatter_matrix(df, alpha=0.2)
```
- Add `stacked` argument to Series and DataFrame's `plot` method for *stacked bar plots*.

```
df.plot(kind='bar', stacked=True)
```
**pandas: powerful Python data analysis toolkit, Release 0.19.2**

```python
df.plot(kind='barh', stacked=True)
```

- Add log x and y scaling options to `DataFrame.plot` and `Series.plot`
- Add `kurt` methods to `Series` and `DataFrame` for computing kurtosis

### NA Boolean Comparison API Change

Reverted some changes to how NA values (represented typically as `NaN` or `None`) are handled in non-numeric `Series`:

```python
In [1]: series = Series(['Steve', np.nan, 'Joe'])
In [2]: series == 'Steve'
Out[2]:
0 True
1 False
2 False
dtype: bool

In [3]: series != 'Steve'
Out[3]:
0 False
1 True
2 True
dtype: bool
```

In comparisons, NA / NaN will always come through as `False` except with `!=` which is `True`. Be very careful with boolean arithmetic, especially negation, in the presence of NA data. You may wish to add an explicit NA filter into boolean array operations if you are worried about this:

```python
In [4]: mask = series == 'Steve'
In [5]: series[mask & series.notnull()]
Out[5]:
0 Steve
dtype: object
```
While propagating NA in comparisons may seem like the right behavior to some users (and you could argue on purely technical grounds that this is the right thing to do), the evaluation was made that propagating NA everywhere, including in numerical arrays, would cause a large amount of problems for users. Thus, a “practicality beats purity” approach was taken. This issue may be revisited at some point in the future.

Other API Changes

When calling apply on a grouped Series, the return value will also be a Series, to be more consistent with the groupby behavior with DataFrame:

```python
In [6]: df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
 'foo', 'bar', 'foo', 'foo'],
 'B': ['one', 'one', 'two', 'three',
 'two', 'two', 'one', 'three'],
 'C': np.random.randn(8), 'D': np.random.randn(8))

In [7]: df
Out[7]:
 A B C D
0 foo one 0.219405 -1.079181
1 bar one -0.342863 -1.631882
2 foo two -0.032419 0.237288
3 bar three -1.581534 0.514679
4 foo two -0.912061 0.514679
5 bar two 0.209500 1.018514
6 foo one -0.675890 -1.488840
7 foo three 0.055228 -1.355434

[8 rows x 4 columns]

In [8]: grouped = df.groupby('A')['C']

In [9]: grouped.describe()
Out[9]:
 A
bar count 3.000000
 mean -0.571633
 std 0.917171
 min -1.581534
 25% -0.962199
 50% -0.342863
 75% -0.066682
 ...
foo mean -0.269148
 std 0.494652
 min -0.912061
 25% -0.675890
 50% -0.032419
 75% 0.055228
 max 0.219405
Name: C, dtype: float64

In [10]: grouped.apply(lambda x: x.order()[::-2]) # top 2 values
Out[10]:
```
v.0.7.2 (March 16, 2012)

This release targets bugs in 0.7.1, and adds a few minor features.

New features

- Add additional tie-breaking methods in DataFrame.rank (GH874)
- Add ascending parameter to rank in Series, DataFrame (GH875)
- Add coerce_float option to DataFrame.from_records (GH893)
- Add sort_columns parameter to allow unsorted plots (GH918)
- Enable column access via attributes on GroupBy (GH882)
- Can pass dict of values to DataFrame.fillna (GH661)
- Can select multiple hierarchical groups by passing list of values in .ix (GH134)
- Add axis option to DataFrame.fillna (GH174)
- Add level keyword to drop for dropping values from a level (GH159)

Performance improvements

- Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
- Intercept __builtin__.sum in groupby (GH885)

v.0.7.1 (February 29, 2012)

This release includes a few new features and addresses over a dozen bugs in 0.7.0.

New features

- Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)
- Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
- Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
- Add fill_value option to reindex, align methods (GH784)
- Enable concat to produce DataFrame from Series (GH787)
- Add between method to Series (GH802)
- Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
- Support for reading Excel 2007 XML documents using openpyxl

**Performance improvements**

- Improve performance and memory usage of fillna on DataFrame
- Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)

**v.0.7.0 (February 9, 2012)**

**New features**

- New unified *merge function* for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)
- New *unified concatenation function* for concatenating Series, DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of Series.append and DataFrame.append (GH468, GH479, GH273)
  - Can pass multiple DataFrames to DataFrame.append to concatenate (stack) and multiple Series to Series.append too
  - Can pass list of dicts (e.g., a list of JSON objects) to DataFrame constructor (GH526)
  - You can now *set multiple columns* in a DataFrame via __getitem__, useful for transformation (GH342)
  - Handle differently-indexed output values in DataFrame.apply (GH498)

```python
In [1]: df = DataFrame(randn(10, 4))
In [2]: df.apply(lambda x: x.describe())
Out[2]:
 0 1 2 3
count 10.000000 10.000000 10.000000 10.000000
mean 0.448104 0.052501 0.058434 0.008207
std 0.784159 0.676134 0.959629 1.126010
min -1.275249 -1.200953 -1.819334 -1.607906
25% 0.100811 -0.095948 -0.365166 -0.973095
50% 0.709636 0.071581 0.116057 0.179112
75% 0.851809 0.478706 0.616168 0.807868
max 1.437656 1.051356 1.387310 1.521442
```

- Add reorder_levels method to Series and DataFrame (GH534)
- Add dict-like get function to DataFrame and Panel (GH521)
- Add DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame
- Add DataFrame.to_panel with code adapted from LongPanel.to_long
- Add reindex_axis method added to DataFrame
- Add level option to binary arithmetic functions on DataFrame and Series
• Add level option to the reindex and align methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others)
• Add attribute-based item access to Panel and add IPython completion (GH563)
• Add logy option to Series.plot for log-scaling on the Y axis
• Add index and header options to DataFrame.to_string
• Can pass multiple DataFrames to DataFrame.join to join on index (GH115)
• Can pass multiple Panels to Panel.join (GH115)
• Added justify argument to DataFrame.to_string to allow different alignment of column headers
• Add sort option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)
• Can pass MaskedArray to Series constructor (GH563)
• Add Panel item access via attributes and IPython completion (GH554)
• Implement DataFrame.lookup, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338)
• Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with hierarchical columns (GH166)
• Can call cummin and cummax on Series and DataFrame to get cumulative minimum and maximum, respectively (GH647)
• value_range added as utility function to get min and max of a dataframe (GH288)
• Added encoding argument to read_csv, read_table, to_csv and from_csv for non-ascii text (GH717)
• Added abs method to pandas objects
• Added crosstab function for easily computing frequency tables
• Added isin method to index objects
• Added level argument to xs method of DataFrame.

API Changes to integer indexing

One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete review of how integer indexes are handled with regard to label-based indexing. Here is an example:

```
In [3]: s = Series(randn(10), index=range(0, 20, 2))

In [4]: s
Out[4]:
 0 0.679919
 2 -0.457147
 4 0.041867
 6 1.503116
 8 -0.841265
 10 -1.578003
 12 -0.273728
 14 1.755240
 16 -0.351950
 18 -0.351950
dtype: float64
```
This is all exactly identical to the behavior before. However, if you ask for a key not contained in the Series, in versions 0.6.1 and prior, Series would fall back on a location-based lookup. This now raises a KeyError:

```python
In [2]: s[1]
KeyError: 1
```

This change also has the same impact on DataFrame:

```python
In [3]: df = DataFrame(randn(8, 4), index=range(0, 16, 2))
In [4]: df
 0 1 2 3
0 0.88427 0.3363 -0.1787 0.03162
2 0.14451 -0.1415 0.2504 0.58374
4 -1.44779 -0.9186 -1.4996 0.27163
6 -0.26598 -2.4184 -0.2658 0.11503
8 -0.58776 0.3144 -0.8566 0.61941
10 0.10940 -0.7175 -1.0108 0.47990
12 -1.16919 -0.3087 -0.6049 -0.43544
14 -0.07337 0.3410 0.0424 -0.16037

In [5]: df.ix[3]
KeyError: 3
```

In order to support purely integer-based indexing, the following methods have been added:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.iget_value(i)</td>
<td>Retrieve value stored at location i</td>
</tr>
<tr>
<td>Series.iget(i)</td>
<td>Alias for iget_value</td>
</tr>
<tr>
<td>DataFrame.irow(i)</td>
<td>Retrieve the i-th row</td>
</tr>
<tr>
<td>DataFrame.icol(j)</td>
<td>Retrieve the j-th column</td>
</tr>
<tr>
<td>DataFrame.iget_value(i,j)</td>
<td>Retrieve the value at row i and column j</td>
</tr>
</tbody>
</table>

### API tweaks regarding label-based slicing

Label-based slicing using `ix` now requires that the index be sorted (monotonic) unless both the start and endpoint are contained in the index:

```python
In [8]: s = Series(randn(6), index=list('gmkaec'))
In [9]: s
g 1.507974
m 0.419219
k 0.647633
a -0.147670
```
Then this is OK:

```python
In [10]: s.ix['k':'e']
Out[10]:
 k 0.647633
 a -0.147670
 e -0.759803
 dtype: float64
```

But this is not:

```python
In [12]: s.ix['b':'h']
KeyError 'b'
```

If the index had been sorted, the “range selection” would have been possible:

```python
In [11]: s2 = s.sort_index()
In [12]: s2
Out[12]:
a -0.147670
 c -0.757308
 e -0.759803
 g 1.507974
 k 0.647633
 m 0.419219
 dtype: float64
In [13]: s2.ix['b':'h']
Out[13]:
 c -0.757308
 e -0.759803
 g 1.507974
 dtype: float64
```

### Changes to Series [] operator

As as notational convenience, you can pass a sequence of labels or a label slice to a Series when getting and setting values via [] (i.e. the __getitem__ and __setitem__ methods). The behavior will be the same as passing similar input to ix except in the case of integer indexing:

```python
In [14]: s = Series(randn(6), index=list('acegkm'))
In [15]: s
Out[15]:
a -1.921164
 c -1.093529
 e -0.592157
 g -0.715074
 k -0.616193
 m -0.335468
 dtype: float64
```
In [16]: s[['m', 'a', 'c', 'e']]
Out[16]:
m -0.335468
a -1.921164
c -1.093529
e -0.592157
dtype: float64

In [17]: s['b':'l']
Out[17]:
c -1.093529
e -0.592157
g -0.715074
k -0.616193
dtype: float64

In [18]: s['c':'k']
Out[18]:
c -1.093529
e -0.592157
g -0.715074
k -0.616193
dtype: float64

In the case of integer indexes, the behavior will be exactly as before (shadowing ndarray):

In [19]: s = Series(randn(6), index=range(0, 12, 2))

In [20]: s[[4, 0, 2]]
Out[20]:
4  0.886170
0 -0.392051
2 -0.189537
dtype: float64

In [21]: s[1:5]
Out[21]:
2  -0.189537
4  0.886170
6  -1.125894
8  0.319635
dtype: float64

If you wish to do indexing with sequences and slicing on an integer index with label semantics, use ix.

**Other API Changes**

- The deprecated `LongPanel` class has been completely removed

- If `Series.sort` is called on a column of a DataFrame, an exception will now be raised. Before it was possible to accidentally mutate a DataFrame’s column by doing `df[col].sort()` instead of the side-effect free method `df[col].order()` (GH316)

- Miscellaneous renames and deprecations which will (harmlessly) raise `FutureWarning`

- `drop` added as an optional parameter to `DataFrame.reset_index` (GH699)
Performance improvements

- **Cythonized GroupBy aggregations** no longer presort the data, thus achieving a significant speedup (GH93). GroupBy aggregations with Python functions significantly sped up by clever manipulation of the ndarray data type in Cython (GH496).
- Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
- Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
- Can store objects indexed by tuples and floats in HDFStore (GH492)
- Don’t print length by default in Series.to_string, add length option (GH489)
- Improve Cython code for multi-groupby to avoid having to sort the data (GH93)
- Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
- Improve column reindexing performance by using specialized Cython take function
- Further performance tweaking of Series.__getitem__ for standard use cases
- Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
- Friendlier error message in setup.py if NumPy not installed
- Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)
- Default name assignment when calling reset_index on DataFrame with a regular (non-hierarchical) index (GH476)
- Use Cythonized groupers when possible in Series/DataFrame stat ops with level parameter passed (GH545)
- Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374)

v.0.6.1 (December 13, 2011)

New features

- Can append single rows (as Series) to a DataFrame
- Add Spearman and Kendall rank correlation options to Series.corr and DataFrame.corr (GH428)
  - Added get_value and set_value methods to Series, DataFrame, and Panel for very low-overhead access (>2x faster in many cases) to scalar elements (GH437, GH438). set_value is capable of producing an enlarged object.
- Add PyQt table widget to sandbox (GH435)
- DataFrame.align can accept Series arguments and an axis option (GH461)
- Implement new SparseArray and SparseList data structures. SparseSeries now derives from SparseArray (GH463)
- Better console printing options (GH453)
- Implement fast data ranking for Series and DataFrame, fast versions of scipy.stats.rankdata (GH428)
- Implement DataFrame.from_items alternate constructor (GH444)
• DataFrame.convert_objects method for *inferring better dtypes* for object columns (GH302)
• Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)
• Add margins option to pivot_table for computing subgroup aggregates (GH114)
• Add Series.from_csv function (GH482)
• *Can pass* DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH #462)
• MultiIndex.get_level_values can accept the level name

**Performance improvements**

• Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (PR #425)
• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
• Column deletion in DataFrame copies no data (computes views on blocks) (GH #158)

**v.0.6.0 (November 25, 2011)**

**New Features**

• *Added* melt function to pandas.core.reshape
• *Added* level parameter to group by level in Series and DataFrame descriptive statistics (GH313)
• *Added* head and tail methods to Series, analogous to to DataFrame (GH296)
• *Added* Series.isin function which checks if each value is contained in a passed sequence (GH289)
• *Added* float_format option to Series.to_string
• *Added* skip_footer (GH291) and converters (GH343) options to read_csv and read_table
• *Added* drop_duplicates and duplicated functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)
• *Implemented* operators ‘&’, ‘|’, ‘^’, ‘-’ on DataFrame (GH347)
• *Added* Series.mad, mean absolute deviation
• *Added* QuarterEnd DateOffset (GH321)
• *Added* dot to DataFrame (GH65)
• *Added* orient option to Panel.from_dict (GH359, GH301)
• *Added* orient option to DataFrame.from_dict
• *Added* passing list of tuples or list of lists to DataFrame.from_records (GH357)
• *Added* multiple levels to groupby (GH103)
• *Allow* multiple columns in by argument of DataFrame.sort_index (GH92, GH362)
• *Added* fast get_value and put_value methods to DataFrame (GH360)
• *Added* cov instance methods to Series and DataFrame (GH194, GH362)
• *Added* kind='bar' option to DataFrame.plot (GH348)
• **Added** idxmin and idxmax to Series and DataFrame (GH286)
• **Added** read_clipboard function to parse DataFrame from clipboard (GH300)
• **Added** nunique function to Series for counting unique elements (GH297)
• **Made** DataFrame constructor use Series name if no columns passed (GH373)
• **Support** regular expressions in read_table/read_csv (GH364)
• **Added** DataFrame.to_html for writing DataFrame to HTML (GH387)
• **Added** support for MaskedArray data in DataFrame, masked values converted to NaN (GH396)
• **Added** DataFrame.boxplot function (GH368)
• **Can** pass extra args, kwds to DataFrame.apply (GH376)
• **Implement** DataFrame.join with vector on argument (GH312)
• **Can** pass multiple levels to stack and unstack (GH370)
• **Can** pass multiple values columns to pivot_table (GH381)
• **Use** Series name in GroupBy for result index (GH363)
• **Added** raw option to DataFrame.apply for performance if only need ndarray (GH309)
• Added proper, tested weighted least squares to standard and panel OLS (GH303)

**Performance Enhancements**

• **VBENCH** Cythonized cache_readonly, resulting in substantial micro-performance enhancements throughout the codebase (GH361)
• **VBENCH** Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than np.apply_along_axis (GH309)
• **VBENCH** Improved performance of MultiIndex.from_tuples
• **VBENCH** Special Cython matrix iterator for applying arbitrary reduction operations
• **VBENCH + DOCUMENT** Add raw option to DataFrame.apply for getting better performance when
• **VBENCH** Faster cythonized count by level in Series and DataFrame (GH341)
• **VBENCH?** Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
• **VBENCH New** Cython vectorized function map_infer speeds up Series.apply and Series.map significantly when passed elementwise Python function, motivated by (GH355)
• **VBENCH Significantly** improved performance of Series.order, which also makes np.unique called on a Series faster (GH327)
• **VBENCH Vastly** improved performance of GroupBy on axes with a MultiIndex (GH299)
v.0.5.0 (October 24, 2011)

New Features

- Added DataFrame.align method with standard join options
- Added parse_dates option to read_csv and read_table methods to optionally try to parse dates in the index columns
- Added nrows, chunksize, and iterator arguments to read_csv and read_table. The last two return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242)
- Added ability to join on multiple columns in DataFrame.join (GH214)
- Added private _get_duplicates function to Index for identifying duplicate values more easily (ENH5c)
- Added column attribute access to DataFrame.
- Added Python tab completion hook for DataFrame columns. (GH233, GH230)
- Implemented Series.describe for Series containing objects (GH241)
- Added inner join option to DataFrame.join when joining on key(s) (GH248)
- Implemented selecting DataFrame columns by passing a list to __getitem__ (GH253)
- Added pivot_table convenience function to pandas namespace (GH234)
- Implemented Panel.rename_axis function (GH243)
- DataFrame will show index level names in console output (GH334)
- Implemented Panel.take
- Added set_eng_float_format for alternate DataFrame floating point string formatting (ENH61)
- Added convenience set_index function for creating a DataFrame index from its existing columns
- Implemented groupby hierarchical index level name (GH223)
- Added support for different delimiters in DataFrame.to_csv (GH244)
- TODO: DOCS ABOUT TAKE METHODS

Performance Enhancements

- VBENCH Major performance improvements in file parsing functions read_csv and read_table
- VBENCH Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations
- VBENCH Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)
- VBENCH Improved speed of DataFrame.xls on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)
- VBENCH With new DataFrame.align method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%
- VBENCH Significantly sped up conversion of nested dict into DataFrame (GH212)
- VBENCH Significantly speed up DataFrame __repr__ and count on large mixed-type DataFrame objects
v.0.4.3 through v0.4.1 (September 25 - October 9, 2011)

New Features

- Added Python 3 support using 2to3 (GH200)
- *Added* name attribute to `Series`, now prints as part of `Series.__repr__`
- *Added* instance methods `isnull` and `notnull` to `Series` (GH209, GH203)
- *Added* `Series.align` method for aligning two series with choice of join method (ENH56)
- *Added* method `get_level_values` to `MultiIndex` (GH188)
- Set values in mixed-type `DataFrame` objects via `.ix` indexing attribute (GH135)
- Added new `DataFrame` methods `get_dtype_counts` and property `dtypes` (ENHdc)
- Added `ignore_index` option to `DataFrame.append` to stack DataFrames (ENH1b)
- `read_csv` tries to *sniff* delimiters using `csv.Sniffer` (GH146)
- `read_csv` can *read* multiple columns into a `MultiIndex`; `DataFrame`'s `to_csv` method writes out a corresponding `MultiIndex` (GH151)
- `DataFrame.rename` has a new *copy* parameter to *rename* a `DataFrame` in place (ENHed)
- *Enable* unstacking by name (GH142)
- *Enable* sortlevel to work by level (GH141)

Performance Enhancements

- Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
- Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
- Improved performance of `isnull` and `notnull`, a regression from v0.3.0 (GH187)
- Refactored code related to `DataFrame.join` so that intermediate aligned copies of the data in each `DataFrame` argument do not need to be created. Substantial performance increases result (GH176)
- Substantially improved performance of generic `Index.intersection` and `Index.union`
- Implemented `BlockManager.take` resulting in significantly faster `take` performance on mixed-type `DataFrame` objects (GH104)
- Improved performance of `Series.sort_index`
- Significant groupby performance enhancement: removed unnecessary integrity checks in `DataFrame` internals that were slowing down slicing operations to retrieve groups
- Optimized `_ensure_index` function resulting in performance savings in type-checking `Index` objects
- Wrote fast time series merging / joining methods in Cython. Will be integrated later into `DataFrame.join` and related functions
The easiest way for the majority of users to install pandas is to install it as part of the Anaconda distribution, a cross platform distribution for data analysis and scientific computing. This is the recommended installation method for most users.

Instructions for installing from source, PyPI, various Linux distributions, or a development version are also provided.

**Python version support**

Officially Python 2.7, 3.4, 3.5, and 3.6

**Installing pandas**

**Trying out pandas, no installation required!**

The easiest way to start experimenting with pandas doesn’t involve installing pandas at all. 

Wakari is a free service that provides a hosted IPython Notebook service in the cloud.

Simply create an account, and have access to pandas from within your browser via an IPython Notebook in a few minutes.

**Installing pandas with Anaconda**

Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users.

The simplest way to install not only pandas, but Python and the most popular packages that make up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python distribution for data analytics and scientific computing.

After running a simple installer, the user will have access to pandas and the rest of the SciPy stack without needing to install anything else, and without needing to wait for any software to be compiled.

Installation instructions for Anaconda can be found here.

A full list of the packages available as part of the Anaconda distribution can be found here.

An additional advantage of installing with Anaconda is that you don’t require admin rights to install it, it will install in the user’s home directory, and this also makes it trivial to delete Anaconda at a later date (just delete that folder).
Installing pandas with Miniconda

The previous section outlined how to get pandas installed as part of the Anaconda distribution. However this approach means you will install well over one hundred packages and involves downloading the installer which is a few hundred megabytes in size.

If you want to have more control on which packages, or have a limited internet bandwidth, then installing pandas with Miniconda may be a better solution.

Conda is the package manager that the Anaconda distribution is built upon. It is a package manager that is both cross-platform and language agnostic (it can play a similar role to a pip and virtualenv combination).

Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to install additional packages.

First you will need Conda to be installed and downloading and running the Miniconda will do this for you. The installer can be found here

The next step is to create a new conda environment (these are analogous to a virtualenv but they also allow you to specify precisely which Python version to install also). Run the following commands from a terminal window:

```
conda create -n name_of_my_env python
```

This will create a minimal environment with only Python installed in it. To put your self inside this environment run:

```
source activate name_of_my_env
```

On Windows the command is:

```
activate name_of_my_env
```

The final step required is to install pandas. This can be done with the following command:

```
conda install pandas
```

To install a specific pandas version:

```
conda install pandas=0.13.1
```

To install other packages, IPython for example:

```
conda install ipython
```

To install the full Anaconda distribution:

```
conda install anaconda
```

If you require any packages that are available to pip but not conda, simply install pip, and use pip to install these packages:

```
conda install pip
pip install django
```

Installing from PyPI

pandas can be installed via pip from PyPI.
pip install pandas

This will likely require the installation of a number of dependencies, including NumPy, will require a compiler to compile required bits of code, and can take a few minutes to complete.

**Installing using your Linux distribution’s package manager.**

The commands in this table will install pandas for Python 2 from your distribution. To install pandas for Python 3 you may need to use the package `python3-pandas`.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Status</th>
<th>Download / Repository Link</th>
<th>Install method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debian</td>
<td>stable</td>
<td>official Debian repository</td>
<td><code>sudo apt-get install python-pandas</code></td>
</tr>
<tr>
<td>Debian &amp; Ubuntu</td>
<td>unstable (latest packages)</td>
<td>NeuroDebian</td>
<td><code>sudo apt-get install python-pandas</code></td>
</tr>
<tr>
<td>Ubuntu</td>
<td>stable</td>
<td>official Ubuntu repository</td>
<td><code>sudo apt-get install python-pandas</code></td>
</tr>
<tr>
<td>Ubuntu</td>
<td>unstable (daily builds)</td>
<td>PythonXY PPA; activate by: sudo add-apt-repository ppa:pythonxy/pythonxy-devel &amp;&amp; sudo apt-get update</td>
<td><code>sudo apt-get install python-pandas</code></td>
</tr>
<tr>
<td>OpenSuse</td>
<td>stable</td>
<td>OpenSuse Repository</td>
<td><code>zypper in python-pandas</code></td>
</tr>
<tr>
<td>Fedora</td>
<td>stable</td>
<td>official Fedora repository</td>
<td><code>dnf install python-pandas</code></td>
</tr>
<tr>
<td>CentOS/RHEL</td>
<td>stable</td>
<td>EPEL repository</td>
<td><code>yum install python-pandas</code></td>
</tr>
</tbody>
</table>

**Installing from source**

See the [contribution documentation](https://github.com/pandas-dev/pandas) for complete instructions on building from the git source tree. Further, see creating a development environment if you wish to create a pandas development environment.

**Running the test suite**

pandas is equipped with an exhaustive set of unit tests covering about 97% of the codebase as of this writing. To run it on your machine to verify that everything is working (and you have all of the dependencies, soft and hard, installed), make sure you have `nose` and run:

```python
>>> import pandas as pd
>>> pd.test()
Running unit tests for pandas
pandas version 0.18.0
numpy version 1.10.2
pandas is installed in pandas
Python version 2.7.11 |Continuum Analytics, Inc.
 (default, Dec 6 2015, 18:57:58) [GCC 4.2.1 (Apple Inc. build 5577)]
nose version 1.3.7
```
Dependencies

- setuptools
- NumPy: 1.7.1 or higher
- python-dateutil: 1.5 or higher
- pytz: Needed for time zone support

Recommended Dependencies

- numexpr: for accelerating certain numerical operations. numexpr uses multiple cores as well as smart chunking and caching to achieve large speedups. If installed, must be Version 2.1 or higher (excluding a buggy 2.4.4). Version 2.4.6 or higher is highly recommended.
- bottleneck: for accelerating certain types of nan evaluations. bottleneck uses specialized cython routines to achieve large speedups.

Note: You are highly encouraged to install these libraries, as they provide large speedups, especially if working with large data sets.

Optional Dependencies

- Cython: Only necessary to build development version. Version 0.19.1 or higher.
- SciPy: miscellaneous statistical functions
- xarray: pandas like handling for > 2 dims, needed for converting Panels to xarray objects. Version 0.7.0 or higher is recommended.
- PyTables: necessary for HDF5-based storage. Version 3.0.0 or higher required, Version 3.2.1 or higher highly recommended.
- SQLAlchemy: for SQL database support. Version 0.8.1 or higher recommended. Besides SQLAlchemy, you also need a database specific driver. You can find an overview of supported drivers for each SQL dialect in the SQLAlchemy docs. Some common drivers are:
  - psycopg2: for PostgreSQL
  - pymysql: for MySQL.
  - SQLite: for SQLite, this is included in Python’s standard library by default.
- matplotlib: for plotting
• For Excel I/O:
  – xlrd/xlwt: Excel reading (xlrd) and writing (xlwt)
  – openpyxl: openpyxl version 1.6.1 or higher (but lower than 2.0.0), or version 2.2 or higher, for writing .xlsx files (xlrd >= 0.9.0)
  – XlsxWriter: Alternative Excel writer
• Jinja2: Template engine for conditional HTML formatting.
• boto: necessary for Amazon S3 access.
• blosc: for msgpack compression using blosc
• One of PyQt4, PySide, pygtk, xsel, or xclip: necessary to use read_clipboard(). Most package managers on Linux distributions will have xclip and/or xsel immediately available for installation.
• Google’s `python-gflags <https://github.com/google/python-gflags/>`_, oauth2client, httplib2 and google-api-python-client: Needed for gbq
• Backports.lzma: Only for Python 2, for writing to and/or reading from an xz compressed DataFrame in CSV; Python 3 support is built into the standard library.
• One of the following combinations of libraries is needed to use the top-level `read_html()` function:
  – BeautifulSoup4 and html5lib (Any recent version of html5lib is okay.)
  – BeautifulSoup4 and lxml
  – BeautifulSoup4 and html5lib and lxml
  – Only lxml, although see `HTML reading gotchas` for reasons as to why you should probably **not** take this approach.

**Warning:**

– if you install BeautifulSoup4 you must install either lxml or html5lib or both. `read_html()` will **not** work with **only** BeautifulSoup4 installed.
– You are highly encouraged to read `HTML reading gotchas`. It explains issues surrounding the installation and usage of the above three libraries
– You may need to install an older version of BeautifulSoup4: Versions 4.2.1, 4.1.3 and 4.0.2 have been confirmed for 64 and 32-bit Ubuntu/Debian
– Additionally, if you’re using Anaconda you should definitely read `the gotchas about HTML parsing libraries`

**Note:**

– if you’re on a system with `apt-get` you can do

```
sudo apt-get build-dep python-lxml
```

to get the necessary dependencies for installation of lxml. This will prevent further headaches down the line.
Note: Without the optional dependencies, many useful features will not work. Hence, it is highly recommended that you install these. A packaged distribution like Anaconda, or Enthought Canopy may be worth considering.
CHAPTER THREE

CONTRIBUTING TO PANDAS

Table of contents:

• Where to start?
• Bug reports and enhancement requests
• Working with the code
  – Version control, Git, and GitHub
  – Getting started with Git
  – Forking
  – Creating a branch
  – Creating a development environment
  – Creating a Windows development environment
  – Making changes
• Contributing to the documentation
  – About the pandas documentation
  – How to build the pandas documentation
    • Requirements
    • Building the documentation
    • Building master branch documentation
• Contributing to the code base
  – Code standards
  – Test-driven development/code writing
    • Writing tests
    • Running the test suite
    • Running the performance test suite
    • Running Google BigQuery Integration Tests
    • Running the vbench performance test suite (phasing out)
  – Documenting your code
Where to start?

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.

If you are simply looking to start working with the pandas codebase, navigate to the GitHub “issues” tab and start looking through interesting issues. There are a number of issues listed under Docs and Difficulty Novice where you could start out.

Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing list or on Gitter.

Bug reports and enhancement requests

Bug reports are an important part of making pandas more stable. Having a complete bug report will allow others to reproduce the bug and provide insight into fixing. Because many versions of pandas are supported, knowing version information will also identify improvements made since previous versions. Trying the bug-producing code out on the master branch is often a worthwhile exercise to confirm the bug still exists. It is also worth searching existing bug reports and pull requests to see if the issue has already been reported and/or fixed.

Bug reports must:

1. Include a short, self-contained Python snippet reproducing the problem. You can format the code nicely by using GitHub Flavored Markdown:

```python
>>> from pandas import DataFrame
>>> df = DataFrame(...)
...```

2. Include the full version string of pandas and its dependencies. In versions of pandas after 0.12 you can use a built in function:

```python
>>> from pandas.util.print_versions import show_versions
>>> show_versions()
```

and in pandas 0.13.1 onwards:

```python
>>> pd.show_versions()
```
3. Explain why the current behavior is wrong/not desired and what you expect instead.
The issue will then show up to the pandas community and be open to comments/ideas from others.

Working with the code

Now that you have an issue you want to fix, enhancement to add, or documentation to improve, you need to learn how to work with GitHub and the pandas code base.

Version control, Git, and GitHub

To the new user, working with Git is one of the more daunting aspects of contributing to pandas. It can very quickly become overwhelming, but sticking to the guidelines below will help keep the process straightforward and mostly trouble free. As always, if you are having difficulties please feel free to ask for help.

The code is hosted on GitHub. To contribute you will need to sign up for a free GitHub account. We use Git for version control to allow many people to work together on the project.

Some great resources for learning Git:

- the GitHub help pages.
- the NumPy’s documentation.
- Matthew Brett’s Pydagogue.

Getting started with Git

GitHub has instructions for installing git, setting up your SSH key, and configuring git. All these steps need to be completed before you can work seamlessly between your local repository and GitHub.

Forking

You will need your own fork to work on the code. Go to the pandas project page and hit the Fork button. You will want to clone your fork to your machine:

```
git clone git@github.com:your-user-name/pandas.git pandas-yourname
cd pandas-yourname
git remote add upstream git://github.com/pandas-dev/pandas.git
```

This creates the directory pandas-yourname and connects your repository to the upstream (main project) pandas repository.

The testing suite will run automatically on Travis-CI once your pull request is submitted. However, if you wish to run the test suite on a branch prior to submitting the pull request, then Travis-CI needs to be hooked up to your GitHub repository. Instructions for doing so are here.

Creating a branch

You want your master branch to reflect only production-ready code, so create a feature branch for making your changes. For example:
Creating a development environment

An easy way to create a Pandas development environment is as follows.

- Install either Anaconda or Miniconda
- Make sure that you have cloned the repository
- cd to the Pandas source directory

Tell conda to create a new environment, named pandas_dev, or any other name you would like for this environment, by running:

```bash
conda create -n pandas_dev --file ci/requirements_dev.txt
```

For a python 3 environment:

```bash
conda create -n pandas_dev python=3 --file ci/requirements_dev.txt
```

Warning: If you are on Windows, see [here for a fully compliant Windows environment.](#)

This will create the new environment, and not touch any of your existing environments, nor any existing python installation. It will install all of the basic dependencies of Pandas, as well as the development and testing tools. If you would like to install other dependencies, you can install them as follows:

```bash
conda install -n pandas_dev -c pandas pytables scipy
```

To install all Pandas dependencies you can do the following:

```bash
conda install -n pandas_dev -c pandas --file ci/requirements_all.txt
```

To work in this environment, Windows users should activate it as follows:

```bash
activate pandas_dev
```
Mac OSX / Linux users should use:

```
source activate pandas_dev
```

You will then see a confirmation message to indicate you are in the new development environment.

To view your environments:

```
conda info -e
```

To return to your home root environment in Windows:

```
deactivate
```

To return to your home root environment in OSX / Linux:

```
source deactivate
```

See the full conda docs here.

At this point you can easily do an in-place install, as detailed in the next section.

Creating a Windows development environment

To build on Windows, you need to have compilers installed to build the extensions. You will need to install the appropriate Visual Studio compilers, VS 2008 for Python 2.7, VS 2010 for 3.4, and VS 2015 for Python 3.5.

For Python 2.7, you can install the mingw compiler which will work equivalently to VS 2008:

```
conda install -n pandas_dev libpython
```

or use the Microsoft Visual Studio VC++ compiler for Python. Note that you have to check the x64 box to install the x64 extension building capability as this is not installed by default.

For Python 3.4, you can download and install the Windows 7.1 SDK. Read the references below as there may be various gotchas during the installation.

For Python 3.5, you can download and install the Visual Studio 2015 Community Edition.

Here are some references and blogs:

- https://cowboyprogrammer.org/building-python-wheels-for-windows/
- https://blog.ionelmc.ro/2014/12/21/compiling-python-extensions-on-windows/

Making changes

Before making your code changes, it is often necessary to build the code that was just checked out. There are two primary methods of doing this.

1. The best way to develop pandas is to build the C extensions in-place by running:

```
python setup.py build_ext --inplace
```
If you startup the Python interpreter in the pandas source directory you will call the built C extensions

2. Another very common option is to do a develop install of pandas:

```bash
python setup.py develop
```

This makes a symbolic link that tells the Python interpreter to import pandas from your development directory. Thus, you can always be using the development version on your system without being inside the clone directory.

Contributing to the documentation

If you’re not the developer type, contributing to the documentation is still of huge value. You don’t even have to be an expert on pandas to do so! Something as simple as rewriting small passages for clarity as you reference the docs is a simple but effective way to contribute. The next person to read that passage will be in your debt!

In fact, there are sections of the docs that are worse off after being written by experts. If something in the docs doesn’t make sense to you, updating the relevant section after you figure it out is a simple way to ensure it will help the next person.

Documentation:

- About the pandas documentation
- How to build the pandas documentation
 - Requirements
 - Building the documentation
 - Building master branch documentation

About the pandas documentation

The documentation is written in reStructuredText, which is almost like writing in plain English, and built using Sphinx. The Sphinx Documentation has an excellent introduction to reST. Review the Sphinx docs to perform more complex changes to the documentation as well.

Some other important things to know about the docs:

- The pandas documentation consists of two parts: the docstrings in the code itself and the docs in this folder pandas/doc/.

The docstrings provide a clear explanation of the usage of the individual functions, while the documentation in this folder consists of tutorial-like overviews per topic together with some other information (what’s new, installation, etc).

- The docstrings follow the Numpy Docstring Standard, which is used widely in the Scientific Python community. This standard specifies the format of the different sections of the docstring. See this document for a detailed explanation, or look at some of the existing functions to extend it in a similar manner.

- The tutorials make heavy use of the ipython directive sphinx extension. This directive lets you put code in the documentation which will be run during the doc build. For example:

```python
.. ipython:: python
```
Almost all code examples in the docs are run (and the output saved) during the doc build. This approach means that code examples will always be up to date, but it does make the doc building a bit more complex.

Note: The .rst files are used to automatically generate Markdown and HTML versions of the docs. For this reason, please do not edit CONTRIBUTING.md directly, but instead make any changes to doc/source/contributing.rst. Then, to generate CONTRIBUTING.md, use pandoc with the following command:

```
pandoc doc/source/contributing.rst -t markdown_github > CONTRIBUTING.md
```

The utility script scripts/api_rst_coverage.py can be used to compare the list of methods documented in doc/source/api.rst (which is used to generate the API Reference page) and the actual public methods. This will identify methods documented in in doc/source/api.rst that are not actually class methods, and existing methods that are not documented in doc/source/api.rst.

How to build the pandas documentation

Requirements

First, you need to have a development environment to be able to build pandas (see the docs on creating a development environment above). Further, to build the docs, there are some extra requirements: you will need to have sphinx and ipython installed. numpydoc is used to parse the docstrings that follow the Numpy Docstring Standard (see above), but you don’t need to install this because a local copy of numpydoc is included in the pandas source code. nbconvert and nbformat are required to build the Jupyter notebooks included in the documentation.

If you have a conda environment named pandas_dev, you can install the extra requirements with:

```
conda install -n pandas_dev sphinx ipython nbconvert nbformat
```

Furthermore, it is recommended to have all optional dependencies installed. This is not strictly necessary, but be aware that you will see some error messages when building the docs. This happens because all the code in the documentation is executed during the doc build, and so code examples using optional dependencies will generate errors. Run pd.show_versions() to get an overview of the installed version of all dependencies.

Warning: You need to have sphinx version >= 1.3.2.

Building the documentation

So how do you build the docs? Navigate to your local pandas/doc/ directory in the console and run:
Then you can find the HTML output in the folder `pandas/doc/build/html/`. The first time you build the docs, it will take quite a while because it has to run all the code examples and build all the generated docstring pages. In subsequent evocations, sphinx will try to only build the pages that have been modified.

If you want to do a full clean build, do:

```
python make.py clean
python make.py build
```

Starting with pandas 0.13.1 you can tell `make.py` to compile only a single section of the docs, greatly reducing the turn-around time for checking your changes. You will be prompted to delete `.rst` files that aren’t required. This is okay because the prior versions of these files can be checked out from git. However, you must make sure not to commit the file deletions to your Git repository!

```
# omit autosummary and API section
python make.py clean
python make.py --no-api

# compile the docs with only a single section, that which is in indexing.rst
python make.py clean
python make.py --single indexing
```

For comparison, a full documentation build may take 10 minutes, a `--no-api` build may take 3 minutes and a single section may take 15 seconds. Subsequent builds, which only process portions you have changed, will be faster. Open the following file in a web browser to see the full documentation you just built:

pandas/docs/build/html/index.html

And you’ll have the satisfaction of seeing your new and improved documentation!

Building master branch documentation

When pull requests are merged into the pandas master branch, the main parts of the documentation are also built by Travis-CI. These docs are then hosted here.

Contributing to the code base

Code Base:

- **Code standards**
- **Test-driven development/code writing**
 - Writing tests
 - Running the test suite
 - Running the performance test suite
 - Running Google BigQuery Integration Tests
Code standards

pandas uses the PEP8 standard. There are several tools to ensure you abide by this standard. Here are some of the more common PEP8 issues:

- we restrict line-length to 80 characters to promote readability
- passing arguments should have spaces after commas, e.g. `foo(arg1, arg2, kw1='bar')`

The Travis-CI will run `flake8` tool and report any stylistic errors in your code. Generating any warnings will cause the build to fail; thus these are part of the requirements for submitting code to *pandas*.

It is helpful before submitting code to run this yourself on the diff:

```
git diff master | flake8 --diff
```

Furthermore, we’ve written a tool to check that your commits are PEP8 great, `pip install pep8radius`. Look at PEP8 fixes in your branch vs master with:

```
pep8radius master --diff
```

and make these changes with:

```
pep8radius master --diff --in-place
```

Additional standards are outlined on the code style wiki page.

Please try to maintain backward compatibility. *pandas* has lots of users with lots of existing code, so don’t break it if at all possible. If you think breakage is required, clearly state why as part of the pull request. Also, be careful when changing method signatures and add deprecation warnings where needed.

Test-driven development/code writing

pandas is serious about testing and strongly encourages contributors to embrace test-driven development (TDD). This development process “relies on the repetition of a very short development cycle: first the developer writes an (initially failing) automated test case that defines a desired improvement or new function, then produces the minimum amount of code to pass that test.” So, before actually writing any code, you should write your tests. Often the test can be taken from the original GitHub issue. However, it is always worth considering additional use cases and writing corresponding tests.

Adding tests is one of the most common requests after code is pushed to *pandas*. Therefore, it is worth getting in the habit of writing tests ahead of time so this is never an issue.

Like many packages, *pandas* uses the Nose testing system and the convenient extensions in numpy.testing.

Writing tests

All tests should go into the `tests` subdirectory of the specific package. This folder contains many current examples of tests, and we suggest looking to these for inspiration. If your test requires working with files or network connectivity, there is more information on the testing page of the wiki.
The **pandas.util.testing** module has many special `assert` functions that make it easier to make statements about whether Series or DataFrame objects are equivalent. The easiest way to verify that your code is correct is to explicitly construct the result you expect, then compare the actual result to the expected correct result:

```python
def test_pivot(self):
    data = {
        'index' : ['A', 'B', 'C', 'C', 'B', 'A'],
        'columns' : ['One', 'One', 'One', 'Two', 'Two', 'Two'],
        'values' : [1., 2., 3., 3., 2., 1.]
    }

    frame = DataFrame(data)
    pivoted = frame.pivot(index='index', columns='columns', values='values')

    expected = DataFrame({
        'One' : {'A' : 1., 'B' : 2., 'C' : 3.},
        'Two' : {'A' : 1., 'B' : 2., 'C' : 3.}
    })

    assert_frame_equal(pivoted, expected)
```

Running the test suite

The tests can then be run directly inside your Git clone (without having to install **pandas**) by typing:

```
nosetests pandas
```

The tests suite is exhaustive and takes around 20 minutes to run. Often it is worth running only a subset of tests first around your changes before running the entire suite. This is done using one of the following constructs:

```
nosetests pandas/tests/[test-module].py
nosetests pandas/tests/[test-module].py:[TestClass]
nosetests pandas/tests/[test-module].py:[TestClass].[test_method]
```

Furthermore one can run

```
pd.test()
```

with an imported pandas to run tests similarly.

Running the performance test suite

Performance matters and it is worth considering whether your code has introduced performance regressions. **pandas** is in the process of migrating to **asv** benchmarks to enable easy monitoring of the performance of critical **pandas** operations. These benchmarks are all found in the **pandas/asv_bench** directory. **asv** supports both python2 and python3.

Note: The **asv** benchmark suite was translated from the previous framework, **vbench**, so many stylistic issues are likely a result of automated transformation of the code.

To use all features of **asv**, you will need either **conda** or **virtualenv**. For more details please check the **asv** installation webpage.
To install asv:

```bash
pip install git+https://github.com/spacetelescope/asv
```

If you need to run a benchmark, change your directory to `asv_bench/` and run:

```bash
asv continuous -f 1.1 upstream/master HEAD
```

You can replace `HEAD` with the name of the branch you are working on, and report benchmarks that changed by more than 10%. The command uses `conda` by default for creating the benchmark environments. If you want to use `virtualenv` instead, write:

```bash
asv continuous -f 1.1 -E virtualenv upstream/master HEAD
```

The `-E virtualenv` option should be added to all `asv` commands that run benchmarks. The default value is defined in `asv.conf.json`.

Running the full test suite can take up to one hour and use up to 3GB of RAM. Usually it is sufficient to paste only a subset of the results into the pull request to show that the committed changes do not cause unexpected performance regressions. You can run specific benchmarks using the `-b` flag, which takes a regular expression. For example, this will only run tests from a `pandas/asv_bench/benchmarks/groupby.py` file:

```bash
asv continuous -f 1.1 upstream/master HEAD -b ^groupby
```

If you want to only run a specific group of tests from a file, you can do it using . as a separator. For example:

```bash
asv continuous -f 1.1 upstream/master HEAD -b groupby.groupby_agg_builtins
```

will only run the `groupby_agg_builtins` benchmark defined in `groupby.py`.

You can also run the benchmark suite using the version of `pandas` already installed in your current Python environment. This can be useful if you do not have `virtualenv` or `conda`, or are using the `setup.py develop` approach discussed above; for the in-place build you need to set `PYTHONPATH`, e.g. `PYTHONPATH="$PWD/../"`.

```bash
asv [remaining arguments]
```

or, to use a specific Python interpreter:

```bash
asv run -e -E existing:python3.5
```

This will display stderr from the benchmarks, and use your local `python` that comes from your `$PATH`.

Information on how to write a benchmark and how to use `asv` can be found in the `asv` documentation.

Running Google BigQuery Integration Tests

You will need to create a Google BigQuery private key in JSON format in order to run Google BigQuery integration tests on your local machine and on Travis-CI. The first step is to create a service account.

Integration tests for `pandas.io.gbg` are skipped in pull requests because the credentials that are required for running Google BigQuery integration tests are encrypted on Travis-CI and are only accessible from the `pandas-dev/pandas` repository. The credentials won’t be available on forks of pandas. Here are the steps to run gbq integration tests on a forked repository:

1. Go to Travis CI and sign in with your GitHub account.
2. Click on the + icon next to the My Repositories list and enable Travis builds for your fork.
3. Click on the gear icon to edit your travis build, and add two environment variables:
 • **GBQ_PROJECT_ID** with the value being the ID of your BigQuery project.
 • **SERVICE_ACCOUNT_KEY** with the value being the contents of the JSON key that you downloaded for your service account. Use single quotes around your JSON key to ensure that it is treated as a string.

 For both environment variables, keep the “Display value in build log” option DISABLED. These variables contain sensitive data and you do not want their contents being exposed in build logs.

4. Your branch should be tested automatically once it is pushed. You can check the status by visiting your Travis branches page which exists at the following location: https://travis-ci.org/your-user-name/pandas/branches. Click on a build job for your branch. Expand the following line in the build log: `ci/print_skipped.py /tmp/nosetests.xml`. Search for the term `test_gbq` and confirm that gbq integration tests are not skipped.

Running the vbench performance test suite (phasing out)

Historically, **pandas** used **vbench library** to enable easy monitoring of the performance of critical **pandas** operations. These benchmarks are all found in the **pandas/vb_suite** directory. vbench currently only works on python2.

To install vbench:

```
pip install git+https://github.com/pydata/vbench
```

Vbench also requires **sqlalchemy**, **gitpython**, and **psutil**, which can all be installed using pip. If you need to run a benchmark, change your directory to the **pandas** root and run:

```
./test_perf.sh -b master -t HEAD
```

This will check out the master revision and run the suite on both master and your commit. Running the full test suite can take up to one hour and use up to 3GB of RAM. Usually it is sufficient to paste a subset of the results into the Pull Request to show that the committed changes do not cause unexpected performance regressions.

You can run specific benchmarks using the `–r` flag, which takes a regular expression.

See the **performance testing wiki** for information on how to write a benchmark.

Documenting your code

Changes should be reflected in the release notes located in **doc/source/whatsnew/vx.y.z.txt**. This file contains an ongoing change log for each release. Add an entry to this file to document your fix, enhancement or (unavoidable) breaking change. Make sure to include the GitHub issue number when adding your entry (using “GH1234” where 1234 is the issue/pull request number).

If your code is an enhancement, it is most likely necessary to add usage examples to the existing documentation. This can be done following the section regarding documentation above. Further, to let users know when this feature was added, the **versionadded** directive is used. The sphinx syntax for that is:

```
.. versionadded:: 0.17.0
```

This will put the text **New in version 0.17.0** wherever you put the sphinx directive. This should also be put in the docstring when adding a new function or method (example) or a new keyword argument (example).
Contributing your changes to **pandas**

Committing your code

Keep style fixes to a separate commit to make your pull request more readable.

Once you’ve made changes, you can see them by typing:

```bash
git status
```

If you have created a new file, it is not being tracked by git. Add it by typing:

```bash
git add path/to/file-to-be-added.py
```

Doing ‘git status’ again should give something like:

```bash
# On branch shiny-new-feature
# modified: /relative/path/to/file-you-added.py
```

Finally, commit your changes to your local repository with an explanatory message. **Pandas** uses a convention for commit message prefixes and layout. Here are some common prefixes along with general guidelines for when to use them:

- **ENH**: Enhancement, new functionality
- **BUG**: Bug fix
- **DOC**: Additions/updates to documentation
- **TST**: Additions/updates to tests
- **BLD**: Updates to the build process/scripts
- **PERF**: Performance improvement
- **CLN**: Code cleanup

The following defines how a commit message should be structured. Please reference the relevant GitHub issues in your commit message using GH1234 or #1234. Either style is fine, but the former is generally preferred:

- a subject line with < 80 chars.
- One blank line.
- Optionally, a commit message body.

Now you can commit your changes in your local repository:

```bash
git commit -m
```

Combining commits

If you have multiple commits, you may want to combine them into one commit, often referred to as “squashing” or “rebasing”. This is a common request by package maintainers when submitting a pull request as it maintains a more compact commit history. To rebase your commits:

```bash
git rebase -i HEAD~#
```
Where # is the number of commits you want to combine. Then you can pick the relevant commit message and discard others.

To squash to the master branch do:

```
git rebase -i master
```

Use the s option on a commit to squash, meaning to keep the commit messages, or f to fixup, meaning to merge the commit messages.

Then you will need to push the branch (see below) forcefully to replace the current commits with the new ones:

```
git push origin shiny-new-feature -f
```

Pushing your changes

When you want your changes to appear publicly on your GitHub page, push your forked feature branch’s commits:

```
git push origin shiny-new-feature
```

Here `origin` is the default name given to your remote repository on GitHub. You can see the remote repositories:

```
git remote -v
```

If you added the upstream repository as described above you will see something like:

```
origin git@github.com:yourname/pandas.git (fetch)
origin git@github.com:yourname/pandas.git (push)
upstream git://github.com/pandas-dev/pandas.git (fetch)
upstream git://github.com/pandas-dev/pandas.git (push)
```

Now your code is on GitHub, but it is not yet a part of the `pandas` project. For that to happen, a pull request needs to be submitted on GitHub.

Review your code

When you’re ready to ask for a code review, file a pull request. Before you do, once again make sure that you have followed all the guidelines outlined in this document regarding code style, tests, performance tests, and documentation. You should also double check your branch changes against the branch it was based on:

1. Navigate to your repository on GitHub – https://github.com/your-user-name/pandas
2. Click on Branches
3. Click on the Compare button for your feature branch
4. Select the base and compare branches, if necessary. This will be master and shiny-new-feature, respectively.

Finally, make the pull request

If everything looks good, you are ready to make a pull request. A pull request is how code from a local repository becomes available to the GitHub community and can be looked at and eventually merged into the master version. This pull request and its associated changes will eventually be committed to the master branch and available in the next release. To submit a pull request:
1. Navigate to your repository on GitHub
2. Click on the Pull Request button
3. You can then click on Commits and Files Changed to make sure everything looks okay one last time
4. Write a description of your changes in the Preview Discussion tab
5. Click Send Pull Request.

This request then goes to the repository maintainers, and they will review the code. If you need to make more changes, you can make them in your branch, push them to GitHub, and the pull request will be automatically updated. Pushing them to GitHub again is done by:

```
git push -f origin shiny-new-feature
```

This will automatically update your pull request with the latest code and restart the Travis-CI tests.

If your pull request is related to the pandas.io.gbq module, please see the section on Running Google BigQuery Integration Tests to configure a Google BigQuery service account for your pull request on Travis-CI.

Delete your merged branch (optional)

Once your feature branch is accepted into upstream, you’ll probably want to get rid of the branch. First, merge upstream master into your branch so git knows it is safe to delete your branch:

```
git fetch upstream
git checkout master
git merge upstream/master
```

Then you can just do:

```
git branch -d shiny-new-feature
```

Make sure you use a lower-case `-d`, or else git won’t warn you if your feature branch has not actually been merged. The branch will still exist on GitHub, so to delete it there do:

```
git push origin --delete shiny-new-feature
```
CHAPTER
FOUR

FREQUENTLY ASKED QUESTIONS (FAQ)

Dataframe memory usage

As of pandas version 0.15.0, the memory usage of a dataframe (including the index) is shown when accessing the info method of a dataframe. A configuration option, display.memory_usage (see Options and Settings), specifies if the dataframe’s memory usage will be displayed when invoking the df.info() method.

For example, the memory usage of the dataframe below is shown when calling df.info():

```python
In [1]: dtypes = ['int64', 'float64', 'datetime64[ns]', 'timedelta64[ns]',
     ...:               'complex128', 'object', 'bool']
     ...:

In [2]: n = 5000

In [3]: data = dict({t, np.random.randint(100, size=n).astype(t)}
     ...:               for t in dtypes)
     ...:

In [4]: df = pd.DataFrame(data)

In [5]: df['categorical'] = df['object'].astype('category')

In [6]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool          5000 non-null bool
complex128    5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64       5000 non-null float64
int64         5000 non-null int64
object        5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical   5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),
        object(1), timedelta64[ns](1)
memory usage: 284.1+ KB
```

The + symbol indicates that the true memory usage could be higher, because pandas does not count the memory used by values in columns with dtype=object.

New in version 0.17.1.
Passing `memory_usage='deep'` will enable a more accurate memory usage report, that accounts for the full usage of the contained objects. This is optional as it can be expensive to do this deeper introspection.

```
In [7]: df.info(memory_usage='deep')
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 8 columns):
bool   5000 non-null bool
complex128 5000 non-null complex128
datetime64[ns] 5000 non-null datetime64[ns]
float64 5000 non-null float64
int64   5000 non-null int64
object  5000 non-null object
timedelta64[ns] 5000 non-null timedelta64[ns]
categorical 5000 non-null category
dtypes: bool(1), category(1), complex128(1), datetime64[ns](1), float64(1), int64(1),object(1), timedelta64[ns](1)
memory usage: 401.2 KB
```

By default the display option is set to `True` but can be explicitly overridden by passing the `memory_usage` argument when invoking `df.info()`.

The memory usage of each column can be found by calling the `memory_usage` method. This returns a Series with an index represented by column names and memory usage of each column shown in bytes. For the dataframe above, the memory usage of each column and the total memory usage of the dataframe can be found with the `memory_usage` method:

```
In [8]: df.memory_usage()
Out[8]:
Index    72
bool     5000
complex128 80000
datetime64[ns] 40000
float64  40000
int64    40000
object   40000
timedelta64[ns] 40000
categorical 5800
dtype: int64

# total memory usage of dataframe
In [9]: df.memory_usage().sum()
Out[9]: 290872
```

By default the memory usage of the dataframe’s index is shown in the returned Series, the memory usage of the index can be suppressed by passing the `index=False` argument:

```
In [10]: df.memory_usage(index=False)
Out[10]:
bool     5000
complex128 80000
datetime64[ns] 40000
float64  40000
int64    40000
object   40000
timedelta64[ns] 40000
categorical 5800
dtype: int64
```
The memory usage displayed by the `info` method utilizes the `memory_usage` method to determine the memory usage of a dataframe while also formatting the output in human-readable units (base-2 representation; i.e., 1KB = 1024 bytes).

See also *Categorical Memory Usage*.

Byte-Ordering Issues

Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. To deal with this issue you should convert the underlying NumPy array to the native system byte order *before* passing it to Series/DataFrame/Panel constructors using something similar to the following:

```python
In [11]: x = np.array(list(range(10)), '>i4') # big endian
In [12]: newx = x.byteswap().newbyteorder() # force native byteorder
In [13]: s = pd.Series(newx)
```

See the NumPy documentation on byte order for more details.

Visualizing Data in Qt applications

There is no support for such visualization in pandas. However, the external package `pandas-qt` does provide this functionality.
pandas consists of the following things

- A set of labeled array data structures, the primary of which are Series and DataFrame
- Index objects enabling both simple axis indexing and multi-level / hierarchical axis indexing
- An integrated group by engine for aggregating and transforming data sets
- Date range generation (date_range) and custom date offsets enabling the implementation of customized frequencies
- Input/Output tools: loading tabular data from flat files (CSV, delimited, Excel 2003), and saving and loading pandas objects from the fast and efficient PyTables/HDF5 format.
- Memory-efficient “sparse” versions of the standard data structures for storing data that is mostly missing or mostly constant (some fixed value)
- Moving window statistics (rolling mean, rolling standard deviation, etc.)
- Static and moving window linear and panel regression

Data structures at a glance

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Series</td>
<td>1D labeled homogeneously-typed array</td>
</tr>
<tr>
<td>2</td>
<td>DataFrame</td>
<td>General 2D labeled, size-mutable tabular structure with potentially</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heterogeneously-typed columns</td>
</tr>
<tr>
<td>3</td>
<td>Panel</td>
<td>General 3D labeled, also size-mutable array</td>
</tr>
</tbody>
</table>

Why more than 1 data structure?

The best way to think about the pandas data structures is as flexible containers for lower dimensional data. For example, DataFrame is a container for Series, and Panel is a container for DataFrame objects. We would like to be able to insert and remove objects from these containers in a dictionary-like fashion.

Also, we would like sensible default behaviors for the common API functions which take into account the typical orientation of time series and cross-sectional data sets. When using ndarrays to store 2- and 3-dimensional data, a burden is placed on the user to consider the orientation of the data set when writing functions; axes are considered more or less equivalent (except when C- or Fortran-contiguousness matters for performance). In pandas, the axes are intended to lend more semantic meaning to the data; i.e., for a particular data set there is likely to be a “right” way to orient the data. The goal, then, is to reduce the amount of mental effort required to code up data transformations in downstream functions.
For example, with tabular data (DataFrame) it is more semantically helpful to think of the index (the rows) and the columns rather than axis 0 and axis 1. And iterating through the columns of the DataFrame thus results in more readable code:

```python
for col in df.columns:
    series = df[col]
    # do something with series
```

Mutability and copying of data

All pandas data structures are value-mutable (the values they contain can be altered) but not always size-mutable. The length of a Series cannot be changed, but, for example, columns can be inserted into a DataFrame. However, the vast majority of methods produce new objects and leave the input data untouched. In general, though, we like to favor immutability where sensible.

Getting Support

The first stop for pandas issues and ideas is the Github Issue Tracker. If you have a general question, pandas community experts can answer through Stack Overflow.

Longer discussions occur on the developer mailing list, and commercial support inquiries for Lambda Foundry should be sent to: support@lambdafoundry.com

Credits

pandas development began at AQR Capital Management in April 2008. It was open-sourced at the end of 2009. AQR continued to provide resources for development through the end of 2011, and continues to contribute bug reports today. Since January 2012, Lambda Foundry, has been providing development resources, as well as commercial support, training, and consulting for pandas.

pandas is only made possible by a group of people around the world like you who have contributed new code, bug reports, fixes, comments and ideas. A complete list can be found on Github.

Development Team

pandas is a part of the PyData project. The PyData Development Team is a collection of developers focused on the improvement of Python’s data libraries. The core team that coordinates development can be found on Github. If you’re interested in contributing, please visit the project website.

License

pandas is distributed under a 3-clause ("Simplified" or "New") BSD
license. Parts of NumPy, SciPy, numpydoc, bottleneck, which all have BSD-compatible licenses, are included. Their licenses follow the pandas license.

pandas license
==============

Copyright (c) 2011-2012, Lambda Foundry, Inc. and PyData Development Team
All rights reserved.

Copyright (c) 2008-2011 AQR Capital Management, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of any contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

About the Copyright Holders
===========================

AQR Capital Management began pandas development in 2008. Development was led by Wes McKinney. AQR released the source under this license in 2009. Wes is now an employee of Lambda Foundry, and remains the pandas project lead.

The PyData Development Team is the collection of developers of the PyData project. This includes all of the PyData sub-projects, including pandas. The core team that coordinates development on GitHub can be found here: http://github.com/pydata.

Full credits for pandas contributors can be found in the documentation.

Our Copyright Policy
==================

5.6. License
PyData uses a shared copyright model. Each contributor maintains copyright over their contributions to PyData. However, it is important to note that these contributions are typically only changes to the repositories. Thus, the PyData source code, in its entirety, is not the copyright of any single person or institution. Instead, it is the collective copyright of the entire PyData Development Team. If individual contributors want to maintain a record of what changes/contributions they have specific copyright on, they should indicate their copyright in the commit message of the change when they commit the change to one of the PyData repositories.

With this in mind, the following banner should be used in any source code file to indicate the copyright and license terms:

```
#------------------------------------------------------------------------------
# Copyright (c) 2012, PyData Development Team
# All rights reserved.
#
# Distributed under the terms of the BSD Simplified License.
#
# The full license is in the LICENSE file, distributed with this software.
#------------------------------------------------------------------------------
```

Other licenses can be found in the LICENSES directory.
This is a short introduction to pandas, geared mainly for new users. You can see more complex recipes in the Cookbook.

Customarily, we import as follows:

```
In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: import matplotlib.pyplot as plt
```

Object Creation

See the Data Structure Intro section

Creating a `Series` by passing a list of values, letting pandas create a default integer index:

```
In [4]: s = pd.Series([1,3,5,np.nan,6,8])
```

```
Out[4]:
   0  1.0
   1  3.0
   2  5.0
   3  NaN
   4  6.0
   5  8.0
dtype: float64
```

Creating a `DataFrame` by passing a numpy array, with a datetime index and labeled columns:

```
In [6]: dates = pd.date_range('20130101', periods=6)
In [7]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
```

```
Out[7]:
          A         B         C         D
0  0.476924 -0.537537  0.882227 -0.233483
1 -1.551743  0.916708  0.169893  1.172894
2  0.870158  0.535448 -0.373622 -0.252844
3  0.680387  0.997871 -1.023678  0.237383
4 -1.596097 -0.115253  0.829566 -1.372791
5  0.190804 -0.056040  1.245919 -1.047920
```
Creating a DataFrame by passing a dict of objects that can be converted to series-like.

```python
In [10]: df2 = pd.DataFrame({'A': 1.,
   ...:       'B': pd.Timestamp('20130102'),
   ...:       'C': pd.Series(1,index=list(range(4)),dtype='float32'),
   ...:       'D': np.array([3] * 4,dtype='int32'),
   ...:       'E': pd.Categorical(['test','train','test','train']),
   ...:       'F': 'foo'})

In [11]: df2
Out[11]:
          A       B         C         D      E          F
0  1.000000 2013-01-02  1.000000  3.000000  test    foo
1  1.000000 2013-01-02  1.000000  3.000000  train   foo
2  1.000000 2013-01-02  1.000000  3.000000  test    foo
3  1.000000 2013-01-02  1.000000  3.000000  train   foo
```

Having specific dtypes

```python
In [12]: df2.dtypes
Out[12]:
A    float64
B  datetime64[ns]
C    float32
D     int32
E  category
F     object
dtype: object
```

If you’re using IPython, tab completion for column names (as well as public attributes) is automatically enabled. Here’s a subset of the attributes that will be completed:

```python
In [13]: df2.<TAB>
df2.A       df2.boxplot
df2.abs      df2.C
df2.add      df2.clip
df2.add_prefix df2.clip_lower
df2.add_suffix df2.clip_upper
df2.align    df2.columns
df2.all      df2.combine
df2.any      df2.combineAdd
df2.append   df2.combine_first
df2.apply    df2.combineMult
df2.applymap df2.compound
df2.as_blocks df2.consolidate
df2.asfreq   df2.convert_objects
df2.as_matrix df2.copy
df2.astype   df2.corr
df2.at       df2.corrwith
df2.at_time  df2.count
```
As you can see, the columns A, B, C, and D are automatically tab completed. E is there as well; the rest of the attributes have been truncated for brevity.

Viewing Data

See the Basics section

See the top & bottom rows of the frame

```
In [14]: df.head()
Out[14]:
          A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
```

```
In [15]: df.tail(3)
Out[15]:
          A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
```

Display the index, columns, and the underlying numpy data

```
In [16]: df.index
Out[16]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
               '2013-01-05', '2013-01-06'],
               dtype='datetime64[ns]', freq='D')
```

```
In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')
```

```
In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
       [ 1.2121, -0.1732,  0.1192, -1.0442],
       [-0.8618, -2.1046, -0.4949,  1.0718],
       [ 0.7216, -0.7068, -1.0396,  0.2719],
       [-0.425 ,  0.567 ,  0.2762, -1.0874],
       [-0.6737,  0.1136, -1.4784,  0.525 ]])
```

Describe shows a quick statistic summary of your data

```
In [19]: df.describe()
Out[19]:
   A         B         C         D
count  5.000000  5.000000  5.000000  5.000000
mean  0.180457 -0.073443 -0.334397 -0.317401
std   0.852959  1.093453  0.943363  0.977734
min  -1.673700 -2.104621 -1.509059 -1.356320
max   1.212112  2.114099  1.071804  1.356320
```
Transposing your data

In [20]: df.T
Out[20]:
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

Sorting by an axis

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
 D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.567020
2013-01-05 0.524988 -1.478427 0.113648 0.673690
2013-01-06 0.276232 0.567020 -1.087401 -0.424972

Sorting by values

In [22]: df.sort_values(by='B')
Out[22]:
 A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

Selection

Note: While standard Python / Numpy expressions for selecting and setting are intuitive and come in handy for interactive work, for production code, we recommend the optimized pandas data access methods, .at, .iat, .loc, .iloc and .ix.

See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing
Getting

Selecting a single column, which yields a `Series`, equivalent to `df['A']`

```python
In [23]: df['A']
Out [23]:
2013-01-01  0.469112
2013-01-02  1.212112
2013-01-03 -0.861849
2013-01-04  0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64
```

Selecting via `[]`, which slices the rows.

```python
In [24]: df[0:3]
Out [24]:
   A    B    C    D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215  0.119209 -1.044236
2013-01-03-0.861849 -2.104569 -0.494929  1.071804
```

```python
In [25]: df['20130102':'20130104']
Out [25]:
   A    B    C    D
2013-01-02 1.212112 -0.173215  0.119209 -1.044236
2013-01-03-0.861849 -2.104569 -0.494929  1.071804
2013-01-04 0.721555 -0.706771 -1.039575  0.271860
```

Selection by Label

See more in Selection by Label

For getting a cross section using a label

```python
In [26]: df.loc[dates[0]]
Out [26]:
   A    B    C    D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
```

Selecting on a multi-axis by label

```python
In [27]: df.loc[:,['A','B']]
Out [27]:
          A    B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03-0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05-0.424972  0.567020
2013-01-06-0.673690  0.113648
```

Showing label slicing, both endpoints are included
In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]:
 A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771

Reduction in the dimensions of the returned object

In [29]: df.loc['20130102', ['A','B']]
Out[29]:
 A B
Name: 2013-01-02 00:00:00, dtype: float64

For getting a scalar value

In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

For getting fast access to a scalar (equiv to the prior method)

In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

Selection by Position

See more in Selection by Position

Select via the position of the passed integers

In [32]: df.iloc[3]
Out[32]:
 A B C D
2013-01-04 0.721555 -0.706771 1.039575 0.271860

By integer slices, acting similar to numpy/python

In [33]: df.iloc[3:5,0:2]
Out[33]:
 A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

By lists of integer position locations, similar to the numpy/python style

In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]:
 A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232
For slicing rows explicitly

```python
In [35]: df.iloc[1:3,:]
Out[35]:
   A       B       C       D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
```

For slicing columns explicitly

```python
In [36]: df.iloc[:,1:3]  
Out[36]:
   B  C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427
```

For getting a value explicitly

```python
In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858
```

For getting fast access to a scalar (equiv to the prior method)

```python
In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858
```

Boolean Indexing

Using a single column’s values to select data.

```python
In [39]: df[df.A > 0]
Out[39]:
   A       B       C       D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215  0.119209 -1.044236
2013-01-03 0.721555 -0.706771 -1.039575  0.271860
```

A `where` operation for getting.

```python
In [40]: df[df > 0]
Out[40]:
   A       B       C       D
2013-01-01 0.469112  NaN  NaN  NaN
2013-01-02 1.212112  NaN 0.119209  NaN
2013-01-03  NaN  NaN  NaN   1.071804
2013-01-04 0.721555  NaN  NaN   0.271860
2013-01-05  NaN  0.567020 0.276232  NaN
2013-01-06  NaN  0.113648  NaN  0.524988
```

Using the `isin()` method for filtering:

```python
In [41]: df2 = df.copy()
```
In [42]: df2['E'] = ['one', 'one','two','three','four','three']

In [43]: df2
Out[43]:
 A B C D E
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three

In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]:
 A B C D E
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

Setting

Setting a new column automatically aligns the data by the indexes

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))

In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64

In [47]: df['F'] = s1

Setting values by label

In [48]: df.at[dates[0],'A'] = 0

Setting values by position

In [49]: df.iat[0,1] = 0

Setting by assigning with a numpy array

In [50]: df.loc[:, 'D'] = np.array([5] * len(df))

The result of the prior setting operations

In [51]: df
Out[51]:
 A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 0.119209 5 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
A `where` operation with setting.

```
In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2
```

```
Out[54]:
A    B     C     D    F
2013-01-01 0.000000 0.000000 -1.509059 -5  NaN
2013-01-02 -1.212112 -0.173215  0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
```

Missing Data

pandas primarily uses the value `np.nan` to represent missing data. It is by default not included in computations. See the Missing Data section.

Reindexing allows you to change/add/delete the index on a specified axis. This returns a copy of the data.

```
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1],'E'] = 1

In [57]: df1
```

```
Out[57]:
A    B     C     D    F    E
2013-01-01 0.000000 0.000000 -1.509059 5  NaN  1.0
2013-01-02 1.212112 -0.173215  0.119209 5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5  2.0  NaN
2013-01-04 0.721555 -0.706771 -1.039575 5  3.0  NaN
```

To drop any rows that have missing data.

```
In [58]: df1.dropna(how='any')
```

```
Out[58]:
A    B     C     D    F    E
2013-01-02 1.212112 -0.173215  0.119209 5  1.0  1.0
```

Filling missing data

```
In [59]: df1.fillna(value=5)
```

```
Out[59]:
A    B     C     D    F    E
2013-01-01 0.000000 0.000000 -1.509059 5  5.0  1.0
2013-01-02 1.212112 -0.173215  0.119209 5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5  2.0  5.0
2013-01-04 0.721555 -0.706771 -1.039575 5  3.0  5.0
```
To get the boolean mask where values are `nan`

```
In [60]: pd.isnull(df1)
Out[60]:
          A     B     C     D     F     E
2013-01-01  False  False  False  False  True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False  True
2013-01-04  False  False  False  False  False  True
```

Operations

See the *Basic section on Binary Ops*

Stats

Operations in general *exclude* missing data.

Performing a descriptive statistic

```
In [61]: df.mean()
Out[61]:
          A    B    C    D     F
2013-01-01  0.004474  0.383981  0.687758  5.000000  3.000000
Freq: D, dtype: float64
```

Same operation on the other axis

```
In [62]: df.mean(1)
Out[62]:
2013-01-01   0.872735
2013-01-02   1.431621
2013-01-03   0.707731
2013-01-04   1.395042
2013-01-05   1.883656
2013-01-06   1.592306
Freq: D, dtype: float64
```

Operating with objects that have different dimensionality and need alignment. In addition, pandas automatically broadcasts along the specified dimension.

```
In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
In [64]: s
Out[64]:
2013-01-01    NaN
2013-01-02    NaN
2013-01-03   1.0
2013-01-04   3.0
2013-01-05   5.0
2013-01-06    NaN
Freq: D, dtype: float64
```
Apply

Applying functions to the data

```python
In [66]: df.apply(np.cumsum)
Out[66]:
          A         B         C         D         F
2013-01-01 0.000000 0.000000 -1.509059  5.000000 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10.000000 1.000000
2013-01-03 0.350263 -2.277784 -1.884779 15.000000 3.000000
2013-01-04 1.071818 -2.984555 -2.924354 20.000000 6.000000
2013-01-05 0.646846 -2.417535 -2.648122 25.000000 10.000000
2013-01-06 -0.026844 -2.303886 -4.126549 30.000000 15.000000
```

```python
In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
    A    B    C    D    F
dtype: float64
```

Histogramming

See more at Histogamming and Discretization

```python
In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s
Out[69]:
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64
```

```python
In [70]: s.value_counts()
```

6.5. Operations
String Methods

Series is equipped with a set of string processing methods in the `str` attribute that make it easy to operate on each element of the array, as in the code snippet below. Note that pattern-matching in `str` generally uses regular expressions by default (and in some cases always uses them). See more at Vectorized String Methods.

```python
In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [72]: s.str.lower()
Out[72]:
0   a
1   b
2   c
3  aaba
4  baca
5   NaN
6   caba
7    dog
8    cat
dtype: object
```

Merge

Concat

pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

See the Merging section

Concatenating pandas objects together with `concat()`:

```python
In [73]: df = pd.DataFrame(np.random.randn(10, 4))
In [74]: df
Out[74]:
          0         1         2         3
0   -0.548702  1.467327 -1.015962 -0.483075
1    1.637550 -1.217659 -0.291519 -1.745505
2   -0.263952  0.991460 -0.919069  0.266046
3   -0.709661  1.669052  1.037882 -1.705775
4   -0.919854 -0.042379  1.247642 -0.009920
5    0.290213  0.495767  0.362949  1.548106
6   -1.131345 -0.089329  0.337863 -0.945867
7   -0.932132  1.956030  0.017587 -0.016692
8   -0.575247  0.254161 -1.143704  0.215897
9    1.193555 -0.077118  0.408530 -0.862495
```
break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]:
 0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

Join

SQL style merges. See the [Database style joining](#)

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]:
 key lval
0 foo 1
1 foo 2

In [80]: right
Out[80]:
 key rval
0 foo 4
1 foo 5

In [81]: pd.merge(left, right, on='key')
Out[81]:
 key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

Another example that can be given is:

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [84]: left
Out[84]:
 key lval
0 foo 1

6.6 Merge
1 bar 2

In [85]: right
Out[85]:
 key rval
0 foo 4
1 bar 5

In [86]: pd.merge(left, right, on='key')
Out[86]:
 key lval rval
0 foo 1 4
1 bar 2 5

Append

Append rows to a dataframe. See the Appending

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [88]: df
Out[88]:
 A B C D
0 1.3461 1.5117 1.6271 -0.9906
1 0.4416 1.2116 0.2685 0.0246
2 -1.5776 0.3968 -0.1053 -0.5325
3 1.4537 1.2088 -0.0809 -0.2646
4 -0.7279 0.5893 0.3399 -0.6932
5 -0.3394 0.5936 0.8843 1.5914
6 0.1418 0.2204 0.4356 0.1924
7 -0.0967 0.8034 1.7151 -0.7088

In [89]: s = df.iloc[3]

In [90]: df.append(s, ignore_index=True)
Out[90]:
 A B C D
0 1.3461 1.5117 1.6271 -0.9906
1 0.4416 1.2116 0.2685 0.0246
2 -1.5776 0.3968 -0.1053 -0.5325
3 1.4537 1.2088 -0.0809 -0.2646
4 -0.7279 0.5893 0.3399 -0.6932
5 -0.3394 0.5936 0.8843 1.5914
6 0.1418 0.2204 0.4356 0.1924
7 -0.0967 0.8034 1.7151 -0.7088
8 1.4537 1.2088 -0.0809 -0.2646

Grouping

By “group by” we are referring to a process involving one or more of the following steps

- **Splitting** the data into groups based on some criteria
- **Applying** a function to each group independently
Combining the results into a data structure

See the *Grouping section*

```python
In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
                             'foo', 'bar', 'foo', 'foo'],
                      'B': ['one', 'one', 'two', 'three',
                            'two', 'two', 'one', 'three'],
                      'C': np.random.randn(8),
                      'D': np.random.randn(8)})

In [92]: df
Out[92]:
   A   B         C             D
0  foo  one -1.202872 -0.055224
1  bar  one -1.814470  2.395985
2  foo  two  1.018601  1.552825
3  bar  three -0.595447  0.166599
4  foo  two  1.395433  0.047609
5  bar  two -0.392670 -0.136473
6  foo  one  0.007207 -0.561757
7  foo  three  1.928123 -1.623033
```

Grouping and then applying a function `sum` to the resulting groups.

```python
In [93]: df.groupby('A').sum()
Out[93]:
   C       D
 A
bar -2.802588  2.42611
foo  3.146492 -0.63958
```

Grouping by multiple columns forms a hierarchical index, which we then apply the function.

```python
In [94]: df.groupby(['A', 'B']).sum()
Out[94]:
   C       D
   A B
bar one -1.814470  2.395985
   three -0.595447  0.166599
   two -0.392670 -0.136473
foo one -1.195665 -0.616981
   three  1.928123 -1.623033
   two  2.414034  1.600434
```

Reshaping

See the sections on *Hierarchical Indexing* and *Reshaping*.

Stack

```python
In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                          'foo', 'foo', 'qux', 'qux'],
                      ['one', 'two', 'one', 'two'],
                      ['one', 'two', 'one', 'two']])
```
The \texttt{stack()} method “compresses” a level in the DataFrame’s columns.

With a “stacked” DataFrame or Series (having a \texttt{MultiIndex} as the \texttt{index}), the inverse operation of \texttt{stack()} is \texttt{unstack()}, which by default unstacks the last level:
Pivot Tables

See the section on "Pivot Tables."

```python
In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
                      'B': ['A', 'B', 'C'] * 4,
                      'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
                      'D': np.random.randn(12),
                      'E': np.random.randn(12)})
```

```python
In [106]: df
Out[106]:
     A  B      C     D   E
0  one  A  foo  1.418757 -0.179666
1  one  B  foo -1.879024  1.291836
2  two  C  foo  0.536826 -0.009614
3  three A  bar  1.006160  0.392149
4   one B  bar -0.029716  0.264599
5   one C  bar -1.146178 -0.057409
6  two A  foo  0.100900 -1.425638
7  three B  foo -1.035018  1.024098
8   one C  foo  0.314665 -0.106062
9   one A  bar -0.773723  1.824375
10  two B  bar -1.170653  0.595974
11  three C  bar  0.648740  1.167115
```

We can produce pivot tables from this data very easily:

```python
In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
     C     bar     foo
    A  B
one  A -0.773723  1.418757
     B -0.029716 -1.879024
     C -1.146178  0.314665
three A  1.006160  NaN
       B  NaN -1.035018
       C  0.648740  NaN
two  A  NaN  0.100900
      B -1.170653  NaN
      C  NaN  0.536826
```

Time Series

pandas has simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial
Time Series Section

In [108]:
```
rng = pd.date_range('1/1/2012', periods=100, freq='S')
```

In [109]:
```
ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
```

In [110]:
```
ts.resample('5Min').sum()
Out[110]:
2012-01-01 25083
Freq: 5T, dtype: int64
```

Time zone representation

In [111]:
```
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
```

In [112]:
```
ts = pd.Series(np.random.randn(len(rng)), rng)
```

In [113]:
```
ts
Out[113]:
2012-03-06  0.464000
2012-03-07  0.227371
2012-03-08 -0.496922
2012-03-09  0.306389
2012-03-10 -2.290613
Freq: D, dtype: float64
```

In [114]:
```
ts_utc = ts.tz_localize('UTC')
```

In [115]:
```
ts_utc
Out[115]:
2012-03-06 19:00:00-05:00 0.464000
2012-03-07 19:00:00-05:00 0.227371
2012-03-08 19:00:00-05:00 -0.496922
2012-03-09 19:00:00-05:00  0.306389
2012-03-10 19:00:00-05:00 -2.290613
Freq: D, dtype: float64
```

Convert to another time zone

In [116]:
```
ts_utc.tz_convert('US/Eastern')
```

In [117]:
```
Out[117]:
2012-03-05 19:00:00-05:00 0.464000
2012-03-06 19:00:00-05:00 0.227371
2012-03-07 19:00:00-05:00 -0.496922
2012-03-08 19:00:00-05:00  0.306389
2012-03-09 19:00:00-05:00 -2.290613
Freq: D, dtype: float64
```

Converting between time span representations

In [117]:
```
rng = pd.date_range('1/1/2012', periods=5, freq='M')
```

In [118]:
```
ts = pd.Series(np.random.randn(len(rng)), index=rng)
```

In [119]:
```
ts
Out[119]:
2012-01-31 -1.134623
2012-02-29 -1.561819
2012-03-31 -0.260838
Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

```
In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [126]: ts.head()
Out[126]:
1990-03-01 09:00 -0.902937
1990-06-01 09:00 0.068159
1990-09-01 09:00 -0.057873
1990-12-01 09:00 -0.368204
1991-03-01 09:00 -1.144073
Freq: H, dtype: float64
```

Categoricals

Since version 0.15, pandas can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API documentation.

```
In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
In [128]: df["grade"] = df["raw_grade"].astype("category")
```

Convert the raw grades to a categorical data type.
## Rename the categories to more meaningful names (assigning to `Series.cat.categories` is inplace!)

```python
In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
```

Reorder the categories and simultaneously add the missing categories (methods under `Series.cat` return a new `Series` per default).

```python
In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
In [132]: df["grade"]
```

Sorting is per order in the categories, not lexical order.

```python
In [133]: df.sort_values(by="grade")
```

Grouping by a categorical column shows also empty categories.

```python
In [134]: df.groupby("grade").size()
```

---

**Chapter 6. 10 Minutes to pandas**
Plotting

Plotting docs.

```python
In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))

In [136]: ts = ts.cumsum()

In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f6d4a158890>
```

On DataFrame, `plot()` is a convenience to plot all of the columns with labels:

```python
In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=['A', 'B', 'C', 'D'])

In [139]: df = df.cumsum()

In [140]: plt.figure(); df.plot(); plt.legend(loc='best')
Out[140]: <matplotlib.legend.Legend at 0x7f6d3c38e590>
```
Getting Data In/Out

CSV

Writing to a csv file

In [141]: df.to_csv('foo.csv')

Reading from a csv file

In [142]: pd.read_csv('foo.csv')

Out[142]:
   Unnamed: 0      A        B        C        D
0  2000-01-01  0.266457 -0.399641 -0.219582  1.186860
1  2000-01-02 -1.170732 -0.345873  1.653061 -0.282953
2  2000-01-03 -1.734933  0.530468  2.060811 -0.515536
3  2000-01-04 -1.555121  1.452620  0.239859 -1.156896
4  2000-01-05  0.578117  0.511371  0.103552 -2.428202
5  2000-01-06  0.478344  0.449933 -0.741620 -1.962409
6  2000-01-07  1.235339 -0.091757 -1.543861 -1.084753
HDF5

Reading and writing to HDFStores

Writing to a HDF5 Store

```
In [143]: df.to_hdf('foo.h5','df')
```

Reading from a HDF5 Store

```
In [144]: pd.read_hdf('foo.h5','df')
```

```python
Out[144]:
 A B C D
0 2000-01-01 0.266457 -0.399641 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 0.282953
2 2000-01-03 1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
...
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
```

[1000 rows x 4 columns]

Excel

Reading and writing to MS Excel

Writing to an excel file

```
In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
```

Reading from an excel file

```
In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
```

```python
Out[146]:
 A B C D
0 2000-01-01 0.266457 -0.399641 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 0.282953
2 2000-01-03 1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409
6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753
...
994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
```

[1000 rows x 4 columns]
Gotchas

If you are trying an operation and you see an exception like:

```python
>>> if pd.Series([False, True, False]):
 print("I was true")
Traceback
 ...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

See **Comparisons** for an explanation and what to do.

See **Gotchas** as well.
This is a guide to many pandas tutorials, geared mainly for new users.

### Internal Guides

- pandas own *10 Minutes to pandas*
- More complex recipes are in the *Cookbook*

### pandas Cookbook

The goal of this cookbook (by Julia Evans) is to give you some concrete examples for getting started with pandas. These are examples with real-world data, and all the bugs and weirdness that that entails.

Here are links to the v0.1 release. For an up-to-date table of contents, see the pandas-cookbook GitHub repository. To run the examples in this tutorial, you’ll need to clone the GitHub repository and get IPython Notebook running. See How to use this cookbook.

- A quick tour of the IPython Notebook: Shows off IPython’s awesome tab completion and magic functions.
- Chapter 1: Reading your data into pandas is pretty much the easiest thing. Even when the encoding is wrong!
- Chapter 2: It’s not totally obvious how to select data from a pandas dataframe. Here we explain the basics (how to take slices and get columns)
- Chapter 3: Here we get into serious slicing and dicing and learn how to filter dataframes in complicated ways, really fast.
- Chapter 4: Groupby/aggregate is seriously my favorite thing about pandas and I use it all the time. You should probably read this.
- Chapter 5: Here you get to find out if it’s cold in Montreal in the winter (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
- Chapter 6: Strings with pandas are great. It has all these vectorized string operations and they’re the best. We will turn a bunch of strings containing “Snow” into vectors of numbers in a trice.
- Chapter 7: Cleaning up messy data is never a joy, but with pandas it’s easier.
- Chapter 8: Parsing Unix timestamps is confusing at first but it turns out to be really easy.
Lessons for New pandas Users

For more resources, please visit the main repository.

- **01 - Lesson:** Importing libraries - Creating data sets - Creating data frames - Reading from CSV - Exporting to CSV - Finding maximums - Plotting data
- **02 - Lesson:** Reading from TXT - Exporting to TXT - Selecting top/bottom records - Descriptive statistics - Grouping/sorting data
- **03 - Lesson:** Creating functions - Reading from EXCEL - Exporting to EXCEL - Outliers - Lambda functions - Slice and dice data
- **04 - Lesson:** Adding/deleting columns - Index operations
- **05 - Lesson:** Stack/Unstack/Transpose functions
- **06 - Lesson:** GroupBy function
- **07 - Lesson:** Ways to calculate outliers
- **08 - Lesson:** Read from Microsoft SQL databases
- **09 - Lesson:** Export to CSV/EXCEL/TXT
- **10 - Lesson:** Converting between different kinds of formats
- **11 - Lesson:** Combining data from various sources

Practical data analysis with Python

This guide is a comprehensive introduction to the data analysis process using the Python data ecosystem and an interesting open dataset. There are four sections covering selected topics as follows:

- Munging Data
- Aggregating Data
- Visualizing Data
- Time Series

Modern Pandas

- Modern Pandas
- Method Chaining
- Indexes
- Performance
- Tidy Data
- Visualization
Excel charts with pandas, vincent and xlsxwriter

- Using Pandas and XlsxWriter to create Excel charts

Various Tutorials

- Wes McKinney's (pandas BDFL) blog
- Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson
- Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013
- Financial analysis in python, by Thomas Wiecki
- Intro to pandas data structures, by Greg Reda
- Pandas and Python: Top 10, by Manish Amde
- Pandas Tutorial, by Mikhail Semeniuk
This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to this documentation.

Adding interesting links and/or inline examples to this section is a great First Pull Request.

Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the Stack-Overflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.

Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for newer users.

These examples are written for python 3.4. Minor tweaks might be necessary for earlier python versions.

**Idioms**

These are some neat pandas idioms

if-then/if-then-else on one column, and assignment to another one or more columns:

```
In [1]: df = pd.DataFrame(
 ...: {'AAA': [4,5,6,7], 'BBB': [10,20,30,40], 'CCC': [100,50,-30,-50]}); df
 ...:
Out[1]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
```

if-then...

An if-then on one column

```
In [2]: df.ix[df.AAA >= 5,'BBB'] = -1; df
Out[2]:
 AAA BBB CCC
0 4 10 100
1 5 -1 50
2 6 -1 -30
3 7 -1 -50
```

An if-then with assignment to 2 columns:
Add another line with different logic, to do the -else

```
In [4]: df.ix[df.AAA < 5,['BBB','CCC']] = 2000; df
Out[4]:
 AAA BBB CCC
0 4 2000 2000
1 5 555 555
2 6 555 555
3 7 555 555
```

Or use pandas where after you’ve set up a mask

```
In [6]: df.where(df_mask,-1000)
Out[6]:
 AAA BBB CCC
0 4 -1000 2000
1 5 -1000 -1000
2 6 -1000 555
3 7 -1000 -1000
```

if-then-else using numpy’s where()

```
In [7]: df = pd.DataFrame(
 ...: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
 ...:
Out[7]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [8]: df['logic'] = np.where(df['AAA'] > 5,'high','low'); df
Out[8]:
 AAA BBB CCC logic
0 4 10 100 low
1 5 20 50 low
2 6 30 -30 high
3 7 40 -50 high
```

Splitting

Split a frame with a boolean criterion
```
In [9]: df = pd.DataFrame(
 ...: {'AAA': [4, 5, 6, 7], 'BBB': [10, 20, 30, 40], 'CCC': [100, 50, -30, -50]}); df
 ...:
Out[9]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [10]: dflow = df[df.AAA <= 5]
In [11]: dfhigh = df[df.AAA > 5]
In [12]: dflow; dfhigh
Out[12]:
 AAA BBB CCC
2 6 30 -30
3 7 40 -50
```

### Building Criteria

Select with multi-column criteria

```
In [13]: df = pd.DataFrame(
 ...: {'AAA': [4, 5, 6, 7], 'BBB': [10, 20, 30, 40], 'CCC': [100, 50, -30, -50]}); df
 ...:
Out[13]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

...and (without assignment returns a Series)
```

```
In [14]: newseries = df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']; newseries
Out[14]:
0 4
1 5
Name: AAA, dtype: int64

...or (without assignment returns a Series)
```

```
In [15]: newseries = df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']; newseries;
```

```
...or (with assignment modifies the DataFrame.)
```

```
In [16]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1; df
Out[16]:
 AAA BBB CCC
0 0.1 10 100
1 5.0 20 50
2 0.1 30 -30
3 0.1 40 -50
```

8.1. Idioms 383
Select rows with data closest to certain value using argsort

```
In [17]: df = pd.DataFrame(
 : {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40], 'CCC' : [100,50,-30,-50]}); df
 :
Out[17]:
 AAA BBB CCC
 0 4.0 10.0 100.0
 1 5.0 20.0 50.0
 2 6.0 30.0 -30.0
 3 7.0 40.0 -50.0

In [18]: aValue = 43.0

In [19]: df.ix[(df.CCC-aValue).abs().argsort()]
Out[19]:
 AAA BBB CCC
 0 4.0 10.0 100.0
 1 5.0 20.0 50.0
 2 6.0 30.0 -30.0
 3 7.0 40.0 -50.0
```

Dynamically reduce a list of criteria using a binary operators

```
In [20]: df = pd.DataFrame(
 : {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40], 'CCC' : [100,50,-30,-50]}); df
 :
Out[20]:
 AAA BBB CCC
 0 4.0 10.0 100.0
 1 5.0 20.0 50.0
 2 6.0 30.0 -30.0
 3 7.0 40.0 -50.0

In [21]: Crit1 = df.AAA <= 5.5

In [22]: Crit2 = df.BBB == 10.0

In [23]: Crit3 = df.CCC > -40.0

One could hard code:

```
In [24]: AllCrit = Crit1 & Crit2 & Crit3
```

...Or it can be done with a list of dynamically built criteria

```
In [25]: CritList = [Crit1,Crit2,Crit3]

In [26]: AllCrit = functools.reduce(lambda x,y: x & y, CritList)

In [27]: df[AllCrit]
Out[27]:
     AAA  BBB   CCC
 0  4.0  10.0  100.0
```
Selection

DataFrames

The *indexing* docs.

Using both row labels and value conditionals

```python
In [28]: df = pd.DataFrame(
       ....:   {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}); df
       ....:
Out[28]:
       AAA  BBB  CCC
       0  4    10   100
       1  5    20    50
       2  6    30   -30
       3  7    40   -50

In [29]: df[(df.AAA <= 6) & (df.index.isin([0,2,4]))]
Out[29]:
       AAA  BBB  CCC
       0  4    10   100
       2  6    30   -30
```

Use `loc` for label-oriented slicing and `iloc` positional slicing

```python
In [30]: data = {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40],'CCC' : [100,50,-30,-50]}
In [31]: df = pd.DataFrame(data=data,index=['foo','bar','boo','kar']); df
Out[31]:
     AAA  BBB  CCC
foo  4    10  100
bar  5    20  50
boo  6    30 -30
kar  7    40 -50
```

There are 2 explicit slicing methods, with a third general case

1. Positional-oriented (Python slicing style : exclusive of end)
2. Label-oriented (Non-Python slicing style : inclusive of end)
3. General (Either slicing style : depends on if the slice contains labels or positions)

```python
In [32]: df.loc['bar':'kar'] #Label
Out[32]:
     AAA  BBB  CCC
   bar  5    20  50
   boo  6    30 -30
   kar  7    40 -50

#Generic
In [33]: df.ix[0:3] #Same as .iloc[0:3]
Out[33]:
     AAA  BBB  CCC
foo  4    10  100
bar  5    20  50
boo  6    30 -30
```

8.2. Selection
In [34]: df.ix['bar':'kar'] #Same as .loc['bar':'kar']
Out[34]:
 AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.

In [35]: df2 = pd.DataFrame(data=data,index=[1,2,3,4]); #Note index starts at 1.
In [36]: df2.iloc[1:3] #Position-oriented
Out[36]:
 AAA BBB CCC
2 5 20 50
3 6 30 -30
In [37]: df2.loc[1:3] #Label-oriented
Out[37]:
 AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30
In [38]: df2.ix[1:3] #General, will mimic loc (label-oriented)
Out[38]:
 AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30
In [39]: df2.ix[0:3] #General, will mimic iloc (position-oriented), as loc[0:3] would raise a KeyError
Out[39]:
 AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30

Using inverse operator (~) to take the complement of a mask

In [40]: df = pd.DataFrame(
...: {'AAA' : [4,5,6,7], 'BBB' : [10,20,30,40], 'CCC' : [100,50,-30,-50]})
...: ~df
Out[40]:
 AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [41]: df[~((df.AAA <= 6) & (df.index.isin([0,2,4])))]
Out[41]:
 AAA BBB CCC
1 5 20 50
3 7 40 -50
Panels

Extend a panel frame by transposing, adding a new dimension, and transposing back to the original dimensions

In [42]: rng = pd.date_range('1/1/2013', periods=100, freq='D')
In [43]: data = np.random.randn(100, 4)
In [44]: cols = ['A','B','C','D']
In [45]: df1, df2, df3 = pd.DataFrame(data, rng, cols), pd.DataFrame(data, rng, cols),
 → pd.DataFrame(data, rng, cols)
In [46]: pf = pd.Panel({'df1':df1,'df2':df2,'df3':df3});pf
 → <class 'pandas.core.panel.Panel'>
 → Dimensions: 3 (items) x 100 (major_axis) x 4 (minor_axis)
 → Items axis: df1 to df3
 → Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
 → Minor_axis axis: A to D

#Assignment using Transpose (pandas < 0.15)
In [47]: pf = pf.transpose(2,0,1)
In [48]: pf['E'] = pd.DataFrame(data, rng, cols)
In [49]: pf = pf.transpose(1,2,0);pf
 → <class 'pandas.core.panel.Panel'>
 → Dimensions: 3 (items) x 100 (major_axis) x 5 (minor_axis)
 → Items axis: df1 to df3
 → Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
 → Minor_axis axis: A to E

#Direct assignment (pandas > 0.15)
In [50]: pf.loc[:,:,'F'] = pd.DataFrame(data, rng, cols);pf
 → <class 'pandas.core.panel.Panel'>
 → Dimensions: 3 (items) x 100 (major_axis) x 6 (minor_axis)
 → Items axis: df1 to df3
 → Major_axis axis: 2013-01-01 00:00:00 to 2013-04-10 00:00:00
 → Minor_axis axis: A to F

Mask a panel by using np.where and then reconstructing the panel with the new masked values

New Columns

Efficiently and dynamically creating new columns using applymap

In [51]: df = pd.DataFrame(
 : {'AAA' : [1,2,1,3], 'BBB' : [1,1,2,2], 'CCC' : [2,1,3,1]}); df
 : df
 → AAA BBB CCC
 → 0 1 1 2
 → 1 2 1 1
 → 2 1 2 3
3 3 2 1

In [52]: source_cols = df.columns # or some subset would work too.

In [53]: new_cols = [str(x) + "_cat" for x in source_cols]

In [54]: categories = {1: 'Alpha', 2: 'Beta', 3: 'Charlie'}

In [55]: df[new_cols] = df[source_cols].applymap(categories.get); df

Keep other columns when using min() with groupby

In [56]: df = pd.DataFrame(
 ...: {'AAA': [1,1,1,2,2,2,3,3], 'BBB': [2,1,3,4,5,1,2,3]});

Method 1 : idxmin() to get the index of the mins

In [57]: df.loc[df.groupby("AAA")['BBB'].idxmin()]

Method 2 : sort then take first of each

In [58]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()

Notice the same results, with the exception of the index.

MultiIndexing

The *multindexing* docs.
Creating a multi-index from a labeled frame

```python
In [59]: df = pd.DataFrame({'row': [0,1,2],
                       'One_X': [1.1,1.1,1.1],
                       'One_Y': [1.2,1.2,1.2],
                       'Two_X': [1.11,1.11,1.11],
                       'Two_Y': [1.22,1.22,1.22]});
Out[59]:
          One_X  One_Y  Two_X  Two_Y  row
     0   1.1    1.2   1.11   1.22   0
     1   1.1    1.2   1.11   1.22   1
     2   1.1    1.2   1.11   1.22   2

# As Labelled Index
In [60]: df = df.set_index('row');
Out[60]:
         One_X  One_Y  Two_X  Two_Y
row
     0   1.1    1.2   1.11   1.22
     1   1.1    1.2   1.11   1.22
     2   1.1    1.2   1.11   1.22

# With Hierarchical Columns
In [61]: df.columns = pd.MultiIndex.from_tuples([
       tuple(c.split('_')) for c in df.columns]);
Out[61]:
        One  Two
       X   Y
row
     0   1.1  1.2
     1   1.1  1.2
     2   1.1  1.2

# Now stack & Reset
In [62]: df = df.stack(0).reset_index(1);
Out[62]:
        level_1  X   Y
row
     0     One  1.10  1.20
     0     Two  1.11  1.22
     1     One  1.10  1.20
     1     Two  1.11  1.22
     2     One  1.10  1.20
     2     Two  1.11  1.22

# And fix the labels (Notice the label 'level_1' got added automatically)
In [63]: df.columns = ['Sample','All_X','All_Y'];
Out[63]:
          Sample  All_X  All_Y
row
     0     One  1.10  1.20
     0     Two  1.11  1.22
     1     One  1.10  1.20
     1     Two  1.11  1.22
     2     One  1.10  1.20
     2     Two  1.11  1.22
```
Arithmetic

Performing arithmetic with a multi-index that needs broadcasting

```python
In [64]: cols = pd.MultiIndex.from_tuples([(x,y) for x in ['A','B','C'] for y in ['O','I']])

In [65]: df = pd.DataFrame(np.random.randn(2,6),index=['n','m'],columns=cols); df
Out[65]:
       A   B   C
     O   I   O   I   O   I
n  1.920906 -0.388231 -2.314394  0.665508  0.402562  0.399555
m -1.765956  0.850423  0.388054  0.992312  0.744086 -0.739776

In [66]: df = df.div(df['C'],level=1); df
Out[66]:
       A   B   C
     O   I   O   I   O   I
n  4.771702 -0.971660 -5.749162  1.665625  1.0  1.0
m -2.373321 -1.149568  0.521518 -1.341367  1.0  1.0
```

Slicing

Slicing a multi-index with xs

```python
In [67]: coords = [('AA','one'),('AA','six'),('BB','one'),('BB','two'),('BB','six')]

In [68]: index = pd.MultiIndex.from_tuples(coords)

In [69]: df = pd.DataFrame([11,22,33,44,55],index,['MyData']); df
Out[69]:
     MyData
  AA one  11
      six  22
  BB one  33
      two  44
      six  55

To take the cross section of the 1st level and 1st axis the index:

```python
In [70]: df.xs('BB',level=0,axis=0) #Note : level and axis are optional, and default to zero
Out[70]:
 MyData
 AA one 33
 two 44
 six 55

...and now the 2nd level of the 1st axis.

In [71]: df.xs('six',level=1,axis=0)
Out[71]:
 MyData
 AA 22
 BB 55
```

Slicing a multi-index with xs, method #2

```
In [72]: index = list(itertools.product([\'Ada\', \'Quinn\', \'Violet\'], [\'Comp\', \'Math\', \'Sci\']))

In [73]: headr = list(itertools.product([\'Exams\', \'Labs\'], [\'I\', \'II\']))

In [74]: indx = pd.MultiIndex.from_tuples(index, names=[\'Student\', \'Course\'])

In [75]: cols = pd.MultiIndex.from_tuples(headr) #Notice these are un-named

In [76]: data = [[70+x+y+(x*y)%3 for x in range(4)] for y in range(9)]

In [77]: df = pd.DataFrame(data, indx, cols); df
Out[77]:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ada</td>
<td>Comp</td>
<td>70</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Sci</td>
<td>72</td>
<td>75</td>
</tr>
<tr>
<td>Quinn</td>
<td>Comp</td>
<td>73</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Sci</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>Violet</td>
<td>Comp</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>77</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Sci</td>
<td>78</td>
<td>81</td>
</tr>
</tbody>
</table>

In [78]: All = slice(None)

In [79]: df.loc[\'Violet\']
Out[79]:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ada</td>
<td>Math</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Sci</td>
<td>77</td>
<td>79</td>
</tr>
</tbody>
</table>

In [80]: df.loc[(All, \'Math\'), All]
Out[80]:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ada</td>
<td>Math</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>74</td>
<td>76</td>
</tr>
</tbody>
</table>

In [81]: df.loc[(slice(\'Ada\', \'Quinn\'), \'Math\'), All]
Out[81]:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Exams</th>
<th>Labs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
<td>Course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ada</td>
<td>Math</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Math</td>
<td>74</td>
<td>76</td>
</tr>
</tbody>
</table>

In [82]: df.loc[(All, \'Math\'), \'Exams\']
Out[82]:

<table>
<thead>
<tr>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student</td>
</tr>
<tr>
<td>Ada</td>
</tr>
<tr>
<td>Quinn</td>
</tr>
</tbody>
</table>
Setting portions of a multi-index with `xs`:

```python
In [83]: df.loc[(All, 'Math'), (All, 'II')]
Out[83]:
          Exams Labs
    II   II
Student Course
Ada    Math  71  73
Quinn  Math  74  76
Violet Math  77  79
```

Sorting:

Sort by specific column or an ordered list of columns, with a multi-index:

```python
In [84]: df.sort_values(by=('Labs', 'II'), ascending=False)
Out[84]:
          Exams Labs
    I   II   I   II
Student Course
Violet Sci  78  81  81  81
    Math  77  79  81  80
    Comp  76  77  78  79
Quinn Sci  75  78  78  78
    Math  74  76  78  77
    Comp  73  74  75  76
Ada    Sci  72  75  75  75
    Math  71  73  75  74
    Comp  70  71  72  73
```

Partial Selection, the need for sortedness:

Levels

Prepending a level to a multiindex

Flatten Hierarchical columns

panelInd

The `panelInd` docs.

Construct a 5D panelInd

Missing Data

The `missing data` docs.

Fill forward a reversed timeseries
In [85]: df = pd.DataFrame(np.random.randn(6,1), index=pd.date_range('2013-08-01', periods=6, freq='B'), columns=list('A'))

In [86]: df.ix[3,'A'] = np.nan

In [87]: df
Out[87]:
 A
2013-08-01 -1.054874
2013-08-02 -0.179642
2013-08-05 0.639589
2013-08-06 NaN
2013-08-07 1.906684
2013-08-08 0.104050

In [88]: df.reindex(df.index[::-1]).ffill()
Out[88]:
 A
2013-08-08 0.104050
2013-08-07 1.906684
2013-08-06 1.906684
2013-08-05 0.639589
2013-08-02 -0.179642
2013-08-01 -1.054874

cumsum reset at NaN values

Replace

Using replace with backrefs

Grouping

The grouping docs.

Basic grouping with apply

Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns

In [89]: df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
 : 'size': list('SSMMMLL'),
 : 'weight': [8, 10, 11, 1, 20, 12, 12],
 : 'adult' : [False] * 5 + [True] * 2}); df
 adult animal size weight
0 False cat S 8
1 False dog S 10
2 False cat M 11
3 False fish M 1
4 False dog M 20
5 True cat L 12
6 True cat L 12

#List the size of the animals with the highest weight.
In [90]: df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].idxmax()])

Out[90]:

<table>
<thead>
<tr>
<th>animal</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>L</td>
</tr>
<tr>
<td>dog</td>
<td>M</td>
</tr>
<tr>
<td>fish</td>
<td>M</td>
</tr>
</tbody>
</table>

dtype: object

Using `get_group`

In [91]: gb = df.groupby(['animal'])

In [92]: gb.get_group('cat')

Out[92]:

<table>
<thead>
<tr>
<th>adult</th>
<th>animal</th>
<th>size</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>cat</td>
<td>S</td>
<td>8</td>
</tr>
<tr>
<td>False</td>
<td>cat</td>
<td>M</td>
<td>11</td>
</tr>
<tr>
<td>True</td>
<td>cat</td>
<td>L</td>
<td>12</td>
</tr>
<tr>
<td>True</td>
<td>cat</td>
<td>L</td>
<td>12</td>
</tr>
</tbody>
</table>

Apply to different items in a group

In [93]: def GrowUp(x):

 : avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
 : avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
 : avg_weight += sum(x[x['size'] == 'L'].weight)
 : avg_weight /= len(x)
 : return pd.Series(['L', avg_weight, True], index=['size', 'weight', 'adult'])

In [94]: expected_df = gb.apply(GrowUp)

In [95]: expected_df

Out[95]:

<table>
<thead>
<tr>
<th>size</th>
<th>weight</th>
<th>adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cat</td>
<td>L</td>
<td>12.4375</td>
</tr>
<tr>
<td>dog</td>
<td>L</td>
<td>20.0000</td>
</tr>
<tr>
<td>fish</td>
<td>L</td>
<td>1.2500</td>
</tr>
</tbody>
</table>

Expanding Apply

In [96]: S = pd.Series([i / 100.0 for i in range(1,11)])

In [97]: def CumRet(x,y):

 : return x * (1 + y)

In [98]: def Red(x):

 : return functools.reduce(CumRet, x, 1.0)

In [99]: S.expanding().apply(Red)

Out[99]:

0	1.010000
1	1.030200
2	1.061106
Replacing some values with mean of the rest of a group

```python
In [100]: df = pd.DataFrame({'A' : [1, 1, 2, 2], 'B' : [1, -1, 1, 2]})
In [101]: gb = df.groupby('A')
In [102]:
def replace(g):
   ...:     mask = g < 0
   ...:     g.loc[mask] = g[~mask].mean()
   ...:     return g
   ...:
In [103]: gb.transform(replace)
```
```
Out[103]:
   B
0 1.0
1 1.0
2 1.0
3 2.0
```

Sort groups by aggregated data

```python
In [104]: df = pd.DataFrame({'code': ['foo', 'bar', 'baz'] * 2, 'data': [0.16, -0.21, 0.33, 0.45, -0.59, 0.62], 'flag': [False, True] * 3})
   ...
In [105]: code_groups = df.groupby('code')
In [106]: agg_n_sort_order = code_groups[['data']].transform(sum).sort_values(by='data', ascending=False)
In [107]: sorted_df = df.iloc[agg_n_sort_order.index]
In [108]: sorted_df
```
```
   code  data  flag
   1 bar  -0.21  True
   4 bar  -0.59 False
   0 foo   0.16 False
   3 foo   0.45  True
   2 baz   0.33 False
   5 baz   0.62  True
```

Create multiple aggregated columns

```python
In [109]: rng = pd.date_range(start="2014-10-07", periods=10, freq='2min')
In [110]: ts = pd.Series(data = list(range(10)), index = rng)
```

8.5. Grouping 395
In [111]: def MyCust(x):
.....: if len(x) > 2:
.....: return x[1] * 1.234
.....: return pd.NaT
.....:

In [112]: mhc = {'Mean': np.mean, 'Max': np.max, 'Custom': MyCust}

In [113]: ts.resample("5min").apply(mhc)
Out[113]:
 Max Custom Mean
2014-10-07 00:00:00 2 1.234 1.0
2014-10-07 00:05:00 4 NaT 3.5
2014-10-07 00:10:00 7 7.404 6.0
2014-10-07 00:15:00 9 NaT 8.5

In [114]: ts
Out[114]:
2014-10-07 00:00:00 0
2014-10-07 00:02:00 1
2014-10-07 00:04:00 2
2014-10-07 00:06:00 3
2014-10-07 00:08:00 4
2014-10-07 00:10:00 5
2014-10-07 00:12:00 6
2014-10-07 00:14:00 7
2014-10-07 00:16:00 8
2014-10-07 00:18:00 9
Freq: 2T, dtype: int64

Create a value counts column and reassign back to the DataFrame

In [115]: df = pd.DataFrame({'Color': 'Red Red Red Blue'.split(),
.....: 'Value': [100, 150, 50, 50]}); df
 Color Value
0 Red 100
1 Red 150
2 Red 50
3 Blue 50

In [116]: df['Counts'] = df.groupby(['Color']).transform(len)

In [117]: df
Out[117]:
 Color Value Counts
0 Red 100 3
1 Red 150 3
2 Red 50 3
3 Blue 50 1

Shift groups of the values in a column based on the index

In [118]: df = pd.DataFrame(
.....: {'u'line_race': [10, 10, 8, 10, 10, 8],
.....: u'beyer': [99, 102, 103, 103, 88, 100]},
......: index=['Last Gunfighter', 'Last Gunfighter', 'Last Gunfighter',
......: 'Paynter', 'Paynter', 'Paynter']); df
......:
Out[118]:
 beyer line_race
Last Gunfighter 99 10
Last Gunfighter 102 10
Last Gunfighter 103 8
Paynter 103 10
Paynter 88 10
Paynter 100 8

In [119]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)

In [120]: df
Out[120]:
 beyer line_race beyer_shifted
Last Gunfighter 99 10 NaN
Last Gunfighter 102 10 99
Last Gunfighter 103 8 102
Paynter 103 10 NaN
Paynter 88 10 103
Paynter 100 8 88

Select row with maximum value from each group

In [121]: df = pd.DataFrame({'host':['other','other','that','this','this'],
...: 'service':['mail','web','mail','mail','web'],
...: 'no':[1, 2, 1, 2, 1]})

In [122]: mask = df.groupby(level=0).agg('idxmax')

In [123]: df_count = df.loc[mask['no']].reset_index()

In [124]: df_count
Out[124]:
 host service no
0 other web 2
1 that mail 1
2 this mail 2

Grouping like Python's itertools.groupby

In [125]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=['A'])

In [126]: df.A.groupby((df.A != df.A.shift()).cumsum()).groups
Out[126]:
{1: Int64Index([0], dtype='int64'),
 2: Int64Index([1], dtype='int64'),
 3: Int64Index([2], dtype='int64'),
 4: Int64Index([3, 4, 5], dtype='int64'),
 5: Int64Index([6], dtype='int64'),
 6: Int64Index([7, 8], dtype='int64')}
Expanding Data

Alignment and to-date
Rolling Computation window based on values instead of counts
Rolling Mean by Time Interval

Splitting

Splitting a frame

Create a list of dataframes, split using a delineation based on logic included in rows.

```
In [128]: df = pd.DataFrame(data={'Case' : ['A','A','A','B','A','A','B','A','A'],  
                          'Data' : np.random.randn(9)})
       
In [129]: dfs = list(zip(*df.groupby((1*(df['Case']=='B')).cumsum().rolling(window=3,  
                          min_periods=1).median())))[-1]

In [130]: dfs[0]
Out[130]:
   Case  Data
0   A   0.174068
1   A  -0.439461
2   A  -0.741343
3   B  -0.079673

In [131]: dfs[1]
Out[131]:
   Case  Data
4   A  -0.922875
5   A   0.303638
6   B  -0.917368

In [132]: dfs[2]
Out[132]:
   Case  Data
7   A -1.624062
8   A  -0.758514
```

Pivot

The Pivot docs.
Partial sums and subtotals

```
In [133]: df = pd.DataFrame(data={'Province' : ['ON','QC','BC','AL','AL','MN','ON'],
                                'City' : ['Toronto','Montreal','Vancouver','Calgary','Edmonton','Winnipeg','Windsor'],
                                'Sales' : [13,6,16,8,4,3,1]})

In [134]: table = pd.pivot_table(df,values=['Sales'],index=['Province'],columns=['City'],aggfunc=np.sum,margins=True)

In [135]: table.stack('City')
Out[135]:

<table>
<thead>
<tr>
<th>Province</th>
<th>City</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>All</td>
<td>12.0</td>
</tr>
<tr>
<td></td>
<td>Calgary</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Edmonton</td>
<td>4.0</td>
</tr>
<tr>
<td>BC</td>
<td>All</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>Vancouver</td>
<td>16.0</td>
</tr>
<tr>
<td>MN</td>
<td>All</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>Winnipeg</td>
<td>3.0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Calgary</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>Edmonton</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Montreal</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Toronto</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>Vancouver</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>Windsor</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Winnipeg</td>
<td>3.0</td>
</tr>
</tbody>
</table>
```

Frequency table like plyr in R

```
In [136]: grades = [48,99,75,80,42,80,72,68,36,78]

In [137]: df = pd.DataFrame( {'ID': ["x%d" % r for r in range(10)],
                                'Gender' : ['F', 'M', 'F', 'M', 'F', 'M', 'M', 'M'],
                                'Class': ['algebra', 'stats', 'bio', 'algebra', 'algebra', 'stats', 'stats', 'algebra', 'stats', 'algebra'],
                                'Passed': [yes if x > 50 else 'no' for x in grades],
                                'Employed': [True,True,True,False,False,False,False,True,True,False],
                                'Grade': grades})

In [138]: df.groupby('ExamYear').agg({'Passed': lambda x: x.value_counts()['yes'],
                                'Employed': lambda x : sum(x),
                                'Grade': lambda x : sum(x) / len(x)})
```

8.5. Grouping
Plot pandas DataFrame with year over year data

To create year and month crosstabulation:

```python
In [139]: df = pd.DataFrame({'value': np.random.randn(36)},
index=pd.date_range('2011-01-01', freq='M', periods=36))

In [140]: pd.pivot_table(df, index=df.index.month, columns=df.index.year,
values='value', aggfunc='sum')
```

```
Out[140]:
2011  2012  2013
1  -0.560859  0.120930  0.516870
2  -0.589005 -0.210518  0.343125
3  -1.070678 -0.931184  2.137827
4  -1.681101  0.240647  0.452429
5   0.403776 -0.027462  0.483103
6   0.609862  0.033113  0.061495
7   0.387936 -0.658418  0.240767
8   1.815066  0.324102  0.782413
9   0.705200 -1.403048  0.628462
10 -0.668049 -0.581967 -0.880627
11  0.242501 -1.233862  0.777575
12  0.313421 -3.520876 -0.779367
```

Apply

Rolling Apply to Organize - Turning embedded lists into a multi-index frame

```python
In [141]: df = pd.DataFrame(data={'A' : [[2,4,8,16],[100,200],[10,20,30]], 'B' : [['a','b','c'],['jj','kk'],['ccc']]),index=['I','II','III'])

In [142]: def SeriesFromSubList(aList):
   ....:     return pd.Series(aList)

In [143]: df_orgz = pd.concat(dict((ind,row.apply(SeriesFromSubList)) for ind,row in df.iterrows()))
```

Rolling Apply with a DataFrame returning a Series

Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned

```python
In [144]: df = pd.DataFrame(data=np.random.randn(2000,2)/10000,
index=pd.date_range('2001-01-01',periods=2000),
columns=['A','B']); df

Out[144]:
     A         B
2001-01-01  0.000032 -0.000004
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```
2001-01-02 -0.000001 0.000207
2001-01-03 0.000120 -0.000220
2001-01-04 -0.000083 -0.000165
2001-01-05 -0.000047 0.000156
2001-01-06 0.000027 0.000104
2001-01-07 0.000041 -0.000101
... ...
2006-06-17 -0.000034 0.000034
2006-06-18 0.000002 0.000166
2006-06-19 0.000023 -0.000081
2006-06-20 -0.000061 0.000012
2006-06-21 -0.000111 0.000027
2006-06-22 -0.000061 -0.000009
2006-06-23 0.000074 -0.000138
[2000 rows x 2 columns]

In [145]: def gm(aDF,Const):
.....: v = ((((aDF.A+aDF.B)+1).cumprod())-1)*Const
.....: return (aDF.index[0],v.iloc[-1])
.....:
In [146]: S = pd.Series(dict([ gm(df.iloc[i:min(i+51,len(df)-1)],5) for i in range(len(df)-50) ])); S
Out[146]:
2001-01-01 -0.001373
2001-01-02 -0.001705
2001-01-03 -0.002885
2001-01-04 -0.002987
2001-01-05 -0.002384
2001-01-06 -0.004700
2001-01-07 -0.005500
... ...
2006-04-28 -0.002682
2006-04-29 -0.002436
2006-04-30 -0.002602
2006-05-01 -0.001785
2006-05-02 -0.001799
2006-05-03 -0.000605
2006-05-04 -0.000541
dtype: float64
```

Rolling apply with a DataFrame returning a Scalar

Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)

```
In [147]: rng = pd.date_range(start = '2014-01-01',periods = 100)
In [148]: df = pd.DataFrame({'Open' : np.random.randn(len(rng)),
.....: 'Close' : np.random.randn(len(rng)),
.....: 'Volume' : np.random.randint(100,2000,len(rng))},
.....: index=rng); df
Out[148]:
Close  Open  Volume
2014-01-01 -0.653039 0.011174  1581
2014-01-02 1.314205 0.214258  1707
2014-01-03 -0.341915 -1.046922  1768
```

8.5. Grouping
```
2014-01-04 -1.303586 -0.752902 836
2014-01-05  0.396288 -0.410793 694
2014-01-06  0.548006  0.648401 796
2014-01-07  0.481380  0.737320 265
...           ...           ...          ...
2014-04-04 -2.548128  0.120378 564
2014-04-05  0.223346  0.231661 1908
2014-04-06  1.228841  0.952664 1090
2014-04-07  0.552784 -0.176090 1813
2014-04-08 -0.795389  1.781318 1103
2014-04-09 -0.018815 -0.753493 1456
2014-04-10  1.138197 -1.047997 1193
[100 rows x 3 columns]


In [150]: window = 5

In [151]: s = pd.concat([pd.Series(vwap(df.iloc[i:i+window]), index=[df.index[i+window]]) for i in range(len(df)-window)]);

In [152]: s.round(2)
Out[152]:
     2014-01-06   -0.03
     2014-01-07    0.07
     2014-01-08   -0.40
     2014-01-09   -0.81
     2014-01-10   -0.63
     2014-01-11   -0.86
     2014-01-12   -0.36
     ...           ...
     2014-04-04   -1.27
     2014-04-05   -1.36
     2014-04-06   -0.73
     2014-04-07    0.04
     2014-04-08    0.21
     2014-04-09    0.07
     2014-04-10    0.25
     dtype: float64
```

Timeseries

Between times

Using indexer between time

Constructing a datetime range that excludes weekends and includes only certain times

Vectorized Lookup

Aggregation and plotting time series

Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series.

How to rearrange a python pandas DataFrame?

Dealing with duplicates when reindexing a timeseries to a specified frequency
Calculate the first day of the month for each entry in a DatetimeIndex

```
In [153]: dates = pd.date_range('2000-01-01', periods=5)
In [154]: dates.to_period(freq='M').to_timestamp()
Out[154]:
dtype='datetime64[ns]', freq=None)
```

Resampling

The Resample docs.

TimeGrouping of values grouped across time

TimeGrouping #2

Using TimeGrouper and another grouping to create subgroups, then apply a custom function

Resampling with custom periods

Resample intraday frame without adding new days

Resample minute data

Resample with groupby

Merge

The Concat docs. The Join docs.

Append two dataframes with overlapping index (emulate R rbind)

```
In [155]: rng = pd.date_range('2000-01-01', periods=6)
In [156]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C'])
In [157]: df2 = df1.copy()
```

`ignore_index` is needed in pandas < v0.13, and depending on df construction

```
In [158]: df = df1.append(df2, ignore_index=True); df
Out[158]:
   A         B         C
0 -0.480676 -1.305282 -0.212846
1  1.979901  0.363112 -0.275732
2 -1.433852  0.580237 -0.013672
3  1.776623 -0.803467  0.521517
4 -0.302508 -0.442948 -0.395768
5 -0.249024 -0.031510  2.413751
6 -0.480676 -1.305282 -0.212846
7  1.979901  0.363112 -0.275732
8 -1.433852  0.580237 -0.013672
9  1.776623 -0.803467  0.521517
10 -0.302508 -0.442948 -0.395768
11 -0.249024 -0.031510  2.413751
```

8.7. Merge 403
Self Join of a DataFrame

In [159]: df = pd.DataFrame(data={'Area' : ['A'] * 5 + ['C'] * 2,
.....: 'Bins' : [110] * 2 + [160] * 3 + [40] * 2,
.....: 'Test_0' : [0, 1, 0, 1, 2, 0, 1],
.....: 'Data' : np.random.randn(7)});df

Out[159]:

<table>
<thead>
<tr>
<th>Area</th>
<th>Bins</th>
<th>Data</th>
<th>Test_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>110</td>
<td>-0.378914</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>110</td>
<td>-1.032527</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>160</td>
<td>-1.402816</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>160</td>
<td>0.715333</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>160</td>
<td>-0.091438</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>40</td>
<td>1.608418</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>40</td>
<td>0.753207</td>
</tr>
</tbody>
</table>

In [160]: df['Test_1'] = df['Test_0'] - 1

In [161]: pd.merge(df, df, left_on=['Bins', 'Area','Test_0'], right_on=['Bins', 'Area →', 'Test_1'],suffixes=('L','R'))

Out[161]:

<table>
<thead>
<tr>
<th>Area</th>
<th>Bins</th>
<th>Data_L</th>
<th>Test_0_L</th>
<th>Test_1_L</th>
<th>Data_R</th>
<th>Test_0_R</th>
<th>Test_1_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>110</td>
<td>-0.378914</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>160</td>
<td>-1.032527</td>
<td>-1</td>
<td>0.715333</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>160</td>
<td>-1.402816</td>
<td>0</td>
<td>-0.091438</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>40</td>
<td>1.608418</td>
<td>0</td>
<td>0.753207</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

How to set the index and join

KDB like asof join

Join with a criteria based on the values

Using searchsorted to merge based on values inside a range

Plotting

The Plotting docs.

Make Matplotlib look like R

Setting x-axis major and minor labels

Plotting multiple charts in an ipython notebook

Creating a multi-line plot

Plotting a heatmap

Annotate a time-series plot

Annotate a time-series plot #2

Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter

Boxplot for each quartile of a stratifying variable
In [163]: df[u'quartiles'] = pd.qcut(df[u'stratifying_var'], 4, labels=[u'0-25%', u'25-50%', u'50-75%', u'75-100%'])

In [164]: df.boxplot(column=u'price', by=u'quartiles')
Out[164]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff27ea62b90>

Boxplot grouped by quartiles

price

quartiles

Data In/Out

Performance comparison of SQL vs HDF5

CSV

The CSV docs
read_csv in action
appending to a csv
how to read in multiple files, appending to create a single dataframe
Reading a csv chunk-by-chunk
Reading only certain rows of a csv chunk-by-chunk
Reading the first few lines of a frame
Reading a file that is compressed but not by gzip/bz2 (the native compressed formats which read_csv understands). This example shows a WinZipped file, but is a general application of opening the file within a context manager and using that handle to read. See here
Inferring dtypes from a file
Dealing with bad lines
Dealing with bad lines II
Reading CSV with Unix timestamps and converting to local timezone
Write a multi-row index CSV without writing duplicates
Parsing date components in multi-columns is faster with a format

```python
In [30]: i = pd.date_range('20000101', periods=10000)

In [31]: df = pd.DataFrame(dict(year = i.year, month = i.month, day = i.day))

In [32]: df.head()
Out[32]:
   day  month  year
0     1      1  2000
1     2      1  2000
2     3      1  2000
3     4      1  2000
4     5      1  2000

In [33]: %timeit pd.to_datetime(df.year*10000+df.month*100+df.day, format='%Y%m%d')
100 loops, best of 3: 7.08 ms per loop

# simulate combining into a string, then parsing
In [34]: ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'], x['month'], x['day']), axis=1)

In [35]: ds.head()
Out[35]:
0  20000101
1  20000102
2  20000103
3  20000104
4  20000105

dtype: object

In [36]: %timeit pd.to_datetime(ds)
1 loops, best of 3: 488 ms per loop
```
Skip row between header and data

```python
In [165]: from io import StringIO
In [166]: import pandas as pd
In [167]: data = ";;;;
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
date;Param1;Param2;Param4;Param5
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
.....:
01.01.1990 00:00;1;1;2;3
01.01.1990 01:00;5;3;4;5
01.01.1990 02:00;9;5;6;7
01.01.1990 03:00;13;7;8;9
01.01.1990 04:00;17;9;10;11
01.01.1990 05:00;21;11;12;13
```

Option 1: pass rows explicitly to skiprows

```python
In [168]: pd.read_csv(StringIO(data.decode('UTF-8')), sep=';', skiprows=[11,12], index_col=0, parse_dates=True, header=10)
Out[168]:
```
```
```
```
Option 2: read column names and then data

```python
In [169]: columns = pd.read_csv(StringIO(data.decode('UTF-8')), sep=';',
header=10, parse_dates=True, nrows=10).columns
```

8.9. Data In/Out
In [171]: pd.read_csv(StringIO(data.decode('UTF-8')), sep=';',
.....:     header=12, parse_dates=True, names=columns)
.....:
Out[171]:

<table>
<thead>
<tr>
<th>date</th>
<th>Param1</th>
<th>Param2</th>
<th>Param4</th>
<th>Param5</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01.1990 00:00</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>01.01.1990 01:00</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>01.01.1990 02:00</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>01.01.1990 03:00</td>
<td>13</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>01.01.1990 04:00</td>
<td>17</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>01.01.1990 05:00</td>
<td>21</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

SQL

The SQL docs

Reading from databases with SQL

Excel

The Excel docs

Reading from a filelike handle

Modifying formatting in XlsxWriter output

HTML

Reading HTML tables from a server that cannot handle the default request header

HDFStore

The HDFStores docs

Simple Queries with a Timestamp Index

Managing heterogeneous data using a linked multiple table hierarchy

Merging on-disk tables with millions of rows

Avoiding inconsistencies when writing to a store from multiple processes/threads

De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data from csv file and creating a store by chunks, with date parsing as well. See here

Creating a store chunk-by-chunk from a csv file

Appending to a store, while creating a unique index

Large Data work flows

Reading in a sequence of files, then providing a global unique index to a store while appending

Groupby on a HDFStore with low group density

Groupby on a HDFStore with high group density

Hierarchical queries on a HDFStore
Counting with a HDFStore

Troubleshoot HDFStore exceptions

Setting min_itemsize with strings

Using ptrepack to create a completely-sorted-index on a store

Storing Attributes to a group node

```
In [172]: df = pd.DataFrame(np.random.randn(8,3))
In [173]: store = pd.HDFStore('test.h5')
In [174]: store.put('df',df)

you can store an arbitrary python object via pickle
In [175]: store.get_storer('df').attrs.my_attribute = dict(A = 10)
In [176]: store.get_storer('df').attrs.my_attribute
Out[176]: {'A': 10}
```

Binary Files

pandas readily accepts numpy record arrays, if you need to read in a binary file consisting of an array of C structs. For example, given this C program in a file called `main.c` compiled with `gcc main.c -std=gnu99` on a 64-bit machine,

```
#include <stdio.h>
#include <stdint.h>

typedef struct _Data
{
 int32_t count;
 double avg;
 float scale;
} Data;

int main(int argc, const char *argv[])
{
 size_t n = 10;
 Data d[n];

 for (int i = 0; i < n; ++i)
 {
 d[i].count = i;
 d[i].avg = i + 1.0;
 d[i].scale = (float) i + 2.0f;
 }

 FILE *file = fopen("binary.dat", "wb");
 fwrite(&d, sizeof(Data), n, file);
 fclose(file);

 return 0;
}
```
the following Python code will read the binary file 'binary.dat' into a pandas DataFrame, where each element of the struct corresponds to a column in the frame:

```python
names = 'count', 'avg', 'scale'

note that the offsets are larger than the size of the type because of
struct padding
offsets = 0, 8, 16
formats = 'i4', 'f8', 'f4'
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},
 align=True)
df = pd.DataFrame(np.fromfile('binary.dat', dt))
```

Note: The offsets of the structure elements may be different depending on the architecture of the machine on which the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not cross platform. We recommended either HDF5 or msgpack, both of which are supported by pandas’ IO facilities.

## Computation

Numerical integration (sample-based) of a time series

### Timedeltas

The Timedeltas docs.

Using timedeltas

```python
In [177]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))

In [178]: s - s.max()
Out[178]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]

In [179]: s.max() - s
Out[179]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]

In [180]: s - datetime.datetime(2011,1,1,3,5)
Out[180]:
0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]

In [181]: s + datetime.timedelta(minutes=5)
Out[181]:
```
Adding and subtracting deltas and dates

In [184]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])

In [185]: df = pd.DataFrame(dict(A=s, B=deltas)); df

Out[185]:
      A       B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [186]: df[\'New Dates\'] = df[\'A\'] + df[\'B\'];

In [187]: df[\'Delta\'] = df[\'A\'] - df[\'New Dates\']; df

Out[187]:
       A       B  New Dates   Delta
0 2012-01-01 0 days 2012-01-01 0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days

In [188]: df.dtypes

Out[188]:
        A       B  New Dates   Delta
datetime64[ns]  timedelta64[ns]  datetime64[ns]  timedelta64[ns]
dtype: object

Another example

Values can be set to NaT using np.nan, similar to datetime

In [189]: y = s - s.shift(); y

Out[189]:
0   NaT
1   1 days
2   1 days
dtype: timedelta64[ns]
In [190]: y[1] = np.nan; y
Out[190]:
0   NaT
1   NaT
2   1 days
dtype: timedelta64[ns]

Aliasing Axis Names

To globally provide aliases for axis names, one can define these 2 functions:

In [191]: def set_axis_alias(cls, axis, alias):
       .....:     if axis not in cls._AXIS_NUMBERS:
       .....:         raise Exception("invalid axis [\$s] for alias [\$s]" % (axis, alias))
       .....:     cls._AXIS_ALIASES[alias] = axis

In [192]: def clear_axis_alias(cls, axis, alias):
       .....:     if axis not in cls._AXIS_NUMBERS:
       .....:         raise Exception("invalid axis [\$s] for alias [\$s]" % (axis, alias))
       .....:     cls._AXIS_ALIASES.pop(alias,None)

In [193]: set_axis_alias(pd.DataFrame,'columns', 'myaxis2')
In [194]: df2 = pd.DataFrame(np.random.randn(3,2),columns=['c1','c2'],index=['i1','i2
˓
→','i3'])
In [195]: df2.sum(axis='myaxis2')
Out[195]:
i1 -0.573143
i2 -0.161663
i3  0.264035
dtype: float64
In [196]: clear_axis_alias(pd.DataFrame,'columns', 'myaxis2')

Creating Example Data

To create a dataframe from every combination of some given values, like R’s `expand.grid()` function, we can create a dict where the keys are column names and the values are lists of the data values:

In [197]: def expand_grid(data_dict):
       .....:     rows = itertools.product(*data_dict.values())
       .....:     return pd.DataFrame.from_records(rows, columns=data_dict.keys())

In [198]: df = expand_grid(
       .....:     {"height": [60, 70],
       .....:      "weight": [100, 140, 180],
       .....:      "sex": ['Male', 'Female']})
```python
In [199]: df
Out[199]:
 sex weight height
0 Male 100 60
1 Male 100 70
2 Male 140 60
3 Male 140 70
4 Male 180 60
5 Male 180 70
6 Female 100 60
7 Female 100 70
8 Female 140 60
9 Female 140 70
10 Female 180 60
11 Female 180 70
```
We’ll start with a quick, non-comprehensive overview of the fundamental data structures in pandas to get you started. The fundamental behavior about data types, indexing, and axis labeling / alignment apply across all of the objects. To get started, import numpy and load pandas into your namespace:

```python
In [1]: import numpy as np
In [2]: import pandas as pd
```

Here is a basic tenet to keep in mind: **data alignment is intrinsic.** The link between labels and data will not be broken unless done so explicitly by you.

We’ll give a brief intro to the data structures, then consider all of the broad categories of functionality and methods in separate sections.

**Series**

*Series* is a one-dimensional labeled array capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.). The axis labels are collectively referred to as the **index**. The basic method to create a Series is to call:

```python
>>> s = pd.Series(data, index=index)
```

Here, *data* can be many different things:

- a Python dict
- an ndarray
- a scalar value (like 5)

The passed **index** is a list of axis labels. Thus, this separates into a few cases depending on what *data* is:

**From ndarray**

If *data* is an ndarray, **index** must be the same length as *data*. If no index is passed, one will be created having values `[0,...,len(data) -1]`.

```python
In [3]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [4]: s
Out[4]:
a 0.2735
b 0.6052
c -0.1692
```

415
In [5]: s.index
Out[5]: Index(['a', 'b', 'c', 'd', 'e'], dtype='O')

In [6]: pd.Series(np.random.randn(5))
Out[6]:
0   0.3674
1  -0.8230
2  -1.0295
3  -1.0523
4  -0.8502
dtype: float64

Note: Starting in v0.8.0, pandas supports non-unique index values. If an operation that does not support duplicate index values is attempted, an exception will be raised at that time. The reason for being lazy is nearly all performance-based (there are many instances in computations, like parts of GroupBy, where the index is not used).

From dict

If `data` is a dict, if `index` is passed the values in data corresponding to the labels in the index will be pulled out. Otherwise, an index will be constructed from the sorted keys of the dict, if possible.

In [7]: d = {'a' : 0., 'b' : 1., 'c' : 2.}
In [8]: pd.Series(d)
Out[8]:
a    0.0
b    1.0
c    2.0
dtype: float64

In [9]: pd.Series(d, index=['b', 'c', 'd', 'a'])
Out[9]:
b    1.0
c    2.0
d    NaN
a    0.0
dtype: float64

Note: NaN (not a number) is the standard missing data marker used in pandas

From scalar value If `data` is a scalar value, an index must be provided. The value will be repeated to match the length of `index`

In [10]: pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
Out[10]:
a    5.0
b    5.0
c    5.0
d    5.0
e    5.0
dtype: float64
**Series is ndarray-like**

Series acts very similarly to a ndarray, and is a valid argument to most NumPy functions. However, things like slicing also slice the index.

```python
In [11]: s[0]
Out[11]: 0.27348116325673794

In [12]: s[:3]
Out[12]:
 a 0.2735
 b 0.6052
 c -0.1692
dtype: float64

In [13]: s[s > s.median()]
Out[13]:
 b 0.6052
 d 1.8298
dtype: float64

In [14]: s[[4, 3, 1]]
Out[14]:
 e 0.5432
 d 1.8298
 b 0.6052
dtype: float64

In [15]: np.exp(s)
Out[15]:
 a 1.3145
 b 1.8317
 c 0.8443
 d 6.2327
 e 1.7215
dtype: float64
```

We will address array-based indexing in a separate section.

**Series is dict-like**

A Series is like a fixed-size dict in that you can get and set values by index label:

```python
In [16]: s['a']
Out[16]: 0.27348116325673794

In [17]: s['e'] = 12.

In [18]: s
Out[18]:
 a 0.2735
 b 0.6052
 c -0.1692
```

9.1. Series
If a label is not contained, an exception is raised:

```python
g">> > s['f']
KeyError: 'f'
```

Using the `get` method, a missing label will return None or specified default:

```python
In [21]: s.get('f')
In [22]: s.get('f', np.nan)
Out[22]: nan
```

See also the section on attribute access.

**Vectorized operations and label alignment with Series**

When doing data analysis, as with raw NumPy arrays looping through Series value-by-value is usually not necessary. Series can be also be passed into most NumPy methods expecting an ndarray.

```python
In [23]: s + s
Out[23]:
a 0.5470
b 1.2104
c -0.3385
d 3.6596
e 24.0000
dtype: float64

In [24]: s * 2
Out[24]:
a 0.5470
b 1.2104
c -0.3385
d 3.6596
e 24.0000
dtype: float64

In [25]: np.exp(s)
Out[25]:
a 1.3145
b 1.8317
c 0.8443
d 6.2327
e 162754.7914
dtype: float64
```
A key difference between Series and ndarray is that operations between Series automatically align the data based on label. Thus, you can write computations without giving consideration to whether the Series involved have the same labels.

```
In [26]: s[1:] + s[:-1]
Out[26]:
 a NaN
 b 1.2104
 c -0.3385
 d 3.6596
 e NaN

dtype: float64
```

The result of an operation between unaligned Series will have the **union** of the indexes involved. If a label is not found in one Series or the other, the result will be marked as missing NaN. Being able to write code without doing any explicit data alignment grants immense freedom and flexibility in interactive data analysis and research. The integrated data alignment features of the pandas data structures set pandas apart from the majority of related tools for working with labeled data.

**Note:** In general, we chose to make the default result of operations between differently indexed objects yield the **union** of the indexes in order to avoid loss of information. Having an index label, though the data is missing, is typically important information as part of a computation. You of course have the option of dropping labels with missing data via the **dropna** function.

### Name attribute

Series can also have a **name** attribute:

```
In [27]: s = pd.Series(np.random.randn(5), name='something')
In [28]: s
Out[28]:
0 1.5140
1 -1.2345
2 0.5666
3 -1.0184
4 0.1081
Name: something, dtype: float64
In [29]: s.name
Out[29]: 'something'
```

The Series **name** will be assigned automatically in many cases, in particular when taking 1D slices of DataFrame as you will see below.

New in version 0.18.0.

You can rename a Series with the `pandas.Series.rename()` method.

```
In [30]: s2 = s.rename("different")
In [31]: s2.name
Out[31]: 'different'
```

Note that `s` and `s2` refer to different objects.
**DataFrame**

*DataFrame* is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object. Like Series, DataFrame accepts many different kinds of input:

- Dict of 1D ndarrays, lists, dicts, or Series
- 2-D numpy.ndarray
- Structured or record ndarray
- A Series
- Another DataFrame

Along with the data, you can optionally pass `index` (row labels) and `columns` (column labels) arguments. If you pass an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict of Series plus a specific index will discard all data not matching up to the passed index.

If axis labels are not passed, they will be constructed from the input data based on common sense rules.

### From dict of Series or dicts

The result `index` will be the union of the indexes of the various Series. If there are any nested dicts, these will be first converted to Series. If no columns are passed, the columns will be the sorted list of dict keys.

```python
In [32]: d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])

In [33]: df = pd.DataFrame(d)

In [34]: df
Out[34]:
 one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

In [35]: pd.DataFrame(d, index=['d', 'b', 'a'])
Out[35]:
 one two
a 1.0 1.0
b 2.0 NaN
d NaN 4.0

In [36]: pd.DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
Out[36]:
 two three
a NaN NaN
b NaN NaN
d NaN NaN
```

The row and column labels can be accessed respectively by accessing the `index` and `columns` attributes:
Note: When a particular set of columns is passed along with a dict of data, the passed columns override the keys in the dict.

```
In [37]: df.index
Out[37]: Index([u'a', u'b', u'c', u'd'], dtype='object')

In [38]: df.columns
Out[38]: Index([u'one', u'two'], dtype='object')
```

### From dict of ndarrays / lists

The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays. If no index is passed, the result will be `range(n)`, where \( n \) is the array length.

```
In [39]: d = {'one': [1., 2., 3., 4.],
 : 'two': [4., 3., 2., 1.]
 :

In [40]: pd.DataFrame(d)
Out[40]:
 one two
0 1.0 4.0
1 2.0 3.0
2 3.0 2.0
3 4.0 1.0

In [41]: pd.DataFrame(d, index=['a', 'b', 'c', 'd'])
Out[41]:
 one two
 a 1.0 4.0
 b 2.0 3.0
 c 3.0 2.0
 d 4.0 1.0
```

### From structured or record array

This case is handled identically to a dict of arrays.

```
In [42]: data = np.zeros((2,), dtype=[('A', 'i4'), ('B', 'f4'), ('C', 'a10')])

In [43]: data[:]=[1,2.,'Hello'], (2,3.,"World")

In [44]: pd.DataFrame(data)
Out[44]:
 A B C
0 1 2.0 Hello
1 2 3.0 World

In [45]: pd.DataFrame(data, index=['first', 'second'])
Out[45]:
 A B C
first 1 2.0 Hello
second 2 3.0 World
```
In [46]: pd.DataFrame(data, columns=['C', 'A', 'B'])
Out[46]:
   C    A    B
0  Hello   1  2.0
1  World   2  3.0

Note: DataFrame is not intended to work exactly like a 2-dimensional NumPy ndarray.

From a list of dicts

In [47]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
In [48]: pd.DataFrame(data2)
Out[48]:
   a    b   c
0  1     2  NaN
1  5    10  20.0
In [49]: pd.DataFrame(data2, index=['first', 'second'])
Out[49]:
    a    b    c
first 1     2  NaN
second 5  10  20.0
In [50]: pd.DataFrame(data2, columns=['a', 'b'])
Out[50]:
   a    b
0  1     2
1  5    10

From a dict of tuples

You can automatically create a multi-indexed frame by passing a tuples dictionary

In [51]: pd.DataFrame({(('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2}, ...
     ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4}, ...
     ('b', 'a'): {('A', 'B'): 5, ('A', 'C'): 6}, ...
     ('b', 'b'): {('A', 'B'): 7, ('A', 'B'): 8}, ...
     ('b', 'b'): {('A', 'B'): 9, ('A', 'B'): 10}})
Out[51]:
    a    b
   a  b  c  a  b
A  B  4.0 1.0 5.0 8.0 10.0
C  3.0 2.0 6.0 7.0 Nan
D  Nan Nan Nan Nan  9.0
**From a Series**

The result will be a DataFrame with the same index as the input Series, and with one column whose name is the original name of the Series (only if no other column name provided).

**Missing Data**

Much more will be said on this topic in the *Missing data* section. To construct a DataFrame with missing data, use `np.nan` for those values which are missing. Alternatively, you may pass a `numpy.MaskedArray` as the data argument to the DataFrame constructor, and its masked entries will be considered missing.

**Alternate Constructors**

**DataFrame.from_dict**

`DataFrame.from_dict` takes a dict of dicts or a dict of array-like sequences and returns a DataFrame. It operates like the DataFrame constructor except for the `orient` parameter which is 'columns' by default, but which can be set to 'index' in order to use the dict keys as row labels. **DataFrame.from_records**

`DataFrame.from_records` takes a list of tuples or an ndarray with structured dtype. Works analogously to the normal DataFrame constructor, except that index maybe be a specific field of the structured dtype to use as the index. For example:

```python
In [52]: data
Out[52]:
dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])
In [53]: pd.DataFrame.from_records(data, index='C')
Out[53]:
 A B C
0 1 2.0 Hello
1 2 3.0 World
```

**DataFrame.from_items**

`DataFrame.from_items` works analogously to the form of the `dict` constructor that takes a sequence of (key, value) pairs, where the keys are column (or row, in the case of `orient='index'`) names, and the value are the column values (or row values). This can be useful for constructing a DataFrame with the columns in a particular order without having to pass an explicit list of columns:

```python
In [54]: pd.DataFrame.from_items(
 : (('A', [1, 2, 3]), ('B', [4, 5, 6]))
 : orient='index', columns=['one', 'two', 'three'])
Out[55]:
 one two three
0 1 4 4
1 2 5 5
2 3 6 6
```
Column selection, addition, deletion

You can treat a DataFrame semantically like a dict of like-indexed Series objects. Getting, setting, and deleting columns works with the same syntax as the analogous dict operations:

```
In [56]: df['one']
Out[56]:
 a 1.0
 b 2.0
 c 3.0
 d NaN
Name: one, dtype: float64

In [57]: df['three'] = df['one'] * df['two']

In [58]: df['flag'] = df['one'] > 2

In [59]: df
Out[59]:
 one two three flag
 a 1.0 1.0 1.0 False
 b 2.0 2.0 4.0 False
 c 3.0 3.0 9.0 True
 d NaN 4.0 NaN False
```

Columns can be deleted or popped like with a dict:

```
In [60]: del df['two']
In [61]: three = df.pop('three')

In [62]: df
Out[62]:
 one flag
 a 1.0 False
 b 2.0 False
 c 3.0 True
 d NaN False
```

When inserting a scalar value, it will naturally be propagated to fill the column:

```
In [63]: df['foo'] = 'bar'

In [64]: df
Out[64]:
 one flag foo
 a 1.0 False bar
 b 2.0 False bar
 c 3.0 True bar
 d NaN False bar
```

When inserting a Series that does not have the same index as the DataFrame, it will be conformed to the DataFrame’s index:
You can insert raw ndarrays but their length must match the length of the DataFrame’s index.

By default, columns get inserted at the end. The insert function is available to insert at a particular location in the columns:

```
In [67]: df.insert(1, 'bar', df['one'])
```

Assigning New Columns in Method Chains

New in version 0.16.0.

Inspired by dplyr’s mutate verb, DataFrame has an `assign()` method that allows you to easily create new columns that are potentially derived from existing columns.

```
In [69]: iris = pd.read_csv('data/iris.data')
In [70]: iris.head()
Out[70]:
 SepalLength SepalWidth PetalLength PetalWidth Name
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa

In [71]: (iris.assign(sepal_ratio = iris['SepalWidth'] / iris['SepalLength']))
 : .head()
 :
Out[71]:
 SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.6863
1 4.9 3.0 1.4 0.2 Iris-setosa 0.6122
2 4.7 3.2 1.3 0.2 Iris-setosa 0.6809
3 4.6 3.1 1.5 0.2 Iris-setosa 0.6739
4 5.0 3.6 1.4 0.2 Iris-setosa 0.7200
```

Above was an example of inserting a precomputed value. We can also pass in a function of one argument to be evaluated on the DataFrame being assigned to.
assign always returns a copy of the data, leaving the original DataFrame untouched.

Passing a callable, as opposed to an actual value to be inserted, is useful when you don’t have a reference to the DataFrame at hand. This is common when using assign in chains of operations. For example, we can limit the DataFrame to just those observations with a Sepal Length greater than 5, calculate the ratio, and plot:

```
In [73]: (iris.query('SepalLength > 5')
 : .assign({
 : 'SepalRatio': lambda x: x.SepalWidth / x.SepalLength,
 : 'PetalRatio': lambda x: x.PetalWidth / x.PetalLength}
 : .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
```

Out[73]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff286891b50>
Since a function is passed in, the function is computed on the DataFrame being assigned to. Importantly, this is the DataFrame that’s been filtered to those rows with sepal length greater than 5. The filtering happens first, and then the ratio calculations. This is an example where we didn’t have a reference to the filtered DataFrame available.

The function signature for `assign` is simply `**kwargs`. The keys are the column names for the new fields, and the values are either a value to be inserted (for example, a `Series` or NumPy array), or a function of one argument to be called on the DataFrame. A copy of the original DataFrame is returned, with the new values inserted.

**Warning:** Since the function signature of `assign` is `**kwargs`, a dictionary, the order of the new columns in the resulting DataFrame cannot be guaranteed to match the order you pass in. To make things predictable, items are inserted alphabetically (by key) at the end of the DataFrame.

All expressions are computed first, and then assigned. So you can’t refer to another column being assigned in the same call to `assign`. For example:

```python
In [74]: # Don't do this, bad reference to 'C'
 ...: df.assign(C = lambda x: x['A'] + x['B'],
 ...: D = lambda x: x['A'] + x['C'])

In [2]: # Instead, break it into two assigns
 ...: (df.assign(C = lambda x: x['A'] + x['B'])
 ...: .assign(D = lambda x: x['A'] + x['C']))
```

### Indexing / Selection

The basics of indexing are as follows:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Syntax</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select column</td>
<td><code>df[col]</code></td>
<td>Series</td>
</tr>
<tr>
<td>Select row by label</td>
<td><code>df.loc[label]</code></td>
<td>Series</td>
</tr>
<tr>
<td>Select row by integer location</td>
<td><code>df.iloc[loc]</code></td>
<td>Series</td>
</tr>
<tr>
<td>Slice rows</td>
<td><code>df[5:10]</code></td>
<td>DataFrame</td>
</tr>
<tr>
<td>Select rows by boolean vector</td>
<td><code>df[bool_vec]</code></td>
<td>DataFrame</td>
</tr>
</tbody>
</table>

Row selection, for example, returns a Series whose index is the columns of the DataFrame:

```python
In [75]: df.loc['b']
Out[75]:
 one 2
 bar 2
 flag False
 foo bar
one_trunc 2
Name: b, dtype: object

In [76]: df.iloc[2]
Out[76]:
 one 3
 bar 3
 flag True
 foo bar
one_trunc NaN
Name: c, dtype: object
```

For a more exhaustive treatment of more sophisticated label-based indexing and slicing, see the section on indexing. We will address the fundamentals of reindexing / conforming to new sets of labels in the section on reindexing.
Data alignment and arithmetic

Data alignment between DataFrame objects automatically align on both the columns and the index (row labels). Again, the resulting object will have the union of the column and row labels.

```
In [77]: df = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])

In [78]: df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])

In [79]: df + df2
```

```
Out[79]:
 A B C
0 0.5222 0.3225 -0.7566
1 -0.8441 0.2334 0.8818
2 2.8080 -1.0927 1.0432
3 -1.7511 -2.0812 2.7477
4 -3.2473 -1.0850 0.7898
5 -1.7107 0.0661 0.1294
6 NaN NaN NaN
7 NaN NaN NaN
8 NaN NaN NaN
9 NaN NaN NaN
```

When doing an operation between DataFrame and Series, the default behavior is to align the Series index on the DataFrame columns, thus broadcasting row-wise. For example:

```
In [80]: df - df.iloc[0]
```

```
Out[80]:
 A B C D
0 0.0000 0.0000 0.0000 0.0000
1 -2.6396 -1.0702 1.7214 -0.7896
2 -2.7662 -1.6918 2.2776 -2.5401
3 0.8679 -3.5247 1.9365 -0.1331
4 -1.9883 -3.2162 2.0464 -1.0700
5 -3.3932 -1.0850 0.7898 NaN
6 -0.7949 -2.1663 0.9706 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN
```

In the special case of working with time series data, and the DataFrame index also contains dates, the broadcasting will be column-wise:

```
In [81]: index = pd.date_range('1/1/2000', periods=8)

In [82]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=list('ABC'))

In [83]: df
```

```
Out[83]:
 A B C
2000-01-01 0.2731 0.3604 -1.1515
2000-01-02 1.1577 1.4787 -0.6528
2000-01-03 -0.7712 0.2203 -0.5739
2000-01-04 -0.6356 -1.1703 -0.0789
2000-01-05 -1.4687 0.1705 -1.8796
2000-01-06 -1.2037 0.9568 -1.1383
2000-01-07 -0.6540 -0.2169 0.3843
2000-01-08 -2.1639 -0.8145 -1.2475
```
In [84]: type(df['A'])
Out[84]: pandas.core.series.Series

In [85]: df - df['A']
Out[85]:
2000-01-01 00:00:00 2000-01-02 00:00:00 2000-01-03 00:00:00  
2000-01-01 NaN NaN NaN
2000-01-02 NaN NaN NaN
2000-01-03 NaN NaN NaN
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 NaN NaN NaN
2000-01-04 00:00:00 ... 2000-01-08 00:00:00 A B C
2000-01-01 NaN ... NaN NaN NaN NaN
2000-01-02 NaN ... NaN NaN NaN NaN
2000-01-03 NaN ... NaN NaN NaN NaN
2000-01-04 NaN ... NaN NaN NaN NaN
2000-01-05 NaN ... NaN NaN NaN NaN
2000-01-06 NaN ... NaN NaN NaN NaN
2000-01-07 NaN ... NaN NaN NaN NaN
2000-01-08 NaN ... NaN NaN NaN NaN
[8 rows x 11 columns]

Warning:

```
df - df['A']
```

is now deprecated and will be removed in a future release. The preferred way to replicate this behavior is

```
df.sub(df['A'], axis=0)
```

For explicit control over the matching and broadcasting behavior, see the section on flexible binary operations.

Operations with scalars are just as you would expect:

In [86]: df * 5 + 2
Out[86]:
   A     B      C
2000-01-02 7.7885 9.3936 -1.2641
2000-01-03 -1.8558 3.1017 -0.8696
2000-01-04 -1.1781 -3.8513 1.6056
2000-01-05 -5.3437 2.8523 -7.3982
2000-01-06 -4.0186 6.7842 -3.6915
2000-01-07 -1.2699 0.9157 3.9217
2000-01-08 -8.8194 -2.0724 -4.2375

In [87]: 1 / df
Out[87]:
   A     B     C
2000-01-01 3.6616 2.7751 -0.8684
2000-01-02 0.8638 0.6763 -1.5318
In [88]: df ** 4
Out[88]:
   A   B   C
2000-01-01 0.0056 0.0169 1.7581e+00
2000-01-02 1.7964 4.7813 1.8162e-01
2000-01-03 0.3537 0.0024 1.0849e-01
2000-01-04 0.1632 1.8755 3.8733e-05
2000-01-05 4.6534 0.0008 1.2482e+01
2000-01-06 2.0995 0.8382 1.6789e+00
2000-01-07 0.1829 0.0022 2.1819e-02
2000-01-08 21.9244 0.4401 2.4219e+00

Boolean operators work as well:

In [89]: df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1], dtype=bool)
In [90]: df2 = pd.DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0], dtype=bool)
In [91]: df1 & df2
Out[91]:
a  b
0 False False
1 False True
2 True False

In [92]: df1 | df2
Out[92]:
a  b
0 True True
1 True True
2 True True

In [93]: df1 ^ df2
Out[93]:
a  b
0 True True
1 True False
2 False True

In [94]: -df1
Out[94]:
a  b
0 False True
1 True False
2 False False

Transposing

To transpose, access the T attribute (also the transpose function), similar to an ndarray:
# only show the first 5 rows

In [95]: df[:5].T
Out[95]:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.2731</td>
<td>1.1577</td>
<td>-0.7712</td>
<td>-0.6356</td>
<td>-1.4687</td>
</tr>
<tr>
<td>B</td>
<td>0.3604</td>
<td>1.4787</td>
<td>0.2203</td>
<td>-1.1703</td>
<td>0.1705</td>
</tr>
<tr>
<td>C</td>
<td>-1.1515</td>
<td>-0.6528</td>
<td>-0.5739</td>
<td>-0.0789</td>
<td>-1.8796</td>
</tr>
</tbody>
</table>

## DataFrame interoperability with NumPy functions

Elementwise NumPy ufuncs (log, exp, sqrt, ...) and various other NumPy functions can be used with no issues on DataFrame, assuming the data within are numeric:

In [96]: np.exp(df)
Out[96]:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-01</td>
<td>1.3140</td>
<td>1.4338</td>
<td>0.3162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-02</td>
<td>3.1826</td>
<td>4.3873</td>
<td>0.5206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.4625</td>
<td>1.2465</td>
<td>0.5633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-04</td>
<td>0.5296</td>
<td>0.3103</td>
<td>0.9241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.2302</td>
<td>1.1859</td>
<td>0.1526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-06</td>
<td>0.3001</td>
<td>2.6034</td>
<td>0.3204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-07</td>
<td>0.5200</td>
<td>0.8050</td>
<td>1.4686</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-08</td>
<td>0.1149</td>
<td>0.4429</td>
<td>0.2872</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In [97]: np.asarray(df)
Out[97]:

```
array([[0.2731, 0.3604, -1.1515],
 [1.1577, 1.4787, -0.6528],
 [-0.7712, 0.2203, -0.5739],
 [-0.6356, -1.1703, -0.0789],
 [-1.4687, 0.1705, -1.8796],
 [-1.2037, 0.9568, -1.1383],
 [-0.654 , -0.2169, 0.3843],
 [-2.1639, -0.8145, -1.2475]])
```

The dot method on DataFrame implements matrix multiplication:

In [98]: df.T.dot(df)
Out[98]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>A</td>
<td>11.1298</td>
<td>2.8864</td>
</tr>
<tr>
<td>B</td>
<td>2.8864</td>
<td>5.3895</td>
</tr>
<tr>
<td>C</td>
<td>6.0015</td>
<td>-1.8913</td>
</tr>
</tbody>
</table>

Similarly, the dot method on Series implements dot product:

In [99]: s1 = pd.Series(np.arange(5,10))

In [100]: s1.dot(s1)
Out[100]: 255

DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics are quite different in places from a matrix.

9.2. DataFrame 431
Console display

Very large DataFrames will be truncated to display them in the console. You can also get a summary using `info()`.

(Here I am reading a CSV version of the baseball dataset from the plyr R package):

```python
In [101]: baseball = pd.read_csv('data/baseball.csv')

In [102]: print(baseball)

 id player year stint ... hbp sh sf gidp
 0 88641 womacto01 2006 2 ... 0.0 3.0 0.0 0.0
 1 88643 schilcu01 2006 1 ... 0.0 0.0 0.0 0.0
...
98 89533 aloumo01 2007 1 ... 2.0 0.0 3.0 13.0
99 89534 alomasa02 2007 1 ... 0.0 0.0 0.0 0.0

[100 rows x 23 columns]

In [103]: baseball.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):
id 100 non-null int64
player 100 non-null object
year 100 non-null int64
stint 100 non-null int64
team 100 non-null object
lg 100 non-null object
g 100 non-null int64
ab 100 non-null int64
r 100 non-null int64
h 100 non-null int64
X2b 100 non-null int64
X3b 100 non-null int64
hr 100 non-null int64
rbi 100 non-null float64
sb 100 non-null float64
cs 100 non-null float64
bb 100 non-null float64
so 100 non-null float64
libb 100 non-null float64
hbp 100 non-null float64
sh 100 non-null float64
sf 100 non-null float64
gidp 100 non-null float64
dtypes: float64(9), int64(11), object(3)
memory usage: 18.0+ KB
```

However, using `to_string` will return a string representation of the DataFrame in tabular form, though it won’t always fit the console width:

```python
In [104]: print(baseball.iloc[-20:, :12].to_string())

 id player year stint ... hbp sh sf gidp
 80 89474 finlest01 2007 1 COL 43 94 9 17 3 0
 81 89480 embreal01 2007 1 OAK 4 0 0 0 0 0
 82 89481 edmonji01 2007 1 SLN 117 365 39 92 15 2
 83 89482 easleda01 2007 1 NYN 76 193 24 54 6 0
 84 89489 delgaca01 2007 1 NYN 139 538 71 139 30 0
 85 89493 cormirh01 2007 1 CIN 6 0 0 0 0 0
```

432 Chapter 9. Intro to Data Structures
New since 0.10.0, wide DataFrames will now be printed across multiple rows by default:

```
In [105]: pd.DataFrame(np.random.randn(3, 12))
Out[105]:
 0 1 2 3 4 5 6
0 2.173014 1.273573 0.888325 0.631774 0.206584 -1.745845 -0.505310
1 -1.240418 2.177280 -0.082206 0.827373 -0.700792 0.524540 -1.101396
2 0.269598 -0.453050 -1.821539 -0.126332 -0.153257 0.405483 -0.504557
 7 8 9 10 11
0 1.376623 0.741168 -0.509153 -2.012112 -1.204418
1 1.115750 0.294139 0.286939 1.709761 -0.212596
2 -0.226582 -0.777971 0.231309
```

You can change how much to print on a single row by setting the `display.width` option:

```
In [106]: pd.set_option('display.width', 40) # default is 80
In [107]: pd.DataFrame(np.random.randn(3, 12))
Out[107]:
 0 1 2
0 1.179465 0.777427 -1.923460
1 0.054928 0.776156 0.372060
2 -0.243404 -1.506557 -1.977226
 3 4 5
0 0.782432 0.203446 0.250652
1 0.710963 -0.784859 0.168405
2 -0.226582 -0.777971 0.231309
 6 7 8
0 -2.349580 -0.540814 -0.748939
1 0.159230 0.866492 1.266025
2 1.394479 0.723474 -0.097256
 9 10 11
0 -0.994345 1.478624 -0.341991
1 0.555240 0.731803 0.219383
2 0.375274 -0.314401 -2.363136
```

You can adjust the max width of the individual columns by setting `display.max_colwidth`
In [108]: datafile={'filename': ['filename_01','filename_02'],
.....:           'path': ["media/user_name/storage/folder_01/filename_01",
.....:                  "media/user_name/storage/folder_02/filename_02"]
.....:

In [109]: pd.set_option('display.max_colwidth',30)

In [110]: pd.DataFrame(datafile)
Out[110]:
    filename     path
0  filename_01  media/user_name/storage/fo...
1  filename_02  media/user_name/storage/fo...

In [111]: pd.set_option('display.max_colwidth',100)

In [112]: pd.DataFrame(datafile)
Out[112]:
    filename     path
0  filename_01  media/user_name/storage/folder_01/filename_01
1  filename_02  media/user_name/storage/folder_02/filename_02

You can also disable this feature via the `expand_frame_repr` option. This will print the table in one block.

**DataFrame column attribute access and IPython completion**

If a DataFrame column label is a valid Python variable name, the column can be accessed like attributes:

In [113]: df = pd.DataFrame({'foo1': np.random.randn(5),
.....:            'foo2': np.random.randn(5)})

In [114]: df
Out[114]:
   foo1  foo2
0 -0.412237  0.213232
1 -0.237644  1.740139
2  1.272869 -0.241491
3  1.220450 -0.868514
4  1.315172  0.407544

In [115]: df.foo1
Out[115]:
0  -0.412237
1  -0.237644
2   1.272869
3   1.220450
4   1.315172
Name: foo1, dtype: float64
The columns are also connected to the IPython completion mechanism so they can be tab-completed:

```
In [5]: df.fo<TAB>
df.fool df.fool2
```

## Panel

Panel is a somewhat less-used, but still important container for 3-dimensional data. The term panel data is derived from econometrics and is partially responsible for the name pandas: pan(el)-da(ta)-s. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data. However, for the strict purposes of slicing and dicing a collection of DataFrame objects, you may find the axis names slightly arbitrary:

- **items**: axis 0, each item corresponds to a DataFrame contained inside
- **major_axis**: axis 1, it is the index (rows) of each of the DataFrames
- **minor_axis**: axis 2, it is the columns of each of the DataFrames

Construction of Panels works about like you would expect:

### From 3D ndarray with optional axis labels

```
In [116]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
.........: major_axis=pd.date_range('1/1/2000', periods=5),
.........: minor_axis=['A', 'B', 'C', 'D'])
In [117]: wp
Out[117]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
```

### From dict of DataFrame objects

```
In [118]: data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)),
.........: 'Item2' : pd.DataFrame(np.random.randn(4, 2))}
In [119]: pd.Panel(data)
Out[119]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 2
```

Note that the values in the dict need only be **convertible to DataFrame**. Thus, they can be any of the other valid inputs to DataFrame as per above.
One helpful factory method is `Panel.from_dict`, which takes a dictionary of DataFrames as above, and the following named parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>intersect</td>
<td>False</td>
<td>drops elements whose indices do not align</td>
</tr>
<tr>
<td>orient</td>
<td>items</td>
<td>use minor to use DataFrames’ columns as panel items</td>
</tr>
</tbody>
</table>

For example, compare to the construction above:

```python
In [120]: pd.Panel.from_dict(data, orient='minor')
Out[120]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 2 (minor_axis)
Items axis: 0 to 2
Major_axis axis: 0 to 3
Minor_axis axis: Item1 to Item2
```

Orient is especially useful for mixed-type DataFrames. If you pass a dict of DataFrame objects with mixed-type columns, all of the data will get upcasted to `dtype=object` unless you pass `orient='minor'`:

```python
In [121]: df = pd.DataFrame({'a': ['foo', 'bar', 'baz'],
...: 'b': np.random.randn(3))
...:

In [122]: df
Out[122]:
 a b
0 foo -1.142863
1 bar -1.015321
2 baz 0.683625

In [123]: data = {'item1': df, 'item2': df}

In [124]: panel = pd.Panel.from_dict(data, orient='minor')

In [125]: panel['a']
Out[125]:
 item1 item2
0 foo foo
1 bar bar
2 baz baz

In [126]: panel['b']
Out[126]:
 item1 item2
0 -1.142863 -1.142863
1 -1.015321 -1.015321
2 0.683625 0.683625

In [127]: panel['b'].dtypes
Out[127]:
item1 float64
item2 float64
dtype: object
```

**Note:** Unfortunately Panel, being less commonly used than Series and DataFrame, has been slightly neglected feature-wise. A number of methods and options available in DataFrame are not available in Panel. This will get worked on,
of course, in future releases. And faster if you join me in working on the codebase.

**From DataFrame using `to_panel` method**

This method was introduced in v0.7 to replace `LongPanel.to_long`, and converts a DataFrame with a two-level index to a Panel.

```
In [128]: midx = pd.MultiIndex(levels=[['one', 'two'], ['x','y']], labels=[[1,1,0,0],
 ...: [1,0,1,0]])

In [129]: df = pd.DataFrame({ 'A' : [1, 2, 3, 4], 'B': [5, 6, 7, 8]}, index=midx)

In [130]: df.to_panel()
Out[130]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 2 (minor_axis)
Items axis: A to B
Major_axis axis: one to two
Minor_axis axis: x to y
```

**Item selection / addition / deletion**

Similar to DataFrame functioning as a dict of Series, Panel is like a dict of DataFrames:

```
In [131]: wp['Item1']
Out[131]:
 A B C D
2000-01-01 -0.729430 0.427693 -0.121325 -0.736418
2000-01-02 0.739037 -0.648805 -0.383057 0.385027
2000-01-03 2.321064 -1.290881 0.105458 -1.097035
2000-01-04 0.158759 -1.261121 -0.081710 -1.097035
2000-01-05 -1.962031 -0.505580 0.021253 -0.317071

In [132]: wp['Item3'] = wp['Item1'] / wp['Item2']
```

The API for insertion and deletion is the same as for DataFrame. And as with DataFrame, if the item is a valid python identifier, you can access it as an attribute and tab-complete it in IPython.

**Transposing**

A Panel can be rearranged using its `transpose` method (which does not make a copy by default unless the data are heterogeneous):

```
In [133]: wp.transpose(2, 0, 1)
Out[133]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 5 (minor_axis)
Items axis: A to D
Major_axis axis: Item1 to Item3
Minor_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
```

9.3. Panel 437
Indexing / Selection

<table>
<thead>
<tr>
<th>Operation</th>
<th>Syntax</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select item</td>
<td><code>wp[item]</code></td>
<td>DataFrame</td>
</tr>
<tr>
<td>Get slice at major_axis label</td>
<td><code>wp.major_xs(val)</code></td>
<td>DataFrame</td>
</tr>
<tr>
<td>Get slice at minor_axis label</td>
<td><code>wp.minor_xs(val)</code></td>
<td>DataFrame</td>
</tr>
</tbody>
</table>

For example, using the earlier example data, we could do:

```
In [134]: wp['Item1']
Out [134]:
 A B C D
2000-01-01 -0.729430 0.427693 -0.121325 -0.736418
2000-01-02 0.739037 -0.648805 -0.383057 0.385027
2000-01-03 2.321064 -1.290881 0.105458 -1.097035
2000-01-04 0.158759 -1.261191 -0.081710 1.390506
2000-01-05 -1.962031 -0.505580 0.021253 -0.317071

In [135]: wp.major_xs(wp.major_axis[2])
Out [135]:
 Item1 Item2 Item3
A 2.321064 -0.538606 -4.309389
B -1.290881 0.791512 -1.630905
C 0.105458 -0.020302 -5.194337
D -1.097035 0.184430 -5.948253

In [136]: wp.minor_axis
Out [136]: Index([u'A', u'B', u'C', u'D'], dtype='object')

In [137]: wp.minor_xs('C')
Out [137]:
 Item1 Item2 Item3
2000-01-01 -0.121325 1.413524 -0.085832
2000-01-02 -0.383057 1.243178 -0.308127
2000-01-03 0.105458 -0.020302 -5.194337
2000-01-04 -0.081710 -1.811565 0.045105
2000-01-05 0.021253 -1.040542 -0.020425
```

Squeezing

Another way to change the dimensionality of an object is to **squeeze** a 1-len object, similar to `wp['Item1']`

```
In [138]: wp.reindex(items=['Item1']).squeeze()
Out [138]:
 A B C D
2000-01-01 -0.729430 0.427693 -0.121325 -0.736418
2000-01-02 0.739037 -0.648805 -0.383057 0.385027
2000-01-03 2.321064 -1.290881 0.105458 -1.097035
2000-01-04 0.158759 -1.261191 -0.081710 1.390506
2000-01-05 -1.962031 -0.505580 0.021253 -0.317071

In [139]: wp.reindex(items=['Item1'], minor=['B']).squeeze()
Out [139]:
 A B
2000-01-01 0.427693
2000-01-02 -0.648805
2000-01-03 -1.290881
2000-01-04 -1.261191
```
Conversion to DataFrame

A Panel can be represented in 2D form as a hierarchically indexed DataFrame. See the section `hierarchical indexing` for more on this. To convert a Panel to a DataFrame, use the `to_frame` method:

```
In [140]: panel = pd.Panel(np.random.randn(3, 5, 4), items=['one', 'two', 'three'],
 major_axis=pd.date_range('1/1/2000', periods=5),
 minor_axis=['a', 'b', 'c', 'd'])

In [141]: panel.to_frame()
Out[141]:
 one two three
major minor
2000-01-01 a -1.876826 -0.383171 -0.117339
 b -1.873827 -0.172217 0.780048
 c -0.251457 -1.674685 2.162047
 d 0.027599 0.762474 0.874233
2000-01-02 a 1.235291 0.481666 -0.764147
 b 0.850574 1.217546 -0.484495
 c -1.140302 0.577103 0.298570
 d 2.149143 -0.076021 0.825136
2000-01-03 a 0.504452 0.720235 -0.388020
 b 0.678026 0.202660 -0.339279
 c -0.628443 -0.314950 0.141164
 d 1.191156 -0.410852 0.565930
2000-01-04 a -1.145363 0.542758 -1.749969
 b -0.523153 1.955407 -1.402941
 c -1.299878 -0.940645 0.623222
 d -0.110240 0.076257 0.020129
2000-01-05 a -0.333712 -0.897159 -2.858463
 b 0.416876 -1.265679 0.885765
 c -0.436400 -0.528311 0.158014
 d 0.999768 -0.660014 -1.981797
```

Panel4D and PanelND (Deprecated)

**Warning:** In 0.19.0 Panel4D and PanelND are deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the xarray package. Pandas provides a `to_xarray()` method to automate this conversion.

See the docs of a previous version for documentation on these objects.
Here we discuss a lot of the essential functionality common to the pandas data structures. Here’s how to create some of the objects used in the examples from the previous section:

```python
In [1]: index = pd.date_range('1/1/2000', periods=8)
In [2]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [3]: df = pd.DataFrame(np.random.randn(8, 3), index=index,
 columns=['A', 'B', 'C'])
In [4]: wp = pd.Panel(np.random.randn(2, 5, 4), items=['Item1', 'Item2'],
 major_axis=pd.date_range('1/1/2000', periods=5),
 minor_axis=['A', 'B', 'C', 'D'])
```

### Head and Tail

To view a small sample of a Series or DataFrame object, use the `head()` and `tail()` methods. The default number of elements to display is five, but you may pass a custom number.

```python
In [5]: long_series = pd.Series(np.random.randn(1000))
In [6]: long_series.head()
Out[6]:
0 -0.305384
1 -0.479195
2 0.095031
3 -0.270099
4 -0.707140
dtype: float64
In [7]: long_series.tail(3)
Out[7]:
997 0.588446
998 0.026465
999 -1.728222
dtype: float64
```
Attributes and the raw ndarray(s)

pandas objects have a number of attributes enabling you to access the metadata

- **shape**: gives the axis dimensions of the object, consistent with ndarray

- Axis labels
  - **Series**: `index` (only axis)
  - **DataFrame**: `index` (rows) and `columns`
  - **Panel**: `items`, `major_axis`, and `minor_axis`

Note, these attributes can be safely assigned to!

```python
In [8]: df[:2]
Out[8]:
 A B C
2000-01-01 0.1875 -1.9339 0.3773
2000-01-02 0.7341 2.1416 -0.0112

In [9]: df.columns = [x.lower() for x in df.columns]

In [10]: df
Out[10]:
 a b c
2000-01-01 0.1875 -1.9339 0.3773
2000-01-02 0.7341 2.1416 -0.0112
2000-01-03 0.0488 -1.3607 -0.4790
2000-01-04 -0.8596 -0.2316 -0.5277
2000-01-05 -1.2963 0.1506 0.1238
2000-01-06 0.5718 1.5556 -0.8238
2000-01-07 0.5354 -1.0329 1.4697
2000-01-08 1.3041 1.4497 0.2031
```

To get the actual data inside a data structure, one need only access the `values` property:

```python
In [11]: s.values
Out[11]: array([0.1122, 0.8717, -0.8161, -0.7849, 1.0307])

In [12]: df.values
Out[12]:
array([[0.1875, -1.9339, 0.3773],
 [0.7341, 2.1416, -0.0112],
 [0.0488, -1.3607, -0.4790],
 [-0.8596, -0.2316, -0.5277],
 [-1.2963, 0.1506, 0.1238],
 [0.5718, 1.5556, -0.8238],
 [0.5354, -1.0329, 1.4697],
 [1.3041, 1.4497, 0.2031]])

In [13]: wp.values
Out[13]:
array([[-1.0321, 0.9698, -0.9627, 1.3821],
 [-0.9388, 0.6691, -0.4336, -0.2736],
 [0.6804, -0.3084, -0.2761, -1.8212],
 [-1.9936, -1.9274, -2.0279, 1.6250],
 [0.5511, 3.0593, 0.4553, -0.0307]],
 dtype=object)
```
If a DataFrame or Panel contains homogeneously-typed data, the ndarray can actually be modified in-place, and the changes will be reflected in the data structure. For heterogeneous data (e.g. some of the DataFrame’s columns are not all the same dtype), this will not be the case. The values attribute itself, unlike the axis labels, cannot be assigned to.

**Note:** When working with heterogeneous data, the dtype of the resulting ndarray will be chosen to accommodate all of the data involved. For example, if strings are involved, the result will be of object dtype. If there are only floats and integers, the resulting array will be of float dtype.

### Accelerated operations

pandas has support for accelerating certain types of binary numerical and boolean operations using the `numexpr` library (starting in 0.11.0) and the `bottleneck` libraries.

These libraries are especially useful when dealing with large data sets, and provide large speedups. `numexpr` uses smart chunking, caching, and multiple cores. `bottleneck` is a set of specialized cython routines that are especially fast when dealing with arrays that have `nans`.

Here is a sample (using 100 column x 100,000 row DataFrames):

<table>
<thead>
<tr>
<th>Operation</th>
<th>0.11.0 (ms)</th>
<th>Prior Version (ms)</th>
<th>Ratio to Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>df1 &gt; df2</td>
<td>13.32</td>
<td>125.35</td>
<td>0.1063</td>
</tr>
<tr>
<td>df1 * df2</td>
<td>21.71</td>
<td>36.63</td>
<td>0.5928</td>
</tr>
<tr>
<td>df1 + df2</td>
<td>22.04</td>
<td>36.50</td>
<td>0.6039</td>
</tr>
</tbody>
</table>

You are highly encouraged to install both libraries. See the section *Recommended Dependencies* for more installation info.

### Flexible binary operations

With binary operations between pandas data structures, there are two key points of interest:

- Broadcasting behavior between higher- (e.g. DataFrame) and lower-dimensional (e.g. Series) objects.
- Missing data in computations

We will demonstrate how to manage these issues independently, though they can be handled simultaneously.

### Matching / broadcasting behavior

DataFrame has the methods `add()`, `sub()`, `mul()`, `div()` and related functions `radd()`, `rsub()`, ... for carrying out binary operations. For broadcasting behavior, Series input is of primary interest. Using these functions, you can use to either match on the *index* or *columns* via the `axis` keyword:

```python
In [14]: df = pd.DataFrame({'one': pd.Series(np.random.randn(3), index=['a', 'b', 'c']),
 'two': pd.Series(np.random.randn(4), index=['a', 'b', 'c', 'd'])},
 ...
```

10.3. Accelerated operations 443
Furthermore you can align a level of a multi-indexed DataFrame with a Series.

```
In [22]: dfmi = df.copy()

In [23]: dfmi.index = pd.MultiIndex.from_tuples([(1,'a'),(1,'b'),(1,'c'),(2,'a')],
 names=['first','second'])

In [24]: dfmi.sub(column, axis=0, level='second')
```

Out[24]:

```
 one three two
a -0.274957 NaN 0.0
b -1.275144 -1.313539 0.0
c 0.460406 0.911003 0.0
d NaN 2.226031 0.0
```
With Panel, describing the matching behavior is a bit more difficult, so the arithmetic methods instead (and perhaps confusingly?) give you the option to specify the broadcast axis. For example, suppose we wished to demean the data over a particular axis. This can be accomplished by taking the mean over an axis and broadcasting over the same axis:

```
In [25]: major_mean = wp.mean(axis='major')
```

```
In [26]: major_mean
Out[26]:
 Item1 Item2
A -0.546569 -0.260774
B 0.492478 0.147993
C -0.649010 -0.532794
D 0.176307 0.623812
```

```
In [27]: wp.sub(major_mean, axis='major')
Out[27]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D
```

And similarly for axis="items" and axis="minor".

**Note:** I could be convinced to make the axis argument in the DataFrame methods match the broadcasting behavior of Panel. Though it would require a transition period so users can change their code...

Series and Index also support the divmod() builtin. This function takes the floor division and modulo operation at the same time returning a two-tuple of the same type as the left hand side. For example:

```
In [28]: s = pd.Series(np.arange(10))
```

```
In [29]: s
Out[29]:
 0 0
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7
 8 8
 9 9
 dtype: int64
```

```
In [30]: div, rem = divmod(s, 3)
In [31]: div
```
Out[31]:
0   0
1   0
2   0
3   1
4   1
5   2
6   2
7   2
8   2
9   3
dtype: int64

In [32]: rem
Out[32]:
0   0
1   1
2   2
3   0
4   1
5   2
6   0
7   1
8   2
9   0
dtype: int64

In [33]: idx = pd.Index(np.arange(10))

In [34]: idx
Out[34]: Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')

In [35]: div, rem = divmod(idx, 3)

In [36]: div
Out[36]: Int64Index([0, 0, 0, 1, 1, 1, 2, 2, 2, 3], dtype='int64')

In [37]: rem
Out[37]: Int64Index([0, 1, 2, 0, 1, 2, 0, 1, 2, 0], dtype='int64')

We can also do elementwise `divmod()`:

In [38]: div, rem = divmod(s, [2, 2, 3, 3, 4, 4, 5, 5, 6, 6])

In [39]: div
Out[39]:
0   0
1   0
2   0
3   1
4   1
5   1
6   1
7   1
8   1
9   1
dtype: int64
Missing data / operations with fill values

In Series and DataFrame (though not yet in Panel), the arithmetic functions have the option of inputting a `fill_value`, namely a value to substitute when at most one of the values at a location are missing. For example, when adding two DataFrame objects, you may wish to treat NaN as 0 unless both DataFrames are missing that value, in which case the result will be NaN (you can later replace NaN with some other value using `fillna` if you wish).

```
In [41]: df
Out[41]:
 one three two
a -0.626544 NaN -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d NaN 1.124472 -1.101558

In [42]: df2
Out[42]:
 one three two
a -0.626544 1.000000 -0.351587
b -0.138894 -0.177289 1.136249
c 0.011617 0.462215 -0.448789
d NaN 1.124472 -1.101558

In [43]: df + df2
Out[43]:
 one three two
a -1.253088 NaN -0.703174
b -0.277789 -0.354579 2.272499
c 0.023235 0.924429 -0.897577
d NaN 2.248945 -2.203116

In [44]: df.add(df2, fill_value=0)
Out[44]:
 one three two
a -1.253088 1.000000 -0.703174
b -0.277789 -0.354579 2.272499
c 0.023235 0.924429 -0.897577
d NaN 2.248945 -2.203116
```

10.4. Flexible binary operations 447
Flexible Comparisons

Starting in v0.8, pandas introduced binary comparison methods eq, ne, lt, gt, le, and ge to Series and DataFrame whose behavior is analogous to the binary arithmetic operations described above:

```python
In [45]: df.gt(df2)
Out[45]:
 one three two
 a False False False
 b False False False
 c False False False
d False False False

In [46]: df2.ne(df)
Out[46]:
 one three two
 a False True False
 b False False False
 c False False False
d True False False
```

These operations produce a pandas object the same type as the left-hand-side input that if of dtype bool. These boolean objects can be used in indexing operations, see here

Boolean Reductions

You can apply the reductions: empty, any(), all(), and bool() to provide a way to summarize a boolean result.

```python
In [47]: (df > 0).all()
Out[47]:
 one three two
 False False False
dtype: bool

In [48]: (df > 0).any()
Out[48]:
 one three two
 True True True
dtype: bool

In [49]: (df > 0).any().any()
Out[49]: True
```

You can reduce to a final boolean value.

```python
In [49]: (df > 0).any().any()
Out[49]: True
```

You can test if a pandas object is empty, via the empty property.

```python
In [50]: df.empty
Out[50]: False

In [51]: pd.DataFrame(columns=list('ABC')).empty
Out[51]: True
```

To evaluate single-element pandas objects in a boolean context, use the method bool():

```python
In [52]: pd.Series([True]).bool()
Out[52]: True

In [53]: pd.Series([False]).bool()
Out[53]: False

In [54]: pd.DataFrame([[True]]).bool()
Out[54]: True

In [55]: pd.DataFrame([[False]]).bool()
Out[55]: False

Warning: You might be tempted to do the following:

```python
>>> if df:
    ...
```

Or

```python
>>> df and df2
```

These both will raise as you are trying to compare multiple values.

```
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.
˓→all().
```

See gotchas for a more detailed discussion.

Comparing if objects are equivalent

Often you may find there is more than one way to compute the same result. As a simple example, consider `df+df` and `df*2`. To test that these two computations produce the same result, given the tools shown above, you might imagine using `(df+df == df*2).all()`. But in fact, this expression is False:

```
In [56]: df+df == df*2
Out[56]:
   one  three  two
a  True   False  True
b  True    True  True
c  True    True  True
d False    True  True

In [57]: (df+df == df*2).all()
Out[57]:
   one     False
three    False
two      True
dtype: bool
```

Notice that the boolean DataFrame `df+df == df*2` contains some False values! That is because NaNs do not compare as equals:

```
In [58]: np.nan == np.nan
Out[58]: False
```
So, as of v0.13.1, NDFrames (such as Series, DataFrames, and Panels) have an `equals()` method for testing equality, with NaNs in corresponding locations treated as equal.

```
In [59]: (df+df).equals(df*2)
Out[59]: True
```

Note that the Series or DataFrame index needs to be in the same order for equality to be True:

```
In [60]: df1 = pd.DataFrame({'col':['foo', 0, np.nan]})
In [61]: df2 = pd.DataFrame({'col':[np.nan, 0, 'foo']}, index=[2,1,0])
In [62]: df1.equals(df2)
Out[62]: False
In [63]: df1.equals(df2.sort_index())
Out[63]: True
```

Comparing array-like objects

You can conveniently do element-wise comparisons when comparing a pandas data structure with a scalar value:

```
In [64]: pd.Series(['foo', 'bar', 'baz']) == 'foo'
Out[64]:
0   True
1   False
2   False
dtype: bool

In [65]: pd.Index(['foo', 'bar', 'baz']) == 'foo'
Out[65]: array([ True, False, False], dtype=bool)
```

Pandas also handles element-wise comparisons between different array-like objects of the same length:

```
In [66]: pd.Series(['foo', 'bar', 'baz']) == pd.Index(['foo', 'bar', 'qux'])
Out[66]:
0   True
1   True
2   False
dtype: bool

In [67]: pd.Series(['foo', 'bar', 'baz']) == np.array(['foo', 'bar', 'qux'])
Out[67]:
0   True
1   True
2   False
dtype: bool
```

Trying to compare Index or Series objects of different lengths will raise a ValueError:

```
In [55]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo', 'bar'])
ValueError: Series lengths must match to compare

In [56]: pd.Series(['foo', 'bar', 'baz']) == pd.Series(['foo'])
ValueError: Series lengths must match to compare
```

Note that this is different from the numpy behavior where a comparison can be broadcast:
or it can return False if broadcasting can not be done:

```
In [69]: np.array([1, 2, 3]) == np.array([1, 2])
Out[69]: False
```

Combining overlapping data sets

A problem occasionally arising is the combination of two similar data sets where values in one are preferred over the other. An example would be two data series representing a particular economic indicator where one is considered to be of “higher quality”. However, the lower quality series might extend further back in history or have more complete data coverage. As such, we would like to combine two DataFrame objects where missing values in one DataFrame are conditionally filled with like-labeled values from the other DataFrame. The function implementing this operation is `combine_first()`, which we illustrate:

```
In [70]: df1 = pd.DataFrame({'A' : [1., np.nan, 3., 5., np.nan],
                        'B' : [np.nan, 2., 3., np.nan, 6.]})
```

```
In [71]: df2 = pd.DataFrame({'A' : [5., 2., 4., np.nan, 3., 7.],
                        'B' : [np.nan, np.nan, 3., 4., 6., 8.]})
```

```
In [72]: df1
Out[72]:
    A     B
0  1.0  NaN
1  NaN  2.0
2  3.0  3.0
3  5.0  NaN
4  NaN  6.0

In [73]: df2
Out[73]:
    A     B
0  5.0  NaN
1  2.0  NaN
2  4.0  3.0
3  NaN  4.0
4  3.0  6.0
5  7.0  8.0

In [74]: df1.combine_first(df2)
Out[74]:
    A     B
0  1.0  NaN
1  NaN  2.0
2  3.0  3.0
3  5.0  4.0
4  3.0  6.0
5  7.0  8.0
```

10.4. Flexible binary operations
General DataFrame Combine

The `combine_first()` method above calls the more general DataFrame method `combine()`. This method takes another DataFrame and a combiner function, aligns the input DataFrame and then passes the combiner function pairs of Series (i.e., columns whose names are the same).

So, for instance, to reproduce `combine_first()` as above:

```python
In [75]: combiner = lambda x, y: np.where(pd.isnull(x), y, x)

In [76]: df1.combine(df2, combiner)
Out[76]:
     A  B
0   1.0 NaN
1   2.0  2.0
2   3.0  3.0
3   5.0  4.0
4   3.0  6.0
5   7.0  8.0
```

Descriptive statistics

A large number of methods for computing descriptive statistics and other related operations on `Series`, `DataFrame`, and `Panel`. Most of these are aggregations (hence producing a lower-dimensional result) like `sum()`, `mean()`, and `quantile()`, but some of them, like `cumsum()` and `cumprod()`, produce an object of the same size. Generally speaking, these methods take an `axis` argument, just like `ndarray.{sum, std, ...}`, but the axis can be specified by name or integer:

- **Series**: no axis argument needed
- **DataFrame**: “index” (axis=0, default), “columns” (axis=1)
- **Panel**: “items” (axis=0), “major” (axis=1, default), “minor” (axis=2)

For example:

```python
In [77]: df
Out[77]:
        one  three   two
a   -0.626544 NaN  -0.351587
b   -0.138894 -0.177289  1.136249
c    0.011617  0.462215  -0.448789
d    NaN     1.124472  -1.101558

In [78]: df.mean(0)
Out[78]:
        one   three   two
       -0.251274   NaN  -0.351587

In [79]: df.mean(1)
Out[79]:
   a    b    c
0 -0.489066 0.273355 0.008348
```

Chapter 10. Essential Basic Functionality
All such methods have a skipna option signaling whether to exclude missing data (True by default):

```python
In [80]: df.sum(0, skipna=False)
Out[80]:
    one   NaN
    three  NaN
    two -0.765684
dtype: float64

In [81]: df.sum(axis=1, skipna=True)
Out[81]:
   a   -0.978131
   b    0.820066
   c    0.025044
   d    0.022914
dtype: float64
```

Combined with the broadcasting / arithmetic behavior, one can describe various statistical procedures, like standardization (rendering data zero mean and standard deviation 1), very concisely:

```python
In [82]: ts_stand = (df - df.mean()) / df.std()
In [83]: ts_stand.std()
Out[83]:
    one    1.0
    three  1.0
    two    1.0
dtype: float64

In [84]: xs_stand = df.sub(df.mean(1), axis=0).div(df.std(1), axis=0)
In [85]: xs_stand.std(1)
Out[85]:
   a    1.0
   b    1.0
   c    1.0
   d    1.0
dtype: float64
```

Note that methods like cumsum() and cumprod() preserve the location of NA values:

```python
In [86]: df.cumsum()
Out[86]:
   one   three   two
   a -0.626544 NaN -0.351587
   b -0.765438 -0.177289  0.784662
   c -0.753821  0.284925  0.335874
   d NaN  1.409398 -0.765684
```

Here is a quick reference summary table of common functions. Each also takes an optional level parameter which applies only if the object has a hierarchical index.

10.5. Descriptive statistics
pandas: powerful Python data analysis toolkit, Release 0.19.2

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>sum</td>
<td>Sum of values</td>
</tr>
<tr>
<td>mean</td>
<td>Mean of values</td>
</tr>
<tr>
<td>mad</td>
<td>Mean absolute deviation</td>
</tr>
<tr>
<td>median</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>max</td>
<td>Maximum</td>
</tr>
<tr>
<td>mode</td>
<td>Mode</td>
</tr>
<tr>
<td>abs</td>
<td>Absolute Value</td>
</tr>
<tr>
<td>prod</td>
<td>Product of values</td>
</tr>
<tr>
<td>std</td>
<td>Bessel-corrected sample standard deviation</td>
</tr>
<tr>
<td>var</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>sem</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>skew</td>
<td>Sample skewness (3rd moment)</td>
</tr>
<tr>
<td>kurt</td>
<td>Sample kurtosis (4th moment)</td>
</tr>
<tr>
<td>quantile</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>cumsum</td>
<td>Cumulative sum</td>
</tr>
<tr>
<td>cumprod</td>
<td>Cumulative product</td>
</tr>
<tr>
<td>cummax</td>
<td>Cumulative maximum</td>
</tr>
<tr>
<td>cummin</td>
<td>Cumulative minimum</td>
</tr>
</tbody>
</table>

Note that by chance some NumPy methods, like `mean`, `std`, and `sum`, will exclude NAs on Series input by default:

```
In [87]: np.mean(df['one'])
Out[87]: -0.2512736517583951
```

```
In [88]: np.mean(df['one'].values)
Out[88]: nan
```

Series also has a method `nunique()` which will return the number of unique non-null values:

```
In [89]: series = pd.Series(np.random.randn(500))
In [90]: series[20:500] = np.nan
In [91]: series[10:20] = 5
In [92]: series.nunique()
Out[92]: 11
```

Summarizing data: describe

There is a convenient `describe()` function which computes a variety of summary statistics about a Series or the columns of a DataFrame (excluding NAs of course):

```
In [93]: series = pd.Series(np.random.randn(1000))
In [94]: series[::2] = np.nan
In [95]: series.describe()
Out[95]:
count  500.000000
mean  -0.039663
std   1.069371
```

Chapter 10. Essential Basic Functionality
min -3.463789
25% -0.731101
50% -0.058918
75% 0.672758
max 3.120271
dtype: float64

In [96]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])

In [97]: frame.ix[::2] = np.nan

In [98]: frame.describe()
Out[98]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>500.000000</td>
<td>500.000000</td>
<td>500.000000</td>
<td>500.000000</td>
<td>500.000000</td>
</tr>
<tr>
<td>mean</td>
<td>0.000954</td>
<td>-0.044014</td>
<td>0.075936</td>
<td>-0.003679</td>
<td>0.020751</td>
</tr>
<tr>
<td>std</td>
<td>1.005133</td>
<td>0.974882</td>
<td>0.967432</td>
<td>1.004732</td>
<td>0.963812</td>
</tr>
<tr>
<td>min</td>
<td>-3.010899</td>
<td>-2.782760</td>
<td>-3.401252</td>
<td>-2.944925</td>
<td>-3.794127</td>
</tr>
<tr>
<td>25%</td>
<td>-0.682900</td>
<td>-0.681161</td>
<td>-0.528190</td>
<td>-0.663503</td>
<td>-0.615717</td>
</tr>
<tr>
<td>50%</td>
<td>-0.001651</td>
<td>-0.006279</td>
<td>0.040098</td>
<td>-0.003378</td>
<td>0.006282</td>
</tr>
<tr>
<td>75%</td>
<td>0.656439</td>
<td>0.632852</td>
<td>0.717919</td>
<td>0.687214</td>
<td>0.653423</td>
</tr>
<tr>
<td>max</td>
<td>3.007143</td>
<td>2.627688</td>
<td>2.702490</td>
<td>2.850852</td>
<td>3.072117</td>
</tr>
</tbody>
</table>

You can select specific percentiles to include in the output:

In [99]: series.describe(percentiles=[.05, .25, .75, .95])
Out[99]:

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>mean</th>
<th>std</th>
<th>min</th>
<th>5%</th>
<th>25%</th>
<th>75%</th>
<th>95%</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500.000000</td>
<td>-0.039663</td>
<td>1.069371</td>
<td>-3.463789</td>
<td>-1.741334</td>
<td>-0.731101</td>
<td>0.672758</td>
<td>1.854383</td>
<td>3.120271</td>
</tr>
</tbody>
</table>
dtype: float64

By default, the median is always included.

For a non-numerical Series object, describe() will give a simple summary of the number of unique values and most frequently occurring values:

In [100]: s = pd.Series(['a', 'a', 'b', 'b', 'a', 'a', np.nan, 'c', 'd', 'a'])

In [101]: s.describe()
Out[101]:

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>unique</th>
<th>top</th>
<th>freq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>4</td>
<td>a</td>
<td>5</td>
</tr>
</tbody>
</table>
dtype: object

Note that on a mixed-type DataFrame object, describe() will restrict the summary to include only numerical columns or, if none are, only categorical columns:

10.5. Descriptive statistics 455
This behaviour can be controlled by providing a list of types as `include/exclude` arguments. The special value `all` can also be used:

```
In [104]: frame.describe(include=['object'])
Out[104]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>4</td>
</tr>
<tr>
<td>unique</td>
<td>2</td>
</tr>
<tr>
<td>top</td>
<td>No</td>
</tr>
<tr>
<td>freq</td>
<td>2</td>
</tr>
</tbody>
</table>

In [105]: frame.describe(include=['number'])
Out[105]:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>4.000000</td>
</tr>
<tr>
<td>mean</td>
<td>1.500000</td>
</tr>
<tr>
<td>std</td>
<td>1.290994</td>
</tr>
<tr>
<td>min</td>
<td>0.000000</td>
</tr>
<tr>
<td>25%</td>
<td>0.750000</td>
</tr>
<tr>
<td>50%</td>
<td>1.500000</td>
</tr>
<tr>
<td>75%</td>
<td>2.250000</td>
</tr>
<tr>
<td>max</td>
<td>3.000000</td>
</tr>
</tbody>
</table>

In [106]: frame.describe(include='all')
Out[106]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>4</td>
<td>4.000000</td>
</tr>
<tr>
<td>unique</td>
<td>2</td>
<td>NaN</td>
</tr>
<tr>
<td>top</td>
<td>No</td>
<td>NaN</td>
</tr>
<tr>
<td>freq</td>
<td>2</td>
<td>NaN</td>
</tr>
<tr>
<td>mean</td>
<td>NaN</td>
<td>1.500000</td>
</tr>
<tr>
<td>std</td>
<td>NaN</td>
<td>1.290994</td>
</tr>
<tr>
<td>min</td>
<td>NaN</td>
<td>0.000000</td>
</tr>
<tr>
<td>25%</td>
<td>NaN</td>
<td>0.750000</td>
</tr>
<tr>
<td>50%</td>
<td>NaN</td>
<td>1.500000</td>
</tr>
<tr>
<td>75%</td>
<td>NaN</td>
<td>2.250000</td>
</tr>
<tr>
<td>max</td>
<td>NaN</td>
<td>3.000000</td>
</tr>
</tbody>
</table>
```

That feature relies on `select_dtypes`. Refer to there for details about accepted inputs.
Index of Min/Max Values

The `idxmin()` and `idxmax()` functions on Series and DataFrame compute the index labels with the minimum and maximum corresponding values:

```python
In [107]: s1 = pd.Series(np.random.randn(5))

In [108]: s1
Out[108]:
0   -0.872725
1   1.522411
2   0.080594
3  -1.676067
4   0.435804
dtype: float64

In [109]: s1.idxmin(), s1.idxmax()
Out[109]: (3, 1)

In [110]: df1 = pd.DataFrame(np.random.randn(5,3), columns=['A','B','C'])

In [111]: df1
Out[111]:
     A         B          C
0  0.445734 -1.649461   0.169660
1  1.246181  0.131682 -2.001988
2 -1.273023  0.870502  0.214583
3  0.088452 -0.173364  1.207466
4  0.546121  0.409515 -0.310515

In [112]: df1.idxmin(axis=0)
Out[112]:
A   2
B   0
C   1
dtype: int64

In [113]: df1.idxmax(axis=1)
Out[113]:
0  A
1  A
2  B
3  C
4  A
dtype: object
```

When there are multiple rows (or columns) matching the minimum or maximum value, `idxmin()` and `idxmax()` return the first matching index:

```python
In [114]: df3 = pd.DataFrame([2, 1, 1, 3, np.nan], columns=['A'], index=list('edcba'))

In [115]: df3
Out[115]:
     A
e   2.0
d   1.0
c   1.0
b   3.0
```

10.5. Descriptive statistics 457
Note: `idxmin` and `idxmax` are called `argmin` and `argmax` in NumPy.

Value counts (histogramming) / Mode

The `value_counts()` Series method and top-level function computes a histogram of a 1D array of values. It can also be used as a function on regular arrays:

```python
In [117]: data = np.random.randint(0, 7, size=50)
In [118]: data
Out[118]:
array([5, 3, 2, 2, 1, 4, 0, 4, 0, 2, 0, 6, 4, 1, 6, 3, 3, 0, 2, 1, 0, 5, 5,
     3, 6, 1, 5, 6, 2, 0, 0, 6, 3, 3, 5, 0, 4, 3, 3, 0, 6, 1, 3, 5, 5,
     0, 4, 0, 6])
In [119]: s = pd.Series(data)
In [120]: s.value_counts()
Out[120]:
      0  11
      3  10
      6   7
      5   7
      4   5
      2   5
      1   5
dtype: int64
In [121]: pd.value_counts(data)
Out[121]:
      0   11
      3   10
      6   7
      5   7
      4   5
      2   5
      1   5
dtype: int64
```

Similarly, you can get the most frequently occurring value(s) (the mode) of the values in a Series or DataFrame:

```python
In [122]: s5 = pd.Series([1, 1, 3, 3, 3, 5, 5, 7, 7, 7])
In [123]: s5.mode()
Out[123]:
0   3
1   7
dtype: int64
```
In [124]: df5 = pd.DataFrame({'A': np.random.randint(0, 7, size=50),
 'B': np.random.randint(-10, 15, size=50)})

In [125]: df5.mode()
Out[125]:
 A B
0 1 -5

Discretization and quantiling

Continuous values can be discretized using the `cut()` (bins based on values) and `qcut()` (bins based on sample quantiles) functions:

In [126]: arr = np.random.randn(20)
In [127]: factor = pd.cut(arr, 4)
Out[127]:
[(-0.645, 0.336], (-2.61, -1.626], (-1.626, -0.645], (-1.626, -0.645],
 ..., (0.336, 1.316], (0.336, 1.316], (0.336, 1.316], (-2.61, -
-1.626)]
Length: 20
Categories (4, object): [(-2.61, -1.626] < (-1.626, -0.645] < (-0.645, 0.336] < (0.336, 1.316)]

In [128]: factor
Out[128]:
[(-1, 0], (-5, -1], (-1, 0], (-5, -1], (-1, 0], ..., (0, 1], (1, 5], (0, 1],
 ... (-5, -1])
Length: 20
Categories (4, object): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5)]

`qcut()` computes sample quantiles. For example, we could slice up some normally distributed data into equal-size quartiles like so:

In [131]: arr = np.random.randn(30)
In [132]: factor = pd.qcut(arr, [0, .25, .5, .75, 1])

qcut() computes sample quantiles. For example, we could slice up some normally distributed data into equal-size quartiles like so:

In [131]: arr = np.random.randn(30)
In [132]: factor = pd.qcut(arr, [0, .25, .5, .75, 1])

In [133]: factor
Out[133]:
[(-0.139, 1.00736], (1.00736, 1.976], (1.976, 1.976], [-1.0705, -0.439],
 ... (1.00736, 1.976], [-1.0705, -0.439], (-0.439, -0.139], (-0.439, -0.
-139), (-0.139, 1.00736)]
Length: 30
Categories (4, object): [(-1.0705, -0.439] < (-0.439, -0.139] < (-0.139, 1.00736] <
 ... (1.00736, 1.976)]

In [134]: pd.value_counts(factor)
Out[134]:
(1.00736, 1.976] 8
(-1.0705, -0.439] 8

10.5. Descriptive statistics 459
We can also pass infinite values to define the bins:

```python
In [135]: arr = np.random.randn(20)
In [136]: factor = pd.cut(arr, [-np.inf, 0, np.inf])
In [137]: factor
Out[137]:
[(-inf, 0], (0, inf], (0, inf], (0, inf], (-inf, 0], ..., (-inf, 0], (0, inf], (-inf, inf])
Length: 20
Categories (2, object): [(-inf, 0] < (0, inf]]
```

Function application

To apply your own or another library’s functions to pandas objects, you should be aware of the three methods below. The appropriate method to use depends on whether your function expects to operate on an entire DataFrame or Series, row- or column-wise, or elementwise.

1. **Tablewise Function Application**: `pipe()`
2. **Row or Column-wise Function Application**: `apply()`
3. **Elementwise** function application: `applymap()`

Tablewise Function Application

New in version 0.16.2.

DataFrames and Series can of course just be passed into functions. However, if the function needs to be called in a chain, consider using the `pipe()` method. Compare the following

```python
# f, g, and h are functions taking and returning 'DataFrames'
>>> f(g(h(df), arg1=1), arg2=2, arg3=3)
```

with the equivalent

```python
>>> (df.pipe(h)
    .pipe(g, arg1=1)
    .pipe(f, arg2=2, arg3=3)
)
```

Pandas encourages the second style, which is known as method chaining. `pipe` makes it easy to use your own or another library’s functions in method chains, alongside pandas’ methods.

In the example above, the functions `f`, `g`, and `h` each expected the DataFrame as the first positional argument. What if the function you wish to apply takes its data as, say, the second argument? In this case, provide `pipe` with a tuple of `(callable, data_keyword)`. `pipe` will route the DataFrame to the argument specified in the tuple.

For example, we can fit a regression using statsmodels. Their API expects a formula first and a DataFrame as the second argument, `data`. We pass in the function, keyword pair `(sm.poisson, 'data')` to `pipe`:
In [138]: import statsmodels.formula.api as sm

In [139]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [140]: (bb.query('h > 0')
 : .assign(ln_h = lambda df: np.log(df.h))
 : .pipe((sm.poisson, 'data'), 'hr ~ ln_h + year + g + C(lg)')
 : .fit()
 : .summary()
 :)

Optimization terminated successfully.
 Current function value: 2.116284
 Iterations 24

Out[140]:
<class 'statsmodels.iolib.summary.Summary'>

""

Poisson Regression Results
==
Dep. Variable: hr No. Observations: 68
Model: Poisson Df Residuals: 63
Method: MLE Df Model: 4
Date: Sat, 24 Dec 2016 Pseudo R-squ.: 0.6878
Time: 18:31:33 Log-Likelihood: -143.91
converged: True LL-Null: -460.91
LLR p-value: 6.774e-136
===

 coef std err z P>|z| [95.0% Conf. Int.]
Intercept -1267.3636 457.8676 -2.768 0.006 -2164.767 -369.960
C(lg)[T.NL] -0.2057 0.1011 -2.044 0.041 -0.403 -0.008
ln_h 0.9280 0.1912 4.866 0.000 0.554 1.302
year 0.6301 0.2283 2.762 0.006 0.183 1.077
g 0.0099 0.0044 2.754 0.006 0.003 0.017
===
""

The pipe method is inspired by unix pipes and more recently dplyr and magrittr, which have introduced the popular (%>%) (read pipe) operator for R. The implementation of pipe here is quite clean and feels right at home in python. We encourage you to view the source code (pd.DataFrame.pipe?? in IPython).

Row or Column-wise Function Application

Arbitrary functions can be applied along the axes of a DataFrame or Panel using the apply() method, which, like the descriptive statistics methods, take an optional axis argument:

In [141]: df.apply(np.mean)
Out[141]:
one -0.251274
three 0.469799
two -0.191421
dtype: float64

In [142]: df.apply(np.mean, axis=1)
Out[142]:
a -0.489066
In [143]: df.apply(lambda x: x.max() - x.min())
Out[143]:
one 0.638161
three 1.301762
two 2.237808
dtype: float64

In [144]: df.apply(np.cumsum)
Out[144]:
 one three two
a -0.626544 NaN -0.351587
b -0.765438 -0.177289 0.784662
c -0.753821 0.284925 0.335874
d NaN 1.409398 -0.765684

In [145]: df.apply(np.exp)
Out[145]:
 one three two
a 0.534436 NaN 0.703570
b 0.870320 0.837537 3.115063
c 1.011685 1.587586 0.638401
d NaN 3.078592 0.332353

Depending on the return type of the function passed to apply(), the result will either be of lower dimension or the same dimension.

apply() combined with some cleverness can be used to answer many questions about a data set. For example, suppose we wanted to extract the date where the maximum value for each column occurred:

In [146]: tsdf = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'],
 index=pd.date_range('1/1/2000', periods=1000))

In [147]: tsdf.apply(lambda x: x.idxmax())
Out[147]:
 A B C
2001-04-27 2002-06-02 2000-04-02
dtype: datetime64[ns]

You may also pass additional arguments and keyword arguments to the apply() method. For instance, consider the following function you would like to apply:

def subtract_and_divide(x, sub, divide=1):
 return (x - sub) / divide

You may then apply this function as follows:

df.apply(subtract_and_divide, args=(5,), divide=3)

Another useful feature is the ability to pass Series methods to carry out some Series operation on each column or row:
Finally, `apply()` takes an argument `raw` which is False by default, which converts each row or column into a Series before applying the function. When set to True, the passed function will instead receive an ndarray object, which has positive performance implications if you do not need the indexing functionality.

See also:
The section on `GroupBy` demonstrates related, flexible functionality for grouping by some criterion, applying, and combining the results into a Series, DataFrame, etc.

Applying elementwise Python functions

Since not all functions can be vectorized (accept NumPy arrays and return another array or value), the methods `applymap()` on DataFrame and analogously `map()` on Series accept any Python function taking a single value and returning a single value. For example:
In [153]: df4.applymap(f)
Out[153]:
<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>three</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>14</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>b</td>
<td>15</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>c</td>
<td>15</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

`Series.map()` has an additional feature which is that it can be used to easily “link” or “map” values defined by a secondary series. This is closely related to merging/joining functionality:

In [154]: `s = pd.Series(['six', 'seven', 'six', 'seven', 'six'],
 index=['a', 'b', 'c', 'd', 'e'])`
In [155]: `t = pd.Series({'six' : 6., 'seven' : 7.})`
In [156]: `s`
Out[156]:
a six
b seven
c six
d seven
e six
dtype: object
In [157]: `s.map(t)`
Out[157]:
a 6.0
b 7.0
c 6.0
d 7.0
e 6.0
dtype: float64

Applying with a Panel

Applying with a Panel will pass a Series to the applied function. If the applied function returns a Series, the result of the application will be a Panel. If the applied function reduces to a scalar, the result of the application will be a DataFrame.

Note: Prior to 0.13.1 apply on a Panel would only work on ufuncs (e.g. np.sum/np.max).

In [158]: `import pandas.util.testing as tm`
In [159]: `panel = tm.makePanel(5)`
In [160]: `panel`
Out[160]: `<class 'pandas.core.panel.Panel'>`
A transformational apply.

```python
In [162]: result = panel.apply(lambda x: x*2, axis='items')
```

Out[163]:
```
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
```

```
In [164]: result['ItemA']
```

Out[164]:
```
2000-01-03  0.660836  3.786354  1.602222  1.056308
2000-01-04  3.522400  0.340494  0.891228  -0.058742
2000-01-05  1.134266  -1.833689  2.906092  -1.262234
2000-01-06  -0.502039  1.670047  4.860747  -0.344882
2000-01-07  2.040199  2.519838  1.306185  -2.040969
```

A reduction operation.

```python
In [165]: panel.apply(lambda x: x.dtype, axis='items')
```

Out[165]:
```
A B C D
2000-01-03 float64 float64 float64 float64
2000-01-04 float64 float64 float64 float64
2000-01-05 float64 float64 float64 float64
2000-01-06 float64 float64 float64 float64
2000-01-07 float64 float64 float64 float64
```

A similar reduction type operation

```python
In [166]: panel.apply(lambda x: x.sum(), axis='major_axis')
```

Out[166]:
```
ItemA  ItemB  ItemC
A     3.427831  -2.581431  0.840809
B     3.241522  -1.409935 -1.114512
C     5.783237   0.319672 -0.431906
D    -1.325260  -2.914834  0.857043
```

This last reduction is equivalent to

10.6. Function application
A transformation operation that returns a Panel, but is computing the z-score across the major_axis.

```
In [168]: result = panel.apply(
    .....:     lambda x: (x-x.mean()) / x.std(),
    .....:     axis='major_axis')

In [169]: result
Out[169]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 5 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: A to D
```

Apply can also accept multiple axes in the axis argument. This will pass a DataFrame of the cross-section to the applied function.

```
In [171]: f = lambda x: ((x.T-x.mean(1))/x.std(1)).T

In [172]: result = panel.apply(f, axis = ['items','major_axis'])

In [173]: result
Out[173]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC
```

This is equivalent to the following

```
In [174]: result.loc[:,:, 'ItemA']
Out[174]:
```

\[
\begin{array}{cccc}
A & B & C & D \\
2000-01-03 & 0.864236 & 1.132969 & 0.557316 & 0.575106 \\
2000-01-04 & 0.795745 & 0.652527 & 0.534808 & -0.070674 \\
2000-01-05 & -0.310864 & 0.558627 & 1.086688 & -1.051477 \\
2000-01-06 & -0.001065 & 0.832460 & 0.846006 & 0.043602 \\
2000-01-07 & 1.128946 & 1.152469 & -0.218186 & -0.891680 \\
\end{array}
\]
In [175]: result = pd.Panel(dict((ax, f(panel.loc[:,:,ax]))
 : for ax in panel.minor_axis))
 :

In [176]: result
Out[176]:
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 5 (major_axis) x 3 (minor_axis)
Items axis: A to D
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-07 00:00:00
Minor_axis axis: ItemA to ItemC

In [177]: result.loc[:, :, 'ItemA']
Out[177]:
 A B C D
2000-01-03 0.864236 1.132969 0.557316 0.575106
2000-01-04 0.795745 0.652527 0.534808 -0.070674
2000-01-05 -0.310864 0.558627 1.086688 -1.051477
2000-01-06 -0.001065 0.832460 0.846006 0.043602
2000-01-07 1.128946 1.152469 -0.218186 -0.891680

Reindexing and altering labels

reindex() is the fundamental data alignment method in pandas. It is used to implement nearly all other features relying on label-alignment functionality. To reindex means to conform the data to match a given set of labels along a particular axis. This accomplishes several things:

- Reorders the existing data to match a new set of labels
- Inserts missing value (NA) markers in label locations where no data for that label existed
- If specified, fill data for missing labels using logic (highly relevant to working with time series data)

Here is a simple example:

In [178]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])

In [179]: s
Out[179]:
a -1.010924
b -0.672504
c -1.139222
d 0.354653
e 0.563622
dtype: float64

In [180]: s.reindex(['e', 'b', 'f', 'd'])
Out[180]:
e 0.563622
b -0.672504
f NaN
d 0.354653
dtype: float64

Here, the f label was not contained in the Series and hence appears as NaN in the result.

With a DataFrame, you can simultaneously reindex the index and columns:
For convenience, you may utilize the `reindex_axis()` method, which takes the labels and a keyword axis parameter.

Note that the Index objects containing the actual axis labels can be shared between objects. So if we have a Series and a DataFrame, the following can be done:

```python
In [183]: rs = s.reindex(df.index)

In [184]: rs
Out[184]:
   a  -1.010924
   b  -0.672504
   c  -1.139222
   d   0.354653
dtype: float64

In [185]: rs.index is df.index
Out[185]: True
```

This means that the reindexed Series’s index is the same Python object as the DataFrame’s index.

See also:

`MultiIndex / Advanced Indexing` is an even more concise way of doing reindexing.

Note: When writing performance-sensitive code, there is a good reason to spend some time becoming a reindexing ninja: `many operations are faster on pre-aligned data`. Adding two unaligned DataFrames internally triggers a reindexing step. For exploratory analysis you will hardly notice the difference (because `reindex` has been heavily optimized), but when CPU cycles matter sprinkling a few explicit `reindex` calls here and there can have an impact.

Reindexing to align with another object

You may wish to take an object and reindex its axes to be labeled the same as another object. While the syntax for this is straightforward albeit verbose, it is a common enough operation that the `reindex_like()` method is available to make this simpler:

```python
In [186]: df2
Out[186]:
   one  two
   a -0.626544  0.351587
```

468 Chapter 10. Essential Basic Functionality
Aligning objects with each other with `align`

The `align()` method is the fastest way to simultaneously align two objects. It supports a `join` argument (related to joining and merging):

- `join='outer'`: take the union of the indexes (default)
- `join='left'`: use the calling object’s index
- `join='right'`: use the passed object’s index
- `join='inner'`: intersect the indexes

It returns a tuple with both of the reindexed Series:

```
In [189]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [190]: s1 = s[:4]
In [191]: s2 = s[1:]
In [192]: s1.align(s2)
Out[192]:
(a -0.365106
 b  1.092702
 c -1.481449
 d  1.781190
e  NaN
dtype: float64, a  NaN
b  1.092702
c -1.481449
d  1.781190
e -0.031543
dtype: float64)
In [193]: s1.align(s2, join='inner')
Out[193]:
(b  1.092702
c -1.481449
d  1.781190
dtype: float64, b  1.092702
c -1.481449
d  1.781190
dtype: float64)
```
For DataFrames, the join method will be applied to both the index and the columns by default:

```python
In [195]: df.align(df2, join='inner')
Out[195]:
(   one   two
  a -0.626544 -0.351587
  b -0.138894  1.136249
  c  0.011617 -0.448789, one   two
  a -0.626544 -0.351587
  b -0.138894  1.136249
  c  0.011617 -0.448789)
```

You can also pass an axis option to only align on the specified axis:

```python
In [196]: df.align(df2, join='inner', axis=0)
Out[196]:
(   one   three   two
  a -0.626544   NaN -0.351587
  b -0.138894 -0.177289  1.136249
  c  0.011617  0.462215 -0.448789, one   two
  a -0.626544 -0.351587
  b -0.138894  1.136249
  c  0.011617 -0.448789)
```

If you pass a Series to `DataFrame.align()`, you can choose to align both objects either on the DataFrame’s index or columns using the axis argument:

```python
In [197]: df.align(df2.ix[0], axis=1)
Out[197]:
(   one   three   two
  a -0.626544   NaN -0.351587
  b -0.138894 -0.177289  1.136249
  c  0.011617  0.462215 -0.448789, one   two
  a   NaN  1.124472 -1.101558, one   two
  d   NaN              -0.351587
  three   NaN
  two -0.351587
Name: a, dtype: float64)
```
Filling while reindexing

`reindex()` takes an optional parameter `method` which is a filling method chosen from the following table:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad / ffill</td>
<td>Fill values forward</td>
</tr>
<tr>
<td>bfill / backfill</td>
<td>Fill values backward</td>
</tr>
<tr>
<td>nearest</td>
<td>Fill from the nearest index value</td>
</tr>
</tbody>
</table>

We illustrate these fill methods on a simple Series:

```
In [198]: rng = pd.date_range('1/3/2000', periods=8)

In [199]: ts = pd.Series(np.random.randn(8), index=rng)

In [200]: ts2 = ts[[0, 3, 6]]

In [201]: ts
Out[201]:
2000-01-03    0.480993
2000-01-04    0.604244
2000-01-05   -0.487265
2000-01-06    1.990533
2000-01-07    0.327007
2000-01-08    1.053639
2000-01-09   -2.927808
2000-01-10    0.082065
Freq: D, dtype: float64

In [202]: ts2
Out[202]:
2000-01-03    0.480993
2000-01-06    1.990533
2000-01-09   -2.927808
Freq: D, dtype: float64

In [203]: ts2.reindex(ts.index)
Out[203]:
2000-01-03    0.480993
2000-01-04   NaN
2000-01-05   NaN
2000-01-06    1.990533
2000-01-07   NaN
2000-01-08   NaN
2000-01-09   -2.927808
2000-01-10   NaN
Freq: D, dtype: float64

In [204]: ts2.reindex(ts.index, method='ffill')
Out[204]:
2000-01-03    0.480993
2000-01-04    0.480993
2000-01-05    0.480993
2000-01-06    1.990533
2000-01-07    1.990533
2000-01-08    1.990533
2000-01-09   -2.927808
2000-01-10   -2.927808
Freq: D, dtype: float64
```
In [205]: ts2.reindex(ts.index, method='bfill')
Out[205]:
2000-01-03 0.480993
2000-01-04 1.990533
2000-01-05 1.990533
2000-01-06 1.990533
2000-01-07 -2.927808
2000-01-08 -2.927808
2000-01-09 -2.927808
2000-01-10 NaN
Freq: D, dtype: float64

In [206]: ts2.reindex(ts.index, method='nearest')
Out[206]:
2000-01-03 0.480993
2000-01-04 0.480993
2000-01-05 1.990533
2000-01-06 1.990533
2000-01-07 1.990533
2000-01-08 -2.927808
2000-01-09 -2.927808
2000-01-10 -2.927808
Freq: D, dtype: float64

These methods require that the indexes are ordered increasing or decreasing.

Note that the same result could have been achieved usingfillna(except for method='nearest') or interpolate:

In [207]: ts2.reindex(ts.index).fillna(method='ffill')
Out[207]:
2000-01-03 0.480993
2000-01-04 0.480993
2000-01-05 0.480993
2000-01-06 1.990533
2000-01-07 1.990533
2000-01-08 1.990533
2000-01-09 -2.927808
2000-01-10 -2.927808
Freq: D, dtype: float64

reindex() will raise a ValueError if the index is not monotonic increasing or decreasing. fillna() and interpolate() will not make any checks on the order of the index.

Limits on filling while reindexing

The limit and tolerance arguments provide additional control over filling while reindexing. Limit specifies the maximum count of consecutive matches:

In [208]: ts2.reindex(ts.index, method='ffill', limit=1)
Out[208]:
2000-01-03 0.480993
2000-01-04 0.480993
2000-01-05 NaN
2000-01-06 1.990533
2000-01-07 1.990533
2000-01-08 1.990533
2000-01-09 -2.927808
2000-01-10 -2.927808
Freq: D, dtype: float64
In contrast, tolerance specifies the maximum distance between the index and indexer values:

```python
In [209]: ts2.reindex(ts.index, method='ffill', tolerance='1 day')
Out[209]:
2000-01-03  0.480993
2000-01-04  0.480993
2000-01-05   NaN
2000-01-06  1.990533
2000-01-07  1.990533
2000-01-08   NaN
2000-01-09 -2.927808
2000-01-10 -2.927808
Freq: D, dtype: float64
```

Notice that when used on a `DatetimeIndex`, `TimedeltaIndex` or `PeriodIndex`, `tolerance` will be coerced into a `Timedelta` if possible. This allows you to specify tolerance with appropriate strings.

Dropping labels from an axis

A method closely related to `reindex` is the `drop()` function. It removes a set of labels from an axis:

```python
In [210]: df
Out[210]:
     one  three  two
a -0.626544 NaN -0.351587
b -0.138894 -0.177289 1.136249
c  0.011617 0.462215 -0.448789
d  NaN  1.124472 -1.101558

In [211]: df.drop(['a', 'd'], axis=0)
Out[211]:
     one  three  two
b -0.138894 -0.177289 1.136249
c  0.011617 0.462215 -0.448789

In [212]: df.drop(['one'], axis=1)
Out[212]:
    three  two
a  NaN  -0.351587
b -0.177289  1.136249
c  0.462215  -0.448789
d  1.124472 -1.101558
```

Note that the following also works, but is a bit less obvious / clean:

```python
In [213]: df.reindex(df.index.difference(['a', 'd']))
Out[213]:
     one  three  two
b -0.138894 -0.177289 1.136249
c  0.011617 0.462215 -0.448789
```
Renaming / mapping labels

The `rename()` method allows you to relabel an axis based on some mapping (a dict or Series) or an arbitrary function.

```python
In [214]: s
Out[214]:
a -0.365106
b 1.092702
c -1.481449
d 1.781190
e -0.031543
dtype: float64

In [215]: s.rename(str.upper)
Out[215]:
A -0.365106
B 1.092702
C -1.481449
D 1.781190
E -0.031543
dtype: float64
```

If you pass a function, it must return a value when called with any of the labels (and must produce a set of unique values). A dict or Series can also be used:

```python
In [216]: df.rename(columns={'one' : 'foo', 'two' : 'bar'},
index={'a' : 'apple', 'b' : 'banana', 'd' : 'durian'})
```

If the mapping doesn’t include a column/index label, it isn’t renamed. Also extra labels in the mapping don’t throw an error.

The `rename()` method also provides an `inplace` named parameter that is by default `False` and copies the underlying data. Pass `inplace=True` to rename the data in place.

New in version 0.18.0.

Finally, `rename()` also accepts a scalar or list-like for altering the `Series.name` attribute.

```python
In [217]: s.rename("scalar-name")
Out[217]:
a -0.365106
b 1.092702
c -1.481449
d 1.781190
e -0.031543
Name: scalar-name, dtype: float64
```

The Panel class has a related `rename_axis()` class which can rename any of its three axes.
Iteration

The behavior of basic iteration over pandas objects depends on the type. When iterating over a Series, it is regarded as array-like, and basic iteration produces the values. Other data structures, like DataFrame and Panel, follow the dict-like convention of iterating over the “keys” of the objects.

In short, basic iteration (for i in object) produces:

- **Series**: values
- **DataFrame**: column labels
- **Panel**: item labels

Thus, for example, iterating over a DataFrame gives you the column names:

```
In [218]: df = pd.DataFrame({'col1' : np.random.randn(3), 'col2' : np.random.randn(3)}
   ....:     index=['a', 'b', 'c'])
   ....:
In [219]: for col in df:
   ....:     print(col)
   ....: col1
   ....: col2
```

Pandas objects also have the dict-like `iteritems()` method to iterate over the (key, value) pairs.

To iterate over the rows of a DataFrame, you can use the following methods:

- **iterrows()**: Iterate over the rows of a DataFrame as (index, Series) pairs. This converts the rows to Series objects, which can change the dtypes and has some performance implications.
- **itertuples()**: Iterate over the rows of a DataFrame as namedtuples of the values. This is a lot faster than `iterrows()`, and is in most cases preferable to use to iterate over the values of a DataFrame.

Warning: Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed and can be avoided with one of the following approaches:

- Look for a *vectorized* solution: many operations can be performed using built-in methods or numpy functions, (boolean) indexing, ...
- When you have a function that cannot work on the full DataFrame/Series at once, it is better to use `apply()` instead of iterating over the values. See the docs on `function application`.
- If you need to do iterative manipulations on the values but performance is important, consider writing the inner loop using e.g. cython or numba. See the `enhancing performance` section for some examples of this approach.

Warning: You should never modify something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect!

For example, in the following case setting the value has no effect:
In [220]: df = pd.DataFrame({'a': [1, 2, 3], 'b': ['a', 'b', 'c']})

In [221]: for index, row in df.iterrows():
 : row['a'] = 10
 :

In [222]: df
Out[222]:
a b
0 1 a
1 2 b
2 3 c

iteritems

Consistent with the dict-like interface, **iteritems**() iterates through key-value pairs:

- **Series**: (index, scalar value) pairs
- **DataFrame**: (column, Series) pairs
- **Panel**: (item, DataFrame) pairs

For example:

In [223]: for item, frame in wp.iteritems():
 : print(item)
 : print(frame)
 :
Item1
 A B C D
2000-01-01 -1.032011 0.969818 -0.962723 1.382083
2000-01-02 -0.938794 0.669142 -0.433567 -0.273610
2000-01-03 0.680433 -0.308450 -0.276099 -1.821168
2000-01-04 1.993606 -1.927385 -2.027924 1.624972
2000-01-05 0.551135 3.059267 0.455264 -0.030740
Item2
 A B C D
2000-01-01 0.935716 1.061192 -2.107852 0.199905
2000-01-02 0.323586 -0.641630 -0.587514 0.053897
2000-01-03 0.194889 -0.381994 0.318587 2.089075
2000-01-04 0.728293 -0.090255 -0.748199 1.318931
2000-01-05 2.029766 0.792652 0.461007 -0.542749

iterrows

iterrows() allows you to iterate through the rows of a DataFrame as Series objects. It returns an iterator yielding each index value along with a Series containing the data in each row:

In [224]: for row_index, row in df.iterrows():
 : print(row)
 :
0
a 1
b a
Note: Because `iterrows()` returns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

```python
In [225]: df_orig = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
In [226]: df_orig.dtypes
Out[226]:
int    int64
float  float64
dtype: object
In [227]: row = next(df_orig.iterrows())[1]
In [228]: row
Out[228]:
int    1.0
float  1.5
Name: 0, dtype: float64
```

All values in `row`, returned as a Series, are now upcasted to floats, also the original integer value in column `x`:

```python
In [229]: row['int'].dtype
Out[229]: dtype('float64')
In [230]: df_orig['int'].dtype
Out[230]: dtype('int64')
```

To preserve dtypes while iterating over the rows, it is better to use `itertuples()` which returns namedtuples of the values and which is generally much faster as `iterrows`.

For instance, a contrived way to transpose the DataFrame would be:

```python
In [231]: df2 = pd.DataFrame({'x': [1, 2, 3], 'y': [4, 5, 6]})
In [232]: print(df2)
x  y
0 1 4
1 2 5
2 3 6
In [233]: print(df2.T)
x  y
0 1 2
1 3 5
2 4 6
In [234]: df2_t = pd.DataFrame(dict((idx,values) for idx, values in df2.itertuples()))
```
In [235]: print(df2_t)
0 1 2
x 1 2 3
y 4 5 6

itertuples

The `itertuples()` method will return an iterator yielding a namedtuple for each row in the DataFrame. The first element of the tuple will be the row’s corresponding index value, while the remaining values are the row values.

For instance,

In [236]: for row in df.itertuples():
 : print(row)
 :
Pandas(Index=0, a=1, b='a')
Pandas(Index=1, a=2, b='b')
Pandas(Index=2, a=3, b='c')

This method does not convert the row to a Series object but just returns the values inside a namedtuple. Therefore, `itertuples()` preserves the data type of the values and is generally faster as `iterrows()`.

Note: The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned.

.dt accessor

Series has an accessor to succinctly return datetime like properties for the values of the Series, if it is a datetime/period like Series. This will return a Series, indexed like the existing Series.

```py
# datetime
In [237]: s = pd.Series(pd.date_range('20130101 09:10:12', periods=4))

In [238]: s
Out[238]:
0 2013-01-01 09:10:12
1 2013-01-02 09:10:12
2 2013-01-03 09:10:12
3 2013-01-04 09:10:12
dtype: datetime64[ns]

In [239]: s.dt.hour
Out[239]:
0 9
1 9
2 9
3 9
dtype: int64

In [240]: s.dt.second
Out[240]:
```
This enables nice expressions like this:

```
In [242]: s[s.dt.day==2]
Out[242]:
1 2013-01-02 09:10:12
```

You can easily produces tz aware transformations:

```
In [243]: stz = s.dt.tz_localize('US/Eastern')
In [244]: stz
Out[244]:
0 2013-01-01 09:10:12-05:00
1 2013-01-02 09:10:12-05:00
2 2013-01-03 09:10:12-05:00
3 2013-01-04 09:10:12-05:00
dtype: datetime64[ns, US/Eastern]
```

You can also chain these types of operations:

```
In [246]: s.dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[246]:
0 2013-01-01 04:10:12-05:00
1 2013-01-02 04:10:12-05:00
2 2013-01-03 04:10:12-05:00
3 2013-01-04 04:10:12-05:00
dtype: datetime64[ns, US/Eastern]
```

You can also format datetime values as strings with `Series.dt.strftime()` which supports the same format as the standard `strftime()`.
dtype: datetime64[ns]

In [249]: s.dt.strftime('%Y/%m/%d')
Out[249]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object

PeriodIndex

In [250]: s = pd.Series(pd.period_range('20130101', periods=4))

In [251]: s
Out[251]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [252]: s.dt.strftime('%Y/%m/%d')
Out[252]:
0 2013/01/01
1 2013/01/02
2 2013/01/03
3 2013/01/04
dtype: object

The .dt accessor works for period and timedelta dtypes.

period

In [253]: s = pd.Series(pd.period_range('20130101', periods=4, freq='D'))

In [254]: s
Out[254]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
3 2013-01-04
dtype: object

In [255]: s.dt.year
Out[255]:
0 2013
1 2013
2 2013
3 2013
dtype: int64

In [256]: s.dt.day
Out[256]:
0 1
1 2
2 3
3 4
dtype: int64
timedelta

In [257]: s = pd.Series(pd.timedelta_range('1 day 00:00:05', periods=4, freq='s'))

In [258]: s
Out[258]:
0 1 days 00:00:05
1 1 days 00:00:06
2 1 days 00:00:07
3 1 days 00:00:08
dtype: timedelta64[ns]

In [259]: s.dt.days
Out[259]:
0 1
1 1
2 1
3 1
dtype: int64

In [260]: s.dt.seconds
Out[260]:
0 5
1 6
2 7
3 8
dtype: int64

In [261]: s.dt.components
Out[261]:
 days hours minutes seconds milliseconds microseconds nanoseconds
0 1 0 0 5 0 0 0
1 1 0 0 6 0 0 0
2 1 0 0 7 0 0 0
3 1 0 0 8 0 0 0

Note: Series.dt will raise a TypeError if you access with a non-datetimelike values

Vectorized string methods

Series is equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the Series’s str attribute and generally have names matching the equivalent (scalar) built-in string methods. For example:

In [262]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog →', 'cat'])

In [263]: s.str.lower()
Out[263]:
0 a
1 b
2 c
3 aaba
4 baca

10.10. Vectorized string methods 481
Powerful pattern-matching methods are provided as well, but note that pattern-matching generally uses regular expressions by default (and in some cases always uses them).

Please see Vectorized String Methods for a complete description.

Sorting

Warning: The sorting API is substantially changed in 0.17.0, see here for these changes. In particular, all sorting methods now return a new object by default, and DO NOT operate in-place (except by passing inplace=True).

There are two obvious kinds of sorting that you may be interested in: sorting by label and sorting by actual values.

By Index

The primary method for sorting axis labels (indexes) are the `Series.sort_index()` and the `DataFrame.sort_index()` methods.

```python
In [264]: unsorted_df = df.reindex(index=['a', 'd', 'c', 'b'],
                           columns=['three', 'two', 'one'])

# DataFrame
In [265]: unsorted_df.sort_index()
Out[265]:
   three  two  one
  a      NaN   NaN
  b      NaN   NaN
  c      NaN   NaN
  d      NaN   NaN

In [266]: unsorted_df.sort_index(ascending=False)
Out[266]:
   three  two  one
  d      NaN   NaN
  c      NaN   NaN
  b      NaN   NaN
  a      NaN   NaN

In [267]: unsorted_df.sort_index(axis=1)
Out[267]:
   one  three  two
  a      NaN   NaN
  d      NaN   NaN
  c      NaN   NaN
  b      NaN   NaN
```
Series

In [268]: unsorted_df['three'].sort_index()
Out[268]:
 a NaN
 b NaN
 c NaN
d NaN
Name: three, dtype: float64

By Values

The `Series.sort_values()` and `DataFrame.sort_values()` are the entry points for value sorting (that is the values in a column or row). `DataFrame.sort_values()` can accept an optional `by` argument for `axis=0` which will use an arbitrary vector or a column name of the DataFrame to determine the sort order:

In [269]: df1 = pd.DataFrame({'one':[2,1,1,1],'two':[1,3,2,4],'three':[5,4,3,2]})

In [270]: df1.sort_values(by='two')
Out[270]:
 one three two
0 2 5 1
2 1 3 2
1 1 4 3
3 1 2 4

The `by` argument can take a list of column names, e.g.:

In [271]: df1[['one', 'two', 'three']].sort_values(by=['one','two'])
Out[271]:
 one two three
2 1 2 3
1 1 3 4
3 1 4 2
0 2 1 5

These methods have special treatment of NA values via the `na_position` argument:

In [272]: s[2] = np.nan

In [273]: s.sort_values()
Out[273]:
 0 A
 3 Aaa
 1 B
 4 Bca
 6 CABA
 8 cat
 7 dog
 2 NaN
 5 NaN
dtype: object

In [274]: s.sort_values(na_position='first')
Out[274]:
 2 NaN
 5 NaN
searchsorted

Series has the `searchsorted()` method, which works similar to `numpy.ndarray.searchsorted()`.

```python
In [275]: ser = pd.Series([1, 2, 3])
In [276]: ser.searchsorted([0, 3])
Out[276]: array([0, 2])
In [277]: ser.searchsorted([0, 4])
Out[277]: array([0, 3])
In [278]: ser.searchsorted([1, 3], side='right')
Out[278]: array([1, 3])
In [279]: ser.searchsorted([1, 3], side='left')
Out[279]: array([0, 2])
In [280]: ser = pd.Series([3, 1, 2])
In [281]: ser.searchsorted([0, 3], sorter=np.argsort(ser))
Out[281]: array([0, 2])
```

smallest / largest values

New in version 0.14.0.

Series has the `nsmallest()` and `nlargest()` methods which return the smallest or largest `n` values. For a large Series this can be much faster than sorting the entire Series and calling `head(n)` on the result.

```python
In [282]: s = pd.Series(np.random.permutation(10))
In [283]: s
Out[283]:
0  9
1  8
2  5
3  3
4  6
5  7
6  0
7  2
8  4
9  1
dtype: int64
```
In [284]: s.sort_values()
Out[284]:
 6 0
 9 1
 7 2
 3 3
 8 4
 2 5
 4 6
 5 7
 1 8
 0 9
dtype: int64

In [285]: s.nsmallest(3)
Out[285]:
 6 0
 9 1
 7 2
dtype: int64

In [286]: s.nlargest(3)
Out[286]:
 0 9
 1 8
 5 7
dtype: int64

New in version 0.17.0.

DataFrame also has the nlargest and nsmallest methods.

In [287]: df = pd.DataFrame({'a': [-2, -1, 1, 10, 8, 11, -1],
 'b': list('abdceff'),
 'c': [1.0, 2.0, 4.0, 3.2, np.nan, 3.0, 4.0]})

In [288]: df.nlargest(3, 'a')
Out[288]:
 a b c
 5 f 3.0
 3 c 3.2
 4 e NaN

In [289]: df.nlargest(5, ['a', 'c'])
Out[289]:
 a b c
 5 f 3.0
 3 c 3.2
 4 e NaN
 2 d 4.0
 1 b 2.0
 6 f 4.0

In [290]: df.nsmallest(3, 'a')
Out[290]:
 a b c
 0 a 1.0

10.11. Sorting
Sorting by a multi-index column

You must be explicit about sorting when the column is a multi-index, and fully specify all levels to by.

```python
In [292]: df1.columns = pd.MultiIndex.from_tuples([('a', 'one'), ('a', 'two'), ('b', 'three')])
In [293]: df1.sort_values(by=('a', 'two'))
Out[293]:
       a  b
one two three
3   1  2  4
2   1  3  2
1   1  4  3
0   2  5  1
```

Copying

The `copy()` method on pandas objects copies the underlying data (though not the axis indexes, since they are immutable) and returns a new object. Note that it is seldom necessary to copy objects. For example, there are only a handful of ways to alter a DataFrame in-place:

- Inserting, deleting, or modifying a column
- Assigning to the index or columns attributes
- For homogeneous data, directly modifying the values via the values attribute or advanced indexing

To be clear, no pandas methods have the side effect of modifying your data; almost all methods return new objects, leaving the original object untouched. If data is modified, it is because you did so explicitly.

dtypes

The main types stored in pandas objects are `float`, `int`, `bool`, `datetime64[ns]` and `datetime64[ns,tz]` (in >= 0.17.0), `timedelta[ns]`, `category` (in >= 0.15.0), and `object`. In addition these dtypes have item sizes, e.g. `int64` and `int32`. See `Series with TZ` for more detail on `datetime64[ns,tz]` dtypes.
A convenient `dtypes` attribute for DataFrames returns a Series with the data type of each column.

```python
In [294]: dft = pd.DataFrame(dict(A = np.random.rand(3),
....:                     B = 1,
....:                     C = 'foo',
....:                     D = pd.Timestamp('20010102'),
....:                     E = pd.Series([1.0]*3).astype('float32'),
....:                     F = False,
....:                     G = pd.Series([1]*3,dtype='int8')))
....:
In [295]: dft
Out[295]:
    A     B    C        D       E        F        G
0  0.954940  1  foo  2001-01-02  1.0  False     1
1  0.318163  1  foo  2001-01-02  1.0  False     1
2  0.985803  1  foo  2001-01-02  1.0  False     1

In [296]: dft.dtypes
Out[296]:
    A    float64
    B     int64
    C     object
    D  datetime64[ns]
    E      float32
    F       bool
    G      int8
dtype: object
```

On a `Series` use the `dtype` attribute.

```python
In [297]: dft['A'].dtype
Out[297]: dtype('float64')
```

If a pandas object contains data multiple dtypes IN A SINGLE COLUMN, the dtype of the column will be chosen to accommodate all of the data types (object is the most general).

```python
# these ints are coerced to floats
In [298]: pd.Series([1, 2, 3, 4, 5, 6.])
Out[298]:
    0    1.0
    1    2.0
    2    3.0
    3    4.0
    4    5.0
    5    6.0
dtype: float64

# string data forces an `object` dtype
In [299]: pd.Series([1, 2, 3, 6., 'foo'])
Out[299]:
    0    1
    1    2
    2    3
    3    6
    4    foo
dtype: object
```

The method `get_dtype_counts()` will return the number of columns of each type in a DataFrame:
In [300]: dft.get_dtype_counts()
Out[300]:
bool 1
datetime64[ns] 1
float32 1
float64 1
int64 1
int8 1
object 1
dtype: int64

Numeric dtypes will propagate and can coexist in DataFrames (starting in v0.11.0). If a dtype is passed (either directly via the dtype keyword, a passed ndarray, or a passed Series, then it will be preserved in DataFrame operations. Furthermore, different numeric dtypes will NOT be combined. The following example will give you a taste.

In [301]: df1 = pd.DataFrame(np.random.randn(8, 1), columns=['A'], dtype='float32')

In [302]: df1
Out[302]:
 A
0 0.647650
1 0.822993
2 1.778703
3 -1.543048
4 -0.123256
5 2.239740
6 -0.143778
7 -2.885090

In [303]: df1.dtypes
Out[303]:
A float32
dtype: object

In [304]: df2 = pd.DataFrame(dict(A = pd.Series(np.random.randn(8), dtype='float16'), B = pd.Series(np.random.randn(8)), C = pd.Series(np.array(np.random.randn(8), dtype='uint8'))))

In [305]: df2
Out[305]:
 A B C
0 0.027588 0.296947 0
1-1.150391 0.007045 255
2 0.246460 0.707877 1
3-0.455078 0.950661 0
4-1.507812 0.087527 0
5-0.502441-0.339212 0
6 0.528809-0.278698 0
7 0.590332 1.775379 0

In [306]: df2.dtypes
Out[306]:
A float16
B float64
C uint8
dtype: object
defaults

By default integer types are int64 and float types are float64, REGARDLESS of platform (32-bit or 64-bit). The following will all result in int64 dtypes.

```
In [307]: pd.DataFrame([1, 2], columns=['a']).dtypes
Out[307]:
   a
Name: int64, dtype: object

In [308]: pd.DataFrame({'a': [1, 2]}).dtypes
Out[308]:
   a
Name: int64, dtype: object

In [309]: pd.DataFrame({'a': 1}, index=list(range(2))).dtypes
Out[309]:
   a
Name: int64, dtype: object
```

Numpy, however will choose platform-dependent types when creating arrays. The following WILL result in int32 on 32-bit platform.

```
In [310]: frame = pd.DataFrame(np.array([1, 2]))
```

upcasting

Types can potentially be upcasted when combined with other types, meaning they are promoted from the current type (say int to float)

```
In [311]: df3 = df1.reindex_like(df2).fillna(value=0.0) + df2

In [312]: df3
Out[312]:
     A     B     C
0  0.675238  0.296947  0.0
1 -0.327398  0.007045  255.0
2  2.025163  0.707877  1.0
3 -1.998126  0.950661  0.0
4 -1.631068  0.950661  0.0
5  1.737299 -0.339212  0.0
6  0.385030 -0.278698  0.0
7 -2.294758  1.775379  0.0

In [313]: df3.dtypes
Out[313]:
   A     B     C
Name: float32, dtype: object
```

The values attribute on a DataFrame return the lower-common-denominator of the dtypes, meaning the dtype that can accommodate ALL of the types in the resulting homogeneous dtyped numpy array. This can force some upcasting.

10.13. dtypes
In [314]: df3.values.dtype
Out[314]: dtype('float64')

astype

You can use the `astype()` method to explicitly convert dtypes from one to another. These will by default return a copy, even if the dtype was unchanged (pass `copy=False` to change this behavior). In addition, they will raise an exception if the astype operation is invalid.

Upcasting is always according to the `numpy` rules. If two different dtypes are involved in an operation, then the more general one will be used as the result of the operation.

```python
In [315]: df3
Out[315]:
   A     B     C
0  0.675238  0.296947  0.0
1 -0.327398  0.007045  255.0
2  2.025163  0.707877  1.0
3 -1.998126  0.950661  0.0
4 -1.631068  0.087527  0.0
5  1.737299 -0.339212  0.0
6  0.385030 -0.278698  0.0
7 -2.294758  1.775379  0.0
```

In [316]: df3.dtypes
Out[316]:
 A float32
 B float64
 C float64
dtype: object

conversion of dtypes
In [317]: df3.astype('float32').dtypes
Out[317]:
 A float32
 B float32
 C float32
dtype: object

Convert a subset of columns to a specified type using `astype()`

```python
In [318]: dft = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6], 'c': [7, 8, 9]})
In [319]: dft['a','b'] = dft['a','b'].astype(np.uint8)
In [320]: dft
Out[320]:
   a    b
0  1    4
1  2    5
2  3    6
```

In [321]: dft.dtypes
Out[321]:
 a uint8
 b uint8
Note: When trying to convert a subset of columns to a specified type using `astype()` and `loc()`, upcasting occurs. `loc()` tries to fit in what we are assigning to the current dtypes, while `[]` will overwrite them taking the dtype from the right hand side. Therefore the following piece of code produces the unintended result.

```python
In [322]: dft = pd.DataFrame({'a': [1,2,3], 'b': [4,5,6], 'c': [7, 8, 9]})
In [323]: dft.loc[:, ['a', 'b']].astype(np.uint8).dtypes
Out[323]:
a    uint8
b    uint8
dtype: object
In [324]: dft.loc[:, ['a', 'b']] = dft.loc[:, ['a', 'b']].astype(np.uint8)
In [325]: dft.dtypes
Out[325]:
a    int64
b    int64
c    int64
dtype: object
```

object conversion

pandas offers various functions to try to force conversion of types from the object dtype to other types. The following functions are available for one dimensional object arrays or scalars:

- **`to_numeric()`** (conversion to numeric dtypes)

  ```python
  In [326]: m = ['1.1', 2, 3]
  In [327]: pd.to_numeric(m)
  Out[327]: array([ 1.1, 2. , 3. ])
  ```

- **`to_datetime()`** (conversion to datetime objects)

  ```python
  In [328]: import datetime
  In [329]: m = ['2016-07-09', datetime.datetime(2016, 3, 2)]
  In [330]: pd.to_datetime(m)
  Out[330]: DatetimeIndex([‘2016-07-09’, ‘2016-03-02’], dtype=’datetime64[ns]’, freq=None)
  ```

- **`to_timedelta()`** (conversion to timedelta objects)

  ```python
  In [331]: m = ['5us', pd.Timedelta('1day')]
  In [332]: pd.to_timedelta(m)
  Out[332]: TimedeltaIndex([‘0 days 00:00:00.000005’, ‘1 days 00:00:00’], dtype=’timedelta64[ns]’, freq=None)
  ```

10.13. dtypes
To force a conversion, we can pass in an `errors` argument, which specifies how pandas should deal with elements that cannot be converted to desired dtype or object. By default, `errors='raise'`, meaning that any errors encountered will be raised during the conversion process. However, if `errors='coerce'`, these errors will be ignored and pandas will convert problematic elements to `pd.NaT` (for datetime and timedelta) or `np.nan` (for numeric). This might be useful if you are reading in data which is mostly of the desired dtype (e.g. numeric, datetime), but occasionally has non-conforming elements intermixed that you want to represent as missing:

```python
In [333]: import datetime

In [334]: m = ['apple', datetime.datetime(2016, 3, 2)]

In [335]: pd.to_datetime(m, errors='coerce')
Out[335]: DatetimeIndex(['NaT', '2016-03-02'], dtype='datetime64[ns]', freq=None)

In [336]: m = ['apple', 2, 3]

In [337]: pd.to_numeric(m, errors='coerce')
Out[337]: array([ nan, 2., 3.])

In [338]: m = ['apple', pd.Timedelta('1day')]

In [339]: pd.to_timedelta(m, errors='coerce')
Out[339]: TimedeltaIndex(['NaT', '1 days'], dtype='timedelta64[ns]', freq=None)
```

The `errors` parameter has a third option of `errors='ignore'`, which will simply return the passed in data if it encounters any errors with the conversion to a desired data type:

```python
In [340]: import datetime

In [341]: m = ['apple', datetime.datetime(2016, 3, 2)]

In [342]: pd.to_datetime(m, errors='ignore')
Out[342]: array(['apple', datetime.datetime(2016, 3, 2, 0, 0)], dtype=object)

In [343]: m = ['apple', 2, 3]

In [344]: pd.to_numeric(m, errors='ignore')
Out[344]: array(['apple', 2, 3], dtype=object)

In [345]: m = ['apple', pd.Timedelta('1day')]

In [346]: pd.to_timedelta(m, errors='ignore')
Out[346]: array(['apple', Timedelta('1 days 00:00:00')], dtype=object)
```

In addition to object conversion, `to_numeric()` provides another argument `downcast`, which gives the option of downcasting the newly (or already) numeric data to a smaller dtype, which can conserve memory:

```python
In [347]: m = ['1', 2, 3]

In [348]: pd.to_numeric(m, downcast='integer')  # smallest signed int dtype
Out[348]: array([1, 2, 3], dtype=int8)

In [349]: pd.to_numeric(m, downcast='signed')  # same as 'integer'
Out[349]: array([1, 2, 3], dtype=int8)

In [350]: pd.to_numeric(m, downcast='unsigned')  # smallest unsigned int dtype
Out[350]: array([1, 2, 3], dtype=uint8)
```
As these methods apply only to one-dimensional arrays, lists or scalars; they cannot be used directly on multi-dimensional objects such as DataFrames. However, with `apply()`, we can “apply” the function over each column efficiently:

```python
In [352]: import datetime

In [353]: df = pd.DataFrame([['2016-07-09', datetime.datetime(2016, 3, 2)]] * 2, dtype='O')

In [354]: df
Out[354]:
   0           1
0 2016-07-09 2016-03-02 00:00:00
1 2016-07-09 2016-03-02 00:00:00

In [355]: df.apply(pd.to_datetime)
Out[355]:
   0           1
0 2016-07-09 2016-03-02
1 2016-07-09 2016-03-02

In [356]: df = pd.DataFrame([['1.1', 2, 3]] * 2, dtype='O')

In [357]: df
Out[357]:
   0  1  2
0 1.1 2  3
1 1.1 2  3

In [358]: df.apply(pd.to_numeric)
Out[358]:
   0  1  2
0 1.1 2  3
1 1.1 2  3

In [359]: df = pd.DataFrame([['5us', pd.Timedelta('1day')]] * 2, dtype='O')

In [360]: df
Out[360]:
   0 1
0 5us 1 days 00:00:00
1 5us 1 days 00:00:00

In [361]: df.apply(pd.to_timedelta)
Out[361]:
   0 1
0 00:00:00.000005 1 days
1 00:00:00.000005 1 days
```

gotchases

Performing selection operations on integer type data can easily upcast the data to floating. The dtype of the input data will be preserved in cases where nans are not introduced (starting in 0.11.0) See also integer na gotchas
In [362]: dfi = df3.astype('int32')

In [363]: dfi['E'] = 1

In [364]: dfi
Out[364]:
 A B C E
0 0 0 0 1
1 0 0 255 1
2 2 0 1 1
3 -1 0 0 1
4 -1 0 0 1
5 1 0 0 1
6 0 0 0 1
7 -2 1 0 1

In [365]: dfi.dtypes
Out[365]:
 A B C E
dtype: object

In [366]: casted = dfi[dfi>0]

In [367]: casted
Out[367]:
 A B C E
0 NaN NaN NaN 1
1 NaN NaN 255.0 1
2 2.0 NaN 1.0 1
3 NaN NaN NaN 1
4 NaN NaN NaN 1
5 1.0 NaN NaN 1
6 NaN NaN NaN 1
7 NaN 1.0 NaN 1

In [368]: casted.dtypes
Out[368]:
 A B C E
dtype: object

While float dtypes are unchanged.

In [369]: dfa = df3.copy()

In [370]: dfa['A'] = dfa['A'].astype('float32')

In [371]: dfa.dtypes
Out[371]:
 A B C
dtype: object
In [372]: casted = df[df2>0]

In [373]: casted
Out[373]:
 A B C
0 0.675238 0.296947 NaN
1 NaN 0.007045 255.0
2 2.025163 0.707877 1.0
3 NaN 0.087527 NaN
4 NaN NaN NaN
5 0.385030 NaN NaN
6 -2.294758 1.775379 NaN

In [374]: casted.dtypes
Out[374]:
A float32
B float64
C float64
dtype: object

Selecting columns based on dtype

New in version 0.14.1.

The `select_dtypes()` method implements subsetting of columns based on their `dtype`.

First, let's create a `DataFrame` with a slew of different dtypes:

In [375]:
 : df = pd.DataFrame({'string': list('abc'),
 : 'int64': list(range(1, 4)),
 : 'uint8': np.arange(3, 6).astype('u1'),
 : 'float64': np.arange(4.0, 7.0),
 : 'bool1': [True, False, True],
 : 'bool2': [False, True, False],
 : 'dates': pd.date_range('now', periods=3).values,
 : 'category': pd.Series(list("ABC"))_.astype('category'))

In [376]:
 : df['tdeltas'] = df.dates.diff()

In [377]:
 : df['uint64'] = np.arange(3, 6).astype('u8')

In [378]:
 : df['other_dates'] = pd.date_range('20130101', periods=3).values

In [379]:
 : df['tz_aware_dates'] = pd.date_range('20130101', periods=3, tz='US/Eastern')

In [380]:
 : df
Out[380]:
 bool1 bool2 category dates float64 int64 string
0 True False A 2016-12-24 18:31:36.297875 4.0 1 a
1 False True B 2016-12-25 18:31:36.297875 5.0 2 b
2 False True C 2016-12-26 18:31:36.297875 6.0 3 c

 uint8 tdeltas uint64 other_dates tz_aware_dates
And the dtypes

```python
In [381]: df.dtypes
Out[381]:
bool1  bool
bool2  bool
category category
dates  datetime64[ns]
float64 float64
int64  int64
string object
uint8  uint8
tdeltas timedelta64[ns]
uint64 uint64
other_dates datetime64[ns]
tz_aware_dates datetime64[ns, US/Eastern]
dtype: object
```

`select_dtypes()` has two parameters `include` and `exclude` that allow you to say “give me the columns WITH these dtypes” (`include`) and/or “give the columns WITHOUT these dtypes” (`exclude`).

For example, to select `bool` columns

```python
In [382]: df.select_dtypes(include=[bool])
Out[382]:
   bool1  bool2
0   True   False
1   False   True
2   True   False
```

You can also pass the name of a dtype in the numpy dtype hierarchy:

```python
In [383]: df.select_dtypes(include=['bool'])
Out[383]:
   bool1  bool2
0   True   False
1   False   True
2   True   False
```

`select_dtypes()` also works with generic dtypes as well.

For example, to select all numeric and boolean columns while excluding unsigned integers

```python
In [384]: df.select_dtypes(include=['number', 'bool'], exclude=['unsignedinteger'])
Out[384]:
   bool1  bool2  float64  int64  tdeltas
0   True   False  4.0    1   NaT
1   False   True  5.0    2  1 days
2   True   False  6.0    3  1 days
```

To select string columns you must use the `object` dtype:

```python
In [385]: df.select_dtypes(include=['object'])
Out[385]:
```
To see all the child dtypes of a generic `dtype` like `numpy.number` you can define a function that returns a tree of child dtypes:

```python
In [386]: def subdtypes(dtype):
    ....:     subs = dtype.__subclasses__()
    ....:     if not subs:
    ....:         return dtype
    ....:     return [dtype, [subdtypes(dt) for dt in subs]]
```

All numpy dtypes are subclasses of `numpy.generic`:

```python
In [387]: subdtypes(np.generic)
Out[387]:
[numpy.generic,
 [[numpy.number,
   [[numpy.integer,
     [[numpy.signedinteger,
       [numpy.int8,
       numpy.int16,
       numpy.int32,
       numpy.int64,
       numpy.int64,
       numpy.timedelta64]],
     [numpy.unsignedinteger,
       [numpy.uint8,
       numpy.uint16,
       numpy.uint32,
       numpy.uint64,
       numpy.uint64]]],
   [numpy.inexact,
     [[numpy.floating,
       [numpy.float16, numpy.float32, numpy.float64, numpy.float128]],
     [numpy.complexfloating,
       [numpy.complex64, numpy.complex128, numpy.complex256]]]]],
 [numpy.flexible,
   [[numpy.character, [numpy.string_, numpy.unicode_]],
   [numpy.void, [numpy.record]]],
   numpy.bool_,
   numpy.datetime64,
   numpy.object_]]
```

Note: Pandas also defines the types `category`, and `datetime64[ns,tz]`, which are not integrated into the normal numpy hierarchy and wont show up with the above function.

Note: The `include` and `exclude` parameters must be non-string sequences.
Series and Index are equipped with a set of string processing methods that make it easy to operate on each element of the array. Perhaps most importantly, these methods exclude missing/NA values automatically. These are accessed via the `str` attribute and generally have names matching the equivalent (scalar) built-in string methods:

```
In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [2]: s.str.lower()
Out[2]:
0    a
1    b
2    c
3   aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

In [3]: s.str.upper()
Out[3]:
0    A
1    B
2    C
3   AABA
4    BACA
5     NaN
6    CABA
7     DOG
8     CAT
dtype: object

In [4]: s.str.len()
Out[4]:
0    1.0
1    1.0
2    1.0
3    4.0
4    4.0
5     NaN
6    4.0
7    3.0
8    3.0
dtype: float64
```
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:

In [9]: df = pd.DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '],
 index=range(3))

In [10]: df
Out[10]:
 Column A Column B
0 0.017428 0.039049
1 -2.240248 0.847859
2 -1.342107 0.368828

Since df.columns is an Index object, we can use the .str accessor

In [11]: df.columns.str.strip()
Out[11]: Index(['Column A', 'Column B'], dtype='object')

In [12]: df.columns.str.lower()
Out[12]: Index([' column a ', ' column b '], dtype='object')

These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lowercasing all names, and replacing any remaining whitespaces with underscores:

In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')

In [14]: df
Out[14]:
 column_a column_b
0 0.017428 0.039049
1 -2.240248 0.847859
2 -1.342107 0.368828

Note: If you have a Series where lots of elements are repeated (i.e. the number of unique elements in the Series is a lot smaller than the length of the Series), it can be faster to convert the original Series to one of type category and then use .str.<method> or .dt.<property> on that. The performance difference comes from the fact that, for Series of type category, the string operations are done on the .categories and not on each element of the Series.

Please note that a Series of type category with string .categories has some limitations in comparison of Series of type string (e.g. you can’t add strings to each other: s + " " + s won’t work if s is a Series of type category). Also, .str methods which operate on elements of type list are not available on such a Series.
Splitting and Replacing Strings

Methods like `split` return a Series of lists:

```python
In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
In [16]: s2.str.split('_')
Out[16]:
0    [a, b, c]
1     [c, d, e]
2          NaN
3    [f, g, h]
dtype: object
```

Elements in the split lists can be accessed using `get` or `[]` notation:

```python
In [17]: s2.str.split('_').str.get(1)
Out[17]:
0    b
1    d
2   NaN
3    g
dtype: object

In [18]: s2.str.split('_').str[1]
Out[18]:
0    b
1    d
2   NaN
3    g
dtype: object
```

Easy to expand this to return a DataFrame using `expand`.

```python
In [19]: s2.str.split('_', expand=True)
Out[19]:
      0  1  2
0  a  b  c
1  c  d  e
2  NaN None None
3  f  g  h
```

It is also possible to limit the number of splits:

```python
In [20]: s2.str.split('_', expand=True, n=1)
Out[20]:
      0  1
0  a  b_c
1  c  d_e
2  NaN None
3  f  g_h
```

`rsplit` is similar to `split` except it works in the reverse direction, i.e., from the end of the string to the beginning of the string:

```python
In [21]: s2.str.rsplit('_', expand=True, n=1)
Out[21]:
      0  1
0  _b_a
1  _d_c
2  _e_d
3  _h_g
```
Methods like `replace` and `findall` take regular expressions, too:

```python
In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', '', np.nan, 'CABA', 'dog', 'cat'])
   ....:
   ....:
In [23]: s3
Out[23]:
0    A
1    B
2    C
3  Aaba
4  Baca
5    NaN
6   CABA
7    dog
8    cat
dtype: object

In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Out[24]:
0     A
1    B
2    C
3  XX-XX ba
4  XX-XX ca
5    NaN
6  XX-XX BA
7  XX-XX
8  XX-XX t
9  XX-XX t
dtype: object
```

Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $:

```python
# Consider the following badly formatted financial data
In [25]: dollars = pd.Series(['12', '-$10', '$10,000'])

# This does what you'd naively expect:
In [26]: dollars.str.replace('$', '')
Out[26]:
0    12
1   -10
2  10,000
dtype: object

# But this doesn't:
In [27]: dollars.str.replace('-$', '-')
Out[27]:
0    12
1  -$10
```
We need to escape the special character (for >1 len patterns)

```python
In [28]: dollars.str.replace(r'\$\', '-')
```

```text
Out[28]:
0  12
1 -10
2 $10,000
```

dtype: object

Indexing with `.str`

You can use `[]` notation to directly index by position locations. If you index past the end of the string, the result will be `NaN`.

```python
In [29]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [30]: s.str[0]
```

```text
Out[30]:
0 A
1 B
2 C
3 A
4 B
5 NaN
6 C
7 d
8 c
dtype: object
```

```python
In [31]: s.str[1]
```

```text
Out[31]:
0 NaN
1 NaN
2 NaN
3 a
4 a
5 NaN
6 A
7 o
8 a
dtype: object
```

Extracting Substrings

Extract first match in each subject (extract)

New in version 0.13.0.
Warning: In version 0.18.0, `extract` gained the `expand` argument. When `expand=False` it returns a Series, Index, or DataFrame, depending on the subject and regular expression pattern (same behavior as pre-0.18.0). When `expand=True` it always returns a DataFrame, which is more consistent and less confusing from the perspective of a user.

The `extract` method accepts a regular expression with at least one capture group.

Extracting a regular expression with more than one group returns a DataFrame with one column per group.

```
in [32]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False)
Out[32]:
         0 1
0       a 1
1       b 2
2      NaN NaN
```

Elements that do not match return a row filled with NaN. Thus, a Series of messy strings can be “converted” into a like-indexed Series or DataFrame of cleaned-up or more useful strings, without necessitating `get()` to access tuples or `re.match` objects. The dtype of the result is always object, even if no match is found and the result only contains NaN.

Named groups like

```
in [33]: pd.Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)', expand=False)
Out[33]:
          letter  digit
0         a       1
1         b       2
2     NaN     NaN
```

and optional groups like

```
in [34]: pd.Series(['a1', 'b2', '3']).str.extract('([ab])?(\d)', expand=False)
Out[34]:
       0 1
0       a 1
1       b 2
2     NaN 3
```

can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.

Extracting a regular expression with one group returns a DataFrame with one column if `expand=True`.

```
in [35]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
Out[35]:
0   0
1   1
2   2
```

It returns a Series if `expand=False`.

```
in [36]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Out[36]:
0   1
```
Calling on an Index with a regex with exactly one capture group returns a DataFrame with one column if expand=True,

```
In [37]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
In [38]: s
Out[38]:
A11  a1
B22  b2
C33  c3
dtype: object
```

```
In [39]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[39]:
  letter
0   A
1   B
2   C
```

It returns an Index if expand=False.

```
In [40]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[40]: Index([u'A', u'B', u'C'], dtype='object', name=u'letter')
```

Calling on an Index with a regex with more than one capture group returns a DataFrame if expand=True.

```
In [41]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[41]:
   letter  1
0      A   11
1      B   22
2      C   33
```

It raises ValueError if expand=False.

```
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
```

The table below summarizes the behavior of `extract` (expand=False) (input subject in first column, number of groups in regex in first row)

<table>
<thead>
<tr>
<th>Input Subject</th>
<th>1 group</th>
<th>>1 group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Index</td>
<td>ValueError</td>
</tr>
<tr>
<td>Series</td>
<td>Series</td>
<td>DataFrame</td>
</tr>
</tbody>
</table>

Extract all matches in each subject (extractall)

New in version 0.18.0.

Unlike `extract` (which returns only the first match),
In [42]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])

In [43]: s
Out[43]:
A a1a2
B b1
C c1
dtype: object

In [44]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'

In [45]: s.str.extract(two_groups, expand=True)
Out[45]:
 letter digit
A a 1
B b 1
C c 1

the extractall method returns every match. The result of extractall is always a DataFrame with a MultiIndex on its rows. The last level of the MultiIndex is named match and indicates the order in the subject.

In [46]: s.str.extractall(two_groups)
Out[46]:
 letter digit
match
A 0 a 1
 1 a 2
B 0 b 1
C 0 c 1

When each subject string in the Series has exactly one match,

In [47]: s = pd.Series(['a3', 'b3', 'c2'])

In [48]: s
Out[48]:
0 a3
1 b3
2 c2
dtype: object

then extractall(pat).xs(0, level='match') gives the same result as extract(pat).

In [49]: extract_result = s.str.extract(two_groups, expand=True)

In [50]: extract_result
Out[50]:
 letter digit
0 a 3
1 b 3
2 c 2

In [51]: extractall_result = s.str.extractall(two_groups)

In [52]: extractall_result
Out[52]:
 letter digit
match
0 0 a 3
 1 a 2
1 0 b 1
2 0 c 1
match
0 a 3
1 b 3
2 c 2

In [53]: extractall_result.xs(0, level="match")
Out[53]:
 letter digit
0 a 3
1 b 3
2 c 2

Index also supports .str.extractall. It returns a DataFrame which has the same result as a Series.str.extractall with a default index (starts from 0).

New in version 0.19.0.

In [54]: pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Out[54]:
 letter digit
 match
0 a 1
1 a 2
1 b 1
2 c 1

In [55]: pd.Series(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Out[55]:
 letter digit
 match
0 a 1
1 a 2
1 b 1
2 c 1

Testing for Strings that Match or Contain a Pattern

You can check whether elements contain a pattern:

In [56]: pattern = r'[a-z][0-9]'

In [57]: pd.Series(["1", "2", "3a", "3b", "03c"]).str.contains(pattern)
Out[57]:
0 False
1 False
2 False
3 False
4 False
dtype: bool

or match a pattern:

In [58]: pd.Series(["1", "2", "3a", "3b", "03c"]).str.match(pattern, as_indexer=True)
Out[58]:
0 False
1 False
The distinction between `match` and `contains` is strictness: `match` relies on strict `re.match`, while `contains` relies on `re.search`.

Warning: In previous versions, `match` was for extracting groups, returning a not-so-convenient Series of tuples. The new method `extract` (described in the previous section) is now preferred.

This old, deprecated behavior of `match` is still the default. As demonstrated above, use the new behavior by setting `as_indexer=True`. In this mode, `match` is analogous to `contains`, returning a boolean Series. The new behavior will become the default behavior in a future release.

Methods like `match`, `contains`, `startswith`, and `endswith` take an extra `na` argument so missing values can be considered True or False:

```python
In [59]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [60]: s4.str.contains('A', na=False)
Out[60]:
0    True
1   False
2   False
3    True
4   False
5   False
6    True
7   False
8   False
dtype: bool
```

Creating Indicator Variables

You can extract dummy variables from string columns. For example if they are separated by a `'|'`:

```python
In [61]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])
In [62]: s.str.get_dummies(sep='|')
```

String Index also supports `get_dummies` which returns a `MultiIndex`.

New in version 0.18.1.

```python
In [63]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])
In [64]: idx.str.get_dummies(sep='|')
```
Out[64]:
MultiIndex(levels=[[0, 1], [0, 1], [0, 1]],
labels=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]],
names=['a', 'b', 'c'])

See also `get_dummies()`.

Method Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cat()</code></td>
<td>Concatenate strings</td>
</tr>
<tr>
<td><code>split()</code></td>
<td>Split strings on delimiter</td>
</tr>
<tr>
<td><code>rsplit()</code></td>
<td>Split strings on delimiter working from the end of the string</td>
</tr>
<tr>
<td><code>get()</code></td>
<td>Index into each element (retrieve i-th element)</td>
</tr>
<tr>
<td><code>join()</code></td>
<td>Join strings in each element of the Series with passed separator</td>
</tr>
<tr>
<td><code>get_dummies()</code></td>
<td>Split strings on the delimiter returning DataFrame of dummy variables</td>
</tr>
<tr>
<td><code>contains()</code></td>
<td>Return boolean array if each string contains pattern/regex</td>
</tr>
<tr>
<td><code>replace()</code></td>
<td>Replace occurrences of pattern/regex with some other string</td>
</tr>
<tr>
<td><code>repeat()</code></td>
<td>Duplicate values (s.str.repeat(3) equivalent to x * 3)</td>
</tr>
<tr>
<td><code>pad()</code></td>
<td>Add whitespace to left, right, or both sides of strings</td>
</tr>
<tr>
<td><code>center()</code></td>
<td>Equivalent to <code>str.center</code></td>
</tr>
<tr>
<td><code>ljust()</code></td>
<td>Equivalent to <code>str.ljust</code></td>
</tr>
<tr>
<td><code>rjust()</code></td>
<td>Equivalent to <code>str.rjust</code></td>
</tr>
<tr>
<td><code>zfill()</code></td>
<td>Equivalent to <code>str.zfill</code></td>
</tr>
<tr>
<td><code>wrap()</code></td>
<td>Split long strings into lines with length less than a given width</td>
</tr>
<tr>
<td><code>slice()</code></td>
<td>Slice each string in the Series</td>
</tr>
<tr>
<td><code>slice_replace()</code></td>
<td>Replace slice in each string with passed value</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Count occurrences of pattern</td>
</tr>
<tr>
<td><code>startswith()</code></td>
<td>Equivalent to <code>str.startswith(pat)</code> for each element</td>
</tr>
<tr>
<td><code>endswith()</code></td>
<td>Equivalent to <code>str.endswith(pat)</code> for each element</td>
</tr>
<tr>
<td><code>findall()</code></td>
<td>Compute list of all occurrences of pattern/regex for each string</td>
</tr>
<tr>
<td><code>match()</code></td>
<td>Call <code>re.match</code> on each element, returning matched groups as list</td>
</tr>
<tr>
<td><code>extract()</code></td>
<td>Call <code>re.search</code> on each element, returning DataFrame with one row for each element and one column for each match</td>
</tr>
<tr>
<td><code>extractall()</code></td>
<td>Call <code>re.findall</code> on each element, returning DataFrame with one row for each match and one column for each capture group</td>
</tr>
<tr>
<td><code>len()</code></td>
<td>Compute string lengths</td>
</tr>
<tr>
<td><code>strip()</code></td>
<td>Equivalent to <code>str.strip</code></td>
</tr>
<tr>
<td><code>rstrip()</code></td>
<td>Equivalent to <code>str.rstrip</code></td>
</tr>
<tr>
<td><code>lstrip()</code></td>
<td>Equivalent to <code>str.lstrip</code></td>
</tr>
<tr>
<td><code>partition()</code></td>
<td>Equivalent to <code>str.partition</code></td>
</tr>
<tr>
<td><code>rpartition()</code></td>
<td>Equivalent to <code>str.rpartition</code></td>
</tr>
<tr>
<td><code>lower()</code></td>
<td>Equivalent to <code>str.lower</code></td>
</tr>
<tr>
<td><code>upper()</code></td>
<td>Equivalent to <code>str.upper</code></td>
</tr>
<tr>
<td><code>find()</code></td>
<td>Equivalent to <code>str.find</code></td>
</tr>
<tr>
<td><code>rfind()</code></td>
<td>Equivalent to <code>str.rfind</code></td>
</tr>
<tr>
<td><code>index()</code></td>
<td>Equivalent to <code>str.index</code></td>
</tr>
<tr>
<td><code>rindex()</code></td>
<td>Equivalent to <code>str.rindex</code></td>
</tr>
<tr>
<td><code>capitalize()</code></td>
<td>Equivalent to <code>str.capitalize</code></td>
</tr>
<tr>
<td><code>swapcase()</code></td>
<td>Equivalent to <code>str.swapcase</code></td>
</tr>
<tr>
<td><code>normalize()</code></td>
<td>Return Unicode normal form. Equivalent to <code>unicodedata.normalize</code></td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>translate()</td>
<td>Equivalent to str.translate</td>
</tr>
<tr>
<td>isalnum()</td>
<td>Equivalent to str.isalnum</td>
</tr>
<tr>
<td>isalpha()</td>
<td>Equivalent to str.isalpha</td>
</tr>
<tr>
<td>isdigit()</td>
<td>Equivalent to strisdigit</td>
</tr>
<tr>
<td>isspace()</td>
<td>Equivalent to str.isspace</td>
</tr>
<tr>
<td>islower()</td>
<td>Equivalent to str.islower</td>
</tr>
<tr>
<td>isupper()</td>
<td>Equivalent to str.isupper</td>
</tr>
<tr>
<td>istitle()</td>
<td>Equivalent to str.istitle</td>
</tr>
<tr>
<td>isnumeric()</td>
<td>Equivalent to str.isnumeric</td>
</tr>
<tr>
<td>isdecimal()</td>
<td>Equivalent to str.isdecimal</td>
</tr>
</tbody>
</table>
Overview

pandas has an options system that lets you customize some aspects of its behaviour, display-related options being those the user is most likely to adjust.

Options have a full “dotted-style”, case-insensitive name (e.g. `display.max_rows`). You can get/set options directly as attributes of the top-level `options` attribute:

```
In [1]: import pandas as pd

In [2]: pd.options.display.max_rows
Out[2]: 15

In [3]: pd.options.display.max_rows = 999
In [4]: pd.options.display.max_rows
Out[4]: 999
```

There is also an API composed of 5 relevant functions, available directly from the `pandas` namespace:

- `get_option()` / `set_option()` - get/set the value of a single option.
- `reset_option()` - reset one or more options to their default value.
- `describe_option()` - print the descriptions of one or more options.
- `option_context()` - execute a codeblock with a set of options that revert to prior settings after execution.

Note: developers can check out `pandas/core/config.py` for more info.

All of the functions above accept a regexp pattern (`re.search` style) as an argument, and so passing in a substring will work - as long as it is unambiguous :

```
In [5]: pd.get_option("display.max_rows")
Out[5]: 999

In [6]: pd.set_option("display.max_rows",101)

In [7]: pd.get_option("display.max_rows")
Out[7]: 101

In [8]: pd.set_option("max_r",102)

In [9]: pd.get_option("display.max_rows")
Out[9]: 102
```
The following will not work because it matches multiple option names, e.g. display.max_colwidth, display.max_rows, display.max_columns:

```
In [10]: try:
    ....:     pd.get_option("column")
    ....:     except KeyError as e:
    ....:         print(e)
    ....:
'Pattern matched multiple keys'
```

Note: Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.

You can get a list of available options and their descriptions with describe_option. When called with no argument describe_option will print out the descriptions for all available options.

Getting and Setting Options

As described above, get_option() and set_option() are available from the pandas namespace. To change an option, call set_option('option regex', new_value)

```
In [11]: pd.get_option('mode.sim_interactive')
Out[11]: False

In [12]: pd.set_option('mode.sim_interactive', True)

In [13]: pd.get_option('mode.sim_interactive')
Out[13]: True
```

Note: that the option ‘mode.sim_interactive’ is mostly used for debugging purposes.

All options also have a default value, and you can use reset_option to do just that:

```
In [14]: pd.get_option("display.max_rows")
Out[14]: 60

In [15]: pd.set_option("display.max_rows", 999)

In [16]: pd.get_option("display.max_rows")
Out[16]: 999

In [17]: pd.reset_option("display.max_rows")

In [18]: pd.get_option("display.max_rows")
Out[18]: 60
```

It’s also possible to reset multiple options at once (using a regex):

```
In [19]: pd.reset_option("^display")
height has been deprecated.
line_width has been deprecated, use display.width instead (currently both are identical)
```

option_context context manager has been exposed through the top-level API, allowing you to execute code with given option values. Option values are restored automatically when you exit the with block:
Setting Startup Options in python/ipython Environment

Using startup scripts for the python/ipython environment to import pandas and set options makes working with pandas more efficient. To do this, create a .py or .ipy script in the startup directory of the desired profile. An example where the startup folder is in a default ipython profile can be found at:

```
$IPYTHONDIR/profile_default/startup
```

More information can be found in the ipython documentation. An example startup script for pandas is displayed below:

```
import pandas as pd
pd.set_option('display.max_rows', 999)
pd.set_option('precision', 5)
```

Frequently Used Options

The following is a walkthrough of the more frequently used display options.

`display.max_rows` and `display.max_columns` sets the maximum number of rows and columns displayed when a frame is pretty-printed. Truncated lines are replaced by an ellipsis.

```
In [23]: df = pd.DataFrame(np.random.randn(7,2))
In [24]: pd.set_option('max_rows', 7)
In [25]: df
Out[25]:
   0   1
0  0.469112 -0.282863
1 -1.509059 -1.135632
2  1.212112 -0.173215
3  0.119209 -1.044236
4 -0.861849 -2.104569
5 -0.494929  1.071804
6  0.721555 -0.706771
In [26]: pd.set_option('max_rows', 5)
In [27]: df
```
display.expand_frame_repr allows for the the representation of dataframes to stretch across pages, wrapped over the full column vs row-wise.

display.large_repr lets you select whether to display dataframes that exceed max_columns or max_rows as a truncated frame, or as a summary.
In [35]: df = pd.DataFrame(np.random.randn(10,10))
In [36]: pd.set_option('max_rows', 5)
In [37]: pd.set_option('large_repr', 'truncate')
In [38]: df
Out[38]:
 0 1 2 3 4 5 6
0 0.97378 1.3875 0.25908 0.92390 0.25168 -0.83552
1 -1.21933 -1.10023 0.06488 -1.27010 -1.08063 0.52866
2 1.10406 -0.54391 1.12337 0.62143 0.28434 -1.20845
3 0.80911 0.16927 1.19452 0.14837 0.93302 -1.31221
4 0.50667 -0.05117 0.38614 0.98081 -0.74035 -0.49890
5 -0.79830 0.12376 0.23003 1.02424 -0.59386 1.20135
6 -0.48669 0.48178 0.06381 1.05310 0.01842 -0.96905
7 0.04622 -0.06061 0.88911 1.10858 0.49374 -1.31869
8 -0.30381 -0.01803 0.72862 0.52876 -0.21041 0.59821
9 0.37944 -0.00066 0.06981 -0.01349 -0.62492 -0.54137

[10 rows x 10 columns]
In [39]: pd.set_option('large_repr', 'info')
In [40]: df
Out[40]:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
 0 10 non-null float64
 1 10 non-null float64
 2 10 non-null float64
 3 10 non-null float64
 4 10 non-null float64
 5 10 non-null float64
 6 10 non-null float64
 7 10 non-null float64
 8 10 non-null float64
 9 10 non-null float64
dtypes: float64(10)
memory usage: 872.0 bytes
In [41]: pd.reset_option('large_repr')
In [42]: pd.reset_option('max_rows')

display.max_colwidth sets the maximum width of columns. Cells of this length or longer will be truncated with an ellipsis.

In [43]: df = pd.DataFrame(np.array([[['foo', 'bar', 'bim', 'uncomfortably long string
...
....]
['horse', 'cow', 'banana', 'apple']]])
 :
 :
In [44]: pd.set_option('max_colwidth',40)

12.4. Frequently Used Options
In [45]: df
Out[45]:
 0 1 2 3
0 foo bar bim uncomfortably long string
1 horse cow banana apple

In [46]: pd.set_option('max_colwidth', 6)

In [47]: df
Out[47]:
 0 1 2 3
0 foo bar bim un...
1 horse cow ba... apple

In [48]: pd.reset_option('max_colwidth')

display.max_info_columns sets a threshold for when by-column info will be given.

In [49]: df = pd.DataFrame(np.random.randn(10,10))

In [50]: pd.set_option('max_info_columns', 11)

In [51]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
0 10 non-null float64
1 10 non-null float64
2 10 non-null float64
3 10 non-null float64
4 10 non-null float64
5 10 non-null float64
6 10 non-null float64
7 10 non-null float64
8 10 non-null float64
9 10 non-null float64
dtypes: float64(10)
memory usage: 872.0 bytes

In [52]: pd.set_option('max_info_columns', 5)

In [53]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Columns: 10 entries, 0 to 9
dtypes: float64(10)
memory usage: 872.0 bytes

In [54]: pd.reset_option('max_info_columns')

display.max_info_rows: df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions then specified. Note that you can specify the option df.info(null_counts=True) to override on showing a particular frame.

In [55]: df = pd.DataFrame(np.random.choice([0,1,np.nan], size=(10,10)))

In [56]: df
In [56]:
0 1 2 3 4 5 6 7 8 9
Out[56]:
0 0.0 1.0 1.0 0.0 1.0 0.0 NaN 1.0 NaN
1 1.0 NaN 0.0 0.0 1.0 1.0 NaN 1.0 0.0 1.0
2 NaN NaN NaN 1.0 1.0 0.0 NaN 0.0 1.0 NaN
3 0.0 1.0 NaN 0.0 NaN 1.0 NaN NaN 0.0
4 0.0 1.0 0.0 0.0 1.0 0.0 0.0 NaN 0.0 0.0
5 0.0 NaN 1.0 NaN NaN NaNaN NaN NaN 0.0
6 NaN NaN NaN NaN NaN NaN NaN NaN NaN
7 0.0 NaN 1.0 NaN NaN NaN NaN NaN 0.0
8 0.0 0.0 NaN 0.0 NaN 1.0 0.0 0.0 NaN NaN
9 NaN NaN 0.0 NaN NaN NaN NaN 0.0 NaN

In [57]: pd.set_option('max_info_rows', 11)
In [58]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
0 float64
1 float64
2 float64
3 float64
4 float64
5 float64
6 float64
7 float64
8 float64
9 float64
dtypes: float64(10)
memory usage: 872.0 bytes

In [59]: pd.set_option('max_info_rows', 5)
In [60]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 10 columns):
0 float64
1 float64
2 float64
3 float64
4 float64
5 float64
6 float64
7 float64
8 float64
9 float64
dtypes: float64(10)
memory usage: 872.0 bytes

In [61]: pd.reset_option('max_info_rows')

display.precision sets the output display precision in terms of decimal places. This is only a suggestion.

In [62]: df = pd.DataFrame(np.random.randn(5,5))
In [63]: pd.set_option('precision', 7)
display.chop_threshold sets at what level pandas rounds to zero when it displays a Series of DataFrame. Note, this does not effect the precision at which the number is stored.

display.colheader_justify controls the justification of the headers. Options are 'right', and 'left'.

```python
In [64]: df
Out[64]:
   0   1   2   3   4
0  2.8466122  -1.2080493 -0.4503923  2.4239054
1  0.1211080   0.2669165  0.8438259 -0.2225400  2.0219807
2  0.7167894 -2.2244851  0.1113700 -0.2328247  0.4307933
3 -0.6654779  1.8298075  0.9505935  1.0782481  0.3227741
4  2.003243   0.8900241  0.1948132  0.3516326  0.4488815

In [65]: pd.set_option('precision',4)
In [66]: df
Out[66]:
   0   1   2   3   4
0 -2.0490276  2.8466122 -1.2080493 -0.4503923  2.4239054
1  0.1211080   0.2669165  0.8438259 -0.2225400  2.0219807
2  0.7167894 -2.2244851  0.1113700 -0.2328247  0.4307933
3 -0.6654779  1.8298075  0.9505935  1.0782481  0.3227741
4  2.003243   0.8900241  0.1948132  0.3516326  0.4488815

display.chop_threshold sets at what level pandas rounds to zero when it displays a Series of DataFrame. Note, this does not effect the precision at which the number is stored.

In [67]: df = pd.DataFrame(np.random.randn(6,6))
In [68]: pd.set_option('chop_threshold', 0)
In [69]: df
Out[69]:
   0   1   2   3   4   5
0 -0.1979  0.9657 -1.5229  0.1166  0.2956 -1.0477
1  1.6406  1.9058  2.7721  0.0888 -1.1442 -0.6334
2  0.9254 -0.0064 -0.8204  0.6009 -1.0393  0.8248
3 -0.8241 -0.3377 -0.9278 -0.8401  0.2485 -0.1093
4  0.4320 -0.4607  0.3365 -3.2076 -1.5359  0.4098
5 -0.6731 -0.7411 -0.1109 -2.6729  0.8645  0.0609

In [70]: pd.set_option('chop_threshold', .5)
In [71]: df
Out[71]:
   0   1  2   3   4   5
0  0.0000  0.9657 -1.5229  0.0000  0.0000  0.0000
1  1.6406  1.9058  2.7721  0.0000 -1.1442 -0.6334
2  0.9254  0.0000 -0.8204 -0.6009 -1.0393  0.8248
3 -0.8241  0.0000 -0.9278  0.8401  0.2485 -0.1093
4  0.0000  0.0000 -0.4607 -3.2076 -1.5359  0.4098
5 -0.6731  0.0000  0.1109 -2.6729  0.8645  0.0609

In [72]: pd.reset_option('chop_threshold')

in [73]: df = pd.DataFrame(np.array([np.random.randn(6), np.random.randint(1,9,6)*.1, 
    np.zeros(6)]).T,
    columns=['A', 'B', 'C'], dtype='float')
```
In [74]: pd.set_option('colheader_justify', 'right')

In [75]: df
Out[75]:
 A B C
0 0.9331 0.3 0.0
1 0.2888 0.2 0.0
2 1.3250 0.2 0.0
3 0.5892 0.7 0.0
4 0.5314 0.1 0.0
5 -1.1987 0.7 0.0

In [76]: pd.set_option('colheader_justify', 'left')

In [77]: df
Out[77]:
 A B C
0 0.9331 0.3 0.0
1 0.2888 0.2 0.0
2 1.3250 0.2 0.0
3 0.5892 0.7 0.0
4 0.5314 0.1 0.0
5 -1.1987 0.7 0.0

In [78]: pd.reset_option('colheader_justify')

Available Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Default</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>display.chop_threshold</td>
<td>None</td>
<td>If set to a float value, all float values smaller then the given threshold will be displayed as 0</td>
</tr>
<tr>
<td>display.colheader_justify</td>
<td>right</td>
<td>Controls the justification of column headers. used by DataFrameFormatter.</td>
</tr>
<tr>
<td>display.column_space</td>
<td>12</td>
<td>No description available.</td>
</tr>
<tr>
<td>display.date_dayfirst</td>
<td>False</td>
<td>When True, prints and parses dates with the day first, eg 20/01/2005</td>
</tr>
<tr>
<td>display.date_yearfirst</td>
<td>False</td>
<td>When True, prints and parses dates with the year first, eg 2005/01/20</td>
</tr>
<tr>
<td>display.encoding</td>
<td>UTF-8</td>
<td>Defaults to the detected encoding of the console.</td>
</tr>
<tr>
<td>display.expand_frame_repr</td>
<td>True</td>
<td>Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_cols is still respected, but the output will wrap-around across multiple pages if its width exceeds display.width.</td>
</tr>
<tr>
<td>display.float_format</td>
<td>None</td>
<td>The callable should accept a floating point number and return a string with the desired format.</td>
</tr>
<tr>
<td>display.height</td>
<td>60</td>
<td>Deprecated. Use display.max_rows instead.</td>
</tr>
<tr>
<td>display.large_repr</td>
<td>truncate</td>
<td>For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated list of items.</td>
</tr>
<tr>
<td>display.latex.escape</td>
<td>True</td>
<td>Escapes special characters in Dataframes, when using the to_latex method.</td>
</tr>
<tr>
<td>display.latex.longtable</td>
<td>False</td>
<td>Specifies if the to_latex method of a Dataframe uses the longtable format.</td>
</tr>
<tr>
<td>display.line_width</td>
<td>80</td>
<td>Deprecated. Use display.width instead.</td>
</tr>
<tr>
<td>display.max_columns</td>
<td>20</td>
<td>max_rows and max_columns are used in repr() methods to decide if to_string() or info() should be used.</td>
</tr>
<tr>
<td>display.max_colwidth</td>
<td>50</td>
<td>The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output.</td>
</tr>
<tr>
<td>display.max_info_columns</td>
<td>100</td>
<td>max_info_columns is used in DataFrame.info method to decide if per column information is shown.</td>
</tr>
<tr>
<td>display.max_info_rows</td>
<td>1690785</td>
<td>df.info()() will usually show null-counts for each column. For large frames this can be quite slow.</td>
</tr>
<tr>
<td>display.max_rows</td>
<td>60</td>
<td>This sets the maximum number of rows pandas should output when printing out various output.</td>
</tr>
<tr>
<td>display.max_seq_items</td>
<td>100</td>
<td>When pretty-printing a long sequence, no more then max_seq_items will be printed.</td>
</tr>
<tr>
<td>display.memory_usage</td>
<td>True</td>
<td>This specifies if the memory usage of a DataFrame should be displayed when the df.info() method is called.</td>
</tr>
</tbody>
</table>
Number Formatting

pandas also allows you to set how numbers are displayed in the console. This option is not set through the `set_options` API.

Use the `set_eng_float_format` function to alter the floating-point formatting of pandas objects to produce a particular format.

For instance:

```py
In [79]: import numpy as np
In [80]: pd.set_eng_float_format(accuracy=3, use_eng_prefix=True)
In [81]: s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [82]: s/1.e3
Out[82]:
    a    -236.866u
    b     846.974u
    c    -685.597u
    d     609.099u
    e    -303.961u
dtype: float64

In [83]: s/1.e6
Out[83]:
    a     236.866n
    b     846.974n
    c    -685.597n
    d     609.099n
    e    -303.961n
dtype: float64
```

To round floats on a case-by-case basis, you can also use `round()` and `round()`.
Unicode Formatting

Warning: Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower). Use only when it is actually required.

Some East Asian countries use Unicode characters its width is corresponding to 2 alphabets. If DataFrame or Series contains these characters, default output cannot be aligned properly.

Note: Screen captures are attached for each outputs to show the actual results.

```python
In [84]: df = pd.DataFrame({u'': ['UK', u''], u'': ['Alice', u'']})
In [85]: df;
```

Enable `display.unicode.east_asian_width` allows pandas to check each character’s “East Asian Width” property. These characters can be aligned properly by checking this property, but it takes longer time than standard `len` function.

```python
In [86]: pd.set_option('display.unicode.east_asian_width', True)
In [87]: df;
```

In addition, Unicode contains characters which width is “Ambiguous”. These character’s width should be either 1 or 2 depending on terminal setting or encoding. Because this cannot be distinguished from Python, `display.unicode.ambiguous_as_wide` option is added to handle this.

By default, “Ambiguous” character’s width, “¡” (inverted exclamation) in below example, is regarded as 1.

```python
In [88]: df = pd.DataFrame({'a': ['xxx', u'¡¡'], 'b': ['yyy', u'¡¡']})
In [89]: df;
```

Enabling `display.unicode.ambiguous_as_wide` lets pandas to figure these character’s width as 2. Note that
this option will be effective only when `display.unicode.east_asian_width` is enabled. Confirm starting position has been changed, but is not aligned properly because the setting is mismatched with this environment.

```python
In [90]: pd.set_option('display.unicode.ambiguous_as_wide', True)
In [91]: df;
```

```python
>>> pd.set_option('display.unicode.ambiguous_as_wide', True)
>>> df
   a  b
0  xxx  yyy
1  ii  ii
```
The axis labeling information in pandas objects serves many purposes:

- Identifies data (i.e. provides metadata) using known indicators, important for analysis, visualization, and interactive console display
- Enables automatic and explicit data alignment
- Allows intuitive getting and setting of subsets of the data set

In this section, we will focus on the final point: namely, how to slice, dice, and generally get and set subsets of pandas objects. The primary focus will be on Series and DataFrame as they have received more development attention in this area. Expect more work to be invested in higher-dimensional data structures (including Panel) in the future, especially in label-based advanced indexing.

Note: The Python and NumPy indexing operators `[]` and attribute operator `.` provide quick and easy access to pandas data structures across a wide range of use cases. This makes interactive work intuitive, as there’s little new to learn if you already know how to deal with Python dictionaries and NumPy arrays. However, since the type of the data to be accessed isn’t known in advance, directly using standard operators has some optimization limits. For production code, we recommended that you take advantage of the optimized pandas data access methods exposed in this chapter.

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy

Warning: In 0.15.0 Index has internally been refactored to no longer subclass ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

Warning: Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see here.

See the MultiIndex / Advanced Indexing for MultiIndex and more advanced indexing documentation. See the cookbook for some advanced strategies
Different Choices for Indexing

New in version 0.11.0.

Object selection has had a number of user-requested additions in order to support more explicit location based indexing. pandas now supports three types of multi-axis indexing.

- `.loc` is primarily label based, but may also be used with a boolean array. `.loc` will raise `KeyError` when the items are not found. Allowed inputs are:
 - A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is **not** an integer position along the index)
 - A list or array of labels ['a', 'b', 'c']
 - A slice object with labels 'a':'f', (note that contrary to usual python slices, **both** the start and the stop are included!)
 - A boolean array
 - A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

 New in version 0.18.1.

 See more at **Selection by Label**

- `.iloc` is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array. `.iloc` will raise `IndexError` if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing. (this conforms with python/numpy slice semantics). Allowed inputs are:
 - An integer e.g. 5
 - A list or array of integers [4, 3, 0]
 - A slice object with ints 1:7
 - A boolean array
 - A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

 New in version 0.18.1.

 See more at **Selection by Position**

- `.ix` supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type. `.ix` is the most general and will support any of the inputs in `.loc` and `.iloc`. `.ix` also supports floating point label schemes. `.ix` is exceptionally useful when dealing with mixed positional and label based hierarchical indexes.

 However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use `.iloc` or `.loc`.

 See more at **Advanced Indexing** and **Advanced Hierarchical**.

- `.loc`, `.iloc`, `.ix` and also `[]` indexing can accept a callable as indexer. See more at **Selection By Callable**.

Getting values from an object with multi-axes selection uses the following notation (using `.loc` as an example, but applies to `.iloc` and `.ix` as well). Any of the axes accessors may be the null slice `:`. Axes left out of the specification are assumed to be `:`. (e.g. `p.loc['a']` is equiv to `p.loc['a', :, :]`
Basics

As mentioned when introducing the data structures in the last section, the primary function of indexing with [] (a.k.a. `__getitem__` for those familiar with implementing class behavior in Python) is selecting out lower-dimensional slices. Thus,

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Selection</th>
<th>Return Value Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series</td>
<td><code>series[label]</code></td>
<td>scalar value</td>
</tr>
<tr>
<td>DataFrame</td>
<td><code>frame[colname]</code></td>
<td>Series corresponding to colname</td>
</tr>
<tr>
<td>Panel</td>
<td><code>panel[itemname]</code></td>
<td>DataFrame corresponding to the itemname</td>
</tr>
</tbody>
</table>

Here we construct a simple time series data set to use for illustrating the indexing functionality:

```python
In [1]: dates = pd.date_range('1/1/2000', periods=8)
In [2]: df = pd.DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D'])
In [3]: df
Out[3]:
          A         B         C         D
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804
2000-01-04  0.721555 -0.706771 -1.039575  0.271860
2000-01-05 -0.424972  0.567020  0.276232 -1.087401
2000-01-06 -0.673690  0.113648 -1.478427  0.524988
2000-01-07  0.404705  0.577046 -1.715002 -1.039268
2000-01-08 -0.370647 -1.157892 -1.344312  0.844885
In [4]: panel = pd.Panel({'one' : df, 'two' : df - df.mean()})
In [5]: panel
Out[5]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 8 (major_axis) x 4 (minor_axis)
Items axis: one to two
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-08 00:00:00
Minor_axis axis: A to D
```

Note: None of the indexing functionality is time series specific unless specifically stated.

Thus, as per above, we have the most basic indexing using []:

```python
In [6]: s = df['A']
In [7]: s[dates[5]]
Out[7]: -0.67368970808837059
In [8]: panel['two']
```
You can pass a list of columns to [] to select columns in that order. If a column is not contained in the DataFrame, an exception will be raised. Multiple columns can also be set in this manner:

```
In [9]: df
Out[9]:
   A     B     C     D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-03 -0.494929 2.104569 -0.861849 1.071804
2000-01-04 -0.213575 0.706771 0.721555 -0.424972
2000-01-05 -1.087401 0.276232 0.567020 0.424972
2000-01-06 -1.478427 0.113648 0.673690 -0.673690
2000-01-07 -1.343120 0.577046 0.404705 -0.370647
2000-01-08 -1.343120 0.577046 0.404705 -0.370647
```

In [10]: df[['B', 'A']] = df[['A', 'B']]

In [11]: df
Out[11]:
 A B C D
2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
2000-01-02 -0.173215 1.212112 0.119209 -1.044236
2000-01-03 -0.494929 2.104569 -0.861849 1.071804
2000-01-04 -0.213575 0.706771 0.721555 -0.424972
2000-01-05 -1.087401 0.276232 0.567020 0.424972
2000-01-06 -1.478427 0.113648 0.673690 -0.673690
2000-01-07 -1.343120 0.577046 0.404705 -0.370647
2000-01-08 -1.343120 0.577046 0.404705 -0.370647

You may find this useful for applying a transform (in-place) to a subset of the columns.

Warning: pandas aligns all AXES when setting Series and DataFrame from .loc, .iloc and .ix. This will **not** modify df because the column alignment is before value assignment.
In [12]: df[['A', 'B']]
Out[12]:
 A B
2000-01-01 -0.282863 0.469112
2000-01-02 -0.173215 1.212112
2000-01-03 -2.104569 -0.861849
2000-01-04 -0.706771 0.721555
2000-01-05 0.567020 -0.424972
2000-01-06 0.113648 -0.673690
2000-01-07 0.577046 0.404705
2000-01-08 -1.157892 -0.370647

In [13]: df.loc[:, ['B', 'A']] = df[['A', 'B']]

In [14]: df[['A', 'B']]
Out[14]:
 A B
2000-01-01 -0.282863 0.469112
2000-01-02 -0.173215 1.212112
2000-01-03 -2.104569 -0.861849
2000-01-04 -0.706771 0.721555
2000-01-05 0.567020 -0.424972
2000-01-06 0.113648 -0.673690
2000-01-07 0.577046 0.404705
2000-01-08 -1.157892 -0.370647

The correct way is to use raw values

In [15]: df.loc[:, ['B', 'A']] = df[['A', 'B']].values

In [16]: df[['A', 'B']]
Out[16]:
 A B
2000-01-01 0.469112 -0.282863
2000-01-02 1.212112 -0.173215
2000-01-03 -0.861849 -2.104569
2000-01-04 0.721555 -0.706771
2000-01-05 -0.424972 0.567020
2000-01-06 -0.673690 0.113648
2000-01-07 0.404705 0.577046
2000-01-08 -0.370647 -1.157892

Attribute Access

You may access an index on a `Series`, column on a `DataFrame`, and an item on a `Panel` directly as an attribute:

In [17]: sa = pd.Series([1,2,3],index=list('abc'))

In [18]: dfa = df.copy()

In [19]: sa.b
Out[19]: 2

In [20]: dfa.A

13.3. Attribute Access 527
You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful; if you try to use attribute access to create a new column, it fails silently, creating a new attribute rather than a new column.
Warning:

- You can use this access only if the index element is a valid python identifier, e.g. s.1 is not allowed. See here for an explanation of valid identifiers.
- The attribute will not be available if it conflicts with an existing method name, e.g. s.min is not allowed.
- Similarly, the attribute will not be available if it conflicts with any of the following list: index, major_axis, minor_axis, items, labels.
- In any of these cases, standard indexing will still work, e.g. s['1'], s['min'], and s['index'] will access the corresponding element or column.
- The Series/Panel accesses are available starting in 0.13.0.

If you are using the IPython environment, you may also use tab-completion to see these accessible attributes.

You can also assign a dict to a row of a DataFrame:

```python
In [28]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})
In [29]: x.iloc[1] = dict(x=9, y=99)
In [30]: x
Out[30]:
     x   y
0  1.0  3.0
1  9.0 99.0
2  3.0  5.0
```

Slicing ranges

The most robust and consistent way of slicing ranges along arbitrary axes is described in the *Selection by Position* section detailing the `.iloc` method. For now, we explain the semantics of slicing using the `[]` operator.

With Series, the syntax works exactly as with an ndarray, returning a slice of the values and the corresponding labels:

```python
In [31]: s[:5]
Out[31]:
2000-01-01    0.469112
2000-01-02    1.212112
2000-01-03   -0.861849
2000-01-04    0.721555
2000-01-05   -0.424972
Freq: D, Name: A, dtype: float64

In [32]: s[::2]
Out[32]:
2000-01-01    0.469112
2000-01-03   -0.861849
```

13.4. Slicing ranges
pandas: powerful Python data analysis toolkit, Release 0.19.2

```
2000-01-03  -0.861849
2000-01-05  -0.424972
2000-01-07   0.404705
Freq: 2D, Name: A, dtype: float64

In [33]: s[::-1]
Out[33]:
2000-01-08  -0.370647
2000-01-07   0.404705
2000-01-06  -0.673690
2000-01-05  -0.424972
2000-01-04   0.721555
2000-01-03  -0.861849
2000-01-02   1.212112
2000-01-01   0.469112
Freq: -1D, Name: A, dtype: float64
```

Note that setting works as well:

```
In [34]: s2 = s.copy()
In [35]: s2[:5] = 0
In [36]: s2
Out[36]:
2000-01-01  0.000000
2000-01-02  0.000000
2000-01-03  0.000000
2000-01-04  0.000000
2000-01-06  -0.673690
2000-01-07   0.404705
2000-01-08  -0.370647
Freq: D, Name: A, dtype: float64
```

With DataFrame, slicing inside of [] slices the rows. This is provided largely as a convenience since it is such a common operation.

```
In [37]: df[:3]
Out[37]:
   A   B       C       D
2000-01-01  0.469112 -0.282863 -1.509059 -1.135632
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [38]: df[::-1]
Out[38]:
   A   B       C       D
2000-01-08 -0.370647 -1.157892 -1.344312  0.844885
2000-01-07  0.404705  0.577046 -1.715002 -1.039268
2000-01-06 -0.673690  0.113648 -1.478427  0.524988
2000-01-05 -0.424972  0.567020  0.276232 -1.087401
2000-01-04  0.721555  0.706771 -1.039575  0.271860
2000-01-03 -0.861849 -2.104569 -0.494929  1.071804
2000-01-02  1.212112 -0.173215  0.119209 -1.044236
2000-01-01  0.469112  0.282863 -1.509059 -1.135632
```

Chapter 13. Indexing and Selecting Data
Selection By Label

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See *Returning a View versus Copy*.

Warning:

.loc is strict when you present slicers that are not compatible (or convertible) with the index type.

For example using integers in a DatetimeIndex. These will raise a TypeError.

```
In [39]: df1 = pd.DataFrame(np.random.randn(5,4), columns=list('ABCD'), index=pd.date_range('20130101',periods=5))
```

```
In [40]: df1
Out[40]:
   A         B         C         D
2013-01-01  1.075770 -0.109050  1.643563 -1.469388
2013-01-02  0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524  0.413738  0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
2013-01-05  0.895717  0.805244 -1.206412  2.565646
```

```
In [4]: df1.loc[2:3]
TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'>
```

String likes in slicing *can* be convertible to the type of the index and lead to natural slicing.

```
In [41]: df1.loc['20130102':'20130104']
```

```
Out[41]:
   A         B         C         D
2013-01-02  0.357021 -0.674600 -1.776904 -0.968914
2013-01-03 -1.294524  0.413738  0.276662 -0.472035
2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
```

pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol. **At least 1** of the labels for which you ask, must be in the index or a KeyError will be raised! When slicing, the start bound is included, **AND** the stop bound is included. Integers are valid labels, but they refer to the label and not the position.

The .loc attribute is the primary access method. The following are valid inputs:

- A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index. This use is not an integer position along the index)
- A list or array of labels ['a', 'b', 'c']
- A slice object with labels 'a': 'f' (note that contrary to usual python slices, both the start and the stop are included!)
- A boolean array
- A callable, see Selection By Callable

```
In [42]: s1 = pd.Series(np.random.randn(6),index=list('abcdef'))
```
In [43]: s1
Out[43]:
a 1.431256
b 1.340309
c -1.170299
d -0.226169
e 0.410835
f 0.813850
dtype: float64

In [44]: s1.loc['c':]
Out[44]:
c -1.170299
d -0.226169
e 0.410835
f 0.813850
dtype: float64

In [45]: s1.loc['b']
Out[45]: 1.3403088497993827

Note that setting works as well:

In [46]: s1.loc['c'] = 0

In [47]: s1
Out[47]:
a 1.431256
b 1.340309
c 0.000000
d 0.000000
e 0.000000
f 0.000000
dtype: float64

With a DataFrame

In [48]: df1 = pd.DataFrame(np.random.randn(6,4),
 : index=list('abcdef'),
 : columns=list('ABCD'))

In [49]: df1
Out[49]:
 A B C D
a 0.132003 -0.827317 -0.076467 -1.187678
b 1.130127 -1.436737 -1.413681 1.607920
c 1.024180 0.569605 0.875906 -2.211372
d 0.974466 -2.006747 -0.410001 -0.078638
e 0.545952 -1.219217 -1.226825 0.769804
f -1.281247 -0.727707 -0.121306 -0.097883

In [50]: df1.loc[['a', 'b', 'd'], :]
Out[50]:
 A B C D
a 0.132003 -0.827317 -0.076467 -1.187678
b 1.130127 -1.436737 -1.413681 1.607920
d 0.974466 -2.006747 -0.410001 -0.078638
Accessing via label slices

```
In [51]: df1.loc['d':, 'A':'C']
Out[51]:
     A       B       C
d 0.974466 -2.006747 -0.410001
e 0.545952 -1.219217 -1.226825
f -1.281247 -0.727707 -0.121306
```

For getting a cross section using a label (equiv to `df.xs('a')`)

```
In [52]: df1.loc['a']
Out[52]:
   A       B       C
     0.132003 -0.827317 -0.076467
     Name: a, dtype: float64
```

For getting values with a boolean array

```
In [53]: df1.loc['a'] > 0
Out[53]:
   A   True
   B  False
   C  False
   D  False
     Name: a, dtype: bool

In [54]: df1.loc[:, df1.loc['a'] > 0]
Out[54]:
   A
  a  0.132003
  b  1.130127
  c  1.024180
  d  0.974466
  e  0.545952
  f -1.281247
```

For getting a value explicitly (equiv to deprecated `df.get_value('a','A')`)

```
# this is also equivalent to `df1.at['a','A']`
In [55]: df1.loc['a', 'A']
Out[55]: 0.13200317033032932
```

Selection By Position

Warning: Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See *Returning a View versus Copy*.

pandas provides a suite of methods in order to get **purely integer based indexing**. The semantics follow closely python and numpy slicing. These are 0-based indexing. When slicing, the start bounds is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise a `IndexError`.

13.6. Selection By Position 533
The `.iloc` attribute is the primary access method. The following are valid inputs:

- An integer e.g. 5
- A list or array of integers [4, 3, 0]
- A slice object with ints 1:7
- A boolean array
- A callable, see Selection By Callable

```
In [56]: s1 = pd.Series(np.random.randn(5), index=list(range(0,10,2))

In [57]: s1
Out[57]:
0    0.695775
2    0.341734
4    0.959726
6   -1.110336
8   -0.619976
dtype: float64

In [58]: s1.iloc[:3]
Out[58]:
0    0.695775
2    0.341734
4    0.959726
dtype: float64

In [59]: s1.iloc[3]
Out[59]: -1.1103361028911669

Note that setting works as well:

```
In [60]: s1.iloc[:3] = 0

In [61]: s1
Out[61]:
0 0.000000
2 0.000000
4 0.000000
6 -1.110336
8 -0.619976
dtype: float64
```

With a DataFrame

```
In [62]: df1 = pd.DataFrame(np.random.randn(6,4),
 index=list(range(0,12,2)),
 columns=list(range(0,8,2)))

In [63]: df1
Out[63]:
 0 2 4 6
0 0.149748 -0.732339 0.687738 0.176444
2 0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161
6 -0.826591 -0.345352 1.314232 0.690579
```

Chapter 13. Indexing and Selecting Data
Select via integer slicing

In [64]: df1.iloc[:3]
Out[64]:
   0     2     4     6
0  0.149748 -0.732339 0.687738 0.176444
2  0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161

In [65]: df1.iloc[1:5, 2:4]
Out[65]:
   4     6
2  0.301624 -2.179861
4  1.462696 -1.743161
6  0.314232 0.690579
8  0.014871 3.357427

Select via integer list

In [66]: df1.iloc[[1, 3, 5], [1, 3]]
Out[66]:
   2     6
2  0.301624 -2.179861
6  0.314232 0.690579
10 -1.236269 -0.487602

In [67]: df1.iloc[1:3, :]
Out[67]:
   0     2     4     6
2  0.403310 -0.154951 0.301624 -2.179861
4 -1.369849 -0.954208 1.462696 -1.743161

In [68]: df1.iloc[ :, 1:3]
Out[68]:
   2     4
0 -0.732339 0.687738
2 -0.154951 0.301624
4 -0.954208 1.462696
6 -0.345352 1.314232
8  2.396780 0.014871
10 -1.236269 0.896171

# this is also equivalent to `df1.iat[1,1]`

In [69]: df1.iloc[1, 1]
Out[69]: -0.15495077442490321

For getting a cross section using an integer position (equiv to df.xs(1))

In [70]: df1.iloc[1]
Out[70]:
   0
2  0.403310
2  0.154951
4  0.301624

13.6. Selection By Position
Out of range slice indexes are handled gracefully just as in Python/Numpy.

```python
these are allowed in python/numpy.
Only works in Pandas starting from v0.14.0.
in [71]: x = list('abcdef')

in [72]: x[4:10]
out[72]: ['e', 'f']

in [73]: x[8:10]
out[73]: []

in [74]: s = pd.Series(x)

in [75]: s.iloc[4:10]
out[75]: Series(['e', 'f'], dtype: object)

in [76]: s.iloc[8:10]
out[76]: Series([], dtype: object)
```

**Note:** Prior to v0.14.0, `iloc` would not accept out of bounds indexers for slices, e.g. a value that exceeds the length of the object being indexed.

Note that this could result in an empty axis (e.g. an empty DataFrame being returned)

```python
in [79]: dfl = pd.DataFrame(np.random.randn(5,2), columns=list('AB'))

in [80]: dfl.iloc[:, 2:3]
out[80]:
 A B
0 -0.082240 -2.182937
1 0.380396 0.084844
2 0.432390 1.519970
3 -0.493662 0.600178
4 0.274230 0.132885
```

```python
in [81]: dfl.iloc[:, 2:3]
```
Out[81]:
Empty DataFrame
Columns: []
Index: [0, 1, 2, 3, 4]

In [82]: dfl.iloc[:, 1:3]
Out[82]:
   B
0 -2.182937
1  0.084844
2  1.519970
3  0.600178
4  0.132885

In [83]: dfl.iloc[4:6]
Out[83]:
   A   B
4  0.27423  0.132885

A single indexer that is out of bounds will raise an IndexError. A list of indexers where any element is out of bounds will raise an IndexError.

dfl.iloc[[4, 5, 6]]
IndexError: positional indexers are out-of-bounds
dfl.iloc[:, 4]
IndexError: single positional indexer is out-of-bounds

Selection By Callable

New in version 0.18.1.

.loc, .iloc, .ix and also [] indexing can accept a callable as indexer. The callable must be a function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing.

In [84]: df1 = pd.DataFrame(np.random.randn(6, 4),
                     index=list('abcdef'),
                     columns=list('ABCD'))

In [85]: df1
Out[85]:
    A         B         C         D
a -0.023688  2.410179  1.450520  0.206053
b -0.251905 -2.213588  1.063327  1.266143
c  0.299368 -0.863838  0.408204 -1.048089
d -0.025747 -0.988387  0.094055  1.262731
e  1.289997  0.082423 -0.055758  0.536580
f -0.489682  0.369374 -0.034571 -2.484478

In [86]: df1.loc[lambda df: df.A > 0, :]
Out[86]:
    A         B         C         D
   c  0.299368 -0.863838  0.408204 -1.048089
e  1.289997  0.082423 -0.055758  0.536580
You can use callable indexing in `Series`.

```python
In [90]: df1.A.loc[lambda s: s > 0]
Out[90]:
 c 0.299368
 e 1.289997
Name: A, dtype: float64
```

Using these methods / indexers, you can chain data selection operations without using temporary variable.

```python
In [91]: bb = pd.read_csv('data/baseball.csv', index_col='id')

In [92]: (bb.groupby(['year', 'team']).sum()
 : .loc[lambda df: df.r > 100])
```

538 Chapter 13. Indexing and Selecting Data
Selecting Random Samples

A random selection of rows or columns from a Series, DataFrame, or Panel with the `sample()` method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.

```
In [93]: s = pd.Series([0,1,2,3,4,5])

When no arguments are passed, returns 1 row.
In [94]: s.sample()
Out[94]:
 4
 4
dtype: int64

One may specify either a number of rows:
In [95]: s.sample(n=3)
Out[95]:
 0
 4
 1
dtype: int64

Or a fraction of the rows:
In [96]: s.sample(frac=0.5)
Out[96]:
 5
 3
 1
dtype: int64
```

By default, `sample` will return each row at most once, but one can also sample with replacement using the `replace` option:

```
In [97]: s = pd.Series([0,1,2,3,4,5])

Without replacement (default):
In [98]: s.sample(n=6, replace=False)
Out[98]:
 0
 1
 5
 3
 2
 4
dtype: int64
```
# With replacement:
```
In [99]: s.sample(n=6, replace=True)
Out[99]:
0 0
4 4
3 3
2 2
4 4
4 4
dtype: int64
``` 
By default, each row has an equal probability of being selected, but if you want rows to have different probabilities, you can pass the `sample` function sampling weights as `weights`. These weights can be a list, a numpy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:
```
In [100]: s = pd.Series([0,1,2,3,4,5])
In [101]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
In [102]: s.sample(n=3, weights=example_weights)
Out[102]:
5 5
4 4
3 3
dtype: int64
```
```
In [103]: example_weights2 = [0.5, 0, 0, 0, 0, 0]
In [104]: s.sample(n=1, weights=example_weights2)
Out[104]:
0 0
dtype: int64
```
When applied to a DataFrame, you can use a column of the DataFrame as sampling weights (provided you are sampling rows and not columns) by simply passing the name of the column as a string.
```
In [105]: df2 = pd.DataFrame({'col1':[9,8,7,6], 'weight_column':[0.5, 0.4, 0.1, 0]})
In [106]: df2.sample(n=3, weights = 'weight_column')
Out[106]:
 col1 weight_column
0 9 0.5
1 8 0.4
2 7 0.1
```
sample also allows users to sample columns instead of rows using the `axis` argument.
```
In [107]: df3 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})
In [108]: df3.sample(n=1, axis=1)
Out[108]:
 col
0 1
1 2
```
Finally, one can also set a seed for sample's random number generator using the `random_state` argument, which will accept either an integer (as a seed) or a numpy RandomState object.

```python
In [109]: df4 = pd.DataFrame({'col1':[1,2,3], 'col2':[2,3,4]})

With a given seed, the sample will always draw the same rows.
In [110]: df4.sample(n=2, random_state=2)
Out[110]:
 col1 col2
0 2.0 3.0
1 3.0 4.0

In [111]: df4.sample(n=2, random_state=2)
Out[111]:
 col1 col2
0 2.0 3.0
1 3.0 4.0
```

## Setting With Enlargement

New in version 0.13.

The `.loc/ix/[]` operations can perform enlargement when setting a non-existant key for that axis.

In the `Series` case this is effectively an appending operation

```python
In [112]: se = pd.Series([1,2,3])
In [113]: se
Out[113]:
0 1
1 2
2 3
dtype: int64
In [114]: se[5] = 5.
In [115]: se
Out[115]:
0 1.0
1 2.0
2 3.0
5 5.0
dtype: float64
```

A DataFrame can be enlarged on either axis via `.loc`

```python
In [116]: dfi = pd.DataFrame(np.arange(6).reshape(3,2),
 columns=['A','B'])
In [117]: dfi
Out[117]:
 A B
0 0.0 1.0
1 2.0 3.0
2 4.0 5.0
```

13.9. Setting With Enlargement
This is like an append operation on the DataFrame.

Fast scalar value getting and setting

Since indexing with [] must handle a lot of cases (single-label access, slicing, boolean indexing, etc.), it has a bit of overhead in order to figure out what you’re asking for. If you only want to access a scalar value, the fastest way is to use the at and iat methods, which are implemented on all of the data structures.

Similarly to loc, at provides label based scalar lookups, while, iat provides integer based lookups analogously to iloc.

You can also set using these same indexers.

at may enlarge the object in-place as above if the indexer is missing.
Another common operation is the use of boolean vectors to filter the data. The operators are: `|` for or, `&` for and, and `~` for not. These must be grouped by using parentheses.

Using a boolean vector to index a Series works exactly as in a numpy ndarray:

```
In [129]: s = pd.Series(range(-3, 4))

In [130]: s
Out[130]:
0 -3
1 -2
2 -1
3 0
4 1
5 2
6 3
dtype: int64

In [131]: s[s > 0]
Out[131]:
4 1
5 2
6 3
dtype: int64

In [132]: s[(s < -1) | (s > 0.5)]
Out[132]:
0 -3
1 -2
4 1
5 2
6 3
dtype: int64

In [133]: s[~(s < 0)]
Out[133]:
3 0
4 1
5 2
6 3
dtype: int64
```

You may select rows from a DataFrame using a boolean vector the same length as the DataFrame’s index (for example,
In \[134\]: df[df['A'] > 0]

Out[134]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>7.000000</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
<td>-1.039268</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

List comprehensions and map method of Series can also be used to produce more complex criteria:

In \[135\]: df2 = pd.DataFrame({
'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'], 
'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'], 
'c': np.random.randn(7)
})

# only want 'two' or 'three'

In \[136\]: criterion = df2['a'].map(lambda x: x.startswith('t'))

In \[137\]: df2[criterion]

Out[137]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>two</td>
<td>y</td>
<td>0.041290</td>
</tr>
<tr>
<td>3</td>
<td>three</td>
<td>x</td>
<td>0.361719</td>
</tr>
<tr>
<td>4</td>
<td>two</td>
<td>y</td>
<td>-0.238075</td>
</tr>
</tbody>
</table>

# equivalent but slower

In \[138\]: df2[[x.startswith('t') for x in df2['a']]]

Out[138]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>two</td>
<td>y</td>
<td>0.041290</td>
</tr>
<tr>
<td>3</td>
<td>three</td>
<td>x</td>
<td>0.361719</td>
</tr>
<tr>
<td>4</td>
<td>two</td>
<td>y</td>
<td>-0.238075</td>
</tr>
</tbody>
</table>

# Multiple criteria

In \[139\]: df2[criterion & (df2['b'] == 'x')]

Out[139]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>three</td>
<td>x</td>
<td>0.361719</td>
</tr>
</tbody>
</table>

Note, with the choice methods Selection by Label, Selection by Position, and Advanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions.

In \[140\]: df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']

Out[140]:

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>x</td>
<td>0.361719</td>
</tr>
</tbody>
</table>

**Indexing with isin**

Consider the isin method of Series, which returns a boolean vector that is true wherever the Series elements exist in the passed list. This allows you to select rows where one or more columns have values you want:
In [141]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')

In [142]: s
Out[142]:
4 0
3 1
2 2
1 3
0 4
dtype: int64

In [143]: s.isin([2, 4, 6])
Out[143]:
4 False
3 False
2 True
1 False
0 True
dtype: bool

In [144]: s[s.isin([2, 4, 6])]
Out[144]:
2 2
0 4
dtype: int64

The same method is available for Index objects and is useful for the cases when you don’t know which of the sought labels are in fact present:

In [145]: s[s.index.isin([2, 4, 6])]
Out[145]:
4 0
2 2
dtype: int64

# compare it to the following
In [146]: s[[2, 4, 6]]
Out[146]:
2 2.0
4 0.0
6 NaN
dtype: float64

In addition to that, MultiIndex allows selecting a separate level to use in the membership check:

In [147]: s_mi = pd.Series(np.arange(6),
        index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))

In [148]: s_mi
Out[148]:
0 a 0
  b 1
  c 2
1 a 3
  b 4
  c 5
DataFrame also has an `isin` method. When calling `isin`, pass a set of values as either an array or dict. If values is an array, `isin` returns a DataFrame of booleans that is the same shape as the original DataFrame, with True wherever the element is in the sequence of values.

```python
In [151]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
 'ids2': ['a', 'n', 'c', 'n']})
In [152]: values = ['a', 'b', 1, 3]
In [153]: df.isin(values)
```

```
<table>
<thead>
<tr>
<th>ids</th>
<th>ids2</th>
<th>vals</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
```

Oftentimes you’ll want to match certain values with certain columns. Just make values a `dict` where the key is the column, and the value is a list of items you want to check for.

```python
In [154]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}
In [155]: df.isin(values)
```

```
<table>
<thead>
<tr>
<th>ids</th>
<th>ids2</th>
<th>vals</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
```

Combine DataFrame’s `isin` with the `any()` and `all()` methods to quickly select subsets of your data that meet a given criteria. To select a row where each column meets its own criterion:

```python
In [156]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}
In [157]: row_mask = df.isin(values).all(1)
In [158]: df[row_mask]
```

```
<table>
<thead>
<tr>
<th>ids</th>
<th>ids2</th>
<th>vals</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Chapter 13. Indexing and Selecting Data
The `where()` Method and Masking

Selecting values from a Series with a boolean vector generally returns a subset of the data. To guarantee that selection output has the same shape as the original data, you can use the `where` method in `Series` and `DataFrame`.

To return only the selected rows

```
In [159]: s[s > 0]
Out[159]:
3 1
2 2
1 3
0 4
```

To return a Series of the same shape as the original

```
In [160]: s.where(s > 0)
Out[160]:
4 NaN
3 1.0
2 2.0
1 3.0
0 4.0
```

Selecting values from a DataFrame with a boolean criterion now also preserves input data shape. `where` is used under the hood as the implementation. Equivalent is `df.where(df < 0)

```
In [161]: df[df < 0]
Out[161]:
 A B C D
2000-01-01 -2.104139 -1.309525 NaN NaN
2000-01-02 -0.352480 NaN -1.192319 NaN
2000-01-03 -0.864883 NaN -0.227870 NaN
2000-01-04 NaN -1.222082 NaN -1.233203
2000-01-05 NaN -0.605656 -1.169184 NaN
2000-01-06 NaN -0.948458 NaN -0.684718
2000-01-07 -2.670153 -0.114722 NaN NaN
2000-01-08 NaN NaN -0.048788 -0.808838
```

In addition, `where` takes an optional `other` argument for replacement of values where the condition is False, in the returned copy.

```
In [162]: df.where(df < 0, -df)
Out[162]:
 A B C D
2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824
2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059
2000-01-04 NaN -0.948458 -0.684718 -0.342416
2000-01-05 NaN -0.605656 -0.048788 -0.808838
2000-01-06 NaN -0.948458 -0.684718 -0.342416
2000-01-07 -2.670153 -0.114722 -0.048788 -0.808838
2000-01-08 NaN NaN -0.048788 -0.808838
```
You may wish to set values based on some boolean criteria. This can be done intuitively like so:

```python
In [163]: s2 = s.copy()
In [164]: s2[s2 < 0] = 0
In [165]: s2
Out[165]:
 4 0
 3 1
 2 2
 1 3
 0 4
dtype: int64
In [166]: df2 = df.copy()
In [167]: df2[df2 < 0] = 0
In [168]: df2
Out[168]:
 A B C D
2000-01-01 0.000000 0.000000 0.485855 0.245166
2000-01-02 0.000000 0.390389 0.000000 1.655824
2000-01-03 0.000000 0.299674 0.000000 0.281059
2000-01-04 0.846958 0.000000 0.600705 0.000000
2000-01-05 0.669692 0.000000 0.000000 0.342416
2000-01-06 0.868584 0.000000 2.297780 0.000000
2000-01-07 0.000000 0.000000 0.168904 0.000000
2000-01-08 0.801196 1.392071 0.000000 0.000000
```

By default, `where` returns a modified copy of the data. There is an optional parameter `inplace` so that the original data can be modified without creating a copy:

```python
In [169]: df_orig = df.copy()
In [170]: df_orig.where(df > 0, -df, inplace=True);
In [171]: df_orig
Out[171]:
 A B C D
2000-01-01 2.104139 1.309525 0.485855 0.245166
2000-01-02 0.352480 0.390389 1.192319 1.655824
2000-01-03 0.864883 0.299674 0.227870 0.281059
2000-01-04 0.846958 1.222082 0.600705 1.233203
2000-01-05 0.669692 0.605656 1.169184 0.342416
2000-01-06 0.868584 0.948458 2.297780 0.684718
2000-01-07 2.670153 0.114722 0.168904 0.048048
2000-01-08 0.801196 1.392071 0.048788 0.808838
```

Note: The signature for `DataFrame.where()` differs from `numpy.where()`. Roughly `df1.where(m,df2)` is equivalent to `np.where(m,df1,df2)`.

```python
In [172]: df.where(df < 0, -df) == np.where(df < 0, df, -df)
Out[172]:
 A B C D
0 True True True True
```

Chapter 13. Indexing and Selecting Data
Furthermore, where aligns the input boolean condition (ndarray or DataFrame), such that partial selection with setting is possible. This is analogous to partial setting via .ix (but on the contents rather than the axis labels).

```
In [173]: df2 = df.copy()

In [174]: df2[df2[1:4] > 0] = 3

In [175]: df2
Out[175]:
A B C D
2000-01-01 -2.104139 -1.309525 0.485855 0.245166
2000-01-02 -0.352480 3.000000 -1.192319 3.000000
2000-01-03 -0.864883 3.000000 -0.227870 3.000000
2000-01-04 3.000000 -1.222082 3.000000 -1.233203
2000-01-05 0.669692 -0.605656 -1.169184 0.342416
2000-01-06 0.868584 -0.948458 2.297780 -0.684718
2000-01-07 -2.670153 -0.114722 0.168904 -2.670153
2000-01-08 0.801196 1.392071 -0.048788 -0.808838
```

New in version 0.13.

Where can also accept axis and level parameters to align the input when performing the where.

```
In [176]: df2 = df.copy()

In [177]: df2.where(df2>0,df2['A'],axis='index')
Out[177]:
A B C D
2000-01-01 -2.104139 -2.104139 0.485855 0.245166
2000-01-02 -0.352480 0.390389 -0.352480 1.655824
2000-01-03 -0.864883 0.299674 -0.864883 0.342416
2000-01-04 0.846958 0.846958 0.600705 0.846958
2000-01-05 0.669692 0.669692 0.669692 0.342416
2000-01-06 0.868584 0.868584 2.297780 0.868584
2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
2000-01-08 0.801196 1.392071 0.801196 0.801196
```

This is equivalent (but faster than) the following.

```
In [178]: df2 = df.copy()

In [179]: df.apply(lambda x, y: x.where(x>0,y), y=df['A'])
Out[179]:
A B C D
2000-01-01 -2.104139 -2.104139 0.485855 0.245166
2000-01-02 -0.352480 0.390389 -0.352480 1.655824
2000-01-03 -0.864883 0.299674 -0.864883 0.342416
2000-01-04 0.846958 0.846958 0.600705 0.846958
2000-01-05 0.669692 0.669692 0.669692 0.342416
2000-01-06 0.868584 0.868584 2.297780 0.868584
2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
2000-01-08 0.801196 1.392071 0.801196 0.801196
```

13.13. The where() Method and Masking
New in version 0.18.1.

Where can accept a callable as condition and other arguments. The function must be with one argument (the calling Series or DataFrame) and that returns valid output as condition and other argument.

```
In [180]: df3 = pd.DataFrame({'A': [1, 2, 3],
 : 'B': [4, 5, 6],
 : 'C': [7, 8, 9]})

In [181]: df3.where(lambda x: x > 4, lambda x: x + 10)

Out[181]:
 A B C
0 11 14 7
1 12 5 8
2 13 6 9
```

mask

mask is the inverse boolean operation of where.

```
In [182]: s.mask(s >= 0)
Out[182]:
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
dtype: float64

In [183]: df.mask(df >= 0)
Out[183]:
 A B C D
2000-01-01 -2.104139 -1.309525 NaN NaN
2000-01-02 -0.352480 NaN -1.192319 NaN
2000-01-03 -0.864883 NaN -0.227870 NaN
2000-01-04 NaN -1.222082 NaN -1.233203
2000-01-05 NaN -1.605656 -1.169184 NaN
2000-01-06 NaN -0.948458 NaN -0.684718
2000-01-07 NaN -0.808838 -0.048788 NaN
```

**The query() Method (Experimental)**

New in version 0.13.

*DataFrame* objects have a *query()* method that allows selection using an expression.

You can get the value of the frame where column *b* has values between the values of columns *a* and *c*. For example:
In [184]: n = 10

In [185]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))

In [186]: df
Out[186]:
   a          b          c
0  0.438921  0.118680  0.863670
1  0.138138  0.577363  0.686602
2  0.595307  0.564592  0.520630
3  0.913052  0.926075  0.616184
4  0.078718  0.854477  0.898725
5  0.076404  0.523211  0.591538
6  0.792342  0.216974  0.564056
7  0.397890  0.454131  0.915716
8  0.074315  0.437913  0.019794
9  0.559209  0.502065  0.026437

# pure python
In [187]: df[(df.a < df.b) & (df.b < df.c)]
Out[187]:
   a          b          c
1  0.138138  0.577363  0.686602
4  0.078718  0.854477  0.898725
5  0.076404  0.523211  0.591538
7  0.397890  0.454131  0.915716

# query
In [188]: df.query('(a < b) & (b < c)')
Out[188]:
   a          b          c
1  0.138138  0.577363  0.686602
4  0.078718  0.854477  0.898725
5  0.076404  0.523211  0.591538
7  0.397890  0.454131  0.915716

Do the same thing but fall back on a named index if there is no column with the name a.

In [189]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc'))

In [190]: df.index.name = 'a'

In [191]: df
Out[191]:
   b  c
   a
0  4
1  1
2  3
3  4
4  4
5  3
6  0
7  1
8  3
9  1

In [192]: df.query('a < b and b < c')
If instead you don’t want to or cannot name your index, you can use the name `index` in your query expression:

```python
In [193]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))
In [194]: df
Out[194]:
 b c
0 3 1
1 3 0
2 5 6
3 5 2
4 7 4
5 0 1
6 2 5
7 0 1
8 6 0
9 7 9
In [195]: df.query('index < b < c')
Out[195]:
 b c
2 5 6
```

**Note:** If the name of your index overlaps with a column name, the column name is given precedence. For example,

```python
In [196]: df = pd.DataFrame({'a': np.random.randint(5, size=5)})
In [197]: df.index.name = 'a'
In [198]: df.query('a > 2') # uses the column 'a', not the index
Out[198]:
 a
0 3
1 3
3 3
```

You can still use the index in a query expression by using the special identifier `index`:

```python
In [199]: df.query('index > 2')
Out[199]:
 a
0 3
3 3
4 2
```

If for some reason you have a column named `index`, then you can refer to the index as `ilevel_0` as well, but at this point you should consider renaming your columns to something less ambiguous.
**MultiIndex query() Syntax**

You can also use the levels of a DataFrame with a `MultiIndex` as if they were columns in the frame:

```
In [200]: n = 10

In [201]: colors = np.random.choice(['red', 'green'], size=n)

In [202]: foods = np.random.choice(['eggs', 'ham'], size=n)

In [203]: colors
Out[203]:
array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green', 'green', 'green'],
 dtype='|S5')

In [204]: foods
Out[204]:
array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs', 'eggs'],
 dtype='|S4')

In [205]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food'])

In [206]: df = pd.DataFrame(np.random.randn(n, 2), index=index)

In [207]: df
Out[207]:
 0 1
color food
red ham 0.194889 -0.381994
 ham 0.318587 2.089075
 eggs -0.728293 -0.090255
green eggs -0.748199 1.318931
 eggs -2.029766 0.792652
 ham 0.461007 -0.542749
 ham -0.305384 -0.270099
 eggs 0.095031 -0.773882
 eggs 0.229453 0.304418

In [208]: df.query('color == "red"')
Out[208]:
 0 1
color food
red ham 0.194889 -0.381994
 ham 0.318587 2.089075
 eggs -0.728293 -0.090255
```

If the levels of the `MultiIndex` are unnamed, you can refer to them using special names:

```
In [209]: df.index.names = [None, None]

In [210]: df
Out[210]:
 0 1
color food
red ham 0.194889 -0.381994
 ham 0.318587 2.089075
 eggs -0.728293 -0.090255
```
### query() Use Cases

A use case for `query()` is when you have a collection of DataFrame objects that have a subset of column names (or index levels/names) in common. You can pass the same query to both frames without having to specify which frame you’re interested in querying.

```python
In [212]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))

In [213]: df
Out[213]:
 a b c
0 0.224283 0.736107 0.139168
1 0.302827 0.657803 0.713897
2 0.611185 0.136624 0.984960
3 0.195246 0.123436 0.627712
4 0.618673 0.371660 0.047902
5 0.480088 0.062993 0.185760
6 0.568018 0.483467 0.445289
7 0.309040 0.274580 0.370255
8 0.550459 0.840870 0.304611
9 0.550459 0.840870 0.304611

In [214]: df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns)

In [215]: df2
Out[215]:
 a b c
0 0.357579 0.229800 0.596001
1 0.309059 0.957923 0.965663
2 0.123102 0.336914 0.318616
3 0.526506 0.323321 0.860813
4 0.518736 0.486514 0.384724
5 0.190804 0.505723 0.614533
6 0.891939 0.623977 0.676639
7 0.480559 0.378528 0.460858
8 0.420223 0.136404 0.141295
9 0.732206 0.419540 0.604675
10 0.604466 0.848974 0.896165
```
In [216]: expr = '0.0 <= a <= c <= 0.5'

In [217]: map(lambda frame: frame.query(expr), [df, df2])
Out[217]:
[ a b c
  8 0.258993 0.477769 0.370255, a b c
  2 0.123102 0.336914 0.318616]

query() Python versus pandas Syntax Comparison

Full numpy-like syntax

In [218]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc'))

In [219]: df
Out[219]:
   a  b  c
0  7  8  9
1  1  0  7
2  2  7  2
3  6  2  2
4  2  6  3
5  3  8  2
6  1  7  2
7  5  1  5
8  9  8  0
9  1  5  0

In [220]: df.query('(a < b) & (b < c)')
Out[220]:
   a  b  c
0  7  8  9

In [221]: df[(df.a < df.b) & (df.b < df.c)]
Out[221]:
   a  b  c
0  7  8  9

Slightly nicer by removing the parentheses (by binding making comparison operators bind tighter than &/|)

In [222]: df.query('a < b and b < c')
Out[222]:
   a  b  c
0  7  8  9

Use English instead of symbols

In [223]: df.query('a < b and b < c')
Out[223]:
   a  b  c
0  7  8  9

Pretty close to how you might write it on paper
The **in** and **not in** operators

`query()` also supports special use of Python’s **in** and **not in** comparison operators, providing a succinct syntax for calling the `isin` method of a `Series` or `DataFrame`.

```python
get all rows where columns "a" and "b" have overlapping values
In [225]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),
 'c': np.random.randint(5, size=12),
 'd': np.random.randint(9, size=12)})

In [226]: df
Out[226]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2
6 d b 3 3
7 d b 2 1
8 e c 4 3
9 e c 2 0
10 f c 0 6
11 f c 1 2

In [227]: df.query('a in b')
Out[227]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2

How you’d do it in pure Python
In [228]: df[df.a.isin(df.b)]
Out[228]:
a b c d
0 a a 2 6
1 a a 4 7
2 b a 1 6
3 b a 2 1
4 c b 3 6
5 c b 0 2

In [229]: df.query('a not in b')
Out[229]:
a b c d
```
You can combine this with other expressions for very succinct queries:

```python
rows where cols a and b have overlapping values and col c's values are less than col d's
In [231]: df.query('a in b and c < d')
Out[231]:
 a b c d
0 0 1 2 0
1 1 2 7 6
2 2 1 6 6
4 4 3 6 6
5 5 8 2 2
10 10 0 6 6
11 11 1 2 2
```

Note: Note that in and not in are evaluated in Python, since numexpr has no equivalent of this operation. However, only the in/not in expression itself is evaluated in vanilla Python. For example, in the expression

```
df.query('a in b + c + d')
```

(b + c + d) is evaluated by numexpr and then the in operation is evaluated in plain Python. In general, any operations that can be evaluated using numexpr will be.

**Special use of the == operator with list objects**

Comparing a list of values to a column using ==/!= works similarly to in/not in
In [233]: df.query('b == ["a", "b", "c"]')
Out[233]:
    a b c d
0  a  a 2 6
1  a  a 4 7
2  b  a 1 6
3  b  a 2 1
4  c  b 3 6
5  c  b 0 2
6  d  b 3 3
7  d  b 2 1
8  e  c 4 3
9  e  c 2 0
10 f  c 0 6
11 f  c 1 2

# pure Python
In [234]: df[df.b.isin(["a", "b", "c"])]  
Out[234]:
    a b c d
0  a  a 2 6
1  a  a 4 7
2  b  a 1 6
3  b  a 2 1
4  c  b 3 6
5  c  b 0 2
6  d  b 3 3
7  d  b 2 1
8  e  c 4 3
9  e  c 2 0
10 f  c 0 6
11 f  c 1 2

In [235]: df.query('c == [1, 2]')
Out[235]:
    a b c d
0  a  a 2 6
2  b  a 1 6
3  b  a 2 1
7  d  b 2 1
9  e  c 2 0
11 f  c 1 2

In [236]: df.query('c != [1, 2]')
Out[236]:
    a b c d
1  a  a 4 7
4  c  b 3 6
5  c  b 0 2
6  d  b 3 3
8  e  c 4 3
10 f  c 0 6

# using in/not in
In [237]: df.query('[1, 2] in c')
Out[237]:
    a b c d
0  a  a 2 6
2  b  a  1  6
3  b  a  2  1
7  d  b  2  1
9  e  c  2  0
11 f  c  1  2

In [238]: df.query('[1, 2] not in c')
Out[238]:
     a  b  c  d
0  1.0  3.0  4.0  5.0
1  2.0  3.0  4.0  5.0
2  3.0  4.0  5.0  6.0
3  4.0  5.0  6.0  7.0
4  5.0  6.0  7.0  8.0

# pure Python
In [239]: df[df.c.isin([1, 2])]
Out[239]:
     a  b  c  d
0  1.0  3.0  4.0  5.0
1  2.0  3.0  4.0  5.0
2  3.0  4.0  5.0  6.0
3  4.0  5.0  6.0  7.0
4  5.0  6.0  7.0  8.0

Boolean Operators

You can negate boolean expressions with the word not or the ~ operator.

In [240]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [241]: df['bools'] = np.random.rand(len(df)) > 0.5
In [242]: df.query('~bools')
Out[242]:
     a  b  c  bools
0  0.697753 0.212799 0.329209 False
1  0.275396 0.691034 0.826619 False
2  0.190649 0.558748 0.262467 False

In [243]: df.query('not bools')
Out[243]:
     a  b  c  bools
0  0.697753 0.212799 0.329209 False
1  0.275396 0.691034 0.826619 False
2  0.190649 0.558748 0.262467 False

In [244]: df.query('not bools') == df[~df.bools]
Out[244]:
     a  b  c  bools
0  True True True True
1  True True True True
2  True True True True
Of course, expressions can be arbitrarily complex too

```
short query syntax
In [245]: shorter = df.query('a < b < c and (not bools) or bools > 2')

equivalent in pure Python
In [246]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)]

In [247]: shorter
Out[247]:
 a b c bools
 --- --- --- ----
 7 0.275 0.691 0.827 False

In [248]: longer
Out[248]:
 a b c bools
 --- --- --- ----
 7 0.275 0.691 0.827 False

In [249]: shorter == longer
Out[249]:
 a b c bools
 --- --- --- ----
 7 True True True
```

**Performance of `query()`**

`DataFrame.query()` using `numexpr` is slightly faster than Python for large frames

![Graph showing performance comparison between Python and numexpr for DataFrame.query()](image)

**Note:** You will only see the performance benefits of using the `numexpr` engine with `DataFrame.query()` if your frame has more than approximately 200,000 rows
This plot was created using a DataFrame with 3 columns each containing floating point values generated using `numpy.random.randn()`.

## Duplicate Data

If you want to identify and remove duplicate rows in a DataFrame, there are two methods that will help: `duplicated` and `drop_duplicates`. Each takes as an argument the columns to use to identify duplicated rows.

- `duplicated` returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.
- `drop_duplicates` removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, but each method has a `keep` parameter to specify targets to be kept.

- `keep='first'` (default): mark / drop duplicates except for the first occurrence.
- `keep='last'`: mark / drop duplicates except for the last occurrence.
- `keep=False`: mark / drop all duplicates.

```python
In [250]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'],
 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],
 'c': np.random.randn(7))

In [251]: df2
Out[251]:
 a b c
0 one x -1.067137
1 one y 0.309500
2 two x -0.211056
3 two y -1.842023
4 two x -0.390820
5 three x -1.964475
```
In [252]: df2.duplicated('a')
Out[252]:
0   False
1    True
2    False
3     True
4    False
5    False
6    False
dtype: bool

In [253]: df2.duplicated('a', keep='last')
Out[253]:
0    True
1    False
2    True
3    False
4    False
5    False
6    False
dtype: bool

In [254]: df2.duplicated('a', keep=False)
Out[254]:
0    True
1    True
2    True
3    True
4    False
5    False
6    False
dtype: bool

In [255]: df2.drop_duplicates('a')
Out[255]:
a  b  c
0  one  x -1.067137
2  two  x -0.211056
5  three  x -1.964475
6  four  x  1.298329

In [256]: df2.drop_duplicates('a', keep='last')
Out[256]:
a  b  c
1  one  y  0.309500
4  two  x -0.390820
5  three  x -1.964475
6  four  x  1.298329

In [257]: df2.drop_duplicates('a', keep=False)
Out[257]:
a  b  c
5  three  x -1.964475
6  four  x  1.298329

Also, you can pass a list of columns to identify duplications.
To drop duplicates by index value, use `Index.duplicated` then perform slicing. Same options are available in `keep` parameter.

```
In [260]: df3 = pd.DataFrame({'a': np.arange(6),
 'b': np.random.randn(6)},
 index=['a', 'a', 'b', 'c', 'b', 'a'])

In [261]: df3
Out[261]:
 a b
a 0 1.440455
 1 2.456086
b 2 1.038402
 3 -0.894409
b 4 0.683536
 5 3.082764

In [262]: df3.index.duplicated()
Out[262]: array([False, True, False, False, True, True], dtype=bool)

In [263]: df3[~df3.index.duplicated()]
Out[263]:
 a b
 a 0 1.440455
 b 2 1.038402
 c 3 -0.894409

In [264]: df3[~df3.index.duplicated(keep='last')]
Out[264]:
 a b
 c 3 -0.894409
 b 4 0.683536
 a 5 3.082764

In [265]: df3[~df3.index.duplicated(keep=False)]
Out[265]:
```
Dictionary-like get() method

Each of Series, DataFrame, and Panel have a get method which can return a default value.

```python
In [266]: s = pd.Series([1,2,3], index=['a','b','c'])
In [267]: s.get('a') # equivalent to s['a']
Out[267]: 1
In [268]: s.get('x', default=-1)
Out[268]: -1
```

The select() Method

Another way to extract slices from an object is with the select method of Series, DataFrame, and Panel. This method should be used only when there is no more direct way. select takes a function which operates on labels along axis and returns a boolean. For instance:

```python
In [269]: df.select(lambda x: x == 'A', axis=1)
Out[269]:
 A
2000-01-01 0.355794
2000-01-02 1.635763
2000-01-03 0.854409
2000-01-04 -0.216659
2000-01-05 2.414688
2000-01-06 -1.206215
2000-01-07 0.779461
2000-01-08 -0.878999
```

The lookup() Method

Sometimes you want to extract a set of values given a sequence of row labels and column labels, and the lookup method allows for this and returns a numpy array. For instance,

```python
In [270]: dflookup = pd.DataFrame(np.random.rand(20,4), columns=['A','B','C','D'])
In [271]: dflookup.lookup(list(range(0,10,2)), ['B','C','A','B','D'])
Out[271]: array([0.3506, 0.4779, 0.4825, 0.9197, 0.5019])
```

Index objects

The pandas Index class and its subclasses can be viewed as implementing an ordered multiset. Duplicates are allowed. However, if you try to convert an Index object with duplicate entries into a set, an exception will be raised.
Index also provides the infrastructure necessary for lookups, data alignment, and reindexing. The easiest way to create an Index directly is to pass a list or other sequence to Index:

```python
In [272]: index = pd.Index(['e', 'd', 'a', 'b'])
In [273]: index
Out[273]: Index([u'e', u'd', u'a', u'b'], dtype='object')
In [274]: 'd' in index
Out[274]: True
```

You can also pass a name to be stored in the index:

```python
In [275]: index = pd.Index(['e', 'd', 'a', 'b'], name='something')
In [276]: index.name
Out[276]: 'something'
```

The name, if set, will be shown in the console display:

```python
In [277]: index = pd.Index(list(range(5)), name='rows')
In [278]: columns = pd.Index(['A', 'B', 'C'], name='cols')
In [279]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)
In [280]: df
Out[280]:
 cols
 rows A B C
0 1.295989 0.185778 0.436259
1 0.678101 0.311369 -0.528378
2 -0.674808 -1.103529 -0.656157
3 1.889957 2.076651 -1.102192
4 -1.211795 -0.791746 0.634724
In [281]: df['A']
Out[281]:
 rows
0 1.295989
1 0.678101
2 -0.674808
3 1.889957
4 -1.211795
Name: A, dtype: float64
```

### Setting metadata

New in version 0.13.0.

Indexes are “mostly immutable”, but it is possible to set and change their metadata, like the index name (or, for MultiIndex, levels and labels).

You can use the rename, set_names, set_levels, and set_labels to set these attributes directly. They default to returning a copy; however, you can specify inplace=True to have the data change in place.

See Advanced Indexing for usage of MultiIndexes.
In [282]: ind = pd.Index([1, 2, 3])

In [283]: ind.rename("apple")
Out[283]: Int64Index([1, 2, 3], dtype='int64', name=u'apple')

In [284]: ind
Out[284]: Int64Index([1, 2, 3], dtype='int64')

In [285]: ind.set_names(['apple'], inplace=True)

In [286]: ind.name = "bob"

In [287]: ind
Out[287]: Int64Index([1, 2, 3], dtype='int64', name='bob')

New in version 0.15.0. set_names, set_levels, and set_labels also take an optional level' argument

In [288]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])

In [289]: index
Out[289]: MultiIndex(levels=[[0, 1, 2], ['one', 'two']],
                labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
                names=['first', 'second'])

In [290]: index.levels[1]
Out[290]: Index(['one', 'two'], dtype='object', name='second')

In [291]: index.set_levels(['a', 'b'], level=1)
Out[291]: MultiIndex(levels=[[0, 1, 2], ['a', 'b']],
                labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
                names=['first', 'second'])

In [292]: a = pd.Index(['c', 'b', 'a'])

In [293]: b = pd.Index(['c', 'e', 'd'])

In [294]: a | b
Out[294]: Index([u'c', u'b', u'a', u'd', u'e'], dtype='object')

In [295]: a & b
Out[295]: Index([u'c'], dtype='object')

Set operations on Index objects

Warning: In 0.15.0. the set operations + and – were deprecated in order to provide these for numeric type operations on certain index types. + can be replace by .union() or |, and – by .difference().

The two main operations are union (), intersection (&) These can be directly called as instance methods or used via overloaded operators. Difference is provided via the .difference() method.
In [296]: a.difference(b)
Out[296]: Index([u'a', u'b'], dtype='object')

Also available is the `symmetric_difference (^)` operation, which returns elements that appear in either `idx1` or `idx2` but not both. This is equivalent to the Index created by `idx1.difference(idx2).union(idx2.difference(idx1))`, with duplicates dropped.

In [297]: idx1 = pd.Index([1, 2, 3, 4])
In [298]: idx2 = pd.Index([2, 3, 4, 5])
In [299]: idx1.symmetric_difference(idx2)
Out[299]: Int64Index([1, 5], dtype='int64')
In [300]: idx1 ^ idx2
Out[300]: Int64Index([1, 5], dtype='int64')

### Missing values

New in version 0.17.1.

**Important:** Even though `Index` can hold missing values (NaN), it should be avoided if you do not want any unexpected results. For example, some operations exclude missing values implicitly.

Index.fillna fills missing values with specified scalar value.

In [301]: idx1 = pd.Index([1, np.nan, 3, 4])
In [302]: idx1
Out[302]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64')
In [303]: idx1.fillna(2)
Out[303]: Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64')
In [305]: idx2
Out[305]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None)
In [306]: idx2.fillna(pd.Timestamp('2011-01-02'))
Out[306]: DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None)

### Set / Reset Index

Occasionally you will load or create a data set into a DataFrame and want to add an index after you’ve already done so. There are a couple of different ways.
Set an index

DataFrame has a set_index method which takes a column name (for a regular Index) or a list of column names (for a MultiIndex), to create a new, indexed DataFrame:

```python
In [307]: data
Out[307]:
 a b c d
0 bar one z 1.0
1 bar two y 2.0
2 foo one x 3.0
3 foo two w 4.0

In [308]: indexed1 = data.set_index('c')

In [309]: indexed1
Out[309]:
 a b d
 c
 z bar one z 1.0
 y bar two y 2.0
 x foo one x 3.0
 w foo two w 4.0

In [310]: indexed2 = data.set_index(['a', 'b'])

In [311]: indexed2
Out[311]:
 c d
 a b
 z bar one z 1.0
 two y bar two y 2.0
 x foo one x 3.0
 two w foo two w 4.0
```

The `append` keyword option allow you to keep the existing index and append the given columns to a MultiIndex:

```python
In [312]: frame = data.set_index('c', drop=False)

In [313]: frame = frame.set_index(['a', 'b'], append=True)

In [314]: frame
Out[314]:
 c d
 a b
 c
 z bar one z 1.0
 y bar two y 2.0
 x foo one x 3.0
 w foo two w 4.0
```

Other options in `set_index` allow you not drop the index columns or to add the index in-place (without creating a new object):

```python
In [315]: data.set_index('c', drop=False)
Out[315]:
 a b c d
 c
 z bar one z 1.0
```

Chapter 13. Indexing and Selecting Data
Reset the index

As a convenience, there is a new function on DataFrame called `reset_index` which transfers the index values into the DataFrame’s columns and sets a simple integer index. This is the inverse operation to `set_index`.

```python
In [316]: data.set_index(['a', 'b'], inplace=True)
```

```python
In [317]: data
Out[317]:
 a b
c d
bar one z 1.0
two y 2.0
foo one x 3.0
two w 4.0
```

```python
Reset the index
```

The output is more similar to a SQL table or a record array. The names for the columns derived from the index are the ones stored in the `names` attribute.

You can use the `level` keyword to remove only a portion of the index:

```python
In [320]: frame
Out[320]:
 c d
c a b
c z bar one z 1.0
c y bar two y 2.0
c x foo one x 3.0
c w foo two w 4.0
```

```python
In [321]: frame.reset_index(level=1)
Out[321]:
 a c d
c b
c z one bar z 1.0
c z two bar two z 2.0
c x one foo one x 3.0
c x two foo two w 4.0
```
reset_index takes an optional parameter drop which if true simply discards the index, instead of putting index values in the DataFrame’s columns.

Note: The reset_index method used to be called delevel which is now deprecated.

Adding an ad hoc index

If you create an index yourself, you can just assign it to the index field:

data.index = index

Returning a view versus a copy

When setting values in a pandas object, care must be taken to avoid what is called chained indexing. Here is an example.

In [322]: dfmi = pd.DataFrame([list('abcd'), list('efgh'), list('ijkl'), list('mnop')], columns=pd.MultiIndex.from_product([['one','two'], ['first','second']]))

In [323]: dfmi

Out[323]:
          one  two
first  second  first  second
 0      a      b      c      d
 1      e      f      g      h
 2      i      j      k      l
 3      m      n      o      p

Compare these two access methods:

In [324]: dfmi['one']['second']
Out[324]:
0  b
1  f
2  j
3  n
Name: second, dtype: object

In [325]: dfmi.loc[:,('one','second')]
Out[325]:
0  b
1  f
These both yield the same results, so which should you use? It is instructive to understand the order of operations on these and why method 2 (.loc) is much preferred over method 1 (chained [])

dfmi['one'] selects the first level of the columns and returns a DataFrame that is singly-indexed. Then another python operation dfmi_with_one['second'] selects the series indexed by 'second' happens. This is indicated by the variable dfmi_with_one because pandas sees these operations as separate events. e.g. separate calls to __getitem__, so it has to treat them as linear operations, they happen one after another.

Contrast this to df.loc[:,('one','second')] which passes a nested tuple of (slice(None),('one','second')) to a single call to __getitem__. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantly faster, and allows one to index both axes if so desired.

Why does assignment fail when using chained indexing?

The problem in the previous section is just a performance issue. What’s up with the SettingWithCopy warning? We don’t usually throw warnings around when you do something that might cost a few extra milliseconds!

But it turns out that assigning to the product of chained indexing has inherently unpredictable results. To see this, think about how the Python interpreter executes this code:

defmi.loc[:,('one','second')] = value # becomes
defmi.loc.__setitem__((slice(None), ('one', 'second')), value)

But this code is handled differently:

defmi['one']['second'] = value # becomes
defmi.__getitem__('one').__setitem__('second', value)

See that __getitem__ in there? Outside of simple cases, it’s very hard to predict whether it will return a view or a copy (it depends on the memory layout of the array, about which pandas makes no guarantees), and therefore whether the __setitem__ will modify dfmi or a temporary object that gets thrown out immediately afterward. That’s what SettingWithCopy is warning you about!

Note: You may be wondering whether we should be concerned about the loc property in the first example. But dfmi.loc is guaranteed to be dfmi itself with modified indexing behavior, so dfmi.loc.__getitem__ / dfmi.loc.__setitem__ operate on dfmi directly. Of course, dfmi.loc.__getitem__(idx) may be a view or a copy of dfmi.

Sometimes a SettingWithCopy warning will arise at times when there’s no obvious chained indexing going on. These are the bugs that SettingWithCopy is designed to catch! Pandas is probably trying to warn you that you’ve done this:

def do_something(df):
    foo = df[['bar', 'baz']] # Is foo a view? A copy? Nobody knows!
    # ... many lines here ...
    foo['quux'] = value # We don’t know whether this will modify df or not!
    return foo
Yikes!

**Evaluation order matters**

Furthermore, in chained expressions, the order may determine whether a copy is returned or not. If an expression will set values on a copy of a slice, then a `SettingWithCopy` exception will be raised (this raise/warn behavior is new starting in 0.13.0)

You can control the action of a chained assignment via the option `mode.chained_assignment`, which can take the values `['raise', 'warn', None]`, where showing a warning is the default.

```python
In [326]: dfb = pd.DataFrame({'a' : ['one', 'one', 'two',
 'three', 'two', 'one', 'six'],
 'c' : np.arange(7))

This will show the SettingWithCopyWarning
but the frame values will be set
In [327]: dfb['c'][dfb.a.str.startswith('o')] = 42
```

This however is operating on a copy and will not work.

```python
>>> pd.set_option('mode.chained_assignment','warn')
>>> dfb[dfb.a.str.startswith('o')]['c'] = 42
```

```python
Traceback (most recent call last)
...
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
```

A chained assignment can also crop up in setting in a mixed dtype frame.

**Note:** These setting rules apply to all of `.loc/.iloc/.ix`

This is the correct access method

```python
In [328]: dfc = pd.DataFrame({'A': ['aaa','bbb','ccc'],'B':[1,2,3]})

In [329]: dfc.loc[0,'A'] = 11

In [330]: dfc
Out[330]:
 A B
0 11 1
1 bbb 2
2 ccc 3
```

This *can* work at times, but is not guaranteed, and so should be avoided

```python
In [331]: dfc = dfc.copy()

In [332]: dfc['A'][0] = 111

In [333]: dfc
Out[333]:
 A B
0 111 1
1 bbb 2
2 ccc 3
```
This will **not** work at all, and so should be avoided

```python
>>> pd.set_option('mode.chained_assignment','raise')
>>> dfc.loc[0]['A'] = 1111
Traceback (most recent call last)
...
SettingWithCopyException:
 A value is trying to be set on a copy of a slice from a DataFrame.
 Try using .loc[row_index,col_indexer] = value instead
```

**Warning:** The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalid assignment. There may be false positives; situations where a chained assignment is inadvertently reported.
This section covers indexing with a MultiIndex and more advanced indexing features. See the Indexing and Selecting Data for general indexing documentation.

**Warning:** Whether a copy or a reference is returned for a setting operation, may depend on the context. This is sometimes called chained assignment and should be avoided. See Returning a View versus Copy

In 0.15.0 Index has internally been refactored to no longer sub-class ndarray but instead subclass PandasObject, similarly to the rest of the pandas objects. This should be a transparent change with only very limited API implications (See the Internal Refactoring)

See the cookbook for some advanced strategies

**Hierarchical indexing (MultiIndex)**

Hierarchical / Multi-level indexing is very exciting as it opens the door to some quite sophisticated data analysis and manipulation, especially for working with higher dimensional data. In essence, it enables you to store and manipulate data with an arbitrary number of dimensions in lower dimensional data structures like Series (1d) and DataFrame (2d).

In this section, we will show what exactly we mean by “hierarchical” indexing and how it integrates with the all of the pandas indexing functionality described above and in prior sections. Later, when discussing group by and pivoting and reshaping data, we’ll show non-trivial applications to illustrate how it aids in structuring data for analysis.

See the cookbook for some advanced strategies

**Creating a MultiIndex (hierarchical index) object**

The MultiIndex object is the hierarchical analogue of the standard Index object which typically stores the axis labels in pandas objects. You can think of MultiIndex an array of tuples where each tuple is unique. A MultiIndex can be created from a list of arrays (using MultiIndex.from_arrays), an array of tuples (using MultiIndex.from_tuples), or a crossed set of iterables (using MultiIndex.from_product). The Index constructor will attempt to return a MultiIndex when it is passed a list of tuples. The following examples demo different ways to initialize MultiIndexes.

In [1]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ...
     : ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
     ...

    ...:
In [2]: tuples = list(zip(*arrays))

In [3]: tuples
Out[3]: [('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two'), ('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')]

In [4]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [5]: index
Out[5]: MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=['first', 'second'])

In [6]: s = pd.Series(np.random.randn(8), index=index)

In [7]: s
Out[7]:
first  second
bar    one  0.469112
      two -0.282863
baz    one -1.509059
      two -1.135632
foo    one  1.212112
      two -0.173215
qux    one  0.119209
      two -1.044236
dtype: float64

When you want every pairing of the elements in two iterables, it can be easier to use the MultiIndex.from_product function:

In [8]: iterables = [['bar', 'baz', 'foo', 'qux'], ['one', 'two']]

In [9]: pd.MultiIndex.from_product(iterables, names=['first', 'second'])
Out[9]: MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]], names=['first', 'second'])

As a convenience, you can pass a list of arrays directly into Series or DataFrame to construct a MultiIndex automatically:

In [10]: arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']), np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]

In [11]: s = pd.Series(np.random.randn(8), index=arrays)

In [12]: s
All of the `MultiIndex` constructors accept a `names` argument which stores string names for the levels themselves. If no names are provided, `None` will be assigned:

```python
In [15]: df.index.names
Out[15]: FrozenList([None, None])
```

This index can back any axis of a pandas object, and the number of `levels` of the index is up to you:

```python
In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)
In [17]: df
Out[17]:
 first bar baz foo qux
A 0.8957 0.8052 -1.2064 2.5656 1.4312
B 0.4108 0.8138 0.1320 -0.8273 -0.0764
C -1.4137 1.6079 1.0242 0.5696 0.8759
first second two two two two
A -0.2262
B -1.4367
C -2.0067
```

```python
In [18]: pd.DataFrame(np.random.randn(6, 6), index=index[:6], columns=index[:6])
Out[18]:
 first bar baz foo qux
second one two one two one two
 one -0.4100 -0.0786 0.5459 -1.2192 -1.2268 0.7698
 two -1.2812 -0.7277 -0.1213 -0.0978 0.6958 0.3417
baz one 0.9597 -1.1033 -0.6199 0.1497 -0.7323 0.6877
 two 0.7323 -0.2262 0.5459 -1.2192 -1.2268 0.7698
```

### 14.1. Hierarchical indexing (MultiIndex)
We’ve “sparsified” the higher levels of the indexes to make the console output a bit easier on the eyes.

It’s worth keeping in mind that there’s nothing preventing you from using tuples as atomic labels on an axis:

```
In [19]: pd.Series(np.random.randn(8), index=tuples)
Out[19]:
 (bar, one) -1.236269
 (bar, two) 0.896171
 (baz, one) -0.487602
 (baz, two) -0.082240
 (foo, one) -2.182937
 (foo, two) 0.380396
 (qux, one) 0.084844
 (qux, two) 0.432390
dtype: float64
```

The reason that the MultiIndex matters is that it can allow you to do grouping, selection, and reshaping operations as we will describe below and in subsequent areas of the documentation. As you will see in later sections, you can find yourself working with hierarchically-indexed data without creating a MultiIndex explicitly yourself. However, when loading data from a file, you may wish to generate your own MultiIndex when preparing the data set.

Note that how the index is displayed by be controlled using the multi_sparse option in pandas.set_printoptions:

```
In [20]: pd.set_option('display.multi_sparse', False)
In [21]: df
Out[21]:
 first bar bar baz baz foo foo qux
second one 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299
 B 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127
 C -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466
first qux
second two
 A -0.226169
 B -1.436737
 C -2.006747
In [22]: pd.set_option('display.multi_sparse', True)
```

Reconstructing the level labels

The method get_level_values will return a vector of the labels for each location at a particular level:

```
In [23]: index.get_level_values(0)
Out[23]: Index([u'bar', u'bar', u'baz', u'baz', u'foo', u'foo', u'qux', u'qux'],
 dtype='object', name=u'first')
In [24]: index.get_level_values('second')
Out[24]: Index([u'one', u'two', u'one', u'two', u'one', u'two', u'one', u'two'],
 dtype='object', name=u'second')
```
Basic indexing on axis with MultiIndex

One of the important features of hierarchical indexing is that you can select data by a “partial” label identifying a subgroup in the data. Partial selection “drops” levels of the hierarchical index in the result in a completely analogous way to selecting a column in a regular DataFrame:

```python
In [25]: df['bar']
Out[25]:
 second one two
 A 0.895717 0.805244
 B 0.410835 0.813850
 C -1.413681 1.607920

In [26]: df['bar', 'one']
Out[26]:
 A
 B 0.410835
 C -1.413681
Name: (bar, one), dtype: float64

In [27]: df['bar']['one']
Out[27]:
 A
 B 0.410835
 C -1.413681
Name: one, dtype: float64

In [28]: s['qux']
Out[28]:
 one -1.039575
 two 0.271860
 dtype: float64
```

See Cross-section with hierarchical index for how to select on a deeper level.

**Note:** The repr of a MultiIndex shows ALL the defined levels of an index, even if they are not actually used. When slicing an index, you may notice this. For example:

```python
original multi-index
In [29]: df.columns
Out[29]:
MultiIndex(levels=[u'bar', u'baz', u'foo', u'qux'], [u'one', u'two'],
 labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
 names=[u'first', u'second'])

sliced
In [30]: df[['foo', 'qux']].columns
Out[30]:
MultiIndex(levels=[u'bar', u'baz', u'foo', u'qux'], [u'one', u'two'],
 labels=[[2, 2, 3, 3], [0, 1, 0, 1]],
 names=[u'first', u'second'])
```

This is done to avoid a recomputation of the levels in order to make slicing highly performant. If you want to see the actual used levels.
In [31]: df[['foo','qux']].columns.values
Out[31]: array([('foo', 'one'), ('foo', 'two'), ('qux', 'one'), ('qux', 'two')], dtype=object)

# for a specific level
In [32]: df[['foo','qux']].columns.get_level_values(0)
Out[32]: Index([u'foo', u'foo', u'qux', u'qux'], dtype='object', name=u'first')

To reconstruct the multiindex with only the used levels
In [33]: pd.MultiIndex.from_tuples(df[['foo','qux']].columns.values)
Out[33]:
MultiIndex(levels=[['foo', 'qux'], ['one', 'two']],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])

Data alignment and using reindex

Operations between differently-indexed objects having MultiIndex on the axes will work as you expect; data alignment will work the same as an Index of tuples:

In [34]: s + s[:-2]
Out[34]:
first second
bar one -1.723698
two -4.209138
baz one -0.989859
two 2.143608
foo one 1.443110
two -1.413542
qux one NaN
two NaN
dtype: float64

In [35]: s + s[::2]
Out[35]:
first second
bar one -1.723698
two 2.143608
baz one -0.989859
two NaN
foo one 1.443110
two NaN
qux one -2.079150
two NaN
dtype: float64

reindex can be called with another MultiIndex or even a list or array of tuples:

In [36]: s.reindex(index[:3])
Out[36]:
first second
bar one -0.861849
two -2.104569
baz one -0.494929
dtype: float64

In [37]: s.reindex([('foo', 'two'), ('bar', 'one'), ('qux', 'one'), ('baz', 'one')])
Advanced indexing with hierarchical index

Syntactically integrating `MultiIndex` in advanced indexing with `.loc/.ix` is a bit challenging, but we’ve made every effort to do so. For example the following works as you would expect:

```
In [38]: df = df.T
In [39]: df
Out[39]:
 A B C
first second
 bar one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920
 baz one -1.206412 0.132003 1.024180
two 2.565646 -0.827317 0.569605
 foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
 qux one -1.170299 1.130127 0.974466
two 2.565646 -0.827317 0.569605
In [40]: df.loc['bar']
Out[40]:
 A B C
second
 one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920
In [41]: df.loc['bar', 'two']
Out[41]:
 A B C
 one 0.805244 0.813850 1.607920
In [42]: df.loc['baz':'foo']
Out[42]:
 A B C
first second
 baz one -1.206412 0.132003 1.024180
two 2.565646 -0.827317 0.569605
 foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
```

“Partial” slicing also works quite nicely.

```
In [50]: df.loc['baz':'foo']
Out[50]:
 A B C
first second
 baz one -1.206412 0.132003 1.024180
two 2.565646 -0.827317 0.569605
 foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
```

You can slice with a ‘range’ of values, by providing a slice of tuples.
Passing a list of labels or tuples works similar to reindexing:

```python
In [45]: df.ix[['bar', 'two'], ['qux', 'one']]
Out[45]:
 A B C
first second
bar two 0.805244 0.813850 1.607920
qux one -1.170299 1.130127 0.974466
```

### Using slicers

New in version 0.14.0.

In 0.14.0 we added a new way to slice multi-indexed objects. You can slice a multi-index by providing multiple indexers.

You can provide any of the selectors as if you are indexing by label, see Selection by Label, including slices, lists of labels, labels, and boolean indexers.

You can use `slice(None)` to select all the contents of that level. You do not need to specify all the deeper levels, they will be implied as `slice(None)`.

As usual, both sides of the slicers are included as this is label indexing.

**Warning:** You should specify all axes in the `.loc` specifier, meaning the indexer for the index and for the columns. There are some ambiguous cases where the passed indexer could be mis-interpreted as indexing both axes, rather than into say the MultiIndex for the rows.

You should do this:

```python
df.loc[(slice('A1','A3'),.....),:]
```

rather than this:

```python
df.loc[(slice('A1','A3'),.....)]
```

### Example Code

```python
In [46]: def mklbl(prefix,n):
 : return ["%s%s" % (prefix,i) for i in range(n)]
```

---

582 Chapter 14. MultiIndex / Advanced Indexing
In [47]: miindex = pd.MultiIndex.from_product([mklbl('A',4),
            mklbl('B',2),
            mklbl('C',4),
            mklbl('D',2)])

In [48]: micolumns = pd.MultiIndex.from_tuples([('a','foo'),('a','bar'),
            ('b','foo'),('b','bah')],
            names=['lvl0', 'lvl1'])

In [49]: dfmi = pd.DataFrame(np.arange(len(miindex)*len(micolumns)).reshape((len(miindex),len(micolumns))),
            index=miindex,
            columns=micolumns).sort_index().sort_index(axis=1)

In [50]: dfmi
Out[50]:
lvl0    a    b
lvl1
A0  B0  C0  D0  1  0  3  2
   D1  5  4  7  6
   C1  D0  9  8 11 10
   D1 13 12 15 14
   C2  D0 17 16 19 18
   D1 21 20 23 22
   C3  D0 25 24 27 26
   ... ... ... ... ...
A3  B1  C0  D1 229 228 231 230
   C1  D0 233 232 235 234
   D1 237 236 239 238
   C2  D0 241 240 243 242
   D1 245 244 247 246
   C3  D0 249 248 251 250
   D1 253 252 255 254
[64 rows x 4 columns]

Basic multi-index slicing using slices, lists, and labels.

In [51]: dfmi.loc[(slice('A1','A3'),slice(None),
            ['C1','C3']),:]
Out[51]:
lvl0    a    b
lvl1
A1  B0  C1  D0  73  72  75  74
   C3  D0  89  88  91  90
   D1  93  92  95  94
   B1  C1  D0 105 104 107 106
   D1 109 108 111 110
   C3  D0 121 120 123 122
   ... ... ... ... ...
A3  B0  C1  D1 205 204 207 206
   C3  D0 217 216 219 218
   D1 221 220 223 222
   B1  C1  D0 233 232 235 234

14.2. Advanced indexing with hierarchical index 583
You can use a `pd.IndexSlice` to have a more natural syntax using `:` rather than using `slice(None)`

```python
In [52]: idx = pd.IndexSlice

In [53]: dfmi.loc[idx[:,:,['C1','C3']],idx[:,['foo']]]
Out[53]:
 lvl0 a b
 lvl1 foo foo
 A0 B0 C1 D0 8 10
 D1 12 14
 C3 D0 24 26
 D1 28 30
 B1 C1 D0 40 42
 D1 44 46
 C3 D0 56 58
 ...
 A3 B0 C1 D1 204 206
 C3 D0 216 218
 D1 220 222
 B1 C1 D0 232 234
 D1 236 238
 C3 D0 248 250
 D1 252 254

[32 rows x 2 columns]
```

It is possible to perform quite complicated selections using this method on multiple axes at the same time.

```python
In [54]: dfmi.loc['A1',slice(None),'foo']
Out[54]:
 lvl0 a b
 lvl1 foo foo
 B0 C0 D0 64 66
 D1 68 70
 C1 D0 72 74
 D1 76 78
 C2 D0 80 82
 D1 84 86
 C3 D0 88 90
 ...
 B1 C0 D1 100 102
 C1 D0 104 106
 D1 108 110
 C2 D0 112 114
 D1 116 118
 C3 D0 120 122
 D1 124 126

[16 rows x 2 columns]

In [55]: dfmi.loc[idx[:,:,['C1','C3']],idx[:,['foo']]]
Out[55]:
```

Using a boolean indexer you can provide selection related to the values.

```python
In [56]: mask = dfmi[('a', 'foo')] > 200

In [57]: dfmi.loc[idx[:, ['C1', 'C3']], idx[:, 'foo']]
Out[57]:
lvl0 a b
lvl1 foo foo
A0 B0 C0 D0 8 10
 D1 12 14
 C3 D0 24 26
 D1 28 30
B1 C1 D0 40 42
 D1 44 46
 C3 D0 56 58
...
A3 B0 C1 D1 204 206
 C3 D0 216 218
 D1 220 222
B1 C1 D0 232 234
 D1 236 238
 C3 D0 248 250
 D1 252 254
```

You can also specify the `axis` argument to `.loc` to interpret the passed slicers on a single axis.

```python
In [58]: dfmi.loc(axis=0)[:, :, ['C1', 'C3']]
Out[58]:
lvl0 a b
lvl1 bar foo bah foo
A0 B0 C0 D0 9 8 11 10
 D1 13 12 15 14
 C3 D0 25 24 27 26
 D1 29 28 31 30
B1 C1 D0 41 40 43 42
 D1 45 44 47 46
 C3 D0 57 56 59 58
...
A3 B0 C1 D1 205 204 207 206
 C3 D0 217 216 219 218
 D1 221 220 223 222
B1 C1 D0 233 232 235 234
 D1 237 236 239 238
 C3 D0 249 248 251 250
 D1 253 252 255 254
```

14.2. Advanced indexing with hierarchical index
Furthermore you can set the values using these methods:

```python
In [59]: df2 = dfmi.copy()

In [60]: df2.loc(axis=0)[::,::,['C1','C3']] = -10

In [61]: df2
Out[61]:
 lvl0 a b
 lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
 D1 5 4 7 6
 C1 D0 -10 -10 -10 -10
 D1 -10 -10 -10 -10
 C2 D0 17 16 19 18
 D1 21 20 23 22
 C3 D0 -10 -10 -10 -10

A3 B1 C0 D1 229 228 231 230
 C1 D0 -10 -10 -10 -10
 D1 -10 -10 -10 -10
 C2 D0 241 240 243 242
 D1 245 244 247 246
 C3 D0 -10 -10 -10 -10
 D1 -10 -10 -10 -10

[64 rows x 4 columns]
```

You can use a right-hand-side of an alignable object as well:

```python
In [62]: df2 = dfmi.copy()

In [63]: df2.loc[idx[::,::,['C1','C3']],::] = df2*1000

In [64]: df2
Out[64]:
 lvl0 a b
 lvl1 bar foo bah foo
A0 B0 C0 D0 1 0 3 2
 D1 5 4 7 6
 C1 D0 9000 8000 11000 10000
 D1 13000 12000 15000 14000
 C2 D0 17 16 19 18
 D1 21 20 23 22
 C3 D0 25000 24000 27000 26000

A3 B1 C0 D1 229 228 231 230
 C1 D0 223000 222000 225000 224000
 D1 227000 226000 229000 228000
 C2 D0 241 240 243 242
 D1 245 244 247 246
 C3 D0 249000 248000 251000 250000
 D1 253000 252000 255000 254000

[64 rows x 4 columns]
```
Cross-section

The `xs` method of `DataFrame` additionally takes a level argument to make selecting data at a particular level of a MultiIndex easier.

```python
In [65]: df
Out[65]:
 A B C
first second
bar one 0.895717 0.410835 -1.413681
two 0.805244 0.813850 1.607920
baz one -1.206412 0.132003 1.024180
two 2.565646 -0.827317 0.569605
foo one 1.431256 -0.076467 0.875906
two 1.340309 -1.187678 -2.211372
qux one -1.170299 1.130127 0.974466
two -0.226169 -1.436737 -2.006747
```

```python
In [66]: df.xs('one', level='second')
Out[66]:
 A B C
first
bar one 0.895717 0.410835 -1.413681
baz one -1.206412 0.132003 1.024180
foo one 1.431256 -0.076467 0.875906
qux one -1.170299 1.130127 0.974466
```

```python
using the slicers (new in 0.14.0)
In [67]: df.loc[(slice(None),'one'),:]
Out[67]:
 A B C
first second
bar one 0.895717 0.410835 -1.413681
baz one -1.206412 0.132003 1.024180
foo one 1.431256 -0.076467 0.875906
qux one -1.170299 1.130127 0.974466
```

You can also select on the columns with `xs()`, by providing the axis argument

```python
In [68]: df = df.T

In [69]: df.xs('one', level='second', axis=1)
Out[69]:
 first bar baz foo qux
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466
```

```python
using the slicers (new in 0.14.0)
In [70]: df.loc[:,(slice(None),'one')]
Out[70]:
 first bar baz foo qux
second one one one one
A 0.895717 -1.206412 1.431256 -1.170299
B 0.410835 0.132003 -0.076467 1.130127
C -1.413681 1.024180 0.875906 0.974466
```

`xs()` also allows selection with multiple keys

14.2. Advanced indexing with hierarchical index
In [71]: df.xs(('one', 'bar'), level=('second', 'first'), axis=1)
Out[71]:
first  bar
second one
   A  0.895717
   B  0.410835
   C -1.413681

# using the slicers (new in 0.14.0)
In [72]: df.loc[:,('bar','one')]
Out[72]:
   A   0.895717
   B   0.410835
   C  -1.413681
Name: (bar, one), dtype: float64

New in version 0.13.0.
You can pass drop_level=False to xs() to retain the level that was selected

In [73]: df.xs('one', level='second', axis=1, drop_level=False)
Out[73]:
first  bar  baz  foo  qux
second one  one  one  one
   A  0.895717 -1.206412  1.431256 -1.170299
   B  0.410835  0.132003 -0.076467  1.130127
   C -1.413681  1.024180  0.875906  0.974466

versus the result with drop_level=True (the default value)

In [74]: df.xs('one', level='second', axis=1, drop_level=True)
Out[74]:
first  bar  baz  foo  qux
   A  0.895717 -1.206412  1.431256 -1.170299
   B  0.410835  0.132003 -0.076467  1.130127
   C -1.413681  1.024180  0.875906  0.974466

Advanced reindexing and alignment

The parameter level has been added to the reindex and align methods of pandas objects. This is useful to broadcast values across a level. For instance:

In [75]: midx = pd.MultiIndex(levels=[['zero', 'one'], ['x','y']],
                        labels=[[1,1,0,0],[1,0,1,0]])

In [76]: df = pd.DataFrame(np.random.randn(4,2), index=midx)

In [77]: df
Out[77]:
   0   1
one  y  1.519970 -0.493662
   x  0.600178  0.274230
zero y  0.132885 -0.023688
   x  2.410179  1.450520
In [78]: df2 = df.mean(level=0)

In [79]: df2
Out[79]:
0    1
zero 1.271532 0.713416
one  1.060074 -0.109716

In [80]: df2.reindex(df.index, level=0)
Out[80]:
0    1
one y 1.060074 -0.109716
   x  1.060074 -0.109716
zero y 1.271532 0.713416
   x  1.271532 0.713416

# aligning
In [81]: df_aligned, df2_aligned = df.align(df2, level=0)

In [82]: df_aligned
Out[82]:
0    1
one y 1.519970 -0.493662
   x  0.600178  0.274230
zero y 0.132885 -0.023688
   x  2.410179  1.450520

In [83]: df2_aligned
Out[83]:
0    1
one y 1.060074 -0.109716
   x  1.060074 -0.109716
zero y 1.271532  0.713416
   x  1.271532  0.713416

Swapping levels with swaplevel()

The swaplevel function can switch the order of two levels:

In [84]: df[:5]
Out[84]:
0    1
one y 1.519970 -0.493662
   x  0.600178  0.274230
zero y 0.132885 -0.023688
   x  2.410179  1.450520

In [85]: df[:5].swaplevel(0, 1, axis=0)
Out[85]:
0    1
y one 1.519970 -0.493662
   x  0.600178  0.274230
y zero 0.132885 -0.023688
   x  2.410179  1.450520
Reordering levels with reorder_levels()

The `reorder_levels` function generalizes the `swaplevel` function, allowing you to permute the hierarchical index levels in one step:

```python
In [86]: df[:5].reorder_levels([1, 0], axis=0)
Out[86]:
 0 1
y one 1.519970 -0.493662
x one 0.600178 0.274230
y zero 0.132885 -0.023688
x zero 2.410179 1.450520
```

Sorting a MultiIndex

For MultiIndex-ed objects to be indexed & sliced effectively, they need to be sorted. As with any index, you can use `sort_index`.

```python
In [87]: import random; random.shuffle(tuples)
In [88]: s = pd.Series(np.random.randn(8), index=pd.MultiIndex.from_tuples(tuples))
In [89]: s
Out[89]:
bar two 1.063327
baz one 1.266143
baz two 0.206053
foo one 0.206053
foo two 0.408204
qux one 0.408204
qux two 0.299368
```

```python
In [90]: s.sort_index()
Out[90]:
bar one 1.063327
two 2.213588
baz one 1.266143
two 0.206053
foo one 0.206053
two 0.408204
qux one 0.206053
two 0.299368
dtype: float64
```

```python
In [91]: s.sort_index(level=0)
Out[91]:
bar one 1.063327
two 2.213588
baz one 1.266143
two 0.206053
foo one 0.206053
two 0.408204
qux one 0.206053
two 0.299368
dtype: float64
```
You may also pass a level name to `sort_index` if the MultiIndex levels are named.

In [93]: s.index.set_names(['L1', 'L2'], inplace=True)
In [94]: s.sort_index(level='L1')
Out[94]:
L1  L2
bar one  1.063327
two   -2.213588  
baz one  1.266143
two    0.206053  
foo one  -0.863838
two    0.408204  
qux one  -0.251905
two    0.299368  
dtype: float64

In [95]: s.sort_index(level='L2')
Out[95]:
L1  L2
bar one  1.063327
baz one  1.266143
foo one  -0.863838
qux one  -0.251905
bar two  -2.213588
baz two   0.206053
foo two   0.408204
qux two   0.299368

dtype: float64

On higher dimensional objects, you can sort any of the other axes by level if they have a MultiIndex:

In [96]: df.T.sort_index(level=1, axis=1)
Out[96]:
       zero  one  zero  one
x   2.410179  0.600178  0.132885  1.519970
y   1.450520  0.274230 -0.023688 -0.493662

Indexing will work even if the data are not sorted, but will be rather inefficient (and show a `PerformanceWarning`). It will also return a copy of the data rather than a view:

In [97]: dfm = pd.DataFrame({'jim': [0, 0, 1, 1],
                          'joe': ['x', 'x', 'z', 'y'],
                          ...:
                          'joe': ['x', 'x', 'z', 'y'],
                          ....})

14.3. Sorting a MultiIndex
....:   'jolie': np.random.rand(4))

In [98]: dfm = dfm.set_index(['jim', 'joe'])

In [99]: dfm
Out[99]:
    jolie
jim  joe
0    x    0.490671
     x    0.120248
1    y    0.110968
    z    0.537020

In [4]: dfm.loc[(1, 'z')]
PerformanceWarning: indexing past lexsort depth may impact performance.
Out[4]:
    jolie
jim  joe
1    z    0.640949

Furthermore if you try to index something that is not fully lexsorted, this can raise:

In [5]: dfm.loc[(0,'y'):(1, 'z')]
KeyError: 'Key length (2) was greater than MultiIndex lexsort depth (1)'

The is_lexsorted() method on an Index show if the index is sorted, and the lexsort_depth property returns the sort depth:

In [100]: dfm.index.is_lexsorted()
Out[100]: False

In [101]: dfm.index.lexsort_depth
Out[101]: 1

In [102]: dfm = dfm.sort_index()

In [103]: dfm
Out[103]:
    jolie
jim  joe
0    x    0.490671
     x    0.120248
1    y    0.110968
    z    0.537020

In [104]: dfm.index.is_lexsorted()
Out[104]: True

In [105]: dfm.index.lexsort_depth
Out[105]: 2

And now selection works as expected.

In [106]: dfm.loc[(0,'y'):(1, 'z')]
Take Methods

Similar to numpy ndarrays, pandas Index, Series, and DataFrame also provides the `take` method that retrieves elements along a given axis at the given indices. The given indices must be either a list or an ndarray of integer index positions. `take` will also accept negative integers as relative positions to the end of the object.

```python
In [107]: index = pd.Index(np.random.randint(0, 1000, 10))

In [108]: index
Out[108]: Int64Index([214, 502, 712, 567, 786, 175, 993, 133, 758, 329], dtype='int64')

In [109]: positions = [0, 9, 3]

In [110]: index[positions]
Out[110]: Int64Index([214, 329, 567], dtype='int64')

In [111]: index.take(positions)
Out[111]: Int64Index([214, 329, 567], dtype='int64')

In [112]: ser = pd.Series(np.random.randn(10))

In [113]: ser.iloc[positions]
Out[113]:
0 -0.179666
9 1.824375
3 0.392149
dtype: float64

In [114]: ser.take(positions)
Out[114]:
0 -0.179666
9 1.824375
3 0.392149
dtype: float64
```

For DataFrames, the given indices should be a 1d list or ndarray that specifies row or column positions.

```python
In [115]: frm = pd.DataFrame(np.random.randn(5, 3))

In [116]: frm.take([1, 4, 3])
Out[116]:
0 -1.237881 0.106854 -1.276829
1 0.629675 -1.425966 1.857704
4 0.979542 -1.633678 0.615855

In [117]: frm.take([0, 2], axis=1)
Out[117]:
0
1 2
```
It is important to note that the `take` method on pandas objects are not intended to work on boolean indices and may return unexpected results.

Finally, as a small note on performance, because the `take` method handles a narrower range of inputs, it can offer performance that is a good deal faster than fancy indexing.

**Index Types**

We have discussed `MultiIndex` in the previous sections pretty extensively. `DatetimeIndex` and `PeriodIndex` are shown here. `TimedeltaIndex` are here.

In the following sub-sections we will highlite some other index types.

**CategoricalIndex**

New in version 0.16.1.

We introduce a `CategoricalIndex`, a new type of index object that is useful for supporting indexing with duplicates. This is a container around a `Categorical` (introduced in v0.15.0) and allows efficient indexing and storage of an index with a large number of duplicated elements. Prior to 0.16.1, setting the index of a `DataFrame/Series` with a category `dtype` would convert this to regular object-based `Index`.

```
In [124]: df = pd.DataFrame({'A': np.arange(6),
.....: 'B': list('aabbc')})
```

```
 A B
0 0 a
1 1 a
2 2 b
3 3 b
4 4 c
5 5 c
```
In [125]: df['B'] = df['B'].astype('category', categories=list('cab'))

In [126]: df
Out[126]:
   A  B
0  0  a
1  1  a
2  2  b
3  3  b
4  4  c
5  5  a

In [127]: df.dtypes
Out[127]:
   A  int64
   B  category
dtype: object

In [128]: df.B.cat.categories
Out[128]: Index([u'c', u'a', u'b'], dtype='object')

Setting the index, will create a CategoricalIndex

In [129]: df2 = df.set_index('B')

In [130]: df2
Out[130]:
   A  B
  c  4
  a  0
  a  1

Indexing with __getitem__/.iloc/.loc/.ix works similarly to an Index with duplicates. The indexers MUST be in the category or the operation will raise.

In [131]: df2.loc['a']
Out[131]:
   A  B
  a  0
  a  1
  a  5

These PRESERVE the CategoricalIndex

In [132]: df2.loc['a'].index
Out[132]: CategoricalIndex([u'a', u'a', u'a'], categories=[u'c', u'a', u'b'], ordered=False, name=u'B', dtype='category')

Sorting will order by the order of the categories

In [133]: df2.sort_index()
Out[133]:
   A  B
  c  4
  a  0
  a  1
  a  5

14.5. Index Types
Groupby operations on the index will preserve the index nature as well

```
In [134]: df2.groupby(level=0).sum()
Out[134]:
 A
 b 2
 c 3

In [135]: df2.groupby(level=0).sum().index
Out[135]: CategoricalIndex([u'c', u'a', u'b'], categories=[u'c', u'a', u'b'],
 ordered=False, name=u'B', dtype='category')
```

Reindexing operations, will return a resulting index based on the type of the passed indexer, meaning that passing a list will return a plain-old-Index; indexing with a Categorical will return a CategoricalIndex, indexed according to the categories of the PASSED Categorical dtype. This allows one to arbitrarily index these even with values NOT in the categories, similarly to how you can reindex ANY pandas index.

```
In [136]: df2.reindex(['a','e'])
Out[136]:
 A
 a 0.0
 a 1.0
 a 5.0
 e NaN

In [137]: df2.reindex(['a','e']).index
Out[137]: Index([u'a', u'a', u'a', u'e'], dtype='object', name=u'B')

In [138]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde')))
Out[138]:
 A
 a 0.0
 a 1.0
 a 5.0
 e NaN

In [139]: df2.reindex(pd.Categorical(['a','e'],categories=list('abcde'))).index
Out[139]: CategoricalIndex([u'a', u'a', u'a', u'e'], categories=[u'a', u'b', u'c', u'd', u'e'], ordered=False, name=u'B', dtype='category')
```

**Warning:** Reshaping and Comparison operations on a CategoricalIndex must have the same categories or a TypeError will be raised.

```
In [9]: df3 = pd.DataFrame({'A' : np.arange(6),
 'B' : pd.Series(list('aabbca')).astype('category')})

In [11]: df3 = df3.set_index('B')

In [11]: df3.index
Out[11]: CategoricalIndex([u'a', u'a', u'b', u'b', u'c', u'a'], categories=[u'a', u'
...
 ordered=False, name=u'B', dtype='category')
```

```
In [12]: pd.concat([df2, df3])
TypeError: categories must match existing categories when appending
```
**Int64Index and RangeIndex**

**Warning:** Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see [here](#).

Int64Index is a fundamental basic index in `pandas`. This is an Immutable array implementing an ordered, sliceable set. Prior to 0.18.0, the Int64Index would provide the default index for all NDFrame objects.

RangeIndex is a sub-class of Int64Index added in version 0.18.0, now providing the default index for all NDFrame objects. RangeIndex is an optimized version of Int64Index that can represent a monotonic ordered set. These are analagous to python range types.

**Float64Index**

**Note:** As of 0.14.0, Float64Index is backed by a native float64 dtype array. Prior to 0.14.0, Float64Index was backed by an object dtype array. Using a float64 dtype in the backend speeds up arithmetic operations by about 30x and boolean indexing operations on the Float64Index itself are about 2x as fast.

New in version 0.13.0.

By default a Float64Index will be automatically created when passing floating, or mixed-integer-floating values in index creation. This enables a pure label-based slicing paradigm that makes [], .ix, .loc for scalar indexing and slicing work exactly the same.

```
In [140]: indexf = pd.Index([1.5, 2, 3, 4.5, 5])
In [141]: indexf
Out[141]: Float64Index([1.5, 2.0, 3.0, 4.5, 5.0], dtype='float64')
In [142]: sf = pd.Series(range(5), index=indexf)
In [143]: sf
Out[143]:
1.5 0
2.0 1
3.0 2
4.5 3
5.0 4
dtype: int64
```

Scalar selection for [], .ix, .loc will always be label based. An integer will match an equal float index (e.g. 3 is equivalent to 3.0)

```
In [144]: sf[3]
Out[144]: 2
In [145]: sf[3.0]
Out[145]: 2
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

The only positional indexing is via `iloc`

A scalar index that is not found will raise `KeyError`

Slicing is ALWAYS on the values of the index, for `[]`, `ix`, `loc` and ALWAYS positional with `iloc`

In float indexes, slicing using floats is allowed

...
In non-float indexes, slicing using floats will raise a `TypeError`.

```python
In [1]: pd.Series(range(5))[3.5]
TypeError: the label [3.5] is not a proper indexer for this index type (Int64Index)
```

```python
In [1]: pd.Series(range(5))[3.5:4.5]
TypeError: the slice start [3.5] is not a proper indexer for this index type ...
```

**Warning:** Using a scalar float indexer for `.iloc` has been removed in 0.18.0, so the following will raise a `TypeError`.

```python
In [3]: pd.Series(range(5)).iloc[3.0]
TypeError: cannot do positional indexing on <class 'pandas.indexes.range.RangeIndex ...
```

Further the treatment of `.ix` with a float indexer on a non-float index, will be label based, and thus coerce the index.

```python
In [157]: s2 = pd.Series([1, 2, 3], index=list('abc'))
In [158]: s2
Out[158]:
a 1
b 2
c 3
dtype: int64
In [159]: s2.ix[1.0] = 10
In [160]: s2
Out[160]:
a 1
b 2
c 3
1.0 10
dtype: int64
```

Here is a typical use-case for using this type of indexing. Imagine that you have a somewhat irregular timedelta-like indexing scheme, but the data is recorded as floats. This could for example be millisecond offsets.

```python
In [161]: dfir = pd.concat([pd.DataFrame(np.random.randn(5,2),
 index=np.arange(5) * 250.0,
 columns=list('AB')),

 pd.DataFrame(np.random.randn(6,2),
 index=np.arange(4,10) * 250.1,
 columns=list('AB'))])
```

```python
In [162]: dfir
Out[162]:
 A B
0.0 -0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0 0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219
```

14.5. Index Types 599
Selection operations then will always work on a value basis, for all selection operators.

```python
In [163]: dfir[0:1000.4]
Out[163]:
 A B
0 0.0 0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0 0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219
1000.4 0.310610 -0.108002

In [164]: dfir.loc[0:1001,'A']
Out[164]:
 A
0 0.997289
250.0 -0.179129
500.0 0.936914
750.0 -1.003401
1000.0 -0.724626
1000.4 0.310610
Name: A, dtype: float64

In [165]: dfir.loc[1000.4]
Out[165]:
 A B
0 0.310610 -0.108002
Name: 1000.4, dtype: float64
```

You could then easily pick out the first 1 second (1000 ms) of data then.

```python
In [166]: dfir[0:1000]
Out[166]:
 A B
0 0.0 0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0 0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219

In [167]: dfir.iloc[0:5]
Out[167]:
 A B
0 0.997289 -1.693316
250.0 -0.179129 -1.598062
500.0 0.936914 0.912560
750.0 -1.003401 1.632781
1000.0 -0.724626 0.178219
```

Of course if you need integer based selection, then use `iloc`
Statistical Functions

Percent Change

Series, DataFrame, and Panel all have a method `pct_change` to compute the percent change over a given number of periods (using `fill_method` to fill NA/null values before computing the percent change).

```
In [1]: ser = pd.Series(np.random.randn(8))

In [2]: ser.pct_change()
Out[2]:
0 NaN
1 -1.602976
2 4.334938
3 -0.247456
4 -2.067345
5 -1.142903
6 -1.688214
7 -9.759729
dtype: float64
```

```
In [3]: df = pd.DataFrame(np.random.randn(10, 4))

In [4]: df.pct_change(periods=3)
```

```
Out[4]:
 0 1 2 3
0 NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN
3 -0.218320 -1.054001 1.987147 -0.510183
4 -0.439121 -1.816454 0.649715 -4.822809
5 -0.127833 -3.042065 -5.866604 -1.776977
6 -2.596833 -1.959538 -2.111697 -3.798900
7 -0.117826 -1.357320 -1.205802 -1.558697
8 2.492606 -1.357320 -1.205802 -1.558697
9 -1.012977 2.324558 1.003744 -0.371806
```

Covariance

The Series object has a method `cov` to compute covariance between series (excluding NA/null values).
In [5]: s1 = pd.Series(np.random.randn(1000))
In [6]: s2 = pd.Series(np.random.randn(1000))
In [7]: s1.cov(s2)
   Out[7]: 0.00068010881743108746

Analogously, DataFrame has a method cov to compute pairwise covariances among the series in the DataFrame, also excluding NA/null values.

**Note:** Assuming the missing data are missing at random this results in an estimate for the covariance matrix which is unbiased. However, for many applications this estimate may not be acceptable because the estimated covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimated correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See Estimation of covariance matrices for more details.

In [8]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [9]: frame.cov()
   Out[9]:
           a         b         c         d         e
    a  1.000882 -0.003177 -0.002698 -0.006889  0.031912
    b -0.003177  1.024721  0.000191  0.009212  0.000857
    c -0.002698  0.000191  0.950735 -0.031743 -0.005087
    d -0.006889  0.009212 -0.031743  1.002983 -0.047952
    e  0.031912  0.000857 -0.005087 -0.047952  1.042487

Frame.cov also supports an optional min_periods keyword that specifies the required minimum number of observations for each column pair in order to have a valid result.

In [10]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
In [11]: frame.ix[:5, 'a'] = np.nan
In [12]: frame.ix[5:10, 'b'] = np.nan
In [13]: frame.cov()
   Out[13]:
           a         b         c
    a  1.210090  0.430629  0.018002
    b  0.430629  1.240960  0.347188
    c  0.018002  0.347188  1.301149

In [14]: frame.cov(min_periods=12)
   Out[14]:
           a         b         c
    a  1.210090   NaN  0.018002
    b   NaN  1.240960  0.347188
    c  0.018002  0.347188  1.301149

**Correlation**

Several methods for computing correlations are provided:
Method name	Description
pearson (default) | Standard correlation coefficient
kendall | Kendall Tau correlation coefficient
spearman | Spearman rank correlation coefficient

All of these are currently computed using pairwise complete observations.

Note: Please see the caveats associated with this method of calculating correlation matrices in the covariance section.

```
In [15]: frame = pd.DataFrame(np.random.randn(1000, 5), columns=['a', 'b', 'c', 'd', 'e'])
In [16]: frame.ix[::2] = np.nan

Series with Series
In [17]: frame['a'].corr(frame['b'])
Out[17]: 0.013479040400098775

In [18]: frame['a'].corr(frame['b'], method='spearman')
Out[18]: -0.0072898851595406371

Pairwise correlation of DataFrame columns
In [19]: frame.corr()
Out[19]:
 a b c d e
a 1.000000 0.013479 -0.049269 -0.042239 -0.028525
b 0.013479 1.000000 -0.020433 -0.011139 0.005654
c -0.049269 -0.020433 1.000000 0.018587 -0.054269
d -0.042239 -0.011139 0.018587 1.000000 -0.017060
e -0.028525 0.005654 -0.054269 -0.017060 1.000000

Note that non-numeric columns will be automatically excluded from the correlation calculation.

Like `cov`, `corr` also supports the optional `min_periods` keyword:

```
In [20]: frame = pd.DataFrame(np.random.randn(20, 3), columns=['a', 'b', 'c'])
In [21]: frame.ix[:5, 'a'] = np.nan
In [22]: frame.ix[5:10, 'b'] = np.nan
In [23]: frame.corr()
Out[23]:
   a   b   c
a 1.000000 -0.076520 0.160092
b -0.076520 1.000000 0.135967
c 0.160092 0.135967 1.000000

In [24]: frame.corr(min_periods=12)
Out[24]:
   a   b   c
a 1.000000 NaN 0.160092
b NaN 1.000000 0.135967
c 0.160092 0.135967 1.000000
```

A related method `corrwith` is implemented on DataFrame to compute the correlation between like-labeled Series contained in different DataFrame objects.

15.1. Statistical Functions
Data ranking

The `rank` method produces a data ranking with ties being assigned the mean of the ranks (by default) for the group:

```python
In [31]: s = pd.Series(np.random.randn(5), index=list('abcde'))
In [32]: s['d'] = s['b']  # so there's a tie
In [33]: s.rank()
Out[33]:
     a     b     c     d     e
a  5.0  2.5  1.0  2.5  4.0
```

`rank` is also a DataFrame method and can rank either the rows (`axis=0`) or the columns (`axis=1`). NaN values are excluded from the ranking.

```python
In [34]: df = pd.DataFrame(np.random.randn(10, 6))
In [36]: df
Out[36]:
     0         1         2         3         4         5
0 -0.904948 -1.163537 -1.457187  0.135463 -1.457187  0.294650
1 -0.976288 -0.244652 -0.748406 -0.999601 -0.748406 -0.800809
2  0.401965  1.460840  1.256057  1.308127  1.256057  0.876004
3  0.205954  0.369552 -0.669304  0.038378 -0.669304  1.140296
```
rank optionally takes a parameter `ascending` which by default is true; when false, data is reverse-ranked, with larger values assigned a smaller rank.

`rank` supports different tie-breaking methods, specified with the `method` parameter:

- `average`: average rank of tied group
- `min`: lowest rank in the group
- `max`: highest rank in the group
- `first`: ranks assigned in the order they appear in the array

Window Functions

Warning: Prior to version 0.18.0, `pd.rolling_*`, `pd.expanding_*`, and `pd.ewm*` were module level functions and are now deprecated. These are replaced by using the `Rolling`, `Expanding` and `EWM` objects and a corresponding method call.

The deprecation warning will show the new syntax, see an example [here](#). You can view the previous documentation [here](#).

For working with data, a number of windows functions are provided for computing common window or rolling statistics. Among these are count, sum, mean, median, correlation, variance, covariance, standard deviation, skewness, and kurtosis.

Starting in version 0.18.1, the `rolling()` and `expanding()` functions can be used directly from `DataFrameGroupBy` objects, see the `groupby docs`.

Note: The API for window statistics is quite similar to the way one works with `GroupBy` objects, see the documentation [here](#).
We work with rolling, expanding and exponentially weighted data through the corresponding objects, Rolling, Expanding and EWM.

```python
In [38]: s = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [39]: s = s.cumsum()
In [40]: s
Out[40]:
2000-01-01    -0.268824
2000-01-02    -1.771855
2000-01-03    -0.818003
2000-01-04    -0.659244
2000-01-05    -1.942133
2000-01-06    -1.869391
2000-01-07     0.563674
          ...
2002-09-20   -68.233054
2002-09-21   -66.765687
2002-09-22   -67.457323
2002-09-23   -69.253182
2002-09-24   -70.296818
2002-09-25   -70.844674
2002-09-26   -72.475016
Freq: D, dtype: float64
```

These are created from methods on Series and DataFrame.

```python
In [41]: r = s.rolling(window=60)
In [42]: r
Out[42]: Rolling [window=60, center=False, axis=0]
```

These object provide tab-completion of the available methods and properties.

```python
In [14]: r.
   r.agg     r.apply     r.count     r.exclusions     r.max     r.median     r.
   --name    r.skew      r.sum
   r.aggregate r.corr     r.cov      r.kurt     r.mean     r.min     r.
   --quantile r.std      r.var
```

Generally these methods all have the same interface. They all accept the following arguments:

- `window`: size of moving window
- `min_periods`: threshold of non-null data points to require (otherwise result is NA)
- `center`: boolean, whether to set the labels at the center (default is False)

Warning: The `freq` and `how` arguments were in the API prior to 0.18.0 changes. These are deprecated in the new API. You can simply resample the input prior to creating a window function.

For example, instead of `s.rolling(window=5, freq='D').max()` to get the max value on a rolling 5 Day window, one could use `s.resample('D').max().rolling(window=5).max()`, which first resamples the data to daily data, then provides a rolling 5 day window.

We can then call methods on these rolling objects. These return like-indexed objects:
In [43]: r.mean()
Out[43]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 NaN
2000-01-06 NaN
2000-01-07 NaN
...
2002-09-20 -62.694135
2002-09-21 -62.812190
2002-09-22 -62.914971
2002-09-23 -63.061867
2002-09-24 -63.213876
2002-09-25 -63.375074
2002-09-26 -63.539734
Freq: D, dtype: float64

In [44]: s.plot(style='k-')
Out[44]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff282080dd0>

In [45]: r.mean().plot(style='k')
Out[45]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff282080dd0>
They can also be applied to DataFrame objects. This is really just syntactic sugar for applying the moving window operator to all of the DataFrame’s columns:

```python
In [46]: df = pd.DataFrame(np.random.randn(1000, 4),
                 index=pd.date_range('1/1/2000', periods=1000),
                 columns=['A', 'B', 'C', 'D'])
In [47]: df = df.cumsum()
In [48]: df.rolling(window=60).sum().plot(subplots=True)
```

Out[48]:

```
array([<matplotlib.axes._subplots.AxesSubplot object at 0x7ff28c067210>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x7ff27e03a0d0>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x7ff280bca510>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x7ff28155b910>], dtype=object)
```
Method Summary

We provide a number of the common statistical functions:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count()</code></td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td><code>sum()</code></td>
<td>Sum of values</td>
</tr>
<tr>
<td><code>mean()</code></td>
<td>Mean of values</td>
</tr>
<tr>
<td><code>median()</code></td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td><code>min()</code></td>
<td>Minimum</td>
</tr>
<tr>
<td><code>max()</code></td>
<td>Maximum</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>Bessel-corrected sample standard deviation</td>
</tr>
<tr>
<td><code>var()</code></td>
<td>Unbiased variance</td>
</tr>
<tr>
<td><code>skew()</code></td>
<td>Sample skewness (3rd moment)</td>
</tr>
<tr>
<td><code>kurt()</code></td>
<td>Sample kurtosis (4th moment)</td>
</tr>
<tr>
<td><code>quantile()</code></td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td><code>apply()</code></td>
<td>Generic apply</td>
</tr>
<tr>
<td><code>cov()</code></td>
<td>Unbiased covariance (binary)</td>
</tr>
<tr>
<td><code>corr()</code></td>
<td>Correlation (binary)</td>
</tr>
</tbody>
</table>

The `apply()` function takes an extra `func` argument and performs generic rolling computations. The `func` argument should be a single function that produces a single value from an ndarray input. Suppose we wanted to compute the mean absolute deviation on a rolling basis:
In [49]: mad = lambda x: np.fabs(x - x.mean()).mean()

In [50]: s.rolling(window=60).apply(mad).plot(style='k')
Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2846d3ad0>

Rolling Windows

Passing `win_type` to `.rolling` generates a generic rolling window computation, that is weighted according the `win_type`. The following methods are available:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sum()</code></td>
<td>Sum of values</td>
</tr>
<tr>
<td><code>mean()</code></td>
<td>Mean of values</td>
</tr>
</tbody>
</table>

The weights used in the window are specified by the `win_type` keyword. The list of recognized types are:

- boxcar
- triang
- blackman
- hamming
- bartlett
- parzen
• bohman
• blackmanharris
• nuttall
• barthann
• kaiser (needs beta)
• gaussian (needs std)
• general_gaussian (needs power, width)
• slepian (needs width).

In [51]: ser = pd.Series(np.random.randn(10), index=pd.date_range('1/1/2000', periods=10))

In [52]: ser.rolling(window=5, win_type='triang').mean()
Out[52]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -1.037870
2000-01-06 -0.767705
2000-01-07 -0.383197
2000-01-08 -0.395513
2000-01-09 -0.558440
2000-01-10 -0.672416
Freq: D, dtype: float64

Note that the boxcar window is equivalent to mean().

In [53]: ser.rolling(window=5, win_type='boxcar').mean()
Out[53]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755
2000-01-10 -0.472211
Freq: D, dtype: float64

In [54]: ser.rolling(window=5).mean()
Out[54]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -0.841164
2000-01-06 -0.779948
2000-01-07 -0.565487
2000-01-08 -0.502815
2000-01-09 -0.553755

15.2. Window Functions
For some windowing functions, additional parameters must be specified:

Example

```python
In [55]: ser.rolling(window=5, win_type='gaussian').mean(std=0.1)
```

```python
Out[55]:
2000-01-01 NaN
2000-01-02 NaN
2000-01-03 NaN
2000-01-04 NaN
2000-01-05 -1.309989
2000-01-06 -1.153000
2000-01-07 0.606382
2000-01-08 -0.681101
2000-01-09 -0.289724
2000-01-10 -0.996632
Freq: D, dtype: float64
```

Note

For `.sum()` with a `win_type`, there is no normalization done to the weights for the window. Passing custom weights of `[1,1,1]` will yield a different result than passing weights of `[2,2,2]`, for example. When passing a `win_type` instead of explicitly specifying the weights, the weights are already normalized so that the largest weight is 1.

In contrast, the nature of the `.mean()` calculation is such that the weights are normalized with respect to each other. Weights of `[1,1,1]` and `[2,2,2]` yield the same result.

Time-aware Rolling

New in version 0.19.0.

New in version 0.19.0 are the ability to pass an offset (or convertible) to a `.rolling()` method and have it produce variable sized windows based on the passed time window. For each time point, this includes all preceding values occurring within the indicated time delta.

This can be particularly useful for a non-regular time frequency index.

```python
In [56]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4],
                      index=pd.date_range('20130101 09:00:00', periods=5, freq='s'))
```

```python
In [57]: dft
Out[57]:
2013-01-01 09:00:00    0.0
2013-01-01 09:00:01    1.0
2013-01-01 09:00:02    2.0
2013-01-01 09:00:03   NaN
2013-01-01 09:00:04    4.0
```

This is a regular frequency index. Using an integer window parameter works to roll along the window frequency.

```python
In [58]: dft.rolling(2).sum()
Out[58]:
2013-01-01 09:00:00  0.0
2013-01-01 09:00:01  1.0
2013-01-01 09:00:02  2.0
2013-01-01 09:00:03  NaN
2013-01-01 09:00:04  4.0
```
Specifying an offset allows a more intuitive specification of the rolling frequency.

```
In [59]: dft.rolling('2s').sum()
Out[59]:
         B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:01  1.0
2013-01-01 09:00:02  3.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:04  4.0
```

Using a non-regular, but still monotonic index, rolling with an integer window does not impart any special calculation.

```
In [61]: dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
                      index = pd.Index([pd.Timestamp('20130101 09:00:00'),
                                      pd.Timestamp('20130101 09:00:02'),
                                      pd.Timestamp('20130101 09:00:03'),
                                      pd.Timestamp('20130101 09:00:05'),
                                      pd.Timestamp('20130101 09:00:06')],
                                      name='foo'))

In [62]: dft
Out[62]:
         B
foo
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0

In [63]: dft.rolling(2).sum()
Out[63]:
         B
foo
2013-01-01 09:00:00  NaN
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  3.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  NaN
```

15.2. Window Functions
Using the time-specification generates variable windows for this sparse data.

```plaintext
In [64]: dft.rolling('2s').sum()
Out[64]:
foo
2013-01-01 09:00:00 0.0
2013-01-01 09:00:02 1.0
2013-01-01 09:00:03 3.0
2013-01-01 09:00:05 NaN
2013-01-01 09:00:06 4.0
```

Furthermore, we now allow an optional on parameter to specify a column (rather than the default of the index) in a DataFrame.

```plaintext
In [65]: dft = dft.reset_index()
In [66]: dft
Out[66]:
foo        B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 2.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0
In [67]: dft.rolling('2s', on='foo').sum()
Out[67]:
foo        B
0 2013-01-01 09:00:00 0.0
1 2013-01-01 09:00:02 1.0
2 2013-01-01 09:00:03 3.0
3 2013-01-01 09:00:05 NaN
4 2013-01-01 09:00:06 4.0
```

Time-aware Rolling vs. Resampling

Using `.rolling()` with a time-based index is quite similar to *resampling*. They both operate and perform reductive operations on time-indexed pandas objects.

When using `.rolling()` with an offset. The offset is a time-delta. Take a backwards-in-time looking window, and aggregate all of the values in that window (including the end-point, but not the start-point). This is the new value at that point in the result. These are variable sized windows in time-space for each point of the input. You will get a same sized result as the input.

When using `.resample()` with an offset. Construct a new index that is the frequency of the offset. For each frequency bin, aggregate points from the input within a backwards-in-time looking window that fall in that bin. The result of this aggregation is the output for that frequency point. The windows are fixed size size in the frequency space. Your result will have the shape of a regular frequency between the min and the max of the original input object.

To summarize, `.rolling()` is a time-based window operation, while `.resample()` is a frequency-based window operation.
Centering Windows

By default the labels are set to the right edge of the window, but a `center` keyword is available so the labels can be set at the center.

```python
In [68]: ser.rolling(window=5).mean()
Out[68]:
2000-01-01    NaN
2000-01-02    NaN
2000-01-03    NaN
2000-01-04    NaN
2000-01-05  -0.841164
2000-01-06  -0.779948
2000-01-07  -0.565487
2000-01-08  -0.502815
2000-01-09  -0.553755
2000-01-10  -0.472211
Freq: D, dtype: float64
```

```python
In [69]: ser.rolling(window=5, center=True).mean()
Out[69]:
2000-01-01    NaN
2000-01-02    NaN
2000-01-03 -0.841164
2000-01-04 -0.779948
2000-01-05 -0.565487
2000-01-06 -0.502815
2000-01-07 -0.553755
2000-01-08 -0.472211
2000-01-09    NaN
2000-01-10    NaN
Freq: D, dtype: float64
```

Binary Window Functions

`cov()` and `corr()` can compute moving window statistics about two `Series` or any combination of `DataFrame/Series` or `DataFrame/DataFrame`. Here is the behavior in each case:

- two `Series`: compute the statistic for the pairing.
- `DataFrame/Series`: compute the statistics for each column of the `DataFrame` with the passed `Series`, thus returning a `DataFrame`.
- `DataFrame/DataFrame`: by default compute the statistic for matching column names, returning a `DataFrame`. If the keyword argument `pairwise=True` is passed then computes the statistic for each pair of columns, returning a `Panel` whose items are the dates in question (see the next section).

For example:

```python
In [70]: df2 = df[:20]

In [71]: df2.rolling(window=5).corr(df2['B'])
Out[71]:
         A      B      C      D
2000-01-01    NaN    NaN    NaN    NaN
2000-01-02    NaN    NaN    NaN    NaN
2000-01-03    NaN    NaN    NaN    NaN
2000-01-04    NaN    NaN    NaN    NaN
```

15.2. Window Functions
Computing rolling pairwise covariances and correlations

In financial data analysis and other fields it’s common to compute covariance and correlation matrices for a collection of time series. Often one is also interested in moving-window covariance and correlation matrices. This can be done by passing the `pairwise` keyword argument, which in the case of DataFrame inputs will yield a `Panel` whose items are the dates in question. In the case of a single DataFrame argument the `pairwise` argument can even be omitted:

Note: Missing values are ignored and each entry is computed using the pairwise complete observations. Please see the covariance section for caveats associated with this method of calculating covariance and correlation matrices.

```
In [72]: covs = df[['B','C','D']].rolling(window=50).cov(df[['A','B','C']],
            pairwise=True)
In [73]: covs[df.index[-50]]
Out[73]:
   A    B    C
B  2.667506  1.671711  1.938634
C  8.513843  1.938634  10.556436
D -7.714737 -1.434529 -7.082653
```

```
In [74]: correlates = df.rolling(window=50).corr()
In [75]: correlates[df.index[-50]]
Out[75]:
   A    B    C    D
A  1.000000  0.604221  0.767429 -0.776170
B  0.604221  1.000000  0.461484 -0.381148
C  0.767429  0.461484  1.000000 -0.748863
D -0.776170 -0.381148 -0.748863  1.000000
```

You can efficiently retrieve the time series of correlations between two columns using `.loc` indexing:

```
In [76]: correlates.loc[:,'A','C'].plot()
Out[76]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff27e0f0c50>
```
Aggregation

Once the `Rolling`, `Expanding` or `EWM` objects have been created, several methods are available to perform multiple computations on the data. This is very similar to a `.groupby(...).agg` seen here.

```python
In [77]: dfa = pd.DataFrame(np.random.randn(1000, 3),
                  index=pd.date_range('1/1/2000', periods=1000),
                  columns=['A', 'B', 'C'])

In [78]: r = dfa.rolling(window=60, min_periods=1)

In [79]: r.aggregate(np.sum)
```

We can aggregate by passing a function to the entire DataFrame, or select a Series (or multiple Series) via standard getitem.

```python
In [80]: r.aggregate(np.sum)
Out[80]:
   A  B  C
-1.0 0  0
```

15.3. Aggregation
In [81]: r['A'].aggregate(np.sum)
Out[81]:
2000-01-01 0.314226
2000-01-02 1.206791
2000-01-03 1.421701
2000-01-04 1.912539
2000-01-05 2.919639
2000-01-06 2.665637
2000-01-07 2.513985
... ...
2002-09-20 1.447669
2002-09-21 1.871783
2002-09-22 2.540658
2002-09-23 2.974674
2002-09-24 1.391366
2002-09-25 2.027313
2002-09-26 1.290363
Freq: D, Name: A, dtype: float64

In [82]: r[['A','B']].aggregate(np.sum)
Out[82]:
 A B
2000-01-01 0.314226 -0.001675
2000-01-02 1.206791 0.678918
2000-01-03 1.421701 0.600508
2000-01-04 1.912539 -0.759594
2000-01-05 2.919639 -0.061759
2000-01-06 2.665637 1.298392
2000-01-07 2.513985 1.923089
...
2002-09-20 1.447669 -12.360302
2002-09-21 1.871783 -13.896542
2002-09-22 2.540658 -12.594402
2002-09-23 2.974674 -12.727703
2002-09-24 1.391366 -13.584590
2002-09-25 2.027313 -15.083214
2002-09-26 1.290363 -13.569459
[1000 rows x 2 columns]
As you can see, the result of the aggregation will have the selected columns, or all columns if none are selected.

Applying multiple functions at once

With windowed Series you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame:

```python
In [83]: r['A'].agg([np.sum, np.mean, np.std])
```

```plaintext
Out[83]:

<table>
<thead>
<tr>
<th></th>
<th>sum</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.314226</td>
<td>0.314226</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>1.206791</td>
<td>0.603396</td>
<td>0.408948</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>1.421701</td>
<td>0.473900</td>
<td>0.365959</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>1.912539</td>
<td>0.478135</td>
<td>0.298925</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>2.919639</td>
<td>0.583928</td>
<td>0.350682</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>2.665637</td>
<td>0.444273</td>
<td>0.464115</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>2.513985</td>
<td>0.359141</td>
<td>0.479828</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-20</td>
<td>1.447669</td>
<td>0.024128</td>
<td>1.034827</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>1.871783</td>
<td>0.031196</td>
<td>1.031417</td>
</tr>
<tr>
<td>2002-09-22</td>
<td>2.540658</td>
<td>0.042344</td>
<td>1.026341</td>
</tr>
<tr>
<td>2002-09-23</td>
<td>2.974674</td>
<td>0.049578</td>
<td>1.030021</td>
</tr>
<tr>
<td>2002-09-24</td>
<td>1.391366</td>
<td>0.023189</td>
<td>1.024793</td>
</tr>
<tr>
<td>2002-09-25</td>
<td>2.027313</td>
<td>0.033789</td>
<td>1.022099</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>1.290363</td>
<td>0.021506</td>
<td>1.024751</td>
</tr>
</tbody>
</table>

[1000 rows x 3 columns]
```

If a dict is passed, the keys will be used to name the columns. Otherwise the function’s name (stored in the function object) will be used.

```python
In [84]: r['A'].agg({'result1': np.sum, 'result2': np.mean})
```

```plaintext
Out[84]:

<table>
<thead>
<tr>
<th>result2</th>
<th>result1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.314226</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.603396</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.473900</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>0.478135</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.583928</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>0.444273</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>0.359141</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-20</td>
<td>1.447669</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>1.871783</td>
</tr>
<tr>
<td>2002-09-22</td>
<td>2.540658</td>
</tr>
<tr>
<td>2002-09-23</td>
<td>2.974674</td>
</tr>
<tr>
<td>2002-09-24</td>
<td>1.391366</td>
</tr>
<tr>
<td>2002-09-25</td>
<td>2.027313</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>1.290363</td>
</tr>
</tbody>
</table>

[1000 rows x 2 columns]
```

On a windowed DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:
In [85]: r.agg([np.sum, np.mean])
Out[85]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>mean</td>
<td>sum</td>
<td>mean</td>
</tr>
<tr>
<td>2000-01-01</td>
<td>0.314226</td>
<td>0.314226</td>
<td>-0.001675</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>1.206791</td>
<td>0.603396</td>
<td>0.678918</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>1.421701</td>
<td>0.473900</td>
<td>0.600508</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>1.912539</td>
<td>0.478135</td>
<td>-0.759594</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>2.919639</td>
<td>0.583928</td>
<td>-0.061759</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>2.665637</td>
<td>0.444273</td>
<td>1.298392</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>2.513985</td>
<td>0.359141</td>
<td>1.923089</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-20</td>
<td>1.447669</td>
<td>0.024128</td>
<td>-12.360302</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>1.871783</td>
<td>0.031196</td>
<td>-13.896542</td>
</tr>
<tr>
<td>2002-09-22</td>
<td>2.540658</td>
<td>0.042344</td>
<td>-12.594402</td>
</tr>
<tr>
<td>2002-09-23</td>
<td>2.974674</td>
<td>0.049578</td>
<td>-12.727703</td>
</tr>
<tr>
<td>2002-09-24</td>
<td>1.391366</td>
<td>0.023189</td>
<td>-13.584590</td>
</tr>
<tr>
<td>2002-09-25</td>
<td>2.027313</td>
<td>0.033789</td>
<td>-15.083214</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>1.290363</td>
<td>0.021506</td>
<td>-13.569459</td>
</tr>
</tbody>
</table>

[1000 rows x 6 columns]

Passing a dict of functions has different behavior by default, see the next section.

Applying different functions to DataFrame columns

By passing a dict to `agg` you can apply a different aggregation to the columns of a DataFrame:

```python
In [86]: r.agg({'A' : np.sum, 
        ....:       'B' : lambda x: np.std(x, ddof=1)})
```

```
Out[86]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.314226</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>1.206791</td>
<td>0.482437</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>1.421701</td>
<td>0.417825</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>1.912539</td>
<td>0.851468</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>2.919639</td>
<td>0.837474</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>2.665637</td>
<td>0.867770</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-20</td>
<td>1.447669</td>
<td>1.084259</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>1.871783</td>
<td>1.088368</td>
</tr>
<tr>
<td>2002-09-22</td>
<td>2.540658</td>
<td>1.084707</td>
</tr>
<tr>
<td>2002-09-23</td>
<td>2.974674</td>
<td>1.084936</td>
</tr>
<tr>
<td>2002-09-24</td>
<td>1.391366</td>
<td>1.079268</td>
</tr>
<tr>
<td>2002-09-25</td>
<td>2.027313</td>
<td>1.091334</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>1.290363</td>
<td>1.060255</td>
</tr>
</tbody>
</table>

[1000 rows x 2 columns]
```

The function names can also be strings. In order for a string to be valid it must be implemented on the windowed object:

```python
In [87]: r.agg({'A' : 'sum', 'B' : 'std'})
```

```
Out[87]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.314226</td>
<td>NaN</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>1.206791</td>
<td>0.482437</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>1.421701</td>
<td>0.417825</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>1.912539</td>
<td>0.851468</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>2.919639</td>
<td>0.837474</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>2.665637</td>
<td>0.867770</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2002-09-20</td>
<td>1.447669</td>
<td>1.084259</td>
</tr>
<tr>
<td>2002-09-21</td>
<td>1.871783</td>
<td>1.088368</td>
</tr>
<tr>
<td>2002-09-22</td>
<td>2.540658</td>
<td>1.084707</td>
</tr>
<tr>
<td>2002-09-23</td>
<td>2.974674</td>
<td>1.084936</td>
</tr>
<tr>
<td>2002-09-24</td>
<td>1.391366</td>
<td>1.079268</td>
</tr>
<tr>
<td>2002-09-25</td>
<td>2.027313</td>
<td>1.091334</td>
</tr>
<tr>
<td>2002-09-26</td>
<td>1.290363</td>
<td>1.060255</td>
</tr>
</tbody>
</table>

[1000 rows x 2 columns]
```
Furthermore you can pass a nested dict to indicate different aggregations on different columns.

```python
In [88]: r.agg({'A' : ['sum','std'], 'B' : ['mean','std'] })
Out[88]:
     A         B
    sum   std   mean  std
2000-01-01  0.314226 NaN -0.001675 NaN
2000-01-02  1.206791 0.482437 0.339459 0.482437
2000-01-03  1.421701 0.417825 0.320169 0.417825
2000-01-04  1.912539 0.851468 0.200169 0.851468
2000-01-05  2.919639 0.837474 0.189899 0.837474
2000-01-06  2.665637 0.935441 0.216399 0.935441
2000-01-07  2.513985 0.867770 0.274727 0.867770
   ...     ...     ...     ...
2002-09-20  1.447669 1.084259 -0.206005 1.084259
2002-09-21  1.871783 1.088368 -0.231609 1.088368
2002-09-22  2.540658 1.084707 -0.231609 1.084707
2002-09-23  2.974674 1.084936 -0.231609 1.084936
2002-09-24  1.391366 1.079268 -0.226410 1.079268
2002-09-25  2.027313 1.091334 -0.226410 1.091334
2002-09-26  1.290363 1.060255 -0.226410 1.060255
[1000 rows x 4 columns]
```

Expanding Windows

A common alternative to rolling statistics is to use an expanding window, which yields the value of the statistic with all the data available up to that point in time.

These follow a similar interface to .rolling, with the .expanding method returning an Expanding object.

As these calculations are a special case of rolling statistics, they are implemented in pandas such that the following two calls are equivalent:

```python
In [89]: df.rolling(window=len(df), min_periods=1).mean()[:5]
Out[89]:
     A         B         C         D
    2000-01-01 -1.388345  3.317290  0.344542 -0.036968
```

15.4. Expanding Windows
2000-01-02 -1.123132 3.622300 1.675867 0.595300
2000-01-03 -0.628502 3.626503 2.455240 1.060158
2000-01-04 -0.768740 3.888917 2.451354 1.281874
2000-01-05 -0.824034 4.108035 2.556112 1.140723

In [90]: df.expanding(min_periods=1).mean()[:5]
Out[90]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>-1.388345</td>
<td>3.317290</td>
<td>0.344542</td>
<td>-0.036968</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>-1.123132</td>
<td>3.622300</td>
<td>1.675867</td>
<td>0.595300</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>-0.628502</td>
<td>3.626503</td>
<td>2.455240</td>
<td>1.060158</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.768740</td>
<td>3.888917</td>
<td>2.451354</td>
<td>1.281874</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-0.824034</td>
<td>4.108035</td>
<td>2.556112</td>
<td>1.140723</td>
</tr>
</tbody>
</table>

These have a similar set of methods to .rolling methods.

Method Summary

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>count()</td>
<td>Number of non-null observations</td>
</tr>
<tr>
<td>sum()</td>
<td>Sum of values</td>
</tr>
<tr>
<td>mean()</td>
<td>Mean of values</td>
</tr>
<tr>
<td>median()</td>
<td>Arithmetic median of values</td>
</tr>
<tr>
<td>min()</td>
<td>Minimum</td>
</tr>
<tr>
<td>max()</td>
<td>Maximum</td>
</tr>
<tr>
<td>std()</td>
<td>Unbiased standard deviation</td>
</tr>
<tr>
<td>var()</td>
<td>Unbiased variance</td>
</tr>
<tr>
<td>skew()</td>
<td>Unbiased skewness (3rd moment)</td>
</tr>
<tr>
<td>kurt()</td>
<td>Unbiased kurtosis (4th moment)</td>
</tr>
<tr>
<td>quantile()</td>
<td>Sample quantile (value at %)</td>
</tr>
<tr>
<td>apply()</td>
<td>Generic apply</td>
</tr>
<tr>
<td>cov()</td>
<td>Unbiased covariance (binary)</td>
</tr>
<tr>
<td>corr()</td>
<td>Correlation (binary)</td>
</tr>
</tbody>
</table>

Aside from not having a window parameter, these functions have the same interfaces as their .rolling counterparts. Like above, the parameters they all accept are:

- min_periods: threshold of non-null data points to require. Defaults to minimum needed to compute statistic.
 No NaNs will be output once min_periods non-null data points have been seen.

- center: boolean, whether to set the labels at the center (default is False)

Note: The output of the .rolling and .expanding methods do not return a NaN if there are at least min_periods non-null values in the current window. This differs from cumsum, cumprod, cummax, and cummin, which return NaN in the output wherever a NaN is encountered in the input.

An expanding window statistic will be more stable (and less responsive) than its rolling window counterpart as the increasing window size decreases the relative impact of an individual data point. As an example, here is the mean() output for the previous time series dataset:

In [91]: s.plot(style='k--')
Out[91]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff29c7378d0>
A related set of functions are exponentially weighted versions of several of the above statistics. A similar interface to `.rolling` and `.expanding` is accessed thru the `.ewm` method to receive an `EWM` object. A number of expanding EW (exponentially weighted) methods are provided:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mean()</code></td>
<td>EW moving average</td>
</tr>
<tr>
<td><code>var()</code></td>
<td>EW moving variance</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>EW moving standard deviation</td>
</tr>
<tr>
<td><code>corr()</code></td>
<td>EW moving correlation</td>
</tr>
<tr>
<td><code>cov()</code></td>
<td>EW moving covariance</td>
</tr>
</tbody>
</table>

In general, a weighted moving average is calculated as

\[y_t = \frac{\sum_{i=0}^{t} w_i x_{t-i}}{\sum_{i=0}^{t} w_i}, \]
where \(x_t \) is the input and \(y_t \) is the result.

The EW functions support two variants of exponential weights. The default, \(\text{adjust=True} \), uses the weights \(w_i = (1 - \alpha)^i \) which gives

\[
y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2x_{t-2} + \ldots + (1 - \alpha)^tx_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + \ldots + (1 - \alpha)^t}
\]

When \(\text{adjust=False} \) is specified, moving averages are calculated as

\[
y_0 = x_0 \\
y_t = (1 - \alpha)y_{t-1} + \alpha x_t,
\]

which is equivalent to using weights

\[
w_i = \begin{cases}
\alpha(1 - \alpha)^i & \text{if } i < t \\
(1 - \alpha)^i & \text{if } i = t.
\end{cases}
\]

Note: These equations are sometimes written in terms of \(\alpha' = 1 - \alpha \), e.g.

\[
y_t = \alpha'y_{t-1} + (1 - \alpha')x_t.
\]

The difference between the above two variants arises because we are dealing with series which have finite history. Consider a series of infinite history:

\[
y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2x_{t-2} + \ldots}{1 - (1 - \alpha)}
\]

Noting that the denominator is a geometric series with initial term equal to 1 and a ratio of \(1 - \alpha \) we have

\[
y_t = \frac{x_t}{1 - (1 - \alpha)} + (1 - \alpha)x_{t-1} + (1 - \alpha)^2x_{t-2} + \ldots\alpha
\]

\[
= \alpha x_t + [(1 - \alpha)x_{t-1} + (1 - \alpha)^2x_{t-2} + \ldots]\alpha
\]

\[
= \alpha x_t + (1 - \alpha)[x_{t-1} + (1 - \alpha)x_{t-2} + \ldots]\alpha
\]

\[
= \alpha x_t + (1 - \alpha)y_{t-1}
\]

which shows the equivalence of the above two variants for infinite series. When \(\text{adjust=True} \) we have \(y_0 = x_0 \) and from the last representation above we have \(y_t = \alpha x_t + (1 - \alpha)y_{t-1} \), therefore there is an assumption that \(x_0 \) is not an ordinary value but rather an exponentially weighted moment of the infinite series up to that point.

One must have \(0 < \alpha \leq 1 \), and while since version 0.18.0 it has been possible to pass \(\alpha \) directly, it’s often easier to think about either the span, center of mass (com) or half-life of an EW moment:

\[
\alpha = \begin{cases}
\frac{2}{s+1}, & \text{for span } s \geq 1 \\
\frac{1}{1 + c}, & \text{for center of mass } c \geq 0 \\
1 - \exp^{-0.5 \frac{h}{5}}, & \text{for half-life } h > 0
\end{cases}
\]

One must specify precisely one of span, center of mass, half-life and alpha to the EW functions:

- **Span** corresponds to what is commonly called an “N-day EW moving average”.
- **Center of mass** has a more physical interpretation and can be thought of in terms of span: \(c = (s - 1)/2 \).
• **Half-life** is the period of time for the exponential weight to reduce to one half.

• **Alpha** specifies the smoothing factor directly.

Here is an example for a univariate time series:

```python
In [93]: s.plot(style='k--')
Out[93]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff29c73bdd0>

In [94]: s.ewm(span=20).mean().plot(style='k')
Out[94]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff29c73bdd0>
```

EWM has a `min_periods` argument, which has the same meaning it does for all the `.expanding` and `.rolling` methods: no output values will be set until at least `min_periods` non-null values are encountered in the (expanding) window. (This is a change from versions prior to 0.15.0, in which the `min_periods` argument affected only the `min_periods` consecutive entries starting at the first non-null value.)

EWM also has an `ignore_na` argument, which determines how intermediate null values affect the calculation of the weights. When `ignore_na=False` (the default), weights are calculated based on absolute positions, so that intermediate null values affect the result. When `ignore_na=True` (which reproduces the behavior in versions prior to 0.15.0), weights are calculated by ignoring intermediate null values. For example, assuming `adjust=True`, if `ignore_na=False`, the weighted average of 3, NaN, 5 would be calculated as

\[
\frac{(1 - \alpha)^2 \cdot 3 + 1 \cdot 5}{(1 - \alpha)^2 + 1}
\]
Whereas if `ignore_na=True`, the weighted average would be calculated as

\[
\frac{(1 - \alpha) \cdot 3 + 1 \cdot 5}{(1 - \alpha) + 1}.
\]

The `var()`, `std()`, and `cov()` functions have a `bias` argument, specifying whether the result should contain biased or unbiased statistics. For example, if `bias=True`, `ewmvar(x)` is calculated as \(\text{ewmvar}(x) = \text{ewma}(x^2) - \text{ewma}(x)^2 \); whereas if `bias=False` (the default), the biased variance statistics are scaled by debiasing factors

\[
\frac{\left(\sum_{i=0}^{t} w_i\right)^2}{\left(\sum_{i=0}^{t} w_i^2\right)^2 - \sum_{i=0}^{t} w_i^2}.
\]

(For \(w_i = 1 \), this reduces to the usual \(N/(N - 1) \) factor, with \(N = t + 1 \).) See Weighted Sample Variance for further details.
In this section, we will discuss missing (also referred to as NA) values in pandas.

Note: The choice of using NaN internally to denote missing data was largely for simplicity and performance reasons. It differs from the MaskedArray approach of, for example, scikits.timeseries. We are hopeful that NumPy will soon be able to provide a native NA type solution (similar to R) performant enough to be used in pandas.

See the *cookbook* for some advanced strategies.

Missing data basics

When / why does data become missing?

Some might quibble over our usage of *missing*. By “missing” we simply mean **null** or “not present for whatever reason”. Many data sets simply arrive with missing data, either because it exists and was not collected or it never existed. For example, in a collection of financial time series, some of the time series might start on different dates. Thus, values prior to the start date would generally be marked as missing.

In pandas, one of the most common ways that missing data is **introduced** into a data set is by reindexing. For example

```python
In [1]: df = pd.DataFrame(np.random.randn(5, 3), index=['a', 'c', 'e', 'f', 'h'],
                    columns=['one', 'two', 'three'])
...:
...

In [2]: df['four'] = 'bar'

In [3]: df['five'] = df['one'] > 0

In [4]: df
Out[4]:
    one   two   three  four  five
a  0.469112 -0.282863 -1.509059  bar  True
c -1.135632  1.212112 -0.173215  bar False
e  0.119209 -1.044236 -0.861849  bar  True
f -2.104569 -0.494929  1.071804  bar False
h  0.721555 -0.706771 -1.039575  bar  True

In [5]: df2 = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

In [6]: df2
Out[6]:
```
Values considered “missing”

As data comes in many shapes and forms, pandas aims to be flexible with regard to handling missing data. While NaN is the default missing value marker for reasons of computational speed and convenience, we need to be able to easily detect this value with data of different types: floating point, integer, boolean, and general object. In many cases, however, the Python None will arise and we wish to also consider that “missing” or “null”.

Note: Prior to version v0.10.0 inf and -inf were also considered to be “null” in computations. This is no longer the case by default; use the mode.use_inf_as_null option to recover it.

To make detecting missing values easier (and across different array dtypes), pandas provides the isnull() and notnull() functions, which are also methods on Series and DataFrame objects:
f True
g False
h True
Name: four, dtype: bool

In [10]: df2.isnull()
Out[10]:
 one two three four five
a False False False False False
b True True True True True
c False False False False False
d True True True True True
e False False False False False
f False False False False False
g True True True True True
h False False False False False

Warning: One has to be mindful that in python (and numpy), the nan's don't compare equal, but None's do. Note that Pandas/numpy uses the fact that np.nan != np.nan, and treats None like np.nan.

In [11]: None == None
Out[11]: True
In [12]: np.nan == np.nan
Out[12]: False

So as compared to above, a scalar equality comparison versus a None/np.nan doesn’t provide useful information.

In [13]: df2['one'] == np.nan
Out[13]:
a False
b False
c False
d False
e False
f False
g False
h False
Name: one, dtype: bool

Datetimes

For datetime64[ns] types, NaT represents missing values. This is a pseudo-native sentinel value that can be represented by numpy in a singular dtype (datetime64[ns]). pandas objects provide intercompatibility between NaT and NaN.

In [14]: df2 = df.copy()
In [15]: df2['timestamp'] = pd.Timestamp('20120101')
In [16]: df2
Out[16]:
 one two three four five timestamp
a 0.469112 -0.282863 -1.509059 bar True 2012-01-01
Inserting missing data

You can insert missing values by simply assigning to containers. The actual missing value used will be chosen based on the dtype.

For example, numeric containers will always use NaN regardless of the missing value type chosen:

```python
In [20]: s = pd.Series([1, 2, 3])
In [21]: s.loc[0] = None
In [22]: s
Out[22]:
0    NaN
1      2.0
2      3.0
dtype: float64
```

Likewise, datetime containers will always use NaT.

For object containers, pandas will use the value given:

```python
In [23]: s = pd.Series(["a", "b", "c"])
In [24]: s.loc[0] = None
In [25]: s.loc[1] = np.nan
In [26]: s
Out[26]:
0     None
1   NaN
```
Calculations with missing data

Missing values propagate naturally through arithmetic operations between pandas objects.

In [27]:
 a
Out[27]:
 one two
 --- ---
a NaN -0.282863
c NaN 1.212112
e 0.119209 -1.044236
f -2.104569 -0.494929
h -2.104569 -0.706771

In [28]:
 b
Out[28]:
 one two three
 --- --- ---
a NaN -0.282863 -1.509059
c NaN 1.212112 -0.173215
e 0.119209 -1.044236 -0.861849
f -2.104569 -0.494929 1.071804
h NaN -0.706771 -1.039575

In [29]:
 a + b
Out[29]:
 one three two
 --- --- ---
a NaN NaN -0.565727
c NaN NaN 2.424224
e 0.238417 NaN -2.088472
f -4.209138 NaN 1.071804
h NaN NaN -1.413542

The descriptive statistics and computational methods discussed in the data structure overview (and listed here and here) are all written to account for missing data. For example:

• When summing data, NA (missing) values will be treated as zero
• If the data are all NA, the result will be NA
• Methods like cumsum and cumprod ignore NA values, but preserve them in the resulting arrays

In [30]:
 df
Out[30]:
 one two three
 --- --- ---
a NaN -0.282863 -1.509059
c NaN 1.212112 -0.173215
e 0.119209 -1.044236 -0.861849
f -2.104569 -0.494929 1.071804
h NaN -0.706771 -1.039575

In [31]:
 df['one'].sum()
Out[31]: -1.9853605075978744

In [32]:
 df.mean(1)
Out[32]:
a -0.895961
c 0.519449
e -0.595625
f -0.509232
h -0.873173
dtype: float64

In [33]: df.cumsum()
Out[33]:
 one two three
a NaN -0.282863 -1.509059
c NaN 0.929249 -1.682273
e 0.119209 -0.114987 -2.544122
f -1.985361 -0.609917 -1.472318
h NaN -1.316688 -2.511893

NA values in GroupBy

NA groups in GroupBy are automatically excluded. This behavior is consistent with R, for example:

In [34]: df
Out[34]:
 one two three
a NaN -0.282863 -1.509059
c NaN 1.212112 -0.173215
e 0.119209 -1.044236 -0.861849
f -2.104569 -0.494929 1.071804
h NaN -0.706771 -1.039575

In [35]: df.groupby('one').mean()
Out[35]:
 two three
one
-2.104569 -0.494929 1.071804
 0.119209 -1.044236 -0.861849

See the groupby section here for more information.

Cleaning / filling missing data

pandas objects are equipped with various data manipulation methods for dealing with missing data.

Filling missing values: fillna

The fillna function can “fill in” NA values with non-null data in a couple of ways, which we illustrate:

Replace NA with a scalar value

In [36]: df2
Out[36]:
 one two three four five timestamp
a NaN -0.282863 -1.509059 bar True NaT
Fill gaps forward or backward

Using the same filling arguments as reindexing, we can propagate non-null values forward or backward:

```
In [39]: df
Out[39]:
     one    two    three
a   NaN -0.282863 -1.509059
b   NaN      1.212112 -0.173215
c   NaN -0.119209 -1.044236
f   NaN -2.104569 -0.494929
h   NaN -0.706771 -1.039575

In [40]: df.fillna(method='pad')
Out[40]:
    one    two    three
a   NaN -0.282863 -1.509059
b   NaN      1.212112 -0.173215
c   NaN -0.119209 -1.044236
f -2.104569 -0.494929  1.071804
h -2.104569 -0.706771 -1.039575
```

Limit the amount of filling

If we only want consecutive gaps filled up to a certain number of data points, we can use the `limit` keyword:

```
In [41]: df
Out[41]:
    one    two    three
a   NaN -0.282863 -1.509059
b   NaN      1.212112 -0.173215
c   NaN -0.119209 -1.044236
f   NaN      1.212112 -0.173215
h   NaN -0.706771 -1.039575

In [42]: df.fillna(method='pad', limit=1)
Out[42]:
    one    two    three
a   NaN -0.282863 -1.509059
b   NaN      1.212112 -0.173215
c   NaN -0.119209 -1.044236
f -2.104569 -0.494929  1.071804
h -2.104569 -0.706771 -1.039575
```
Out[42]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>NaN</td>
<td>-0.282863</td>
</tr>
<tr>
<td>b</td>
<td>NaN</td>
<td>1.212112</td>
</tr>
<tr>
<td>c</td>
<td>NaN</td>
<td>1.212112</td>
</tr>
<tr>
<td>d</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>e</td>
<td>NaN</td>
<td>0.706771</td>
</tr>
</tbody>
</table>

To remind you, these are the available filling methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>pad / ffill</td>
<td>Fill values forward</td>
</tr>
<tr>
<td>bfill / backfill</td>
<td>Fill values backward</td>
</tr>
</tbody>
</table>

With time series data, using pad/ffill is extremely common so that the “last known value” is available at every time point.

The ffill() function is equivalent to fillna(method='ffill') and bfill() is equivalent to fillna(method='bfill')

Filling with a PandasObject

New in version 0.12.

You can also fillna using a dict or Series that is alignable. The labels of the dict or index of the Series must match the columns of the frame you wish to fill. The use case of this is to fill a DataFrame with the mean of that column.

In [43]: dff = pd.DataFrame(np.random.randn(10,3), columns=list('ABC'))

In [44]: dff.iloc[3:5,0] = np.nan

In [45]: dff.iloc[4:6,1] = np.nan

In [46]: dff.iloc[5:8,2] = np.nan

In [47]: dff.fillna(dff.mean())

Out[47]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.271860</td>
<td>-0.424972</td>
</tr>
<tr>
<td>1</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
<tr>
<td>2</td>
<td>0.113648</td>
<td>-1.478427</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>0.577046</td>
</tr>
<tr>
<td>4</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>5</td>
<td>-1.344312</td>
<td>NaN</td>
</tr>
<tr>
<td>6</td>
<td>-0.109050</td>
<td>1.643563</td>
</tr>
<tr>
<td>7</td>
<td>0.357021</td>
<td>-0.674600</td>
</tr>
<tr>
<td>8</td>
<td>-0.968914</td>
<td>-1.294524</td>
</tr>
<tr>
<td>9</td>
<td>0.276662</td>
<td>-0.472035</td>
</tr>
</tbody>
</table>

In [48]: dff.fillna(dff.mean())

Out[48]:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.271860</td>
<td>-0.424972</td>
</tr>
<tr>
<td>1</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
<tr>
<td>2</td>
<td>0.113648</td>
<td>-1.478427</td>
</tr>
<tr>
<td>3</td>
<td>-0.140857</td>
<td>0.577046</td>
</tr>
<tr>
<td>4</td>
<td>-0.140857</td>
<td>-0.401419</td>
</tr>
<tr>
<td>5</td>
<td>-1.344312</td>
<td>-0.401419</td>
</tr>
</tbody>
</table>

Chapter 16. Working with missing data
In [49]: dff.fillna(dff.mean()['B':'C'])
Out[49]:
 A B C
0 0.271860 -0.424972 0.567020
1 0.276232 -1.087401 -0.673690
2 0.113648 -1.478427 0.524988
3 NaN 0.577046 -1.715002
4 NaN -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
6 NaN 1.643563 -0.293543
7 NaN -0.674600 -0.293543
8 -0.968914 -1.294524 0.413738
9 NaN -0.472035 -0.013960

New in version 0.13.

Same result as above, but is aligning the ‘fill’ value which is a Series in this case.

In [50]: dff.where(pd.notnull(dff), dff.mean(), axis='columns')
Out[50]:
 A B C
0 0.271860 -0.424972 0.567020
1 0.276232 -1.087401 -0.673690
2 0.113648 -1.478427 0.524988
3 -0.140857 0.577046 -1.715002
4 -0.140857 -0.401419 -1.157892
5 -1.344312 -0.401419 -0.293543
6 NaN 1.643563 -0.293543
7 NaN -0.674600 -0.293543
8 -0.968914 -1.294524 0.413738
9 NaN -0.472035 -0.013960

Dropping axis labels with missing data: dropna

You may wish to simply exclude labels from a data set which refer to missing data. To do this, use the dropna method:

In [51]: df
Out[51]:
 one two three
a NaN -0.282863 -1.509059
c NaN 1.212112 -0.173215
e NaN 0.000000 0.000000
f NaN 0.000000 0.000000
h NaN -0.706771 -1.039575

In [52]: df.dropna(axis=0)
Out[52]:
Empty DataFrame
Columns: [one, two, three]
Index: []

In [53]: df.dropna(axis=1)

16.5. Cleaning / filling missing data
Series.dropna is a simpler method as it only has one axis to consider. DataFrame.dropna has considerably more options than Series.dropna, which can be examined in the API.

Interpolation

New in version 0.13.0: `interpolate()` and `interpolate()` have revamped interpolation methods and functionality.

New in version 0.17.0: The `limit_direction` keyword argument was added.

Both Series and Dataframe objects have an `interpolate` method that, by default, performs linear interpolation at missing datapoints.
Index aware interpolation is available via the `method` keyword:

```python
In [59]: ts2
Out[59]:
2000-01-31   0.469112
2000-02-29    NaN
2002-07-31   -5.689738
2005-01-31    NaN
2008-04-30   -8.916232
dtype: float64

In [60]: ts2.interpolate()
Out[60]:
2000-01-31   0.469112
2000-02-29   -2.610313
2002-07-31   -5.689738
2005-01-31   -7.302985
2008-04-30   -8.916232
dtype: float64

In [61]: ts2.interpolate(method='time')
Out[61]:
2000-01-31   0.469112
2000-02-29   0.273272
2002-07-31   -5.689738
```
For a floating-point index, use method='values':

```
In [62]: ser
Out[62]:
     0.0  0.0
     1.0 NaN
   10.0 10.0
dtype: float64

In [63]: ser.interpolate()
Out[63]:
     0.0  0.0
     1.0  5.0
   10.0 10.0
dtype: float64

In [64]: ser.interpolate(method='values')
Out[64]:
     0.0  0.0
     1.0  1.0
   10.0 10.0
dtype: float64
```

You can also interpolate with a DataFrame:

```
In [65]: df = pd.DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
                      'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})

In [66]: df
Out[66]:
      A    B
   0  1.0  0.25
   1  2.1  NaN
   2  NaN  NaN
   3  4.7  4.00
   4  5.6  12.2
   5  6.8  14.4

In [67]: df.interpolate()
Out[67]:
      A    B
   0  1.0  0.25
   1  2.1  1.50
   2  3.4  2.75
   3  4.7  4.00
   4  5.6  12.2
   5  6.8  14.4
```

The method argument gives access to fancier interpolation methods. If you have scipy installed, you can set pass the name of a 1-d interpolation routine to method. You’ll want to consult the full scipy interpolation documentation and reference guide for details. The appropriate interpolation method will depend on the type of data you are working with.
• If you are dealing with a time series that is growing at an increasing rate, method='quadratic' may be appropriate.
• If you have values approximating a cumulative distribution function, then method='pchip' should work well.
• To fill missing values with goal of smooth plotting, use method='akima'.

Warning: These methods require scipy.

```
In [68]: df.interpolate(method='barycentric')
Out[68]:
   A     B
0  1.0  0.250
1  2.1 -7.660
2  3.5 -4.515
3  4.7  4.000
4  5.6 12.200
5  6.8 14.400

In [69]: df.interpolate(method='pchip')
Out[69]:
   A     B
0 1.000 0.2500
1 2.100 0.6728
2 3.435 1.9289
3 4.700 4.0000
4 5.600 12.2000
5 6.800 14.4000

In [70]: df.interpolate(method='akima')
Out[70]:
   A     B
0 1.000 0.2500
1 2.100 -0.8733
2 3.407 0.3200
3 4.700 4.0000
4 5.600 12.2000
5 6.800 14.4000

In [71]: df.interpolate(method='spline', order=2)
Out[71]:
   A     B
0 1.000 0.2500
1 2.100 -0.4286
2 3.407 1.2070
3 4.700 4.0000
4 5.600 12.2000
5 6.800 14.4000

In [72]: df.interpolate(method='polynomial', order=2)
Out[72]:
   A     B
0 1.000 0.2500
```

When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation:

```
In [71]: df.interpolate(method='spline', order=2)
Out[71]:
   A     B
0 1.000 0.2500
1 2.100 -0.4286
2 3.407 1.2070
3 4.700 4.0000
4 5.600 12.2000
5 6.800 14.4000

In [72]: df.interpolate(method='polynomial', order=2)
Out[72]:
   A     B
0 1.000 0.2500
```
Another use case is interpolation at new values. Suppose you have 100 observations from some distribution. And let's
suppose that you’re particularly interested in what’s happening around the middle. You can mix pandas’ `reindex` and `interpolate` methods to interpolate at the new values.

```python
In [80]: ser = pd.Series(np.sort(np.random.uniform(size=100)))

# interpolate at new_index
In [81]: new_index = ser.index | pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])

In [82]: interp_s = ser.reindex(new_index).interpolate(method='pchip')

In [83]: interp_s[49:51]
Out[83]:
   49.00  0.471410
   49.25  0.476841
   49.50  0.481780
   49.75  0.485998
   50.00  0.489266
   50.25  0.491814
   50.50  0.493995
   50.75  0.495763
   51.00  0.497074

dtype: float64
```

Interpolation Limits

Like other pandas fill methods, `interpolate` accepts a `limit` keyword argument. Use this argument to limit the number of consecutive interpolations, keeping NaN values for interpolations that are too far from the last valid observation:

```python
In [84]: ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13])

In [85]: ser.interpolate(limit=2)
Out[85]:
0   NaN
1   NaN
2    5.0
3    7.0
4    9.0
5   NaN
6   13.0

dtype: float64
```

By default, `limit` applies in a forward direction, so that only NaN values after a non-NaN value can be filled. If you provide 'backward' or 'both' for the `limit_direction` keyword argument, you can fill NaN values before non-NaN values, or both before and after non-NaN values, respectively:

```python
In [86]: ser.interpolate(limit=1)  # limit_direction == 'forward'
Out[86]:
0   NaN
1   NaN
2    5.0
3    7.0
4   NaN
5   NaN
6   13.0

dtype: float64
```
Replacing Generic Values

Often times we want to replace arbitrary values with other values. New in v0.8 is the replace method in Series/DataFrame that provides an efficient yet flexible way to perform such replacements.

For a Series, you can replace a single value or a list of values by another value:

```python
In [89]: ser = pd.Series([0., 1., 2., 3., 4.])
In [90]: ser.replace(0, 5)
Out[90]:
0  5.0
1  1.0
2  2.0
3  3.0
4  4.0
dtype: float64
```

You can replace a list of values by a list of other values:

```python
In [91]: ser.replace([0, 1, 2, 3, 4], [4, 3, 2, 1, 0])
Out[91]:
0  4.0
1  3.0
2  2.0
3  1.0
4  0.0
dtype: float64
```

You can also specify a mapping dict:

```python
In [92]: ser.replace({0: 10, 1: 100})
Out[92]:
0  10.0
```
For a DataFrame, you can specify individual values by column:

```python
In [93]: df = pd.DataFrame({'a': [0, 1, 2, 3, 4], 'b': [5, 6, 7, 8, 9]})
```

```python
In [94]: df.replace({'a': 0, 'b': 5}, 100)
Out[94]:
   a  b
0  100 100
1   1  6
2   2  7
3   3  8
4   4  9
```

Instead of replacing with specified values, you can treat all given values as missing and interpolate over them:

```python
In [95]: ser.replace([1, 2, 3], method='pad')
Out[95]:
0    0.0
1    0.0
2    0.0
3    0.0
4    4.0
dtype: float64
```

String/Regular Expression Replacement

Note: Python strings prefixed with the `r` character such as `r'hello world'` are so-called “raw” strings. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., `r'\'` == `'\'`. You should read about them if this is unclear.

Replace the `.` with `nan` (str -> str)

```python
In [96]: d = {'a': list(range(4)), 'b': list('ab..'), 'c': ['a', 'b', np.nan, 'd']}
In [97]: df = pd.DataFrame(d)
In [98]: df.replace('.', np.nan)
Out[98]:
   a  b   c
0  0  a   a
1  1  b   b
2  NaN NaN NaN
3  NaN NaN  d
```

Now do it with a regular expression that removes surrounding whitespace (regex -> regex)

```python
In [99]: df.replace(r'\s*\..*', np.nan, regex=True)
Out[99]:
```
Replace a few different values (list -> list)

```python
In [100]: df.replace(['a', '.', 'b', np.nan])
Out[100]:
   a  b   c
0  0  b   b
1  1  b   b
2  NaN NaN
3  NaN d
```

list of regex -> list of regex

```python
In [101]: df.replace([r'.', r'(a)'], ['dot', '\1stuff'], regex=True)
Out[101]:
   a   b   c
0  dot stuff
1  b   b
2  dot NaN
3  dot d
```

Only search in column 'b' (dict -> dict)

```python
In [102]: df.replace({'b': '.'}, {'b': np.nan})
Out[102]:
   a  b  c
0  0  a   a
1  1  b   b
2  NaN NaN
3  NaN d
```

Same as the previous example, but use a regular expression for searching instead (dict of regex -> dict)

```python
In [103]: df.replace({'b': {'b': r'\s*\s*'}}, {'b': np.nan}, regex=True)
Out[103]:
   a  b  c
0  0  a   a
1  1  b   b
2  NaN NaN
3  NaN d
```

You can pass nested dictionaries of regular expressions that use `regex=True`

```python
In [104]: df.replace({'b': {'b': r'\s*\s*'}}, regex=True)
Out[104]:
   a  b  c
0  0  a   a
1  1  b
2  .  NaN
3  3  .  d
```

or you can pass the nested dictionary like so
In [105]: df.replace(regex={'b': {r'\s*\.\s*': np.nan}})
Out[105]:
 a b c
0 0 a a
1 1 b b
2 NaN NaN
3 NaN d

You can also use the group of a regular expression match when replacing (dict of regex -> dict of regex), this works for lists as well

In [106]: df.replace({'b': r'\s*(\.)\s*'}, {'b': r'\1ty'}, regex=True)
Out[106]:
 a b c
0 0 a a
1 1 b b
2 .ty NaN
3 .ty d

You can pass a list of regular expressions, of which those that match will be replaced with a scalar (list of regex -> regex)

In [107]: df.replace([r'\s*\.\s*', r'a|b'], np.nan, regex=True)
Out[107]:
 a b c
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN d

All of the regular expression examples can also be passed with the to_replace argument as the regex argument. In this case the value argument must be passed explicitly by name or regex must be a nested dictionary. The previous example, in this case, would then be

In [108]: df.replace(regex=[r'\s*\.\s*', r'a|b'], value=np.nan)
Out[108]:
 a b c
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN d

This can be convenient if you do not want to pass regex=True every time you want to use a regular expression.

Note: Anywhere in the above replace examples that you see a regular expression a compiled regular expression is valid as well.

Numeric Replacement

Similar to DataFrame.fillna

In [109]: df = pd.DataFrame(np.random.randn(10, 2))

In [110]: df[np.random.rand(df.shape[0]) > 0.5] = 1.5
In [111]: df.replace(1.5, np.nan)
Out[111]:
 0 1
0 -0.844214 -1.021415
1 0.432396 -0.323580
2 0.423825 0.799180
3 1.262614 0.751965
4 NaN NaN
5 NaN NaN
6 -0.498174 -1.060799
7 0.591667 -0.183257
8 1.019855 -1.482465
9 NaN NaN

Replacing more than one value via lists works as well

In [112]: df00 = df.values[0, 0]
In [113]: df.replace([1.5, df00], [np.nan, 'a'])
Out[113]:
 0 1
0 a -1.021415
1 0.432396 -0.323580
2 0.423825 0.799180
3 1.262614 0.751965
4 NaN NaN
5 NaN NaN
6 -0.498174 -1.060799
7 0.591667 -0.183257
8 1.019855 -1.482465
9 NaN NaN

In [114]: df[1].dtype
Out[114]: dtype('float64')

You can also operate on the DataFrame in place

In [115]: df.replace(1.5, np.nan, inplace=True)

Warning: When replacing multiple bool or datetime64 objects, the first argument to replace (to_replace) must match the type of the value being replaced type. For example,

s = pd.Series([True, False, True])
s.replace({'a string': 'new value', True: False}) # raises

TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str'

will raise a TypeError because one of the dict keys is not of the correct type for replacement.

However, when replacing a single object such as,

In [116]: s = pd.Series([True, False, True])
In [117]: s.replace('a string', 'another string')
Out[117]:
 0 True
 1 False
 2 True
dtype: bool
the original `NDFrame` object will be returned untouched. We’re working on unifying this API, but for backwards compatibility reasons we cannot break the latter behavior. See GH6354 for more details.

Missing data casting rules and indexing

While pandas supports storing arrays of integer and boolean type, these types are not capable of storing missing data. Until we can switch to using a native NA type in NumPy, we’ve established some “casting rules” when reindexing will cause missing data to be introduced into, say, a Series or DataFrame. Here they are:

<table>
<thead>
<tr>
<th>data type</th>
<th>Cast to</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>float</td>
</tr>
<tr>
<td>boolean</td>
<td>object</td>
</tr>
<tr>
<td>float</td>
<td>no cast</td>
</tr>
<tr>
<td>object</td>
<td>no cast</td>
</tr>
</tbody>
</table>

For example:

```
In [118]: s = pd.Series(np.random.randn(5), index=[0, 2, 4, 6, 7])
In [119]: s > 0
Out[119]:
0   True
2   True
4   True
6   True
7   True
dtype: bool
In [120]: (s > 0).dtype
Out[120]: dtype('bool')
In [121]: crit = (s > 0).reindex(list(range(8)))
In [122]: crit
Out[122]:
0   True
1   NaN
2   True
3   NaN
4   True
5   NaN
6   True
7   True
dtype: object
In [123]: crit.dtype
Out[123]: dtype('O')
```

Ordinarily NumPy will complain if you try to use an object array (even if it contains boolean values) instead of a boolean array to get or set values from an ndarray (e.g. selecting values based on some criteria). If a boolean vector contains NAs, an exception will be generated:

```
In [124]: reindexed = s.reindex(list(range(8))).fillna(0)
In [125]: reindexed[crit]
```

16.6. **Missing data casting rules and indexing**
ValueError: cannot index with vector containing NA / NaN values

However, these can be filled in using **fillna** and it will work fine:

```
In [126]: reindexed[crit.fillna(False)]
Out[126]:
     0  0.126504  
     2  0.696198  
     4  0.697416  
     6  0.601516  
     7  0.003659  
     dtype: float64

In [127]: reindexed[crit.fillna(True)]
Out[127]:
    0  0.126504  
    1  0.000000  
    2  0.696198  
    3  0.000000  
    4  0.697416  
    5  0.000000  
    6  0.601516  
    7  0.003659  
    dtype: float64
```
GROUP BY: SPLIT-APPLY-COMBINE

By “group by” we are referring to a process involving one or more of the following steps:

- **Splitting** the data into groups based on some criteria
- **Applying** a function to each group independently
- **Combining** the results into a data structure

Of these, the split step is the most straightforward. In fact, in many situations you may wish to split the data set into groups and do something with those groups yourself. In the apply step, we might wish to one of the following:

- **Aggregation**: computing a summary statistic (or statistics) about each group. Some examples:
 - Compute group sums or means
 - Compute group sizes / counts

- **Transformation**: perform some group-specific computations and return a like-indexed. Some examples:
 - Standardizing data (zscore) within group
 - Filling NAs within groups with a value derived from each group

- **Filtration**: discard some groups, according to a group-wise computation that evaluates True or False. Some examples:
 - Discarding data that belongs to groups with only a few members
 - Filtering out data based on the group sum or mean

- Some combination of the above: GroupBy will examine the results of the apply step and try to return a sensibly combined result if it doesn’t fit into either of the above two categories

Since the set of object instance methods on pandas data structures are generally rich and expressive, we often simply want to invoke, say, a DataFrame function on each group. The name GroupBy should be quite familiar to those who have used a SQL-based tool (or `itertools`), in which you can write code like:

```sql
SELECT Column1, Column2, mean(Column3), sum(Column4)
FROM SomeTable
GROUP BY Column1, Column2
```

We aim to make operations like this natural and easy to express using pandas. We’ll address each area of GroupBy functionality then provide some non-trivial examples / use cases.

See the *cookbook* for some advanced strategies.
Splitting an object into groups

pandas objects can be split on any of their axes. The abstract definition of grouping is to provide a mapping of labels to group names. To create a GroupBy object (more on what the GroupBy object is later), you do the following:

```python
>>> grouped = obj.groupby(key)
>>> grouped = obj.groupby(key, axis=1)
>>> grouped = obj.groupby([key1, key2])
```

The mapping can be specified many different ways:

- A Python function, to be called on each of the axis labels
- A list or NumPy array of the same length as the selected axis
- A dict or Series, providing a label -> group name mapping
- For DataFrame objects, a string indicating a column to be used to group. Of course `df.groupby('A')` is just syntactic sugar for `df.groupby(df['A'])`, but it makes life simpler
- A list of any of the above things

Collectively we refer to the grouping objects as the **keys**. For example, consider the following DataFrame:

```python
In [1]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
                           ...:
                           'foo', 'bar', 'foo', 'foo'],
                       ...
                       'B' : ['one', 'one', 'two', 'three',
                              ...
                              'two', 'two', 'one', 'three'],
                       ...
                       'C' : np.random.randn(8),
                       ...
                       'D' : np.random.randn(8)})
```

We could naturally group by either the `A` or `B` columns or both:

```python
In [3]: grouped = df.groupby('A')
In [4]: grouped = df.groupby(['A', 'B'])
```

These will split the DataFrame on its index (rows). We could also split by the columns:

```python
In [5]: def get_letter_type(letter):
    ...:     if letter.lower() in 'aeiou':
    ...:         return 'vowel'
    ...:     else:
    ...:         return 'consonant'
    ...
In [6]: grouped = df.groupby(get_letter_type, axis=1)
```
Starting with 0.8, pandas Index objects now support duplicate values. If a non-unique index is used as the group key in a groupby operation, all values for the same index value will be considered to be in one group and thus the output of aggregation functions will only contain unique index values:

```python
In [7]: lst = [1, 2, 3, 1, 2, 3]
In [8]: s = pd.Series([1, 2, 3, 10, 20, 30], lst)
In [9]: grouped = s.groupby(level=0)
In [10]: grouped.first()
Out[10]:
   1   1
   2   2
   3   3
   dtype: int64
In [11]: grouped.last()
Out[11]:
   1  10
   2  20
   3  30
   dtype: int64
In [12]: grouped.sum()
Out[12]:
   1   11
   2   22
   3   33
   dtype: int64
```

Note that **no splitting occurs** until it’s needed. Creating the GroupBy object only verifies that you’ve passed a valid mapping.

Note: Many kinds of complicated data manipulations can be expressed in terms of GroupBy operations (though can’t be guaranteed to be the most efficient). You can get quite creative with the label mapping functions.

GroupBy sorting

By default the group keys are sorted during the `groupby` operation. You may however pass `sort=False` for potential speedups:

```python
In [13]: df2 = pd.DataFrame({'X' : ['B', 'B', 'A', 'A'], 'Y' : [1, 2, 3, 4]})
In [14]: df2.groupby(['X']).sum()
Out[14]:
       Y
   X   
   A  7
   B  3
In [15]: df2.groupby(['X'], sort=False).sum()
Out[15]:
   Y
   X   
   A  7
   B  3
```
Note that `groupby` will preserve the order in which observations are sorted within each group. For example, the groups created by `groupby()` below are in the order they appeared in the original DataFrame:

```python
In [16]: df3 = pd.DataFrame({'X' : ['A', 'B', 'A', 'B'], 'Y' : [1, 4, 3, 2]})
In [17]: df3.groupby(['X']).get_group('A')
Out[17]:
   X  Y
0  A  1
2  A  3
In [18]: df3.groupby(['X']).get_group('B')
Out[18]:
   X  Y
1  B  4
3  B  2
```

GroupBy object attributes

The `groups` attribute is a dict whose keys are the computed unique groups and corresponding values being the axis labels belonging to each group. In the above example we have:

```python
In [19]: df.groupby('A').groups
Out[19]:
{'bar': Int64Index([1, 3, 5], dtype='int64'),
 'foo': Int64Index([0, 2, 4, 6, 7], dtype='int64')}
In [20]: df.groupby(get_letter_type, axis=1).groups
Out[20]:
{u'consonant': Index([u'B', u'C', u'D'], dtype='object'),
 u'veowel': Index([u'A'], dtype='object')}
```

Calling the standard Python `len` function on the GroupBy object just returns the length of the `groups` dict, so it is largely just a convenience:

```python
In [21]: grouped = df.groupby(['A', 'B'])
In [22]: grouped.groups
Out[22]:
{('bar', 'one'): Int64Index([1], dtype='int64'),
 ('bar', 'three'): Int64Index([3], dtype='int64'),
 ('bar', 'two'): Int64Index([5], dtype='int64'),
 ('foo', 'one'): Int64Index([0, 6], dtype='int64'),
 ('foo', 'three'): Int64Index([7], dtype='int64'),
 ('foo', 'two'): Int64Index([2, 4], dtype='int64')}
In [23]: len(grouped)
Out[23]: 6
```

GroupBy will tab complete column names (and other attributes)
In [24]: df
Out[24]:
 gender height weight
2000-01-01 male 42.849980 157.500553
2000-01-02 male 49.607315 177.340407
2000-01-03 male 56.293531 171.524640
2000-01-04 female 48.421077 144.251986
2000-01-05 male 46.556882 152.526206
2000-01-06 female 68.448851 168.272968
2000-01-07 male 70.757698 136.431469
2000-01-08 female 76.435631 174.094104
2000-01-09 female 58.390500 176.499753
2000-01-10 male 45.306120 177.540920

In [25]: gb = df.groupby('gender')

In [26]: gb.<TAB>
 gb.agg gb.boxplot gb.cummin gb.describe gb.filter gb.get_group
 →gb.height gb.last gb.median gb.ngroups gb.plot gb.rank
 →gb.std gb.transform gb.aggregate gb.count gb.cumprod gb.dtype gb.first gb.groups
 →gb.hist gb.max gb.min gb.nth gb.prod gb.resample gb.size
 →gb.sum gb.var gb.apply gb.cummmax gb.cumsum gb.fillna gb.gender gb.head
 →gb.indices gb.mean gb.name gb.ohlc gb.quantile gb.size
 →gb.tail gb.weight

GroupBy with MultiIndex

With *hierarchically-indexed data*, it’s quite natural to group by one of the levels of the hierarchy.

Let’s create a Series with a two-level MultiIndex.

In [27]: arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
 ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
 :
 :

In [28]: index = pd.MultiIndex.from_arrays(arrays, names=['first', 'second'])

In [29]: s = pd.Series(np.random.randn(8), index=index)

In [30]: s
Out[30]:
 first second
 bar one -0.575247
 two 0.254161
 baz one -1.143704
 two 0.215897
 foo one 1.193555
 two -0.077118
 qux one -0.408530
 two -0.862495
dtype: float64

We can then group by one of the levels in s.

17.1. Splitting an object into groups
In [31]: grouped = s.groupby(level=0)

In [32]: grouped.sum()
Out[32]:
first
bar -0.321085
baz -0.927807
foo 1.116437
qux -1.271025

dtype: float64

If the MultiIndex has names specified, these can be passed instead of the level number:

In [33]: s.groupby(level='second').sum()
Out[33]:
second
one -0.933926
two -0.469555
dtype: float64

The aggregation functions such as sum will take the level parameter directly. Additionally, the resulting index will be named according to the chosen level:

In [34]: s.sum(level='second')
Out[34]:
second
one -0.933926
two -0.469555
dtype: float64

Also as of v0.6, grouping with multiple levels is supported.

In [35]: s
Out[35]:
first second third
bar doo one 1.346061
two 1.511763
baz bee one 1.627081
two -0.990582
foo bop one -0.441652
two 1.211526
qux bop one 0.268520
two 0.024580
dtype: float64

In [36]: s.groupby(level=['first', 'second']).sum()
Out[36]:
first second
bar doo 2.857824
baz bee 0.636499
foo bop 0.769873
qux bop 0.293100
dtype: float64

More on the sum function and aggregation later.
DataFrame column selection in GroupBy

Once you have created the GroupBy object from a DataFrame, for example, you might want to do something different for each of the columns. Thus, using \[\] similar to getting a column from a DataFrame, you can do:

```
In [37]: grouped = df.groupby(['A'])
In [38]: grouped_C = grouped['C']
In [39]: grouped_D = grouped['D']
```

This is mainly syntactic sugar for the alternative and much more verbose:

```
In [40]: df['C'].groupby(df['A'])
Out[40]: <pandas.core.groupby.SeriesGroupBy object at 0x7ff26f58b810>
```

Additionally this method avoids recomputing the internal grouping information derived from the passed key.

Iterating through groups

With the GroupBy object in hand, iterating through the grouped data is very natural and functions similarly to `itertools.groupby`:

```
In [41]: grouped = df.groupby('A')
In [42]: for name, group in grouped:
     ....:     print(name)
     ....:     print(group)
     ....:
bar
     A   B   C   D
     1 bar one -0.042379 -0.089329
     3 bar three -0.00992 -0.945867
     5 bar two  0.495767  1.956030
foo
     A   B   C   D
     0 foo one -0.919854 -1.131345
     2 foo two  1.247642  0.337863
     4 foo two  0.290213 -0.932132
     6 foo one  0.362949  0.017587
     7 foo three 1.548106 -0.016692
```

In the case of grouping by multiple keys, the group name will be a tuple:

```
In [43]: for name, group in df.groupby(['A', 'B']):
     ....:     print(name)
     ....:     print(group)
     ....:
('bar', 'one')
     A   B   C   D
     1 bar one -0.042379 -0.089329
('bar', 'three')
     A   B   C   D
     3 bar three -0.00992 -0.945867
('bar', 'two')
     A   B   C   D
```

17.2. Iterating through groups
It’s standard Python-fu but remember you can unpack the tuple in the for loop statement if you wish: for \((k1, k2), group\) in grouped:.

Selecting a group

A single group can be selected using `GroupBy.get_group()`:

```python
In [44]: grouped.get_group('bar')
Out[44]:
   A   B   C   D
0  bar  one  0.442379  0.089329
1  bar  one -0.009920 -0.945867
2  bar  two  0.495767  1.956030
```

Or for an object grouped on multiple columns:

```python
In [45]: df.groupby(['A', 'B']).get_group(('bar', 'one'))
Out[45]:
   A   B   C   D
0  bar  one  0.442379  0.089329
```

Aggregation

Once the `GroupBy` object has been created, several methods are available to perform a computation on the grouped data.

An obvious one is aggregation via the `aggregate` or equivalently `agg` method:

```python
In [46]: grouped = df.groupby('A')
In [47]: grouped.aggregate(np.sum)
Out[47]:
   C   D
A
bar  0.443469  0.920834
foo  2.529056 -1.724719
```

```python
In [48]: grouped = df.groupby(['A', 'B'])
In [49]: grouped.aggregate(np.sum)
```
As you can see, the result of the aggregation will have the group names as the new index along the grouped axis. In the case of multiple keys, the result is a MultiIndex by default, though this can be changed by using the as_index option:

```
In [50]: grouped = df.groupby(['A', 'B'], as_index=False)
In [51]: grouped.aggregate(np.sum)
Out[51]:
   A  B  C  D
0  bar one -0.042379 -0.089329
  three -0.009920 -0.945867
  two   0.495767  1.956030
1  foo one -0.556905 -1.113758
  three  1.548106 -0.016692
  two   1.537855 -0.594269
```

Note that you could use the reset_index DataFrame function to achieve the same result as the column names are stored in the resulting MultiIndex:

```
In [52]: df.groupby('A', as_index=False).sum().reset_index()
Out[52]:
   A  B  C  D
0  bar one -0.042379 -0.089329
  three -0.009920 -0.945867
  two   0.495767  1.956030
1  foo one -0.556905 -1.113758
  three  1.548106 -0.016692
  two   1.537855 -0.594269
```

Another simple aggregation example is to compute the size of each group. This is included in GroupBy as the size method. It returns a Series whose index are the group names and whose values are the sizes of each group:

```
In [53]: grouped.size()
Out[53]:
   A  B
0  bar one 1
  three 1
  two   1
1  foo one 2
  three 1
  two   2
dtype: int64
```

17.4. Aggregation
In [55]: grouped.describe()
Out[55]:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>count</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>NaN</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>-0.042379</td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>-0.042379</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>mean</td>
<td>0.768928</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>0.677005</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>0.290213</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>0.529570</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>0.768928</td>
</tr>
<tr>
<td></td>
<td>75%</td>
<td>1.008285</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>1.247642</td>
</tr>
</tbody>
</table>

[48 rows x 2 columns]

Note: Aggregation functions will not return the groups that you are aggregating over if they are named `columns`, when `as_index=True`, the default. The grouped columns will be the indices of the returned object.

Passing `as_index=False` will return the groups that you are aggregating over, if they are named `columns`.

Aggregating functions are ones that reduce the dimension of the returned objects, for example: `mean`, `sum`, `size`, `count`, `std`, `var`, `sem`, `describe`, `first`, `last`, `nth`, `min`, `max`. This is what happens when you do for example `DataFrame.sum()` and get back a `Series`.

`nth` can act as a reducer or a filter, see here

Applying multiple functions at once

With grouped Series you can also pass a list or dict of functions to do aggregation with, outputting a DataFrame:

In [56]: grouped = df.groupby('A')
In [57]: grouped['C'].agg([np.sum, np.mean, np.std])
Out[57]:

<table>
<thead>
<tr>
<th></th>
<th>sum</th>
<th>mean</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>bar</td>
<td>0.443469</td>
<td>0.147823</td>
</tr>
<tr>
<td></td>
<td>foo</td>
<td>2.529056</td>
<td>0.505811</td>
</tr>
</tbody>
</table>

If a dict is passed, the keys will be used to name the columns. Otherwise the function’s name (stored in the function object) will be used.

In [58]: grouped['D'].agg({'result1': np.sum, 'result2': np.mean})

Out[58]:

<table>
<thead>
<tr>
<th></th>
<th>result2</th>
<th>result1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
On a grouped DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:

```
In [59]: grouped.agg([np.sum, np.mean, np.std])
Out[59]:
          C     D
           sum   mean  std    sum   mean  std
       A   bar  0.443469 0.147823 0.301765 0.920834 0.306945 1.490982
             foo  2.529056 0.505811 0.966450 -1.724719 -0.344944 0.645875
```

Passing a dict of functions has different behavior by default, see the next section.

Applying different functions to DataFrame columns

By passing a dict to `aggregate` you can apply a different aggregation to the columns of a DataFrame:

```
In [60]: grouped.agg({'C': np.sum, 'D': lambda x: np.std(x, ddof=1)})
```

The function names can also be strings. In order for a string to be valid it must be either implemented on GroupBy or available via dispatching:

```
In [61]: grouped.agg({'C': 'sum', 'D': 'std'})
```

Note: If you pass a dict to `aggregate`, the ordering of the output columns is non-deterministic. If you want to be sure the output columns will be in a specific order, you can use an `OrderedDict`. Compare the output of the following two commands:

```
In [62]: grouped.agg({'D': 'std', 'C': 'mean'})
Out[62]:
          C     D
           sum   mean
       A   bar  0.147823 1.490982
             foo  0.505811 0.645875
```

```
In [63]: grouped.agg(OrderedDict([('D', 'std'), ('C', 'mean')]))
Out[63]:
          D     C
           sum   mean
       A   bar  0.147823 1.490982
             foo  0.505811 0.645875
```
Cython-optimized aggregation functions

Some common aggregations, currently only \texttt{sum}, \texttt{mean}, \texttt{std}, and \texttt{sem}, have optimized Cython implementations:

\begin{verbatim}
In [64]: df.groupby('A').sum()
Out[64]:
 C D
A
bar 0.443469 0.920834
foo 2.529056 -1.724719

In [65]: df.groupby([\'A', \'B\']).mean()
Out[65]:
 C D
A B
bar one -0.042379 -0.089329
 three -0.009920 0.945867
 two 0.495767 1.956030
foo one -0.278452 -0.556879
 three 1.548106 0.016692
 two 0.768928 -0.297134
\end{verbatim}

Of course \texttt{sum} and \texttt{mean} are implemented on pandas objects, so the above code would work even without the special versions via dispatching (see below).

Transformation

The \texttt{transform} method returns an object that is indexed the same (same size) as the one being grouped. Thus, the passed transform function should return a result that is the same size as the group chunk. For example, suppose we wished to standardize the data within each group:

\begin{verbatim}
In [66]: index = pd.date_range('10/1/1999', periods=1100)
In [67]: ts = pd.Series(np.random.normal(0.5, 2, 1100), index)
In [68]: ts = ts.rolling(window=100,min_periods=100).mean().dropna()
In [69]: ts.head()
Out[69]:
2000-01-08 0.779333
2000-01-09 0.778852
2000-01-10 0.786476
2000-01-11 0.782797
2000-01-12 0.798110
Freq: D, dtype: float64
In [70]: ts.tail()
Out[70]:
2002-09-30 0.660294
2002-10-01 0.631095
2002-10-02 0.673601
\end{verbatim}
<table>
<thead>
<tr>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-10-03</td>
<td>0.709213</td>
</tr>
<tr>
<td>2002-10-04</td>
<td>0.719369</td>
</tr>
</tbody>
</table>

Freq: D, dtype: float64

```python
In [71]: key = lambda x: x.year

In [72]: zscore = lambda x: (x - x.mean()) / x.std()

In [73]: transformed = ts.groupby(key).transform(zscore)
```

We would expect the result to now have mean 0 and standard deviation 1 within each group, which we can easily check:

```python
# Original Data
In [74]: grouped = ts.groupby(key)

In [75]: grouped.mean()
Out[75]:
2000   0.442441
2001   0.526246
2002   0.459365
dtype: float64

In [76]: grouped.std()
Out[76]:
2000   0.131752
2001   0.210945
2002   0.128753
dtype: float64

# Transformed Data
In [77]: grouped_trans = transformed.groupby(key)

In [78]: grouped_trans.mean()
Out[78]:
2000   1.168208e-15
2001   1.454544e-15
2002   1.726657e-15
dtype: float64

In [79]: grouped_trans.std()
Out[79]:
2000   1.0
2001   1.0
2002   1.0
dtype: float64
```

We can also visually compare the original and transformed data sets.

```python
In [80]: compare = pd.DataFrame({'Original': ts, 'Transformed': transformed})

In [81]: compare.plot()
Out[81]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26ffe62d0>
```

17.5. Transformation
Another common data transform is to replace missing data with the group mean.
In [83]: countries = np.array(['US', 'UK', 'GR', 'JP'])

In [84]: key = countries[np.random.randint(0, 4, 1000)]

In [85]: grouped = data_df.groupby(key)

Non-NA count in each group
In [86]: grouped.count()
Out[86]:
 A B C
GR 209 217 189
JP 240 255 217
UK 216 231 193
US 239 250 217

In [87]: f = lambda x: x.fillna(x.mean())

In [88]: transformed = grouped.transform(f)

We can verify that the group means have not changed in the transformed data and that the transformed data contains no NAs.

In [89]: grouped_trans = transformed.groupby(key)

In [90]: grouped.mean() # original group means
Out[90]:
 A B C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603

In [91]: grouped_trans.mean() # transformation did not change group means
Out[91]:
 A B C
GR -0.098371 -0.015420 0.068053
JP 0.069025 0.023100 -0.077324
UK 0.034069 -0.052580 -0.116525
US 0.058664 -0.020399 0.028603

In [92]: grouped.count() # original has some missing data points
Out[92]:
 A B C
GR 209 217 189
JP 240 255 217
UK 216 231 193
US 239 250 217

In [93]: grouped_trans.count() # counts after transformation
Out[93]:
 A B C
GR 228 228 228
JP 267 267 267
UK 247 247 247
US 258 258 258

In [94]: grouped_trans.size() # Verify non-NA count equals group size
Out[94]:
17.5. Transformation
Note: Some functions when applied to a groupby object will automatically transform the input, returning an object of the same shape as the original. Passing as_index=False will not affect these transformation methods.

For example: `fillna`, `ffill`, `bfill`, `shift`.

```
In [95]: grouped.ffill()
Out[95]:
   A         B         C
0  1.539708 -1.166480  0.533026
1  1.302092 -0.505754  0.533026
2 -0.371983  1.104803 -0.651520
3 -1.309622  1.118697 -1.161657
4 -1.924296  0.396437  0.812436
5  0.815643  0.367816 -0.469478
6 -0.030651  1.376106 -0.645129
... ... ... ...
993 0.012359  0.554602 -1.976159
994 0.042312 -1.628835  1.013822
995 0.093110  0.683847 -0.774753
996 0.185043  1.438572 -0.774753
997 0.394469  0.642343  0.011374
998 0.174126  1.857148 -0.774753
999 0.234564  0.517098  0.393534
[1000 rows x 3 columns]
```

New syntax to window and resample operations

New in version 0.18.1.

Working with the resample, expanding or rolling operations on the groupby level used to require the application of helper functions. However, now it is possible to use `resample()`, `expanding()` and `rolling()` as methods on groupbys.

The example below will apply the `rolling()` method on the samples of the column B based on the groups of column A.

```
                           'B': np.arange(20)})

In [97]: df_re
Out[97]:
   A  B
0  1  0
1  1  1
2  1  2
3  1  3
4  1  4
```
The expanding() method will accumulate a given operation (sum() in the example) for all the members of each particular group.

In [99]: df_re.groupby('A').expanding().sum()
Out[99]:
 A B
--- ---
 1 0.0 1.0
 1 2.0 2.0
 2 3.0 3.0
 3 4.0 6.0
 4 5.0 10.0
 5 6.0 15.0
 6 7.0 21.0

13 11.0 46.0
14 12.5 60.0
15 13.5 75.0
16 14.5 91.0
17 15.5 108.0
18 16.5 126.0
19 17.5 145.0

[20 rows x 2 columns]
Suppose you want to use the `resample()` method to get a daily frequency in each group of your dataframe and wish to complete the missing values with the `ffill()` method.

```
In [100]: df_re = pd.DataFrame({'date': pd.date_range(start='2016-01-01', periods=4, freq='W'), 'group': [1, 1, 2, 2], 'val': [5, 6, 7, 8]})
   .set_index('date')

In [101]: df_re
Out[101]:
    group  val
group date
1  2016-01-03  1  5
   2016-01-10  1  6
   2016-01-17  2  7
   2016-01-24  2  8

In [102]: df_re.groupby('group').resample('1D').ffill()
Out[102]:
    group  val
   group date
1  2016-01-03  1  5
   2016-01-04  1  5
   2016-01-05  1  5
   2016-01-06  1  5
   2016-01-07  1  5
   2016-01-08  1  5
   2016-01-09  1  5
   ...        ... ...
2  2016-01-18  2  7
   2016-01-19  2  7
   2016-01-20  2  7
   2016-01-21  2  7
   2016-01-22  2  7
   2016-01-23  2  7
   2016-01-24  2  8
[16 rows x 2 columns]
```

Filtration

New in version 0.12.

The `filter` method returns a subset of the original object. Suppose we want to take only elements that belong to groups with a group sum greater than 2.

```
In [103]: sf = pd.Series([1, 1, 2, 3, 3, 3])

In [104]: sf.groupby(sf).filter(lambda x: x.sum() > 2)
Out[104]:
3    3
4    3
5    3
dtype: int64
The argument of `filter` must be a function that, applied to the group as a whole, returns `True` or `False`.

Another useful operation is filtering out elements that belong to groups with only a couple members.

```python
In [105]: dff = pd.DataFrame({'A': np.arange(8), 'B': list('aabbbbcc'))
In [106]: dff.groupby('B').filter(lambda x: len(x) > 2)
Out[106]:
 A B
 0 0 a
 1 1 a
 2 2 b
 3 3 b
 4 4 b
 5 5 b
```

Alternatively, instead of dropping the offending groups, we can return a like-indexed objects where the groups that do not pass the filter are filled with NaNs.

```python
In [107]: dff.groupby('B').filter(lambda x: len(x) > 2, dropna=False)
Out[107]:
 A B
 0 NaN NaN
 1 NaN NaN
 2 2.0 b
 3 3.0 b
 4 4.0 b
 5 5.0 b
 6 NaN NaN
 7 NaN NaN
```

For DataFrames with multiple columns, filters should explicitly specify a column as the filter criterion.

```python
In [108]: dff['C'] = np.arange(8)
In [109]: dff.groupby('B').filter(lambda x: len(x['C']) > 2)
Out[109]:
 A B C
 0 0 a 0
 1 1 a 1
 2 2 b 2
 3 3 b 3
 4 4 b 4
 5 5 b 5
```

**Note:** Some functions when applied to a groupby object will act as a `filter` on the input, returning a reduced shape of the original (and potentially eliminating groups), but with the index unchanged. Passing `as_index=False` will not affect these transformation methods.

For example: `head`, `tail`.

```python
In [110]: dff.groupby('B').head(2)
Out[110]:
 A B C
 0 0.0 a 0
 1 1.0 a 1
 2 2.0 b 2
 3 3.0 b 3
 4 4.0 b 4
```
Dispatching to instance methods

When doing an aggregation or transformation, you might just want to call an instance method on each data group. This is pretty easy to do by passing lambda functions:

```
In [111]: grouped = df.groupby('A')
In [112]: grouped.agg(lambda x: x.std())
```

```
Out[112]:
 C D
 A
bar 0.301765 1.490982
foo 0.966450 0.645875
```

But, it’s rather verbose and can be untidy if you need to pass additional arguments. Using a bit of metaprogramming cleverness, GroupBy now has the ability to “dispatch” method calls to the groups:

```
In [113]: grouped.std()
```

```
Out[113]:
 C D
 A
bar 0.301765 1.490982
foo 0.966450 0.645875
```

What is actually happening here is that a function wrapper is being generated. When invoked, it takes any passed arguments and invokes the function with any arguments on each group (in the above example, the `std` function). The results are then combined together much in the style of `agg` and `transform` (it actually uses `apply` to infer the gluing, documented next). This enables some operations to be carried out rather succinctly:

```
In [114]: tsdf = pd.DataFrame(np.random.randn(1000, 3),
 : index=pd.date_range('1/1/2000', periods=1000),
 : columns=['A', 'B', 'C'])
 ...

In [115]: tsdf.ix[::2] = np.nan

In [116]: grouped = tsdf.groupby(lambda x: x.year)

In [117]: grouped.fillna(method='pad')
```

```
Out[117]:
 A B C
 2000-01-01 NaN NaN NaN
 2000-01-02 -0.353501 -0.080957 -0.876864
 2000-01-03 -0.353501 -0.080957 -0.876864
 2000-01-04 0.050976 0.044273 -0.559849
 2000-01-05 0.050976 0.044273 -0.559849
 2000-01-06 0.030091 0.186460 -0.680149
 2000-01-07 0.030091 0.186460 -0.680149

 2002-09-20 2.310215 0.157482 -0.064476
 2002-09-21 2.310215 0.157482 -0.064476
 2002-09-22 0.005011 0.053897 -1.026922
 2002-09-23 0.005011 0.053897 -1.026922
 2002-09-24 -0.456542 -1.849051 1.559856
 2002-09-25 -0.456542 -1.849051 1.559856
 2002-09-26 1.123162 0.354660 1.128135
```
In this example, we chopped the collection of time series into yearly chunks then independently called `fillna` on the groups.

New in version 0.14.1.

The `nlargest` and `nsmallest` methods work on Series-style groupbys:

```python
In [118]: s = pd.Series([9, 8, 7, 5, 19, 1, 4.2, 3.3])
In [119]: g = pd.Series(list('abababab'))
In [120]: gb = s.groupby(g)
In [121]: gb.nlargest(3)
Out[121]:
 a 4 19.0
 0 9.0
 2 7.0
 b 1 8.0
 3 5.0
 7 3.3
dtype: float64
In [122]: gb.nsmallest(3)
Out[122]:
 a 6 4.2
 2 7.0
 0 9.0
 b 5 1.0
 7 3.3
 3 5.0
dtype: float64
```

**Flexible apply**

Some operations on the grouped data might not fit into either the aggregate or transform categories. Or, you may simply want GroupBy to infer how to combine the results. For these, use the `apply` function, which can be substituted for both `aggregate` and `transform` in many standard use cases. However, `apply` can handle some exceptional use cases, for example:

```python
In [123]: df
Out[123]:
 A B C D
0 foo one -0.919854 -1.131345
1 bar one -0.042379 -0.089329
2 foo two 1.247642 0.337863
3 bar three -0.009920 -0.945867
4 foo two 0.290213 -0.932132
5 bar two 0.495767 1.956030
6 foo one 0.362949 0.017587
7 foo three 1.548106 -0.016692
In [124]: grouped = df.groupby('A')
```

17.8. Flexible apply
In [125]: grouped['C'].apply(lambda x: x.describe())
Out[125]:
A
bar  count 3.000000
     mean 0.147823
     std 0.301765
     min -0.042379
     25% -0.026149
     50% -0.009920
     75% 0.242924
...  ...
foo  mean 0.505811
     std 0.966450
     min -0.919854
     25% 0.290213
     50% 0.362949
     75% 1.247642
     max 1.548106
Name: C, dtype: float64

The dimension of the returned result can also change:

In [126]: grouped = df.groupby('A')['C']

In [127]: def f(group):
   ....:     return pd.DataFrame({'original': group,
   ....:                               'demeaned': group - group.mean()})
   ....:

In [128]: grouped.apply(f)
Out[128]:
demeaned    original
0  -1.425665  -0.919854
1  -0.190202  -0.042379
2   0.741831   1.247642
3  -0.157743  -0.009920
4  -0.215598   0.290213
5   0.347944   0.495767
6  -0.142862   0.362949
7   1.042295   1.548106

apply on a Series can operate on a returned value from the applied function, that is itself a series, and possibly upcast the result to a DataFrame

In [129]: def f(x):
   ....:     return pd.Series([ x, x**2 ], index = ['x', 'x^2'])
   ....:

In [130]: s
Out[130]:
0   9.0
1   8.0
2   7.0
3   5.0
4  19.0
5   1.0
6   4.2
In [131]: s.apply(f)
Out[131]:
          x  x^2
    0   9.0  81.00
    1   8.0  64.00
    2   7.0  49.00
    3   5.0  25.00
    4  19.0 361.00
    5   1.0   1.00
    6   4.2  17.64
    7   3.3  10.89

Note: apply can act as a reducer, transformer, or filter function, depending on exactly what is passed to it. So depending on the path taken, and exactly what you are grouping. Thus the grouped columns(s) may be included in the output as well as set the indices.

Warning: In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first group.

In [132]: d = pd.DataFrame({"a": ["x", "y"], "b": [1, 2]})

In [133]: def identity(df):
......:     print df
......:     return df
......:

In [134]: d.groupby("a").apply(identity)
   
   a  b
   0  x  1
   0  x  1
   1  y  2

Out[134]:
   a  b
   0  x  1
   1  y  2

Other useful features

Automatic exclusion of “nuisance” columns

Again consider the example DataFrame we’ve been looking at:

In [135]: df
Out[135]:
     A  B  C  D
    --- --- --- ---
      0  7  3.3
dtype: float64

17.9. Other useful features
Suppose we wish to compute the standard deviation grouped by the A column. There is a slight problem, namely that we don’t care about the data in column B. We refer to this as a “nuisance” column. If the passed aggregation function can’t be applied to some columns, the troublesome columns will be (silently) dropped. Thus, this does not pose any problems:

In [136]: df.groupby('A').std()
Out[136]:
   C   D
A   
bar  0.301765  1.490982
foo  0.966450  0.645875

NA and NaT group handling

If there are any NaN or NaT values in the grouping key, these will be automatically excluded. So there will never be an “NA group” or “NaT group”. This was not the case in older versions of pandas, but users were generally discarding the NA group anyway (and supporting it was an implementation headache).

Grouping with ordered factors

Categorical variables represented as instance of pandas's Categorical class can be used as group keys. If so, the order of the levels will be preserved:

In [137]: data = pd.Series(np.random.randn(100))
In [138]: factor = pd.qcut(data, [0, .25, .5, .75, 1.])
In [139]: data.groupby(factor).mean()
Out[139]:
[(-2.617, -0.684]   -1.331461
  (-0.684, -0.0232]  -0.272816
  (-0.0232, 0.541]    0.263607
  (0.541, 2.369]      1.166038
dtype: float64

grouping with a Grouper specification

You may need to specify a bit more data to properly group. You can use the pd.Grouper to provide this local control.

In [140]: import datetime
In [141]: df = pd.DataFrame({
    ....:     'Branch' : 'A A A A A A A B'.split(),
    ....: })
Groupby a specific column with the desired frequency. This is like resampling.

```
In [143]: df.groupby([pd.Grouper(freq='1M',key='Date'),'Buyer']).sum()
Out[143]:

<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-01-31</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2013-10-31</td>
<td>Carl</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>9</td>
</tr>
<tr>
<td>2013-12-31</td>
<td>Carl</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>9</td>
</tr>
</tbody>
</table>
```

You have an ambiguous specification in that you have a named index and a column that could be potential groupers.

```
In [144]: df = df.set_index('Date')
In [145]: df['Date'] = df.index + pd.offsets.MonthEnd(2)
In [146]: df.groupby([pd.Grouper(freq='6M',key='Date'),'Buyer']).sum()
Out[146]:

<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-02-28</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2014-02-28</td>
<td>Carl</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>18</td>
</tr>
</tbody>
</table>
```

```
In [147]: df.groupby([pd.Grouper(freq='6M',level='Date'),'Buyer']).sum()
Out[147]:

<table>
<thead>
<tr>
<th>Date</th>
<th>Buyer</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-02-28</td>
<td>Carl</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mark</td>
<td>3</td>
</tr>
<tr>
<td>2014-02-28</td>
<td>Carl</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Joe</td>
<td>18</td>
</tr>
</tbody>
</table>
```
Taking the first rows of each group

Just like for a DataFrame or Series you can call head and tail on a groupby:

```python
In [148]: df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=['A', 'B'])
In [149]: df
Out[149]:
 A B
0 1 2
1 1 4
2 5 6
In [150]: g = df.groupby('A')
In [151]: g.head(1)
Out[151]:
 A B
0 1 2
2 5 6
In [152]: g.tail(1)
Out[152]:
 A B
1 1 4
2 5 6
```

This shows the first or last n rows from each group.

**Warning:** Before 0.14.0 this was implemented with a fall-through apply, so the result would incorrectly respect the as_index flag:

```python
>>> g.head(1)
 # was equivalent to g.apply(lambda x: x.head(1))
 A B
A
1 0 1 2
5 2 5 6
```

Taking the nth row of each group

To select from a DataFrame or Series the nth item, use the nth method. This is a reduction method, and will return a single row (or no row) per group if you pass an int for n:

```python
In [153]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
In [154]: g = df.groupby('A')
```

---

674 Chapter 17. Group By: split-apply-combine
If you want to select the nth not-null item, use the \texttt{dropna} kwarg. For a DataFrame this should be either \texttt{'any'} or \texttt{'all'} just like you would pass to \texttt{dropna}, for a Series this just needs to be truthy.

\begin{Verbatim}
# nth(0) is the same as g.first()
In [158]: g.nth(0, dropna='any')
Out[158]:
   B
  A
  1  4.0
  5  6.0

# nth(-1) is the same as g.last()  
In [160]: g.nth(-1, dropna='any')  # NaNs denote group exhausted when using dropna
Out[160]:
   B
  A
  1  4.0
  5  6.0

In [161]: g.last()
Out[161]:
   B
  A
  1  4.0
  5  6.0

In [162]: g.B.nth(0, dropna=True)
Out[162]:
   A
  1  4.0
  5  6.0
\end{Verbatim}
As with other methods, passing `as_index=False`, will achieve a filtration, which returns the grouped row.

```
In [163]: df = pd.DataFrame([[1, np.nan], [1, 4], [5, 6]], columns=['A', 'B'])
In [164]: g = df.groupby('A', as_index=False)
In [165]: g.nth(0)
Out[165]:
 A B
0 1 NaN
2 5 6.0
In [166]: g.nth(-1)
Out[166]:
 A B
1 1 4.0
2 5 6.0
```

You can also select multiple rows from each group by specifying multiple `nth` values as a list of ints.

```
In [167]: business_dates = pd.date_range(start='4/1/2014', end='6/30/2014', freq='B')
In [168]: df = pd.DataFrame(1, index=business_dates, columns=['a', 'b'])
get the first, 4th, and last date index for each month
In [169]: df.groupby((df.index.year, df.index.month)).nth([0, 3, -1])
Out[169]:
 a b
2014 4 1 1
 4 1 1
 5 1 1
 5 1 1
 6 1 1
 6 1 1
 6 1 1
```

### Enumerate group items

New in version 0.13.0.

To see the order in which each row appears within its group, use the `cumcount` method:

```
In [170]: df = pd.DataFrame(list('aaabba'), columns=['A'])
In [171]: df
Out[171]:
 A
0 a
1 a
2 a
3 b
4 b
5 a
```
```python
In [172]: df.groupby('A').cumcount()
Out[172]:
0 0
1 1
2 2
3 0
4 1
5 3
dtype: int64

In [173]: df.groupby('A').cumcount(ascending=False) # kwarg only
Out[173]:
0 3
1 2
2 1
3 1
4 0
5 0
dtype: int64
```

### Plotting

Groupby also works with some plotting methods. For example, suppose we suspect that some features in a DataFrame may differ by group, in this case, the values in column 1 where the group is “B” are 3 higher on average.

```python
In [174]: np.random.seed(1234)
In [175]: df = pd.DataFrame(np.random.randn(50, 2))
In [176]: df['g'] = np.random.choice(['A', 'B'], size=50)
In [177]: df.loc[df['g'] == 'B', 1] += 3

We can easily visualize this with a boxplot:
```
```python
In [178]: df.groupby('g').boxplot()
Out[178]:
A Axes(0.1,0.15;0.363636x0.75)
B Axes(0.536364,0.15;0.363636x0.75)
dtype: object
```
The result of calling `boxplot` is a dictionary whose keys are the values of our grouping column `g` ("A" and "B"). The values of the resulting dictionary can be controlled by the `return_type` keyword of `boxplot`. See the visualization documentation for more.

**Warning:** For historical reasons, `df.groupby("g").boxplot()` is not equivalent to `df.boxplot(by="g")`. See here for an explanation.

## Examples

### Regrouping by factor

Regroup columns of a DataFrame according to their sum, and sum the aggregated ones.

```python
In [179]: df = pd.DataFrame({'a':[1,0,0], 'b':[0,1,0], 'c':[1,0,0], 'd':[2,3,4]})

In [180]: df
Out[180]:
 a b c d
0 1 0 1 2
1 0 1 0 3
2 0 0 0 4
```
In [181]: df.groupby(df.sum(), axis=1).sum()
Out[181]:
   1  9
  0  2  2
  1  1  3
  2  0  4

Groupby by Indexer to ‘resample’ data

Resampling produces new hypothetical samples (resamples) from already existing observed data or from a model that generates data. These new samples are similar to the pre-existing samples.

In order to resample to work on indices that are non-datetime-like, the following procedure can be utilized.

In the following examples, \texttt{df.index // 5} returns a binary array which is used to determine what gets selected for the groupby operation.

\textbf{Note:} The below example shows how we can downsample by consolidation of samples into fewer samples. Here by using \texttt{df.index // 5}, we are aggregating the samples in bins. By applying \texttt{std()} function, we aggregate the information contained in many samples into a small subset of values which is their standard deviation thereby reducing the number of samples.

In [182]: df = pd.DataFrame(np.random.randn(10,2))

In [183]: df
Out[183]:
   0    1
0 -0.832423  0.114059
1  1.218203 -0.890593
2  0.165445 -1.127470
3 -1.192185  0.818644
4  0.237185 -0.336384
5  0.694727  0.750161
6  0.247055  0.645433
7 -1.366120  0.313160
8  0.205207  0.089987
9  0.186062  1.314182

In [184]: df.index // 5
Out[184]: Int64Index([0, 0, 0, 0, 0, 1, 1, 1, 1, 1], dtype='int64')

In [185]: df.groupby(df.index // 5).std()
Out[185]:
   0    1
0  0.955154  0.783648
1  0.788428  0.467576

Returning a Series to propagate names

Group DataFrame columns, compute a set of metrics and return a named Series. The Series name is used as the name for the column index. This is especially useful in conjunction with reshaping operations such as stacking in which the column index name will be used as the name of the inserted column:
In [186]: df = pd.DataFrame({
......:     'a': [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2],
......:     'b': [0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1],
......:     'c': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
......:     'd': [0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1],
......: })

In [187]: def compute_metrics(x):
......:     result = {'b_sum': x['b'].sum(), 'c_mean': x['c'].mean()}
......:     return pd.Series(result, name='metrics')

In [188]: result = df.groupby('a').apply(compute_metrics)

In [189]: result
Out[189]:
metrics  b_sum  c_mean
a
0   2.0   0.5
1   2.0   0.5
2   2.0   0.5

In [190]: result.stack()
Out[190]:
a   metrics
0  b_sum  2.0
    c_mean  0.5
1  b_sum  2.0
    c_mean  0.5
2  b_sum  2.0
    c_mean  0.5
dtype: float64
pandas provides various facilities for easily combining together Series, DataFrame, and Panel objects with various kinds of set logic for the indexes and relational algebra functionality in the case of join / merge-type operations.

Concatenating objects

The **concat** function (in the main pandas namespace) does all of the heavy lifting of performing concatenation operations along an axis while performing optional set logic (union or intersection) of the indexes (if any) on the other axes. Note that I say “if any” because there is only a single possible axis of concatenation for Series.

Before diving into all of the details of **concat** and what it can do, here is a simple example:

```python
In [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
 'B': ['B0', 'B1', 'B2', 'B3'],
 'C': ['C0', 'C1', 'C2', 'C3'],
 'D': ['D0', 'D1', 'D2', 'D3'],
 index=[0, 1, 2, 3])

In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
 'B': ['B4', 'B5', 'B6', 'B7'],
 'C': ['C4', 'C5', 'C6', 'C7'],
 'D': ['D4', 'D5', 'D6', 'D7'],
 index=[4, 5, 6, 7])

In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
 'B': ['B8', 'B9', 'B10', 'B11'],
 'C': ['C8', 'C9', 'C10', 'C11'],
 'D': ['D8', 'D9', 'D10', 'D11'],
 index=[8, 9, 10, 11])

In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)
```
Like its sibling function on ndarrays, `numpy.concatenate`, `pandas.concat` takes a list or dict of homogeneously-typed objects and concatenates them with some configurable handling of “what to do with the other axes”:

```
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
```

- **objs**: a sequence or mapping of Series, DataFrame, or Panel objects. If a dict is passed, the sorted keys will be used as the keys argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised.
- **axis**: {0, 1, ...}, default 0. The axis to concatenate along.
- **join**: {'inner', 'outer'}, default ‘outer’. How to handle indexes on other axis(es). Outer for union and inner for intersection.
- **ignore_index**: boolean, default False. If True, do not use the index values on the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join.
- **join_axes**: list of Index objects. Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic.
- **keys**: sequence, default None. Construct hierarchical index using the passed keys as the outermost level. If multiple levels passed, should contain tuples.
- **levels**: list of sequences, default None. Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys.
- **names**: list, default None. Names for the levels in the resulting hierarchical index.
- **verify_integrity**: boolean, default False. Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation.
- **copy**: boolean, default True. If False, do not copy data unnecessarily.

Without a little bit of context and example many of these arguments don’t make much sense. Let’s take the above example. Suppose we wanted to associate specific keys with each of the pieces of the chopped up DataFrame. We can do this using the `keys` argument:

```python
In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])
```

As you can see (if you’ve read the rest of the documentation), the resulting object’s index has a hierarchical index. This means that we can now do stuff like select out each chunk by key:

```python
In [7]: result.ix['y']
Out[7]:
 A B C D
4 A4 B4 C4 D4
5 A5 B5 C5 D5
6 A6 B6 C6 D6
7 A7 B7 C7 D7
```

It’s not a stretch to see how this can be very useful. More detail on this functionality below.

**Note:** It is worth noting however, that `concat` (and therefore `append`) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension.

```python
frames = [process_your_file(f) for f in files]
result = pd.concat(frames)
```
Set logic on the other axes

When gluing together multiple DataFrames (or Panels or...), for example, you have a choice of how to handle the other axes (other than the one being concatenated). This can be done in three ways:

- Take the (sorted) union of them all, `join='outer'`. This is the default option as it results in zero information loss.
- Take the intersection, `join='inner'`.
- Use a specific index (in the case of DataFrame) or indexes (in the case of Panel or future higher dimensional objects), i.e. the `join_axes` argument.

Here is an example of each of these methods. First, the default `join='outer'` behavior:

```python
In [8]: df4 = pd.DataFrame({
 'B': ['B2', 'B3', 'B6', 'B7'],
 'D': ['D2', 'D3', 'D6', 'D7'],
 'F': ['F2', 'F3', 'F6', 'F7'],
 'index': [2, 3, 6, 7]
})

In [9]: result = pd.concat([df1, df4], axis=1)
```

A	B	C	D		A	B	C	D	E	D	F	
----	----	----	----		----	----	----	----	----	----	----	
0	A0	B0	C0	D0	1	A1	B1	C1	D1	E2	D2	F2
1	A1	B1	C1	D1	2	A2	B2	C2	D2	E3	D3	F3
2	A2	B2	C2	D2	3	A3	B3	C3	D3	E6	D6	F6
3	A3	B3	C3	D3	4	NaN	NaN	NaN	NaN	E7	D7	F7

Note that the row indexes have been unioned and sorted. Here is the same thing with `join='inner'`:

```python
In [10]: result = pd.concat([df1, df4], axis=1, join='inner')
```

A	B	C	D		A	B	C	D	E	D	F	
----	----	----	----		----	----	----	----	----	----	----	
0	A0	B0	C0	D0	1	A1	B1	C1	D1	E2	D2	F2
1	A1	B1	C1	D1	2	A2	B2	C2	D2	E3	D3	F3
2	A2	B2	C2	D2	3	A3	B3	C3	D3	E6	D6	F6
3	A3	B3	C3	D3	4	NaN	NaN	NaN	NaN	E7	D7	F7

Lastly, suppose we just wanted to reuse the exact index from the original DataFrame:
In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])

### Concatenating using append

A useful shortcut to *concat* are the *append* instance methods on Series and DataFrame. These methods actually predated *concat*. They concatenate along *axis=0*, namely the index:

In [12]: result = df1.append(df2)

In the case of DataFrame, the indexes must be disjoint but the columns do not need to be:

In [13]: result = df1.append(df4)
append may take multiple objects to concatenate:

```
In [14]: result = df1.append([df2, df3])
```

Note: Unlike list.append method, which appends to the original list and returns nothing, append here does not modify df1 and returns its copy with df2 appended.
Ignoring indexes on the concatenation axis

For DataFrames which don’t have a meaningful index, you may wish to append them and ignore the fact that they may have overlapping indexes:

To do this, use the ignore_index argument:

```
In [15]: result = pd.concat([df1, df4], ignore_index=True)
```

This is also a valid argument to DataFrame.append:

```
In [16]: result = df1.append(df4, ignore_index=True)
```
Concatenating with mixed ndims

You can concatenate a mix of Series and DataFrames. The Series will be transformed to DataFrames with the column name as the name of the Series.

```python
In [17]: s1 = pd.Series(['X0', 'X1', 'X2', 'X3'], name='X')

In [18]: result = pd.concat([df1, s1], axis=1)
```

If unnamed Series are passed they will be numbered consecutively.

```python
In [19]: s2 = pd.Series(['_0', '_1', '_2', '_3'])

In [20]: result = pd.concat([df1, s2, s2, s2], axis=1)
```

Passing `ignore_index=True` will drop all name references.

```python
In [21]: result = pd.concat([df1, s1], axis=1, ignore_index=True)
```
More concatenating with group keys

A fairly common use of the `keys` argument is to override the column names when creating a new DataFrame based on existing Series. Notice how the default behaviour consists on letting the resulting DataFrame inherits the parent Series’ name, when these existed.

```
In [22]: s3 = pd.Series([0, 1, 2, 3], name='foo')
In [23]: s4 = pd.Series([0, 1, 2, 3])
In [24]: s5 = pd.Series([0, 1, 4, 5])

In [25]: pd.concat([s3, s4, s5], axis=1)
```

```
Out[25]:
 foo 0 1
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5
```

Through the `keys` argument we can override the existing column names.

```
In [26]: pd.concat([s3, s4, s5], axis=1, keys=['red','blue','yellow'])
```

```
Out[26]:
 red blue yellow
0 0 0 0
1 1 1 1
2 2 2 4
3 3 3 5
```

Let’s consider now a variation on the very first example presented:

```
In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])
```

You can also pass a dict to `concat` in which case the dict keys will be used for the `keys` argument (unless other keys are specified):

```python
In [28]: pieces = {'x': df1, 'y': df2, 'z': df3}
In [29]: result = pd.concat(pieces)
```
In [30]: result = pd.concat(pieces, keys=['z', 'y'])

The MultiIndex created has levels that are constructed from the passed keys and the index of the DataFrame pieces:
In [31]: result.index.levels
Out[31]: FrozenList([['z', 'y'], [4, 5, 6, 7, 8, 9, 10, 11]])

If you wish to specify other levels (as will occasionally be the case), you can do so using the levels argument:

In [32]: result = pd.concat(pieces, keys=['x', 'y', 'z'],
....:                  levels=[['z', 'y', 'x', 'w']],
....:                  names=['group_key'])

In [33]: result.index.levels
Out[33]: FrozenList([['z', 'y', 'x', 'w'], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]])

Yes, this is fairly esoteric, but is actually necessary for implementing things like GroupBy where the order of a
categorical variable is meaningful.

Appending rows to a DataFrame

While not especially efficient (since a new object must be created), you can append a single row to a DataFrame by
passing a Series or dict to append, which returns a new DataFrame as above.

In [34]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])
In [35]: result = df1.append(s2, ignore_index=True)
You should use `ignore_index` with this method to instruct DataFrame to discard its index. If you wish to preserve the index, you should construct an appropriately-indexed DataFrame and append or concatenate those objects.

You can also pass a list of dicts or Series:

```python
In [36]: dicts = [{"A": 1, "B": 2, "C": 3, "X": 4},
 ...
 {"A": 5, "B": 6, "C": 7, "Y": 8}]
In [37]: result = df1.append(dicts, ignore_index=True)
```

**Database-style DataFrame joining/merging**

pandas has full-featured, high performance in-memory join operations idiomatically very similar to relational databases like SQL. These methods perform significantly better (in some cases well over an order of magnitude better) than other open source implementations (like `base::merge.data.frame` in R). The reason for this is careful algorithmic design and internal layout of the data in DataFrame.

See the cookbook for some advanced strategies.
Users who are familiar with SQL but new to pandas might be interested in a comparison with SQL.

pandas provides a single function, `merge`, as the entry point for all standard database join operations between DataFrame objects:

```python
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
 left_index=False, right_index=False, sort=True,
 suffixes=('_x', '_y'), copy=True, indicator=False)
```

- **left**: A DataFrame object
- **right**: Another DataFrame object
- **on**: Columns (names) to join on. Must be found in both the left and right DataFrame objects. If not passed and `left_index` and `right_index` are `False`, the intersection of the columns in the DataFrames will be inferred to be the join keys
- **left_on**: Columns from the left DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- **right_on**: Columns from the right DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame
- **left_index**: If True, use the index (row labels) from the left DataFrame as its join key(s). In the case of a DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the right DataFrame
- **right_index**: Same usage as `left_index` for the right DataFrame
- **how**: One of 'left', 'right', 'outer', 'inner'. Defaults to 'inner'. See below for more detailed description of each method
- **sort**: Sort the result DataFrame by the join keys in lexicographical order. Defaults to `True`, setting to `False` will improve performance substantially in many cases
- **suffixes**: A tuple of string suffixes to apply to overlapping columns. Defaults to ('_x', '_y').
- **copy**: Always copy data (default `True`) from the passed DataFrame objects, even when reindexing is not necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where copying can be avoided are somewhat pathological but this option is provided nonetheless.
- **indicator**: Add a column to the output DataFrame called `_merge` with information on the source of each row. `_merge` is Categorical-type and takes on a value of `left_only` for observations whose merge key only appears in 'left' DataFrame, `right_only` for observations whose merge key only appears in 'right' DataFrame, and `both` if the observation’s merge key is found in both.

New in version 0.17.0.

The return type will be the same as `left`. If `left` is a DataFrame and `right` is a subclass of DataFrame, the return type will still be DataFrame.

`merge` is a function in the pandas namespace, and it is also available as a DataFrame instance method, with the calling DataFrame being implicitly considered the left object in the join.

The related `DataFrame.join` method, uses `merge` internally for the index-on-index (by default) and column(s)-on-index join. If you are joining on index only, you may wish to use `DataFrame.join` to save yourself some typing.

**Brief primer on merge methods (relational algebra)**

Experienced users of relational databases like SQL will be familiar with the terminology used to describe join operations between two SQL-table like structures (DataFrame objects). There are several cases to consider which are very
important to understand:

- **one-to-one** joins: for example when joining two DataFrame objects on their indexes (which must contain unique values)
- **many-to-one** joins: for example when joining an index (unique) to one or more columns in a DataFrame
- **many-to-many** joins: joining columns on columns.

**Note:** When joining columns on columns (potentially a many-to-many join), any indexes on the passed DataFrame objects will be discarded.

It is worth spending some time understanding the result of the **many-to-many** join case. In SQL / standard relational algebra, if a key combination appears more than once in both tables, the resulting table will have the **Cartesian product** of the associated data. Here is a very basic example with one unique key combination:

```python
In [38]: left = pd.DataFrame({
 ...: 'key': ['K0', 'K1', 'K2', 'K3'],
 ...: 'A': ['A0', 'A1', 'A2', 'A3'],
 ...: 'B': ['B0', 'B1', 'B2', 'B3']})

In [39]: right = pd.DataFrame({
 ...: 'key': ['K0', 'K1', 'K2', 'K3'],
 ...: 'C': ['C0', 'C1', 'C2', 'C3'],
 ...: 'D': ['D0', 'D1', 'D2', 'D3']})

In [40]: result = pd.merge(left, right, on='key')
```

Here is a more complicated example with multiple join keys:

```python
In [41]: left = pd.DataFrame({
 ...: 'key1': ['K0', 'K0', 'K1', 'K2'],
 ...: 'key2': ['K0', 'K1', 'K0', 'K1'],
 ...: 'A': ['A0', 'A1', 'A2', 'A3'],
 ...: 'B': ['B0', 'B1', 'B2', 'B3']})

In [42]: right = pd.DataFrame({
 ...: 'key1': ['K0', 'K1', 'K1', 'K2'],
 ...: 'key2': ['K0', 'K0', 'K0', 'K0'],
 ...: 'C': ['C0', 'C1', 'C2', 'C3'],
 ...: 'D': ['D0', 'D1', 'D2', 'D3']})

In [43]: result = pd.merge(left, right, on=['key1', 'key2'])
```
The `how` argument to `merge` specifies how to determine which keys are to be included in the resulting table. If a key combination does not appear in either the left or right tables, the values in the joined table will be `NA`. Here is a summary of the `how` options and their SQL equivalent names:

<table>
<thead>
<tr>
<th>Merge method</th>
<th>SQL Join Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>left</td>
<td>LEFT OUTER JOIN</td>
<td>Use keys from left frame only</td>
</tr>
<tr>
<td>right</td>
<td>RIGHT OUTER JOIN</td>
<td>Use keys from right frame only</td>
</tr>
<tr>
<td>outer</td>
<td>FULL OUTER JOIN</td>
<td>Use union of keys from both frames</td>
</tr>
<tr>
<td>inner</td>
<td>INNER JOIN</td>
<td>Use intersection of keys from both frames</td>
</tr>
</tbody>
</table>

In [44]: `result = pd.merge(left, right, how='left', on=['key1', 'key2'])`

In [45]: `result = pd.merge(left, right, how='right', on=['key1', 'key2'])`
The merge indicator

New in version 0.17.0.

merge now accepts the argument indicator. If True, a Categorical-type column called _merge will be added to the output object that takes on values:

<table>
<thead>
<tr>
<th>Observation</th>
<th>Origin</th>
<th>_merge value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge key only in 'left' frame</td>
<td>left_only</td>
<td></td>
</tr>
<tr>
<td>Merge key only in 'right' frame</td>
<td>right_only</td>
<td></td>
</tr>
<tr>
<td>Merge key in both frames</td>
<td>both</td>
<td></td>
</tr>
</tbody>
</table>

In [48]: df1 = pd.DataFrame({'col': [0, 1], 'col_left':['a', 'b']})

In [49]: df2 = pd.DataFrame({'col': [1, 2, 2],'col_right':[2, 2, 2]})

In [50]: pd.merge(df1, df2, on='col', how='outer', indicator=True)
Out[50]:
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th>_merge</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>NaN</td>
<td>left_only</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>b</td>
<td>2.0</td>
<td>both</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>NaN</td>
<td>2.0</td>
<td>right_only</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>NaN</td>
<td>2.0</td>
<td>right_only</td>
</tr>
</tbody>
</table>
The `indicator` argument will also accept string arguments, in which case the indicator function will use the value of the passed string as the name for the indicator column.

```python
In [51]: pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
Out[51]:
 col1 col_left col_right indicator_column
0 0 a NaN left_only
1 1 b 2.0 both
2 NaN NaN 2.0 right_only
3 NaN NaN 2.0 right_only
```

### Joining on index

`DataFrame.join` is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame. Here is a very basic example:

```python
In [52]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
 'B': ['B0', 'B1', 'B2'],
 index=['K0', 'K1', 'K2'])

In [53]: right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
 'D': ['D0', 'D2', 'D3'],
 index=['K0', 'K2', 'K3'])

In [54]: result = left.join(right)
```

```
left
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>A0</td>
</tr>
<tr>
<td>K1</td>
<td>A1</td>
</tr>
<tr>
<td>K2</td>
<td>A2</td>
</tr>
</tbody>
</table>

right
<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>C0</td>
</tr>
<tr>
<td>K2</td>
<td>C2</td>
</tr>
<tr>
<td>K3</td>
<td>C3</td>
</tr>
</tbody>
</table>

Result
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>A0</td>
<td>B0</td>
<td>C0</td>
</tr>
<tr>
<td>K1</td>
<td>A1</td>
<td>B1</td>
<td>NaN</td>
</tr>
<tr>
<td>K2</td>
<td>A2</td>
<td>B2</td>
<td>NaN</td>
</tr>
<tr>
<td>K3</td>
<td>NaN</td>
<td>NaN</td>
<td>C3</td>
</tr>
</tbody>
</table>
```

```python
In [55]: result = left.join(right, how='outer')
```

```
left
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>A0</td>
</tr>
<tr>
<td>K1</td>
<td>A1</td>
</tr>
<tr>
<td>K2</td>
<td>A2</td>
</tr>
</tbody>
</table>

right
<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>C0</td>
</tr>
<tr>
<td>K2</td>
<td>C2</td>
</tr>
<tr>
<td>K3</td>
<td>C3</td>
</tr>
</tbody>
</table>

Result
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>K0</td>
<td>A0</td>
<td>B0</td>
<td>C0</td>
</tr>
<tr>
<td>K1</td>
<td>A1</td>
<td>B1</td>
<td>NaN</td>
</tr>
<tr>
<td>K2</td>
<td>A2</td>
<td>B2</td>
<td>NaN</td>
</tr>
<tr>
<td>K3</td>
<td>NaN</td>
<td>NaN</td>
<td>C3</td>
</tr>
</tbody>
</table>
```
In [56]: result = left.join(right, how='inner')

```
<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K0</td>
<td>A0</td>
<td>C0</td>
</tr>
<tr>
<td>K1</td>
<td>A1</td>
<td>C1</td>
</tr>
<tr>
<td>K2</td>
<td>A2</td>
<td>C2</td>
</tr>
<tr>
<td>K3</td>
<td>A3</td>
<td>C3</td>
</tr>
</tbody>
</table>
```

The data alignment here is on the indexes (row labels). This same behavior can be achieved using `merge` plus additional arguments instructing it to use the indexes:

In [57]: result = pd.merge(left, right, left_index=True, right_index=True, how='outer')

```
<table>
<thead>
<tr>
<th>left</th>
<th>right</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K0</td>
<td>A0</td>
<td>C0</td>
</tr>
<tr>
<td>K1</td>
<td>A1</td>
<td>C1</td>
</tr>
<tr>
<td>K2</td>
<td>A2</td>
<td>C2</td>
</tr>
<tr>
<td>K3</td>
<td>A3</td>
<td>C3</td>
</tr>
</tbody>
</table>
```

In [58]: result = pd.merge(left, right, left_index=True, right_index=True, how='inner');

### Joining key columns on an index

`join` takes an optional on argument which may be a column or multiple column names, which specifies that the passed DataFrame is to be aligned on that column in the DataFrame. These two function calls are completely equivalent:
left.join(right, on=key_or_keys)
pd.merge(left, right, left_on=key_or_keys, right_index=True,
        how='left', sort=False)

Obviously you can choose whichever form you find more convenient. For many-to-one joins (where one of the
DataFrame’s is already indexed by the join key), using join may be more convenient. Here is a simple example:

In [59]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                         'B': ['B0', 'B1', 'B2', 'B3'],
                         'key': ['K0', 'K1', 'K0', 'K1']})

In [60]: right = pd.DataFrame({'C': ['C0', 'C1'],
                          'D': ['D0', 'D1']},
                          index=['K0', 'K1'])

In [61]: result = left.join(right, on='key')

To join on multiple keys, the passed DataFrame must have a MultiIndex:

In [63]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                         'B': ['B0', 'B1', 'B2', 'B3'],
                         'key1': ['K0', 'K0', 'K1', 'K2'],
                         'key2': ['K0', 'K1', 'K0', 'K1']})

In [62]: result = pd.merge(left, right, left_on='key', right_index=True,
                        how='left', sort=False);
   

700 Chapter 18. Merge, join, and concatenate
In [64]: index = pd.MultiIndex.from_tuples([('K0', 'K0'), ('K1', 'K0'), ('K2', 'K0')])

In [65]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=index)

Now this can be joined by passing the two key column names:

In [66]: result = left.join(right, on=['key1', 'key2'])

The default for DataFrame.join is to perform a left join (essentially a “VLOOKUP” operation, for Excel users), which uses only the keys found in the calling DataFrame. Other join types, for example inner join, can be just as easily performed:

In [67]: result = left.join(right, on=['key1', 'key2'], how='inner')

As you can see, this drops any rows where there was no match.

**Joining a single Index to a Multi-index**

New in version 0.14.0.

You can join a singly-indexed DataFrame with a level of a multi-indexed DataFrame. The level will match on the name of the index of the singly-indexed frame against a level name of the multi-indexed frame.

In [68]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']},

18.2. Database-style DataFrame joining/merging 701
In [69]: index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'), ('K2', 'Y2'), ('K2', 'Y3')], names=['key', 'Y'])

In [70]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=index)

In [71]: result = left.join(right, how='inner')

This is equivalent but less verbose and more memory efficient / faster than this.

In [72]: result = pd.merge(left.reset_index(), right.reset_index(), on=['key'], how='inner').set_index(['key', 'Y'])

Joining with two multi-indexes

This is not Implemented via join at-the-moment, however it can be done using the following.

In [73]: index = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'), ('K1', 'X2')], names=['key', 'X'])
In [74]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
                        'B': ['B0', 'B1', 'B2']},
                        index=index)

In [75]: result = pd.merge(left.reset_index(), right.reset_index(),
                        on=['key'], how='inner').set_index(['key', 'X', 'Y'])

### Overlapping value columns

The merge `suffixes` argument takes a tuple of list of strings to append to overlapping column names in the input DataFrames to disambiguate the result columns:

In [76]: left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})

In [77]: right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})

In [78]: result = pd.merge(left, right, on='k')

In [79]: result = pd.merge(left, right, on='k', suffixes=['_l', '_r'])
DataFrame.join has `lsuffix` and `rsuffix` arguments which behave similarly.

In [80]: left = left.set_index('k')
In [81]: right = right.set_index('k')
In [82]: result = left.join(right, lsuffix='_l', rsuffix='_r')

Joining multiple DataFrame or Panel objects

A list or tuple of DataFrames can also be passed to DataFrame.join to join them together on their indexes. The same is true for Panel.join.

In [83]: right2 = pd.DataFrame({'v': [7, 8, 9]}, index=['K1', 'K1', 'K2'])
In [84]: result = left.join([right, right2])
Merging together values within Series or DataFrame columns

Another fairly common situation is to have two like-indexed (or similarly indexed) Series or DataFrame objects and wanting to “patch” values in one object from values for matching indices in the other. Here is an example:

```python
In [85]: df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan], [np.nan, 7., np.nan]])
 :
In [86]: df2 = pd.DataFrame([[18.3. Timeseries friendly merging 705
```
In [89]: left = pd.DataFrame({'k': ['K0', 'K1', 'K1', 'K2'],
                           'lv': [1, 2, 3, 4],
                           's': ['a', 'b', 'c', 'd']})

In [90]: right = pd.DataFrame({'k': ['K1', 'K2', 'K4'],
                             'rv': [1, 2, 3]})

In [91]: pd.merge_ordered(left, right, fill_method='ffill', left_by='s')
Out[91]:
   k  lv s rv
0 K0 1.0 a  NaN
1 K1 1.0 a  1.0
2 K2 1.0 a  2.0
3 K4 1.0 a  3.0
4 K1 2.0 b  1.0
5 K2 2.0 b  2.0
6 K4 2.0 b  3.0
7 K1 3.0 c  1.0
8 K2 3.0 c  2.0
9 K4 3.0 c  3.0
10 K1 NaN d  NaN
11 K2 4.0 d  2.0
12 K4 4.0 d  3.0

Merging AsOf

New in version 0.19.0.

A `merge_asof()` is similar to an ordered left-join except that we match on nearest key rather than equal keys. For each row in the left DataFrame, we select the last row in the right DataFrame whose on key is less than the left’s key. Both DataFrames must be sorted by the key.

Optionally an asof merge can perform a group-wise merge. This matches the by key equally, in addition to the nearest match on the on key.

For example; we might have `trades` and `quotes` and we want to `asof` merge them.

In [92]: trades = pd.DataFrame({
                           'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.038', '20160525 13:30:00.048', '20160525 13:30:00.048', '20160525 13:30:00.048'])),
                           'ticker': ['MSFT', 'MSFT', 'GOOG', 'GOOG', 'AAPL'],
                           'price': [51.95, 51.95, 720.77, 720.92, 98.00],
                           'quantity': [75, 155, 720.77, 720.92, 98.00],
                           'columns': ['time', 'ticker', 'price', 'quantity']})

In [93]: quotes = pd.DataFrame({
                           'time': pd.to_datetime(['20160525 13:30:00.023', '20160525 13:30:00.023'])})
pandas: powerful Python data analysis toolkit, Release 0.19.2

```
In [94]: trades
Out[94]:
time ticker price quantity
0 2016-05-25 13:30:00.023 MSFT 51.95 75
1 2016-05-25 13:30:00.038 MSFT 51.95 155
2 2016-05-25 13:30:00.048 GOOG 720.77 100
3 2016-05-25 13:30:00.048 GOOG 720.92 100
4 2016-05-25 13:30:00.049 AAPL 98.00 100

In [95]: quotes
Out[95]:
time ticker bid ask
0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
7 2016-05-25 13:30:00.075 MSFT 52.01 52.03

By default we are taking the asof of the quotes.

In [96]: pd.merge_asof(trades, quotes,
 on='time',
 by='ticker',
 tolerance=pd.Timedelta('2ms'))
```

We only asof within 2ms between the quote time and the trade time.

In [97]: pd.merge_asof(trades, quotes,
                   on='time',
                   by='ticker',
                   tolerance=pd.Timedelta('2ms'))
We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. Note that though we exclude the exact matches (of the quotes), prior quotes DO propagate to that point in time.

```python
In [98]: pd.merge_asof(trades, quotes,
 : on='time',
 : by='ticker',
 : tolerance=pd.Timedelta('10ms'),
 : allow_exact_matches=False)
```

```
Out[98]:
 time ticker price quantity bid ask
0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96
1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN
2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93
3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93
4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN
```
Reshaping by pivoting DataFrame objects

Data is often stored in CSV files or databases in so-called “stacked” or “record” format:

```
In [1]: df
Out[1]:
 date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
3 2000-01-03 B -1.135632
4 2000-01-04 B 1.212112
5 2000-01-05 B -0.173215
6 2000-01-03 C 0.119209
7 2000-01-04 C -1.044236
8 2000-01-05 C -0.861849
9 2000-01-03 D -2.104569
10 2000-01-04 D -0.494929
11 2000-01-05 D 1.071804
```

For the curious here is how the above DataFrame was created:

```python
import pandas.util.testing as tm; tm.N = 3
def unpivot(frame):
 N, K = frame.shape
 data = {"value": frame.values.ravel('F'),
 "variable": np.asanyarray(frame.columns).repeat(N),
 "date": np.tile(np.asanyarray(frame.index), K)}
 return pd.DataFrame(data, columns=['date', 'variable', 'value'])
df = unpivot(tm.makeTimeDataFrame())
```

To select out everything for variable A we could do:

```
In [2]: df[df['variable'] == 'A']
Out[2]:
 date variable value
0 2000-01-03 A 0.469112
1 2000-01-04 A -0.282863
2 2000-01-05 A -1.509059
```

But suppose we wish to do time series operations with the variables. A better representation would be where the columns are the unique variables and an index of dates identifies individual observations. To reshape the data into this form, use the pivot function:
In [3]: df.pivot(index='date', columns='variable', values='value')
Out[3]:

<table>
<thead>
<tr>
<th>variable</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.469112</td>
<td>-1.135632</td>
<td>0.119209</td>
<td>-2.104569</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.282863</td>
<td>1.212112</td>
<td>-1.044236</td>
<td>-0.494929</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-1.509059</td>
<td>-0.173215</td>
<td>-0.861849</td>
<td>1.071804</td>
</tr>
</tbody>
</table>

If the \texttt{values} argument is omitted, and the input DataFrame has more than one column of values which are not used as column or index inputs to \texttt{pivot}, then the resulting “pivoted” DataFrame will have \textit{hierarchical columns} whose topmost level indicates the respective value column:

In [4]: df['value2'] = df['value'] * 2
In [5]: pivoted = df.pivot('date', 'variable')
In [6]: pivoted
Out[6]:

<table>
<thead>
<tr>
<th>value</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>value2</td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.469112</td>
<td>-1.135632</td>
<td>0.119209</td>
<td>-2.104569</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.282863</td>
<td>1.212112</td>
<td>-1.044236</td>
<td>-0.494929</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-1.509059</td>
<td>-0.173215</td>
<td>-0.861849</td>
<td>1.071804</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>value</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.938225</td>
<td>-2.271265</td>
<td>0.238417</td>
<td>-4.209138</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.565727</td>
<td>2.424224</td>
<td>-2.088472</td>
<td>-0.989859</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-3.018117</td>
<td>-0.346429</td>
<td>-1.723698</td>
<td>2.143608</td>
</tr>
</tbody>
</table>

You of course can then select subsets from the pivoted DataFrame:

In [7]: pivoted['value2']
Out[7]:

<table>
<thead>
<tr>
<th>value</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.938225</td>
<td>-2.271265</td>
<td>0.238417</td>
<td>-4.209138</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.565727</td>
<td>2.424224</td>
<td>-2.088472</td>
<td>-0.989859</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>-3.018117</td>
<td>-0.346429</td>
<td>-1.723698</td>
<td>2.143608</td>
</tr>
</tbody>
</table>

Note that this returns a view on the underlying data in the case where the data are homogeneously-typed.

**Reshaping by stacking and unstacking**

Closely related to the \texttt{pivot} function are the related \texttt{stack} and \texttt{unstack} functions currently available on Series and DataFrame. These functions are designed to work together with \texttt{MultiIndex} objects (see the section on \textit{hierarchical indexing}). Here are essentially what these functions do:

- \texttt{stack}: “pivot” a level of the (possibly hierarchical) column labels, returning a DataFrame with an index with a new inner-most level of row labels.
- \texttt{unstack}: inverse operation from \texttt{stack}: “pivot” a level of the (possibly hierarchical) row index to the column axis, producing a reshaped DataFrame with a new inner-most level of column labels.
The clearest way to explain is by example. Let’s take a prior example data set from the hierarchical indexing section:

```python
In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
...: 'foo', 'foo', 'qux', 'qux'],
...: ['one', 'two', 'one', 'two',
...: 'one', 'two', 'one', 'two']]))

In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [11]: df2 = df[:4]

In [12]: df2
Out[12]:

<table>
<thead>
<tr>
<th>first</th>
<th>second</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>one</td>
<td>0.721555</td>
<td>-0.706771</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
<tr>
<td>baz</td>
<td>one</td>
<td>-0.424972</td>
<td>0.567020</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
</tbody>
</table>

The `stack` function “compresses” a level in the DataFrame’s columns to produce either:

- A Series, in the case of a simple column Index
- A DataFrame, in the case of a MultiIndex in the columns

If the columns have a MultiIndex, you can choose which level to stack. The stacked level becomes the new lowest level in a MultiIndex on the columns:

```python
In [13]: stacked = df2.stack()

In [14]: stacked
Out[14]:

<table>
<thead>
<tr>
<th>first</th>
<th>second</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>one</td>
<td>0.721555</td>
<td>-0.706771</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
<tr>
<td>baz</td>
<td>one</td>
<td>-0.424972</td>
<td>0.567020</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
</tbody>
</table>
```

dtype: float64

With a “stacked” DataFrame or Series (having a MultiIndex as the index), the inverse operation of `stack` is `unstack`, which by default unstacks the last level:

```python
In [15]: stacked.unstack()
Out[15]:

<table>
<thead>
<tr>
<th>first</th>
<th>second</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>one</td>
<td>0.721555</td>
<td>-0.706771</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
<tr>
<td>baz</td>
<td>one</td>
<td>-0.424972</td>
<td>0.567020</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
</tbody>
</table>
```

19.2. Reshaping by stacking and unstacking
If the indexes have names, you can use the level names instead of specifying the level numbers:

```python
In [18]: stacked.unstack('second')
```

```
Out[18]:
      second   one    two
first  bar  A  0.721555 -1.039575
       B -0.706771  0.271860
baz  A -0.424972  0.276232
     B  0.567020 -1.087401
```

Notice that the stack and unstack methods implicitly sort the index levels involved. Hence a call to stack and then unstack, or viceversa, will result in a sorted copy of the original DataFrame or Series:

```python
In [19]: index = pd.MultiIndex.from_product([['a', 'b'], [2, 1]])
In [20]: df = pd.DataFrame(np.random.randn(4), index=index, columns=['A'])
In [21]: df
```

```
   A
2 a -0.370647
   b -1.157892
1 a -1.344312
   b  0.844885
```

```python
In [22]: all(df.unstack().stack() == df.sort_index())
```

```
Out[22]: True
```

while the above code will raise a TypeError if the call to sort_index is removed.

Multiple Levels

You may also stack or unstack more than one level at a time by passing a list of levels, in which case the end result is as if each level in the list were processed individually.
In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)

In [25]: df
Out[25]:
exp A B A B
animal cat cat dog dog
hair_length long long short short
0 1.075770 -0.109050 1.643563 -1.469388
1 0.357021 -0.674600 -1.776904 -0.968914
2 -1.294524 0.413738 0.276662 -0.472035
3 -0.013960 -0.362543 -0.006154 -0.923061

In [26]: df.stack(level=['animal', 'hair_length'])
Out[26]:
exp A B
animal hair_length
0 cat long 1.075770 -0.109050
 dog long 1.643563 -1.469388
1 cat long 0.357021 -0.674600
 dog short -1.776904 -0.968914
2 cat long -1.294524 0.413738
 dog short 0.276662 -0.472035
3 cat long -0.013960 -0.362543
 dog short -0.006154 -0.923061

The list of levels can contain either level names or level numbers (but not a mixture of the two).

df.stack(level=['animal', 'hair_length'])
from above is equivalent to:
In [27]: df.stack(level=[1, 2])
Out[27]:
exp A B
animal hair_length
0 cat long 1.075770 -0.109050
 dog short 1.643563 -1.469388
1 cat long 0.357021 -0.674600
 dog short -1.776904 -0.968914
2 cat long -1.294524 0.413738
 dog short 0.276662 -0.472035
3 cat long -0.013960 -0.362543
 dog short -0.006154 -0.923061

Missing Data

These functions are intelligent about handling missing data and do not expect each subgroup within the hierarchical index to have the same set of labels. They also can handle the index being unsorted (but you can make it sorted by calling `sort_index`, of course). Here is a more complex example:

In [28]: columns = pd.MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
 ('B', 'cat'), ('A', 'dog')],
 names=['exp', 'animal'])

19.2. Reshaping by stacking and unstacking
In [29]: index = pd.MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'),
 ('one', 'two')], names=['first', 'second'])

In [30]: df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)

In [31]: df2 = df.ix[[0, 1, 2, 4, 5, 7]]

In [32]: df2

Out[32]:

 exp A B
animal
first second
bar one 0.895717 0.805244 -1.206412 2.565646
 two 1.431256 1.340309 -1.170299 -0.226169
baz one -0.410835 -0.813850 0.132003 -0.827317
 two -1.413681 1.607920 1.024180 0.569605
foo one 0.875906 -2.211372 0.974466 -2.006747
 two -1.226825 0.769804 -1.281247 -0.727707
qux one 0.410835 0.813850 0.132003 -0.827317
 two -1.413681 1.607920 1.024180 0.569605

As mentioned above, `stack` can be called with a `level` argument to select which level in the columns to stack:

In [33]: df2.stack('exp')

Out[33]:

 exp A B
animal
first second
bar one 0.895717 0.805244 -1.206412 2.565646
 two 1.431256 1.340309 -1.170299 -0.226169
baz one -0.410835 -0.813850 0.132003 -0.827317
 two -1.413681 1.607920 1.024180 0.569605
foo one 0.875906 -2.211372 0.974466 -2.006747
 two -1.226825 0.769804 -1.281247 -0.727707
qux one 0.410835 0.813850 0.132003 -0.827317
 two -1.413681 1.607920 1.024180 0.569605

In [34]: df2.stack('animal')

Out[34]:

 A B
animal
first second
bar one 0.895717 -1.206412
 two 1.431256 -1.170299
baz one 0.410835 0.132003
 two -0.827317 0.813850
foo one -1.413681 1.024180
 two 0.875906 1.607920
qux one -1.226825 -0.727707
 two 0.769804

Chapter 19. Reshaping and Pivot Tables
Unstacking can result in missing values if subgroups do not have the same set of labels. By default, missing values will be replaced with the default fill value for that data type, NaN for float, NaT for datetimelike, etc. For integer types, by default data will converted to float and missing values will be set to NaN.

In [35]: df3 = df.iloc[[0, 1, 4, 7], [1, 2]]

In [36]: df3
Out[36]:
exp B
animal dog cat
first second
bar one 0.805244 -1.206412
 two 1.340309 -1.170299
foo one 1.607920 1.024180
 two 0.769804 -1.281247
qux two 0.769804 -1.281247

In [37]: df3.unstack()
Out[37]:
exp B
animal dog cat
second one two one two
first
bar 0.805244 1.340309 -1.206412 -1.170299
foo 1.607920 NaN 1.024180 NaN
qux NaN 0.769804 NaN -1.281247

Alternatively, unstack takes an optional `fill_value` argument, for specifying the value of missing data.

In [38]: df3.unstack(fill_value=-1e9)
Out[38]:
exp B
animal dog cat
second one two one two
first
bar 8.052440e-01 1.340309e+00 -1.206412e+00 -1.170299e+00
foo 1.607920e+00 -1.000000e+09 1.024180e+00 -1.000000e+09
qux -1.000000e+09 7.698036e-01 -1.000000e+09 -1.281247e+00

With a MultiIndex

Unstacking when the columns are a MultiIndex is also careful about doing the right thing:

In [39]: df[:3].unstack(0)
Out[39]:
exp A B
animal cat dog cat dog
first bar baz bar baz bar
second
one 0.895717 0.410835 0.805244 0.81385 -1.206412 0.132003 2.565646
two 1.431256 NaN 1.340309 NaN -1.170299 NaN -0.226169

exp
animal
first baz
second
one -0.827317
two NaN

19.2. Reshaping by stacking and unstacking
Reshaping by Melt

The `melt()` function is useful to massage a DataFrame into a format where one or more columns are identifier variables, while all other columns, considered measured variables, are “unpivoted” to the row axis, leaving just two non-identifier columns, “variable” and “value”. The names of those columns can be customized by supplying the `var_name` and `value_name` parameters.

For instance,

```python
In [41]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
                           ....:                       'last': ['Doe', 'Bo'],
                           ....:                       'height': [5.5, 6.0],
                           ....:                       'weight': [130, 150]})

In [42]: cheese
Out[42]:
   first  height last  weight
0  John     5.5  Doe    130
1  Mary     6.0    Bo    150

In [43]: pd.melt(cheese, id_vars=['first', 'last'])
Out[43]:
   first  last  variable  value
0  John  Doe     height   5.5
1  Mary  Bo     height   6.0
2  John  Doe      weight  130.0
3  Mary  Bo      weight  150.0

In [44]: pd.melt(cheese, id_vars=['first', 'last'], var_name='quantity')
Out[44]:
   first  last  quantity  value
0  John  Doe     height   5.5
1  Mary  Bo     height   6.0
```
Another way to transform is to use the `wide_to_long` panel data convenience function.

```python
In [45]: dft = pd.DataFrame({
   "A1970" : {0 : "a", 1 : "b", 2 : "c"},
   ....:   "A1980" : {0 : "d", 1 : "e", 2 : "f"},
   ....:   "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
   ....:   "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
   ....:   "X" : dict(zip(range(3), np.random.randn(3)))
   ....: })
In [46]: dft["id"] = dft.index
In [47]: dft
Out[47]:
0     a      d     2.5   3.2  -0.121306   0
1     b      e     1.2   1.3  -0.097883   1
2     c      f     0.7   0.1   0.695775   2
```

Combining with stats and GroupBy

It should be no shock that combining `pivot / stack / unstack` with GroupBy and the basic Series and DataFrame statistical functions can produce some very expressive and fast data manipulations.

```python
In [49]: df
Out[49]:
   exp     A     B     A
   animal  cat  dog  cat  dog
   first   second
   bar  one   0.895717  0.805244 -1.206412  2.565646
          two   1.431256  1.340309 -1.170299  -0.226169
   baz  one   0.410835  0.813850  0.132003  -0.827317
          two  -0.076467 -1.187678  1.130127  -1.436737
   foo  one  -1.413681  1.607920  1.024180   0.569605
          two   0.875906 -2.211372  0.974466  -2.006747
   qux  one  -0.410001 -0.078638  0.545952  -1.219217
          two  -1.226825  0.769804  -1.281247   0.727707
In [50]: df.stack().mean(1).unstack()
Out[50]:
   animal
   cat  0.410835
   dog  0.813850
```

19.4. Combining with stats and GroupBy
```
# same result, another way
In [51]: df.groupby(level=1, axis=1).mean()
Out[51]:
       first  second
animal
bar  one  -0.155347   1.685445
two  0.130479   0.557070
baz  one  0.271419  -0.006733
two  0.526830  -1.312207
foo  one -0.194750   1.088763
two  0.925186  -2.109060
qux  one  0.067976  -0.648927
two -1.254036   0.021048

In [52]: df.stack().groupby(level=1).mean()
Out[52]:
       exp   A    B
second
one  0.071448  0.455513
two -0.424186 -0.204486

In [53]: df.mean().unstack(0)
Out[53]:
       exp   A    B
animal
cat  0.060843  0.018596
dog -0.413580  0.232430
```

Pivot tables

The function `pandas.pivot_table` can be used to create spreadsheet-style pivot tables. See the cookbook for some advanced strategies.

It takes a number of arguments:

- **data**: A DataFrame object
- **values**: a column or a list of columns to aggregate
- **index**: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- **columns**: a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- **aggfunc**: function to use for aggregation, defaulting to `numpy.mean`

Consider a data set like this:
```
In [54]: import datetime

In [55]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
                        'B': ['A', 'B', 'C'] * 8,
                        'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
                        'D': np.random.randn(24),
                        'E': np.random.randn(24),
                        'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)] +
                            [datetime.datetime(2013, i, 15) for i in range(1, 13)]})

In [56]: df
Out[56]:
A  B  C  D  E  F
0  one  A  foo  0.341734 -0.317441 2013-01-01
1  one  B  foo  0.959726 -1.236269 2013-02-01
2  two  C  foo  1.110336  0.896171 2013-03-01
3  three A  bar -0.619976  0.487602 2013-04-01
4   one B  bar  0.149748  0.896171 2013-05-01
5   one C  bar -0.732339 -2.182937 2013-06-01
6  two  A  foo  0.687738  0.380396 2013-07-01
...       .. .. ... ... ... ...
17  one  C  bar -0.345352  0.206053 2013-06-15
18  two  A  foo  1.314232  0.251905 2013-07-15
19  three B  foo  0.690579  2.213588 2013-08-15
20   one C  foo  0.995761  1.063327 2013-09-15
21   one A  bar  2.396780  1.266143 2013-10-15
22  two  B  bar  0.014871  0.299368 2013-11-15
23  three C  bar  3.357427 -0.863838 2013-12-15

[24 rows x 6 columns]
```

We can produce pivot tables from this data very easily:

```
In [57]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[57]:
     C     bar     foo
   A  B
one A  1.120915 -0.514058
   B -0.338421  0.002759
   C -0.538846  0.699535
three A -1.181568  NaN
    B  NaN  0.433512
    C  0.588783  NaN
two A  NaN  1.009985
   B  0.158248  NaN
   C  NaN  0.176180
```

```
In [58]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.
                                   sum)
Out[58]:
          A     one  three  two
   C  B  bar  foo  bar  foo  bar  foo
A  B  2.241830 -1.028115 -2.363137  NaN  NaN  2.001971
B  0.676843  0.005518  0.867024  0.316495  NaN

19.5. Pivot tables 719
```
The result object is a DataFrame having potentially hierarchical indexes on the rows and columns. If the values column name is not given, the pivot table will include all of the data that can be aggregated in an additional level of hierarchy in the columns:

```python
In [60]: pd.pivot_table(df, index=['A', 'B'], columns=['C'])
Out[60]:
        D   E
    C   bar  foo  bar  foo
A
one
B  -0.338421   0.002759
C  -0.538846   0.699535
three
B  0.588783
C  0.588783
two
B  0.158248   0.064245
C  0.158248
```

Also, you can use `Grouper` for `index` and `columns` keywords. For detail of `Grouper`, see *Grouping with a Grouper specification*:

```python
In [61]: pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'), columns='C')
Out[61]:
        C   bar  foo
    F
2013-01-31  NaN -0.514058
2013-02-28  NaN  0.002759
2013-03-31  NaN  0.176180
2013-04-30 -1.181568  NaN
2013-05-31  0.064245  NaN
2013-06-30  0.433512  NaN
2013-07-31  0.064245  NaN
2013-08-31  0.433512  NaN
2013-09-30  0.433512  NaN
2013-10-31  1.120915  NaN
```

Chapter 19. Reshaping and Pivot Tables
2013-11-30 0.158248 NaN
2013-12-31 0.588783 NaN

You can render a nice output of the table omitting the missing values by calling `to_string` if you wish:

```python
In [62]: table = pd.pivot_table(df, index=['A', 'B'], columns=['C'])
In [63]: print(table.to_string(na_rep=''))
```

<table>
<thead>
<tr>
<th></th>
<th>bar</th>
<th>foo</th>
<th>bar</th>
<th>foo</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>1.120915</td>
<td>-0.514058</td>
<td>1.393057</td>
<td>-0.021605</td>
</tr>
<tr>
<td>B</td>
<td>-0.338421</td>
<td>0.002759</td>
<td>0.684140</td>
<td>-0.551692</td>
</tr>
<tr>
<td>C</td>
<td>-0.538846</td>
<td>0.699535</td>
<td>-0.988442</td>
<td>0.747859</td>
</tr>
<tr>
<td>three</td>
<td>-1.181568</td>
<td>0.961289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.433512</td>
<td></td>
<td>-1.064372</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.588783</td>
<td></td>
<td>-0.131830</td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>1.000985</td>
<td>0.436241</td>
<td>0.68442</td>
<td>0.747859</td>
</tr>
<tr>
<td>B</td>
<td>0.158248</td>
<td></td>
<td>-0.097147</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.176180</td>
<td></td>
<td>0.436241</td>
<td></td>
</tr>
</tbody>
</table>

Note that `pivot_table` is also available as an instance method on DataFrame.

Adding margins

If you pass `margins=True` to `pivot_table`, special `All` columns and rows will be added with partial group aggregates across the categories on the rows and columns:

```python
In [64]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
```

<table>
<thead>
<tr>
<th></th>
<th>bar</th>
<th>foo</th>
<th>bar</th>
<th>foo</th>
<th>All</th>
<th>bar</th>
<th>foo</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td>1.804346</td>
<td>1.210272</td>
<td>1.569879</td>
<td>0.179483</td>
<td>0.418374</td>
<td>0.858005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.690376</td>
<td>1.353355</td>
<td>0.898998</td>
<td>1.083825</td>
<td>0.968138</td>
<td>1.101401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.273641</td>
<td>0.418266</td>
<td>0.771139</td>
<td>1.689271</td>
<td>0.446140</td>
<td>1.422136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>three</td>
<td>0.794212</td>
<td>0.794212</td>
<td>2.049040</td>
<td>0.658005</td>
<td>0.855049</td>
<td>1.059389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>NaN</td>
<td>0.363548</td>
<td>0.363548</td>
<td>NaN</td>
<td>1.625237</td>
<td>1.625237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.915454</td>
<td>3.915454</td>
<td>1.035215</td>
<td>1.035215</td>
<td>1.035215</td>
<td>1.035215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>NaN</td>
<td>0.442998</td>
<td>0.442998</td>
<td>NaN</td>
<td>0.447104</td>
<td>0.447104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.202765</td>
<td>0.202765</td>
<td>0.560757</td>
<td>0.560757</td>
<td>0.560757</td>
<td>0.560757</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>NaN</td>
<td>1.819408</td>
<td>1.819408</td>
<td>NaN</td>
<td>0.650439</td>
<td>0.650439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>1.556686</td>
<td>0.952552</td>
<td>1.246608</td>
<td>1.250924</td>
<td>0.899904</td>
<td>1.059389</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cross tabulations

Use the `crosstab` function to compute a cross-tabulation of two (or more) factors. By default `crosstab` computes a frequency table of the factors unless an array of values and an aggregation function are passed.

It takes a number of arguments

- `index`: array-like, values to group by in the rows
- `columns`: array-like, values to group by in the columns
• values: array-like, optional, array of values to aggregate according to the factors
• aggfunc: function, optional, If no values array is passed, computes a frequency table
• rownames: sequence, default None, must match number of row arrays passed
• colnames: sequence, default None, if passed, must match number of column arrays passed
• margins: boolean, default False, Add row/column margins (subtotals)
• normalize: boolean, {'all', 'index', 'columns'}, or {0,1}, default False. Normalize by dividing all values by the sum of values.

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified

For example:

```
In [65]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
In [66]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
In [67]: b = np.array([one, one, two, one, two, one], dtype=object)
In [68]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
In [69]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
Out[69]:
         b    one   two
    c       dull    shiny  dull    shiny
   a
   bar         1       0       0       1
   foo        2       1       1       0
```

If crosstab receives only two Series, it will provide a frequency table.

```
In [70]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4],
                      'C': [1, 1, np.nan, 1, 1]})
In [71]: df
Out[71]:
    A  B  C
0  1  3  1.0
1  2  3  1.0
2  2  4  NaN
3  2  4  1.0
4  2  4  1.0
In [72]: pd.crosstab(df.A, df.B)
Out[72]:
   B
A    3  4
   1   0
   2   3
```

Any input passed containing Categorical data will have all of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category.

```
In [73]: foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
```
In [74]: bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])

In [75]: pd.crosstab(foo, bar)
Out[75]:
 col_0 d e f
row_0
a 1 0 0
b 0 1 0
c 0 0 0

Normalization

New in version 0.18.1.

Frequency tables can also be normalized to show percentages rather than counts using the `normalize` argument:

In [76]: pd.crosstab(df.A, df.B, normalize=True)
Out[76]:
 B 3 4
A
1 0.2 0.0
2 0.5 0.6

`normalize` can also normalize values within each row or within each column:

In [77]: pd.crosstab(df.A, df.B, normalize='columns')
Out[77]:
 B 3 4
A
1 0.5 0.0
2 0.5 1.0

crosstab can also be passed a third Series and an aggregation function (`aggfunc`) that will be applied to the values of the third Series within each group defined by the first two Series:

In [78]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum)
Out[78]:
 B 3 4
A
1 1.0 NaN
2 1.0 2.0

Adding Margins

Finally, one can also add margins or normalize this output.

In [79]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True, margins=True)
 :
 :
Out[79]:
 B 3 4 All
A
1 0.25 0.0 0.25
2 0.25 0.5 0.75
All 0.50 0.5 1.00
Tiling

The `cut` function computes groupings for the values of the input array and is often used to transform continuous variables to discrete or categorical variables:

```python
In [80]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])

In [81]: pd.cut(ages, bins=3)
Out[81]: [(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60], (43.333, 60]
Categories (3, object): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60]]
```

If the `bins` keyword is an integer, then equal-width bins are formed. Alternatively we can specify custom bin-edges:

```python
In [82]: pd.cut(ages, bins=[0, 18, 35, 70])
Out[82]: [(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]
Categories (3, object): [(0, 18] < (18, 35] < (35, 70]]
```

Computing indicator / dummy variables

To convert a categorical variable into a “dummy” or “indicator” DataFrame, for example a column in a DataFrame (a Series) which has \(k \) distinct values, can derive a DataFrame containing \(k \) columns of 1s and 0s:

```python
In [83]: df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})
In [84]: pd.get_dummies(df['key'])
Out[84]:
   a  b  c
0  0  1  0
1  0  1  0
2  1  0  0
3  0  0  1
4  1  0  0
5  0  1  0
```

Sometimes it’s useful to prefix the column names, for example when merging the result with the original DataFrame:

```python
In [85]: dummies = pd.get_dummies(df['key'], prefix='key')
In [86]: dummies
Out[86]:
   key_a  key_b  key_c
0     0     1     0
1     0     1     0
2     1     0     0
3     0     0     1
4     1     0     0
5     0     1     0

In [87]: df[['data1']].join(dummies)
Out[87]:
   data1  key_a  key_b  key_c
0     0     0     1     0
```
This function is often used along with discretization functions like `cut`:

```python
In [88]: values = np.random.randn(10)
In [89]: values
Out[89]:
array([ 0.4082, -1.0481, -0.0257, -0.9884,  0.0941,  1.2627,  1.29 ,
       0.0824, -0.0558,  0.5366])
In [90]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]
In [91]: pd.get_dummies(pd.cut(values, bins))
Out[91]:
   (0, 0.2]  (0.2, 0.4]  (0.4, 0.6]  (0.6, 0.8]  (0.8, 1]
0          0          1          0          0
1          0          0          0          0
2          0          0          0          0
3          0          0          0          0
4          1          0          0          0
5          0          0          0          0
6          0          0          0          0
7          1          0          0          0
8          0          0          0          0
9          0          0          1          0
```

See also `Series.str.get_dummies`.

New in version 0.15.0.

`get_dummies()` also accepts a DataFrame. By default all categorical variables (categorical in the statistical sense, those with `object` or `categorical` dtype) are encoded as dummy variables.

```python
In [92]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'], 'C': [1, 2, 3]})
In [93]: pd.get_dummies(df)
Out[93]:
   C  A_a  A_b  B_b  B_c
0  1     1     0     0     1
1  2     0     1     0     1
2  3     1     0     1     0
```

All non-object columns are included untouched in the output.

You can control the columns that are encoded with the `columns` keyword.

```python
In [94]: pd.get_dummies(df, columns=['A'])
Out[94]:
   B  C  A_a  A_b
0  c  1     1     0
1  c  2     0     1
2  b  3     1     0
```
Notice that the B column is still included in the output, it just hasn’t been encoded. You can drop B before calling get_dummies if you don’t want to include it in the output.

As with the Series version, you can pass values for the prefix and prefix_sep. By default the column name is used as the prefix, and ‘_’ as the prefix separator. You can specify prefix and prefix_sep in 3 ways:

- string: Use the same value for prefix or prefix_sep for each column to be encoded
- list: Must be the same length as the number of columns being encoded.
- dict: Mapping column name to prefix

```
In [95]: simple = pd.get_dummies(df, prefix='new_prefix')
In [96]: simple
Out [96]:
                  C  new_prefix_a  new_prefix_b  new_prefix_b  new_prefix_c
0                   1            1            0            0            1
1                   2            0            1            0            1
2                   3            1            0            1            0

In [97]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])
In [98]: from_list
Out [98]:
                    C  from_A_a  from_A_b  from_B_b  from_B_c
0                  1            1            0            0            1
1                  2            0            1            0            1
2                  3            1            0            1            0

In [99]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})
In [100]: from_dict
Out [100]:
                  C  from_A_a  from_A_b  from_B_b  from_B_c
0                   1            1            0            0            1
1                   2            0            1            0            1
2                   3            1            0            1            0
```

New in version 0.18.0.

Sometimes it will be useful to only keep k-1 levels of a categorical variable to avoid collinearity when feeding the result to statistical models. You can switch to this mode by turn on drop_first.

```
In [101]: s = pd.Series(list('abcaa'))
In [102]: pd.get_dummies(s)
Out [102]:
       a  b  c
0  1  0  0
1  0  1  0
2  0  0  1
3  1  0  0
4  1  0  0
In [103]: pd.get_dummies(s, drop_first=True)
Out [103]:
       b  c
0  0  0
1  1  0
```
When a column contains only one level, it will be omitted in the result.

```
In [104]: df = pd.DataFrame({'A':list('aaaaa'),'B':list('ababc')})

In [105]: pd.get_dummies(df)
Out[105]:
   A_a  B_a  B_b  B_c
0    1    1    0    0
1    1    0    1    0
2    1    1    0    0
3    1    0    1    0
4    1    0    0    1
```

```
In [106]: pd.get_dummies(df, drop_first=True)
Out[106]:
   B_b  B_c
0    0    0
1    1    0
2    0    0
3    1    0
4    0    1
```

Factorizing values

To encode 1-d values as an enumerated type use `factorize`:

```
In [107]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])

In [108]: x
Out[108]:
0    A
1    A
2   NaN
3    B
4  3.14
5   inf
dtype: object

In [109]: labels, uniques = pd.factorize(x)

In [110]: labels
Out[110]: array([ 0,  0, -1,  1,  2,  3])

In [111]: uniques
Out[111]: Index([u'A', u'B', 3.14, inf], dtype='object')
```

Note that `factorize` is similar to `numpy.unique`, but differs in its handling of NaN:

Note: The following `numpy.unique` will fail under Python 3 with a `TypeError` because of an ordering bug. See also [Here](#)
In [112]: pd.factorize(x, sort=True)
Out[112]:
(array([2, 2, -1, 3, 0, 1]),
 Index([3.14, inf, u'A', u'B'], dtype='object'))

In [113]: np.unique(x, return_inverse=True)[::-1]
Out[113]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))

Note: If you just want to handle one column as a categorical variable (like R’s factor), you can use df["cat_col"] = pd.Categorical(df["col"] or df["cat_col"] = df["col"].astype("category"). For full docs on Categorical, see the Categorical introduction and the API documentation. This feature was introduced in version 0.15.
pandas has proven very successful as a tool for working with time series data, especially in the financial data analysis space. Using the NumPy datetime64 and timedelta64 dtypes, we have consolidated a large number of features from other Python libraries like scikits.timeseries as well as created a tremendous amount of new functionality for manipulating time series data.

In working with time series data, we will frequently seek to:

• generate sequences of fixed-frequency dates and time spans
• conform or convert time series to a particular frequency
• compute “relative” dates based on various non-standard time increments (e.g. 5 business days before the last business day of the year), or “roll” dates forward or backward

pandas provides a relatively compact and self-contained set of tools for performing the above tasks.

Create a range of dates:

```python
# 72 hours starting with midnight Jan 1st, 2011
In [1]: rng = pd.date_range('1/1/2011', periods=72, freq='H')
In [2]: rng[:5]
Out[2]:
DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 01:00:00',
              '2011-01-01 02:00:00', '2011-01-01 03:00:00',
              '2011-01-01 04:00:00'], dtype='datetime64[ns]', freq='H')
```

Index pandas objects with dates:

```python
In [3]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [4]: ts.head()
Out[4]:
2011-01-01 00:00:00  0.469112
2011-01-01 01:00:00 -0.282863
2011-01-01 02:00:00 -1.509059
2011-01-01 03:00:00 -1.135632
2011-01-01 04:00:00  1.212112
Freq: H, dtype: float64
```

Change frequency and fill gaps:

```python
# to 45 minute frequency and forward fill
In [5]: converted = ts.asfreq('45Min', method='pad')
```
Overview

Following table shows the type of time-related classes pandas can handle and how to create them.

<table>
<thead>
<tr>
<th>Class</th>
<th>Remarks</th>
<th>How to create</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timestamp</td>
<td>Represents a single time stamp</td>
<td>to_datetime, Timestamp</td>
</tr>
<tr>
<td>DatetimeIndex</td>
<td>Index of Timestamp</td>
<td>to_datetime, date_range, DatetimeIndex</td>
</tr>
<tr>
<td>Period</td>
<td>Represents a single time span</td>
<td>Period</td>
</tr>
<tr>
<td>PeriodIndex</td>
<td>Index of Period</td>
<td>period_range, PeriodIndex</td>
</tr>
</tbody>
</table>

Time Stamps vs. Time Spans

Time-stamped data is the most basic type of timeseries data that associates values with points in time. For pandas objects it means using the points in time.

```python
In [8]: pd.Timestamp(datetime(2012, 5, 1))
Out[8]: Timestamp('2012-05-01 00:00:00')
```

```python
In [9]: pd.Timestamp('2012-05-01')
Out[9]: Timestamp('2012-05-01 00:00:00')
```

```python
In [10]: pd.Timestamp(2012, 5, 1)
Out[10]: Timestamp('2012-05-01 00:00:00')
```

However, in many cases it is more natural to associate things like change variables with a time span instead. The span represented by Period can be specified explicitly, or inferred from datetime string format.

For example:

```python
In [11]: pd.Period('2011-01')
Out[11]: Period('2011-01', 'M')
```

```python
In [12]: pd.Period('2012-05', freq='D')
Out[12]: Period('2012-05-01', 'D')
```
Timestamp and Period can be the index. Lists of Timestamp and Period are automatically coerced to DatetimeIndex and PeriodIndex respectively.

```python
In [14]: ts = pd.Series(np.random.randn(3), dates)
In [15]: type(ts.index)
Out[15]: pandas.tseries.index.DatetimeIndex
In [16]: ts.index
Out[16]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)
In [17]: ts
Out[17]:
2012-05-01 -0.410001
2012-05-02 -0.078638
2012-05-03  0.545952
dtype: float64
In [18]: periods = [pd.Period('2012-01'), pd.Period('2012-02'), pd.Period('2012-03')]
In [19]: ts = pd.Series(np.random.randn(3), periods)
In [20]: type(ts.index)
Out[20]: pandas.tseries.period.PeriodIndex
In [21]: ts.index
Out[21]: PeriodIndex(['2012-01', '2012-02', '2012-03'], dtype='period[M]', freq='M')
In [22]: ts
Out[22]:
2012-01   -1.219217
2012-02   -1.226825
2012-03    0.769804
Freq: M, dtype: float64
```

pandas allows you to capture both representations and convert between them. Under the hood, pandas represents timestamps using instances of Timestamp and sequences of timestamps using instances of DatetimeIndex. For regular time spans, pandas uses Period objects for scalar values and PeriodIndex for sequences of spans. Better support for irregular intervals with arbitrary start and end points are forthcoming in future releases.

Converting to Timestamps

To convert a Series or list-like object of date-like objects e.g. strings, epochs, or a mixture, you can use the to_datetime function. When passed a Series, this returns a Series (with the same index), while a list-like is converted to a DatetimeIndex:

```python
In [23]: pd.to_datetime(pd.Series(['Jul 31, 2009', '2010-01-10', None]))
Out[23]:
0  2009-07-31
1  2010-01-10
2      NaT
dtype: datetime64[ns]
```
If you use dates which start with the day first (i.e. European style), you can pass the `dayfirst` flag:

```python
In [25]: pd.to_datetime(['04-01-2012 10:00'], dayfirst=True)
Out[25]: DatetimeIndex(['2012-01-04 10:00:00'], dtype='datetime64[ns]', freq=None)
```

```python
In [26]: pd.to_datetime(['14-01-2012', '01-14-2012'], dayfirst=True)
Out[26]: DatetimeIndex(['2012-01-14', '2012-01-14'], dtype='datetime64[ns]', freq=None)
```

Warning: You see in the above example that `dayfirst` isn’t strict, so if a date can’t be parsed with the day being first it will be parsed as if `dayfirst` were False.

Note: Specifying a `format` argument will potentially speed up the conversion considerably and on versions later then 0.13.0 explicitly specifying a format string of `%Y%m%d` takes a faster path still.

If you pass a single string to `to_datetime`, it returns single `Timestamp`. Also, `Timestamp` can accept the string input. Note that `Timestamp` doesn’t accept string parsing option like `dayfirst` or `format`, use `to_datetime` if these are required.

```python
In [27]: pd.to_datetime('2010/11/12')
Out[27]: Timestamp('2010-11-12 00:00:00')
```

```python
In [28]: pd.Timestamp('2010/11/12')
Out[28]: Timestamp('2010-11-12 00:00:00')
```

New in version 0.18.1.

You can also pass a `DataFrame` of integer or string columns to assemble into a `Series` of `Timestamps`.

```python
In [29]: df = pd.DataFrame({'year': [2015, 2016],
                      'month': [2, 3],
                      'day': [4, 5],
                      'hour': [2, 3]})

In [30]: pd.to_datetime(df)
Out[30]:
0  2015-02-04 02:00:00
1  2016-03-05 03:00:00
dtype: datetime64[ns]
```

You can pass only the columns that you need to assemble.

```python
In [31]: pd.to_datetime(df[['year', 'month', 'day']])
Out[31]:
0  2015-02-04
1  2016-03-05
dtype: datetime64[ns]
```
pd.to_datetime looks for standard designations of the datetime component in the column names, including:

- **required**: year, month, day
- **optional**: hour, minute, second, millisecond, microsecond, nanosecond

Invalid Data

Note: In version 0.17.0, the default for `to_datetime` is now errors='raise', rather than errors='ignore'. This means that invalid parsing will raise rather than return the original input as in previous versions.

Pass `errors='coerce'` to convert invalid data to NaT (not a time):

Raise when unparseable, this is the default

```
In [2]: pd.to_datetime(['2009/07/31', 'asd'], errors='raise')
ValueError: Unknown string format
```

Return the original input when unparseable

```
In [4]: pd.to_datetime(['2009/07/31', 'asd'], errors='ignore')
Out[4]: array(['2009/07/31', 'asd'], dtype=object)
```

Return NaT for input when unparseable

```
In [6]: pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')
Out[6]: DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)
```

Epoch Timestamps

It’s also possible to convert integer or float epoch times. The default unit for these is nanoseconds (since these are how Timestamps are stored). However, often epochs are stored in another unit which can be specified:

Typical epoch stored units

```
In [32]: pd.to_datetime([1349720105, 1349806505, 1349892905, 1349979305, 1350065705], unit='s')
```

```
In [33]: pd.to_datetime([1349720105100, 1349720105200, 1349720105300, 1349720105400, 1349720105500], unit='ms')
Out[33]: DatetimeIndex(['2012-10-08 18:15:05.100000', '2012-10-08 18:15:05.200000', '2012-10-08 18:15:05.300000', '2012-10-08 18:15:05.400000', '2012-10-08 18:15:05.500000'], dtype='datetime64[ns]', freq=None)
```

These work, but the results may be unexpected.
In [34]: pd.to_datetime([1])
Out[34]: DatetimeIndex(['1970-01-01 00:00:00.000000001'], dtype='datetime64[ns]',
 freq=None)

In [35]: pd.to_datetime([1, 3.14], unit='s')
Out[35]: DatetimeIndex(['1970-01-01 00:00:01', '1970-01-01 00:00:03.140000'], dtype=
 'datetime64[ns]', freq=None)

Note: Epoch times will be rounded to the nearest nanosecond.

Generating Ranges of Timestamps

To generate an index with time stamps, you can use either the DatetimeIndex or Index constructor and pass in a list of
datetime objects:

In [36]: dates = [datetime(2012, 5, 1), datetime(2012, 5, 2), datetime(2012, 5, 3)]
 # Note the frequency information
In [37]: index = pd.DatetimeIndex(dates)

In [38]: index
Out[38]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype=
 'datetime64[ns]', freq=None)

Automatically converted to DatetimeIndex
In [39]: index = pd.Index(dates)

In [40]: index
Out[40]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype=
 'datetime64[ns]', freq=None)

Practically, this becomes very cumbersome because we often need a very long index with a large number of
timestamps. If we need timestamps on a regular frequency, we can use the pandas functions date_range and
bdate_range to create timestamp indexes.

In [41]: index = pd.date_range('2000-1-1', periods=1000, freq='M')

In [42]: index
 '2000-09-30', '2000-10-31', ...
 '2082-07-31', '2082-08-31', '2082-09-30', '2082-10-31',
 '2082-11-30', '2082-12-31', '2083-01-31', '2083-02-28',
 '2083-03-31', '2083-04-30'],
 dtype='datetime64[ns]', length=1000, freq='M')

In [43]: index = pd.bdate_range('2012-1-1', periods=250)

In [44]: index
Out[44]: DatetimeIndex(['2012-01-02', '2012-01-03', '2012-01-04', '2012-01-05',
 '2012-01-06', ...,
Convenience functions like `date_range` and `bdate_range` utilize a variety of frequency aliases. The default frequency for `date_range` is a calendar day while the default for `bdate_range` is a business day.

```python
In [45]: start = datetime(2011, 1, 1)
In [46]: end = datetime(2012, 1, 1)
In [47]: rng = pd.date_range(start, end)
In [48]: rng
Out[48]:
dtype='datetime64[ns]', length=366, freq='D')
```

```python
In [49]: rng = pd.bdate_range(start, end)
In [50]: rng
Out[50]:
dtype='datetime64[ns]', length=260, freq='B')
```

date_range and bdate_range make it easy to generate a range of dates using various combinations of parameters like start, end, periods, and freq:

```python
In [51]: pd.date_range(start, end, freq='BM')
Out[51]:
dtype='datetime64[ns]', freq='BM')
```

```python
In [52]: pd.date_range(start, end, freq='W')
Out[52]:
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
In [53]: pd.bdate_range(end=end, periods=20)
Out[53]:
DatetimeIndex(['2011-12-05', '2011-12-06', '2011-12-07', '2011-12-08',
             '2011-12-09', '2011-12-10', '2011-12-11', '2011-12-12',
             '2011-12-13', '2011-12-14', '2011-12-15', '2011-12-16',
             '2011-12-17', '2011-12-18', '2011-12-19', '2011-12-20',
             '2011-12-21', '2011-12-22', '2011-12-23', '2011-12-24',
             '2011-12-25', '2011-12-26', '2011-12-27', '2011-12-28',
             '2011-12-29', '2011-12-30'],
        dtype='datetime64[ns]', freq='B')
```

```python
In [54]: pd.bdate_range(start=start, periods=20)
Out[54]:
             '2011-01-27', '2011-01-28'],
        dtype='datetime64[ns]', freq='B')
```

The start and end dates are strictly inclusive. So it will not generate any dates outside of those dates if specified.

Timestamp limitations

Since pandas represents timestamps in nanosecond resolution, the timespan that can be represented using a 64-bit integer is limited to approximately 584 years:

```python
In [55]: pd.Timestamp.min
Out[55]: Timestamp('1677-09-21 00:12:43.145225')

In [56]: pd.Timestamp.max
Out[56]: Timestamp('2262-04-11 23:47:16.854775807')
```

See [here](#) for ways to represent data outside these bound.

DatetimeIndex

One of the main uses for `DatetimeIndex` is as an index for pandas objects. The `DatetimeIndex` class contains many timeseries related optimizations:

- A large range of dates for various offsets are pre-computed and cached under the hood in order to make generating subsequent date ranges very fast (just have to grab a slice)
- Fast shifting using the `shift` and `tshift` method on pandas objects
Unioning of overlapping DatetimeIndex objects with the same frequency is very fast (important for fast data alignment)

Quick access to date fields via properties such as year, month, etc.

Regularization functions like snap and very fast asof logic

DatetimeIndex objects have all the basic functionality of regular Index objects and a smorgasbord of advanced timeseries-specific methods for easy frequency processing.

See also:

Reindexing methods

Note: While pandas does not force you to have a sorted date index, some of these methods may have unexpected or incorrect behavior if the dates are unsorted. So please be careful.

DatetimeIndex can be used like a regular index and offers all of its intelligent functionality like selection, slicing, etc.

```python
In [57]: rng = pd.date_range(start, end, freq='BM')

In [58]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [59]: ts.index
                     dtype='datetime64[ns]', freq='BM')

In [60]: ts[:5].index
                       '2011-05-31'],
                       dtype='datetime64[ns]', freq='BM')

In [61]: ts[::2].index
                       '2011-09-30', '2011-11-30'],
                       dtype='datetime64[ns]', freq='2BM')
```

DatetimeIndex Partial String Indexing

You can pass in dates and strings that parse to dates as indexing parameters:

```python
In [62]: ts['1/31/2011']
Out[62]: -1.2812473076599531

In [63]: ts[datetime(2011, 12, 25):]
Out[63]:
2011-12-30  0.687738
Freq: BM, dtype: float64

In [64]: ts['10/31/2011':'12/31/2011']
Out[64]:
```

20.6. DatetimeIndex
To provide convenience for accessing longer time series, you can also pass in the year or year and month as strings:

```
In [65]: ts['2011']
Out[65]:
2011-01-31  -1.281247
2011-02-28   -0.727707
2011-03-31   -0.121306
2011-04-29   -0.097883
2011-05-31   0.695775
2011-06-30   0.341734
2011-07-29   0.959726
2011-08-31   -1.110336
2011-09-30   -0.619976
2011-10-31   0.149748
2011-11-30  -0.732339
2011-12-30   0.687738
Freq: BM, dtype: float64
```

```
In [66]: ts['2011-6']
Out[66]:
2011-06-30   0.341734
Freq: BM, dtype: float64
```

This type of slicing will work on a DataFrame with a `DateTimeIndex` as well. Since the partial string selection is a form of label slicing, the endpoints **will be** included. This would include matching times on an included date. Here’s an example:

```
In [67]: dft = pd.DataFrame(randn(100000,1),
...:                      columns=['A'],
...:                      index=pd.date_range('20130101',periods=100000,freq='T'))

In [68]: dft
Out[68]:
          A
2013-01-01  00:00:00  0.176444
2013-01-01  00:01:00  0.403310
2013-01-01  00:02:00  -0.154951
2013-01-01  00:03:00  0.301624
2013-01-01  00:04:00  -2.179861
2013-01-01  00:05:00  -1.369849
2013-01-01  00:06:00  -0.954208
... ...
2013-03-11 10:33:00  -0.293083
2013-03-11 10:34:00  -0.059881
2013-03-11 10:35:00  1.252450
2013-03-11 10:36:00  0.046611
2013-03-11 10:37:00  0.059478
2013-03-11 10:38:00  -0.286539
2013-03-11 10:39:00  0.841669
[100000 rows x 1 columns]
```
In [69]: dft['2013']
Out[69]:

 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...
2013-03-11 10:33:00 -0.293083
2013-03-11 10:34:00 -0.059881
2013-03-11 10:35:00 1.252450
2013-03-11 10:36:00 0.046611
2013-03-11 10:37:00 0.059478
2013-03-11 10:38:00 -0.286539
2013-03-11 10:39:00 0.841669
[100000 rows x 1 columns]

This starts on the very first time in the month, and includes the last date & time for the month

In [70]: dft['2013-1':'2013-2']
Out[70]:

 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...
2013-02-28 23:53:00 0.103114
2013-02-28 23:54:00 -1.303422
2013-02-28 23:55:00 0.451943
2013-02-28 23:56:00 0.220534
2013-02-28 23:57:00 -1.624220
2013-02-28 23:58:00 0.093915
2013-02-28 23:59:00 -1.087454
[84960 rows x 1 columns]

This specifies a stop time that includes all of the times on the last day

In [71]: dft['2013-1':'2013-2-28']
Out[71]:

 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
...
2013-02-28 23:53:00 0.103114
2013-02-28 23:54:00 -1.303422
2013-02-28 23:55:00 0.451943
2013-02-28 23:56:00 0.220534
2013-02-28 23:57:00 -1.624220
2013-02-28 23:58:00 0.093915
2013-02-28 23:59:00 -1.087454
[84960 rows x 1 columns]
This specifies an exact stop time (and is not the same as the above)

In [72]: dft['2013-1':'2013-2-28 00:00:00']
Out[72]:

 A
2013-01-01 00:00:00 0.176444
2013-01-01 00:01:00 0.403310
2013-01-01 00:02:00 -0.154951
2013-01-01 00:03:00 0.301624
2013-01-01 00:04:00 -2.179861
2013-01-01 00:05:00 -1.369849
2013-01-01 00:06:00 -0.954208
 ...
2013-02-27 23:54:00 0.897051
2013-02-27 23:55:00 -0.309230
2013-02-27 23:56:00 1.944713
2013-02-27 23:57:00 0.369265
2013-02-27 23:58:00 0.053071
2013-02-27 23:59:00 -0.019734
2013-02-28 00:00:00 1.388189
[83521 rows x 1 columns]

We are stopping on the included end-point as it is part of the index

In [73]: dft['2013-1-15':'2013-1-15 12:30:00']
Out[73]:

 A
2013-01-15 00:00:00 0.501288
2013-01-15 00:01:00 -0.605198
2013-01-15 00:02:00 0.215146
2013-01-15 00:03:00 0.924732
2013-01-15 00:04:00 -2.228519
2013-01-15 00:05:00 1.517331
2013-01-15 00:06:00 -1.188774
 ...
2013-01-15 12:24:00 1.358314
2013-01-15 12:25:00 -0.737727
2013-01-15 12:26:00 1.838323
2013-01-15 12:27:00 -0.774090
2013-01-15 12:28:00 0.622261
2013-01-15 12:29:00 -0.631649
2013-01-15 12:30:00 0.193284
[751 rows x 1 columns]
Warning: The following selection will raise a KeyError; otherwise this selection methodology would be inconsistent with other selection methods in pandas (as this is not a slice, nor does it resolve to one)

```python
dft['2013-1-15 12:30:00']
```

To select a single row, use `.loc`

```python
In [74]: dft.loc['2013-1-15 12:30:00']
Out[74]:
A  0.193284
Name: 2013-01-15 12:30:00, dtype: float64
```

New in version 0.18.0.

DatetimeIndex Partial String Indexing also works on DataFrames with a MultiIndex. For example:

```python
In [75]:
   ...: dft2 = pd.DataFrame(np.random.randn(20, 1),
   ...:                       columns=['A'],
   ...:                       index=pd.MultiIndex.from_product([pd.date_range('20130101',
   ...:                          periods=10, freq='12H'),
   ...:                          ['a', 'b']]))
   ...

In [76]: dft2
Out[76]:
   A
2013-01-01 00:00:00 a  -0.659574
   b   1.494522
2013-01-01 12:00:00 a  -0.778425
   b  -0.253355
2013-01-02 00:00:00 a  -2.816159
   b  -1.210929
2013-01-02 12:00:00 a   0.144669
   b  -0.660996
   ...
   ...
2013-01-04 00:00:00 b  -1.624463
2013-01-04 12:00:00 a   0.056912
   b   0.149867
2013-01-05 00:00:00 a  -1.256173
   b   2.324544
2013-01-05 12:00:00 a  -1.067396
   b  -0.660996
[20 rows x 1 columns]

In [77]: dft2.loc['2013-01-05']
Out[77]:
   A
2013-01-05 00:00:00 a  -1.256173
   b   2.324544
2013-01-05 12:00:00 a  -1.067396
   b  -0.660996
```

20.6. DatetimeIndex
Datetime Indexing

Indexing a DateTimeIndex with a partial string depends on the “accuracy” of the period, in other words how specific the interval is in relation to the frequency of the index. In contrast, indexing with datetime objects is exact, because the objects have exact meaning. These also follow the semantics of including both endpoints.

These datetime objects are specific hours, minutes, and seconds even though they were not explicitly specified (they are 0).

With no defaults.

Out[82]:

A
2013-01-01 10:12:00 -0.246733
2013-01-01 10:13:00 -1.429225
2013-01-01 10:14:00 -1.265339
2013-01-01 10:15:00 0.710986
2013-01-01 10:16:00 -0.818200
2013-01-01 10:17:00 0.543542
2013-01-01 10:18:00 1.577713
... ...
2013-02-27 10:06:00 0.311249
2013-02-27 10:07:00 2.366080
2013-02-27 10:08:00 -0.490372
... ...
2013-02-28 10:06:00 0.311249
2013-02-28 10:07:00 2.366080
2013-02-28 10:08:00 -0.490372
Truncating & Fancy Indexing

A `truncate` convenience function is provided that is equivalent to slicing:

```python
In [83]: ts.truncate(before='10/31/2011', after='12/31/2011')
Out[83]:
2011-10-31  0.149748
2011-11-30 -0.732339
2011-12-30  0.687738
Freq: BM, dtype: float64
```

Even complicated fancy indexing that breaks the DatetimeIndex’s frequency regularity will result in a `DatetimeIndex` (but frequency is lost):

```python
In [84]: ts[[0, 2, 6]].index
Out[84]: DatetimeIndex(['2011-01-31', '2011-03-31', '2011-07-29'], dtype='datetime64[ns]', freq=None)
```

Time/Date Components

There are several time/date properties that one can access from `Timestamp` or a collection of timestamps like a `DateTimeIndex`.
pandas: powerful Python data analysis toolkit, Release 0.19.2

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>The year of the datetime</td>
</tr>
<tr>
<td>month</td>
<td>The month of the datetime</td>
</tr>
<tr>
<td>day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>hour</td>
<td>The hour of the datetime</td>
</tr>
<tr>
<td>minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>date</td>
<td>Returns datetime.date (does not contain timezone information)</td>
</tr>
<tr>
<td>time</td>
<td>Returns datetime.time (does not contain timezone information)</td>
</tr>
<tr>
<td>dayofyear</td>
<td>The ordinal day of year</td>
</tr>
<tr>
<td>weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>dayofweek</td>
<td>The number of the day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>weekday</td>
<td>The number of the day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>weekday_name</td>
<td>The name of the day in a week (ex: Friday)</td>
</tr>
<tr>
<td>quarter</td>
<td>Quarter of the date: Jan=Mar = 1, Apr-Jun = 2, etc.</td>
</tr>
<tr>
<td>days_in_month</td>
<td>The number of days in the month of the datetime</td>
</tr>
<tr>
<td>is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td>is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td>is_leap_year</td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
</tbody>
</table>

Furthermore, if you have a Series with datetimelike values, then you can access these properties via the .dt accessor, see the docs

DateOffset objects

In the preceding examples, we created DatetimeIndex objects at various frequencies by passing in frequency strings like ‘M’, ‘W’, and ‘BM’ to the freq keyword. Under the hood, these frequency strings are being translated into an instance of pandas DateOffset, which represents a regular frequency increment. Specific offset logic like “month”, “business day”, or “one hour” is represented in its various subclasses.

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DateOffset</td>
<td>Generic offset class, defaults to 1 calendar day</td>
</tr>
<tr>
<td>BDay</td>
<td>business day (weekday)</td>
</tr>
<tr>
<td>CDay</td>
<td>custom business day (experimental)</td>
</tr>
<tr>
<td>Week</td>
<td>one week, optionally anchored on a day of the week</td>
</tr>
<tr>
<td>WeekOfMonth</td>
<td>the x-th day of the y-th week of each month</td>
</tr>
<tr>
<td>LastWeekOfMonth</td>
<td>the x-th day of the last week of each month</td>
</tr>
<tr>
<td>MonthEnd</td>
<td>calendar month end</td>
</tr>
<tr>
<td>MonthBegin</td>
<td>calendar month begin</td>
</tr>
<tr>
<td>BMonthEnd</td>
<td>business month end</td>
</tr>
<tr>
<td>BMonthBegin</td>
<td>business month begin</td>
</tr>
<tr>
<td>CBMonthEnd</td>
<td>custom business month end</td>
</tr>
<tr>
<td>CBMonthBegin</td>
<td>custom business month begin</td>
</tr>
</tbody>
</table>

Continued on next page
Table 20.1 – continued from previous page

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemiMonthEnd</td>
<td>15th (or other day_of_month) and calendar month end</td>
</tr>
<tr>
<td>SemiMonthBegin</td>
<td>15th (or other day_of_month) and calendar month begin</td>
</tr>
<tr>
<td>QuarterEnd</td>
<td>calendar quarter end</td>
</tr>
<tr>
<td>QuarterBegin</td>
<td>calendar quarter begin</td>
</tr>
<tr>
<td>BQuarterEnd</td>
<td>business quarter end</td>
</tr>
<tr>
<td>BQuarterBegin</td>
<td>business quarter begin</td>
</tr>
<tr>
<td>FY5253Quarter</td>
<td>retail (aka 52-53 week) quarter</td>
</tr>
<tr>
<td>YearEnd</td>
<td>calendar year end</td>
</tr>
<tr>
<td>YearBegin</td>
<td>calendar year begin</td>
</tr>
<tr>
<td>BYearEnd</td>
<td>business year end</td>
</tr>
<tr>
<td>BYearBegin</td>
<td>business year begin</td>
</tr>
<tr>
<td>FY5253</td>
<td>retail (aka 52-53 week) year</td>
</tr>
<tr>
<td>BusinessHour</td>
<td>business hour</td>
</tr>
<tr>
<td>CustomBusinessHour</td>
<td>custom business hour</td>
</tr>
<tr>
<td>Hour</td>
<td>one hour</td>
</tr>
<tr>
<td>Minute</td>
<td>one minute</td>
</tr>
<tr>
<td>Second</td>
<td>one second</td>
</tr>
<tr>
<td>Milli</td>
<td>one millisecond</td>
</tr>
<tr>
<td>Micro</td>
<td>one microsecond</td>
</tr>
<tr>
<td>Nano</td>
<td>one nanosecond</td>
</tr>
</tbody>
</table>

The basic **DateOffset** takes the same arguments as `dateutil.relativedelta`, which works like:

```python
In [85]: d = datetime(2008, 8, 18, 9, 0)

In [86]: d + relativedelta(months=4, days=5)
Out[86]: datetime.datetime(2008, 12, 23, 9, 0)
```

We could have done the same thing with **DateOffset**:

```python
In [87]: from pandas.tseries.offsets import *

In [88]: d + DateOffset(months=4, days=5)
Out[88]: Timestamp('2008-12-23 09:00:00')
```

The key features of a **DateOffset** object are:

- it can be added / subtracted to/from a datetime object to obtain a shifted date
- it can be multiplied by an integer (positive or negative) so that the increment will be applied multiple times
- it has `rollforward` and `rollback` methods for moving a date forward or backward to the next or previous "offset date"

Subclasses of **DateOffset** define the **apply** function which dictates custom date increment logic, such as adding business days:

```python
class BDay(DateOffset):
    """DateOffset increments between business days""
    def apply(self, other):
        ...
```

```python
In [89]: d - 5 * BDay()
Out[89]: Timestamp('2008-08-11 09:00:00')
```
In [90]: d + BMonthEnd()
Out[90]: Timestamp('2008-08-29 09:00:00')

The `rollforward` and `rollback` methods do exactly what you would expect:

In [91]: d
Out[91]: datetime.datetime(2008, 8, 18, 9, 0)

In [92]: offset = BMonthEnd()

In [93]: offset.rollforward(d)
Out[93]: Timestamp('2008-08-29 09:00:00')

In [94]: offset.rollback(d)
Out[94]: Timestamp('2008-07-31 09:00:00')

It’s definitely worth exploring the `pandas.tseries.offsets` module and the various docstrings for the classes. These operations (apply, rollforward and rollback) preserves time (hour, minute, etc) information by default. To reset time, use `normalize=True` keyword when creating the offset instance. If `normalize=True`, result is normalized after the function is applied.

In [95]: day = Day()

In [96]: day.apply(pd.Timestamp('2014-01-01 09:00'))
Out[96]: Timestamp('2014-01-02 09:00:00')

In [97]: day = Day(normalize=True)

In [98]: day.apply(pd.Timestamp('2014-01-01 09:00'))
Out[98]: Timestamp('2014-01-02 00:00:00')

In [99]: hour = Hour()

In [100]: hour.apply(pd.Timestamp('2014-01-01 22:00'))
Out[100]: Timestamp('2014-01-01 23:00:00')

In [101]: hour = Hour(normalize=True)

In [102]: hour.apply(pd.Timestamp('2014-01-01 22:00'))
Out[102]: Timestamp('2014-01-01 00:00:00')

In [103]: hour.apply(pd.Timestamp('2014-01-01 23:00'))
Out[103]: Timestamp('2014-01-02 00:00:00')

Parametric offsets

Some of the offsets can be “parameterized” when created to result in different behaviors. For example, the `Week` offset for generating weekly data accepts a `weekday` parameter which results in the generated dates always lying on a particular day of the week:

In [104]: d
Out[104]: datetime.datetime(2008, 8, 18, 9, 0)

In [105]: d + Week()
normalize option will be effective for addition and subtraction.

Another example is parameterizing YearEnd with the specific ending month:

Using offsets with Series / DatetimeIndex

Offsets can be used with either a Series or DatetimeIndex to apply the offset to each element.
If the offset class maps directly to a `Timedelta` (`Day`, `Hour`, `Minute`, `Second`, `Micro`, `Milli`, `Nano`) it can be used exactly like a `Timedelta` - see the `Timedelta section` for more examples.

```python
In [119]: s - Day(2)
Out[119]:
0 2011-12-30
1 2011-12-31
2 2012-01-01
dtype: datetime64[ns]

In [120]: td = s - pd.Series(pd.date_range('2011-12-29', '2011-12-31'))

In [121]: td
Out[121]:
0 3 days
1 3 days
2 3 days
dtype: timedelta64[ns]

In [122]: td + Minute(15)
Out[122]:
0 3 days 00:15:00
1 3 days 00:15:00
2 3 days 00:15:00
dtype: timedelta64[ns]
```

Note that some offsets (such as `BQuarterEnd`) do not have a vectorized implementation. They can still be used but may calculate significantly slower and will raise a `PerformanceWarning`

```python
In [123]: rng + BQuarterEnd()
Out[123]: DatetimeIndex(['2012-03-30', '2012-03-30', '2012-03-30'], dtype=
˓→'datetime64[ns]', freq=None)
```

Custom Business Days (Experimental)

The `CDay` or `CustomBusinessDay` class provides a parametric `BusinessDay` class which can be used to create customized business day calendars which account for local holidays and local weekend conventions.

As an interesting example, let’s look at Egypt where a Friday-Saturday weekend is observed.

```python
In [124]: from pandas.tseries.offsets import CustomBusinessDay

In [125]: weekmask_egypt = 'Sun Mon Tue Wed Thu'

# They also observe International Workers’ Day so let’s
# add that for a couple of years
In [126]: holidays = ['2012-05-01', datetimetime(2013, 5, 1), np.datetime64('2014-05-01')]

In [127]: bday_egypt = CustomBusinessDay(holidays=holidays, weekmask=weekmask_egypt)

In [128]: dt = datetime(2013, 4, 30)

In [129]: dt + 2 * bday_egypt
Out[129]: Timestamp('2013-05-05 00:00:00')
```

Let’s map to the weekday names
In [130]: dts = pd.date_range(dt, periods=5, freq=bday_egypt)

In [131]: pd.Series(dts.weekday, dts).map(pd.Series('Mon Tue Wed Thu Fri Sat Sun'.split()))

Out[131]:
2013-04-30 Tue
2013-05-02 Thu
2013-05-05 Sun
2013-05-06 Mon
2013-05-07 Tue
Freq: C, dtype: object

As of v0.14 holiday calendars can be used to provide the list of holidays. See the holiday calendar section for more information.

In [132]: from pandas.tseries.holiday import USFederalHolidayCalendar

In [133]: bday_us = CustomBusinessDay(calendar=USFederalHolidayCalendar())

Friday before MLK Day
In [134]: dt = datetime(2014, 1, 17)

Tuesday after MLK Day (Monday is skipped because it's a holiday)
In [135]: dt + bday_us

Out[135]: Timestamp('2014-01-21 00:00:00')

Monthly offsets that respect a certain holiday calendar can be defined in the usual way.

In [136]: from pandas.tseries.offsets import CustomBusinessMonthBegin

In [137]: bmth_us = CustomBusinessMonthBegin(calendar=USFederalHolidayCalendar())

Skip new years
In [138]: dt = datetime(2013, 12, 17)

In [139]: dt + bmth_us

Out[139]: Timestamp('2014-01-02 00:00:00')

Define date index with custom offset
In [140]: pd.DatetimeIndex(start='20100101', end='20120101', freq=bmth_us)

Out[140]:
DatetimeIndex(['2010-01-04', '2010-02-01', '2010-03-01', '2010-04-01',
'2010-05-03', '2010-06-01', '2010-07-01', '2010-08-02',
'2010-09-01', '2010-10-01', '2010-11-01', '2010-12-01',
'2011-01-03', '2011-02-01', '2011-03-01', '2011-04-01',
'2011-09-01', '2011-10-03', '2011-11-01', '2011-12-01'],
dtype='datetime64[ns]', freq='CBMS')

Note: The frequency string ‘C’ is used to indicate that a CustomBusinessDay DateOffset is used, it is important to note that since CustomBusinessDay is a parameterised type, instances of CustomBusinessDay may differ and this is not detectable from the ‘C’ frequency string. The user therefore needs to ensure that the ‘C’ frequency string is used consistently within the user’s application.
Business Hour

The `BusinessHour` class provides a business hour representation on `BusinessDay`, allowing to use specific start and end times.

By default, `BusinessHour` uses 9:00 - 17:00 as business hours. Adding `BusinessHour` will increment `Timestamp` by hourly. If target `Timestamp` is out of business hours, move to the next business hour then increment it. If the result exceeds the business hours end, remaining is added to the next business day.

```
In [141]: bh = BusinessHour()

In [142]: bh
Out[142]: <BusinessHour: BH=09:00-17:00>

# 2014-08-01 is Friday
In [143]: pd.Timestamp('2014-08-01 10:00').weekday()
Out[143]: 4

In [144]: pd.Timestamp('2014-08-01 10:00') + bh
Out[144]: Timestamp('2014-08-01 11:00:00')

# Below example is the same as: pd.Timestamp('2014-08-01 09:00') + bh
In [145]: pd.Timestamp('2014-08-01 08:00') + bh
Out[145]: Timestamp('2014-08-01 10:00:00')

# If the results is on the end time, move to the next business day
In [146]: pd.Timestamp('2014-08-01 16:00') + bh
Out[146]: Timestamp('2014-08-04 09:00:00')

# Remainings are added to the next day
In [147]: pd.Timestamp('2014-08-01 16:30') + bh
Out[147]: Timestamp('2014-08-04 09:30:00')

# Adding 2 business hours
In [148]: pd.Timestamp('2014-08-01 10:00') + BusinessHour(2)
Out[148]: Timestamp('2014-08-01 12:00:00')

# Subtracting 3 business hours
In [149]: pd.Timestamp('2014-08-01 10:00') + BusinessHour(-3)
Out[149]: Timestamp('2014-07-31 15:00:00')
```

Also, you can specify start and end time by keywords. Argument must be `str` which has `hour:minute` representation or `datetime.time` instance. Specifying seconds, microseconds and nanoseconds as business hour results in `ValueError`.

```
In [150]: bh = BusinessHour(start='11:00', end=time(20, 0))

In [151]: bh
Out[151]: <BusinessHour: BH=11:00-20:00>

In [152]: pd.Timestamp('2014-08-01 13:00') + bh
Out[152]: Timestamp('2014-08-01 14:00:00')

In [153]: pd.Timestamp('2014-08-01 09:00') + bh
Out[153]: Timestamp('2014-08-01 12:00:00')

In [154]: pd.Timestamp('2014-08-01 18:00') + bh
Out[154]: Timestamp('2014-08-01 19:00:00')
```
Passing `start` time later than `end` represents midnight business hour. In this case, business hour exceeds midnight and overlap to the next day. Valid business hours are distinguished by whether it started from valid `BusinessDay`.

```python
In [155]: bh = BusinessHour(start='17:00', end='09:00')
In [156]: bh
Out[156]: <BusinessHour: BH=17:00-09:00>
In [157]: pd.Timestamp('2014-08-01 17:00') + bh
Out[157]: Timestamp('2014-08-01 18:00:00')
In [158]: pd.Timestamp('2014-08-01 23:00') + bh
Out[158]: Timestamp('2014-08-02 00:00:00')

# Although 2014-08-02 is Saturday,
# it is valid because it starts from 08-01 (Friday).
In [159]: pd.Timestamp('2014-08-02 04:00') + bh
Out[159]: Timestamp('2014-08-02 05:00:00')

# Although 2014-08-04 is Monday,
# it is out of business hours because it starts from 08-03 (Sunday).
In [160]: pd.Timestamp('2014-08-04 04:00') + bh
Out[160]: Timestamp('2014-08-04 18:00:00')
```

Applying `BusinessHour.rollforward` and `rollback` to out of business hours results in the next business hour start or previous day’s end. Different from other offsets, `BusinessHour.rollforward` may output different results from `apply` by definition.

This is because one day’s business hour end is equal to next day’s business hour start. For example, under the default business hours (9:00 - 17:00), there is no gap (0 minutes) between 2014-08-01 17:00 and 2014-08-04 09:00.

```python
# This adjusts a Timestamp to business hour edge
In [161]: BusinessHour().rollback(pd.Timestamp('2014-08-02 15:00'))
Out[161]: Timestamp('2014-08-01 17:00:00')
In [162]: BusinessHour().rollforward(pd.Timestamp('2014-08-02 15:00'))
Out[162]: Timestamp('2014-08-04 09:00:00')

# It is the same as BusinessHour().apply(pd.Timestamp('2014-08-01 17:00')).
# And it is the same as BusinessHour().apply(pd.Timestamp('2014-08-04 09:00'))
In [163]: BusinessHour().apply(pd.Timestamp('2014-08-02 15:00'))
Out[163]: Timestamp('2014-08-04 10:00:00')
```

`BusinessDay results (for reference)`

```python
In [164]: BusinessHour().rollforward(pd.Timestamp('2014-08-02'))
Out[164]: Timestamp('2014-08-04 09:00:00')

# It is the same as BusinessDay().apply(pd.Timestamp('2014-08-01'))
# The result is the same as rollforward because BusinessDay never overlap.
In [165]: BusinessHour().apply(pd.Timestamp('2014-08-02'))
Out[165]: Timestamp('2014-08-04 10:00:00')
```

BusinessHour regards Saturday and Sunday as holidays. To use arbitrary holidays, you can use `CustomBusinessHour offset`, see `Custom Business Hour`.
Custom Business Hour

New in version 0.18.1.

The CustomBusinessHour is a mixture of BusinessHour and CustomBusinessDay which allows you to specify arbitrary holidays. CustomBusinessHour works as the same as BusinessHour except that it skips specified custom holidays.

```python
In [166]: from pandas.tseries.holiday import USFederalHolidayCalendar
In [167]: bhour_us = CustomBusinessHour(calendar=USFederalHolidayCalendar())

# Friday before MLK Day
In [168]: dt = datetime(2014, 1, 17, 15)
In [169]: dt + bhour_us
Out[169]: Timestamp('2014-01-17 16:00:00')

# Tuesday after MLK Day (Monday is skipped because it's a holiday)
In [170]: dt + bhour_us * 2
Out[170]: Timestamp('2014-01-21 09:00:00')
```

You can use keyword arguments supported by either BusinessHour and CustomBusinessDay.

```python
In [171]: bhour_mon = CustomBusinessHour(start='10:00', weekmask='Tue Wed Thu Fri')

# Monday is skipped because it’s a holiday, business hour starts from 10:00
In [172]: dt + bhour_mon * 2
Out[172]: Timestamp('2014-01-21 10:00:00')
```

Offset Aliases

A number of string aliases are given to useful common time series frequencies. We will refer to these aliases as offset aliases (referred to as time rules prior to v0.8.0).
<table>
<thead>
<tr>
<th>Alias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>business day frequency</td>
</tr>
<tr>
<td>C</td>
<td>custom business day frequency (experimental)</td>
</tr>
<tr>
<td>D</td>
<td>calendar day frequency</td>
</tr>
<tr>
<td>W</td>
<td>weekly frequency</td>
</tr>
<tr>
<td>M</td>
<td>month end frequency</td>
</tr>
<tr>
<td>SM</td>
<td>semi-month end frequency (15th and end of month)</td>
</tr>
<tr>
<td>BM</td>
<td>business month end frequency</td>
</tr>
<tr>
<td>CBM</td>
<td>custom business month end frequency</td>
</tr>
<tr>
<td>MS</td>
<td>month start frequency</td>
</tr>
<tr>
<td>SMS</td>
<td>semi-month start frequency (1st and 15th)</td>
</tr>
<tr>
<td>BMS</td>
<td>business month start frequency</td>
</tr>
<tr>
<td>CBMS</td>
<td>custom business month start frequency</td>
</tr>
<tr>
<td>Q</td>
<td>quarter end frequency</td>
</tr>
<tr>
<td>BQ</td>
<td>business quarter end frequency</td>
</tr>
<tr>
<td>QS</td>
<td>quarter start frequency</td>
</tr>
<tr>
<td>BQS</td>
<td>business quarter start frequency</td>
</tr>
<tr>
<td>A</td>
<td>year end frequency</td>
</tr>
<tr>
<td>BA</td>
<td>business year end frequency</td>
</tr>
<tr>
<td>AS</td>
<td>year start frequency</td>
</tr>
<tr>
<td>BAS</td>
<td>business year start frequency</td>
</tr>
<tr>
<td>BH</td>
<td>business hour frequency</td>
</tr>
<tr>
<td>H</td>
<td>hourly frequency</td>
</tr>
<tr>
<td>T.min</td>
<td>minutely frequency</td>
</tr>
<tr>
<td>S</td>
<td>secondly frequency</td>
</tr>
<tr>
<td>L.ms</td>
<td>milliseconds</td>
</tr>
<tr>
<td>U.us</td>
<td>microseconds</td>
</tr>
<tr>
<td>N</td>
<td>nanoseconds</td>
</tr>
</tbody>
</table>

Combining Aliases

As we have seen previously, the alias and the offset instance are fungible in most functions:

```python
In [173]: pd.date_range(start, periods=5, freq='B')
Out[173]:
dtype='datetime64[ns]', freq='B')
```

```python
In [174]: pd.date_range(start, periods=5, freq=BDay())
Out[174]:
dtype='datetime64[ns]', freq='B')
```

You can combine together day and intraday offsets:

```python
In [175]: pd.date_range(start, periods=10, freq='2h20min')
Out[175]:
DatetimeIndex(['2011-01-01 00:00:00', '2011-01-01 02:20:00', '2011-01-01 04:40:00', '2011-01-01 07:00:00', '2011-01-01 09:20:00', '2011-01-01 11:40:00', '2011-01-01 14:00:00', '2011-01-01 16:20:00', '2011-01-01 18:40:00', '2011-01-01 21:00:00'],
```
In [176]: pd.date_range(start, periods=10, freq='1D10U')
Out[176]:
DatetimeIndex(['2011-01-01 00:00:00', '2011-01-02 00:00:00.000010',
 '2011-01-03 00:00:00.000020', '2011-01-04 00:00:00.000030',
 '2011-01-05 00:00:00.000040', '2011-01-06 00:00:00.000050',
 '2011-01-07 00:00:00.000060', '2011-01-08 00:00:00.000070',
 '2011-01-09 00:00:00.000080', '2011-01-10 00:00:00.000090'],
 dtype='datetime64[ns]', freq='86400000010U')

Anchored Offsets

For some frequencies you can specify an anchoring suffix:

<table>
<thead>
<tr>
<th>Alias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-SUN</td>
<td>weekly frequency (sundays). Same as ‘W’</td>
</tr>
<tr>
<td>W-MON</td>
<td>weekly frequency (mondays)</td>
</tr>
<tr>
<td>W-TUE</td>
<td>weekly frequency (tuesdays)</td>
</tr>
<tr>
<td>W-WED</td>
<td>weekly frequency (wednesdays)</td>
</tr>
<tr>
<td>W-THU</td>
<td>weekly frequency (thursdays)</td>
</tr>
<tr>
<td>W-FRI</td>
<td>weekly frequency (fridays)</td>
</tr>
<tr>
<td>W-SAT</td>
<td>weekly frequency (saturdays)</td>
</tr>
<tr>
<td>(B)Q(S)-DEC</td>
<td>quarterly frequency, year ends in December. Same as ‘Q’</td>
</tr>
<tr>
<td>(B)Q(S)-JAN</td>
<td>quarterly frequency, year ends in January</td>
</tr>
<tr>
<td>(B)Q(S)-FEB</td>
<td>quarterly frequency, year ends in February</td>
</tr>
<tr>
<td>(B)Q(S)-MAR</td>
<td>quarterly frequency, year ends in March</td>
</tr>
<tr>
<td>(B)Q(S)-APR</td>
<td>quarterly frequency, year ends in April</td>
</tr>
<tr>
<td>(B)Q(S)-MAY</td>
<td>quarterly frequency, year ends in May</td>
</tr>
<tr>
<td>(B)Q(S)-JUN</td>
<td>quarterly frequency, year ends in June</td>
</tr>
<tr>
<td>(B)Q(S)-JUL</td>
<td>quarterly frequency, year ends in July</td>
</tr>
<tr>
<td>(B)Q(S)-AUG</td>
<td>quarterly frequency, year ends in August</td>
</tr>
<tr>
<td>(B)Q(S)-SEP</td>
<td>quarterly frequency, year ends in September</td>
</tr>
<tr>
<td>(B)Q(S)-OCT</td>
<td>quarterly frequency, year ends in October</td>
</tr>
<tr>
<td>(B)Q(S)-NOV</td>
<td>quarterly frequency, year ends in November</td>
</tr>
<tr>
<td>(B)A(S)-DEC</td>
<td>annual frequency, anchored end of December. Same as ‘A’</td>
</tr>
<tr>
<td>(B)A(S)-JAN</td>
<td>annual frequency, anchored end of January</td>
</tr>
<tr>
<td>(B)A(S)-FEB</td>
<td>annual frequency, anchored end of February</td>
</tr>
<tr>
<td>(B)A(S)-MAR</td>
<td>annual frequency, anchored end of March</td>
</tr>
<tr>
<td>(B)A(S)-APR</td>
<td>annual frequency, anchored end of April</td>
</tr>
<tr>
<td>(B)A(S)-MAY</td>
<td>annual frequency, anchored end of May</td>
</tr>
<tr>
<td>(B)A(S)-JUN</td>
<td>annual frequency, anchored end of June</td>
</tr>
<tr>
<td>(B)A(S)-JUL</td>
<td>annual frequency, anchored end of July</td>
</tr>
<tr>
<td>(B)A(S)-AUG</td>
<td>annual frequency, anchored end of August</td>
</tr>
<tr>
<td>(B)A(S)-SEP</td>
<td>annual frequency, anchored end of September</td>
</tr>
<tr>
<td>(B)A(S)-OCT</td>
<td>annual frequency, anchored end of October</td>
</tr>
<tr>
<td>(B)A(S)-NOV</td>
<td>annual frequency, anchored end of November</td>
</tr>
</tbody>
</table>

These can be used as arguments to date_range, bdate_range, constructors for DatetimeIndex, as well as various other timeseries-related functions in pandas.
Anchored Offset Semantics

For those offsets that are anchored to the start or end of specific frequency (MonthEnd, MonthBegin, WeekEnd, etc) the following rules apply to rolling forward and backwards.

When \(n \) is not 0, if the given date is not on an anchor point, it snapped to the next(previous) anchor point, and moved \(|n| - 1\) additional steps forwards or backwards.

```
In [177]: pd.Timestamp('2014-01-02') + MonthBegin(n=1)
Out[177]: Timestamp('2014-02-01 00:00:00')

In [178]: pd.Timestamp('2014-01-02') + MonthEnd(n=1)
Out[178]: Timestamp('2014-01-31 00:00:00')

In [179]: pd.Timestamp('2014-01-02') - MonthBegin(n=1)
Out[179]: Timestamp('2014-01-01 00:00:00')

In [180]: pd.Timestamp('2014-01-02') - MonthEnd(n=1)
Out[180]: Timestamp('2013-12-31 00:00:00')

In [181]: pd.Timestamp('2014-01-02') + MonthBegin(n=4)
Out[181]: Timestamp('2014-05-01 00:00:00')

In [182]: pd.Timestamp('2014-01-02') - MonthBegin(n=4)
Out[182]: Timestamp('2013-10-01 00:00:00')
```

If the given date is on an anchor point, it is moved \(|n|\) points forwards or backwards.

```
In [183]: pd.Timestamp('2014-01-01') + MonthBegin(n=1)
Out[183]: Timestamp('2014-02-01 00:00:00')

In [184]: pd.Timestamp('2014-01-31') + MonthEnd(n=1)
Out[184]: Timestamp('2014-02-28 00:00:00')

In [185]: pd.Timestamp('2014-01-01') - MonthBegin(n=1)
Out[185]: Timestamp('2013-12-01 00:00:00')

In [186]: pd.Timestamp('2014-01-31') - MonthEnd(n=1)
Out[186]: Timestamp('2013-10-31 00:00:00')

In [187]: pd.Timestamp('2014-01-01') + MonthBegin(n=4)
Out[187]: Timestamp('2014-05-01 00:00:00')

In [188]: pd.Timestamp('2014-01-31') - MonthBegin(n=4)
Out[188]: Timestamp('2013-10-01 00:00:00')
```

For the case when \(n=0 \), the date is not moved if on an anchor point, otherwise it is rolled forward to the next anchor point.

```
In [189]: pd.Timestamp('2014-01-02') + MonthBegin(n=0)
Out[189]: Timestamp('2014-02-01 00:00:00')

In [190]: pd.Timestamp('2014-01-02') + MonthEnd(n=0)
Out[190]: Timestamp('2014-01-31 00:00:00')

In [191]: pd.Timestamp('2014-01-01') + MonthBegin(n=0)
Out[191]: Timestamp('2014-01-01 00:00:00')
```
Holidays / Holiday Calendars

Holidays and calendars provide a simple way to define holiday rules to be used with CustomBusinessDay or in other analysis that requires a predefined set of holidays. The AbstractHolidayCalendar class provides all the necessary methods to return a list of holidays and only rules need to be defined in a specific holiday calendar class. Further, start_date and end_date class attributes determine over what date range holidays are generated. These should be overwritten on the AbstractHolidayCalendar class to have the range apply to all calendar subclasses. USFederalHolidayCalendar is the only calendar that exists and primarily serves as an example for developing other calendars.

For holidays that occur on fixed dates (e.g., US Memorial Day or July 4th) an observance rule determines when that holiday is observed if it falls on a weekend or some other non-observed day. Defined observance rules are:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nearest_workday</td>
<td>move Saturday to Friday and Sunday to Monday</td>
</tr>
<tr>
<td>sunday_to_monday</td>
<td>move Sunday to following Monday</td>
</tr>
<tr>
<td>next_monday_or_tuesday</td>
<td>move Saturday to Monday and Sunday/Monday to Tuesday</td>
</tr>
<tr>
<td>previous_friday</td>
<td>move Saturday and Sunday to previous Friday</td>
</tr>
<tr>
<td>next_monday</td>
<td>move Saturday and Sunday to following Monday</td>
</tr>
</tbody>
</table>

An example of how holidays and holiday calendars are defined:

```python
In [193]: from pandas.tseries.holiday import Holiday, USMemorialDay,
       AbstractHolidayCalendar, nearest_workday, MO

In [194]: class ExampleCalendar(AbstractHolidayCalendar):
       ...
       rules = [
       USMemorialDay,
       Holiday('July 4th', month=7, day=4, observance=nearest_workday),
       Holiday('Columbus Day', month=10, day=1,
       offset=DateOffset(weekday=MO(2))), # same as 2*Week(weekday=2)
       ]

In [195]: cal = ExampleCalendar()

In [196]: cal.holidays(datetime(2012, 1, 1), datetime(2012, 12, 31))
Out[196]: DatetimeIndex(['2012-05-28', '2012-07-04', '2012-10-08'], dtype='datetime64[ns]', freq=None)
```

Using this calendar, creating an index or doing offset arithmetic skips weekends and holidays (i.e., Memorial Day/July 4th). For example, the below defines a custom business day offset using the ExampleCalendar. Like any other offset, it can be used to create a DatetimeIndex or added to datetime or Timestamp objects.

```python
In [197]: from pandas.tseries.offsets import CDay

In [198]: pd.DatetimeIndex(start='7/1/2012', end='7/10/2012',
       freq=CDay(calendar=cal)).to_pydatetime()
Out[198]: array([datetime.datetime(2012, 7, 2, 0, 0),
            datetime.datetime(2012, 7, 3, 0, 0),
            ...], dtype=object)
```
Ranges are defined by the start_date and end_date class attributes of AbstractHolidayCalendar. The defaults are below.

In [204]: AbstractHolidayCalendar.start_date
Out[204]: Timestamp('1970-01-01 00:00:00')

In [205]: AbstractHolidayCalendar.end_date
Out[205]: Timestamp('2030-12-31 00:00:00')

These dates can be overwritten by setting the attributes as datetime/Timestamp/string.

In [206]: AbstractHolidayCalendar.start_date = datetime(2012, 1, 1)
In [207]: AbstractHolidayCalendar.end_date = datetime(2012, 12, 31)

Every imported calendar class will automatically be available by this function. Also, HolidayCalendarFactory provides an easy interface to create calendars that are combinations of calendars or calendars with additional rules.

In [209]: from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory,

 USLaborDay

In [210]: cal = get_calendar('ExampleCalendar')

In [211]: cal.rules
Out[211]: [Holiday: MemorialDay (month=5, day=31, offset=<DateOffset: kwds={'weekday': MO(-1)}>),
Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at 0x7ff271135aa0>),
Holiday: Columbus Day (month=10, day=1, offset=<DateOffset: kwds={'weekday': MO(+2)}>)]

In [212]: new_cal = HolidayCalendarFactory('NewExampleCalendar', cal, USLaborDay)
Time series-related instance methods

Shifting / lagging

One may want to shift or lag the values in a time series back and forward in time. The method for this is shift, which is available on all of the pandas objects.

```python
In [214]: ts = ts[:5]
In [215]: ts.shift(1)
Out[215]:
2011-01-31   NaN
2011-02-28 -1.281247
2011-03-31  -0.727707
2011-04-29  -0.121306
2011-05-31  -0.097883
Freq: BM, dtype: float64
```

The shift method accepts an freq argument which can accept a DateOffset class or other timedelta-like object or also a offset alias:

```python
In [216]: ts.shift(5, freq=offsets.BDay())
Out[216]:
2011-02-07 -1.281247
2011-03-07  -0.727707
2011-04-07  -0.121306
2011-05-06  -0.097883
2011-06-07   0.695775
dtype: float64
```

Rather than changing the alignment of the data and the index, DataFrame and Series objects also have a tshift convenience method that changes all the dates in the index by a specified number of offsets:

```python
In [218]: ts.tshift(5, freq='D')
Out[218]:
2011-06-30 -1.281247
2011-07-29  -0.727707
2011-08-31  -0.121306
2011-09-30  -0.097883
2011-10-31   0.695775
Freq: BM, dtype: float64
```
2011-02-05 -1.281247
2011-03-05 -0.727707
2011-04-05 -0.121306
2011-05-04 -0.097883
2011-06-05 0.695775
dtype: float64

Note that with tshift, the leading entry is no longer NaN because the data is not being realigned.

Frequency conversion

The primary function for changing frequencies is the `asfreq` function. For a `DatetimeIndex`, this is basically just a thin, but convenient wrapper around `reindex` which generates a `date_range` and calls `reindex`.

```python
In [219]: dr = pd.date_range('1/1/2010', periods=3, freq=3 * offsets.BDay())
In [220]: ts = pd.Series(randn(3), index=dr)
In [221]: ts
Out[221]:
2010-01-01  0.532005
2010-01-06  0.544874
2010-01-11 -1.001788
Freq: 3B, dtype: float64

In [222]: ts.asfreq(BDay())
Out[222]:
2010-01-01  0.532005
2010-01-04 NaN
2010-01-05 NaN
2010-01-06  0.544874
2010-01-07 NaN
2010-01-08 NaN
2010-01-11 -1.001788
Freq: B, dtype: float64
```

`asfreq` provides a further convenience so you can specify an interpolation method for any gaps that may appear after the frequency conversion.

```python
In [223]: ts.asfreq(BDay(), method='pad')
Out[223]:
2010-01-01  0.532005
2010-01-04  0.532005
2010-01-05  0.532005
2010-01-06  0.544874
2010-01-07  0.544874
2010-01-08  0.544874
2010-01-11 -1.001788
Freq: B, dtype: float64
```

Filling forward / backward

Related to `asfreq` and `reindex` is the `fillna` function documented in the *missing data section*.

20.8. Time series-related instance methods 759
Converting to Python datetimes

DatetimeIndex can be converted to an array of Python native datetime.datetime objects using the `to_pydatetime` method.

Resampling

Warning: The interface to `.resample` has changed in 0.18.0 to be more groupby-like and hence more flexible. See the [whatsnew docs](https://pandas.pydata.org/pandas-docs/stable/whatsnew.html) for a comparison with prior versions.

Pandas has a simple, powerful, and efficient functionality for performing resampling operations during frequency conversion (e.g., converting secondly data into 5-minutely data). This is extremely common in, but not limited to, financial applications.

`.resample()` is a time-based groupby, followed by a reduction method on each of its groups.

Starting in version 0.18.1, the `resample()` function can be used directly from DataFrameGroupBy objects, see the [groupby docs](https://pandas.pydata.org/pandas-docs/stable/groupby.html).

Note: `.resample()` is similar to using a `.rolling()` operation with a time-based offset, see a discussion [here](https://stats.stackexchange.com/questions/177036/time-based-grouping-and-rolling-in-pandas)

See some [cookbook examples](https://pandas.pydata.org/pandas-docs/stable/cookbook.html#time-frequency-operations) for some advanced strategies

```python
In [224]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
In [225]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
In [226]: ts.resample('5Min').sum()
Out[226]:
2012-01-01 24390
Freq: 5T, dtype: int64
```

The `resample` function is very flexible and allows you to specify many different parameters to control the frequency conversion and resampling operation.

The `how` parameter can be a function name or numpy array function that takes an array and produces aggregated values:

```python
In [227]: ts.resample('5Min').mean()
Out[227]:
2012-01-01 243.9
Freq: 5T, dtype: float64
In [228]: ts.resample('5Min').ohlc()
Out[228]:
open   high   low   close
2012-01-01  161   495   1    245
In [229]: ts.resample('5Min').max()
Out[229]:
2012-01-01  495
Freq: 5T, dtype: int64
```
Any function available via dispatching can be given to the how parameter by name, including sum, mean, std, sem, max, min, median, first, last, ohlc.

For downsampling, closed can be set to ‘left’ or ‘right’ to specify which end of the interval is closed:

```
In [230]: ts.resample('5Min', closed='right').mean()
Out[230]:
2011-12-31 23:55:00    161.000000
2012-01-01 00:00:00    244.737374
Freq: 5T, dtype: float64

In [231]: ts.resample('5Min', closed='left').mean()
Out[231]:
2012-01-01 243.9
Freq: 5T, dtype: float64
```

Parameters like label and loffset are used to manipulate the resulting labels. label specifies whether the result is labeled with the beginning or the end of the interval. loffset performs a time adjustment on the output labels.

```
In [232]: ts.resample('5Min').mean()  # by default label='right'
Out[232]:
2012-01-01  243.9
Freq: 5T, dtype: float64

In [233]: ts.resample('5Min', label='left').mean()
Out[233]:
2012-01-01  243.9
Freq: 5T, dtype: float64

In [234]: ts.resample('5Min', label='left', loffset='1s').mean()
Out[234]:
2012-01-01 00:00:01  243.9
dtype: float64
```

The axis parameter can be set to 0 or 1 and allows you to resample the specified axis for a DataFrame.

kind can be set to ‘timestamp’ or ‘period’ to convert the resulting index to/from time-stamp and time-span representations. By default resample retains the input representation.

convention can be set to ‘start’ or ‘end’ when resampling period data (detail below). It specifies how low frequency periods are converted to higher frequency periods.

Up Sampling

For upsampling, you can specify a way to upsample and the limit parameter to interpolate over the gaps that are created:

```
# from secondly to every 250 milliseconds
In [235]: ts[:2].resample('250L').asfreq()
Out[235]:
2012-01-01 00:00:00  161.0
2012-01-01 00:00:250 NaN
2012-01-01 00:00:500 NaN
2012-01-01 00:00:750 NaN
2012-01-01 00:01:000  199.0
Freq: 250L, dtype: float64

In [236]: ts[:2].resample('250L').ffill()
```

20.9. Resampling
Sparse Resampling

Sparse timeseries are ones where you have a lot fewer points relative to the amount of time you are looking to resample. Naively upsampling a sparse series can potentially generate lots of intermediate values. When you don’t want to use a method to fill these values, e.g. `fill_method` is `None`, then intermediate values will be filled with `NaN`.

Since `resample` is a time-based groupby, the following is a method to efficiently resample only the groups that are not all `NaN`.

```python
In [238]: rng = pd.date_range('2014-1-1', periods=100, freq='D') + pd.Timedelta('1s')
In [239]: ts = pd.Series(range(100), index=rng)
```

If we want to resample to the full range of the series

```python
In [240]: ts.resample('3T').sum()
```

We can instead only resample those groups where we have points as follows:

```python
In [241]: from functools import partial
In [242]: from pandas.tseries.frequencies import to_offset
```
In [243]: def round(t, freq):
 : freq = to_offset(freq)
 : return pd.Timestamp((t.value // freq.delta.value) * freq.delta.value)
 :

In [244]: ts.groupby(partial(round, freq='3T')).sum()
Out[244]:
2014-01-01 0
2014-01-02 1
2014-01-03 2
2014-01-04 3
2014-01-05 4
2014-01-06 5
2014-01-07 6
...
2014-04-04 93
2014-04-05 94
2014-04-06 95
2014-04-07 96
2014-04-08 97
2014-04-09 98
2014-04-10 99
dtype: int64

Aggregation

Similar to `groupby aggregates` and the `window functions`, a Resampler can be selectively resampled.

Resampling a DataFrame, the default will be to act on all columns with the same function.

In [245]: df = pd.DataFrame(np.random.randn(1000, 3),
 : index=pd.date_range('1/1/2012', freq='S', periods=1000),
 : columns=['A', 'B', 'C'])
 :
In [246]: r = df.resample('3T')

In [247]: r.mean()
Out[247]:
A B C
2012-01-01 00:00:00 -0.220339 0.034854 -0.073757
2012-01-01 00:03:00 0.037070 0.040013 0.053754
2012-01-01 00:06:00 -0.041597 -0.144562 -0.007614
2012-01-01 00:09:00 0.043127 -0.076432 -0.032570
2012-01-01 00:12:00 -0.027609 0.054618 0.056878
2012-01-01 00:15:00 -0.014181 0.043958 0.077734

We can select a specific column or columns using standard getitem.

In [248]: r['A'].mean()
Out[248]:
2012-01-01 00:00:00 -0.220339
2012-01-01 00:03:00 0.037070
2012-01-01 00:06:00 -0.041597
2012-01-01 00:09:00 0.043127
2012-01-01 00:12:00 -0.027609
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
2012-01-01 00:15:00 -0.014181
Freq: 3T, Name: A, dtype: float64

In [249]: r[['A', 'B']].mean()
Out[249]:
          A         B
2012-01-01 00:00:00 -0.220339  0.034854
2012-01-01 00:03:00  0.037070  0.040013
2012-01-01 00:06:00 -0.041597 -0.144562
2012-01-01 00:09:00  0.043127  0.076432
2012-01-01 00:12:00 -0.027609  0.054618
2012-01-01 00:15:00 -0.014181  0.043958
```

You can pass a list or dict of functions to do aggregation with, outputting a DataFrame:

```python
In [250]: r['A'].agg([np.sum, np.mean, np.std])
Out[250]:
                   sum     mean     std
2012-01-01 00:00:00 -39.660974 -0.220339 1.033912
2012-01-01 00:03:00  6.672559  0.037070 0.971503
2012-01-01 00:06:00 -7.487453 -0.041597 1.018418
2012-01-01 00:09:00  7.762901  0.043127 1.025842
2012-01-01 00:12:00 -4.969624 -0.027609 0.961649
2012-01-01 00:15:00 -1.418119 -0.014181 0.978847
```

If a dict is passed, the keys will be used to name the columns. Otherwise the function’s name (stored in the function object) will be used.

```python
In [251]: r['A'].agg({'result1' : np.sum,
               ....:   'result2' : np.mean})
Out[251]:
                  result2    result1
2012-01-01 00:00:00 -0.220339  -39.660974
2012-01-01 00:03:00  0.037070   6.672559
2012-01-01 00:06:00 -0.041597  -7.487453
2012-01-01 00:09:00  0.043127   7.762901
2012-01-01 00:12:00 -0.027609  -4.969624
2012-01-01 00:15:00 -0.014181  -1.418119
```

On a resampled DataFrame, you can pass a list of functions to apply to each column, which produces an aggregated result with a hierarchical index:

```python
In [252]: r.agg([np.sum, np.mean])
Out[252]:
          A         B         C
         sum       mean   sum       mean   sum
2012-01-01 00:00:00 -39.660974  6.273786 -13.276324
2012-01-01 00:03:00  6.672559   7.202361  10.237970
2012-01-01 00:06:00 -7.487453 -13.757837 -1.370600
2012-01-01 00:09:00  7.762901  13.757837  7.773442
2012-01-01 00:12:00 -4.969624  10.237970  7.773442
2012-01-01 00:15:00 -1.418119   4.395766   7.773442
```

mean

```python
2012-01-01 00:00:00  0.034854
2012-01-01 00:03:00  0.040013
2012-01-01 00:06:00  0.144562
2012-01-01 00:09:00  0.076432
2012-01-01 00:12:00  0.054618
2012-01-01 00:15:00  0.043958
```

764 Chapter 20. Time Series / Date functionality
By passing a dict to `aggregate` you can apply a different aggregation to the columns of a DataFrame:

```python
In [253]: r.agg({'A' : np.sum,
       ......:       'B' : lambda x: np.std(x, ddof=1)})
......:
Out[253]:
   A        B
2012-01-01 00:00:00 -39.660974 1.004756
2012-01-01 00:03:00  6.672559  0.963559
2012-01-01 00:06:00 -7.487453  0.950766
2012-01-01 00:09:00  7.762901  0.949182
2012-01-01 00:12:00 -4.969624  1.093736
2012-01-01 00:15:00 -1.418119  1.028869
```

The function names can also be strings. In order for a string to be valid it must be implemented on the Resampled object.

```python
In [254]: r.agg({'A' : 'sum', 'B' : 'std'})
Out[254]:
   A        B
2012-01-01 00:00:00 -39.660974 1.004756
2012-01-01 00:03:00  6.672559  0.963559
2012-01-01 00:06:00 -7.487453  0.950766
2012-01-01 00:09:00  7.762901  0.949182
2012-01-01 00:12:00 -4.969624  1.093736
2012-01-01 00:15:00 -1.418119  1.028869
```

Furthermore, you can also specify multiple aggregation functions for each column separately.

```python
In [255]: r.agg({'A' : ['sum','std'], 'B' : ['mean','std']})
Out[255]:
        A         B
   sum std   mean std
2012-01-01 00:00:00 -39.660974 1.033912 0.034854 1.004756
2012-01-01 00:03:00  6.672559 0.971503 0.040013 0.963559
2012-01-01 00:06:00 -7.487453 1.018418 -0.144562 0.950766
2012-01-01 00:09:00  7.762901 1.025842 -0.076432 0.949182
2012-01-01 00:12:00 -4.969624 0.961649 0.054618 1.093736
2012-01-01 00:15:00 -1.418119 0.978847 0.043958 1.028869
```

If a DataFrame does not have a datetimelike index, but instead you want to resample based on datetimelike column in the frame, it can passed to the `on` keyword.

```python
In [256]: df = pd.DataFrame({'date': pd.date_range('2015-01-01', freq='W', periods=5),
       ......:       'a': np.arange(5),
       ......:       index=pd.MultiIndex.from_arrays([
       ......:            [1,2,3,4,5],
       ......:            pd.date_range('2015-01-01', freq='W',
       ......:         periods=5)],
       ......:       names=['v','d']))

In [257]: df
```

20.9. Resampling
Similarly, if you instead want to resample by a datetimelike level of `MultiIndex`, its name or location can be passed to the `level` keyword.

```python
In [259]: df.resample('M', level='d').sum()
Out[259]:
                   a
date
2015-01-31  6
2015-02-28  4
```

Time Span Representation

Regular intervals of time are represented by `Period` objects in pandas while sequences of `Period` objects are collected in a `PeriodIndex`, which can be created with the convenience function `period_range`.

Period

A `Period` represents a span of time (e.g., a day, a month, a quarter, etc). You can specify the span via `freq` keyword using a frequency alias like below. Because `freq` represents a span of `Period`, it cannot be negative like “-3D”.

```python
In [260]: pd.Period('2012', freq='A-DEC')
Out[260]: Period('2012', 'A-DEC')

In [261]: pd.Period('2012-1-1', freq='D')
Out[261]: Period('2012-01-01', 'D')

In [262]: pd.Period('2012-1-1 19:00', freq='H')
Out[262]: Period('2012-01-01 19:00', 'H')

In [263]: pd.Period('2012-1-1 19:00', freq='5H')
Out[263]: Period('2012-01-01 19:00', '5H')
```

Adding and subtracting integers from periods shifts the period by its own frequency. Arithmetic is not allowed between `Period` with different `freq` (span).

```python
In [264]: p = pd.Period('2012', freq='A-DEC')
In [265]: p + 1
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

Out[265]: Period('2013', 'A-DEC')

In [266]: p - 3
Out[266]: Period('2009', 'A-DEC')

In [267]: p = pd.Period('2012-01', freq='2M')

In [268]: p + 2
Out[268]: Period('2012-05', '2M')

In [269]: p - 1
Out[269]: Period('2011-11', '2M')

In [270]: p == pd.Period('2012-01', freq='3M')

IncompatibleFrequency Traceback (most recent call last)
<ipython-input-270-ff54ce3238f5> in <module>()
-----> 1 p == pd.Period('2012-01', freq='3M')

/home/joris/scipy/pandas/pandas/src/period.pyx in pandas._period._Period.__richcmp__(pandas/src/period.c:11340)()
 729 if other.freq != self.freq:
 730 msg = _DIFFERENT_FREQ.format(self.freqstr, other.freqstr)
--> 731 raise IncompatibleFrequency(msg)
 732 elif other is tslib.NaT:

IncompatibleFrequency: Input has different freq=3M from Period(freq=2M)

If Period freq is daily or higher (D, H, T, S, L, U, N), offsets and timedelta-like can be added if the result can have the same freq. Otherwise, ValueError will be raised.

In [271]: p = pd.Period('2014-07-01 09:00', freq='H')

In [272]: p + Hour(2)
Out[272]: Period('2014-07-01 11:00', 'H')

In [273]: p + timedelta(minutes=120)
Out[273]: Period('2014-07-01 11:00', 'H')

In [274]: p + np.timedelta64(7200, 's')
Out[274]: Period('2014-07-01 11:00', 'H')

In [1]: p + Minute(5)
Traceback
...
ValueError: Input has different freq from Period(freq=H)

If Period has other freqs, only the same offsets can be added. Otherwise, ValueError will be raised.

In [275]: p = pd.Period('2014-07', freq='M')

In [276]: p + MonthEnd(3)
Out[276]: Period('2014-10', 'M')

In [1]: p + MonthBegin(3)
Traceback
...
20.10. Time Span Representation
... ValueError: Input has different freq from Period(freq=M)

Taking the difference of Period instances with the same frequency will return the number of frequency units between them:

```python
Out[277]: 10
```

PeriodIndex and period_range

Regular sequences of Period objects can be collected in a PeriodIndex, which can be constructed using the period_range convenience function:

```python
In [278]: prng = pd.period_range('1/1/2011', '1/1/2012', freq='M')
In [279]: prng
                     '2012-01'],
                    dtype='period[M]', freq='M')
```

The PeriodIndex constructor can also be used directly:

```python
In [280]: pd.PeriodIndex(['2011-1', '2011-2', '2011-3'], freq='M')
Out[280]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]', freq='M')
```

Passing multiplied frequency outputs a sequence of Period which has multiplied span.

```python
In [281]: pd.PeriodIndex(start='2014-01', freq='3M', periods=4)
                     →', freq='3M')
```

Just like DatetimeIndex, a PeriodIndex can also be used to index pandas objects:

```python
In [282]: ps = pd.Series(np.random.randn(len(prng)), prng)
In [283]: ps
Out[283]:
2011-01  -1.022670
2011-02   1.371155
2011-03   1.035277
2011-04   1.694400
2011-05  -1.659733
2011-06   0.511432
2011-07   0.433176
2011-08  -0.317955
2011-09  -0.517114
2011-10  -0.310466
2011-11   0.543957
2011-12   0.492003
2012-01   0.193420
Freq: M, dtype: float64
```

PeriodIndex supports addition and subtraction with the same rule as Period.
PeriodIndex has its own dtype named period, refer to Period Dtypes.

Period Dtypes

New in version 0.19.0.

PeriodIndex has a custom period dtype. This is a pandas extension dtype similar to the timezone aware dtype (datetime64[ns, tz]).

The period dtype holds the freq attribute and is represented with period[freq] like period[D] or period[M], using frequency strings.

The period dtype can be used in .astype(...). It allows one to change the freq of a PeriodIndex like .asfreq() and convert a DatetimeIndex to PeriodIndex like to_period():

```
# change monthly freq to daily freq
In [239]: pi.astype('period[D]')
Out[239]: PeriodIndex(['2016-01-31', '2016-02-29', '2016-03-31'], dtype='period[D]', freq='D')
# convert to DatetimeIndex
In [240]: pi.astype('datetime64[ns]')
Out[240]: DatetimeIndex(['2016-01-01', '2016-02-01', '2016-03-01'], dtype='datetime64[ns]', freq='MS')
```
PeriodIndex Partial String Indexing

You can pass in dates and strings to Series and DataFrame with PeriodIndex, in the same manner as DatetimeIndex. For details, refer to DatetimeIndex Partial String Indexing.

Passing a string representing a lower frequency than PeriodIndex returns partial sliced data.
As with `DatetimeIndex`, the endpoints will be included in the result. The example below slices data starting from 10:00 to 11:59.

```
In [305]: dfp['2013-01-01 10H':'2013-01-01 11H']
Out[305]:
        A
2013-01-01 10:00    -0.569936
2013-01-01 10:01     1.179183
2013-01-01 10:02    -0.838602
2013-01-01 10:03    -1.727539
2013-01-01 10:04    -1.334027
2013-01-01 10:05     0.417423
2013-01-01 10:06    -0.221189
...            ...
2013-01-01 11:53    -0.375925
2013-01-01 11:54     0.212750
2013-01-01 11:55    -0.592417
2013-01-01 11:56    -0.466064
2013-01-01 11:57    -1.715347
2013-01-01 11:58    -0.634913
2013-01-01 11:59    -0.809471
[60 rows x 1 columns]
```
Frequency Conversion and Resampling with PeriodIndex

The frequency of Period and PeriodIndex can be converted via the `asfreq` method. Let’s start with the fiscal year 2011, ending in December:

```python
In [306]: p = pd.Period('2011', freq='A-DEC')
In [307]: p
Out[307]: Period('2011', 'A-DEC')
```

We can convert it to a monthly frequency. Using the `how` parameter, we can specify whether to return the starting or ending month:

```python
In [308]: p.asfreq('M', how='start')
In [309]: p.asfreq('M', how='end')
```

The shorthands ‘s’ and ‘e’ are provided for convenience:

```python
In [310]: p.asfreq('M', 's')
In [311]: p.asfreq('M', 'e')
```

Converting to a “super-period” (e.g., annual frequency is a super-period of quarterly frequency) automatically returns the super-period that includes the input period:

```python
In [312]: p = pd.Period('2011-12', freq='M')
In [313]: p.asfreq('A-NOV')
```

Note that since we converted to an annual frequency that ends the year in November, the monthly period of December 2011 is actually in the 2012 A-NOV period. Period conversions with anchored frequencies are particularly useful for working with various quarterly data common to economics, business, and other fields. Many organizations define quarters relative to the month in which their fiscal year starts and ends. Thus, first quarter of 2011 could start in 2010 or a few months into 2011. Via anchored frequencies, pandas works for all quarterly frequencies Q-JAN through Q-DEC.

Q-DEC define regular calendar quarters:

```python
In [314]: p = pd.Period('2012Q1', freq='Q-DEC')
In [315]: p.asfreq('D', 's')
```
Converting between Representations

Timestamped data can be converted to PeriodIndex-ed data using `to_period` and vice-versa using `to_timestamp`:

```python
In [320]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
In [321]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
In [322]: ts
Out[322]:
2012-01-31    2.167674
2012-02-29   -1.505130
2012-03-31    1.005802
2012-04-30    0.481525
2012-05-31   -0.352151
Freq: M, dtype: float64
In [323]: ps = ts.to_period()
In [324]: ps
Out[324]:
2012-01      2.167674
2012-02     -1.505130
2012-03      1.005802
2012-04      0.481525
2012-05    -0.352151
Freq: M, dtype: float64
In [325]: ps.to_timestamp()
Out[325]:
2012-01-01    2.167674
2012-02-01   -1.505130
2012-03-01    1.005802
2012-04-01    0.481525
2012-05-01   -0.352151
Freq: MS, dtype: float64
```

Remember that ‘s’ and ‘e’ can be used to return the timestamps at the start or end of the period:

```python
In [326]: ps.to_timestamp('D', how='s')
Out[326]:
```

20.11. Converting between Representations
Converting between period and timestamp enables some convenient arithmetic functions to be used. In the following example, we convert a quarterly frequency with year ending in November to 9am of the end of the month following the quarter end:

```
In [327]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
In [328]: ts = pd.Series(np.random.randn(len(prng)), prng)
In [329]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
In [330]: ts.head()
Out[330]:
1990-03-01 09:00 -0.608988
1990-06-01 09:00 0.412294
1990-09-01 09:00 -0.715938
1990-12-01 09:00 1.297773
1991-03-01 09:00 -2.260765
Freq: H, dtype: float64
```

Representing out-of-bounds spans

If you have data that is outside of the Timestamp bounds, see *Timestamp limitations*, then you can use a PeriodIndex and/or Series of Periods to do computations.

```
In [331]: span = pd.period_range('1215-01-01', '1381-01-01', freq='D')
In [332]: span
Out[332]:
PeriodIndex(['1215-01-01', '1215-01-02', '1215-01-03', '1215-01-04',
            '1215-01-05', '1215-01-06', '1215-01-07', '1215-01-08',
            '1215-01-09', '1215-01-10', ...
            '1380-12-23', '1380-12-24', '1380-12-25', '1380-12-26',
            '1380-12-27', '1380-12-28', '1380-12-29', '1380-12-30',
            '1380-12-31', '1381-01-01'],
dtype='period[D]', length=60632, freq='D')
```

To convert from a int64 based YYYYMMDD representation.

```
In [333]: s = pd.Series([20121231, 20141130, 99991231])
In [334]: s
Out[334]:
0    20121231
1    20141130
2    99991231
dtype: int64
```
These can easily be converted to a `PeriodIndex`

```python
In [338]: span = pd.PeriodIndex(s.apply(conv))
In [339]: span
Out[339]: PeriodIndex(['2012-12-31', '2014-11-30', '9999-12-31'], dtype='period[D]', freq='D')
```

Time Zone Handling

Pandas provides rich support for working with timestamps in different time zones using `pytz` and `dateutil` libraries. `dateutil` support is new in 0.14.1 and currently only supported for fixed offset and tzfile zones. The default library is `pytz`. Support for `dateutil` is provided for compatibility with other applications e.g. if you use `dateutil` in other python packages.

Working with Time Zones

By default, pandas objects are time zone unaware:

```python
In [340]: rng = pd.date_range('3/6/2012 00:00', periods=15, freq='D')
In [341]: rng.tz
Out[341]: None
```

To supply the time zone, you can use the `tz` keyword to `date_range` and other functions. `Dateutil` time zone strings are distinguished from `pytz` time zones by starting with `dateutil/`

- `%tz` you can find a list of common (and less common) time zones using `from pytz import common_timezones, all_timezones`
- `dateutil` uses the OS timezones so there isn’t a fixed list available. For common zones, the names are the same as `pytz`.

```python
# pytz
In [342]: rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D',
                          tz='Europe/London')
   .....:
   .....:
In [343]: rng_pytz.tz
```
Note that the UTC timezone is a special case in dateutil and should be constructed explicitly as an instance of dateutil.tz.tzutc. You can also construct other timezones explicitly first, which gives you more control over which time zone is used:

```python
# pytz
In [348]: tz_pytz = pytz.timezone('Europe/London')

In [349]: rng_pytz = pd.date_range('3/6/2012 00:00', periods=10, freq='D', tz=tz_pytz)

In [350]: rng_pytz == tz_pytz
Out[350]: True

# dateutil
In [351]: tz_dateutil = dateutil.tz.gettz('Europe/London')

In [352]: rng_dateutil = pd.date_range('3/6/2012 00:00', periods=10, freq='D', tz=tz_dateutil)

In [353]: rng_dateutil == tz_dateutil
Out[353]: True
```

Timestamps, like Python’s `datetime.datetime` object can be either time zone naive or time zone aware. Naive time series and DatetimeIndex objects can be `localized` using `tz_localize`:

```python
In [354]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [355]: ts_utc = ts.tz_localize('UTC')

In [356]: ts_utc
Out[356]:
2012-03-06 00:00:00+00:00    0.679135
2012-03-07 00:00:00+00:00    0.345668
2012-03-08 00:00:00+00:00   -1.143903
2012-03-09 00:00:00+00:00    0.487087
2012-03-10 00:00:00+00:00   -1.421073
2012-03-11 00:00:00+00:00   -0.327463
2012-03-12 00:00:00+00:00    0.169899
```

776 Chapter 20. Time Series / Date functionality
Again, you can explicitly construct the timezone object first. You can use the `tz_convert` method to convert pandas objects to convert tz-aware data to another time zone:

```python
In [357]: ts_utc.tz_convert('US/Eastern')
Out[357]:
2012-03-05 19:00:00-05:00 0.679135
2012-03-06 19:00:00-05:00 0.345668
2012-03-07 19:00:00-05:00 -1.143903
2012-03-08 19:00:00-05:00 0.487087
2012-03-09 19:00:00-05:00 -1.421073
2012-03-10 19:00:00-05:00 -0.327463
2012-03-11 20:00:00-04:00 0.169899
2012-03-12 20:00:00-04:00 0.867568
2012-03-13 20:00:00-04:00 -0.834122
2012-03-14 20:00:00-04:00 -1.698494
2012-03-15 20:00:00-04:00 0.974717
2012-03-16 20:00:00-04:00 0.966771
2012-03-17 20:00:00-04:00 -0.754168
2012-03-18 20:00:00-04:00 -1.434246
2012-03-19 20:00:00-04:00 0.848935
Freq: D, dtype: float64
```

Warning: Be wary of conversions between libraries. For some zones `pytz` and `dateutil` have different definitions of the zone. This is more of a problem for unusual timezones than for `standard` zones like `US/Eastern`.

Warning: Be aware that a timezone definition across versions of timezone libraries may not be considered equal. This may cause problems when working with stored data that is localized using one version and operated on with a different version. See here for how to handle such a situation.

Warning: It is incorrect to pass a timezone directly into the `datetime.datetime` constructor (e.g., `datetime.datetime(2011,1,1,tz=timezone('US/Eastern'))`). Instead, the datetime needs to be localized using the the localize method on the timezone.

Under the hood, all timestamps are stored in UTC. Scalar values from a `DateTimeIndex` with a time zone will have their fields (day, hour, minute) localized to the time zone. However, timestamps with the same UTC value are still considered to be equal even if they are in different time zones:

```python
In [358]: rng_eastern = rng_utc.tz_convert('US/Eastern')
In [359]: rng_berlin = rng_utc.tz_convert('Europe/Berlin')
```
In [360]: rng_eastern[5]
Out[360]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', freq='D')

In [361]: rng_berlin[5]
Out[361]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', freq='D')

Out[362]: True

Like Series, DataFrame, and DatetimeIndex, Timestamp`s can be converted to other time zones using `tz_convert`:

In [363]: rng_eastern[5]
Out[363]: Timestamp('2012-03-10 19:00:00-0500', tz='US/Eastern', freq='D')

In [364]: rng_berlin[5]
Out[364]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin', freq='D')

In [365]: rng_eastern[5].tz_convert('Europe/Berlin')
Out[365]: Timestamp('2012-03-11 01:00:00+0100', tz='Europe/Berlin')

Localization of Timestamp functions just like DatetimeIndex and Series:

In [366]: rng[5]
Out[366]: Timestamp('2012-03-11 00:00:00', freq='D')

In [367]: rng[5].tz_localize('Asia/Shanghai')
Out[367]: Timestamp('2012-03-11 00:00:00+0800', tz='Asia/Shanghai')

Operations between Series in different time zones will yield UTC Series, aligning the data on the UTC timestamps:

In [368]: eastern = ts_utc.tz_convert('US/Eastern')

In [369]: berlin = ts_utc.tz_convert('Europe/Berlin')

In [370]: result = eastern + berlin

In [371]: result
Out[371]:
2012-03-06 00:00:00+00:00 1.358269
2012-03-07 00:00:00+00:00 0.691336
2012-03-08 00:00:00+00:00 -2.287805
2012-03-09 00:00:00+00:00 0.974174
2012-03-10 00:00:00+00:00 -2.842146
2012-03-11 00:00:00+00:00 -0.654926
2012-03-12 00:00:00+00:00 0.339798
2012-03-13 00:00:00+00:00 1.735136
2012-03-14 00:00:00+00:00 -1.668245
2012-03-15 00:00:00+00:00 -3.396988
2012-03-16 00:00:00+00:00 1.949435
2012-03-17 00:00:00+00:00 1.933541
2012-03-18 00:00:00+00:00 -1.508335
2012-03-19 00:00:00+00:00 -2.868493
2012-03-20 00:00:00+00:00 1.697870
Freq: D, dtype: float64

In [372]: result.index
Out[372]:
To remove timezone from tz-aware `DatetimeIndex`, use `tz_localize(None)` or `tz_convert(None)`. `tz_localize(None)` will remove timezone holding local time representations. `tz_convert(None)` will remove timezone after converting to UTC time.

```
In [373]: didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')

In [374]: didx
Out[374]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
              '2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
              '2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
              '2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
              '2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
dtype='datetime64[ns, US/Eastern]', freq='H')

In [375]: didx.tz_localize(None)
Out[375]:
DatetimeIndex(['2014-08-01 09:00:00', '2014-08-01 10:00:00',
                '2014-08-01 11:00:00', '2014-08-01 12:00:00',
                '2014-08-01 13:00:00', '2014-08-01 14:00:00',
                '2014-08-01 15:00:00', '2014-08-01 16:00:00',
                '2014-08-01 17:00:00', '2014-08-01 18:00:00'],
dtype='datetime64[ns]', freq='H')

In [376]: didx.tz_convert(None)
Out[376]:
DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
                '2014-08-01 15:00:00', '2014-08-01 16:00:00',
                '2014-08-01 17:00:00', '2014-08-01 18:00:00',
                '2014-08-01 19:00:00', '2014-08-01 20:00:00',
                '2014-08-01 21:00:00', '2014-08-01 22:00:00'],
dtype='datetime64[ns]', freq='H')

# `tz_convert(None)` is identical with `tz_convert('UTC').tz_localize(None)`

```
In [377]: didx.tz_convert('UTC').tz_localize(None)
Out[377]:
DatetimeIndex(['2014-08-01 13:00:00', '2014-08-01 14:00:00',
 '2014-08-01 15:00:00', '2014-08-01 16:00:00',
 '2014-08-01 17:00:00', '2014-08-01 18:00:00',
 '2014-08-01 19:00:00', '2014-08-01 20:00:00',
 '2014-08-01 21:00:00', '2014-08-01 22:00:00'],
dtype='datetime64[ns]', freq='H')
```

### Ambiguous Times when Localizing

In some cases, localize cannot determine the DST and non-DST hours when there are duplicates. This often happens when reading files or database records that simply duplicate the hours. Passing `ambiguous='infer'` (`infer_dst` argument in prior releases) into `tz_localize` will attempt to determine the right offset. Below the top example will fail as it contains ambiguous times and the bottom will infer the right offset.
In [378]: rng_hourly = pd.DatetimeIndex(['11/06/2011 00:00', '11/06/2011 01:00',
......:  '11/06/2011 01:00', '11/06/2011 02:00',
......:  '11/06/2011 03:00'])

This will fail as there are ambiguous times

In [2]: rng_hourly.tz_localize('US/Eastern')
AmbiguousTimeError: Cannot infer dst time from Timestamp('2011-11-06 01:00:00'), try_
˓→using the 'ambiguous' argument

In [379]: rng_hourly_eastern = rng_hourly.tz_localize('US/Eastern', ambiguous='infer')
In [380]: rng_hourly_eastern.tolist()
Out[380]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In addition to ‘infer’, there are several other arguments supported. Passing an array-like of bools or 0s/1s where True represents a DST hour and False a non-DST hour, allows for distinguishing more than one DST transition (e.g., if you have multiple records in a database each with their own DST transition). Or passing ‘NaT’ will fill in transition times with not-a-time values. These methods are available in the DatetimeIndex constructor as well as tz_localize.

In [381]: rng_hourly_dst = np.array([1, 1, 0, 0, 0])
In [382]: rng_hourly.tz_localize('US/Eastern', ambiguous=rng_hourly_dst).tolist()
Out[382]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0400', tz='US/Eastern'),
 Timestamp('2011-11-06 01:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In [383]: rng_hourly.tz_localize('US/Eastern', ambiguous='NaT').tolist()
Out[383]:
[Timestamp('2011-11-06 00:00:00-0400', tz='US/Eastern'),
 NaT,
 NaT,
 Timestamp('2011-11-06 02:00:00-0500', tz='US/Eastern'),
 Timestamp('2011-11-06 03:00:00-0500', tz='US/Eastern')]

In [384]: didx = pd.DatetimeIndex(start='2014-08-01 09:00', freq='H', periods=10, tz='US/Eastern')
In [385]: didx
Out[385]:
DatetimeIndex(['2014-08-01 09:00:00-04:00', '2014-08-01 10:00:00-04:00',
 '2014-08-01 11:00:00-04:00', '2014-08-01 12:00:00-04:00',
 '2014-08-01 13:00:00-04:00', '2014-08-01 14:00:00-04:00',
 '2014-08-01 15:00:00-04:00', '2014-08-01 16:00:00-04:00',
 '2014-08-01 17:00:00-04:00', '2014-08-01 18:00:00-04:00'],
dtype='datetime64[ns, US/Eastern'], freq='H')
TZ aware Dtypes

New in version 0.17.0.

Series/DatetimeIndex with a timezone naive value are represented with a dtype of datetime64[ns].

```
In [389]: s_naive = pd.Series(pd.date_range('20130101', periods=3))
In [390]: s_naive
Out[390]:
0 2013-01-01
1 2013-01-02
2 2013-01-03
dtype: datetime64[ns]
```

Series/DatetimeIndex with a timezone aware value are represented with a dtype of datetime64[ns,tz].

```
In [391]: s_aware = pd.Series(pd.date_range('20130101', periods=3, tz='US/Eastern'))
In [392]: s_aware
Out[392]:
0 2013-01-01 00:00:00-05:00
1 2013-01-02 00:00:00-05:00
2 2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]
```

Both of these Series can be manipulated via the .dt accessor, see here.

For example, to localize and convert a naive stamp to timezone aware.
Further more you can .astype(...) timezone aware (and naive). This operation is effectively a localize AND convert on a naive stamp, and a convert on an aware stamp.

```python
localize and convert a naive timezone
In [394]: s_naive.astype('datetime64[ns, US/Eastern]')
Out[394]:
0 2012-12-31 19:00:00-05:00
1 2013-01-01 19:00:00-05:00
2 2013-01-02 19:00:00-05:00
dtype: datetime64[ns, US/Eastern]

make an aware tz naive
In [395]: s_aware.astype('datetime64[ns]')
Out[395]:
0 2013-01-01 05:00:00
1 2013-01-02 05:00:00
2 2013-01-03 05:00:00
dtype: datetime64[ns]

convert to a new timezone
In [396]: s_aware.astype('datetime64[ns, CET]')
Out[396]:
0 2013-01-01 06:00:00+01:00
1 2013-01-02 06:00:00+01:00
2 2013-01-03 06:00:00+01:00
dtype: datetime64[ns, CET]
```

**Note:** Using the .values accessor on a Series, returns an numpy array of the data. These values are converted to UTC, as numpy does not currently support timezones (even though it is printing in the local timezone!).

```python
In [397]: s_naive.values
Out[397]:
array(['2013-01-01T00:00:00.000000000', '2013-01-02T00:00:00.000000000',
 '2013-01-03T00:00:00.000000000'], dtype='datetime64[ns]')

In [398]: s_aware.values
Out[398]:
array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000',
 '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')
```

Further note that once converted to a numpy array these would lose the tz tenor.

```python
In [399]: pd.Series(s_aware.values)
Out[399]:
0 2013-01-01 05:00:00
1 2013-01-02 05:00:00
2 2013-01-03 05:00:00
dtype: datetime64[ns]
```

However, these can be easily converted
In [400]: pd.Series(s_aware.values).dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Out[400]:
0  2013-01-01 00:00:00-05:00
1  2013-01-02 00:00:00-05:00
2  2013-01-03 00:00:00-05:00
dtype: datetime64[ns, US/Eastern]
Note: Starting in v0.15.0, we introduce a new scalar type Timedelta, which is a subclass of datetime.timedelta, and behaves in a similar manner, but allows compatibility with np.timedelta64 types as well as a host of custom representation, parsing, and attributes.

Timedeltas are differences in times, expressed in difference units, e.g. days, hours, minutes, seconds. They can be both positive and negative.

Parsing

You can construct a Timedelta scalar through various arguments:

```
strings
In [1]: Timedelta('1 days')
Out[1]: Timedelta('1 days 00:00:00')

In [2]: Timedelta('1 days 00:00:00')
Out[2]: Timedelta('1 days 00:00:00')

In [3]: Timedelta('1 days 2 hours')
Out[3]: Timedelta('1 days 02:00:00')

In [4]: Timedelta('-1 days 2 min 3us')
Out[4]: Timedelta('-2 days +23:57:59.999997')

like datetime.timedelta
note: these MUST be specified as keyword arguments
In [5]: Timedelta(days=1, seconds=1)
Out[5]: Timedelta('1 days 00:00:01')

integers with a unit
In [6]: Timedelta(1, unit='d')
Out[6]: Timedelta('1 days 00:00:00')

from a timedelta/np.timedelta64
In [7]: Timedelta(timedelta(days=1, seconds=1))
Out[7]: Timedelta('1 days 00:00:01')

In [8]: Timedelta(np.timedelta64(1, 'ms'))
Out[8]: Timedelta('0 days 00:00:00.001000')
```
# negative Timedeltas have this string repr
# to be more consistent with datetime.timedelta conventions
In [9]: Timedelta('-1us')
Out[9]: Timedelta('-1 days +23:59:59.999999')

# a NaT
In [10]: Timedelta('nan')
Out[10]: NaT
In [11]: Timedelta('nat')
Out[11]: NaT

DateOffsets (Day, Hour, Minute, Second, Milli, Micro, Nano) can also be used in construction.

In [12]: Timedelta(Second(2))
Out[12]: Timedelta('0 days 00:00:02')

Further, operations among the scalars yield another scalar Timedelta.

In [13]: Timedelta(Day(2)) + Timedelta(Second(2)) + Timedelta('00:00:00.000123')
Out[13]: Timedelta('2 days 00:00:02.000123')

to_timedelta

Warning: Prior to 0.15.0 pd.to_timedelta would return a Series for list-like/Series input, and a np.timedelta64 for scalar input. It will now return a TimedeltaIndex for list-like input, Series for Series input, and Timedelta for scalar input.

The arguments to pd.to_timedelta are now (arg,unit='ns',box=True), previously were (arg,box=True,unit='ns') as these are more logical.

Using the top-level pd.to_timedelta, you can convert a scalar, array, list, or Series from a recognized timedelta format/value into a Timedelta type. It will construct Series if the input is a Series, a scalar if the input is scalar-like, otherwise will output a TimedeltaIndex.

You can parse a single string to a Timedelta:

In [14]: to_timedelta('1 days 06:05:01.00003')
Out[14]: Timedelta('1 days 06:05:01.000030')

In [15]: to_timedelta('15.5us')
Out[15]: Timedelta('0 days 00:00:00.000015')

or a list/array of strings:

In [16]: to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
Out[16]: TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],...
dtype='timedelta64[ns]', freq=None)

The unit keyword argument specifies the unit of the Timedelta:

In [17]: to_timedelta(np.arange(5), unit='s')
Out[17]: TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'],...
dtype='timedelta64[ns]', freq=None)
In [18]: to_timedelta(np.arange(5), unit='d')
Out[18]: TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq=None)

Timedelta limitations

Pandas represents Timedeltas in nanosecond resolution using 64 bit integers. As such, the 64 bit integer limits determine the Timedelta limits.

In [19]: pd.Timedelta.min
Out[19]: Timedelta('-106752 days +00:12:43.145224')

In [20]: pd.Timedelta.max
Out[20]: Timedelta('106751 days 23:47:16.854775')

Operations

You can operate on Series/DataFrames and construct timedelta64[ns] Series through subtraction operations on datetime64[ns] Series, or Timestamps.

In [21]: s = Series(date_range('2012-1-1', periods=3, freq='D'))
In [22]: td = Series([Timedelta(days=i) for i in range(3)])
In [23]: df = DataFrame(dict(A = s, B = td))
In [24]: df
Out[24]:
   A          B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [25]: df['C'] = df['A'] + df['B']
In [26]: df
Out[26]:
   A          B          C
0 2012-01-01 0 days 2012-01-01
1 2012-01-02 1 days 2012-01-03
2 2012-01-03 2 days 2012-01-05

In [27]: df.dtypes
Out[27]:
A  datetime64[ns]
B  timedelta64[ns]
C  datetime64[ns]
dtype: object

In [28]: s - s.max()
Out[28]:
0  -2 days
1  -1 days

21.2. Operations 787
2  0 days
dtype: timedelta64[ns]

In [29]: s - datetime(2011, 1, 1, 3, 5)
Out[29]:
0  364 days 20:55:00
1  365 days 20:55:00
2  366 days 20:55:00
dtype: timedelta64[ns]

In [30]: s + timedelta(minutes=5)
Out[30]:
0  2012-01-01 00:05:00
1  2012-01-02 00:05:00
2  2012-01-03 00:05:00
dtype: datetime64[ns]

In [31]: s + Minute(5)
Out[31]:
0  2012-01-01 00:05:00
1  2012-01-02 00:05:00
2  2012-01-03 00:05:00
dtype: datetime64[ns]

In [32]: s + Minute(5) + Milli(5)
Out[32]:
0  2012-01-01 00:05:00.005
1  2012-01-02 00:05:00.005
2  2012-01-03 00:05:00.005
dtype: datetime64[ns]

Operations with scalars from a timedelta64[ns] series:

In [33]: y = s - s[0]

In [34]: y
Out[34]:
0  0 days
1  1 days
2  2 days
dtype: timedelta64[ns]

Series of timedeltas with NaT values are supported:

In [35]: y = s - s.shift()

In [36]: y
Out[36]:
0   NaT
1  1 days
2  1 days
dtype: timedelta64[ns]

Elements can be set to NaT using np.nan analogously to datetimes:

In [37]: y[1] = np.nan

In [38]: y
Operands can also appear in a reversed order (a singular object operated with a Series):

```
In [39]: s.max() - s
Out[39]:
 0 2 days
 1 0 days
 2 0 days
dtype: timedelta64[ns]
```

```
In [40]: datetime(2011, 1, 1, 3, 5) - s
Out[40]:
 0 -365 days +03:05:00
 1 -366 days +03:05:00
 2 -367 days +03:05:00
dtype: timedelta64[ns]
```

```
In [41]: timedelta(minutes=5) + s
Out[41]:
 0 2012-01-01 00:05:00
 1 2012-01-02 00:05:00
 2 2012-01-03 00:05:00
dtype: datetime64[ns]
```

`min`, `max` and the corresponding `idxmin`, `idxmax` operations are supported on frames:

```
In [42]: A = s - Timestamp('20120101') - Timedelta('00:05:05')
In [43]: B = s - Series(date_range('2012-1-2', periods=3, freq='D'))
In [44]: df = DataFrame(dict(A=A, B=B))
In [45]: df
Out[45]:
 A B
0 -1 days +23:54:55
1 0 days +23:54:55
2 1 days +23:54:55
```

```
In [46]: df.min()
Out[46]:
 A B
0 -1 days +23:54:55
1 -1 days +00:00:00
dtype: timedelta64[ns]
```

```
In [47]: df.min(axis=1)
Out[47]:
 0 -1 days
 1 -1 days
 2 -1 days
dtype: timedelta64[ns]
```

```
In [48]: df.idxmin()
```
min, max, idxmin, idxmax operations are supported on Series as well. A scalar result will be a Timedelta.

You can fillna on timedeltas. Integers will be interpreted as seconds. You can pass a timedelta to get a particular value.

You can also negate, multiply and use abs on Timedeltas:
Reductions

Numeric reduction operation for timedelta64[ns] will return Timedelta objects. As usual NaT are skipped during evaluation.

```
In [62]: y2 = Series(to_timedelta(['-1 days +00:00:05', 'nat', '-1 days +00:00:05', '1 days']))
In [63]: y2
Out[63]:
0 -1 days +00:00:05
1 NaT
2 -1 days +00:00:05
3 1 days 00:00:00
dtype: timedelta64[ns]
```

```
In [64]: y2.mean()
Out[64]: Timedelta('-1 days +16:00:03.333333')
```

```
In [65]: y2.median()
Out[65]: Timedelta('-1 days +00:00:05')
```

```
In [66]: y2.quantile(.1)
Out[66]: Timedelta('-1 days +00:00:05')
```

```
In [67]: y2.sum()
Out[67]: Timedelta('-1 days +00:00:10')
```

Frequency Conversion

New in version 0.13.

Timedelta Series, TimedeltaIndex, and Timedelta scalars can be converted to other ‘frequencies’ by dividing by another timedelta, or by astyping to a specific timedelta type. These operations yield Series and propagate NaT -> nan. Note that division by the numpy scalar is true division, while astyping is equivalent of floor division.

```
In [68]: td = Series(date_range('20130101', periods=4)) - Series(date_range('20121201', periods=4))
In [69]: td[2] += timedelta(minutes=5, seconds=3)
In [70]: td[3] = np.nan
In [71]: td
Out[71]:
0 31 days 00:00:00
1 31 days 00:00:00
2 31 days 00:00:00
3 NaT
```

21.3. Reductions
Dividing or multiplying a `timedelta64[ns]` Series by an integer or integer Series yields another `timedelta64[ns]` dtypes Series.
In [78]: td = Series([1, 2, 3, 4])

Out[78]:
0  31 days 00:00:00
1  62 days 00:00:00
2  93 days 00:15:09
3     NaT

dtype: timedelta64[ns]

Attributes

You can access various components of the Timedelta or TimedeltaIndex directly using the attributes days, seconds, microseconds, nanoseconds. These are identical to the values returned by datetime.timedelta, in that, for example, the .seconds attribute represents the number of seconds >= 0 and < 1 day. These are signed according to whether the Timedelta is signed.

These operations can also be directly accessed via the .dt property of the Series as well.

Note: Note that the attributes are NOT the displayed values of the Timedelta. Use .components to retrieve the displayed values.

For a Series:

In [79]: td.dt.days
Out[79]:
0 31.0
1 31.0
2 31.0
3 NaN

dtype: float64

In [80]: td.dt.seconds
Out[80]:
0 0.0
1 0.0
2 303.0
3 NaN

dtype: float64

You can access the value of the fields for a scalar Timedelta directly.

In [81]: tds = Timedelta('31 days 5 min 3 sec')

In [82]: tds.days
Out[82]: 31

In [83]: tds.seconds
Out[83]: 303

In [84]: (-tds).seconds
Out[84]: 86097

You can use the .components property to access a reduced form of the timedelta. This returns a DataFrame indexed similarly to the Series. These are the displayed values of the Timedelta.
In [85]: td.dt.components
Out[85]:
<table>
<thead>
<tr>
<th></th>
<th>days</th>
<th>hours</th>
<th>minutes</th>
<th>seconds</th>
<th>milliseconds</th>
<th>microseconds</th>
<th>nanoseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>31.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>31.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>31.0</td>
<td>0.0</td>
<td>5.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

In [86]: td.dt.components.seconds
Out[86]:
<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.0</th>
<th>3.0</th>
<th>NaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: seconds, dtype: float64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

## TimedeltaIndex

New in version 0.15.0.

To generate an index with time delta, you can use either the `TimedeltaIndex` or the `timedelta_range` constructor.

Using `TimedeltaIndex` you can pass string-like, Timedelta, timedelta, or `np.timedelta64` objects. Passing `np.nan/pd.NaT/nat` will represent missing values.

In [87]: TimedeltaIndex(['1 days', '1 days, 00:00:05',
                        '1 days, 00:00:05', '2 days 00:00:05', '2 days 00:00:02'],
                   dtype='timedelta64[ns]', freq=None)

Similarly to `date_range`, you can construct regular ranges of a `TimedeltaIndex`:

In [88]: timedelta_range(start='1 days', periods=5, freq='D')
Out[88]: TimedeltaIndex(['1 days', '2 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]', freq='D')

In [89]: timedelta_range(start='1 days', end='2 days', freq='30T')
Out[89]: TimedeltaIndex(['1 days 00:00:00', '1 days 00:30:00', '1 days 01:00:00',
                        '1 days 01:30:00', '1 days 02:00:00', '1 days 02:30:00',
                        '1 days 03:00:00', '1 days 03:30:00', '1 days 04:00:00',
                        '1 days 04:30:00', '1 days 05:00:00', '1 days 05:30:00',
                        '1 days 06:00:00', '1 days 06:30:00', '1 days 07:00:00',
                        '1 days 07:30:00', '1 days 08:00:00', '1 days 08:30:00',
                        '1 days 09:00:00', '1 days 09:30:00', '1 days 10:00:00',
                        '1 days 10:30:00', '1 days 11:00:00', '1 days 11:30:00',
                        '1 days 12:00:00', '1 days 12:30:00', '1 days 13:00:00',
                        '1 days 13:30:00', '1 days 14:00:00', '1 days 14:30:00',
                        '1 days 15:00:00', '1 days 15:30:00', '1 days 16:00:00',
                        '1 days 16:30:00', '1 days 17:00:00', '1 days 17:30:00',
                        '1 days 18:00:00', '1 days 18:30:00', '1 days 19:00:00',
                        '1 days 19:30:00', '1 days 20:00:00', '1 days 20:30:00',
                        '2 days 00:00:00', '2 days 00:30:00', '2 days 01:00:00',
                        '2 days 01:30:00', '2 days 02:00:00', '2 days 02:30:00',
                        '2 days 03:00:00', '2 days 03:30:00', '2 days 04:00:00',
                        '2 days 04:30:00', '2 days 05:00:00', '2 days 05:30:00',
                        '2 days 06:00:00', '2 days 06:30:00', '2 days 07:00:00',
                        '2 days 07:30:00', '2 days 08:00:00', '2 days 08:30:00',
                        '2 days 09:00:00', '2 days 09:30:00', '2 days 10:00:00',
                        '2 days 10:30:00', '2 days 11:00:00', '2 days 11:30:00',
                        '2 days 12:00:00', '2 days 12:30:00', '2 days 13:00:00',
                        '2 days 13:30:00', '2 days 14:00:00', '2 days 14:30:00',
                        '2 days 15:00:00', '2 days 15:30:00', '2 days 16:00:00',
                        '2 days 16:30:00', '2 days 17:00:00', '2 days 17:30:00',
                        '2 days 18:00:00', '2 days 18:30:00', '2 days 19:00:00',
                        '2 days 19:30:00', '2 days 20:00:00', '2 days 20:30:00'],
                        freq='30T')
Using the TimedeltaIndex

Similarly to other of the datetime-like indices, DatetimeIndex and PeriodIndex, you can use TimedeltaIndex as the index of pandas objects.

```
In [90]: s = Series(np.arange(100),
 index=timedelta_range('1 days', periods=100, freq='h'))
...
In [91]: s
Out[91]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
1 days 05:00:00 5
1 days 06:00:00 6
.. 4 days 21:00:00 93
4 days 22:00:00 94
4 days 23:00:00 95
5 days 00:00:00 96
5 days 01:00:00 97
5 days 02:00:00 98
5 days 03:00:00 99
Freq: H, dtype: int64
```

Selections work similarly, with coercion on string-likes and slices:

```
In [92]: s['1 day':'2 day']
Out[92]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
1 days 05:00:00 5
1 days 06:00:00 6
.. 2 days 17:00:00 41
2 days 18:00:00 42
2 days 19:00:00 43
2 days 20:00:00 44
2 days 21:00:00 45
2 days 22:00:00 46
2 days 23:00:00 47
Freq: H, dtype: int64
```

```
In [93]: s['1 day 01:00:00']
Out[93]: 1
```
In [94]: s[Timedelta('1 day 1h')]
Out[94]: 1

Furthermore you can use partial string selection and the range will be inferred:

In [95]: s['1 day':'1 day 5 hours']
Out[95]:
1 days 00:00:00 0
1 days 01:00:00 1
1 days 02:00:00 2
1 days 03:00:00 3
1 days 04:00:00 4
1 days 05:00:00 5
Freq: H, dtype: int64

**Operations**

Finally, the combination of TimedeltaIndex with DatetimeIndex allow certain combination operations that are NaT preserving:

In [96]: tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'])
In [97]: tdi.tolist()
Out[97]: [Timedelta('1 days 00:00:00'), NaT, Timedelta('2 days 00:00:00')]
In [98]: dti = date_range('20130101', periods=3)
In [99]: dti.tolist()
Out[99]: [Timestamp('2013-01-01 00:00:00', freq='D'),
        Timestamp('2013-01-02 00:00:00', freq='D'),
        Timestamp('2013-01-03 00:00:00', freq='D')]
In [100]: (dti + tdi).tolist()
Out[100]: [Timestamp('2013-01-02 00:00:00'), NaT, Timestamp('2013-01-05 00:00:00')]
In [101]: (dti - tdi).tolist()
Out[101]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2013-01-01 00:00:00')]

**Conversions**

Similarly to frequency conversion on a Series above, you can convert these indices to yield another Index.

In [102]: tdi / np.timedelta64(1,'s')
Out[102]: Float64Index([86400.0, nan, 172800.0], dtype='float64')
In [103]: tdi.astype('timedelta64[s]')
Out[103]: Float64Index([86400.0, nan, 172800.0], dtype='float64')

Scalars type ops work as well. These can potentially return a different type of index.

In [104]: tdi + Timestamp('20130101')
Out[104]: DatetimeIndex(['2013-01-02', 'NaT', '2013-01-03'], dtype='datetime64[ns]',
                freq=None)

# subtraction of a date and a timedelta -> datelike
# note that trying to subtract a date from a Timedelta will raise an exception
In [105]: (Timestamp('20130101') - tdi).tolist()
Out[105]: [Timestamp('2012-12-31 00:00:00'), NaT, Timestamp('2012-12-30 00:00:00')]

# timedelta + timedelta -> timedelta
In [106]: tdi + Timedelta('10 days')
Out[106]: TimedeltaIndex(['11 days', NaT, '12 days'], dtype='timedelta64[ns]',
                freq=None)

# division can result in a Timedelta if the divisor is an integer
In [107]: tdi / 2
Out[107]: TimedeltaIndex(['0 days 12:00:00', NaT, '1 days 00:00:00'], dtype=
                'timedelta64[ns]', freq=None)

# or a Float64Index if the divisor is a Timedelta
In [108]: tdi / tdi[0]
Out[108]: Float64Index([1.0, nan, 2.0], dtype='float64')

Resampling

Similar to timeseries resampling, we can resample with a TimedeltaIndex.

In [109]: s.resample('D').mean()
Out[109]:
      1 days       11.5
      2 days       35.5
      3 days       59.5
      4 days       83.5
      5 days       97.5
Freq: D, dtype: float64
CATEGORICAL DATA

New in version 0.15.

**Note:** While there was `pandas.Categorical` in earlier versions, the ability to use categorical data in `Series` and `DataFrame` is new.

This is an introduction to pandas categorical data type, including a short comparison with R’s `factor`.

*Categoricals* are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (*categories; levels* in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.

In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, ...) are not possible.

All values of categorical data are either in *categories* or np.nan. Order is defined by the order of *categories*, not lexical order of the values. Internally, the data structure consists of a *categories* array and an integer array of *codes* which point to the real value in the *categories* array.

The categorical data type is useful in the following cases:

- A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see [here](#).
- The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see [here](#).
- As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).

See also the [API docs on categoricals](#).

**Object Creation**

Categorical `Series` or columns in a `DataFrame` can be created in several ways:

By specifying `dtype="category"` when constructing a `Series`:

```python
In [1]: s = pd.Series(['a','b','c','a'], dtype="category")
```

```python
In [2]: s
Out[2]:
0 a
```
By converting an existing `Series` or column to a category dtype:

```
In [3]: df = pd.DataFrame({"A": ["a","b","c","a"]})
In [4]: df["B"] = df["A"].astype('category')
In [5]: df
Out[5]:
 A B
0 a a
1 b b
2 c c
3 a a
```

By using some special functions:

```
In [6]: df = pd.DataFrame({'value': np.random.randint(0, 100, 20)})
In [7]: labels = ["{0} - {1}".format(i, i + 9) for i in range(0, 100, 10)]
In [8]: df['group'] = pd.cut(df.value, range(0, 105, 10), right=False, labels=labels)
In [9]: df.head(10)
Out[9]:
 value group
0 65 60 - 69
1 49 40 - 49
2 56 50 - 59
3 43 40 - 49
4 43 40 - 49
5 91 90 - 99
6 32 30 - 39
7 87 80 - 89
8 36 30 - 39
9 8 0 - 9
```

See documentation for `cut()`.

By passing a `pandas.Categorical` object to a `Series` or assigning it to a `DataFrame`.

```
In [10]: raw_cat = pd.Categorical(["a","b","c","a"], categories=["b","c","d"],
 ordered=False)
In [11]: s = pd.Series(raw_cat)
In [12]: s
Out[12]:
0 NaN
1 b
2 c
3 NaN
```
You can also specify differently ordered categories or make the resulting data ordered, by passing these arguments to `astype()`:

```python
In [16]: s = pd.Series(["a","b","c","a"])

In [17]: s_cat = s.astype("category", categories=["b","c","d"], ordered=False)

In [18]: s_cat
```

### Categorical data has a specific category dtype:

```python
In [19]: df.dtypes
```

### Note: In contrast to R’s `factor` function, categorical data is not converting input values to strings and categories will end up the same data type as the original values.

### Note: In contrast to R’s `factor` function, there is currently no way to assign/change labels at creation time. Use `categories` to change the categories after creation time.

To get back to the original Series or numpy array, use `Series.astype(original_dtype)` or `np.asarray(categorical)`:

```python
In [20]: s = pd.Series(["a","b","c","a"])

In [21]: s
```

---

**22.1. Object Creation**
2  c
3  a
dtype: object

In [22]: s2 = s.astype('category')

In [23]: s2
Out[23]:
0  a
1  b
2  c
3  a
dtype: category
Categories (3, object): [a, b, c]

In [24]: s3 = s2.astype('string')

In [25]: s3
Out[25]:
0  a
1  b
2  c
3  a
dtype: object

In [26]: np.asarray(s2)
Out[26]: array(['a', 'b', 'c', 'a'], dtype=object)

If you have already codes and categories, you can use the from_codes() constructor to save the factorize step during normal constructor mode:

In [27]: splitter = np.random.choice([0,1], 5, p=[0.5,0.5])

In [28]: s = pd.Series(pd.Categorical.from_codes(splitter, categories=['train', 'test
→ '])

Description

Using .describe() on categorical data will produce similar output to a Series or DataFrame of type string.

In [29]: cat = pd.Categorical(['a', 'c', 'c', np.nan], categories=['b', 'a', 'c'])

In [30]: df = pd.DataFrame({'cat':cat, 's':['a', 'c', 'c', np.nan]})

In [31]: df.describe()
Out[31]:
   cat    s
count  3  3
unique 2  2
top    c  c
freq   2  2

In [32]: df['cat'].describe()
Out[32]:
   count
count  3
Working with categories

Categorical data has a categories and a ordered property, which list their possible values and whether the ordering matters or not. These properties are exposed as s.cat.categories and s.cat.ordered. If you don’t manually specify categories and ordering, they are inferred from the passed in values.

```
In [33]: s = pd.Series(["a","b","c","a"], dtype="category")
In [34]: s.cat.categories
Out[34]: Index([u'a', u'b', u'c'], dtype='object')
In [35]: s.cat.ordered
Out[35]: False
```

It’s also possible to pass in the categories in a specific order:

```
In [36]: s = pd.Series(pd.Categorical(["a","b","c","a"], categories=["c","b","a"]))
In [37]: s.cat.categories
Out[37]: Index([u'c', u'b', u'a'], dtype='object')
In [38]: s.cat.ordered
Out[38]: False
```

Note: New categorical data are NOT automatically ordered. You must explicitly pass ordered=True to indicate an ordered Categorical.

Note: The result of Series.unique() is not always the same as Series.cat.categories, because Series.unique() has a couple of guarantees, namely that it returns categories in the order of appearance, and it only includes values that are actually present.

```
In [39]: s = pd.Series(list('babc')).astype('category', categories=list('abcd'))
In [40]: s
Out[40]:
 0 b
 1 a
 2 b
 3 c
 dtype: category
Categories (4, object): [a, b, c, d]

categories
In [41]: s.cat.categories
Out[41]: Index([u'a', u'b', u'c', u'd'], dtype='object')

uniques
```
Renaming categories

Renaming categories is done by assigning new values to the `Series.cat.categories` property or by using the `Categorical.rename_categories()` method:

```python
In [43]: s = pd.Series(["a","b","c","a"], dtype="category")
In [44]: s
Out[44]:
0 a
1 b
2 c
3 a
dtype: category
Categories (3, object): [a, b, c]
In [45]: s.cat.categories = ["Group %s" % g for g in s.cat.categories]
In [46]: s
Out[46]:
0 Group a
1 Group b
2 Group c
3 Group a
dtype: category
Categories (3, object): [Group a, Group b, Group c]
In [47]: s.cat.rename_categories([1,2,3])
Out[47]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [1, 2, 3]
```

**Note:** In contrast to R’s `factor`, categorical data can have categories of other types than string.

**Note:** Be aware that assigning new categories is an inplace operation, while most other operation under `Series.cat` per default return a new `Series` of dtype `category`.

Categories must be unique or a `ValueError` is raised:

```python
In [48]: try:
 : s.cat.categories = [1,1,1]
 : except ValueError as e:
```
Appending new categories

Appending categories can be done by using the `Categorical.add_categories()` method:

```
In [49]: s = s.cat.add_categories([4])
In [50]: s.cat.categories
Out[50]: Index([u'Group a', u'Group b', u'Group c', 4], dtype='object')
In [51]: s
Out[51]:
 0 Group a
 1 Group b
 2 Group c
 3 Group a
 dtype: category
Categories (4, object): [Group a, Group b, Group c, 4]
```

Removing categories

Removing categories can be done by using the `Categorical.remove_categories()` method. Values which are removed are replaced by `np.nan`:

```
In [52]: s = s.cat.remove_categories([4])
In [53]: s
Out[53]:
 0 Group a
 1 Group b
 2 Group c
 3 Group a
 dtype: category
Categories (3, object): [Group a, Group b, Group c]
```

Removing unused categories

Removing unused categories can also be done:

```
In [54]: s = pd.Series(pd.Categorical(['a','b','a'], categories=['a','b','c','d']))
In [55]: s
Out[55]:
 0 a
 1 b
 2 a
 dtype: category
Categories (4, object): [a, b, c, d]
In [56]: s.cat.remove_unused_categories()
```

22.3. Working with categories
Setting categories

If you want to do remove and add new categories in one step (which has some speed advantage), or simply set the categories to a predefined scale, use `Categorical.set_categories()`.

```
In [57]: s = pd.Series(["one","two","four","-"], dtype="category")
In [58]: s
Out[58]:
0 one
1 two
2 four
3 -
dtype: category
Categories (4, object): [-, four, one, two]
In [59]: s = s.cat.set_categories(["one","two","three","four"])
In [60]: s
Out[60]:
0 one
1 two
2 four
3 NaN
dtype: category
Categories (4, object): [one, two, three, four]
```

**Note:** Be aware that `Categorical.set_categories()` cannot know whether some category is omitted intentionally or because it is misspelled or (under Python3) due to a type difference (e.g., numpys S1 dtype and python strings). This can result in surprising behaviour!

Sorting and Order

**Warning:** The default for construction has changed in v0.16.0 to `ordered=False`, from the prior implicit `ordered=True`.

If categorical data is ordered (`s.cat.ordered == True`), then the order of the categories has a meaning and certain operations are possible. If the categorical is unordered, `.min()` / `.max()` will raise a `TypeError`.

```
In [61]: s = pd.Series(pd.Categorical(["a","b","c","a"], ordered=False))
In [62]: s.sort_values(inplace=True)
```
In [63]: s = pd.Series(['a','b','c','a']).astype('category', ordered=True)

In [64]: s.sort_values(inplace=True)

In [65]: s
Out[65]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): [a < b < c]

In [66]: s.min(), s.max()
Out[66]: ('a', 'c')

You can set categorical data to be ordered by using `as_ordered()` or unordered by using `as_unordered()`. These will by default return a new object.

In [67]: s.cat.as_ordered()
Out[67]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): [a < b < c]

In [68]: s.cat.as_unordered()
Out[68]:
0 a
3 a
1 b
2 c
dtype: category
Categories (3, object): [a, b, c]

Sorting will use the order defined by categories, not any lexical order present on the data type. This is even true for strings and numeric data:

In [69]: s = pd.Series([1,2,3,1], dtype="category")

In [70]: s = s.cat.set_categories([2,3,1], ordered=True)

In [71]: s
Out[71]:
0 1
1 2
2 3
3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]

In [72]: s.sort_values(inplace=True)

In [73]: s
Out[73]:
0 1
1 2
2 3
3 1
Reordering

Reordering the categories is possible via the `Categorical.reorder_categories()` and the `Categorical.set_categories()` methods. For `Categorical.reorder_categories()`, all old categories must be included in the new categories and no new categories are allowed. This will necessarily make the sort order the same as the categories order.

```python
In [75]: s = pd.Series([1,2,3,1], dtype="category")
In [76]: s = s.cat.reorder_categories([2,3,1], ordered=True)
In [77]: s
Out[77]:
 0 1
 1 2
 2 3
 3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [78]: s.sort_values(inplace=True)
In [79]: s
Out[79]:
 1 2
 2 3
 0 1
 3 1
dtype: category
Categories (3, int64): [2 < 3 < 1]
In [80]: s.min(), s.max()
Out[80]: (2, 1)
```

**Note:** Note the difference between assigning new categories and reordering the categories: the first renames categories and therefore the individual values in the `Series`, but if the first position was sorted last, the renamed value will still be sorted last. Reordering means that the way values are sorted is different afterwards, but not that individual values in the `Series` are changed.

**Note:** If the `Categorical` is not ordered, `Series.min()` and `Series.max()` will raise `TypeError`. Numeric operations like `+`, `-`, `*`, `/` and operations based on them (e.g. `Series.median()`, which would need to compute the mean between two values if the length of an array is even) do not work and raise a `TypeError`. 

808 Chapter 22. Categorical Data
Multi Column Sorting

A categorical dtype column will participate in a multi-column sort in a similar manner to other columns. The ordering of the categorical is determined by the categories of that column.

```python
In [81]: dfs = pd.DataFrame({'A': pd.Categorical(list('bbeebbaa'), categories=['e','a', 'b'], ordered=True),
 'B': [1,2,1,2,2,1,2,1] })
```

```python
In [82]: dfs.sort_values(by=['A', 'B'])
Out[82]:
 A B
 2 e 1
 3 e 2
 7 a 1
 6 a 2
 0 b 1
 5 b 1
 1 b 2
 4 b 2
```

Reordering the categories changes a future sort.

```python
In [83]: dfs['A'] = dfs['A'].cat.reorder_categories(['a','b','e'])
In [84]: dfs.sort_values(by=['A', 'B'])
Out[84]:
 A B
 7 a 1
 6 a 2
 0 b 1
 5 b 1
 1 b 2
 4 b 2
 2 e 1
 3 e 2
```

Comparisons

Comparing categorical data with other objects is possible in three cases:

- comparing equality (== and !=) to a list-like object (list, Series, array, ...) of the same length as the categorical data.
- all comparisons (==, !=, >, >=, <, and <=) of categorical data to another categorical Series, when ordered=True and the categories are the same.
- all comparisons of a categorical data to a scalar.

All other comparisons, especially “non-equality” comparisons of two categoricals with different categories or a categorical with any list-like object, will raise a TypeError.

**Note:** Any “non-equality” comparisons of categorical data with a Series, np.array, list or categorical data with different categories or ordering will raise a TypeError because custom categories ordering could be interpreted in two
ways: one with taking into account the ordering and one without.

```python
In [85]: cat = pd.Series([1,2,3]).astype("category", categories=[3,2,1], ordered=True)
In [86]: cat_base = pd.Series([2,2,2]).astype("category", categories=[3,2,1], ordered=True)
In [87]: cat_base2 = pd.Series([2,2,2]).astype("category", ordered=True)

In [88]: cat
Out[88]:
0 1
1 2
2 3
dtype: category
Categories (3, int64): [3 < 2 < 1]

In [89]: cat_base
Out[89]:
0 2
1 2
2 2
dtype: category
Categories (3, int64): [3 < 2 < 1]

In [90]: cat_base2
Out[90]:
0 2
1 2
2 2
dtype: category
Categories (1, int64): [2]

Comparing to a categorical with the same categories and ordering or to a scalar works:

```python
In [91]: cat > cat_base
Out[91]:
0   True
1   False
2  False

dtype: bool

In [92]: cat > 2
Out[92]:
0   True
1   False
2  False

dtype: bool

Equality comparisons work with any list-like object of same length and scalars:

```python
In [93]: cat == cat_base
Out[93]:
0 False
1 True
2 False

dtype: bool
```
In [94]: cat == np.array([1,2,3])
Out[94]:
0   True
1   True
2   True
dtype: bool

In [95]: cat == 2
Out[95]:
0   False
1    True
2   False
dtype: bool

This doesn’t work because the categories are not the same:

In [96]: try:
       ....:     cat > cat_base2
       ....: except TypeError as e:
       ....:     print("TypeError: " + str(e))
       ....:
TypeError: Categoricals can only be compared if 'categories' are the same

If you want to do a “non-equality” comparison of a categorical series with a list-like object which is not categorical data, you need to be explicit and convert the categorical data back to the original values:

In [97]: base = np.array([1,2,3])

In [98]: try:
       ....:     cat > base
       ....: except TypeError as e:
       ....:     print("TypeError: " + str(e))
       ....:     print("Cannot compare a Categorical for op __gt__ with type <type 'numpy.ndarray'>")
       ....:     print("If you want to compare values, use 'np.asarray(cat) <op> other'.")

TypeError: Cannot compare a Categorical for op __gt__ with type <type 'numpy.ndarray'>

To compare values, use 'np.asarray(cat) <op> other'.

In [99]: np.asarray(cat) > base
Out[99]: array([False, False, False], dtype=bool)

Operations

Apart from Series.min(), Series.max() and Series.mode(), the following operations are possible with categorical data:

Series methods like Series.value_counts() will use all categories, even if some categories are not present in the data:

In [100]: s = pd.Series(pd.Categorical(["a","b","c","c"], categories=["c","a","b","d"]))

In [101]: s.value_counts()
Out[101]:
c    2
b    1
a    1
pandas: powerful Python data analysis toolkit, Release 0.19.2

Groupby will also show “unused” categories:

In [102]: cats = pd.Categorical(['a','b','b','b','c','c','c'], categories=['a','b','c...
   →','d'])

In [103]: df = pd.DataFrame({'cats':cats,'values':[1,2,2,2,3,4,5]})

In [104]: df.groupby('cats').mean()
Out[104]:

values
cats  
a  1.0
b  2.0
c  4.0
d  NaN

In [105]: cats2 = pd.Categorical(['a','a','b','b'], categories=['a','b','c'])

In [106]: df2 = pd.DataFrame({'cats':cats2,'B':['c','d','c','d'], 'values':[1,2,3,4]})

In [107]: df2.groupby(['cats','B']).mean()
Out[107]:

values
cats B  
a c  1.0
d  2.0
b c  3.0
d  4.0
c c NaN
d  NaN

Pivot tables:

In [108]: raw_cat = pd.Categorical(['a','a','b','b'], categories=['a','b','c'])

In [109]: df = pd.DataFrame({'A':raw_cat,'B':['c','d','c','d'], 'values':[1,2,3,4]})

In [110]: pd.pivot_table(df, values='values', index=['A', 'B'])
Out[110]:

A  B
a c  1.0
d  2.0
b c  3.0
d  4.0
c c NaN
d  NaN
Name: values, dtype: float64

Data munging

The optimized pandas data access methods .loc, .iloc, .ix, .at, and .iat, work as normal. The only difference is the return type (for getting) and that only values already in categories can be assigned.
Getting

If the slicing operation returns either a DataFrame or a column of type Series, the category dtype is preserved.

```python
In [111]: idx = pd.Index(['h', 'i', 'j', 'k', 'l', 'm', 'n'])
In [112]: cats = pd.Series(['a', 'b', 'b', 'b', 'c', 'c', 'c'], dtype='category', index=idx)
In [113]: values= [1, 2, 2, 2, 3, 4, 5]
In [114]: df = pd.DataFrame({'cats':cats, 'values':values}, index=idx)
In [115]: df.iloc[2:4, :]
Out[115]:
 cats values
 j b 2
 k b 2
In [116]: df.iloc[2:4, :].dtypes
Out[116]:
 cats values
dtype: category int64
```

An example where the category type is not preserved is if you take one single row: the resulting Series is of dtype object:

```python
get the complete "h" row as a Series
In [120]: df.loc['h', :]
Out[120]:
 cats a
 values 1
Name: h, dtype: object
```

Returning a single item from categorical data will also return the value, not a categorical of length “1”.

22.7. Data munging
In [121]: df.iat[0,0]
Out[121]: 'a'

In [122]: df["cats"].cat.categories = ["x","y","z"]

In [123]: df.at["h","cats"] # returns a string
Out[123]: 'x'

Note: This is a difference to R’s `factor` function, where `factor(c(1,2,3))[1]` returns a single value `factor`.

To get a single value `Series` of type `category` pass in a list with a single value:

In [124]: df.loc["h","cats"]
Out[124]:
Name: cats, dtype: category
  h   x
Categories (3, object): [x, y, z]

String and datetime accessors

New in version 0.17.1.

The accessors `.dt` and `.str` will work if the `s.cat.categories` are of an appropriate type:

In [125]: str_s = pd.Series(list('aabb'))

In [126]: str_cat = str_s.astype('category')

In [127]: str_cat
Out[127]:
0  a
1  a
2  b
3  b
dtype: category
Categories (2, object): [a, b]

In [128]: str_cat.str.contains("a")
Out[128]:
0   True
1   True
2  False
3  False
dtype: bool

In [129]: date_s = pd.Series(pd.date_range('1/1/2015', periods=5))

In [130]: date_cat = date_s.astype('category')

In [131]: date_cat
Out[131]:
0  2015-01-01
1  2015-01-02
2  2015-01-03
3  2015-01-04
Note: The returned Series (or DataFrame) is of the same type as if you used the .str.<method> / .dt.<method> on a Series of that type (and not of type category!).

That means, that the returned values from methods and properties on the accessors of a Series and the returned values from methods and properties on the accessors of this Series transformed to one of type category will be equal:

Note: The work is done on the categories and then a new Series is constructed. This has some performance implication if you have a Series of type string, where lots of elements are repeated (i.e. the number of unique elements in the Series is a lot smaller than the length of the Series). In this case it can be faster to convert the original Series to one of type category and use .str.<method> or .dt.<property> on that.

### Setting

Setting values in a categorical column (or Series) works as long as the value is included in the categories:

```python
In [137]: idx = pd.Index(["h", "i", "j", "k", "l", "m", "n"])
In [138]: cats = pd.Categorical(["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"])
In [139]: values = [1,1,1,1,1,1,1]
In [140]: df = pd.DataFrame({"cats":cats,"values":values}, index=idx)
```
In [141]: df.iloc[2:4, :] = [['b', 2], ['b', 2]]

In [142]: df
Out[142]:
   cats  values
  h    a    1
  i    a    1
  j    b    2
  k    b    2
  l    a    1
  m    a    1
  n    a    1

In [143]: try:
      ....: df.iloc[2:4, :] = [['c', 3], ['c', 3]]
      ....: except ValueError as e:
      ....:     print("ValueError: " + str(e))
      ....:     
ValueError: Cannot setitem on a Categorical with a new category, set the categories first

Setting values by assigning categorical data will also check that the categories match:

In [144]: df.loc["j":"k","cats"] = pd.Categorical(["a","a"], categories=["a","b"])

In [145]: df
Out[145]:
   cats  values
  h    a    1
  i    a    1
  j    a    2
  k    a    2
  l    a    1
  m    a    1
  n    a    1

In [146]: try:
      ....: df.loc["j":"k","cats"] = pd.Categorical(["b","b"], categories=["a","b","c")
      ....: except ValueError as e:
      ....:     print("ValueError: " + str(e))
      ....:     
ValueError: Cannot set a Categorical with another, without identical categories

Assigning a Categorical to parts of a column of other types will use the values:

In [147]: df = pd.DataFrame({"a": [1,1,1,1,1], "b": ["a","a","a","a","a"]})

In [148]: df.loc[1:2,"a"] = pd.Categorical(["b","b"], categories=["a","b"])

In [149]: df.loc[2:3,"b"] = pd.Categorical(["b","b"], categories=["a","b"])

In [150]: df
Out[150]:
   a  b
0  l  a
1  b  a
Merging

You can concat two *DataFrames* containing categorical data together, but the categories of these categoricals need to be the same:

In [152]: cat = pd.Series(["a","b"], dtype="category")
In [153]: vals = [1,2]
In [154]: df = pd.DataFrame({"cats":cat, "vals":vals})
In [155]: res = pd.concat([df,df])
In [156]: res
Out[156]:
   cats  vals
0    a     1
1    b     2
0    a     1
1    b     2

In [157]: res.dtypes
Out[157]:
cats  category
vals  int64
dtype: object

In this case the categories are not the same and so an error is raised:

In [158]: df_different = df.copy()
In [159]: df_different["cats"].cat.categories = ["c","d"]
In [160]: try:
    .....:     pd.concat([df,df_different])
    .....: except ValueError as e:
    .....:     print("ValueError: " + str(e))
    .....:

The same applies to *df.append(df_different)*.

Unioning

New in version 0.19.0.
If you want to combine categoricals that do not necessarily have the same categories, the `union_categoricals` function will combine a list-like of categoricals. The new categories will be the union of the categories being combined.

```
In [161]: from pandas.types.concat import union_categoricals

In [162]: a = pd.Categorical(['b', 'c'])

In [163]: b = pd.Categorical(['a', 'b'])

In [164]: union_categoricals([a, b])
Out[164]:
[b, c, a, b]
Categories (3, object): [b, c, a]
```

By default, the resulting categories will be ordered as they appear in the data. If you want the categories to be lexsorted, use `sort_categories=True` argument.

```
In [165]: union_categoricals([a, b], sort_categories=True)
Out[165]:
[b, c, a, b]
Categories (3, object): [a, b, c]
```

`union_categoricals` also works with the “easy” case of combining two categoricals of the same categories and order information (e.g. what you could also append for).

```
In [166]: a = pd.Categorical(['a', 'b'], ordered=True)

In [167]: b = pd.Categorical(['a', 'b', 'a'], ordered=True)

In [168]: union_categoricals([a, b])
Out[168]:
[a, b, a, b, a]
Categories (2, object): [a < b]
```

The below raises `TypeError` because the categories are ordered and not identical.

```
In [1]: a = pd.Categorical(['a', 'b'], ordered=True)
In [2]: b = pd.Categorical(['a', 'b', 'c'], ordered=True)
In [3]: union_categoricals([a, b])
Out[3]:
TypeError: to union ordered Categoricals, all categories must be the same
```

`union_categoricals` also works with a `CategoricalIndex`, or `Series` containing categorical data, but note that the resulting array will always be a plain `Categorical`

```
In [169]: a = pd.Series(['b', 'c'], dtype='category')

In [170]: b = pd.Series(['a', 'b'], dtype='category')

In [171]: union_categoricals([a, b])
Out[171]:
[b, c, a, b]
Categories (3, object): [b, c, a]
```

Note: `union_categoricals` may recode the integer codes for categories when combining categoricals. This is likely what you want, but if you are relying on the exact numbering of the categories, be aware.
In [172]: c1 = pd.Categorical(["b", "c"])

In [173]: c2 = pd.Categorical(["a", "b"])

In [174]: c1
Out[174]:
[b, c]
Categories (2, object): [b, c]

# "b" is coded to 0
In [175]: c1.codes
Out[175]: array([0, 1], dtype=int8)

In [176]: c2
Out[176]:
a, b
Categories (2, object): [a, b]

# "b" is coded to 1
In [177]: c2.codes
Out[177]: array([0, 1], dtype=int8)

In [178]: c = union_categoricals([c1, c2])

In [179]: c
Out[179]:
b, c, a, b
Categories (3, object): [b, c, a]

# "b" is coded to 0 throughout, same as c1, different from c2
In [180]: c.codes
Out[180]: array([0, 1, 2, 0], dtype=int8)

### Concatenation

This section describes concatenations specific to category dtype. See Concatenating objects for general description.

By default, Series or DataFrame concatenation which contains the same categories results in category dtype, otherwise results in object dtype. Use .astype or union_categoricals to get category result.

```python
same categories
In [181]: s1 = pd.Series(['a', 'b'], dtype='category')

In [182]: s2 = pd.Series(['a', 'b', 'a'], dtype='category')

In [183]: pd.concat([s1, s2])
Out[183]:
 0 a
 1 b
 0 a
 1 b
 2 a
dtype: category
Categories (2, object): [a, b]
```
# different categories
In [184]: s3 = pd.Series(['b', 'c'], dtype='category')

In [185]: pd.concat([s1, s3])
Out[185]:
0   a
1   b
0   b
1   c
dtype: object

In [186]: pd.concat([s1, s3]).astype('category')
Out[186]:
0   a
1   b
0   b
1   c
dtype: category
Categories (3, object): [a, b, c]

In [187]: union_categoricals([s1.values, s3.values])
Out[187]: [a, b, b, c]
Categories (3, object): [a, b, c]

Following table summarizes the results of Categoricals related concatenations.

<table>
<thead>
<tr>
<th>arg1</th>
<th>arg2</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>category</td>
<td>category (identical categories)</td>
<td>category</td>
</tr>
<tr>
<td>category</td>
<td>category (different categories, both not ordered)</td>
<td>object (dtype is inferred)</td>
</tr>
<tr>
<td>category</td>
<td>category (different categories, either one is ordered)</td>
<td>object (dtype is inferred)</td>
</tr>
<tr>
<td>category</td>
<td>not category</td>
<td>object (dtype is inferred)</td>
</tr>
</tbody>
</table>

**Getting Data In/Out**

New in version 0.15.2.

Writing data (Series, Frames) to a HDF store that contains a category dtype was implemented in 0.15.2. See here for an example and caveats.

Writing data to and reading data from Stata format files was implemented in 0.15.2. See here for an example and caveats.

Writing to a CSV file will convert the data, effectively removing any information about the categorical (categories and ordering). So if you read back the CSV file you have to convert the relevant columns back to category and assign the right categories and categories ordering.

In [188]: s = pd.Series(pd.Categorical(['a', 'b', 'b', 'a', 'a', 'd']))

# rename the categories
In [189]: s.cat.categories = ['very good', 'good', 'bad']

# reorder the categories and add missing categories
In [190]: s = s.cat.set_categories(['very bad', 'bad', 'medium', 'good', 'very good'])

In [191]: df = pd.DataFrame({'cats':s, 'vals':[1,2,3,4,5,6]})
In [192]: csv = StringIO()
In [193]: df.to_csv(csv)
In [194]: df2 = pd.read_csv(StringIO(csv.getvalue()))
In [195]: df2.dtypes
Out[195]:
                 Unnamed: 0  int64
cats          cats    object
                vals  int64
dtype: object
In [196]: df2["cats"]
Out[196]:
0     very good
1       good
2       good
3     very good
4     very good
5        bad
Name: cats, dtype: object

# Redo the category
In [197]: df2["cats"] = df2["cats"].astype("category")
In [198]: df2["cats"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"],
   ..:
   ..:
inplace=True)
   ..:
In [199]: df2.dtypes
Out[199]:
                 Unnamed: 0  int64
cats          cats    category
                vals  int64
dtype: object
In [200]: df2["cats"]
Out[200]:
0     very good
1       good
2       good
3     very good
4     very good
5        bad
Name: cats, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

The same holds for writing to a SQL database with to_sql.

**Missing Data**

pandas primarily uses the value `np.nan` to represent missing data. It is by default not included in computations. See the Missing Data section.
Missing values should **not** be included in the Categorical's categories, only in the values. Instead, it is understood that NaN is different, and is always a possibility. When working with the Categorical’s codes, missing values will always have a code of -1.

```python
In [201]: s = pd.Series(["a", "b", np.nan, "a"], dtype="category")

only two categories
In [202]: s
Out[202]:
0 a
1 b
2 NaN
3 a
dtype: category
Categories (2, object): [a, b]

In [203]: s.cat.codes
Out[203]:
0 0
1 1
2 -1
3 0
dtype: int8
```

Methods for working with missing data, e.g. `isnull()`, `fillna()`, `dropna()`, all work normally:

```python
In [204]: s = pd.Series(["a", "b", np.nan], dtype="category")

In [205]: s
Out[205]:
0 a
1 b
2 NaN
dtype: category
Categories (2, object): [a, b]

In [206]: pd.isnull(s)
Out[206]:
0 False
1 False
2 True
dtype: bool

In [207]: s.fillna("a")
Out[207]:
0 a
1 b
2 a
dtype: category
Categories (2, object): [a, b]
```

**Differences to R’s `factor`**

The following differences to R’s factor functions can be observed:

- R’s `levels` are named `categories`
• R’s *levels* are always of type string, while *categories* in pandas can be of any dtype.

• It’s not possible to specify labels at creation time. Use `s.cat.rename_categories(new_labels)` afterwards.

• In contrast to R’s *factor* function, using categorical data as the sole input to create a new categorical series will *not* remove unused categories but create a new categorical series which is equal to the passed in one!

• R allows for missing values to be included in its *levels* (pandas’ *categories*). Pandas does not allow NaN categories, but missing values can still be in the *values*.

## Gotchas

### Memory Usage

The memory usage of a `Categorical` is proportional to the number of categories times the length of the data. In contrast, an object dtype is a constant times the length of the data.

```python
In [208]: s = pd.Series(['foo','bar']*1000)

object dtype
In [209]: s.nbytes
Out[209]: 16000

category dtype
In [210]: s.astype('category').nbytes
Out[210]: 2016
```

**Note:** If the number of categories approaches the length of the data, the `Categorical` will use nearly the same or more memory than an equivalent object dtype representation.

```python
In [211]: s = pd.Series(['foo%04d' % i for i in range(2000)])

object dtype
In [212]: s.nbytes
Out[212]: 16000

category dtype
In [213]: s.astype('category').nbytes
Out[213]: 20000
```

### Old style constructor usage

In earlier versions than pandas 0.15, a `Categorical` could be constructed by passing in precomputed *codes* (called then *labels*) instead of values with categories. The *codes* were interpreted as pointers to the categories with -1 as NaN. This type of constructor usage is replaced by the special constructor `Categorical.from_codes()`.

Unfortunately, in some special cases, using code which assumes the old style constructor usage will work with the current pandas version, resulting in subtle bugs:

```python
>>> cat = pd.Categorical([1,2], [1,2,3])
>>> # old version
>>> cat.get_values()
```
Warning: If you used Categoricals with older versions of pandas, please audit your code before upgrading and change your code to use the from_codes() constructor.

**Categorical is not a numpy array**

Currently, categorical data and the underlying Categorical is implemented as a python object and not as a low-level numpy array dtype. This leads to some problems.

numpy itself doesn’t know about the new dtype:

```python
In [214]: try:
 : np.dtype("category")
 : except TypeError as e:
 : print("TypeError: " + str(e))
 :
TypeError: data type "category" not understood
```

```python
In [215]: dtype = pd.Categorical(['a']).dtype
```

```python
In [216]: try:
 : np.dtype(dtype)
 : except TypeError as e:
 : print("TypeError: " + str(e))
 :
TypeError: data type not understood
```

Dtype comparisons work:

```python
In [217]: dtype == np.str_
Out[217]: False
```

```python
In [218]: np.str_ == dtype
Out[218]: False
```

To check if a Series contains Categorical data, with pandas 0.16 or later, use `hasattr(s, 'cat')`:

```python
In [219]: hasattr(pd.Series(["a"], dtype='category'), 'cat')
Out[219]: True
```

```python
In [220]: hasattr(pd.Series(["a"]), 'cat')
Out[220]: False
```

Using numpy functions on a Series of type category should not work as Categoricals are not numeric data (even in the case that .categories is numeric).

```python
In [221]: s = pd.Series(pd.Categorical([1,2,3,4]))
```

```python
In [222]: try:
 : np.sum(s)
```
......: except TypeError as e:
......:     print("TypeError: " + str(e))
......:
TypeError: Categorical cannot perform the operation sum

**Note:** If such a function works, please file a bug at https://github.com/pandas-dev/pandas!

### dtype in apply

Pandas currently does not preserve the `dtype` in apply functions: If you apply along rows you get a `Series` of `object` `dtype` (same as getting a row -> getting one element will return a basic type) and applying along columns will also convert to object.

```
In [223]: df = pd.DataFrame({'a':[1,2,3,4],
.....: 'b':['a','b','c','d'],
.....: 'cats':pd.Categorical([1,2,3,2]))
.....:
In [224]: df.apply(lambda row: type(row['cats']), axis=1)
Out[224]:
0 <type 'int'>
1 <type 'int'>
2 <type 'int'>
3 <type 'int'>
dtype: object

In [225]: df.apply(lambda col: col.dtype, axis=0)
Out[225]:
a object
b object
cats object
dtype: object
```

### Categorical Index

New in version 0.16.1.

A new `CategoricalIndex` index type is introduced in version 0.16.1. See the advanced indexing docs for a more detailed explanation.

Setting the index, will create create a `CategoricalIndex`

```
In [226]: cats = pd.Categorical([1,2,3,4], categories=[4,2,3,1])
In [227]: strings = ['a','b','c','d']
In [228]: values = [4,2,3,1]
In [229]: df = pd.DataFrame({'strings':strings, 'values':values}, index=cats)
In [230]: df.index
Out[230]: CategoricalIndex([1, 2, 3, 4], categories=[4, 2, 3, 1], ordered=False,
→dtype='category')
```

22.11. Gotchas
# This now sorts by the categories order
In [231]: df.sort_index()
Out[231]:
   strings  values
4      d       1
2      b       2
3      c       3
1      a       4

In previous versions (<0.16.1) there is no index of type `category`, so setting the index to categorical column will convert the categorical data to a “normal” dtype first and therefore remove any custom ordering of the categories.

**Side Effects**

Constructing a `Series` from a `Categorical` will not copy the input `Categorical`. This means that changes to the `Series` will in most cases change the original `Categorical`:

In [232]: cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10])

In [233]: s = pd.Series(cat, name="cat")

In [234]: cat
Out[234]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]

In [235]: s.iloc[0:2] = 10

In [236]: cat
Out[236]:
[10, 10, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]

In [237]: df = pd.DataFrame(s)

In [238]: df["cat"].cat.categories = [1,2,3,4,5]

In [239]: cat
Out[239]:
[5, 5, 3, 5]
Categories (5, int64): [1, 2, 3, 4, 5]

Use `copy=True` to prevent such a behaviour or simply don’t reuse `Categoricals`:

In [240]: cat = pd.Categorical([1,2,3,10], categories=[1,2,3,4,10])

In [241]: s = pd.Series(cat, name="cat", copy=True)

In [242]: cat
Out[242]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]

In [243]: s.iloc[0:2] = 10
```
In [244]: cat
Out[244]:
[1, 2, 3, 10]
Categories (5, int64): [1, 2, 3, 4, 10]
```

**Note:** This also happens in some cases when you supply a *numpy* array instead of a *Categorical*: using an int array (e.g. `np.array([1,2,3,4])`) will exhibit the same behaviour, while using a string array (e.g. `np.array(["a","b","c","a"]`) will not.
We use the standard convention for referencing the matplotlib API:

```
In [1]: import matplotlib.pyplot as plt
```

The plots in this document are made using matplotlib’s `ggplot` style (new in version 1.4):

```
import matplotlib
matplotlib.style.use('ggplot')
```

We provide the basics in pandas to easily create decent looking plots. See the `ecosystem` section for visualization libraries that go beyond the basics documented here.

**Note:** All calls to `np.random` are seeded with 123456.

## Basic Plotting: `plot`

See the `cookbook` for some advanced strategies.

The `plot` method on Series and DataFrame is just a simple wrapper around `plt.plot()`:

```
In [2]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000',
--> period=1000))

In [3]: ts = ts.cumsum()

In [4]: ts.plot()
Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26d422750>
```
If the index consists of dates, it calls `gcf().autofmt_xdate()` to try to format the x-axis nicely as per above.

On DataFrame, `plot()` is a convenience to plot all of the columns with labels:

```python
In [5]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
In [6]: df = df.cumsum()
In [7]: plt.figure(); df.plot();
```
You can plot one column versus another using the x and y keywords in `plot()`:

```python
In [8]: df3 = pd.DataFrame(np.random.randn(1000, 2), columns=['B', 'C']).cumsum()
In [9]: df3['A'] = pd.Series(list(range(len(df))))
In [10]: df3.plot(x='A', y='B')
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2667845d0>
```
Other Plots

Plotting methods allow for a handful of plot styles other than the default Line plot. These methods can be provided as the `kind` keyword argument to `plot()`. These include:

- `'bar'` or `'barh'` for bar plots
- `'hist'` for histogram
- `'box'` for boxplot
- `'kde'` or `'density'` for density plots
- `'area'` for area plots
- `'scatter'` for scatter plots
- `'hexbin'` for hexagonal bin plots
- `'pie'` for pie plots

Note: For more formatting and styling options, see below.
For example, a bar plot can be created the following way:

```python
In [11]: plt.figure();

In [12]: df.ix[5].plot(kind='bar'); plt.axhline(0, color='k')
Out[12]: <matplotlib.lines.Line2D at 0x7ff266b33890>
```

New in version 0.17.0.

You can also create these other plots using the methods `DataFrame.plot.<kind>` instead of providing the `kind` keyword argument. This makes it easier to discover plot methods and the specific arguments they use:

```python
In [13]: df = pd.DataFrame()

In [14]: df.plot.<TAB>
 df.plot.area df.plot.barh df.plot.density df.plot.hist df.plot.line
 df.plot.scatter
 df.plot.bar df.plot.box df.plot.hexbin df.plot.kde df.plot.pie
```

In addition to these kinds, there are the `DataFrame.hist()` and `DataFrame.boxplot()` methods, which use a separate interface.

Finally, there are several plotting functions in `pandas.tools.plotting` that take a `Series` or `DataFrame` as an argument. These include

**23.2. Other Plots**
• Scatter Matrix
• Andrews Curves
• Parallel Coordinates
• Lag Plot
• Autocorrelation Plot
• Bootstrap Plot
• RadViz

Plots may also be adorned with errorbars or tables.

Bar plots

For labeled, non-time series data, you may wish to produce a bar plot:

```
In [15]: plt.figure();

In [16]: df.ix[5].plot.bar(); plt.axhline(0, color='k')
Out[16]: <matplotlib.lines.Line2D at 0x7ff2673d3510>
```

Calling a DataFrame’s `plot.bar()` method produces a multiple bar plot:
In [17]: df2 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])

In [18]: df2.plot.bar();

To produce a stacked bar plot, pass `stacked=True`:

In [19]: df2.plot.bar(stacked=True);
To get horizontal bar plots, use the `barh` method:

```python
In [20]: df2.plot.barh(stacked=True);
```
Histograms

New in version 0.15.0.

Histogram can be drawn by using the `DataFrame.plot.hist()` and `Series.plot.hist()` methods.

```python
In [21]: df4 = pd.DataFrame({'a': np.random.randn(1000) + 1, 'b': np.random.randn(1000), 'c': np.random.randn(1000) - 1}, columns=['a', 'b', 'c'])

In [22]: plt.figure();

In [23]: df4.plot.hist(alpha=0.5)
Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26779c3d0>
```

23.2. Other Plots
Histogram can be stacked by `stacked=True`. Bin size can be changed by `bins` keyword.

```python
In [24]: plt.figure();

In [25]: df4.plot.hist(stacked=True, bins=20)
Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26caf76d0>
```
You can pass other keywords supported by matplotlib `hist`. For example, horizontal and cumulative histogram can be drawn by `orientation='horizontal'` and `cumulative=True`.

```python
In [26]: plt.figure();
In [27]: df4['a'].plot.hist(orientation='horizontal', cumulative=True)
Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26c2c89d0>
```
See the `hist` method and the matplotlib `hist` documentation for more.

The existing interface `DataFrame.hist` to plot histogram still can be used.

```python
In [28]: plt.figure();

In [29]: df['A'].diff().hist()
Out[29]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2770919d0>
```
Dataframe.hist() plots the histograms of the columns on multiple subplots:

In [30]: plt.figure()
Out[30]: <matplotlib.figure.Figure at 0x7ff26d67c090>

In [31]: df.diff().hist(color='k', alpha=0.5, bins=50)
Out[31]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7ff2726264d0>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x7ff2667c8390>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff266667a50>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x7ff2671545d0>]],
      dtype=object)
The `by` keyword can be specified to plot grouped histograms:

```python
In [32]: data = pd.Series(np.random.randn(1000))

In [33]: data.hist(by=np.random.randint(0, 4, 1000), figsize=(6, 4))

Out[33]:
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7ff266750690>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26c71e110>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26735f750>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26c2fe650>]],
 dtype=object)
```
Box Plots

New in version 0.15.0.

Boxplot can be drawn calling `Series.plot.box()` and `DataFrame.plot.box()`, or `DataFrame.boxplot()` to visualize the distribution of values within each column.

For instance, here is a boxplot representing five trials of 10 observations of a uniform random variable on [0,1).

```
In [34]: df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
In [35]: df.plot.box()
Out[35]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff27132a050>
```
Boxplot can be colorized by passing `color` keyword. You can pass a `dict` whose keys are `boxes`, `whiskers`, `medians` and `caps`. If some keys are missing in the `dict`, default colors are used for the corresponding artists. Also, boxplot has `sym` keyword to specify fliers style.

When you pass other type of arguments via `color` keyword, it will be directly passed to matplotlib for all the `boxes`, `whiskers`, `medians` and `caps` colorization.

The colors are applied to every boxes to be drawn. If you want more complicated colorization, you can get each drawn artists by passing `return_type`.

```python
In [36]: color = dict(boxes='DarkGreen', whiskers='DarkOrange',
 ...: medians='DarkBlue', caps='Gray')

In [37]: df.plot.box(color=color, sym='r+')
Out[37]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26c76b890>
```
Also, you can pass other keywords supported by matplotlib `boxplot`. For example, horizontal and custom-positioned boxplot can be drawn by `vert=False` and `positions` keywords.

In [38]: df.plot.box(vert=False, positions=[1, 4, 5, 6, 8])
Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26c1f2dd0>
See the `boxplot` method and the `matplotlib boxplot` documentation for more.

The existing interface `DataFrame.boxplot` to plot boxplot still can be used.

```
In [39]: df = pd.DataFrame(np.random.rand(10,5))
In [40]: plt.figure();
In [41]: bp = df.boxplot()
```
You can create a stratified boxplot using the `by` keyword argument to create groupings. For instance,

```python
In [42]: df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'])
In [43]: df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
In [44]: plt.figure();
In [45]: bp = df.boxplot(by='X')
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

You can also pass a subset of columns to plot, as well as group by multiple columns:

```python
In [46]: df = pd.DataFrame(np.random.rand(10,3), columns=['Col1', 'Col2', 'Col3'])
In [47]: df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
In [48]: df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])
In [49]: plt.figure();
In [50]: bp = df.boxplot(column=['Col1','Col2'], by=['X','Y'])
```
**Warning:** The default changed from 'dict' to 'axes' in version 0.19.0.

In `boxplot`, the return type can be controlled by the `return_type`, keyword. The valid choices are ('axes', 'dict', 'both', None). Faceting, created by `DataFrame.boxplot` with the `by` keyword, will affect the output type as well:

<table>
<thead>
<tr>
<th>return_type=</th>
<th>Faceted</th>
<th>Output type</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No</td>
<td>axes</td>
</tr>
<tr>
<td>None</td>
<td>Yes</td>
<td>2-D ndarray of axes</td>
</tr>
<tr>
<td>'axes'</td>
<td>No</td>
<td>axes</td>
</tr>
<tr>
<td>'.axes'</td>
<td>Yes</td>
<td>Series of axes</td>
</tr>
<tr>
<td>'dict'</td>
<td>No</td>
<td>dict of artists</td>
</tr>
<tr>
<td>'dict'</td>
<td>Yes</td>
<td>Series of dicts of artists</td>
</tr>
<tr>
<td>'both'</td>
<td>No</td>
<td>namedtuple</td>
</tr>
<tr>
<td>'both'</td>
<td>Yes</td>
<td>Series of namedtuples</td>
</tr>
</tbody>
</table>

`Groupby.boxplot` always returns a Series of `return_type`.
In [51]: np.random.seed(1234)

In [52]: df_box = pd.DataFrame(np.random.randn(50, 2))

In [53]: df_box['g'] = np.random.choice(['A', 'B'], size=50)

In [54]: df_box.loc[df_box['g'] == 'B', 1] += 3

In [55]: bp = df_box.boxplot(by='g')

---

Boxplot grouped by g

---

Compare to:

In [56]: bp = df_box.groupby('g').boxplot()
Area Plot

New in version 0.14.

You can create area plots with `Series.plot.area()` and `DataFrame.plot.area()`. Area plots are stacked by default. To produce stacked area plot, each column must be either all positive or all negative values.

When input data contains NaN, it will be automatically filled by 0. If you want to drop or fill by different values, use `dataframe.dropna()` or `dataframe.fillna()` before calling `plot`.

```python
In [57]: df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
In [58]: df.plot.area();
```
To produce an unstacked plot, pass `stacked=False`. Alpha value is set to 0.5 unless otherwise specified:

```python
In [59]: df.plot.area(stacked=False);
```
Scatter Plot

New in version 0.13.

Scatter plot can be drawn by using the `DataFrame.plot.scatter()` method. Scatter plot requires numeric columns for x and y axis. These can be specified by x and y keywords each.

```python
In [60]: df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
In [61]: df.plot.scatter(x='a', y='b');
```
To plot multiple column groups in a single axes, repeat `plot` method specifying target `ax`. It is recommended to specify `color` and `label` keywords to distinguish each groups.

```python
In [62]: ax = df.plot.scatter(x='a', y='b', color='DarkBlue', label='Group 1');
In [63]: df.plot.scatter(x='c', y='d', color='DarkGreen', label='Group 2', ax=ax);
```
The keyword `c` may be given as the name of a column to provide colors for each point:

```python
In [64]: df.plot.scatter(x='a', y='b', c='c', s=50);
```
You can pass other keywords supported by matplotlib scatter. Below example shows a bubble chart using a dataframe column values as bubble size.

```python
In [65]: df.plot.scatter(x='a', y='b', s=df['c']*200);
```
See the `scatter` method and the matplotlib `scatter` documentation for more.

**Hexagonal Bin Plot**

New in version 0.14.

You can create hexagonal bin plots with `DataFrame.plot.hexbin()`. Hexbin plots can be a useful alternative to scatter plots if your data are too dense to plot each point individually.

```python
In [66]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
In [67]: df['b'] = df['b'] + np.arange(1000)
In [68]: df.plot.hexbin(x='a', y='b', gridsize=25)
Out[68]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2713ce350>
```
A useful keyword argument is `gridsize`; it controls the number of hexagons in the x-direction, and defaults to 100. A larger `gridsize` means more, smaller bins.

By default, a histogram of the counts around each \((x,y)\) point is computed. You can specify alternative aggregations by passing values to the `C` and `reduce_C_function` arguments. `C` specifies the value at each \((x,y)\) point and `reduce_C_function` is a function of one argument that reduces all the values in a bin to a single number (e.g. `mean`, `max`, `sum`, `std`). In this example the positions are given by columns `a` and `b`, while the value is given by column `z`. The bins are aggregated with `numpy`'s `max` function.

```python
In [69]: df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])
In [70]: df['b'] = df['b'] = df['b'] + np.arange(1000)
In [71]: df['z'] = np.random.uniform(0, 3, 1000)
In [72]: df.plot.hexbin(x='a', y='b', C='z', reduce_C_function=np.max, gridsize=25)
```

Out[72]: `<matplotlib.axes._subplots.AxesSubplot at 0x7ff2669b58d0>`
See the `hexbin` method and the matplotlib hexbin documentation for more.

**Pie plot**

New in version 0.14.

You can create a pie plot with `DataFrame.plot.pie()` or `Series.plot.pie()`. If your data includes any NaN, they will be automatically filled with 0. A `ValueError` will be raised if there are any negative values in your data.

```python
In [73]: series = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series')
In [74]: series.plot.pie(figsize=(6, 6))
Out[74]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26c8ac210>
```
For pie plots it's best to use square figures, one's with an equal aspect ratio. You can create the figure with equal width and height, or force the aspect ratio to be equal after plotting by calling `ax.set_aspect('equal')` on the returned `axes` object.

Note that pie plot with `DataFrame` requires that you either specify a target column by the `y` argument or `subplots=True`. When `y` is specified, pie plot of selected column will be drawn. If `subplots=True` is specified, pie plots for each column are drawn as subplots. A legend will be drawn in each pie plots by default; specify `legend=False` to hide it.

```python
In [75]: df = pd.DataFrame(3 * np.random.rand(4, 2), index=['a', 'b', 'c', 'd'],
 columns=['x', 'y'])
In [76]: df.plot.pie(subplots=True, figsize=(8, 4))
Out[76]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26c896f50>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x7ff26ceb2750>],
 dtype=object)
```
You can use the `labels` and `colors` keywords to specify the labels and colors of each wedge.

**Warning:** Most pandas plots use the `label` and `color` arguments (note the lack of “s” on those). To be consistent with `matplotlib.pyplot.pie()` you must use `labels` and `colors`.

If you want to hide wedge labels, specify `labels=None`. If `fontsize` is specified, the value will be applied to wedge labels. Also, other keywords supported by `matplotlib.pyplot.pie()` can be used.

```
In [77]: series.plot.pie(labels=['AA', 'BB', 'CC', 'DD'], colors=['r', 'g', 'b', 'c'],
 autopct='%.2f', fontsize=20, figsize=(6, 6))
Out[77]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff270fede50>
```
If you pass values whose sum total is less than 1.0, matplotlib draws a semicircle.

```
In [78]: series = pd.Series([0.1] * 4, index=['a', 'b', 'c', 'd'], name='series2')

In [79]: series.plot.pie(figsize=(6, 6))
Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26c39e9d0>
```
Plotting with Missing Data

Pandas tries to be pragmatic about plotting DataFrames or Series that contain missing data. Missing values are dropped, left out, or filled depending on the plot type.

<table>
<thead>
<tr>
<th>Plot Type</th>
<th>NaN Handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line</td>
<td>Leave gaps at NaNs</td>
</tr>
<tr>
<td>Line (stacked)</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>Bar</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>Scatter</td>
<td>Drop NaNs</td>
</tr>
<tr>
<td>Histogram</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Box</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Area</td>
<td>Fill 0’s</td>
</tr>
<tr>
<td>KDE</td>
<td>Drop NaNs (column-wise)</td>
</tr>
<tr>
<td>Hexbin</td>
<td>Drop NaNs</td>
</tr>
<tr>
<td>Pie</td>
<td>Fill 0’s</td>
</tr>
</tbody>
</table>

If any of these defaults are not what you want, or if you want to be explicit about how missing values are handled, consider using `fillna()` or `dropna()` before plotting.
Plotting Tools

These functions can be imported from pandas.tools.plotting and take a Series or DataFrame as an argument.

Scatter Matrix Plot

New in version 0.7.3.

You can create a scatter plot matrix using the scatter_matrix method in pandas.tools.plotting:

```python
In [80]: from pandas.tools.plotting import scatter_matrix
In [81]: df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])
In [82]: scatter_matrix(df, alpha=0.2, figsize=(6, 6), diagonal='kde')
Out[82]: array([[[<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26def9410>,
 <matplotlib.axes._subplots.AxesSubplot object at 0x7ff2705099d0>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26e1ffe10>]],
 [[<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26d058090>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26dd2350>]],
 [[<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26df3d0d0>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26e2142d0>]],
 [[<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26d59c2d0>],
 [<matplotlib.axes._subplots.AxesSubplot object at 0x7ff26dd2350>]]
], dtype=object)
```
Density Plot

New in version 0.8.0.

You can create density plots using the `Series.plot.kde()` and `DataFrame.plot.kde()` methods.

```
In [83]: ser = pd.Series(np.random.randn(1000))
In [84]: ser.plot.kde()
Out[84]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff266c28d10>
```
Andrews Curves

Andrews curves allow one to plot multivariate data as a large number of curves that are created using the attributes of samples as coefficients for Fourier series. By coloring these curves differently for each class it is possible to visualize data clustering. Curves belonging to samples of the same class will usually be closer together and form larger structures.

Note: The “Iris” dataset is available here.
Parallel Coordinates

Parallel coordinates is a plotting technique for plotting multivariate data. It allows one to see clusters in data and to estimate other statistics visually. Using parallel coordinates points are represented as connected line segments. Each vertical line represents one attribute. One set of connected line segments represents one data point. Points that tend to cluster will appear closer together.

```python
In [89]: from pandas.tools.plotting import parallel_coordinates

In [90]: data = pd.read_csv('data/iris.data')

In [91]: plt.figure()
Out[91]: <matplotlib.figure.Figure at 0x7ff26798f850>

In [92]: parallel_coordinates(data, 'Name')
Out[92]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff267994810>
```
Lag Plot

Lag plots are used to check if a data set or time series is random. Random data should not exhibit any structure in the lag plot. Non-random structure implies that the underlying data are not random.

```
In [93]: from pandas.tools.plotting import lag_plot
In [94]: plt.figure()
Out[94]: <matplotlib.figure.Figure at 0x7ff26dd75d10>
In [95]: data = pd.Series(0.1 * np.random.rand(1000) +
 0.9 * np.sin(np.linspace(-99 * np.pi, 99 * np.pi, num=1000)))
In [96]: lag_plot(data)
Out[96]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26dd75910>
```
**Autocorrelation Plot**

Autocorrelation plots are often used for checking randomness in time series. This is done by computing autocorrelations for data values at varying time lags. If time series is random, such autocorrelations should be near zero for any and all time-lag separations. If time series is non-random then one or more of the autocorrelations will be significantly non-zero. The horizontal lines displayed in the plot correspond to 95% and 99% confidence bands. The dashed line is 99% confidence band.

In [97]: from pandas.tools.plotting import autocorrelation_plot

In [98]: plt.figure()
Out[98]: <matplotlib.figure.Figure at 0x7ff267d7a350>

In [99]: data = pd.Series(0.7 * np.random.rand(1000) +
                      0.3 * np.sin(np.linspace(-9 * np.pi, 9 * np.pi, num=1000)))

In [100]: autocorrelation_plot(data)
Out[100]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26dd79ad0>
Bootstrap Plot

Bootstrap plots are used to visually assess the uncertainty of a statistic, such as mean, median, midrange, etc. A random subset of a specified size is selected from a data set, the statistic in question is computed for this subset and the process is repeated a specified number of times. Resulting plots and histograms are what constitutes the bootstrap plot.

In [101]: from pandas.tools.plotting import bootstrap_plot

In [102]: data = pd.Series(np.random.rand(1000))

In [103]: bootstrap_plot(data, size=50, samples=500, color='grey')
Out[103]: <matplotlib.figure.Figure at 0x7ff2677380d0>
RadViz

RadViz is a way of visualizing multi-variate data. It is based on a simple spring tension minimization algorithm. Basically you set up a bunch of points in a plane. In our case they are equally spaced on a unit circle. Each point represents a single attribute. You then pretend that each sample in the data set is attached to each of these points by a spring, the stiffness of which is proportional to the numerical value of that attribute (they are normalized to unit interval). The point in the plane, where our sample settles to (where the forces acting on our sample are at an equilibrium) is where a dot representing our sample will be drawn. Depending on which class that sample belongs it will be colored differently.

Note: The “Iris” dataset is available here.

```python
In [104]: from pandas.tools.plotting import radviz
In [105]: data = pd.read_csv('data/iris.data')
In [106]: plt.figure()
Out[106]: <matplotlib.figure.Figure at 0x7ff26e5d5190>
In [107]: radviz(data, 'Name')
Out[107]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26ebc86d0>
```
Plot Formatting

Most plotting methods have a set of keyword arguments that control the layout and formatting of the returned plot:

```
In [108]: plt.figure(); ts.plot(style='k--', label='Series');
```
For each kind of plot (e.g. line, bar, scatter) any additional arguments keywords are passed along to the corresponding matplotlib function (ax.plot(), ax.bar(), ax.scatter()). These can be used to control additional styling, beyond what pandas provides.

**Controlling the Legend**

You may set the `legend` argument to `False` to hide the legend, which is shown by default.

```
In [109]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))

In [110]: df = df.cumsum()

In [111]: df.plot(legend=False)
Out[111]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26e65d590>
```
Scales

You may pass `logy` to get a log-scale Y axis.

```python
In [112]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
In [113]: ts = np.exp(ts.cumsum())
In [114]: ts.plot(logy=True)
Out[114]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2704da990>
```
See also the `logx` and `loglog` keyword arguments.

**Plotting on a Secondary Y-axis**

To plot data on a secondary y-axis, use the `secondary_y` keyword:

```python
In [115]: df.A.plot()
Out[115]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26e663290>

In [116]: df.B.plot(secondary_y=True, style='g')
Out[116]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26e10e1d0>
```
To plot some columns in a DataFrame, give the column names to the `secondary_y` keyword:

```
In [117]: plt.figure()
Out[117]: <matplotlib.figure.Figure at 0x7ff26cd69450>

In [118]: ax = df.plot(secondary_y=['A', 'B'])

In [119]: ax.set_ylabel('CD scale')
Out[119]: <matplotlib.text.Text at 0x7ff26c8112d0>

In [120]: ax.right_ax.set_ylabel('AB scale')
Out[120]: <matplotlib.text.Text at 0x7ff266f57710>
```
Note that the columns plotted on the secondary y-axis is automatically marked with “(right)” in the legend. To turn off the automatic marking, use the `mark_right=False` keyword:

```
In [121]: plt.figure()
Out[121]: <matplotlib.figure.Figure at 0x7ff26752ced0>

In [122]: df.plot(secondary_y=['A', 'B'], mark_right=False)
Out[122]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff267a133d0>
```
Suppressing Tick Resolution Adjustment

pandas includes automatic tick resolution adjustment for regular frequency time-series data. For limited cases where pandas cannot infer the frequency information (e.g., in an externally created `twinx`), you can choose to suppress this behavior for alignment purposes.

Here is the default behavior, notice how the x-axis tick labelling is performed:

```
In [123]: plt.figure()
Out[123]: <matplotlib.figure.Figure at 0x7ff267a3bc10>

In [124]: df.A.plot()
Out[124]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26e538f90>
```
Using the `x_compat` parameter, you can suppress this behavior:

```
In [125]: plt.figure()
Out[125]: <matplotlib.figure.Figure at 0x7ff26e51add0>

In [126]: df.A.plot(x_compat=True)
Out[126]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26eaeeb10>
```
If you have more than one plot that needs to be suppressed, the `use` method in `pandas.plot_params` can be used in a `with` statement:

```python
In [127]: plt.figure()
Out[127]: <matplotlib.figure.Figure at 0x7ff26dea43d0>

In [128]: with pd.plot_params.use('x_compat', True):
 : df.A.plot(color='r')
 : df.B.plot(color='g')
 : df.C.plot(color='b')
 :
```
Subplots

Each Series in a DataFrame can be plotted on a different axis with the `subplots` keyword:

```python
In [129]: df.plot(subplots=True, figsize=(6, 6));
```
Using Layout and Targeting Multiple Axes

The layout of subplots can be specified by layout keyword. It can accept (rows,columns). The layout keyword can be used in hist and boxplot also. If input is invalid, ValueError will be raised.

The number of axes which can be contained by rows x columns specified by layout must be larger than the number of required subplots. If layout can contain more axes than required, blank axes are not drawn. Similar to a numpy array's reshape method, you can use −1 for one dimension to automatically calculate the number of rows or columns needed, given the other.

In [130]: df.plot(subplots=True, layout=(2, 3), figsize=(6, 6), sharex=False);
The above example is identical to using

```
In [131]: df.plot(subplots=True, layout=(2, -1), figsize=(6, 6), sharex=False);
```

The required number of columns (3) is inferred from the number of series to plot and the given number of rows (2).

Also, you can pass multiple axes created beforehand as list-like via `ax` keyword. This allows to use more complicated layout. The passed axes must be the same number as the subplots being drawn.

When multiple axes are passed via `ax` keyword, `layout`, `sharex` and `sharey` keywords don’t affect to the output. You should explicitly pass `sharex=False` and `sharey=False`, otherwise you will see a warning.

```
In [132]: fig, axes = plt.subplots(4, 4, figsize=(6, 6));

In [133]: plt.subplots_adjust(wspace=0.5, hspace=0.5);

In [134]: target1 = [axes[0][0], axes[1][1], axes[2][2], axes[3][3]]

In [135]: target2 = [axes[3][0], axes[2][1], axes[1][2], axes[0][3]]

In [136]: df.plot(subplots=True, ax=target1, legend=False, sharex=False, sharey=False);
```
Another option is passing an `ax` argument to `Series.plot()` to plot on a particular axis:

```
In [138]: fig, axes = plt.subplots(nrows=2, ncols=2)

In [139]: df['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A');

In [140]: df['B'].plot(ax=axes[0,1]); axes[0,1].set_title('B');

In [141]: df['C'].plot(ax=axes[1,0]); axes[1,0].set_title('C');

In [142]: df['D'].plot(ax=axes[1,1]); axes[1,1].set_title('D');
```
Plotting With Error Bars

New in version 0.14.

Plotting with error bars is now supported in the `DataFrame.plot()` and `Series.plot()`.

Horizontal and vertical errorbars can be supplied to the `xerr` and `yerr` keyword arguments to `plot()`. The error values can be specified using a variety of formats:

- As a `DataFrame` or `dict` of errors with column names matching the `columns` attribute of the plotting `DataFrame` or matching the `name` attribute of the `Series`.

- As a `str` indicating which of the columns of plotting `DataFrame` contain the error values.

- As raw values (`list`, `tuple`, or `np.ndarray`). Must be the same length as the plotting `DataFrame/Series`.

Asymmetrical error bars are also supported, however raw error values must be provided in this case. For a `M` length `Series`, a `Mx2` array should be provided indicating lower and upper (or left and right) errors. For a `MxN` `DataFrame`, asymmetrical errors should be in a `Mx2xN` array.

Here is an example of one way to easily plot group means with standard deviations from the raw data.
# Generate the data
In [143]: ix3 = pd.MultiIndex.from_arrays([["a", "a", "a", "a", "b", "b", "b", "b"], [
˓→"foo", "foo", "bar", "bar", "foo", "foo", "bar", "bar"], names=["letter", "word"])

In [144]: df3 = pd.DataFrame({'data1': [3, 2, 4, 3, 2, 4, 3, 2], 'data2': [6, 5, 7, 5, 4, 5, 6, 5]}, index=ix3)

# Group by index labels and take the means and standard deviations for each group
In [145]: gp3 = df3.groupby(level=('letter', 'word'))

In [146]: means = gp3.mean()

In [147]: errors = gp3.std()

In [148]: means
Out[148]:
     data1  data2
letter word
   a  bar    3.5   6.0
      foo    2.5   5.5
   b  bar    2.5   5.5
      foo    3.0   4.5

In [149]: errors
Out[149]:
     data1  data2
letter word
   a  bar  0.707107  1.414214
      foo  0.707107  0.707107
   b  bar  0.707107  0.707107
      foo  1.414214  0.707107

# Plot
In [150]: fig, ax = plt.subplots()

In [151]: means.plot.bar(yerr=errors, ax=ax)
Out[151]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26cc76f90>
Plotting Tables

New in version 0.14.

Plotting with matplotlib table is now supported in `DataFrame.plot()` and `Series.plot()` with a table keyword. The table keyword can accept bool, `DataFrame` or `Series`. The simple way to draw a table is to specify `table=True`. Data will be transposed to meet matplotlib's default layout.

```
in [152]: fig, ax = plt.subplots(1, 1)
in [153]: df = pd.DataFrame(np.random.rand(5, 3), columns=['a', 'b', 'c'])
in [154]: ax.get_xaxis().set_visible(False) # Hide Ticks
in [155]: df.plot(table=True, ax=ax)
Out[155]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26c4cc5d0>
```
Also, you can pass different `DataFrame` or `Series` for `table` keyword. The data will be drawn as displayed in print method (not transposed automatically). If required, it should be transposed manually as below example.

```
In [156]: fig, ax = plt.subplots(1, 1)

In [157]: ax.get_xaxis().set_visible(False) # Hide Ticks

In [158]: df.plot(table=np.round(df.T, 2), ax=ax)
```

```
Out[158]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26ea2e690>
```
Finally, there is a helper function `pandas.tools.plotting.table` to create a table from `DataFrame` and `Series`, and add it to an `matplotlib.Axes`. This function can accept keywords which `matplotlib` table has.

```python
In [159]: from pandas.tools.plotting import table

In [160]: fig, ax = plt.subplots(1, 1)

In [161]: table(ax, np.round(df.describe(), 2),
 ...: loc='upper right', colWidths=[0.2, 0.2, 0.2])
 ...
Out[161]: <matplotlib.table.Table at 0x7ff270843f10>

In [162]: df.plot(ax=ax, ylim=(0, 2), legend=None)
Out[162]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff267fce190>
```
A potential issue when plotting a large number of columns is that it can be difficult to distinguish some series due to repetition in the default colors. To remedy this, DataFrame plotting supports the use of the `colormap=` argument, which accepts either a Matplotlib colormap or a string that is a name of a colormap registered with Matplotlib. A visualization of the default matplotlib colormaps is available here.

As matplotlib does not directly support colormaps for line-based plots, the colors are selected based on an even spacing determined by the number of columns in the DataFrame. There is no consideration made for background color, so some colormaps will produce lines that are not easily visible.

To use the cubehelix colormap, we can simply pass 'cubehelix' to `colormap=`

```
In [163]: df = pd.DataFrame(np.random.randn(1000, 10), index=ts.index)
In [164]: df = df.cumsum()
In [165]: plt.figure()
Out[165]: <matplotlib.figure.Figure at 0x7ff266ee9650>
```
or we can pass the colormap itself

```
In [167]: from matplotlib import cm

In [168]: plt.figure()
Out[168]: <matplotlib.figure.Figure at 0x7ff26c8efb10>

In [169]: df.plot(colormap=cm.cubehelix)
Out[169]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff270ee6c90>
```
Colormaps can also be used other plot types, like bar charts:

```python
In [170]: dd = pd.DataFrame(np.random.randn(10, 10)).applymap(abs)
In [171]: dd = dd.cumsum()
In [172]: plt.figure()
Out[172]: <matplotlib.figure.Figure at 0x7ff272475250>
In [173]: dd.plot.bar(colormap='Greens')
Out[173]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff26ef5fd0>
```
Parallel coordinates charts:

```python
In [174]: plt.figure()
Out[174]: <matplotlib.figure.Figure at 0x7ff2717f4250>

In [175]: parallel_coordinates(data, 'Name', colormap='gist_rainbow')
Out[175]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff2717d2810>
```
Andrews curves charts:

```python
In [176]: plt.figure()
Out[176]: <matplotlib.figure.Figure at 0x7ff25dd3af50>

In [177]: andrews_curves(data, 'Name', colormap='winter')
Out[177]: <matplotlib.axes._subplots.AxesSubplot at 0x7ff25dcc9b90>
```
Plotting directly with matplotlib

In some situations it may still be preferable or necessary to prepare plots directly with matplotlib, for instance when a certain type of plot or customization is not (yet) supported by pandas. Series and DataFrame objects behave like arrays and can therefore be passed directly to matplotlib functions without explicit casts.

pandas also automatically registers formatters and locators that recognize date indices, thereby extending date and time support to practically all plot types available in matplotlib. Although this formatting does not provide the same level of refinement you would get when plotting via pandas, it can be faster when plotting a large number of points.

Note: The speed up for large data sets only applies to pandas 0.14.0 and later.

```python
In [178]: price = pd.Series(np.random.rand(150).cumsum(),
 : index=pd.date_range('2000-1-1', periods=150, freq='B'))
 :
In [179]: ma = price.rolling(20).mean()
In [180]: mstd = price.rolling(20).std()
```
Trellis plotting interface

**Warning:** The `rplot` trellis plotting interface has been removed. Please use external packages like seaborn for similar but more refined functionality and refer to our 0.18.1 documentation here for how to convert to using it.
The pandas I/O API is a set of top level reader functions accessed like `pd.read_csv()` that generally return a pandas object.

- `read_csv`
- `read_excel`
- `read_hdf`
- `read_sql`
- `read_json`
- `read_msgpack` (experimental)
- `read_html`
- `read_gbq` (experimental)
- `read_stata`
- `read_sas`
- `read_clipboard`
- `read_pickle`

The corresponding writer functions are object methods that are accessed like `df.to_csv()`

- `to_csv`
- `to_excel`
- `to_hdf`
- `to_sql`
- `to_json`
- `to_msgpack` (experimental)
- `to_html`
- `to_gbq` (experimental)
- `to_stata`
- `to_clipboard`
- `to_pickle`
Here is an informal performance comparison for some of these IO methods.

Note: For examples that use the StringIO class, make sure you import it according to your Python version, i.e. from StringIO import StringIO for Python 2 and from io import StringIO for Python 3.

CSV & Text files

The two workhorse functions for reading text files (a.k.a. flat files) are read_csv() and read_table(). They both use the same parsing code to intelligently convert tabular data into a DataFrame object. See the cookbook for some advanced strategies.

Parsing options

read_csv() and read_table() accept the following arguments:

Basic

filepath_or_buffer [various] Either a path to a file (a str, pathlib.Path, or py._path.local.LocalPath), URL (including http, ftp, and S3 locations), or any object with a read() method (such as an open file or StringIO).

sep [str, defaults to ',' for read_csv(), \t for read_table()] Delimiter to use. If sep is None, will try to automatically determine this. Separators longer than 1 character and different from \s+ will be interpreted as regular expressions, will force use of the python parsing engine and will ignore quotes in the data. Regex example: '\\r\\t'.

delimiter [str, default None] Alternative argument name for sep.

delim_whitespace [boolean, default False] Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as the delimiter. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

Column and Index Locations and Names

header [int or list of ints, default 'infer'] Row number(s) to use as the column names, and the start of the data. Default behavior is as if header=0 if no names passed, otherwise as if header=None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of ints that specify row locations for a multi-index on the columns e.g. [0, 1, 3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

names [array-like, default None] List of column names to use. If file contains no header row, then you should explicitly pass header=0. Duplicates in this list are not allowed unless mangle_dupe_cols=True, which is the default.

index_col [int or sequence or False, default None] Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to not use the first column as the index (row names).
**usecols** [array-like, default None] Return a subset of the columns. All elements in this array must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Using this parameter results in much faster parsing time and lower memory usage.

**as_recarray** [boolean, default False] DEPRECATED: this argument will be removed in a future version. Please call `pd.read_csv(...).to_records()` instead.

Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the squeeze parameter. In addition, as row indices are not available in such a format, the index_col parameter will be ignored.

**squeeze** [boolean, default False] If the parsed data only contains one column then return a Series.

**prefix** [str, default None] Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

**mangle_dupe_cols** [boolean, default True] Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

### General Parsing Configuration

**dtype** [Type name or dict of column -> type, default None] Data type for data or columns. E.g. {'a': np.float64,'b': np.int32} (unsupported with engine='python'). Use str or object to preserve and not interpret dtype.

**engine** [[{'c'}, {'python'}]] Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

**converters** [dict, default None] Dict of functions for converting values in certain columns. Keys can either be integers or column labels.

**true_values** [list, default None] Values to consider as True.

**false_values** [list, default None] Values to consider as False.

**skipinitialspace** [boolean, default False] Skip spaces after delimiter.

**skiprows** [list-like or integer, default None] Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file.

**skipfooter** [int, default 0] Number of lines at bottom of file to skip (unsupported with engine='c').

**skip_footer** [int, default 0] DEPRECATED: use the skipfooter parameter instead, as they are identical

**nrows** [int, default None] Number of rows of file to read. Useful for reading pieces of large files.

**low_memory** [boolean, default True] Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set `False`, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser)

**buffer_lines** [int, default None] DEPRECATED: this argument will be removed in a future version because its value is not respected by the parser

**compact_ints** [boolean, default False] DEPRECATED: this argument will be removed in a future version. If compact_ints is True, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype possible, either signed or unsigned depending on the specification from the use_unsigned parameter.
use_unsigned [boolean, default False] DEPRECATED: this argument will be removed in a future version

If integer columns are being compacted (i.e. compact_ints=True), specify whether the column should be compacted to the smallest signed or unsigned integer dtype.

memory_map [boolean, default False] If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

**NA and Missing Data Handling**

na_values [scalar, str, list-like, or dict, default None] Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '-1.#IND','1.#QNAN','1.#IND','-1.#QNAN','N/A','N/A','N/A','N/A','NULL','NaN','-Nan','nan','-nan',''.

keep_default_na [boolean, default True] If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to.

na_filter [boolean, default True] Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file.

verbose [boolean, default False] Indicate number of NA values placed in non-numeric columns.

skip_blank_lines [boolean, default True] If True, skip over blank lines rather than interpreting as NaN values.

**Datetime Handling**

parse_dates [boolean or list of ints or names or list of lists or dict, default False.]

- If True -> try parsing the index.
- If [1,2,3] -> try parsing columns 1, 2, 3 each as a separate date column.
- If [[1,3]] -> combine columns 1 and 3 and parse as a single date column.
- If {'foo' : [1,3]} -> parse columns 1, 3 as date and call result ‘foo’. A fast-path exists for iso8601-formatted dates.

infer_datetime_format [boolean, default False] If True and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing.

keep_date_col [boolean, default False] If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser [function, default None] Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst [boolean, default False] DD/MM format dates, international and European format.

**Iteration**

iterator [boolean, default False] Return TextFileReader object for iteration or getting chunks with get_chunk().

chunksize [int, default None] Return TextFileReader object for iteration. See iterating and chunking below.
Quoting, Compression, and File Format

**compression** [{'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'] For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip, or xz if filepath_or_buffer is a string ending in `.gz`, `.bz2`, `.zip`, or `.xz`, respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

**thousands** [str, default None] Thousands separator.

**decimal** [str, default ' '] Character to recognize as decimal point. E.g. use ',' for European data.

**float_precision** [string, default None] Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

**lineterminator** [str (length 1), default None] Character to break file into lines. Only valid with C parser.

**quotechar** [str (length 1)] The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

**quoting** [int or csv.QUOTE_* instance, default 0] Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

**doublequote** [boolean, default True] When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements inside a field as a single quotechar element.

**escapechar** [str (length 1), default None] One-character string used to escape delimiter when quoting is QUOTE_NONE.

**comment** [str, default None] Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing '#empty
a,b,c
1,2,3' with header=0 will result in 'a,b,c' being treated as the header.

**encoding** [str, default None] Encoding to use for UTF when reading/writing (e.g. 'utf-8'). List of Python standard encodings.

**dialect** [str or csv.Dialect instance, default None] If None defaults to Excel dialect. Ignored if sep longer than 1 char. See csv.Dialect documentation for more details.

**tupleize_cols** [boolean, default False] Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the columns).

Error Handling

**error_bad_lines** [boolean, default True] Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned (only valid with C parser). See bad lines below.

**warn_bad_lines** [boolean, default True] If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output (only valid with C parser).

Consider a typical CSV file containing, in this case, some time series data:

```python
In [1]: print(open('foo.csv').read())
date,A,B,C
20090101,a,1,2
```

25.1. CSV & Text files 903
The default for \texttt{read\_csv} is to create a DataFrame with simple numbered rows:

\begin{verbatim}
In [2]: pd.read\_csv('foo.csv')
Out[2]:
   date  A  B  C
0  20090101 a 1 2
1  20090102 b 3 4
2  20090103 c 4 5
\end{verbatim}

In the case of indexed data, you can pass the column number or column name you wish to use as the index:

\begin{verbatim}
In [3]: pd.read\_csv('foo.csv', index\_col=0)
Out[3]:
     A  B  C
date
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5
\end{verbatim}

\begin{verbatim}
In [4]: pd.read\_csv('foo.csv', index\_col='date')
Out[4]:
     A  B  C
date
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5
\end{verbatim}

You can also use a list of columns to create a hierarchical index:

\begin{verbatim}
In [5]: pd.read\_csv('foo.csv', index\_col=[0, 'A'])
Out[5]:
      B  C
date  A
20090101 a 1 2
20090102 b 3 4
20090103 c 4 5
\end{verbatim}

The \texttt{dialect} keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but you can specify either the dialect name or a \texttt{csv.Dialect} instance.

Suppose you had data with unenclosed quotes:

\begin{verbatim}
In [6]: print(data)
label1,label2,label3
index1,"a,c,e
index2,b,d,f
\end{verbatim}

By default, \texttt{read\_csv} uses the Excel dialect and treats the double quote as the quote character, which causes it to fail when it finds a newline before it finds the closing double quote.

We can get around this using \texttt{dialect}

\begin{verbatim}
In [7]: dia = csv.excel()
In [8]: dia.quoting = csv.QUOTE_NONE
\end{verbatim}
In [9]: pd.read_csv(StringIO(data), dialect=dia)
Out[9]:
   label1 label2 label3
index1    a   c   e
index2    b   d   f

All of the dialect options can be specified separately by keyword arguments:

In [10]: data = 'a,b,c~1,2,3~4,5,6'

In [11]: pd.read_csv(StringIO(data), lineterminator='~')
Out[11]:
   a  b  c
0  1  2  3
1  4  5  6

Another common dialect option is skipinitialspace, to skip any whitespace after a delimiter:

In [12]: data = 'a, b, c

1, 2, 3

4, 5, 6'

In [13]: print(data)
a, b, c
1, 2, 3
4, 5, 6

In [14]: pd.read_csv(StringIO(data), skipinitialspace=True)
Out[14]:
   a  b  c
0  1  2  3
1  4  5  6

The parsers make every attempt to “do the right thing” and not be very fragile. Type inference is a pretty big deal. So if a column can be coerced to integer dtype without altering the contents, it will do so. Any non-numeric columns will come through as object dtype as with the rest of pandas objects.

**Specifying column data types**

Starting with v0.10, you can indicate the data type for the whole DataFrame or individual columns:

In [15]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9'

In [16]: print(data)
a, b, c
1, 2, 3
4, 5, 6
7, 8, 9

In [17]: df = pd.read_csv(StringIO(data), dtype=object)

In [18]: df
Out[18]:
   a  b  c
0  1  2  3
1  4  5  6
2  7  8  9
Fortunately, pandas offers more than one way to ensure that your column(s) contain only one dtype. If you’re unfamiliar with these concepts, you can see here to learn more about dtypes, and here to learn more about object conversion in pandas.

For instance, you can use the converters argument of read_csv():

```
In [22]: data = "col_1

1
2
'A'
4.22"

In [23]: df = pd.read_csv(StringIO(data), converters={'col_1':str})

In [24]: df
Out[24]:
 col_1
0 1
1 2
2 A
3 4.22

In [25]: df['col_1'].apply(type).value_counts()
Out[25]:
<type 'str'> 4
Name: col_1, dtype: int64
```

Or you can use the to_numeric() function to coerce the dtypes after reading in the data,

```
In [26]: df2 = pd.read_csv(StringIO(data))

In [27]: df2['col_1'] = pd.to_numeric(df2['col_1'], errors='coerce')

In [28]: df2
Out[28]:
 col_1
0 1.00
1 2.00
2 NaN
3 4.22

In [29]: df2['col_1'].apply(type).value_counts()
Out[29]:
<type 'float'> 4
Name: col_1, dtype: int64
```

which would convert all valid parsing to floats, leaving the invalid parsing as NaN.

Ultimately, how you deal with reading in columns containing mixed dtypes depends on your specific needs. In the case above, if you wanted to NaN out the data anomalies, then to_numeric() is probably your best option. However, if
you wanted for all the data to be coerced, no matter the type, then using the converters argument of \texttt{read\_csv()} would certainly be worth trying.

\textbf{Note:} The \texttt{dtype} option is currently only supported by the C engine. Specifying \texttt{dtype} with \texttt{engine} other than \texttt{'c'} raises a \texttt{ValueError}.

\textbf{Note:} In some cases, reading in abnormal data with columns containing mixed dtypes will result in an inconsistent dataset. If you rely on pandas to infer the dtypes of your columns, the parsing engine will go and infer the dtypes for different chunks of the data, rather than the whole dataset at once. Consequently, you can end up with column(s) with mixed dtypes. For example,

\begin{verbatim}
In [30]: df = pd.DataFrame({'col_1':range(500000) + ['a', 'b'] + range(500000)})
In [31]: df.to_csv('foo')
In [32]: mixed_df = pd.read_csv('foo')
In [33]: mixed_df['col_1'].apply(type).value_counts()
Out[33]:
<type 'int'>   737858
<type 'str'>  262144
Name: col_1, dtype: int64
In [34]: mixed_df['col_1'].dtype
Out[34]: dtype('O')
\end{verbatim}

will result with \texttt{mixed\_df} containing an \texttt{int} dtype for certain chunks of the column, and \texttt{str} for others due to the mixed dtypes from the data that was read in. It is important to note that the overall column will be marked with a \texttt{dtype of object}, which is used for columns with mixed dtypes.

### Specifying Categorical dtype

New in version 0.19.0.

Categorical columns can be parsed directly by specifying \texttt{dtype='category'}

\begin{verbatim}
In [35]: data = 'col1,col2,col3\na,b,1
b,b,2
a,b,3'
In [36]: pd.read_csv(StringIO(data))
Out[36]:
coll  col2  col3
0   a   b   1
1   a   b   2
2   c   d   3
In [37]: pd.read_csv(StringIO(data)).dtypes
Out[37]:
coll     object
col2     object
col3     int64
dtype: object
In [38]: pd.read_csv(StringIO(data), dtype='category').dtypes
\end{verbatim}
Individual columns can be parsed as a `Categorical` using a dict specification

```python
In [39]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes
Out[39]:
col1 category
col2 object
col3 int64
dtype: object
```

**Note:** The resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can be converted using the `to_numeric()` function, or as appropriate, another converter such as `to_datetime()`.

```python
In [40]: df = pd.read_csv(StringIO(data), dtype='category')
In [41]: df.dtypes
Out[41]:
col1 category
col2 category
col3 category
dtype: object

In [42]: df['col3']
Out[42]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, object): [1, 2, 3]

In [43]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories)

In [44]: df['col3']
Out[44]:
0 1
1 2
2 3
Name: col3, dtype: category
Categories (3, int64): [1, 2, 3]
```

## Naming and Using Columns

### Handling column names

A file may or may not have a header row. pandas assumes the first row should be used as the column names:

```python
In [45]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9'
In [46]: print(data)
```
In [47]: pd.read_csv(StringIO(data))
Out[47]:
   a  b  c
0  1  2  3
1  4  5  6
2  7  8  9

By specifying the `names` argument in conjunction with `header` you can indicate other names to use and whether or not to throw away the header row (if any):

In [48]: print(data)
   a,b,c
   1,2,3
   4,5,6
   7,8,9

In [49]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=0)
Out[49]:
   foo  bar  baz
   0   1   2   3
   1   4   5   6
   2   7   8   9

In [50]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=None)
Out[50]:
   foo  bar  baz
   0   a   b   c
   1   1   2   3
   2   4   5   6
   3   7   8   9

If the header is in a row other than the first, pass the row number to `header`. This will skip the preceding rows:

In [51]: data = 'skip this skip it
   a,b,c
   0,1,2
   3,4,5,6
   7,8,9'

In [52]: pd.read_csv(StringIO(data), header=1)
Out[52]:
   a  b  c
   0  1  2
   1  4  5
   2  7  8

**Duplicate names parsing**

If the file or header contains duplicate names, pandas by default will deduplicate these names so as to prevent data overwrite:

In [53]: data = 'a,b,a
   0,1,2
   3,4,5'

In [54]: pd.read_csv(StringIO(data))
Out[54]:
   a  b  c
   0  1  2
   1  3  4

25.1. CSV & Text files
There is no more duplicate data because mangle_dupe_cols=True by default, which modifies a series of duplicate columns ‘X’...’X’ to become ‘X.0’...’X.N’. If mangle_dupe_cols=False, duplicate data can arise:

```
In [2]: data = 'a,b,a\n0,1,2
3,4,5

In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
Out[3]:
 a b a
0 2 1 2
1 5 4 5
```

To prevent users from encountering this problem with duplicate data, a ValueError exception is raised if mangle_dupe_cols != True:

```
In [2]: data = 'a,b,a\n0,1,2\n3,4,5'
In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False)
...
ValueError: Setting mangle_dupe_cols=False is not supported yet
```

### Filtering columns (usecols)

The usecols argument allows you to select any subset of the columns in a file, either using the column names or position numbers:

```
In [55]: data = 'a,b,c,d\n1,2,3,foo\n4,5,6,bar\n7,8,9,baz'

In [56]: pd.read_csv(StringIO(data))
Out[56]:
 a b c d
0 1 2 3 foo
1 4 5 6 bar
2 7 8 9 baz

In [57]: pd.read_csv(StringIO(data), usecols=['b', 'd'])
Out[57]:
 b d
0 2 foo
1 5 bar
2 8 baz

In [58]: pd.read_csv(StringIO(data), usecols=[0, 2, 3])
Out[58]:
 a c d
0 1 3 foo
1 4 6 bar
2 7 9 baz
```

### Comments and Empty Lines
Ignoring line comments and empty lines

If the comment parameter is specified, then completely commented lines will be ignored. By default, completely blank lines will be ignored as well. Both of these are API changes introduced in version 0.15.

```python
In [59]: data = '

 # commented line

1,2,3

4,5,6'
In [60]: print(data)
a,b,c
1,2,3
4,5,6

In [61]: pd.read_csv(StringIO(data), comment='#')
Out[61]:
 a b c
0 1 2 3
1 4 5 6
```

If skip_blank_lines=False, then read_csv will not ignore blank lines:

```python
In [62]: data = 'a,b,c

1,2,3

4,5,6'
In [63]: pd.read_csv(StringIO(data), skip_blank_lines=False)
Out[63]:
 a b c
0 NaN NaN NaN
1 1.0 2.0 3.0
2 NaN NaN NaN
3 NaN NaN NaN
4 4.0 5.0 6.0
```

**Warning:** The presence of ignored lines might create ambiguities involving line numbers; the parameter header uses row numbers (ignoring commented/empty lines), while skiprows uses line numbers (including commented/empty lines):

```python
In [64]: data = '#comment

 a,b,c

A,B,C

1,2,3'
In [65]: pd.read_csv(StringIO(data), comment='#', header=1)
Out[65]:
 A B C
0 1 2 3
In [66]: data = 'A,B,C

 #comment

a,b,c

1,2,3'
In [67]: pd.read_csv(StringIO(data), comment='#', skiprows=2)
Out[67]:
 a b c
0 1 2 3
```

If both header and skiprows are specified, header will be relative to the end of skiprows. For example:
In [68]: data = '# empty
# second empty line
# third empty line
X,Y,Z
1,2,3
A,B,C
1,2.,4.
5.,NaN,10.0'

In [69]: print(data)
# empty
# second empty line
# third empty line
X,Y,Z
1,2,3
A,B,C
1,2.,4.
5.,NaN,10.0

In [70]: pd.read_csv(StringIO(data), comment='#', skiprows=4, header=1)
Out[70]:
      A  B  C
0  1.0 2.0 4.0
1  5.0   NaN 10.0

Comments

Sometimes comments or meta data may be included in a file:

In [71]: print(open('tmp.csv').read())
ID,level,category
Patient1,123000,x # really unpleasant
Patient2,23000,y # wouldn't take his medicine
Patient3,1234018,z # awesome

By default, the parser includes the comments in the output:

In [72]: df = pd.read_csv('tmp.csv')

In [73]: df
Out[73]:
     ID      level  category
0  Patient1  123000  x # really unpleasant
1  Patient2  230000  y # wouldn't take his medicine
2  Patient3  1234018  z # awesome

We can suppress the comments using the comment keyword:

In [74]: df = pd.read_csv('tmp.csv', comment='#')

In [75]: df
Out[75]:
     ID      level  category
0  Patient1  123000       x
1  Patient2  230000       y
2  Patient3  1234018       z
Dealing with Unicode Data

The `encoding` argument should be used for encoded unicode data, which will result in byte strings being decoded to unicode in the result:

```python
In [76]: data = b'word,length

Träumen,7
Grüße,5'.decode('utf8').encode('latin-1')

In [77]: df = pd.read_csv(BytesIO(data), encoding='latin-1')

In [78]: df
Out[78]:
 word length
0 Träumen 7
1 Grüße 5

In [79]: df['word'][1]
Out[79]: u'Grüße'
```

Some formats which encode all characters as multiple bytes, like UTF-16, won’t parse correctly at all without specifying the encoding. Full list of Python standard encodings

Index columns and trailing delimiters

If a file has one more column of data than the number of column names, the first column will be used as the DataFrame’s row names:

```python
In [80]: data = 'a,b,c

4,apple,bat,5.7
8,orange,cow,10'

In [81]: pd.read_csv(StringIO(data))
Out[81]:
 a b c
0 4 apple bat 5.7
1 8 orange cow 10.0

In [82]: data = 'index,a,b,c

4,apple,bat,5.7
8,orange,cow,10'

In [83]: pd.read_csv(StringIO(data), index_col=0)
Out[83]:
 index a b c
index
4 4 apple bat 5.7
8 8 orange cow 10.0
```

Ordinarily, you can achieve this behavior using the `index_col` option.

There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing the parser. To explicitly disable the index column inference and discard the last column, pass `index_col=False`:

```python
In [84]: data = 'a,b,c

4,apple,bat,
8,orange,cow,'

In [85]: print(data)
a, b, c
4, apple, bat,
8, orange, cow,

In [86]: pd.read_csv(StringIO(data))
```
Date Handling

Specifying Date Columns

To better facilitate working with datetime data, `read_csv()` and `read_table()` use the keyword arguments `parse_dates` and `date_parser` to allow users to specify a variety of columns and date/time formats to turn the input text data into datetime objects.

The simplest case is to just pass in `parse_dates=True`:

```python
Use a column as an index, and parse it as dates.
In [88]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True)
In [89]: df
Out[89]:
 A B C
date
2009-01-01 1 2
2009-01-02 3 4
2009-01-03 4 5

These are python datetime objects
In [90]: df.index
Out[90]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', name='date', freq=None)
```

It is often the case that we may want to store date and time data separately, or store various date fields separately. the `parse_dates` keyword can be used to specify a combination of columns to parse the dates and/or times from.

You can specify a list of column lists to `parse_dates`, the resulting date columns will be prepended to the output (so as not affect the existing column order) and the new column names will be the concatenation of the component column names:

```python
In [91]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, 0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900

In [92]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]])
In [93]: df
Out[93]:
```

```
By default the parser removes the component date columns, but you can choose to retain them via the `keep_date_col` keyword:

```
In [94]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]],
   ....:     keep_date_col=True)
   ....:
In [95]: df
Out[95]:
       1_2       1_3          0          1          2
0 1999-01-27 19:00:00  1999-01-27 18:56:00  KORD    0.81
1 1999-01-27 20:00:00  1999-01-27 19:56:00  KORD    0.01
2 1999-01-27 21:00:00  1999-01-27 20:56:00  KORD   -0.59
3 1999-01-27 21:00:00  1999-01-27 21:18:00  KORD   -0.99
4 1999-01-27 22:00:00  1999-01-27 21:56:00  KORD   -0.59
5 1999-01-27 23:00:00  1999-01-27 22:56:00  KORD   -0.59
```

Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other words, `parse_dates=[[1, 2], [1, 3]]` indicates that the second and third columns should each be parsed as separate date columns while `parse_dates=[[1, 2]]` means the two columns should be parsed into a single column.

You can also use a dict to specify custom name columns:

```
In [96]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}
In [97]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec)
In [98]: df
Out[98]:
         nominal   actual          0          1          2
0  1999-01-27  19:00:00  1999-01-27  18:56:00  KORD    0.81
1  1999-01-27  20:00:00  1999-01-27  19:56:00  KORD    0.01
2  1999-01-27  21:00:00  1999-01-27  20:56:00  KORD   -0.59
3  1999-01-27  21:00:00  1999-01-27  21:18:00  KORD   -0.99
4  1999-01-27  22:00:00  1999-01-27  21:56:00  KORD   -0.59
5  1999-01-27  23:00:00  1999-01-27  22:56:00  KORD   -0.59
```

It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column is prepended to the data. The `index_col` specification is based off of this new set of columns rather than the original data columns:
In [99]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}

In [100]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
......: index_col=0) #index is the nominal column
......:

In [101]: df
Out[101]:
nominal actual 0 4
1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

Note: read_csv has a fast_path for parsing datetime strings in iso8601 format, e.g. “2000-01-01T00:01:02+00:00” and similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly faster, ~20x has been observed.

Note: When passing a dict as the parse_dates argument, the order of the columns prepended is not guaranteed, because dict objects do not impose an ordering on their keys. On Python 2.7+ you may use collections.OrderedDict instead of a regular dict if this matters to you. Because of this, when using a dict for ‘parse_dates’ in conjunction with the index_col argument, it’s best to specify index_col as a column label rather then as an index on the resulting frame.

Date Parsing Functions

Finally, the parser allows you to specify a custom date_parser function to take full advantage of the flexibility of the date parsing API:

In [102]: import pandas.io.date_converters as conv

In [103]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec,
......: date_parser=conv.parse_date_time)
......:

In [104]: df
Out[104]:
nominal actual 0 4
0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81
1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01
2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59
3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99
4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59
5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59

Pandas will try to call the date_parser function in three different ways. If an exception is raised, the next one is tried:

1. date_parser is first called with one or more arrays as arguments, as defined using parse_dates (e.g.,
 date_parser(['2013','2013'],['1','2'])))
2. If #1 fails, `date_parser` is called with all the columns concatenated row-wise into a single array (e.g.,
 `date_parser(['2013 1', '2013 2'])`)

3. If #2 fails, `date_parser` is called once for every row with one or more string arguments
 from the columns indicated with `parse_dates` (e.g., `date_parser('2013', '1')` for the first row,
 `date_parser('2013', '2')` for the second, etc.)

Note that performance-wise, you should try these methods of parsing dates in order:

1. Try to infer the format using `infer_datetime_format=True` (see section below)
2. If you know the format, use `pd.to_datetime`:
   ```
   pd.to_datetime(x, format=...)
   ```
3. If you have a really non-standard format, use a custom `date_parser` function. For optimal performance, this
 should be vectorized, i.e., it should accept arrays as arguments.

You can explore the date parsing functionality in `date_converters.py` and add your own. We would love to turn
this module into a community supported set of date/time parsers. To get you started, `date_converters.py` con-
tains functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second
columns. It also contains a `generic_parser` function so you can curry it with a function that deals with a single
date rather than the entire array.

Inferring Datetime Format

If you have `parse_dates` enabled for some or all of your columns, and your datetime strings are all formatted the
same way, you may get a large speed up by setting `infer_datetime_format=True`. If set, pandas will attempt
to guess the format of your datetime strings, and then use a faster means of parsing the strings. 5-10x parsing speeds
have been observed. pandas will fallback to the usual parsing if either the format cannot be guessed or the format that
was guessed cannot properly parse the entire column of strings. So in general, `infer_datetime_format` should
not have any negative consequences if enabled.

Here are some examples of datetime strings that can be guessed (All representing December 30th, 2011 at 00:00:00)

- “20111230”
- “2011/12/30”
- “20111230 00:00:00”
- “12/30/2011 00:00:00”
- “30/Dec/2011 00:00:00”
- “30/December/2011 00:00:00”

`infer_datetime_format` is sensitive to `dayfirst`. With `dayfirst=True`, it will guess “01/12/2011” to be
December 1st. With `dayfirst=False` (default) it will guess “01/12/2011” to be January 12th.

```python
# Try to infer the format for the index column
In [105]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True,
                      .....:                infer_datetime_format=True)
                      .....:

In [106]: df
Out[106]:
   A  B  C
date
2009-01-01  a  1  2
2009-01-02  b  3  4
2009-01-03  c  4  5
```
International Date Formats

While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For convenience, a `dayfirst` keyword is provided:

```python
In [107]: print(open('tmp.csv').read())
date,value,cat
1/6/2000,5,a
2/6/2000,10,b
3/6/2000,15,c
```

```python
In [108]: pd.read_csv('tmp.csv', parse_dates=[0])
```

<table>
<thead>
<tr>
<th>date</th>
<th>value</th>
<th>cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-06</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>2000-02-06</td>
<td>10</td>
<td>b</td>
</tr>
<tr>
<td>2000-03-06</td>
<td>15</td>
<td>c</td>
</tr>
</tbody>
</table>

```python
In [109]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0])
```

<table>
<thead>
<tr>
<th>date</th>
<th>value</th>
<th>cat</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-06-01</td>
<td>5</td>
<td>a</td>
</tr>
<tr>
<td>2000-06-02</td>
<td>10</td>
<td>b</td>
</tr>
<tr>
<td>2000-06-03</td>
<td>15</td>
<td>c</td>
</tr>
</tbody>
</table>
```

Specifying method for floating-point conversion

The parameter `float_precision` can be specified in order to use a specific floating-point converter during parsing with the C engine. The options are the ordinary converter, the high-precision converter, and the round-trip converter (which is guaranteed to round-trip values after writing to a file). For example:

```python
In [110]: val = '0.3066101993807095471566981359501369297504425048828125'
In [111]: data = 'a,b,c\n|\n| 1,2,{0}'.format(val)
In [112]: abs(pd.read_csv(StringIO(data), engine='c', float_precision=None)['c'][0] - float(val))
Out[112]: 1.1102230246251565e-16
```

```python
In [113]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='high')['c'][0] - float(val))
Out[113]: 5.5511151231257827e-17
```

```python
In [114]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='round_trip')['c'][0] - float(val))
Out[114]: 0.0
```

Thousand Separators

For large numbers that have been written with a thousands separator, you can set the `thousands` keyword to a string of length 1 so that integers will be parsed correctly:

By default, numbers with a thousands separator will be parsed as strings.
```python
In [115]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [116]: df = pd.read_csv('tmp.csv', sep='|')

In [117]: df
Out[117]:
 ID level category
0 Patient1 123,000 x
1 Patient2 23,000 y
2 Patient3 1,234,018 z

In [118]: df.level.dtype
Out[118]: dtype('O')

The thousands keyword allows integers to be parsed correctly
```

```python
In [119]: print(open('tmp.csv').read())
ID|level|category
Patient1|123,000|x
Patient2|23,000|y
Patient3|1,234,018|z

In [120]: df = pd.read_csv('tmp.csv', sep='|', thousands=',')

In [121]: df
Out[121]:
 ID level category
0 Patient1 123000 x
1 Patient2 23000 y
2 Patient3 1234018 z

In [122]: df.level.dtype
Out[122]: dtype('int64')
```

### NA Values

To control which values are parsed as missing values (which are signified by NaN), specify a string in `na_values`. If you specify a list of strings, then all values in it are considered to be missing values. If you specify a number (a float, like 5.0 or an integer like 5), the corresponding equivalent values will also imply a missing value (in this case effectively [5.0, 5] are recognized as NaN).

To completely override the default values that are recognized as missing, specify `keep_default_na=False`. The default NaN recognized values are `['-1.#IND','1.#QNAN','1.#IND','-1.#QNAN','#N/A','N/A','NA','#NA','NULL','NaN','-NaN','nan']`. Although a 0-length string ‘’ is not included in the default NaN values list, it is still treated as a missing value.

```python
read_csv(path, na_values=[5])
```

the default values, in addition to 5, 5.0 when interpreted as numbers are recognized as NaN

```python
read_csv(path, keep_default_na=False, na_values=[''])
```
only an empty field will be NaN

```python
read_csv(path, keep_default_na=False, na_values=["NA", "0"])
```

only NA and 0 as strings are NaN

```python
read_csv(path, na_values=["Nope"])
```

the default values, in addition to the string "Nope" are recognized as NaN

**Infinity**

inf like values will be parsed as np.inf (positive infinity), and -inf as -np.inf (negative infinity). These will ignore the case of the value, meaning Inf. will also be parsed as np.inf.

**Returning Series**

Using the `squeeze` keyword, the parser will return output with a single column as a `Series`:

```python
In [123]: print(open('tmp.csv').read())
level
Patient1,123000
Patient2,23000
Patient3,1234018

In [124]: output = pd.read_csv('tmp.csv', squeeze=True)

In [125]: output
Out[125]:
 Patient1 123000
 Patient2 23000
 Patient3 1234018
Name: level, dtype: int64

In [126]: type(output)
Out[126]: pandas.core.series.Series
```

**Boolean values**

The common values True, False, TRUE, and FALSE are all recognized as boolean. Sometime you would want to recognize some other values as being boolean. To do this use the `true_values` and `false_values` options:

```python
In [127]: data= 'a,b,c
1,Yes,2
3,No,4'

In [128]: print(data)
a,b,c
1,Yes,2
3,No,4

In [129]: pd.read_csv(StringIO(data))
Out[129]:
a b c
0 1 Yes 2
1 3 No 4
```
Handling “bad” lines

Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values filled in the trailing fields. Lines with too many will cause an error by default:

```
In [27]: data = 'a,b,c
1,2,3
4,5,6,7
8,9,10'
In [28]: pd.read_csv(StringIO(data))

CParserError Traceback (most recent call last)
CParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4
You can elect to skip bad lines:

In [29]: pd.read_csv(StringIO(data), error_bad_lines=False)
Skipping line 3: expected 3 fields, saw 4
```

Quoting and Escape Characters

Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use backslashes; to properly parse this data, you should pass the `escapechar` option:

```
In [131]: data = 'a,b\"hello, \"Bob\", nice to see you\",5'
In [132]: print(data)
a,b
"hello, "Bob\", nice to see you\",5
In [133]: pd.read_csv(StringIO(data), escapechar='\')
Out[133]:
 a b
0 hello, "Bob", nice to see you 5
```

Files with Fixed Width Columns

While `read_csv` reads delimited data, the `read_fwf()` function works with data files that have known and fixed column widths. The function parameters to `read_fwf` are largely the same as `read_csv` with two extra parameters:

- `colspecs`: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to]). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data. Default behaviour, if not specified, is to infer.
• **`widths`**: A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

Consider a typical fixed-width data file:

```
In [134]: print(open('bar.csv').read())
id8141 360.242940 149.910199 11950.7
id1594 444.953632 166.985655 11788.4
id1849 364.136849 183.628767 11806.2
id1230 413.836124 184.375703 11916.8
id1948 502.953953 173.237159 12468.3
```

In order to parse this file into a DataFrame, we simply need to supply the column specifications to the `read_fwf` function along with the file name:

```
#Column specifications are a list of half-intervals
In [135]:(colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)])
In [136]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0)
In [137]: df
Out[137]:
 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3
```

Note how the parser automatically picks column names X.<column number> when `header=None` argument is specified. Alternatively, you can supply just the column widths for contiguous columns:

```
#Widths are a list of integers
In [138]: widths = [6, 14, 13, 10]
In [139]: df = pd.read_fwf('bar.csv', widths=widths, header=None)
In [140]: df
Out[140]:
 0 1 2 3
0 id8141 360.242940 149.910199 11950.7
1 id1594 444.953632 166.985655 11788.4
2 id1849 364.136849 183.628767 11806.2
3 id1230 413.836124 184.375703 11916.8
4 id1948 502.953953 173.237159 12468.3
```

The parser will take care of extra white spaces around the columns so it’s ok to have extra separation between the columns in the file.

New in version 0.13.0.

By default, `read_fwf` will try to infer the file's `colspecs` by using the first 100 rows of the file. It can do it only in cases when the columns are aligned and correctly separated by the provided `delimiter` (default delimiter is whitespace).

```
In [141]: df = pd.read_fwf('bar.csv', header=None, index_col=0)
In [142]: df
Out[142]:
```

---

922 Chapter 25. IO Tools (Text, CSV, HDF5, ...
Indexes

Files with an “implicit” index column

Consider a file with one less entry in the header than the number of data column:

```
In [143]: print(open('foo.csv').read())
A,B,C
20090101,a,1,2
20090102,b,3,4
```

In this special case, read_csv assumes that the first column is to be used as the index of the DataFrame:

```
In [144]: pd.read_csv('foo.csv')
Out[144]:
 A B C
20090101 a 1 2
20090102 b 3 4
```

Note that the dates weren’t automatically parsed. In that case you would need to do as before:

```
In [145]: df = pd.read_csv('foo.csv', parse_dates=True)
```

```
In [146]: df.index
Out[146]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', freq=None)
```

Reading an index with a MultiIndex

Suppose you have data indexed by two columns:

```
In [147]: print(open('data/mindex_ex.csv').read())
year,indiv,zit,xit
1977,"A",1.2,.6
1977,"B",1.5,.5
1977,"C",1.7,.8
1978,"A",2.06
1978,"B",.7,.2
1978,"C",.8,.3
1978,"D",.9,.5
1978,"E",1.4,.9
1979,"C",.2,.15
1979,"D",.14,.05
```

```
In [147]: print(open('data/mindex_ex.csv').read())
year,indiv,zit,xit
1977,"A",1.2,.6
1977,"B",1.5,.5
1977,"C",1.7,.8
1978,"A",2.06
1978,"B",.7,.2
1978,"C",.8,.3
1978,"D",.9,.5
1978,"E",1.4,.9
1979,"C",.2,.15
1979,"D",.14,.05
```
The `index_col` argument to `read_csv` and `read_table` can take a list of column numbers to turn multiple columns into a MultiIndex for the index of the returned object:

```python
In [148]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0,1])
```

```python
In [149]: df
Out[149]:
 zit xit
year indiv
1977 A 1.20 0.60
 B 1.50 0.50
 C 1.70 0.80
1978 A 0.20 0.06
 B 0.70 0.20
 C 0.80 0.30
 D 0.90 0.50
 E 1.40 0.90
1979 C 0.20 0.15
 D 0.14 0.05
 E 0.50 0.15
 F 1.20 0.50
 G 3.40 1.90
 H 5.40 2.70
 I 6.40 1.20
```

```python
In [150]: df.ix[1978]
Out[150]:
 zit xit
indiv
 A 0.2 0.06
 B 0.7 0.20
 C 0.8 0.30
 D 0.9 0.50
 E 1.4 0.90
```

**Reading columns with a MultiIndex**

By specifying list of row locations for the `header` argument, you can read in a MultiIndex for the columns. Specifying non-consecutive rows will skip the intervening rows. In order to have the pre-0.13 behavior of tupleizing columns, specify `tupleize_cols=True`.

```python
In [151]: from pandas.util.testing import makeCustomDataframe as mkdf
In [152]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4)
In [153]: df.to_csv('mi.csv')
In [154]: print(open('mi.csv').read())
C0,,C_l0_g0,C_l0_g1,C_l0_g2
C1,,C_l1_g0,C_l1_g1,C_l1_g2
C2,,C_l2_g0,C_l2_g1,C_l2_g2
```
In [155]: pd.read_csv('mi.csv',index_col=[0,1],header=[0,1,2,3])
Out[155]:
     C_l0_g0  C_l0_g1  C_l0_g2  C_l1_g0  C_l1_g1  C_l1_g2  
C0       1       2       3       1       2       3       
C1       4       5       6       4       5       6       
C2       7       8       9       7       8       9       
C3      10      11      12      10      11      12      
R0          R1          
R_l0_g0  R_l0_g1  R0C0  R0C1  R0C2  
R_l0_g1  R_l0_g2  R1C0  R1C1  R1C2  
R_l0_g2  R_l0_g3  R2C0  R2C1  R2C2  
R_l0_g3  R_l0_g4  R3C0  R3C1  R3C2  
R_l0_g4  R_l0_g5  R4C0  R4C1  R4C2  

Starting in 0.13.0, read_csv will be able to interpret a more common format of multi-columns indices.

In [156]: print(open('mi2.csv').read())

one,1,2,3,4,5,6
two,7,8,9,10,11,12

In [157]: pd.read_csv('mi2.csv',index_col=0,header=[0,1])
Out[157]:
     a  b  c 
q 1 2 3
r 4 5 6
t 7 8 9
two 10 11 12

Note: If an index_col is not specified (e.g. you don’t have an index, or wrote it with df.to_csv(...,index=False), then any names on the columns index will be lost.

Automatically “sniffing” the delimiter

read_csv is capable of inferring delimited (not necessarily comma-separated) files, as pandas uses the csv.Sniffer class of the csv module. For this, you have to specify sep=None.

In [158]: print(open('tmp2.sv').read())

0:1:2:3
0:0.469112299907:-0.282863344329:-1.50905850317:-1.13563237102
1:1.21211202502:-0.173214649053:0.119208711297:-1.04423596628
2:-0.861848963348:-2.10456921889:-0.494929274069:1.07180380704
3:0.721555162244:-0.70677113363:-1.03957498511:0.271859885543
4:-0.424972329789:0.567020349794:0.276232019278:-1.08740069129
5:-0.673689708088:-1.34431181273:0.844885141425
6:0.40470521868:0.57704598592:-1.71500201611:-1.03926848351
7:-0.370646858236:-1.15789225064:-1.34431181273:0.844885141425
8:1.0756978372:-0.10904997528:1.64356307036:-1.46938795954

25.1. CSV & Text files
In [159]: pd.read_csv('tmp2.csv', sep=None, engine='python')
Out[159]:
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
</tr>
<tr>
<td>1</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
</tr>
<tr>
<td>2</td>
<td>-0.861849</td>
<td>2.104569</td>
<td>-0.494929</td>
<td>1.071804</td>
</tr>
<tr>
<td>3</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
<tr>
<td>4</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
<tr>
<td>5</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
</tr>
<tr>
<td>6</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
<td>-1.039268</td>
</tr>
<tr>
<td>7</td>
<td>-0.370647</td>
<td>-1.157892</td>
<td>1.344312</td>
<td>0.844885</td>
</tr>
<tr>
<td>8</td>
<td>1.075770</td>
<td>-0.109050</td>
<td>1.643563</td>
<td>-1.469388</td>
</tr>
<tr>
<td>9</td>
<td>0.357021</td>
<td>-0.674600</td>
<td>-1.776904</td>
<td>-0.968914</td>
</tr>
</tbody>
</table>

### Iterating through files chunk by chunk

Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory, such as the following:

In [160]: print(open('tmp.sv').read())
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.469112299907</td>
<td>-0.28286344329</td>
<td>-1.5090580317</td>
<td>-1.13563273102</td>
</tr>
<tr>
<td>1.21211225021</td>
<td>-0.1732150031</td>
<td>0.1192092775</td>
<td>-1.04423596628</td>
</tr>
<tr>
<td>2</td>
<td>-0.86184921889</td>
<td>-0.494929274069</td>
<td>1.07180380704</td>
</tr>
<tr>
<td>3</td>
<td>0.721555162244</td>
<td>-0.70677113363</td>
<td>-1.03957498511</td>
</tr>
<tr>
<td>4</td>
<td>-0.424972329789</td>
<td>0.567020349794</td>
<td>0.276232019278</td>
</tr>
<tr>
<td>5</td>
<td>-0.673690577046</td>
<td>-1.1578921344312</td>
<td>0.844885</td>
</tr>
<tr>
<td>6</td>
<td>0.40470521868</td>
<td>0.57704598592</td>
<td>-1.71500201611</td>
</tr>
<tr>
<td>7</td>
<td>-0.37064658236</td>
<td>-1.15789225064</td>
<td>1.3443181273</td>
</tr>
<tr>
<td>8</td>
<td>1.07576978372</td>
<td>-0.10904997528</td>
<td>1.64356307036</td>
</tr>
<tr>
<td>9</td>
<td>0.357020564133</td>
<td>-0.67460010373</td>
<td>-1.77690371697</td>
</tr>
</tbody>
</table>

In [161]: table = pd.read_table('tmp.sv', sep='|')
In [162]: table
Out[162]:
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.469112</td>
<td>-0.282863</td>
<td>-1.509059</td>
<td>-1.135632</td>
</tr>
<tr>
<td>1</td>
<td>1.212112</td>
<td>-0.173215</td>
<td>0.119209</td>
<td>-1.044236</td>
</tr>
<tr>
<td>2</td>
<td>-0.861849</td>
<td>2.104569</td>
<td>-0.494929</td>
<td>1.071804</td>
</tr>
<tr>
<td>3</td>
<td>0.721555</td>
<td>-0.706771</td>
<td>-1.039575</td>
<td>0.271860</td>
</tr>
<tr>
<td>4</td>
<td>-0.424972</td>
<td>0.567020</td>
<td>0.276232</td>
<td>-1.087401</td>
</tr>
<tr>
<td>5</td>
<td>-0.673690</td>
<td>0.113648</td>
<td>-1.478427</td>
<td>0.524988</td>
</tr>
<tr>
<td>6</td>
<td>0.404705</td>
<td>0.577046</td>
<td>-1.715002</td>
<td>-1.039268</td>
</tr>
<tr>
<td>7</td>
<td>-0.370647</td>
<td>-1.157892</td>
<td>1.344312</td>
<td>0.844885</td>
</tr>
<tr>
<td>8</td>
<td>1.075770</td>
<td>-0.109050</td>
<td>1.643563</td>
<td>-1.469388</td>
</tr>
<tr>
<td>9</td>
<td>0.357021</td>
<td>-0.674600</td>
<td>-1.776904</td>
<td>-0.968914</td>
</tr>
</tbody>
</table>

By specifying a chunksize to read_csv or read_table, the return value will be an iterable object of type TextFileReader:
In [163]: reader = pd.read_table('tmp.sv', sep='|', chunksize=4)

In [164]: reader
Out[164]: <pandas.io.parsers.TextFileReader at 0x7ff27e15a450>

In [165]: for chunk in reader:  
.....:     print(chunk)  
.....:     Unnamed: 0 0 1 2 3  
0 0 0.469112 -0.282863 -1.509059 -1.135632  
1 1 1.212112 -0.173215 0.119209 -1.044236  
2 2 -0.861849 -2.104569 -0.494929 1.071804  
3 3 0.721555 -0.706771 -1.039575 0.271860  
4 4 -0.424972 0.567020 0.276232 -1.087401  
5 5 -0.673690 0.113648 -1.478427 0.524988  
6 6 0.404705 0.577046 -1.715002 -1.039268  
7 7 -0.370647 -1.157892 -1.344312 0.844885  
8 8 1.075770 -0.10905 1.643563 -1.469388  
9 9 0.357021 -0.67460 -1.776904 -0.968914

Specifying iterator=True will also return the TextFileReader object:

In [166]: reader = pd.read_table('tmp.sv', sep='|', iterator=True)

In [167]: reader.get_chunk(5)
Out[167]:  
          Unnamed: 0 0 1 2 3  
0 0 0.469112 -0.282863 -1.509059 -1.135632  
1 1 1.212112 -0.173215 0.119209 -1.044236  
2 2 -0.861849 -2.104569 -0.494929 1.071804  
3 3 0.721555 -0.706771 -1.039575 0.271860  
4 4 -0.424972 0.567020 0.276232 -1.087401

Specifying the parser engine

Under the hood pandas uses a fast and efficient parser implemented in C as well as a python implementation which is currently more feature-complete. Where possible pandas uses the C parser (specified as engine='c'), but may fall back to python if C-unsupported options are specified. Currently, C-unsupported options include:

- `sep` other than a single character (e.g. regex separators)
- `skipfooter`
- `sep=None with delim_whitespace=False`

Specifying any of the above options will produce a `ParserWarning` unless the python engine is selected explicitly using `engine='python'`.

Writing out Data

Writing to CSV format

The Series and DataFrame objects have an instance method `to_csv` which allows storing the contents of the object as a comma-separated-values file. The function takes a number of arguments. Only the first is required.
• **path_or_buf**: A string path to the file to write or a StringIO
• **sep**: Field delimiter for the output file (default ",")
• **na_rep**: A string representation of a missing value (default ‘ ‘)
• **float_format**: Format string for floating point numbers
• **cols**: Columns to write (default None)
• **header**: Whether to write out the column names (default True)
• **index**: whether to write row (index) names (default True)
• **index_label**: Column label(s) for index column(s) if desired. If None (default), and header and index are True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex).
• **mode**: Python write mode, default ‘w’
• **encoding**: a string representing the encoding to use if the contents are non-ASCII, for python versions prior to 3
• **line_terminator**: Character sequence denoting line end (default ‘\n’)
• **quoting**: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL). Note that if you have set a float_format then floats are converted to strings and csv.QUOTE_NONNUMERIC will treat them as non-numeric
• **quotechar**: Character used to quote fields (default ‘”’)
• **doublequote**: Control quoting of quotechar in fields (default True)
• **escapechar**: Character used to escape sep and quotechar when appropriate (default None)
• **chunksize**: Character used to escape sep and quotechar when appropriate (default None)
• **tupleize_cols**: If False (default), write as a list of tuples, otherwise write in an expanded line format suitable for read_csv
• **date_format**: Format string for datetime objects

**Writing a formatted string**

The DataFrame object has an instance method **to_string** which allows control over the string representation of the object. All arguments are optional:

• **buf** default None, for example a StringIO object
• **columns** default None, which columns to write
• **col_space** default None, minimum width of each column.
• **na_rep** default NaN, representation of NA value
• **formatters** default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted string
• **float_format** default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in the DataFrame.
• **sparsify** default True, set to False for a DataFrame with a hierarchical index to print every multiindex key at each row.
• **index_names** default True, will print the names of the indices
• **index** default True, will print the index (ie, row labels)
• header default True, will print the column labels
• justify default left, will print column headers left- or right-justified

The Series object also has a to_string method, but with only the buf, na_rep, float_format arguments. There is also a length argument which, if set to True, will additionally output the length of the Series.

**JSON**

Read and write JSON format files and strings.

**Writing JSON**

A Series or DataFrame can be converted to a valid JSON string. Use to_json with optional parameters:

- **path_or_buf**: the pathname or buffer to write the output This can be None in which case a JSON string is returned
- **orient**:  
  Series:
  - default is index
  - allowed values are {split, records, index}
  DataFrame:
  - default is columns
  - allowed values are {split, records, index, columns, values}

The format of the JSON string

<table>
<thead>
<tr>
<th>split</th>
<th>dict like {index -&gt; [index], columns -&gt; [columns], data -&gt; [values]}</th>
</tr>
</thead>
<tbody>
<tr>
<td>records</td>
<td>list like [{column -&gt; value}, ... , {column -&gt; value}]</td>
</tr>
<tr>
<td>index</td>
<td>dict like {index -&gt; {column -&gt; value}}</td>
</tr>
<tr>
<td>columns</td>
<td>dict like {column -&gt; {index -&gt; value}}</td>
</tr>
<tr>
<td>values</td>
<td>just the values array</td>
</tr>
</tbody>
</table>

- **date_format**: string, type of date conversion, ‘epoch’ for timestamp, ‘iso’ for ISO8601.
- **double_precision**: The number of decimal places to use when encoding floating point values, default 10.
- **force_ascii**: force encoded string to be ASCII, default True.
- **date_unit**: The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’ or ‘ns’ for seconds, milliseconds, microseconds and nanoseconds respectively. Default ‘ms’.
- **default_handler**: The handler to call if an object cannot otherwise be converted to a suitable format for JSON. Takes a single argument, which is the object to convert, and returns a serializable object.
- **lines**: If records orient, then will write each record per line as json.

Note NaN's, NaT's and None will be converted to null and datetime objects will be converted based on the date_format and date_unit parameters.

```python
In [168]: dfj = pd.DataFrame(randn(5, 2), columns=list('AB'))
In [169]: json = dfj.to_json()
```
Orient Options

There are a number of different options for the format of the resulting JSON file / string. Consider the following DataFrame and Series:

```
In [171]: dfjo = pd.DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)),
 columns=list('ABC'), index=list('xyz'))

In [172]: dfjo
Out[172]:
 A B C
x 1 4 7
y 2 5 8
z 3 6 9

In [173]: sjo = pd.Series(dict(x=15, y=16, z=17), name='D')

In [174]: sjo
Out[174]:
 x 15
 y 16
 z 17
Name: D, dtype: int64
```

Column oriented (the default for DataFrame) serializes the data as nested JSON objects with column labels acting as the primary index:

```
In [175]: dfjo.to_json(orient="columns")
Out[175]: '{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}'
```

Index oriented (the default for Series) similar to column oriented but the index labels are now primary:

```
In [176]: dfjo.to_json(orient="index")

In [177]: sjo.to_json(orient="index")
Out[177]: '{"x":15,"y":16,"z":17}''
```

Record oriented serializes the data to a JSON array of column -> value records, index labels are not included. This is useful for passing DataFrame data to plotting libraries, for example the JavaScript library d3.js:

```
In [178]: dfjo.to_json(orient="records")

In [179]: sjo.to_json(orient="records")
Out[179]: '[15,16,17]'''

Value oriented is a bare-bones option which serializes to nested JSON arrays of values only, column and index labels are not included:
Split oriented serialization to a JSON object containing separate entries for values, index and columns. Name is also included for Series:

```
In [181]: dfjo.to_json(orient="split")
Out[181]: '{"columns":["A","B","C"],"index": ["x","y","z"], "data": [[1,4,7], [2,5,8], [3,6,9]]}'
```

```
In [182]: sjo.to_json(orient="split")
Out[182]: '{"name": "D", "index": ["x","y","z"], "data": [15,16,17]}'
```

Note: Any orient option that encodes to a JSON object will not preserve the ordering of index and column labels during round-trip serialization. If you wish to preserve label ordering use the `split` option as it uses ordered containers.

Date Handling

Writing in ISO date format

```
In [183]: dfd = pd.DataFrame(randn(5, 2), columns=list('AB'))
In [184]: dfd['date'] = pd.Timestamp('20130101')
In [185]: dfd = dfd.sort_index(1, ascending=False)
In [186]: json = dfd.to_json(date_format='iso')
```

```
In [187]: json
Out[187]: '{"date": {"0": "2013-01-01T00:00:00.000Z", "1": "2013-01-01T00:00:00.000Z", "2": "2013-01-01T00:00:00.000Z", "3": "2013-01-01T00:00:00.000Z", "4": "2013-01-01T00:00.000000Z"}, "B": {"0": 2.5656459463, "1": 1.3403088498, "2": -0.2261692849, "3": 0.8138502857, "4": -0.8273169356}, "A": {"0": -1.2064117817, "1": 1.4312559863, "2": -1.1702987971, "3": 0.4108345112, "4": 0.1320031703}}'
```

Writing in ISO date format, with microseconds

```
In [188]: json = dfd.to_json(date_format='iso', date_unit='us')
```

```
In [189]: json
Out[189]: '{"date": {"0": "2013-01-01T00:00:00.000000Z", "1": "2013-01-01T00:00:00.000000Z", "2": 
"2013-01-01T00:00:00.000000Z", "3": "2013-01-01T00:00:00.000000Z", "4": "2013-01-01T00:00.0000000Z"}, "B": {"0": 2.5656459463, "1": 1.3403088498, "2": -0.2261692849, "3": 0.8138502857, "4": 
"-0.8273169356"}, "A": {"0": -1.2064117817, "1": 1.4312559863, "2": -1.1702987971, "3": 
0.4108345112, "4": 0.1320031703}}'
```

Epoch timestamps, in seconds

```
In [190]: json = dfd.to_json(date_format='epoch', date_unit='s')
```

```
In [191]: json
Out[191]: '{"date": {"0": 1356998400, "1": 1356998400, "2": 1356998400, "3": 1356998400, "4": 
1356998400}, "B": {"0": 2.5656459463, "1": 1.3403088498, "2": -0.2261692849, "3": 0.8138502857, "4": 
-0.8273169356"}, "A": {"0": -1.2064117817, "1": 1.4312559863, "2": -1.1702987971, "3": 
0.4108345112, "4": 0.1320031703}}'
```
Writing to a file, with a date index and a date column

```python
In [192]: dfj2 = dfj.copy()
In [193]: dfj2['date'] = pd.Timestamp('20130101')
In [194]: dfj2['ints'] = list(range(5))
In [195]: dfj2['bools'] = True
In [196]: dfj2.index = pd.date_range('20130101', periods=5)
In [197]: dfj2.to_json('test.json')
In [198]: open('test.json').read()
Out[198]:

```

Fallback Behavior

If the JSON serializer cannot handle the container contents directly it will fallback in the following manner:

- if the dtype is unsupported (e.g. np.complex) then the default_handler, if provided, will be called for each value, otherwise an exception is raised.

- if an object is unsupported it will attempt the following:
 - check if the object has defined a toDict method and call it. A toDict method should return a dict which will then be JSON serialized.
 - invoke the default_handler if one was provided.
 - convert the object to a dict by traversing its contents. However this will often fail with an OverflowError or give unexpected results.

In general the best approach for unsupported objects or dtypes is to provide a default_handler. For example:

```python
In [199]: pd.DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json()    # raises
```

```python
RuntimeError: Unhandled numpy dtype 15
```

can be dealt with by specifying a simple default_handler:

```python
In [199]: pd.DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json(default_handler=str)
```

```python
Out[199]: '{"0":"(1+0j)","1":"(2+0j)","2":"(1+2j)"}'
```
Reading JSON

Reading a JSON string to pandas object can take a number of parameters. The parser will try to parse a DataFrame if `typ` is not supplied or is `None`. To explicitly force Series parsing, pass `typ=series`

- `filepath_or_buffer`: a Valid JSON string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, S3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json
- `typ`: type of object to recover (series or frame), default ‘frame’
- `orient`:
 - **Series** :
 - default is `index`
 - allowed values are `{split, records, index}`
 - **DataFrame** :
 - default is `columns`
 - allowed values are `{split, records, index, columns, values}`

The format of the JSON string

<table>
<thead>
<tr>
<th>split</th>
<th>dict like [index -> [index], columns -> [columns], data -> [values]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>records</td>
<td>list like [{column -> value}, ... , {column -> value}]</td>
</tr>
<tr>
<td>index</td>
<td>dict like [index -> {column -> value}]</td>
</tr>
<tr>
<td>columns</td>
<td>dict like [column -> {index -> value}]</td>
</tr>
<tr>
<td>values</td>
<td>just the values array</td>
</tr>
</tbody>
</table>

- `dtype`: if True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, default is True, apply only to the data
- `convert_axes`: boolean, try to convert the axes to the proper dtypes, default is True
- `convert_dates`: a list of columns to parse for dates; If True, then try to parse date-like columns, default is True
- `keep_default_dates`: boolean, default True. If parsing dates, then parse the default date-like columns
- `numpy`: direct decoding to numpy arrays. default is False. Supports numeric data only, although labels may be non-numeric. Also note that the JSON ordering MUST be the same for each term if `numpy=True`
- `precise_float`: boolean, default False. Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality
- `date_unit`: string, the timestamp unit to detect if converting dates. Default None. By default the timestamp precision will be detected, if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force timestamp precision to seconds, milliseconds, microseconds or nanoseconds respectively.
- `lines`: reads file as one json object per line.
- `encoding`: The encoding to use to decode py3 bytes.

The parser will raise one of `ValueError/TypeError/AssertionError` if the JSON is not parseable.

If a non-default `orient` was used when encoding to JSON be sure to pass the same option here so that decoding produces sensible results, see *Orient Options* for an overview.
Data Conversion

The default of convert_axes=True, dtype=True, and convert_dates=True will try to parse the axes, and all of the data into appropriate types, including dates. If you need to override specific dtypes, pass a dict to dtype. convert_axes should only be set to False if you need to preserve string-like numbers (e.g. ‘1’, ‘2’) in an axes.

Note: Large integer values may be converted to dates if convert_dates=True and the data and / or column labels appear ‘date-like’. The exact threshold depends on the date_unit specified. ‘date-like’ means that the column label meets one of the following criteria:

- it ends with '_at'
- it ends with '_time'
- it begins with 'timestamp'
- it is 'modified'
- it is 'date'

Warning: When reading JSON data, automatic coercing into dtypes has some quirks:

- an index can be reconstructed in a different order from serialization, that is, the returned order is not guaranteed to be the same as before serialization
- a column that was float data will be converted to integer if it can be done safely, e.g. a column of 1.
- bool columns will be converted to integer on reconstruction

Thus there are times where you may want to specify specific dtypes via the dtype keyword argument.

Reading from a JSON string:

```
In [200]: pd.read_json(json)
Out[200]:
   A       B   date
gen 2013-01-01 -1.206412  2.565646 2013-01-01
  1     1.431256  1.340309 2013-01-01
  2    -1.170299 -0.226169 2013-01-01
  3     0.410835  0.813850 2013-01-01
  4     0.132003 -0.827317 2013-01-01
```

Reading from a file:

```
In [201]: pd.read_json('test.json')
Out[201]:
   A       B   bools   date   ints
 2013-01-01 -1.294524  0.413738 True 2013-01-01  0
 2013-01-02  0.276662 -0.472035 True 2013-01-01  1
 2013-01-03 -0.013960 -0.362543 True 2013-01-01  2
 2013-01-04 -0.006154 -0.923061 True 2013-01-01  3
 2013-01-05  0.895717  0.805244 True 2013-01-01  4
```

Don’t convert any data (but still convert axes and dates):

```
In [202]: pd.read_json('test.json', dtype=object).dtypes
Out[202]:
     A    B   bools   date   ints
int64 int64  bool    object   object
```
A object
B object
bools object
date object
ints object
dtype: object

Specify dtypes for conversion:

```
In [203]: pd.read_json('test.json', dtype={'A' : 'float32', 'bools' : 'int8'}).dtypes
Out[203]:
A  float32
B  float64
bools  int8
date  datetime64[ns]
ints  int64
dtype: object
```

Preserve string indices:

```
In [204]: si = pd.DataFrame(np.zeros((4, 4)),
                     columns=list(range(4)),
                     index=[str(i) for i in range(4)])

In [205]: si
Out[205]:
   0  1  2  3
0  0  0  0  0
1  0  0  0  0
2  0  0  0  0
3  0  0  0  0

In [206]: si.index
Out[206]: Index([u'0', u'1', u'2', u'3'], dtype='object')

In [207]: si.columns
Out[207]: Int64Index([0, 1, 2, 3], dtype='int64')

In [208]: json = si.to_json()

In [209]: sij = pd.read_json(json, convert_axes=False)
```

```
In [210]: sij
Out[210]:
   0  1  2  3
0  0  0  0  0
1  0  0  0  0
2  0  0  0  0
3  0  0  0  0

In [211]: sij.index
Out[211]: Index([u'0', u'1', u'2', u'3'], dtype='object')

In [212]: sij.columns
Out[212]: Index([u'0', u'1', u'2', u'3'], dtype='object')
```

Dates written in nanoseconds need to be read back in nanoseconds:

```
25.2. JSON  935
```
```python
In [213]: json = dfj2.to_json(date_unit='ns')

# Try to parse timestamps as milliseconds -> Won't Work
In [214]: dfju = pd.read_json(json, date_unit='ms')

In [215]: dfju
Out[215]:
   A       B  bools  date     ints
0 12345  0.5678  True 2000-01-01    0
1 23456  0.5678  True 2000-01-01    1
2 34567  0.5678  True 2000-01-01    2
3 45678  0.5678  True 2000-01-01    3
4 56789  0.5678  True 2000-01-01    4

# Let pandas detect the correct precision
In [216]: dfju = pd.read_json(json)

In [217]: dfju
Out[217]:
   A       B  bools  date     ints
0 12345  0.5678  True 2000-01-01    0
1 23456  0.5678  True 2000-01-01    1
2 34567  0.5678  True 2000-01-01    2
3 45678  0.5678  True 2000-01-01    3
4 56789  0.5678  True 2000-01-01    4

# Or specify that all timestamps are in nanoseconds
In [218]: dfju = pd.read_json(json, date_unit='ns')

In [219]: dfju
Out[219]:
   A       B  bools  date     ints
0 12345  0.5678  True 2000-01-01    0
1 23456  0.5678  True 2000-01-01    1
2 34567  0.5678  True 2000-01-01    2
3 45678  0.5678  True 2000-01-01    3
4 56789  0.5678  True 2000-01-01    4
```

The Numpy Parameter

Note: This supports numeric data only. Index and columns labels may be non-numeric, e.g. strings, dates etc.

If `numpy=True` is passed to `read_json` an attempt will be made to sniff an appropriate dtype during deserialization and to subsequently decode directly to numpy arrays, bypassing the need for intermediate Python objects.

This can provide speedups if you are deserialising a large amount of numeric data:

```python
In [220]: randfloats = np.random.uniform(-100, 1000, 10000)

In [221]: randfloats.shape = (1000, 10)

In [222]: dffloats = pd.DataFrame(randfloats, columns=list('ABCDEFGHIJ'))

In [223]: jsonfloats = dffloats.to_json()
```
The speedup is less noticeable for smaller datasets:

```
In [226]: jsonfloats = dffloats.head(100).to_json()
```

```
In [227]: timeit pd.read_json(jsonfloats)
100 loops, best of 3: 5.72 ms per loop
```

```
In [228]: timeit pd.read_json(jsonfloats, numpy=True)
100 loops, best of 3: 4.94 ms per loop
```

Warning: Direct numpy decoding makes a number of assumptions and may fail or produce unexpected output if these assumptions are not satisfied:

- data is numeric.
- data is uniform. The dtype is sniffed from the first value decoded. A ValueError may be raised, or incorrect output may be produced if this condition is not satisfied.
- labels are ordered. Labels are only read from the first container, it is assumed that each subsequent row / column has been encoded in the same order. This should be satisfied if the data was encoded using `to_json` but may not be the case if the JSON is from another source.

Normalization

New in version 0.13.0.

pandas provides a utility function to take a dict or list of dicts and normalize this semi-structured data into a flat table.

```
In [229]: from pandas.io.json import json_normalize
```

```
In [230]: data = [{'state': 'Florida',
            'shortname': 'FL',
            'info': {
                'governor': 'Rick Scott'
            },
            'counties': [{'name': 'Dade', 'population': 12345},
                         {'name': 'Broward', 'population': 40000},
                         {'name': 'Palm Beach', 'population': 60000}],
       {'state': 'Ohio',
            'shortname': 'OH',
            'info': {
                'governor': 'John Kasich'
            },
            'counties': [{'name': 'Summit', 'population': 1234},
                         {'name': 'Cuyahoga', 'population': 1337}]}
```

```
In [231]: json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

Out[231]:

<table>
<thead>
<tr>
<th>name</th>
<th>population</th>
<th>info.governor</th>
<th>state</th>
<th>shortname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dade</td>
<td>12345</td>
<td>Rick Scott</td>
<td>Florida</td>
<td>FL</td>
</tr>
<tr>
<td>Broward</td>
<td>40000</td>
<td>Rick Scott</td>
<td>Florida</td>
<td>FL</td>
</tr>
<tr>
<td>Palm Beach</td>
<td>60000</td>
<td>Rick Scott</td>
<td>Florida</td>
<td>FL</td>
</tr>
<tr>
<td>Summit</td>
<td>1234</td>
<td>John Kasich</td>
<td>Ohio</td>
<td>OH</td>
</tr>
<tr>
<td>Cuyahoga</td>
<td>1337</td>
<td>John Kasich</td>
<td>Ohio</td>
<td>OH</td>
</tr>
</tbody>
</table>

Line delimited json

New in version 0.19.0.

pandas is able to read and write line-delimited json files that are common in data processing pipelines using Hadoop or Spark.

```python
In [232]: jsonl = '''
......:
......:   {"a":1,"b":2}
......:   {"a":3,"b":4}
......:   ...
......:   
In [233]: df = pd.read_json(jsonl, lines=True)
In [234]: df
Out[234]:
   a  b
0  1  2
1  3  4
```

HTML

Reading HTML Content

Warning: We highly encourage you to read the HTML parsing gotchas regarding the issues surrounding the BeautifulSoup4/html5lib/lxml parsers.

New in version 0.12.0.

The top-level `read_html()` function can accept an HTML string/file/URL and will parse HTML tables into list of pandas DataFrames. Let's look at a few examples.

Note: `read_html` returns a list of DataFrame objects, even if there is only a single table contained in the HTML content.

Read a URL with no options
```python
In [236]: url = 'http://www.fdic.gov/bank/individual/failed/banklist.html'

In [237]: dfs = pd.read_html(url)

In [238]: dfs
Out[238]:
```
<table>
<thead>
<tr>
<th>Bank Name</th>
<th>City</th>
<th>ST</th>
<th>CERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allied Bank</td>
<td>Mulberry</td>
<td>AR</td>
<td>91</td>
</tr>
<tr>
<td>The Woodbury Banking Company</td>
<td>Woodbury</td>
<td>GA</td>
<td>11297</td>
</tr>
<tr>
<td>First CornerStone Bank</td>
<td>King of Prussia</td>
<td>PA</td>
<td>35312</td>
</tr>
<tr>
<td>Trust Company Bank</td>
<td>Memphis</td>
<td>TN</td>
<td>9956</td>
</tr>
<tr>
<td>North Milwaukee State Bank</td>
<td>Milwaukee</td>
<td>WI</td>
<td>20364</td>
</tr>
<tr>
<td>Hometown National Bank</td>
<td>Longview</td>
<td>WA</td>
<td>35156</td>
</tr>
<tr>
<td>The Bank of Georgia</td>
<td>Peachtree City</td>
<td>GA</td>
<td>35259</td>
</tr>
<tr>
<td>Hamilton Bank, NA</td>
<td>Miami</td>
<td>FL</td>
<td>24382</td>
</tr>
<tr>
<td>Sinclair National Bank</td>
<td>Gravette</td>
<td>AR</td>
<td>34248</td>
</tr>
<tr>
<td>Superior Bank, FSB</td>
<td>Hinsdale</td>
<td>IL</td>
<td>32646</td>
</tr>
<tr>
<td>Malta National Bank</td>
<td>Malta</td>
<td>OH</td>
<td>6629</td>
</tr>
<tr>
<td>First Alliance Bank & Trust Co.</td>
<td>Manchester</td>
<td>NH</td>
<td>34264</td>
</tr>
<tr>
<td>National State Bank</td>
<td>Metropolis</td>
<td>IL</td>
<td>3815</td>
</tr>
<tr>
<td>Bank of Honolulu</td>
<td>Honolulu</td>
<td>HI</td>
<td>21029</td>
</tr>
</tbody>
</table>
```

<table>
<thead>
<tr>
<th>Acquiring Institution</th>
<th>Closing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Today's Bank</td>
<td>September 23, 2016</td>
</tr>
<tr>
<td>United Bank</td>
<td>August 19, 2016</td>
</tr>
<tr>
<td>First-Citizens Bank &amp; Trust Company</td>
<td>May 6, 2016</td>
</tr>
<tr>
<td>The Bank of Fayette County</td>
<td>April 29, 2016</td>
</tr>
<tr>
<td>First-Citizens Bank &amp; Trust Company</td>
<td>March 11, 2016</td>
</tr>
<tr>
<td>Twin City Bank</td>
<td>October 2, 2015</td>
</tr>
<tr>
<td>Fidelity Bank</td>
<td>October 2, 2015</td>
</tr>
<tr>
<td>Israel Discount Bank of New York</td>
<td>January 11, 2002</td>
</tr>
<tr>
<td>Delta Trust &amp; Bank</td>
<td>September 7, 2001</td>
</tr>
<tr>
<td>Superior Federal, FSB</td>
<td>July 27, 2001</td>
</tr>
<tr>
<td>North Valley Bank</td>
<td>May 3, 2001</td>
</tr>
<tr>
<td>Southern New Hampshire Bank &amp; Trust</td>
<td>February 2, 2001</td>
</tr>
<tr>
<td>Banterra Bank of Marion</td>
<td>December 14, 2000</td>
</tr>
<tr>
<td>Bank of the Orient</td>
<td>October 13, 2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Updated Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 17, 2016</td>
</tr>
<tr>
<td>November 17, 2016</td>
</tr>
<tr>
<td>September 6, 2016</td>
</tr>
<tr>
<td>September 6, 2016</td>
</tr>
<tr>
<td>June 16, 2016</td>
</tr>
<tr>
<td>April 13, 2016</td>
</tr>
<tr>
<td>October 24, 2016</td>
</tr>
<tr>
<td>September 21, 2015</td>
</tr>
<tr>
<td>February 10, 2004</td>
</tr>
<tr>
<td>August 19, 2014</td>
</tr>
<tr>
<td>November 18, 2002</td>
</tr>
<tr>
<td>February 18, 2003</td>
</tr>
<tr>
<td>March 17, 2005</td>
</tr>
<tr>
<td>March 17, 2005</td>
</tr>
</tbody>
</table>
```

[547 rows x 7 columns]
Note: The data from the above URL changes every Monday so the resulting data above and the data below may be slightly different.

Read in the content of the file from the above URL and pass it to read_html as a string

```python
In [239]: with open(file_path, 'r') as f:
   .....:   dfs = pd.read_html(f.read())
   .....:
In [240]: dfs
Out[240]:
   Bank Name            City      ST     CERT 
 0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386
 1 Central Arizona Bank Scottsdale AZ 34527
 2 Sunrise Bank          Valdosta GA 58185
 3 Pisgah Community Bank Asheville NC 58701
 4 Douglas County Bank   Douglasville GA 21649
 5 Parkway Bank          Lenoir NC 57158
 6 Chipola Community Bank Marianna FL 58034
   ... ... ... ... ...
499 Hamilton Bank, NAEn Espanol Miami FL 24382
500 Sinclair National Bank Gravette AR 34248
501 Superior Bank, FSB Hinsdale IL 32646
502 Malta National Bank Malta OH 6629
503 First Alliance Bank & Trust Co. Manchester NH 34264
504 National State Bank of Metropolis Metropolis IL 3815
505 Bank of Honolulu Honolulu HI 21029

   Acquiring Institution            Closing Date      Updated Date
 0 North Shore Bank, FSB            May 31, 2013      May 31, 2013
 1 Western State Bank                May 14, 2013      May 20, 2013
 2 Synovus Bank                      May 10, 2013      May 21, 2013
 3 Capital Bank, N.A.                May 10, 2013      May 14, 2013
 4 Hamilton State Bank               April 26, 2013    May 16, 2013
 5 CertusBank, National Association  April 26, 2013    May 17, 2013
 6 First Federal Bank of Florida     April 19, 2013    May 16, 2013
   ... ... ... ... ...
500 Delta Trust & Bank               September 7, 2001 February 10, 2004
502 North Valley Bank                May 3, 2001       November 18, 2002
503 Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003
504 Banterra Bank of Marion         December 14, 2000 March 17, 2005
505 Bank of the Orient               October 13, 2000  March 17, 2005

[506 rows x 7 columns]]
```

You can even pass in an instance of StringIO if you so desire

```python
In [241]: with open(file_path, 'r') as f:
   .....:   sio = StringIO(f.read())
   .....:
In [242]: dfs = pd.read_html(sio)
In [243]: dfs
Out[243]:
```
Bank Information

<table>
<thead>
<tr>
<th>Bank Name</th>
<th>City</th>
<th>ST</th>
<th>CERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks of Wisconsin d/b/a Bank of Kenosha</td>
<td>Kenosha</td>
<td>WI</td>
<td>35386</td>
</tr>
<tr>
<td>Central Arizona Bank</td>
<td>Scottsdale</td>
<td>AZ</td>
<td>34527</td>
</tr>
<tr>
<td>Sunrise Bank</td>
<td>Valdosta</td>
<td>GA</td>
<td>58185</td>
</tr>
<tr>
<td>Pisgah Community Bank</td>
<td>Asheville</td>
<td>NC</td>
<td>58701</td>
</tr>
<tr>
<td>Douglas County Bank</td>
<td>Douglasville</td>
<td>GA</td>
<td>21649</td>
</tr>
<tr>
<td>Parkway Bank</td>
<td>Lenoir</td>
<td>NC</td>
<td>57158</td>
</tr>
<tr>
<td>Chipola Community Bank</td>
<td>Marianna</td>
<td>FL</td>
<td>58034</td>
</tr>
</tbody>
</table>

..

<table>
<thead>
<tr>
<th>Bank Name</th>
<th>City</th>
<th>ST</th>
<th>CERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamilton Bank, NA En Espanol</td>
<td>Miami</td>
<td>FL</td>
<td>24382</td>
</tr>
<tr>
<td>Sinclair National Bank</td>
<td>Gravette</td>
<td>AR</td>
<td>34248</td>
</tr>
<tr>
<td>Superior Bank, FSB</td>
<td>Hinsdale</td>
<td>IL</td>
<td>32646</td>
</tr>
<tr>
<td>Malta National Bank</td>
<td>Malta</td>
<td>OH</td>
<td>6629</td>
</tr>
<tr>
<td>First Alliance Bank & Trust Co.</td>
<td>Manchester</td>
<td>NH</td>
<td>34264</td>
</tr>
<tr>
<td>National State Bank of Metropolis</td>
<td>Metropolis</td>
<td>IL</td>
<td>3815</td>
</tr>
<tr>
<td>Bank of Honolulu</td>
<td>Honolulu</td>
<td>HI</td>
<td>21029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acquiring Institution</th>
<th>Closing Date</th>
<th>Updated Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western State Bank</td>
<td>May 14, 2013</td>
<td>May 20, 2013</td>
</tr>
<tr>
<td>Synovus Bank</td>
<td>May 10, 2013</td>
<td>May 21, 2013</td>
</tr>
<tr>
<td>Capital Bank, N.A.</td>
<td>May 10, 2013</td>
<td>May 14, 2013</td>
</tr>
<tr>
<td>Hamilton State Bank</td>
<td>April 26, 2013</td>
<td>May 16, 2013</td>
</tr>
<tr>
<td>CertusBank, National Association</td>
<td>April 26, 2013</td>
<td>May 17, 2013</td>
</tr>
<tr>
<td>First Federal Bank of Florida</td>
<td>April 19, 2013</td>
<td>May 16, 2013</td>
</tr>
<tr>
<td>Israel Discount Bank of New York</td>
<td>January 11, 2002</td>
<td>June 5, 2012</td>
</tr>
<tr>
<td>Delta Trust & Bank</td>
<td>September 7, 2001</td>
<td>February 10, 2004</td>
</tr>
<tr>
<td>North Valley Bank</td>
<td>March 3, 2001</td>
<td>November 18, 2002</td>
</tr>
<tr>
<td>Southern New Hampshire Bank & Trust</td>
<td>February 2, 2001</td>
<td>February 18, 2003</td>
</tr>
<tr>
<td>Banterra Bank of Marion</td>
<td>December 14, 2000</td>
<td>March 17, 2005</td>
</tr>
<tr>
<td>Bank of the Orient</td>
<td>October 13, 2000</td>
<td>March 17, 2005</td>
</tr>
</tbody>
</table>

[506 rows x 7 columns]

Note: The following examples are not run by the IPython evaluator due to the fact that having so many network-accessing functions slows down the documentation build. If you spot an error or an example that doesn’t run, please do not hesitate to report it over on pandas GitHub issues page.

Read a URL and match a table that contains specific text

```python
match = 'Metcalf Bank'
df_list = pd.read_html(url, match=match)
```

Specify a header row (by default `<th>` elements are used to form the column index); if specified, the header row is taken from the data minus the parsed header elements (`<th>` elements).

```python
dfs = pd.read_html(url, header=0)
```

Specify an index column

```python
dfs = pd.read_html(url, index_col=0)
```

Specify a number of rows to skip

```python
25.3. HTML
```
dfs = pd.read_html(url, skiprows=0)

Specify a number of rows to skip using a list (xrange (Python 2 only) works as well)

dfs = pd.read_html(url, skiprows=range(2))

Specify an HTML attribute

dfs1 = pd.read_html(url, attrs={'id': 'table'})
dfs2 = pd.read_html(url, attrs={'class': 'sortable'})
print(np.array_equal(dfs1[0], dfs2[0])) # Should be True

Specify values that should be converted to NaN

dfs = pd.read_html(url, na_values=['No Acquirer'])

New in version 0.19.

Specify whether to keep the default set of NaN values

dfs = pd.read_html(url, keep_default_na=False)

New in version 0.19.

Specify converters for columns. This is useful for numerical text data that has leading zeros. By default columns that are numerical are cast to numeric types and the leading zeros are lost. To avoid this, we can convert these columns to strings.

url_mcc = 'https://en.wikipedia.org/wiki/Mobile_country_code'
dfs = pd.read_html(url_mcc, match='Telekom Albania', header=0, converters={'MNC': str})

New in version 0.19.

Use some combination of the above

dfs = pd.read_html(url, match='Metcalf Bank', index_col=0)

Read in pandas to_html output (with some loss of floating point precision)

df = pd.DataFrame(randn(2, 2))
s = df.to_html(float_format='{:0.40g}'.format)
dfin = pd.read_html(s, index_col=0)

The lxml backend will raise an error on a failed parse if that is the only parser you provide (if you only have a single parser you can provide just a string, but it is considered good practice to pass a list with one string if, for example, the function expects a sequence of strings)

dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])

or

dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')

However, if you have bs4 and html5lib installed and pass None or ['lxml', 'bs4'] then the parse will most likely succeed. Note that as soon as a parse succeeds, the function will return.
Writing to HTML files

DataFrames have an instance method `to_html` which renders the contents of the DataFrame as an HTML table. The function arguments are as in the method `to_string` described above.

Note: Not all of the possible options for DataFrame.to_html are shown here for brevity’s sake. See `to_html()` for the full set of options.

```python
In [244]: df = pd.DataFrame(randn(2, 2))
In [245]: df
Out[245]:
   0    1
0 -0.184744  0.496971
1 -0.856240  1.857977

In [246]: print(df.to_html())  # raw html
<table border="1" class="dataframe">
    <thead>
        <tr style="text-align: right;">  
            <th></th>
            <th>0</th>
            <th>1</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <th>0</th>
            <td>-0.184744</td>
            <td>0.496971</td>
        </tr>
        <tr>
            <th>1</th>
            <td>-0.856240</td>
            <td>1.857977</td>
        </tr>
    </tbody>
</table>
```

HTML:

The `columns` argument will limit the columns shown

```python
In [247]: print(df.to_html(columns=[0]))
<table border="1" class="dataframe">
    <thead>
        <tr style="text-align: right;">  
            <th></th>
            <th>0</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <th>0</th>
            <td>-0.184744</td>
            <td>0.496971</td>
        </tr>
        <tr>
            <th>1</th>
            <td>-0.856240</td>
            <td>1.857977</td>
        </tr>
    </tbody>
</table>
```
float_format takes a Python callable to control the precision of floating point values

```python
In [248]: print(df.to_html(float_format='{:0.10f}'.format))
```

```html
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">  
<th></th>
<th>0</th>
<th>1</th>  
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>-0.1847438576</td>
<td>0.4969711327</td>  
</tr>
<tr>
<th>1</th>
<td>-0.8562396763</td>
<td>1.8579766508</td>  
</tr>
</tbody>
</table>
```

HTML:

`bold_rows` will make the row labels bold by default, but you can turn that off:

```python
In [249]: print(df.to_html(bold_rows=False))
```

```html
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">  
<th></th>
<th>0</th>
<th>1</th>  
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.184744</td>
<td>0.496971</td>  
</tr>
<tr>
<td>1</td>
<td>-0.856240</td>
<td>1.857976</td>  
</tr>
</tbody>
</table>
```
The classes argument provides the ability to give the resulting HTML table CSS classes. Note that these classes are appended to the existing 'dataframe' class.

```python
In [250]: print(df.to_html(classes=['awesome_table_class', 'even_more_awesome_class']))
</table>
```

Finally, the escape argument allows you to control whether the “<”, “>” and “&” characters escaped in the resulting HTML (by default it is True). So to get the HTML without escaped characters pass escape=False

```python
In [251]: df = pd.DataFrame({'a': list('&<>'), 'b': randn(3)})
Escaped:
```

```python
In [252]: print(df.to_html())
</table>
```
Not escaped:

```python
In [253]: print(df.to_html(escape=False))
```

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>&</td>
<td>-0.474063</td>
</tr>
<tr>
<td>1</td>
<td><</td>
<td>-0.230305</td>
</tr>
<tr>
<td>2</td>
<td>></td>
<td>-0.400654</td>
</tr>
</tbody>
</table>

Note: Some browsers may not show a difference in the rendering of the previous two HTML tables.

Excel files

The `read_excel()` method can read Excel 2003 (.xls) and Excel 2007+ (.xlsx) files using the `xlrd` Python module. The `to_excel()` instance method is used for saving a DataFrame to Excel. Generally the semantics are similar to working with `csv` data. See the `cookbook` for some advanced strategies

Reading Excel Files

In the most basic use-case, `read_excel` takes a path to an Excel file, and the `sheetname` indicating which sheet to parse.
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
# Returns a DataFrame
read_excel('path_to_file.xls', sheetname='Sheet1')
```

ExcelFile class

To facilitate working with multiple sheets from the same file, the `ExcelFile` class can be used to wrap the file and can be passed into `read_excel`. There will be a performance benefit for reading multiple sheets as the file is read into memory only once.

```python
xlsx = pd.ExcelFile('path_to_file.xls')
df = pd.read_excel(xlsx, 'Sheet1')
```

The `ExcelFile` class can also be used as a context manager.

```python
with pd.ExcelFile('path_to_file.xls') as xls:
    df1 = pd.read_excel(xls, 'Sheet1')
    df2 = pd.read_excel(xls, 'Sheet2')
```

The `sheet_names` property will generate a list of the sheet names in the file.

The primary use-case for an `ExcelFile` is parsing multiple sheets with different parameters.

```python
data = {}
# For when Sheet1's format differs from Sheet2
with pd.ExcelFile('path_to_file.xls') as xls:
    data['Sheet1'] = pd.read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
    data['Sheet2'] = pd.read_excel(xls, 'Sheet2', index_col=1)
```

Note that if the same parsing parameters are used for all sheets, a list of sheet names can simply be passed to `read_excel` with no loss in performance.

```python
# using the ExcelFile class
data = {}
with pd.ExcelFile('path_to_file.xls') as xls:
    data['Sheet1'] = read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
    data['Sheet2'] = read_excel(xls, 'Sheet2', index_col=None, na_values=['NA'])

# equivalent using the read_excel function
data = read_excel('path_to_file.xls', ['Sheet1', 'Sheet2'], index_col=None, na_values=['NA'])
```

New in version 0.12.

`ExcelFile` has been moved to the top level namespace.

New in version 0.17.

`read_excel` can take an `ExcelFile` object as input.

Specifying Sheets

Note: The second argument is `sheetname`, not to be confused with `ExcelFile.sheet_names`
Note: An ExcelFile’s attribute `sheet_names` provides access to a list of sheets.

- The arguments `sheetname` allows specifying the sheet or sheets to read.
- The default value for `sheetname` is 0, indicating to read the first sheet.
- Pass a string to refer to the name of a particular sheet in the workbook.
- Pass an integer to refer to the index of a sheet. Indices follow Python convention, beginning at 0.
- Pass a list of either strings or integers, to return a dictionary of specified sheets.
- Pass a `None` to return a dictionary of all available sheets.

```python
# Returns a DataFrame
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
```

Using the sheet index:

```python
# Returns a DataFrame
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])
```

Using all default values:

```python
# Returns a DataFrame
read_excel('path_to_file.xls')
```

Using None to get all sheets:

```python
# Returns a dictionary of DataFrames
read_excel('path_to_file.xls',sheetname=None)
```

Using a list to get multiple sheets:

```python
# Returns the 1st and 4th sheet, as a dictionary of DataFrames.
read_excel('path_to_file.xls',sheetname=['Sheet1',3])
```

New in version 0.16.

`read_excel` can read more than one sheet, by setting `sheetname` to either a list of sheet names, a list of sheet positions, or `None` to read all sheets.

New in version 0.13.

Sheets can be specified by sheet index or sheet name, using an integer or string, respectively.

Reading a MultiIndex

New in version 0.17.

`read_excel` can read a MultiIndex index, by passing a list of columns to `index_col` and a MultiIndex column by passing a list of rows to `header`. If either the `index` or `columns` have serialized level names those will be read in as well by specifying the rows/columns that make up the levels.

For example, to read in a MultiIndex index without names:
In [244]: df = pd.DataFrame({'a':[1,2,3,4], 'b':[5,6,7,8]},
index=pd.MultiIndex.from_product([['a','b'],['c','d']]))

In [255]: df.to_excel('path_to_file.xlsx')

In [256]: df = pd.read_excel('path_to_file.xlsx', index_col=[0,1])

In [257]: df
Out[257]:
 a b
a 1 5
 2 6
b 3 7
 4 8

If the index has level names, they will parsed as well, using the same parameters.

In [258]: df.index = df.index.set_names(['lvl1', 'lvl2'])

In [259]: df.to_excel('path_to_file.xlsx')

In [260]: df = pd.read_excel('path_to_file.xlsx', index_col=[0,1])

In [261]: df
Out[261]:
 a b
lvl1 lvl2
a c 1 5
 d 2 6
b c 3 7
 d 4 8

If the source file has both MultiIndex index and columns, lists specifying each should be passed to index_col and header

In [262]: df.columns = pd.MultiIndex.from_product([['a'],['b', 'd']], names=['c1', 'c2'])

In [263]: df.to_excel('path_to_file.xlsx')

In [264]: df = pd.read_excel('path_to_file.xlsx',
index_col=[0,1], header=[0,1])

In [265]: df
Out[265]:
 c1 a
 c2 b d
lvl1 lvl2
a c 1 5
 d 2 6
b c 3 7
 d 4 8

25.4. Excel files
Warning: Excel files saved in version 0.16.2 or prior that had index names will still able to be read in, but the `has_index_names` argument must specified to `True`.

Parsing Specific Columns

It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read in those columns. `read_excel` takes a `parse_cols` keyword to allow you to specify a subset of columns to parse.

If `parse_cols` is an integer, then it is assumed to indicate the last column to be parsed.

```python
read_excel('path_to_file.xls', 'Sheet1', parse_cols=2)
```

If `parse_cols` is a list of integers, then it is assumed to be the file column indices to be parsed.

```python
read_excel('path_to_file.xls', 'Sheet1', parse_cols=[0, 2, 3])
```

Cell Converters

It is possible to transform the contents of Excel cells via the `converters` option. For instance, to convert a column to boolean:

```python
read_excel('path_to_file.xls', 'Sheet1', converters={'MyBools': bool})
```

This options handles missing values and treats exceptions in the converters as missing data. Transformations are applied cell by cell rather than to the column as a whole, so the array dtype is not guaranteed. For instance, a column of integers with missing values cannot be transformed to an array with integer dtype, because NaN is strictly a float. You can manually mask missing data to recover integer dtype:

```python
cfun = lambda x: int(x) if x else -1
read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun})
```

Writing Excel Files

Writing Excel Files to Disk

To write a DataFrame object to a sheet of an Excel file, you can use the `to_excel` instance method. The arguments are largely the same as `to_csv` described above, the first argument being the name of the excel file, and the optional second argument the name of the sheet to which the DataFrame should be written. For example:

```python
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
```

Files with a `.xls` extension will be written using `xlwt` and those with a `.xlsx` extension will be written using `xlsxwriter` (if available) or `openpyxl`.

The DataFrame will be written in a way that tries to mimic the REPL output. One difference from 0.12.0 is that the `index_label` will be placed in the second row instead of the first. You can get the previous behaviour by setting the `merge_cells` option in `to_excel()` to `False`:

```python
df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)
```
The Panel class also has a `to_excel` instance method, which writes each DataFrame in the Panel to a separate sheet. In order to write separate DataFrames to separate sheets in a single Excel file, one can pass an `ExcelWriter`.

```python
with ExcelWriter('path_to_file.xlsx') as writer:
    df1.to_excel(writer, sheet_name='Sheet1')
    df2.to_excel(writer, sheet_name='Sheet2')
```

Note: Wringing a little more performance out of `read_excel` Internally, Excel stores all numeric data as floats. Because this can produce unexpected behavior when reading in data, pandas defaults to trying to convert integers to floats if it doesn’t lose information (1.0 --> 1). You can pass `convert_float=False` to disable this behavior, which may give a slight performance improvement.

Writing Excel Files to Memory

New in version 0.17.

Pandas supports writing Excel files to buffer-like objects such as `StringIO` or `BytesIO` using `ExcelWriter`. New in version 0.17.

Added support for Openpyxl >= 2.2

```python
# Safe import for either Python 2.x or 3.x
try:
    from io import BytesIO
except ImportError:
    from cStringIO import StringIO as BytesIO

bio = BytesIO()

# By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter(bio, engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')

# Save the workbook
writer.save()

# Seek to the beginning and read to copy the workbook to a variable in memory
bio.seek(0)
workbook = bio.read()
```

Note: engine is optional but recommended. Setting the engine determines the version of workbook produced. Setting `engine='xlrd'` will produce an Excel 2003-format workbook (xls). Using either 'openpyxl' or 'xlsxwriter' will produce an Excel 2007-format workbook (xlsx). If omitted, an Excel 2007-formatted workbook is produced.

Excel writer engines

New in version 0.13.

pandas chooses an Excel writer via two methods:

1. the `engine` keyword argument
2. the filename extension (via the default specified in config options)

By default, pandas uses the XlsxWriter for .xlsx and openpyxl for .xlsm files and xlwt for .xls files. If you have multiple engines installed, you can set the default engine through setting the config options io.excel.xlsx.writer and io.excel.xls.writer. pandas will fall back on openpyxl for .xlsx files if Xlsxwriter is not available.

To specify which writer you want to use, you can pass an engine keyword argument to to_excel and to ExcelWriter. The built-in engines are:

- openpyxl: This includes stable support for Openpyxl from 1.6.1. However, it is advised to use version 2.2 and higher, especially when working with styles.
- xlsxwriter
- xlwt

```python
# By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods.
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')

# By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')

# Or via pandas configuration.
from pandas import options
options.io.excel.xlsx.writer = 'xlsxwriter'
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
```

Clipboard

A handy way to grab data is to use the read_clipboard method, which takes the contents of the clipboard buffer and passes them to the read_table method. For instance, you can copy the following text to the clipboard (CTRL-C on many operating systems):

```
A B C
x 1 4 p
y 2 5 q
z 3 6 r
```

And then import the data directly to a DataFrame by calling:

```python
clipdf = pd.read_clipboard()
```

In [266]: clipdf
Out[266]:
```
    A  B  C
  x 1  4  p
  y 2  5  q
  z 3  6  r
```

The to_clipboard method can be used to write the contents of a DataFrame to the clipboard. Following which you can paste the clipboard contents into other applications (CTRL-V on many operating systems). Here we illustrate writing a DataFrame into clipboard and reading it back.
In [267]: df = pd.DataFrame(randn(5,3))

In [268]: df
Out[268]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

In [269]: df.to_clipboard()

In [270]: pd.read_clipboard()
Out[270]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

We can see that we got the same content back, which we had earlier written to the clipboard.

Note: You may need to install xclip or xsel (with gtk or PyQt4 modules) on Linux to use these methods.

Pickling

All pandas objects are equipped with to_pickle methods which use Python’s cPickle module to save data structures to disk using the pickle format.

In [271]: df
Out[271]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129

In [272]: df.to_pickle('foo.pkl')

The read_pickle function in the pandas namespace can be used to load any pickled pandas object (or any other pickled object) from file:

In [273]: pd.read_pickle('foo.pkl')
Out[273]:
 0 1 2
0 -0.288267 -0.084905 0.004772
1 1.382989 0.343635 -1.253994
2 -0.124925 0.212244 0.496654
3 0.525417 1.238640 -1.210543
4 -1.175743 -0.172372 -0.734129
Warning: Loading pickled data received from untrusted sources can be unsafe.
See: http://docs.python.org/2.7/library/pickle.html

Warning: Several internal refactorings, 0.13 (Series Refactoring), and 0.15 (Index Refactoring), preserve compatibility with pickles created prior to these versions. However, these must be read with `pd.read_pickle`, rather than the default python `pickle.load`. See this question for a detailed explanation.

Note: These methods were previously `pd.save` and `pd.load`, prior to 0.12.0, and are now deprecated.

msgpack (experimental)

New in version 0.13.0.

Starting in 0.13.0, pandas is supporting the msgpack format for object serialization. This is a lightweight portable binary format, similar to binary JSON, that is highly space efficient, and provides good performance both on the writing (serialization), and reading (deserialization).

Warning: This is a very new feature of pandas. We intend to provide certain optimizations in the io of the msgpack data. Since this is marked as an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.

As a result of writing format changes and other issues:

<table>
<thead>
<tr>
<th>Packed with</th>
<th>Can be unpacked with</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-0.17 / Python 2</td>
<td>any</td>
</tr>
<tr>
<td>pre-0.17 / Python 3</td>
<td>any</td>
</tr>
<tr>
<td>0.17 / Python 2</td>
<td>• 0.17 / Python 2</td>
</tr>
<tr>
<td></td>
<td>• >=0.18 / any Python</td>
</tr>
<tr>
<td>0.17 / Python 3</td>
<td>>=0.18 / any Python</td>
</tr>
<tr>
<td>0.18</td>
<td>>= 0.18</td>
</tr>
</tbody>
</table>

Reading (files packed by older versions) is backward-compatible, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.

In [274]: df = pd.DataFrame(np.random.rand(5,2),columns=list('AB'))

In [275]: df.to_msgpack('foo.msg')

In [276]: pd.read_msgpack('foo.msg')
Out[276]:
 A B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106
In [277]: s = pd.Series(np.random.rand(5), index=pd.date_range('20130101', periods=5))

You can pass a list of objects and you will receive them back on deserialization.

In [278]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1,2,3]), s)

In [279]: pd.read_msgpack('foo.msg')
Out[279]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.154336</td>
</tr>
<tr>
<td>1</td>
<td>0.398096</td>
</tr>
<tr>
<td>2</td>
<td>0.586749</td>
</tr>
<tr>
<td>3</td>
<td>0.290293</td>
</tr>
<tr>
<td>4</td>
<td>0.988593</td>
</tr>
</tbody>
</table>

In January 2013, 0.690810 0.235907 0.712756 0.119599 0.023493
Freq: D, dtype: float64

You can pass `iterator=True` to iterate over the unpacked results

In [280]: for o in pd.read_msgpack('foo.msg', iterator=True):
 print o
 : A B
 0 0.154336 0.710999
 1 0.398096 0.765220
 2 0.586749 0.293052
 3 0.290293 0.710783
 4 0.988593 0.062106

foo
[1 2 3]
2013-01-01 0.690810
2013-01-02 0.235907
2013-01-03 0.712756
2013-01-04 0.119599
2013-01-05 0.023493
Freq: D, dtype: float64

You can pass `append=True` to the writer to append to an existing pack

In [281]: df.to_msgpack('foo.msg', append=True)

In [282]: pd.read_msgpack('foo.msg')
Out[282]:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.154336</td>
</tr>
<tr>
<td>1</td>
<td>0.398096</td>
</tr>
<tr>
<td>2</td>
<td>0.586749</td>
</tr>
<tr>
<td>3</td>
<td>0.290293</td>
</tr>
<tr>
<td>4</td>
<td>0.988593</td>
</tr>
</tbody>
</table>

In January 2013, 0.690810 0.235907 0.712756 0.119599 0.023493
Freq: D, dtype: float64
Unlike other io methods, `to_msgpack` is available on both a per-object basis, `df.to_msgpack()` and using the top-level `pd.to_msgpack(...)`, where you can pack arbitrary collections of python lists, dicts, scalars, while intermixing pandas objects.

```python
In [283]: pd.to_msgpack('foo2.msg', { 'dict' : [ { 'df' : df }, { 'string' : 'foo' }, { 'scalar' : 1. } ], 's' : s })

In [284]: pd.read_msgpack('foo2.msg')
Out[284]:
{'dict': ({'df': A B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106
Freq: D, dtype: float64},
{'string': 'foo'},
{'scalar': 1.0},
{'s': 2013-01-01 0.690810
2013-01-02 0.235907
2013-01-03 0.712756
2013-01-04 0.119599
2013-01-05 0.023493}
Freq: D, dtype: float64})
```

Read/Write API

Msgpacks can also be read from and written to strings.

```python
In [285]: df.to_msgpack()
Out[285]:
'\x84\xa6blocks\x91\x86\xa5dtype\xa7\x86\xa4locs\x86\xa4ndim\x01\xa5dtype\xa5int64\x91\x86\xa5shapes\x91\x86\xa5compress\x86\xa4ndim\x01\x87\x86\xa5compress\x86\xa4data\x86\xa5shape\x91\x86\xa5typ\x87\x86\xa5ndarray\x86\xa5shape\x92\x02\x05\x86\xa4values\x86\xa5P\x00\xa0\xbfb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xa5shape\x91\x02\x91\x91\x86\xa5compress\x86\xa4data\x86\xa5klass\x86\xa5FloatBlock\x86\xa4axes\x86\xa4name\x86\xa6object\x86\xa6dtype\x86\xa6int64\x00\xa0\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xda\xd8

Furthermore you can concatenate the strings to produce a list of the original objects.

```python
In [286]: pd.read_msgpack(df.to_msgpack() + s.to_msgpack())
Out[286]:
[A B
0 0.154336 0.710999
1 0.398096 0.765220
2 0.586749 0.293052
3 0.290293 0.710783
4 0.988593 0.062106, 2013-01-01 0.690810
2013-01-02 0.235907
2013-01-03 0.712756
2013-01-04 0.119599
2013-01-05 0.023493
Freq: D, dtype: float64]
HDFStore is a dict-like object which reads and writes pandas using the high performance HDF5 format using the excellent PyTables library. See the cookbook for some advanced strategies.

Warning: As of version 0.15.0, pandas requires PyTables >= 3.0.0. Stores written with prior versions of pandas/PyTables >= 2.3 are fully compatible (this was the previous minimum PyTables required version).

Warning: There is a PyTables indexing bug which may appear when querying stores using an index. If you see a subset of results being returned, upgrade to PyTables >= 3.2. Stores created previously will need to be rewritten using the updated version.

Warning: As of version 0.17.0, HDFStore will not drop rows that have all missing values by default. Previously, if all values (except the index) were missing, HDFStore would not write those rows to disk.

```
In [287]: store = pd.HDFStore('store.h5')
In [288]: print(store)
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
Empty
```

Objects can be written to the file just like adding key-value pairs to a dict:

```
In [289]: np.random.seed(1234)
In [290]: index = pd.date_range('1/1/2000', periods=8)
In [291]: s = pd.Series(randn(5), index=['a', 'b', 'c', 'd', 'e'])
In [292]: df = pd.DataFrame(randn(8, 3), index=index, columns=['A', 'B', 'C'])
In [293]: wp = pd.Panel(randn(2, 5, 4), items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B', 'C', 'D'])

# store.put('s', s) is an equivalent method
In [294]: store['s'] = s
In [295]: store['df'] = df
In [296]: store['wp'] = wp
```
In a current or later Python session, you can retrieve stored objects:

```
In [299]: store['df']
Out[299]:
   A     B     C
0 0.887163 0.859588 -0.636524
1 0.015696 -2.242685 1.150036
2 0.991946 0.953324 -2.021255
3 -0.334077 0.002118 0.405453
4 0.289092 1.321158 -1.546906
5 -0.202646 -0.655969 0.193421
6 0.553439 1.318152 -0.469305
7 0.675554 -1.817027 -0.183109
```

Deletion of the object specified by the key

```
In [301]: del store['wp']
```

Closing a Store, Context Manager

```
In [303]: store.close()
In [304]: store
```
Out[304]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
File is CLOSED

In [305]: store.is_open
Out[305]: False

Working with, and automatically closing the store with the context
manager
In [306]: with pd.HDFStore('store.h5') as store:
 : store.keys()
 :

Read/Write API

HDFStore supports an top-level API using read_hdf for reading and to_hdf for writing, similar to how
read_csv and to_csv work. (new in 0.11.0)

In [307]: df_t1 = pd.DataFrame(dict(A=list(range(5)), B=list(range(5))))
In [308]: df_t1.to_hdf('store_t1.h5','table',append=True)
In [309]: pd.read_hdf('store_t1.h5', 'table', where = ['index>2'])
Out[309]:
 A B
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4

As of version 0.17.0, HDFStore will no longer drop rows that are all missing by default. This behavior can be enabled
by setting dropna=True.

In [310]: df_with_missing = pd.DataFrame({'col1':[0, np.nan, 2],
 'col2':[1, np.nan, np.nan]})
In [311]: df_with_missing
doctest:1: warning:
Warning: pd.DataFrame not supported in doctest

Out[311]:
 col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN

In [312]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
 format = 'table', mode='w')
In [313]: pd.read_hdf('file.h5', 'df_with_missing')
Out[313]:
 col1 col2
0 0.0 1.0
1 NaN NaN
2 2.0 NaN
In [314]: df_with_missing.to_hdf('file.h5', 'df_with_missing',
 format = 'table', mode='w', dropna=True)

25.8. HDF5 (PyTables)

959
.....:

In [315]: pd.read_hdf('file.h5', 'df_with_missing')
Out[315]:
 col1 col2
0 0.0 1.0
2 2.0 NaN

This is also true for the major axis of a Panel:

In [316]: matrix = [[np.nan, np.nan, np.nan], [1, np.nan, np.nan], [np.nan, 5, 6]]
In [317]: panel_with_major_axis_all_missing = pd.Panel(matrix,
 items=['Item1', 'Item2', 'Item3'],
 major_axis=[1, 2],
 minor_axis=['A', 'B', 'C'])
In [318]: panel_with_major_axis_all_missing
Out[318]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 2 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item3
Major_axis axis: 1 to 2
Minor_axis axis: A to C

In [319]: panel_with_major_axis_all_missing.to_hdf('file.h5', 'panel',
 dropna=True,
 format='table',
 mode='w')

In [320]: reloaded = pd.read_hdf('file.h5', 'panel')

In [321]: reloaded
Out[321]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 1 (major_axis) x 3 (minor_axis)
Items axis: Item1 to Item3
Major_axis axis: 2 to 2
Minor_axis axis: A to C

Fixed Format

Note: This was prior to 0.13.0 the Storer format.

The examples above show storing using put, which write the HDF5 to PyTables in a fixed array format, called the fixed format. These types of stores are are not appendable once written (though you can simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety. They also do not support dataframes with non-unique column names. The fixed format stores offer very fast writing and slightly faster reading than table stores. This format is specified by default when using put or to_hdf or by format='fixed' or format='f'
Warning: A fixed format will raise a TypeError if you try to retrieve using a where.

```python
pd.DataFrame(randn(10,2)).to_hdf('test_fixed.h5','df')
pd.read_hdf('test_fixed.h5','df',where='index>5')
```

```
TypeError: cannot pass a where specification when reading a fixed format.
this store must be selected in its entirety
```

Table Format

HDFStore supports another PyTables format on disk, the table format. Conceptually a table is shaped very much like a DataFrame, with rows and columns. A table may be appended to in the same or other sessions. In addition, delete & query type operations are supported. This format is specified by format='table' or format='t'
to append or put or to_hdf

New in version 0.13.

This format can be set as an option as well `pd.set_option('io.hdf.default_format','table')` to enable put/append/to_hdf to by default store in the table format.

```python
In [322]: store = pd.HDFStore('store.h5')
In [323]: df1 = df[0:4]
In [324]: df2 = df[4:]

# append data (creates a table automatically)
In [325]: store.append('df', df1)
In [326]: store.append('df', df2)

In [327]: store
Out[327]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df      frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

# select the entire object
In [328]: store.select('df')
Out[328]:
```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-01-01</td>
<td>0.887163</td>
<td>0.859588</td>
<td>-0.636524</td>
</tr>
<tr>
<td>2000-01-02</td>
<td>0.015696</td>
<td>-2.242685</td>
<td>1.150036</td>
</tr>
<tr>
<td>2000-01-03</td>
<td>0.991946</td>
<td>0.953324</td>
<td>-2.021255</td>
</tr>
<tr>
<td>2000-01-04</td>
<td>-0.334077</td>
<td>0.002118</td>
<td>0.405453</td>
</tr>
<tr>
<td>2000-01-05</td>
<td>0.289092</td>
<td>1.321158</td>
<td>-1.546906</td>
</tr>
<tr>
<td>2000-01-06</td>
<td>-0.202646</td>
<td>-0.655969</td>
<td>0.193421</td>
</tr>
<tr>
<td>2000-01-07</td>
<td>0.553439</td>
<td>1.318152</td>
<td>-0.469305</td>
</tr>
<tr>
<td>2000-01-08</td>
<td>0.675554</td>
<td>-1.817027</td>
<td>-0.183109</td>
</tr>
</tbody>
</table>
```

# the type of stored data
In [329]: store.root.df._v_attrs.pandas_type
Out[329]: 'frame_table'

```
Hierarchical Keys

Keys to a store can be specified as a string. These can be in a hierarchical path-name like format (e.g. `foo/bar/bah`), which will generate a hierarchy of sub-stores (or Groups in PyTables parlance). Keys can be specified with out the leading `/` and are ALWAYS absolute (e.g. `foo` refers to `/foo`). Removal operations can remove everything in the sub-store and BELOW, so be careful.

```py
In [330]: store.put('foo/bar/bah', df)
In [331]: store.append('food/orange', df)
In [332]: store.append('food/apple', df)
In [333]: store
Out[333]: <class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/foo/bar/bah frame (shape->[8,3])
/foo/food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/foo/food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])

# a list of keys are returned
In [334]: store.keys()
Out[334]: ['/df', '/food/apple', '/food/orange', '/foo/bar/bah']

# remove all nodes under this level
In [335]: store.remove('food')

In [336]: store
Out[336]: <class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/foo/bar/bah frame (shape->[8,3])
```

Warning: Hierarchical keys cannot be retrieved as dotted (attribute) access as described above for items stored under the root node.

```py
In [8]: store.foo.bar.bah
AttributeError: 'HDFStore' object has no attribute 'foo'

# you can directly access the actual PyTables node but using the root node
In [9]: store.root.foo.bar.bah
Out[9]:
/foo/bar/bah (Group) ''
   children := [{'block0_items' (Array), 'block0_values' (Array), 'axis0' (Array), ...
   'axis1' (Array)}]
```
Instead, use explicit string based keys

```
In [337]: store['foo/bar/bah']
Out[337]:
                A         B         C
2000-01-01  0.887163  0.859588 -0.636524
2000-01-02  0.015696 -2.242685  1.150036
2000-01-03  0.991946  0.953324 -1.546906
2000-01-04 -0.334077  0.002118  0.405453
2000-01-05 -0.202646 -0.655969  0.193421
2000-01-06  0.553439  1.318152 -0.469305
2000-01-07  0.675554 -1.817027 -0.183109
```

Storing Types

Storing Mixed Types in a Table

Storing mixed-dtype data is supported. Strings are stored as a fixed-width using the maximum size of the appended column. Subsequent attempts at appending longer strings will raise a `ValueError`.

Passing `min_itemsize=\{\text{'values': size}\}` as a parameter to append will set a larger minimum for the string columns. Storing `floats,strings,ints,bools,datetime64` are currently supported. For string columns, passing `nan_rep = \text{'nan'}` to append will change the default nan representation on disk (which converts to/from `np.nan`), this defaults to `nan`.

```
In [338]: df_mixed = pd.DataFrame({ 'A' : randn(8),
...:                          'B' : randn(8),
...:                          'C' : np.array(randn(8),dtype='float32'),
...:                          'string' :'string',
...:                          'int' : 1,
...:                          'bool' : True,
...:                          'datetime64' : pd.Timestamp('20010102')},
...:                           index=list(range(8)))
```

```
In [339]: df_mixed.ix[3:5,['A', 'B', 'string', 'datetime64']] = np.nan
```

```
In [340]: store.append('df_mixed', df_mixed, min_itemsize = {'values': 50})
```

```
In [341]: df_mixed1 = store.select('df_mixed')
```

```
In [342]: df_mixed1
Out[342]:
       A         B         C  bool  datetime64  int  string
0  0.704721 -1.152659 -0.430096  True    2001-01-02   1  string
1 -0.785435  0.631979  0.767369  True    2001-01-02   1  string
2  0.462060  0.039513  0.984920  True    2001-01-02   1  string
3   NaN     NaN  0.270836  True       NaT      1     NaN
4   NaN     NaN  1.391986   True       NaT      1     NaN
5   NaN     NaN  0.079842  True       NaT      1     NaN
6  2.007843  0.152631 -0.399965  True    2001-01-02   1  string
7  0.226963  0.164530 -1.027851  True    2001-01-02   1  string
```

```
In [343]: df_mixed1.get_dtype_counts()
```
Storing Multi-Index DataFrames

Storing multi-index dataframes as tables is very similar to storing/selecting from homogeneous index DataFrames.

In [345]: index = pd.MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'],
 ['one', 'two', 'three']],
 labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3],
 [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]],
 names=['foo', 'bar'])

In [346]: df_mi = pd.DataFrame(np.random.randn(10, 3), index=index,
 columns=['A', 'B', 'C'])

In [347]: df_mi
Out[347]:
 A B C
foo bar
 one -0.584718 0.816594 -0.081947
 two -0.344766 0.528288 -1.068989
 three -0.511881 0.291205 0.566534
bar one 0.503592 0.285296 0.484288
 two 1.363482 -0.781105 -0.468018
 three 1.224574 -1.281108 0.875476
baz one 1.818499 0.047072 0.394844
 two -0.203933 -0.182175 0.680656
 three -0.248432 -0.617707 -0.682884
qux one -1.818499 0.047072 0.394844
 two -0.203933 -0.182175 0.680656
 three -0.248432 -0.617707 -0.682884
In [348]: store.append('df_mi', df_mi)

In [349]: store.select('df_mi')
Out[349]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>foo</td>
<td>one</td>
<td>0.584718 0.816594 -0.081947</td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>-0.344766 0.528288 -1.068989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>three</td>
<td>-0.511881 0.291205 0.566534</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>one</td>
<td>0.503592 0.285296 0.484288</td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>1.363482 -0.781105 -0.468018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>baz</td>
<td>two</td>
<td>1.224574 -1.281108 0.875476</td>
<td></td>
</tr>
<tr>
<td>three</td>
<td>-1.710715 -0.450765 0.749164</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qux</td>
<td>one</td>
<td>-0.203933 -0.182175 0.680656</td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>-1.818499 0.047072 0.394844</td>
<td></td>
<td></td>
</tr>
<tr>
<td>three</td>
<td>-0.248432 -0.617707 -0.682884</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

the levels are automatically included as data columns

In [350]: store.select('df_mi', 'foo=bar')
Out[350]:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>foo</td>
<td>bar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>one</td>
<td>0.503592 0.285296 0.484288</td>
<td></td>
</tr>
<tr>
<td>two</td>
<td>1.363482 -0.781105 -0.468018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Querying

Querying a Table

Warning: This query capabilities have changed substantially starting in 0.13.0. Queries from prior version are accepted (with a `DeprecationWarning`) printed if its not string-like.

select and delete operations have an optional criterion that can be specified to select/delete only a subset of the data. This allows one to have a very large on-disk table and retrieve only a portion of the data.

A query is specified using the `Term` class under the hood, as a boolean expression.

- `index` and `columns` are supported indexers of a DataFrame
- `major_axis`, `minor_axis`, and `items` are supported indexers of the Panel
- if `data_columns` are specified, these can be used as additional indexers

Valid comparison operators are:

`==, !=, >, >=, <, <=`

Valid boolean expressions are combined with:

- `|` : or
- `&` : and
- `(and)` : for grouping

These rules are similar to how boolean expressions are used in pandas for indexing.
Note:

- `=` will be automatically expanded to the comparison operator `==`
- `~` is the not operator, but can only be used in very limited circumstances
- If a list/tuple of expressions is passed they will be combined via `&`

The following are valid expressions:

- `'index>=date'`
- "columns=['A','D']"
- "columns in ['A','D']"
- 'columns=A'
- 'columns==A'
- "~(columns=['A','B'])"
- 'index>df.index[3] & string="bar"'
- '(index>df.index[3] & index<=df.index[6]) | string="bar"'
- "ts>=Timestamp('2012-02-01')"
- "major_axis>=20130101"

The indexers are on the left-hand side of the sub-expression:

`columns, major_axis, ts`

The right-hand side of the sub-expression (after a comparison operator) can be:

- functions that will be evaluated, e.g. `Timestamp('2012-02-01')`
- strings, e.g. "bar"
- date-like, e.g. `20130101, or "20130101"
- lists, e.g. "['A','B']"
- variables that are defined in the local names space, e.g. `date`

Note: Passing a string to a query by interpolating it into the query expression is not recommended. Simply assign the string of interest to a variable and use that variable in an expression. For example, do this:

```python
string = "HolyMoly"
store.select('df', 'index == string')
```

instead of this:

```python
string = "HolyMoly"
store.select('df', 'index == %s' % string)
```

The latter will not work and will raise a `SyntaxError`. Note that there's a single quote followed by a double quote in the `string` variable.

If you must interpolate, use the `%%r` format specifier

```python
store.select('df', 'index == $r' % string)
```
which will quote string.

Here are some examples:

```python
In [351]: dfq = pd.DataFrame(randn(10, 4), columns=list('ABCD'), index=pd.date_range('20130101', periods=10))
In [352]: store.append('dfq', dfq, format='table', data_columns=True)
```

Use boolean expressions, with in-line function evaluation.

```python
In [353]: store.select('dfq', "index>pd.Timestamp('20130104') & columns=['A', 'B']")
Out[353]:
   A    B
0  1.21  0.79
1 -0.85  1.18
2  0.98 -0.12
3  0.79 -0.47
4 -0.80 -2.12
5  0.33  0.54
```

Use and inline column reference

```python
In [354]: store.select('dfq', where="A>0 or C>0")
Out[354]:
   A    B    C    D
0  0.44 -1.70  0.39 -0.48
1  0.69  0.68  0.24  0.24
2  0.15  0.82  1.89  0.64
3 -2.09  1.93  1.30 -1.73
4  1.21  0.79 -0.38  0.70
5  0.98 -0.47 -0.06  1.36
6  0.79 -0.47 -0.56  1.36
7  0.33  0.54 -0.74 -0.32
```

Works with a Panel as well.

```python
In [355]: store.append('wp', wp)
In [356]: store
Out[356]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
```

```python
In [357]: store.select('wp', "major_axis>pd.Timestamp('20000102') & minor_axis=['A', 'B']")
```

25.8. HDF5 (PyTables)
The columns keyword can be supplied to select a list of columns to be returned, this is equivalent to passing a 'columns=list_of_columns_to_filter':

```
In [358]: store.select('df', "columns=['A', 'B']")
```

```
        A         B
2000-01-01 0.887163  0.859588
2000-01-02 0.015696 -2.242685
2000-01-03 0.991946  0.953324
2000-01-04 -0.334077  0.002118
2000-01-05 0.289092  1.321158
2000-01-06 -0.202646 -0.655969
2000-01-07 0.553439  1.318152
2000-01-08 0.675554 -1.817027
```

start and stop parameters can be specified to limit the total search space. These are in terms of the total number of rows in a table.

```
# this is effectively what the storage of a Panel looks like
In [359]: wp.to_frame()
```

```
        Item1         Item2
major minor
2000-01-01 A  1.058969   0.215269
          B  -0.397840   0.841009
          C   0.337438  -1.445810
          D  1.047579  -1.401973
2000-01-02 A  1.045938  -0.100918
          B   0.863717  -0.548242
          C -0.122092   -0.144620
          ...       ...
2000-01-04 B  0.036142   0.307969
          C  -2.074978  -0.208499
          D  0.247792   1.033801
2000-01-05 A -0.897157  -2.400454
          B -0.136795   2.030604
          C  0.018289  -1.142631
          D   0.755414   0.211883

[20 rows x 2 columns]
```

```
# limiting the search
In [360]: store.select('wp','major_axis>20000102 & minor_axis=['A','B']",start=0, stop=10)
```

```
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 1 (major_axis) x 2 (minor_axis)
Items axis: Item1 to Item2
Major_axis axis: 2000-01-03 00:00:00 to 2000-01-03 00:00:00
Minor_axis axis: A to B
```
Note: select will raise a ValueError if the query expression has an unknown variable reference. Usually this means that you are trying to select on a column that is not a data_column. select will raise a SyntaxError if the query expression is not valid.

Using timedelta64[ns]

New in version 0.13.

Beginning in 0.13.0, you can store and query using the `timedelta64[ns]` type. Terms can be specified in the format: `<float>`(<unit>), where float may be signed (and fractional), and unit can be D, s, ms, us, ns for the timedelta. Here's an example:

```
In [361]: from datetime import timedelta

In [362]: dftd = pd.DataFrame(dict(A = pd.Timestamp('20130101'), B = [ pd.Timestamp('20130101') + timedelta(days=i,seconds=10) for i in range(10) ]))

In [363]: dftd['C'] = dftd['A']-dftd['B']

In [364]: dftd
Out[364]:
    A            B       C
0 2013-01-01 2013-01-01 00:00:10 -1 days +23:59:50
1 2013-01-01 2013-01-01 00:00:10 -2 days +23:59:50
2 2013-01-01 2013-01-01 00:00:10 -3 days +23:59:50
3 2013-01-01 2013-01-01 00:00:10 -4 days +23:59:50
4 2013-01-01 2013-01-01 00:00:10 -5 days +23:59:50
5 2013-01-01 2013-01-01 00:00:10 -6 days +23:59:50
6 2013-01-01 2013-01-01 00:00:10 -7 days +23:59:50
7 2013-01-01 2013-01-01 00:00:10 -8 days +23:59:50
8 2013-01-01 2013-01-01 00:00:10 -9 days +23:59:50
9 2013-01-01 2013-01-01 00:00:10 -10 days +23:59:50

In [365]: store.append('dftd',dftd,data_columns=True)

In [366]: store.select('dftd','C<’-3.5D’')
Out[366]:
    A            B       C
4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50
5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50
6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50
7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50
8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50
9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50
```

Indexing

You can create/modify an index for a table with `create_table_index` after data is already in the table (after and append/put operation). Creating a table index is highly encouraged. This will speed your queries a great deal when you use a select with the indexed dimension as the where.
Note: Indexes are automagically created (starting 0.10.1) on the indexables and any data columns you specify. This behavior can be turned off by passing `index=False` to append.

```python
# we have automagically already created an index (in the first section)
In [367]: i = store.root.df.table.cols.index.index

In [368]: i.optlevel, i.kind
Out[368]: (6, 'medium')

# change an index by passing new parameters
In [369]: store.create_table_index('df', optlevel=9, kind='full')

In [370]: i = store.root.df.table.cols.index.index

In [371]: i.optlevel, i.kind
Out[371]: (9, 'full')
```

Oftentimes when appending large amounts of data to a store, it is useful to turn off index creation for each append, then recreate at the end.

```python
In [372]: df_1 = pd.DataFrame(randn(10,2),columns=list('AB'))

In [373]: df_2 = pd.DataFrame(randn(10,2),columns=list('AB'))

In [374]: st = pd.HDFStore('appends.h5',mode='w')

In [375]: st.append('df', df_1, data_columns=['B'], index=False)

In [376]: st.append('df', df_2, data_columns=['B'], index=False)

In [377]: st.get_storer('df').table
Out[377]:
```

```
/df/table (Table(20,)) ''
    description := {
        "index": Int64Col(shape=(), dflt=0, pos=0),
        "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
        "B": Float64Col(shape=(), dflt=0.0, pos=2))
    byteorder := 'little'
    chunkshape := (2730,)
```

Then create the index when finished appending.

```python
In [378]: st.create_table_index('df', columns=['B'], optlevel=9, kind='full')

In [379]: st.get_storer('df').table
Out[379]:
```

```
/df/table (Table(20,)) ''
    description := {
        "index": Int64Col(shape=(), dflt=0, pos=0),
        "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
        "B": Float64Col(shape=(), dflt=0.0, pos=2))
    byteorder := 'little'
    chunkshape := (2730,)
    autoindex := True
    colindexes := {
        "B": Index(9, full, shuffle, zlib(1)).is_csi=True}
```
In [380]: st.close()

See here for how to create a completely-sorted-index (CSI) on an existing store.

Query via Data Columns

You can designate (and index) certain columns that you want to be able to perform queries (other than the *indexable* columns, which you can always query). For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query. You can specify `data_columns = True` to force all columns to be `data_columns`.

```
In [381]: df_dc = df.copy()
In [382]: df_dc['string'] = 'foo'
In [383]: df_dc.ix[4:6,'string'] = np.nan
In [384]: df_dc.ix[7:9,'string'] = 'bar'
In [385]: df_dc['string2'] = 'cool'
In [386]: df_dc.ix[1:3,['B','C']] = 1.0

In [387]: df_dc
Out[387]:
     A          B         C    string  string2
2000-01-01  0.887163  0.859588 -0.636524  foo      cool
2000-01-02  0.015696  1.000000  1.000000  foo      cool
2000-01-03  0.991946  1.000000  1.000000  foo      cool
2000-01-04 -0.334077  0.002118  0.405453  foo      cool
2000-01-05  0.289092  1.321158 -1.546906  NaN     cool
2000-01-06 -0.202646 -0.655969  0.193421  NaN     cool
2000-01-07  0.553439  1.318152 -0.469305  foo     cool
2000-01-08  0.675554 -1.817027 -0.183109  NaN     cool
```

on-disk operations

```
In [388]: store.append('df_dc', df_dc, data_columns = ['B', 'C', 'string', 'string2'])
```

```
In [389]: store.select('df_dc', [ pd.Term('B>0') ])
```

```
In [390]: store.select('df_dc', 'B > 0 & C > 0 & string == foo')
```

```
25.8. HDF5 (PyTables) 971
```
this is in-memory version of this type of selection
In [391]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')]
Out[391]:
 A B C string string2
0 2000-01-02 0.015696 1.000000 foo cool
1 2000-01-03 0.991946 1.000000 foo cool
2 2000-01-04 -0.334077 0.002118 foo cool

we have automagically created this index and the B/C/string/string2
columns are stored separately as `PyTables` columns
In [392]: store.root.df_dc.table
Out[392]:
/df_dc/table (Table(8,)) ''
description := {
 "index": Int64Col(shape=(), dflt=0, pos=0),
 "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
 "B": Float64Col(shape=(), dflt=0.0, pos=2),
 "C": Float64Col(shape=(), dflt=0.0, pos=3),
 "string": StringCol(itemsize=3, shape=(), dflt='', pos=4),
 "string2": StringCol(itemsize=4, shape=(), dflt='', pos=5)}
byterorder := 'little'
chunkshape := (1680,)
autoindex := True
colindexes := {
 "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "C": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "B": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "string2": Index(6, medium, shuffle, zlib(1)).is_csi=False,
 "string": Index(6, medium, shuffle, zlib(1)).is_csi=False}

There is some performance degradation by making lots of columns into data columns, so it is up to the user to designate these. In addition, you cannot change data columns (nor indexables) after the first append/put operation (Of course you can simply read in the data and create a new table!)

Iterator

Starting in 0.11.0, you can pass, iterator=True or chunksize=number_in_a_chunk to select and select_as_multiple to return an iterator on the results. The default is 50,000 rows returned in a chunk.

In [393]: for df in store.select('df', chunksize=3):
 print(df)

 A B C
0 2000-01-01 0.887163 0.859588 0.636524
1 2000-01-02 0.015696 -2.242685 1.150036
2 2000-01-03 0.991946 0.953324 -2.021255

 A B C
0 2000-01-04 -0.334077 0.002118 0.405453
1 2000-01-05 0.289092 1.321158 -1.546906
2 2000-01-06 -0.202646 -0.655969 0.193421

 A B C
0 2000-01-07 0.553439 1.318152 -0.469305
1 2000-01-08 0.675554 -1.817027 -0.183109

Note: New in version 0.12.0.
You can also use the iterator with `read_hdf` which will open, then automatically close the store when finished iterating.

```python
for df in pd.read_hdf('store.h5', 'df', chunksize=3):
    print(df)
```

Note, that the chunksize keyword applies to the source rows. So if you are doing a query, then the chunksize will subdivide the total rows in the table and the query applied, returning an iterator on potentially unequal sized chunks.

Here is a recipe for generating a query and using it to create equal sized return chunks.

```python
In [394]: dfeq = pd.DataFrame({'number': np.arange(1,11)})

In [395]: dfeq
Out[395]:
   number
0      1
1      2
2      3
3      4
4      5
5      6
6      7
7      8
8      9
9     10

In [396]: store.append('dfeq', dfeq, data_columns=['number'])

In [397]: def chunks(l, n):
   ..:     return [l[i:i+n] for i in range(0, len(l), n)]

In [398]: evens = [2,4,6,8,10]

In [399]: coordinates = store.select_as_coordinates('dfeq', 'number=evens')

In [400]: for c in chunks(coordinates, 2):
   ..:     print store.select('dfeq', where=c)
   ..:       number
   ..:      1 2
   ..:      3 4
   ..:      5 6
   ..:      7 8
   ..:      9 10
```

Advanced Queries

Select a Single Column

To retrieve a single indexable or data column, use the method `select_column`. This will, for example, enable you to get the index very quickly. These return a `Series` of the result, indexed by the row number. These do not currently accept the `where` selector.
In [401]: store.select_column('df_dc', 'index')
Out[401]:
0 2000-01-01
1 2000-01-02
2 2000-01-03
3 2000-01-04
4 2000-01-05
5 2000-01-06
6 2000-01-07
7 2000-01-08
Name: index, dtype: datetime64[ns]

In [402]: store.select_column('df_dc', 'string')
Out[402]:
0 foo
1 foo
2 foo
3 foo
4 NaN
5 NaN
6 foo
7 bar
Name: string, dtype: object

Selecting coordinates

Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index of the resulting locations. These coordinates can also be passed to subsequent where operations.

In [403]: df_coord = pd.DataFrame(np.random.randn(1000,2),index=pd.date_range('20000101',periods=1000))

In [404]: store.append('df_coord',df_coord)

In [405]: c = store.select_as_coordinates('df_coord','index>20020101')

In [406]: c.summary()
Out[406]: u'Int64Index: 268 entries, 732 to 999'

In [407]: store.select('df_coord',where=c)
Out[407]:
 0 1
2002-01-02 1.78266 -0.064638
2002-01-03 -1.20496 -3.880898
2002-01-04 0.97447 0.415160
2002-01-05 1.75197 0.485011
2002-01-06 -0.17089 0.748870
2002-01-07 0.62979 0.811053
2002-01-08 2.13378 0.238459

2002-09-20 0.81434 0.612399
2002-09-21 -0.17632 -0.354962
2002-09-22 -0.26178 0.812126
2002-09-23 0.48261 -0.886512
2002-09-24 -0.03757 -0.562953
2002-09-25 0.89771 0.383232
Selecting using a where mask

Sometime your query can involve creating a list of rows to select. Usually this mask would be a resulting index from an indexing operation. This example selects the months of a datetimeindex which are 5.

In [408]: df_mask = pd.DataFrame(np.random.randn(1000,2),index=pd.date_range('20000101',periods=1000))
In [409]: store.append('df_mask',df_mask)
In [410]: c = store.select_column('df_mask','index')
In [411]: where = c[pd.DatetimeIndex(c).month==5].index
In [412]: store.select('df_mask',where=where)

Out[412]:
 0 1
2000-05-01 1.006245 -0.616759
2000-05-02 0.218940 0.717838
2000-05-03 0.013333 1.348060
2000-05-04 0.662176 -1.050645
2000-05-05 1.034870 -0.243242
2000-05-06 0.753366 -1.454329
2000-05-07 0.022920 -0.476989

2002-05-25 -0.509090 -0.389376
2002-05-26 0.150674 1.164337
2002-05-27 -0.332944 0.115181
2002-05-28 1.048127 -0.605733
2002-05-29 1.418754 -0.442835
2002-05-30 0.433200 0.835001
2002-05-31 1.041278 1.401811
[93 rows x 2 columns]

Storer Object

If you want to inspect the stored object, retrieve via get_storer. You could use this programmatically to say get the number of rows in an object.

In [413]: store.get_storer('df_dc').nrows
Out[413]: 8

Multiple Table Queries

New in 0.10.1 are the methods append_to_multiple and select_as_multiple, that can perform appending/selecting from multiple tables at once. The idea is to have one table (call it the selector table) that you index most/all of the columns, and perform your queries. The other table(s) are data tables with an index matching the
selector table’s index. You can then perform a very fast query on the selector table, yet get lots of data back. This method is similar to having a very wide table, but enables more efficient queries.

The `append_to_multiple` method splits a given single DataFrame into multiple tables according to `d`, a dictionary that maps the table names to a list of ‘columns’ you want in that table. If `None` is used in place of a list, that table will have the remaining unspecified columns of the given DataFrame. The argument `selector` defines which table is the selector table (which you can make queries from). The argument `dropna` will drop rows from the input DataFrame to ensure tables are synchronized. This means that if a row for one of the tables being written to is entirely `np.NaN`, that row will be dropped from all tables.

If `dropna` is `False`, **THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES**. Remember that entirely `np.NaN` rows are not written to the HDFStore, so if you choose to call `dropna=False`, some tables may have more rows than others, and therefore `select_as_multiple` may not work or it may return unexpected results.

```python
In [414]: df_mt = pd.DataFrame(randn(8, 6), index=pd.date_range('1/1/2000', periods=8), columns=['A', 'B', 'C', 'D', 'E', 'F'])
In [415]: df_mt['foo'] = 'bar'
In [416]: df_mt.ix[1, ('A', 'B')] = np.nan
# you can also create the tables individually
In [417]: store.append_to_multiple({'df1_mt': ['A', 'B'], 'df2_mt': None }, df_mt, selector='df1_mt')
In [418]: store
Out[418]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df       frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index])
/df1_mt   frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B])
/df2_mt   frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index])
/df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_dc    frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2])
/df_mask  frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index])
/df_mi    frame_table (typ->appendable_multi,nrows->10,ncols->5, indexers->[index],dc->[bar,foo])
/df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index])
/dfq      frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index],dc->[number])
/dfq      frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D])
/dftd     frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C])
/foo/bar/bah frame (shape->[8,3])
/wp       wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_axis])
```
Delete from a Table

You can delete from a table selectively by specifying a where. In deleting rows, it is important to understand the PyTables deletes rows by erasing the rows, then moving the following data. Thus deleting can potentially be a very expensive operation depending on the orientation of your data. This is especially true in higher dimensional objects (Panel and Panel4D). To get optimal performance, it’s worthwhile to have the dimension you are deleting be the first of the indexables.

Data is ordered (on the disk) in terms of the indexables. Here’s a simple use case. You store panel-type data, with dates in the major_axis and ids in the minor_axis. The data is then interleaved like this:

- date_1 - id_1 - id_2 - .. - id_n
- date_2 - id_1 - .. - id_n

It should be clear that a delete operation on the major_axis will be fairly quick, as one chunk is removed, then the following data moved. On the other hand a delete operation on the minor_axis will be very expensive. In this case it would almost certainly be faster to rewrite the table using a where that selects all but the missing data.

returns the number of rows deleted
In [422]: store.remove('wp', 'major_axis>20000102')
Out[422]: 12
In [423]: store.select('wp')
Out[423]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 2 (major_axis) x 4 (minor_axis)
 Items axis: Item1 to Item2
 Major_axis axis: 2000-01-01 00:00:00 to 2000-01-02 00:00:00
 Minor_axis axis: A to D

Warning: Please note that HDF5 **DOES NOT RECLAIM SPACE** in the h5 files automatically. Thus, repeatedly deleting (or removing nodes) and adding again, **WILL TEND TO INCREASE THE FILE SIZE**.

To **repack and clean** the file, use **ptrepack**

Notes & Caveats

Compression

PyTables allows the stored data to be compressed. This applies to all kinds of stores, not just tables.

- Pass `complevel=int` for a compression level (1-9, with 0 being no compression, and the default)
- Pass `complib=lib` where `lib` is any of `zlib`, `bzip2`, `lzo`, `blosc` for whichever compression library you prefer.

HDFStore will use the file based compression scheme if no overriding `complib` or `complevel` options are provided. **blosc** offers very fast compression, and is my most used. Note that **lzo** and **bzip2** may not be installed (by Python) by default.

Compression for all objects within the file

```python
store_compressed = pd.HDFStore('store_compressed.h5', complevel=9, complib='blosc')
```

Or on-the-fly compression (this only applies to tables). You can turn off file compression for a specific table by passing `complevel=0`

```python
store.append('df', df, complib='zlib', complevel=5)
```

ptrepack

PyTables offers better write performance when tables are compressed after they are written, as opposed to turning on compression at the very beginning. You can use the supplied PyTables utility `ptrepack`. In addition, `ptrepack` can change compression levels after the fact.

```bash
ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5
```

Furthermore `ptrepack in.h5 out.h5` will **repack** the file to allow you to reuse previously deleted space. Alternatively, one can simply remove the file and write again, or use the `copy` method.
Caveats

Warning: HDFStore is not-threadsafe for writing. The underlying PyTables only supports concurrent reads (via threading or processes). If you need reading and writing at the same time, you need to serialize these operations in a single thread in a single process. You will corrupt your data otherwise. See the (GH2397) for more information.

- If you use locks to manage write access between multiple processes, you may want to use `fsync()` before releasing write locks. For convenience you can use `store.flush(fsync=True)` to do this for you.
- Once a table is created its items (Panel) / columns (DataFrame) are fixed; only exactly the same columns can be appended
- Be aware that timezones (e.g., `pytz.timezone('US/Eastern')`) are not necessarily equal across timezone versions. So if data is localized to a specific timezone in the HDFStore using one version of a timezone library and that data is updated with another version, the data will be converted to UTC since these timezones are not considered equal. Either use the same version of timezone library or use `tz_convert` with the updated timezone definition.

Warning: PyTables will show a NaturalNameWarning if a column name cannot be used as an attribute selector. Natural identifiers contain only letters, numbers, and underscores, and may not begin with a number. Other identifiers cannot be used in a where clause and are generally a bad idea.

DataTypes

HDFStore will map an object dtype to the PyTables underlying dtype. This means the following types are known to work:

<table>
<thead>
<tr>
<th>Type</th>
<th>Represents missing values</th>
</tr>
</thead>
</table>
| floating | float64, float32, float16
| integer | int64, int32, int8, uint64, uint32, uint8
| boolean | NaT |
| datetime64[ns] | NaT |
| timedelta64[ns] | NaT |
| categorical | see the section below |
| object | strings |

unicode columns are not supported, and WILL FAIL.

Categorical Data

New in version 0.15.2.

Writing data to a HDFStore that contains a category dtype was implemented in 0.15.2. Queries work the same as if it was an object array. However, the category dtyped data is stored in a more efficient manner.

```python
In [424]: dfcat = pd.DataFrame({ 'A' : pd.Series(list('aabbcdba')).astype('category'),
                          'B' : np.random.randn(8) })

In [425]: dfcat
Out[425]:
```
A B
0 a 0.603273
1 a 0.262554
2 b -0.979586
3 b 2.132387
4 c 0.892485
5 d 1.996474
6 b 0.231425
7 a 0.980070

In [426]: dfcat.dtypes
Out[426]:
A category
B float64
dtype: object

In [427]: cstore = pd.HDFStore('cats.h5', mode='w')

In [428]: cstore.append('dfcat', dfcat, format='table', data_columns=["A"])

In [429]: result = cstore.select('dfcat', where="A in ['b','c']")

In [430]: result
Out[430]:
 A B
 0 b -0.979586
 1 b 2.132387
 2 c 0.892485
 3 b 0.231425

In [431]: result.dtypes
Out[431]:
A category
B float64
dtype: object

Warning: The format of the Categorical is readable by prior versions of pandas (< 0.15.2), but will retrieve the data as an integer based column (e.g. the codes). However, the categories can be retrieved but require the user to select them manually using the explicit meta path.

The data is stored like so:

In [432]: cstore
Out[432]:
<class 'pandas.io.pytables.HDFStore'>
File path: cats.h5
/dfcat frame_table (typ->appendable,nrows->8,ncols->2,
←indexers->[index],dc->[A])
/dfcat/meta/A/meta series_table (typ->appendable,nrows->4,ncols->1,
←indexers->[index],dc->[values])

to get the categories
In [433]: cstore.select('dfcat/meta/A/meta')
Out[433]:
0 a
1 b
2 c
3 d
dtype: object
String Columns

min_itemsize

The underlying implementation of HDFStore uses a fixed column width (itemsize) for string columns. A string column itemsize is calculated as the maximum of the length of data (for that column) that is passed to the HDFStore, in the first append. Subsequent appends, may introduce a string for a column larger than the column can hold, an Exception will be raised (otherwise you could have a silent truncation of these columns, leading to loss of information). In the future we may relax this and allow a user-specified truncation to occur.

Pass `min_itemsize` on the first table creation to a-priori specify the minimum length of a particular string column. `min_itemsize` can be an integer, or a dict mapping a column name to an integer. You can pass values as a key to allow all indexables or `data_columns` to have this `min_itemsize`.

Starting in 0.11.0, passing a `min_itemsize` dict will cause all passed columns to be created as `data_columns` automatically.

Note: If you are not passing any `data_columns`, then the `min_itemsize` will be the maximum of the length of any string passed

```python
In [434]: dfs = pd.DataFrame(dict(A = 'foo', B = 'bar'),index=list(range(5)))

In [435]: dfs
Out[435]:
     A   B
0   foo  bar
1   foo  bar
2   foo  bar
3   foo  bar
4   foo  bar

# A and B have a size of 30
In [436]: store.append('dfs', dfs, min_itemsize = 30)

In [437]: store.get_storer('dfs').table
Out[437]:
/dfs/table (Table(5,)) ''

description := {
    "index": Int64Col(shape=(), dflt=0, pos=0),
    "values_block_0": StringCol(itemsize=30, shape=(2,), dflt='', pos=1)}
byteorder := 'little'
chunkshape := (963,)
autoindex := True
colindexes := {
   "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}

# A is created as a data_column with a size of 30
# B is size is calculated
In [438]: store.append('dfs2', dfs, min_itemsize = { 'A' : 30 })

In [439]: store.get_storer('dfs2').table
Out[439]:
/dfs2/table (Table(5,)) ''
```
nan_rep

String columns will serialize a `np.nan` (a missing value) with the `nan_rep` string representation. This defaults to the string value `nan`. You could inadvertently turn an actual `nan` value into a missing value.

```python
In [440]: dfss = pd.DataFrame(dict(A=['foo','bar','nan']))

In [441]: dfss
Out[441]:
    A
0  foo
1  bar
2  nan

In [442]: store.append('dfss', dfss)

In [443]: store.select('dfss')
Out[443]:
    A
0  foo
1  bar
2  NaN

# here you need to specify a different nan rep
In [444]: store.append('dfss2', dfss, nan_rep='_nan_')

In [445]: store.select('dfss2')
Out[445]:
    A
0  foo
1  bar
2  nan
```

External Compatibility

HDFStore writes table format objects in specific formats suitable for producing loss-less round trips to pandas objects. For external compatibility, HDFStore can read native PyTables format tables.

It is possible to write an HDFStore object that can easily be imported into R using the rhdf5 library (Package website). Create a table format store like this:

```python
In [446]: np.random.seed(1)

In [447]: df_for_r = pd.DataFrame({
    "first": np.random.rand(100),
    "second": np.random.rand(100),
    "class": np.random.randint(0, 2, (100,))})
```
In R this file can be read into a `data.frame` object using the `rhdf5` library. The following example function reads the corresponding column names and data values from the values and assembles them into a `data.frame`:

```r
# Load values and column names for all datasets from corresponding nodes and # insert them into one data.frame object.

library(rhdf5)

loadhdf5data <- function(h5File) {
  listing <- h5ls(h5File)
  # Find all data nodes, values are stored in *_values and corresponding column # titles in *_items
  data_nodes <- grep("_values", listing$name)
  name_nodes <- grep("_items", listing$name)
  data_paths = paste(listing$group[data_nodes], listing$name[data_nodes], sep="/"")
  name_paths = paste(listing$group[name_nodes], listing$name[name_nodes], sep="/"")
  columns = list()
  for (idx in seq(data_paths)) {
    # NOTE: matrices returned by h5read have to be transposed to obtain # required Fortran order!
    data <- data.frame(t(h5read(h5File, data_paths[idx])))
    names <- t(h5read(h5File, name_paths[idx]))
    entry <- data.frame(data)
    colnames(entry) <- names
    columns <- append(columns, entry)
  }
  data <- data.frame(columns)
  return(data)
}
```

Now you can import the DataFrame into R:
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
> data = loadhdf5data("transfer.hdf5")
> head(data)
first  second  class
1  0.417022 0.326645 0
2  0.720324 0.527058 0
3  0.000114 0.885942 1
4  0.302333 0.357269 1
5  0.146756 0.908535 1
6  0.092339 0.623360 1
```

Note: The R function lists the entire HDF5 file's contents and assembles the `data.frame` object from all matching nodes, so use this only as a starting point if you have stored multiple `DataFrame` objects to a single HDF5 file.

Backwards Compatibility

0.10.1 of HDFStore can read tables created in a prior version of pandas, however query terms using the prior (undocumented) methodology are unsupported. HDFStore will issue a warning if you try to use a legacy-format file. You must read in the entire file and write it out using the new format, using the method `copy` to take advantage of the updates. The group attribute `pandas_version` contains the version information. `copy` takes a number of options, please see the docstring.

```python
# a legacy store
In [452]: legacy_store = pd.HDFStore(legacy_file_path,'r')

In [453]: legacy_store
Out[453]:
<class 'pandas.io.pytables.HDFStore'>
File path: /home/joris/scipy/pandas/doc/source/_static/legacy_0.10.h5
/a
  → series (shape->[30])
  /b
    → frame (shape->[30,4])
    /df1_mixed
      → frame_table [0.10.0] (typ->appendable,nrows->30,ncols->11,indexers->[index])
      /foo/bar
        → wide (shape->[3,30,4])
        /p1_mixed
          → wide_table [0.10.0] (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis])
          /p4d_mixed
            → ndim_table [0.10.0] (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis])

# copy (and return the new handle)
In [454]: new_store = legacy_store.copy('store_new.h5')

In [455]: new_store
Out[455]:
<class 'pandas.io.pytables.HDFStore'>
File path: store_new.h5
/a
  → series (shape->[30])
  /b
    → frame (shape->[30,4])
    /df1_mixed
      → frame_table (typ->appendable,nrows->30,ncols->11,indexers->[index])
```
Performance

- **tables** format come with a writing performance penalty as compared to **fixed** stores. The benefit is the ability to append/delete and query (potentially very large amounts of data). Write times are generally longer as compared with regular stores. Query times can be quite fast, especially on an indexed axis.

- You can pass `chunksize=<int>` to `append`, specifying the write chunksize (default is 50000). This will significantly lower your memory usage on writing.

- You can pass `expectedrows=<int>` to the first `append`, to set the TOTAL number of expected rows that `PyTables` will expected. This will optimize read/write performance.

- Duplicate rows can be written to tables, but are filtered out in selection (with the last items being selected; thus a table is unique on major, minor pairs)

- A **PerformanceWarning** will be raised if you are attempting to store types that will be pickled by `PyTables` (rather than stored as endemic types). See [Here](#) for more information and some solutions.

Experimental

`HDFStore` supports `Panel4D` storage.

```
In [457]: p4d = pd.Panel4D({'l1' : wp})

In [458]: p4d
Out[458]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 1 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis)
Labels axis: l1 to l1
Items axis: Item1 to Item2
Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00
Minor_axis axis: A to D

In [459]: store.append('p4d', p4d)

In [460]: store
Out[460]:
<class 'pandas.io.pytables.HDFStore'>
File path: store.h5
/df frame_table (typ->appendable,nrows->8,ncols->3,indexers->
  →[index])
/df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->
  →[index],dc->[A,B])
/df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->
  →[index])
/df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->
  →[index])
```
These, by default, index the three axes `items, major_axis, minor_axis`. On an AppendableTable it is possible to setup with the first append a different indexing scheme, depending on how you want to store your data. Pass the `axes` keyword with a list of dimensions (currently must be exactly 1 less than the total dimensions of the object). This cannot be changed after table creation.

```
In [461]: store.append('p4d2', p4d, axes=['labels', 'major_axis', 'minor_axis'])
```

```
In [462]: store
Out[462]: <class 'pandas.io.pytables.HDFStore'>
```

File path: store.h5
```
```
```
In [463]: store.select('p4d2', [ pd.Term('labels=11'), pd.Term('items=Item1'), pd.
   Term('minor_axis=A_big_strings') ])
Out[463]:
<class 'pandas.core.panelnd.Panel4D'>
Dimensions: 0 (labels) x 1 (items) x 0 (major_axis) x 0 (minor_axis)
Labels axis: None
Items axis: Item1 to Item1
Major_axis axis: None
Minor_axis axis: None

SQL Queries

The pandas.io.sql module provides a collection of query wrappers to both facilitate data retrieval and to reduce dependency on DB-specific API. Database abstraction is provided by SQLAlchemy if installed. In addition you will need a driver library for your database. Examples of such drivers are psycopg2 for PostgreSQL or pymysql for MySQL. For SQLite this is included in Python's standard library by default. You can find an overview of supported drivers for each SQL dialect in the SQLAlchemy docs.

New in version 0.14.0.

If SQLAlchemy is not installed, a fallback is only provided for sqlite (and for mysql for backwards compatibility, but this is deprecated and will be removed in a future version). This mode requires a Python database adapter which respect the Python DB-API.

See also some cookbook examples for some advanced strategies.

The key functions are:

- `read_sql_table(table_name, con[, schema, ...])` Read SQL database table into a DataFrame.
- `read_sql_query(sql, con[, index_col, ...])` Read SQL query into a DataFrame.
- `read_sql(sql, con[, index_col, ...])` Read SQL query or database table into a DataFrame.
- `DataFrame.to_sql(name, con[, flavor, ...])` Write records stored in a DataFrame to a SQL database.
pandas.read_sql_table

pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, parse_dates=None, columns=None, chunksize=None)

Read SQL database table into a DataFrame.

Given a table name and an SQLAlchemy connectable, returns a DataFrame. This function does not support DBAPI connections.

Parameters table_name : string
    Name of SQL table in database

    con : SQLAlchemy connectable (or database string URI)
    Sqlite DBAPI connection mode not supported

    schema : string, default None
        Name of SQL schema in database to query (if database flavor supports this). If None, use default schema (default).

    index_col : string or list of strings, optional, default: None
        Column(s) to set as index(MultiIndex)

    coerce_float : boolean, default True
        Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point. Can result in loss of Precision.

    parse_dates : list or dict, default: None
        - List of column names to parse as dates
        - Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
        - Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite

    columns : list, default: None
        List of column names to select from sql table

    chunksize : int, default None
        If specified, return an iterator where chunksize is the number of rows to include in each chunk.

Returns DataFrame

See also:

    read_sql_query Read SQL query into a DataFrame.

    read_sql

Notes

Any datetime values with time zone information will be converted to UTC
pandas.read_sql_query

**pandas.read_sql_query** *(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, chunksize=None)*

Read SQL query into a DataFrame.

Returns a DataFrame corresponding to the result set of the query string. Optionally provide an *index_col* parameter to use one of the columns as the index, otherwise default integer index will be used.

**Parameters**

- **sql**: string SQL query or SQLAlchemy Selectable (select or text object) to be executed.
- **con**: SQLAlchemy connectable(engine/connection) or database string URI or sqlite3 DBAPI2 connection. Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
- **index_col**: string or list of strings, optional, default: None
  - Column(s) to set as index(MultiIndex)
- **coerce_float**: boolean, default True
  - Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets
- **params**: list, tuple or dict, optional, default: None
  - List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses `%\(name\)s` so use params={'name' : 'value'}
- **parse_dates**: list or dict, default: None
  - List of column names to parse as dates
  - Dict of `{column_name: format string}` where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
  - Dict of `{column_name: arg dict}`, where the arg dict corresponds to the keyword arguments of *pandas.to_datetime()* especially useful with databases without native Datetime support, such as SQLite
- **chunksize**: int, default None
  - If specified, return an iterator where *chunksize* is the number of rows to include in each chunk.

**Returns** DataFrame

See also:

- **read_sql_table** Read SQL database table into a DataFrame
- **read_sql**

**Notes**

Any datetime values with time zone information parsed via the *parse_dates* parameter will be converted to UTC

25.9. SQL Queries
pandas.read_sql

pandas.read_sql(sql, con=None, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None)

Read SQL query or database table into a DataFrame.

Parameters:

- sql : string SQL query or SQLAlchemy Selectable (select or text object) to be executed, or database table name.
- con : SQLAlchemy connectable(engine/connection) or database string URI or DBAPI2 connection (fallback mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
- index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex)
- coerce_float : boolean, default True Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets
- params : list, tuple or dict, optional, default: None List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249’s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={ ‘name’ : ‘value’ }
- parse_dates : list or dict, default: None List of column names to parse as dates
  • List of column names to parse as dates
  • Dict of {column_name: format string} where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps
  • Dict of {column_name: arg dict}, where the arg dict corresponds to the keyword arguments of pandas.to_datetime() Especially useful with databases without native Datetime support, such as SQLite
- columns : list, default: None List of column names to select from sql table (only used when reading a table).
- chunksize : int, default None If specified, return an iterator where chunksize is the number of rows to include in each chunk.

Returns

DataFrame

See also:

- read_sql_table Read SQL database table into a DataFrame
- read_sql_query Read SQL query into a DataFrame

Notes

This function is a convenience wrapper around read_sql_table and read_sql_query (and for backward compatibility) and will delegate to the specific function depending on the provided input (database table
name or sql query). The delegated function might have more specific notes about their functionality not listed here.

**pandas.DataFrame.to_sql**

```python
DataFrame.to_sql(name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None)
```

Write records stored in a DataFrame to a SQL database.

**Parameters**

- **name** : string
  Name of SQL table

- **con** : SQLAlchemy engine or DBAPI2 connection (legacy mode)
  Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

- **flavor** : 'sqlite', default None
  DEPRECATED: this parameter will be removed in a future version, as 'sqlite' is the only supported option if SQLAlchemy is not installed.

- **schema** : string, default None
  Specify the schema (if database flavor supports this). If None, use default schema.

- **if_exists** : {'fail', 'replace', 'append'}, default 'fail'
  - fail: If table exists, do nothing.
  - replace: If table exists, drop it, recreate it, and insert data.
  - append: If table exists, insert data. Create if does not exist.

- **index** : boolean, default True
  Write DataFrame index as a column.

- **index_label** : string or sequence, default None
  Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

- **chunksize** : int, default None
  If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

- **dtype** : dict of column name to SQL type, default None
  Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection.

**Note:** The function `read_sql()` is a convenience wrapper around `read_sql_table()` and `read_sql_query()` (and for backward compatibility) and will delegate to specific function depending on the provided input (database table name or sql query). Table names do not need to be quoted if they have special characters.

In the following example, we use the SQLite SQL database engine. You can use a temporary SQLite database where data are stored in “memory”.

**25.9. SQL Queries**
To connect with SQLAlchemy you use the `create_engine()` function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For more information on `create_engine()` and the URI formatting, see the examples below and the SQLAlchemy documentation.

```python
In [464]: from sqlalchemy import create_engine

Create your engine.
In [465]: engine = create_engine('sqlite:////:memory:)
```

If you want to manage your own connections you can pass one of those instead:

```python
with engine.connect() as conn, conn.begin():
 data = pd.read_sql_table('data', conn)
```

## Writing DataFrames

Assuming the following data is in a DataFrame `data`, we can insert it into the database using `to_sql()`.

```text
<table>
<thead>
<tr>
<th>id</th>
<th>Date</th>
<th>Col_1</th>
<th>Col_2</th>
<th>Col_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>2012-10-18</td>
<td>X</td>
<td>25.7</td>
<td>True</td>
</tr>
<tr>
<td>42</td>
<td>2012-10-19</td>
<td>Y</td>
<td>-12.4</td>
<td>False</td>
</tr>
<tr>
<td>63</td>
<td>2012-10-20</td>
<td>Z</td>
<td>5.73</td>
<td>True</td>
</tr>
</tbody>
</table>
```

```python
In [466]: data.to_sql('data', engine)
```

With some databases, writing large DataFrames can result in errors due to packet size limitations being exceeded. This can be avoided by setting the `chunksize` parameter when calling `to_sql`. For example, the following writes `data` to the database in batches of 1000 rows at a time:

```python
In [467]: data.to_sql('data_chunked', engine, chunksize=1000)
```

### SQL data types

`to_sql()` will try to map your data to an appropriate SQL data type based on the dtype of the data. When you have columns of dtype `object`, pandas will try to infer the data type.

You can always override the default type by specifying the desired SQL type of any of the columns by using the `dtype` argument. This argument needs a dictionary mapping column names to SQLAlchemy types (or strings for the sqlite3 fallback mode). For example, specifying to use the sqlalchemy `String` type instead of the default `Text` type for string columns:

```python
In [468]: from sqlalchemy.types import String

In [469]: data.to_sql('data_dtype', engine, dtype={'Col_1': String})
```

**Note:** Due to the limited support for timedelta’s in the different database flavors, columns with type `timedelta64` will be written as integer values as nanoseconds to the database and a warning will be raised.

**Note:** Columns of category dtype will be converted to the dense representation as you would get with `np.asarray(categorical)` (e.g. for string categories this gives an array of strings). Because of this, reading the database table back in does not generate a categorical.
**Reading Tables**

`read_sql_table()` will read a database table given the table name and optionally a subset of columns to read.

**Note:** In order to use `read_sql_table()`, you must have the SQLAlchemy optional dependency installed.

```python
In [470]: pd.read_sql_table('data', engine)
Out[470]:
 index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 X 27.5 True
1 1 42 2010-10-19 Y -12.5 False
2 2 63 2010-10-20 Z 5.73 True
```

You can also specify the name of the column as the DataFrame index, and specify a subset of columns to be read.

```python
In [471]: pd.read_sql_table('data', engine, index_col='id')
Out[471]:
 index Date Col_1 Col_2 Col_3
 id
26 0 2010-10-18 X 27.5 True
42 1 2010-10-19 Y -12.5 False
63 2 2010-10-20 Z 5.73 True
```

```python
In [472]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2'])
Out[472]:
 Col_1 Col_2
0 X 27.5
1 Y -12.5
2 Z 5.73
```

And you can explicitly force columns to be parsed as dates:

```python
In [473]: pd.read_sql_table('data', engine, parse_dates=['Date'])
Out[473]:
 index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 X 27.5 True
1 1 42 2010-10-19 Y -12.5 False
2 2 63 2010-10-20 Z 5.73 True
```

If needed you can explicitly specify a format string, or a dict of arguments to pass to `pandas.to_datetime()`:

```python
pd.read_sql_table('data', engine, parse_dates={'Date': '%Y-%m-%d'})
pd.read_sql_table('data', engine, parse_dates={'Date': {'format': '%Y-%m-%d %H:%M:%S'}})
```

You can check if a table exists using `has_table()`

### Schema support

New in version 0.15.0.

Reading from and writing to different schema’s is supported through the `schema` keyword in the `read_sql_table()` and `to_sql()` functions. Note however that this depends on the database flavor (sqlite does not have schema’s). For example:
### Querying

You can query using raw SQL in the `read_sql_query()` function. In this case you must use the SQL variant appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language constructs, which are database-agnostic.

```python
In [474]: pd.read_sql_query('SELECT * FROM data', engine)
Out[474]:
 index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 00:00:00.000000 X 27.50 1
1 1 42 2010-10-19 00:00:00.000000 Y -12.50 0
2 2 63 2010-10-20 00:00:00.000000 Z 5.73 1
```

Of course, you can specify a more “complex” query.

```python
In [475]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;", engine)
Out[475]:
 id Col_1 Col_2
0 42 Y -12.5
```

The `read_sql_query()` function supports a `chunksize` argument. Specifying this will return an iterator through chunks of the query result:

```python
In [476]: df = pd.DataFrame(np.random.randn(20, 3), columns=list('abc'))
In [477]: df.to_sql('data_chunks', engine, index=False)
In [478]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks", engine, chunksize=5):
 : print(chunk)
 :
 a b c
0 0.280665 -0.073113 1.160339
1 0.369493 1.904659 1.111057
2 0.659050 -1.627438 0.602319
3 0.420282 0.810952 1.044442
4 -0.400878 0.824006 -0.562305
 a b c
0 1.954878 -1.331952 -1.760689
1 -1.650721 -0.890556 -1.119115
2 1.956079 -0.326499 -1.342676
3 1.114383 -0.586524 -1.236853
4 0.875839 0.623362 -0.434957
 a b c
0 1.407540 0.129102 1.616950
1 0.502741 1.558806 0.109403
2 -1.219744 2.449369 -0.545774
3 -0.198838 -0.700399 -0.203394
4 0.242669 0.201830 0.661020
 a b c
0 1.792158 -0.120465 -1.233121
1 -1.182318 -0.665755 1.674196
```
You can also run a plain query without creating a dataframe with `execute()`. This is useful for queries that don't return values, such as INSERT. This is functionally equivalent to calling `execute` on the SQLAlchemy engine or db connection object. Again, you must use the SQL syntax variant appropriate for your database.

```python
from pandas.io import sql
sql.execute('SELECT * FROM table_name', engine)
sql.execute('INSERT INTO table_name VALUES(?, ?, ?)', engine, params=[('id', 1, 12.2, True)])
```

### Engine connection examples

To connect with SQLAlchemy you use the `create_engine()` function to create an engine object from database URI. You only need to create the engine once per database you are connecting to.

```python
from sqlalchemy import create_engine
engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase')
engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo')
engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname')
engine = create_engine('mssql+pyodbc://mydsn')
sqlite://<nohostname>/<path>
where <path> is relative:
engine = create_engine('sqlite:///foo.db')
or absolute, starting with a slash:
engine = create_engine('sqlite:///absolute/path/to/foo.db')
```

For more information see the examples the SQLAlchemy [documentation](https://docs.sqlalchemy.org/en/latest/

### Advanced SQLAlchemy queries

You can use SQLAlchemy constructs to describe your query.

Use `sqlalchemy.text()` to specify query parameters in a backend-neutral way

```python
In [479]: import sqlalchemy as sa
In [480]: pd.read_sql(sa.text('SELECT * FROM data where Col_1=:col1'), engine, params={'col1': 'X'})
Out[480]:
 index id Date Col_1 Col_2 Col_3
0 0 26 2010-10-18 00:00:00 0.000000 X 27.5 1
```
In [481]: metadata = sa.MetaData()

In [482]: data_table = sa.Table('data', metadata,
        ....:     sa.Column('index', sa.Integer),
        ....:     sa.Column('Date', sa.DateTime),
        ....:     sa.Column('Col_1', sa.String),
        ....:     sa.Column('Col_2', sa.Float),
        ....:     sa.Column('Col_3', sa.Boolean),
        ....: )

In [483]: pd.read_sql(sa.select([data_table]).where(data_table.c.Col_3 == True),
          __engine)
Out[483]:
     index  Date  Col_1  Col_2  Col_3
0     0 2010-10-18    X   27.50   True
1     2 2010-10-20    Z    5.73   True

You can combine SQLAlchemy expressions with parameters passed to `read_sql()` using `sqlalchemy.bindparam()`

In [484]: import datetime as dt

In [485]: expr = sa.select([data_table]).where(data_table.c.Date > sa.bindparam('date '))->

In [486]: pd.read_sql(expr, engine, params={'date': dt.datetime(2010, 10, 18)})
Out[486]:
     index    Date  Col_1  Col_2  Col_3
0     1 2010-10-19    Y  -12.50   False
1     2 2010-10-20    Z    5.73   True

Sqlite fallback

The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which respect the Python DB-API.

You can create connections like so:

```
import sqlite3
con = sqlite3.connect(':memory:)
```

And then issue the following queries:

```
data.to_sql('data', cnx)
pd.read_sql_query("SELECT * FROM data", con)
```

Google BigQuery (Experimental)

New in version 0.13.0.

The pandas.io.gbg module provides a wrapper for Google’s BigQuery analytics web service to simplify retrieving results from BigQuery tables using SQL-like queries. Result sets are parsed into a pandas DataFrame with a shape
and data types derived from the source table. Additionally, DataFrames can be inserted into new BigQuery tables or appended to existing tables.

You will need to install some additional dependencies:

- Google's python-gflags
- httplib2
- google-api-python-client

**Warning:** To use this module, you will need a valid BigQuery account. Refer to the BigQuery Documentation for details on the service itself.

The key functions are:

```
read_gbq(query[, project_id, index_col, ...]) Load data from Google BigQuery.
to_gbq(dataframe, destination_table, project_id) Write a DataFrame to a Google BigQuery table.
```

**pandas.io.gbq.read_gbq**

```
pandas.io.gbq.read_gbq(query, project_id=None, index_col=None, col_order=None, reauth=False,
verbose=True, private_key=None, dialect='legacy')
```

Load data from Google BigQuery.

**THIS IS AN EXPERIMENTAL LIBRARY**

The main method a user calls to execute a Query in Google BigQuery and read results into a pandas DataFrame.

Google BigQuery API Client Library v2 for Python is used. Documentation is available at https://developers.google.com/api-client-library/python/apis/bigquery/v2

Authentication to the Google BigQuery service is via OAuth 2.0.

- If “private_key” is not provided:
  By default “application default credentials” are used.
  New in version 0.19.0.
  If default application credentials are not found or are restrictive, user account credentials are used. In this case, you will be asked to grant permissions for product name ‘pandas GBQ’.
- If “private_key” is provided:
  Service account credentials will be used to authenticate.

**Parameters**

- `query` : str
  SQL-Like Query to return data values
- `project_id` : str
  Google BigQuery Account project ID.
- `index_col` : str (optional)
  Name of result column to use for index in results DataFrame
- `col_order` : list(str) (optional)
  List of BigQuery column names in the desired order for results DataFrame
**reauth**: boolean (default False)

Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

**verbose**: boolean (default True)

Verbose output

**private_key**: str (optional)

Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (e.g. Jupyter iPython notebook on remote host)

New in version 0.18.1.

**dialect**: {'legacy', 'standard'}, default ‘legacy’

‘legacy’ : Use BigQuery’s legacy SQL dialect. ‘standard’ : Use BigQuery’s standard SQL (beta), which is compliant with the SQL 2011 standard. For more information see BigQuery SQL Reference

New in version 0.19.0.

**Returns**

df: DataFrame

DataFrame representing results of query

---

**pandas.io.gbq.to_gbq**

```python
pandas.io.gbq.to_gbq(dataframe, destination_table, project_id, chunksize=10000, verbose=True, reauth=False, if_exists='fail', private_key=None)
```

Write a DataFrame to a Google BigQuery table.

**THIS IS AN EXPERIMENTAL LIBRARY**

The main method a user calls to export pandas DataFrame contents to Google BigQuery table.

Google BigQuery API Client Library v2 for Python is used. Documentation is available at https://developers.google.com/api-client-library/python/apis/bigquery/v2

Authentication to the Google BigQuery service is via OAuth 2.0.

- If “private_key” is not provided:
  
  By default “application default credentials” are used.

  New in version 0.19.0.

  If default application credentials are not found or are restrictive, user account credentials are used. In this case, you will be asked to grant permissions for product name ‘pandas GBQ’.

- If “private_key” is provided:

  Service account credentials will be used to authenticate.

**Parameters**

- **dataframe**: DataFrame

  DataFrame to be written

- **destination_table**: string

  Name of table to be written, in the form ‘dataset.tablename’

- **project_id**: str
Google BigQuery Account project ID.

**chunksize**: int (default 10000)

Number of rows to be inserted in each chunk from the dataframe.

**verbose**: boolean (default True)

Show percentage complete

**reauth**: boolean (default False)

Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

**ifexists**: {'fail', 'replace', 'append'}, default ‘fail’

‘fail’: If table exists, do nothing. ‘replace’: If table exists, drop it, recreate it, and insert data. ‘append’: If table exists, insert data. Create if does not exist.

**private_key**: str (optional)

Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host)

## Authentication

New in version 0.18.0.

Authentication to the Google BigQuery service is via OAuth 2.0. Is possible to authenticate with either user account credentials or service account credentials.

Authenticating with user account credentials is as simple as following the prompts in a browser window which will be automatically opened for you. You will be authenticated to the specified BigQuery account using the product name pandas GBQ. It is only possible on local host. The remote authentication using user account credentials is not currently supported in Pandas. Additional information on the authentication mechanism can be found here.

Authentication with service account credentials is possible via the ‘private_key’ parameter. This method is particularly useful when working on remote servers (eg. jupyter iPython notebook on remote host). Additional information on service accounts can be found here.

You will need to install an additional dependency: oauth2client.

Authentication via application default credentials is also possible. This is only valid if the parameter private_key is not provided. This method also requires that the credentials can be fetched from the environment the code is running in. Otherwise, the OAuth2 client-side authentication is used. Additional information on application default credentials.

New in version 0.19.0.

**Note**: The ‘private_key’ parameter can be set to either the file path of the service account key in JSON format, or key contents of the service account key in JSON format.

**Note**: A private key can be obtained from the Google developers console by clicking here. Use JSON key type.
pandas: powerful Python data analysis toolkit, Release 0.19.2

**Querying**

Suppose you want to load all data from an existing BigQuery table: `test_dataset.test_table` into a DataFrame using the `read_gbq()` function.

```python
Insert your BigQuery Project ID Here
Can be found in the Google web console
projectid = "xxxxxxxx"

data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table', projectid)
```

You can define which column from BigQuery to use as an index in the destination DataFrame as well as a preferred column order as follows:

```python
data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table',
 index_col='index_column_name',
 col_order=['col1', 'col2', 'col3'], projectid)
```

**Note:** You can find your project id in the Google developers console.

**Note:** You can toggle the verbose output via the `verbose` flag which defaults to `True`.

**Note:** The `dialect` argument can be used to indicate whether to use BigQuery's 'legacy' SQL or BigQuery's 'standard' SQL (beta). The default value is 'legacy'. For more information on BigQuery’s standard SQL, see BigQuery SQL Reference

**Writing DataFrames**

Assume we want to write a DataFrame `df` into a BigQuery table using `to_gbq()`.

```python
In [487]: df = pd.DataFrame({
 'my_string': list('abc'),
 'my_int64': list(range(1, 4)),
 'my_float64': np.arange(4.0, 7.0),
 'my_bool1': [True, False, True],
 'my_bool2': [False, True, False],
 'my_dates': pd.date_range('now', periods=3))

In [488]: df
Out[488]:
```
```text
my_bool1 my_bool2 my_dates my_float64 my_int64 my_string
0 True False 2016-12-24 18:33:33.411047 4.0 1 a
1 False True 2016-12-25 18:33:33.411047 5.0 2 b
2 True False 2016-12-26 18:33:33.411047 6.0 3 c
```

```python
In [489]: df.dtypes
Out[489]:
```
my_bool1           bool
my_bool2           bool
my_dates  datetime64[ns]
my_float64           float64
```
df.to_gbq('my_dataset.my_table', projectid)

Note: The destination table and destination dataset will automatically be created if they do not already exist.

The `if_exists` argument can be used to dictate whether to 'fail', 'replace' or 'append' if the destination table already exists. The default value is 'fail'.

For example, assume that `if_exists` is set to 'fail'. The following snippet will raise a `TableCreationError` if the destination table already exists.

```python
df.to_gbq('my_dataset.my_table', projectid, if_exists='fail')
```

Note: If the `if_exists` argument is set to 'append', the destination dataframe will be written to the table using the defined table schema and column types. The dataframe must match the destination table in structure and data types. If the `if_exists` argument is set to 'replace', and the existing table has a different schema, a delay of 2 minutes will be forced to ensure that the new schema has propagated in the Google environment. See Google BigQuery issue 191.

Writing large DataFrames can result in errors due to size limitations being exceeded. This can be avoided by setting the `chunksize` argument when calling `to_gbq()`. For example, the following writes `df` to a BigQuery table in batches of 10000 rows at a time:

```python
df.to_gbq('my_dataset.my_table', projectid, chunksize=10000)
```

You can also see the progress of your post via the `verbose` flag which defaults to True. For example:

```python
In [8]: df.to_gbq('my_dataset.my_table', projectid, chunksize=10000, verbose=True)
```

```
Streaming Insert is 10% Complete
Streaming Insert is 20% Complete
Streaming Insert is 30% Complete
Streaming Insert is 40% Complete
Streaming Insert is 50% Complete
Streaming Insert is 60% Complete
Streaming Insert is 70% Complete
Streaming Insert is 80% Complete
Streaming Insert is 90% Complete
Streaming Insert is 100% Complete
```

Note: If an error occurs while streaming data to BigQuery, see Troubleshooting BigQuery Errors.

Note: The BigQuery SQL query language has some oddities, see the BigQuery Query Reference Documentation.

Note: While BigQuery uses SQL-like syntax, it has some important differences from traditional databases both in functionality, API limitations (size and quantity of queries or uploads), and how Google charges for use of the

25.10. Google BigQuery (Experimental)
service. You should refer to Google BigQuery documentation often as the service seems to be changing and evolving. BigQuery is best for analyzing large sets of data quickly, but it is not a direct replacement for a transactional database.

Creating BigQuery Tables

Warning: As of 0.17, the function `generate_bq_schema()` has been deprecated and will be removed in a future version.

As of 0.15.2, the gbq module has a function `generate_bq_schema()` which will produce the dictionary representation schema of the specified pandas DataFrame.

```
In [10]: gbq.generate_bq_schema(df, default_type='STRING')
```

```
Out[10]: {'fields': [{'name': 'my_bool1', 'type': 'BOOLEAN'},
                     {'name': 'my_bool2', 'type': 'BOOLEAN'},
                     {'name': 'my_dates', 'type': 'TIMESTAMP'},
                     {'name': 'my_float64', 'type': 'FLOAT'},
                     {'name': 'my_int64', 'type': 'INTEGER'},
                     {'name': 'my_string', 'type': 'STRING'}]}
```

Note: If you delete and re-create a BigQuery table with the same name, but different table schema, you must wait 2 minutes before streaming data into the table. As a workaround, consider creating the new table with a different name. Refer to Google BigQuery issue 191.

Stata Format

New in version 0.12.0.

Writing to Stata format

The method `to_stata()` will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata 12).

```
In [490]: df = pd.DataFrame(randn(10, 2), columns=list('AB'))
In [491]: df.to_stata('stata.dta')
```

Stata data files have limited data type support; only strings with 244 or fewer characters, `int8`, `int16`, `int32`, `float32` and `float64` can be stored in .dta files. Additionally, Stata reserves certain values to represent missing data. Exporting a non-missing value that is outside of the permitted range in Stata for a particular data type will retype the variable to the next larger size. For example, `int8` values are restricted to lie between -127 and 100 in Stata, and so variables with values above 100 will trigger a conversion to `int16`. NaN values in floating points data types are stored as the basic missing data type (`.` in Stata).

Note: It is not possible to export missing data values for integer data types.
The Stata writer gracefully handles other data types including int64, bool, uint8, uint16, uint32 by casting to the smallest supported type that can represent the data. For example, data with a type of uint8 will be cast to int8 if all values are less than 100 (the upper bound for non-missing int8 data in Stata), or, if values are outside of this range, the variable is cast to int16.

Warning: Conversion from int64 to float64 may result in a loss of precision if int64 values are larger than 2^{53}.

Warning: StataWriter and to_stata() only support fixed width strings containing up to 244 characters, a limitation imposed by the version 115 dta file format. Attempting to write Stata dta files with strings longer than 244 characters raises a `ValueError`.

Reading from Stata format

The top-level function `read_stata` will read a dta file and return either a DataFrame or a StataReader that can be used to read the file incrementally.

```python
In [492]: pd.read_stata('stata.dta')
Out[492]:
   A     B
0  1.810535 -1.305727
1 -0.344987 -0.230840
2 -2.793085  1.937529
3  0.366332 -1.044589
4  2.051173  0.585662
5  0.429526 -0.606998
6  0.106223 -1.525680
7  0.795026 -0.374438
8  0.134048  1.202055
9  0.284748  0.262467
```

New in version 0.16.0.

Specifying a `chunksize` yields a StataReader instance that can be used to read chunksize lines from the file at a time. The StataReader object can be used as an iterator.

```python
In [493]: reader = pd.read_stata('stata.dta', chunksize=3)

In [494]: for df in reader:
   print(df.shape)
   ....
   (3, 3)
   (3, 3)
   (3, 3)
   (1, 3)
```

For more fine-grained control, use `iterator=True` and specify `chunksize` with each call to `read()`.

```python
In [495]: reader = pd.read_stata('stata.dta', iterator=True)
```

```python
In [496]: chunk1 = reader.read(5)
```

```python
In [497]: chunk2 = reader.read(5)
```
Currently the index is retrieved as a column.

The parameter `convert_categoricals` indicates whether value labels should be read and used to create a Categorical variable from them. Value labels can also be retrieved by the function `value_labels`, which requires `read()` to be called before use.

The parameter `convert_missing` indicates whether missing value representations in Stata should be preserved. If `False` (the default), missing values are represented as `np.nan`. If `True`, missing values are represented using `StataMissingValue` objects, and columns containing missing values will have object data type.

Note: `read_stata()` and `StataReader` support .dta formats 113-115 (Stata 10-12), 117 (Stata 13), and 118 (Stata 14).

Note: Setting `preserve_dtypes=False` will upcast to the standard pandas data types: `int64` for all integer types and `float64` for floating point data. By default, the Stata data types are preserved when importing.

Categorical Data

New in version 0.15.2.

Categorical data can be exported to Stata data files as value labeled data. The exported data consists of the underlying category codes as integer data values and the categories as value labels. Stata does not have an explicit equivalent to a Categorical and information about whether the variable is ordered is lost when exporting.

Warning: Stata only supports string value labels, and so `str` is called on the categories when exporting data. Exporting Categorical variables with non-string categories produces a warning, and can result a loss of information if the `str` representations of the categories are not unique.

Labeled data can similarly be imported from Stata data files as Categorical variables using the keyword argument `convert_categoricals=True` by default. The keyword argument `order_categoricals=True` by default determines whether imported Categorical variables are ordered.

Note: When importing categorical data, the values of the variables in the Stata data file are not preserved since Categorical variables always use integer data types between -1 and n-1 where n is the number of categories. If the original values in the Stata data file are required, these can be imported by setting `convert_categoricals=False`, which will import original data (but not the variable labels). The original values can be matched to the imported categorical data since there is a simple mapping between the original Stata data values and the category codes of imported Categorical variables: missing values are assigned code -1, and the smallest original value is assigned 0, the second smallest is assigned 1 and so on until the largest original value is assigned the code n-1.

Note: Stata supports partially labeled series. These series have value labels for some but not all data values. Importing a partially labeled series will produce a Categorical with string categories for the values that are labeled and numeric categories for values with no label.
SAS Formats

New in version 0.17.0.

The top-level function `read_sas()` can read (but not write) SAS `xport` (.XPT) and SAS7BDAT (.sas7bdat) format files were added in v0.18.0.

SAS files only contain two value types: ASCII text and floating point values (usually 8 bytes but sometimes truncated). For xport files, there is no automatic type conversion to integers, dates, or categoricals. For SAS7BDAT files, the format codes may allow date variables to be automatically converted to dates. By default the whole file is read and returned as a DataFrame.

Specify a chunksize or use `iterator=True` to obtain reader objects (XportReader or SAS7BDATReader) for incrementally reading the file. The reader objects also have attributes that contain additional information about the file and its variables.

Read a SAS7BDAT file:

```python
df = pd.read_sas('sas_data.sas7bdat')
```

Obtain an iterator and read an XPORT file 100,000 lines at a time:

```python
rdr = pd.read_sas('sas_xport.xpt', chunk=100000)
for chunk in rdr:
    do_something(chunk)
```

The specification for the xport file format is available from the SAS web site.

No official documentation is available for the SAS7BDAT format.

Other file formats

pandas itself only supports IO with a limited set of file formats that map cleanly to its tabular data model. For reading and writing other file formats into and from pandas, we recommend these packages from the broader community.

netCDF

xarray provides data structures inspired by the pandas DataFrame for working with multi-dimensional datasets, with a focus on the netCDF file format and easy conversion to and from pandas.

Performance Considerations

This is an informal comparison of various IO methods, using pandas 0.13.1.

```python
In [1]: df = pd.DataFrame(randn(1000000, 2), columns=list('AB'))
In [2]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1000000 entries, 0 to 999999
Data columns (total 2 columns):
A   1000000 non-null float64
B   1000000 non-null float64
```
dtypes: float64(2)
memory usage: 22.9 MB

Writing

In [14]: %timeit test_sql_write(df)
1 loops, best of 3: 6.24 s per loop

In [15]: %timeit test_hdf_fixed_write(df)
1 loops, best of 3: 237 ms per loop

In [26]: %timeit test_hdf_fixed_write_compress(df)
1 loops, best of 3: 245 ms per loop

In [16]: %timeit test_hdf_table_write(df)
1 loops, best of 3: 901 ms per loop

In [27]: %timeit test_hdf_table_write_compress(df)
1 loops, best of 3: 952 ms per loop

In [17]: %timeit test_csv_write(df)
1 loops, best of 3: 3.44 s per loop

Reading

In [18]: %timeit test_sql_read()
1 loops, best of 3: 766 ms per loop

In [19]: %timeit test_hdf_fixed_read()
10 loops, best of 3: 19.1 ms per loop

In [28]: %timeit test_hdf_fixed_read_compress()
10 loops, best of 3: 36.3 ms per loop

In [20]: %timeit test_hdf_table_read()
10 loops, best of 3: 39 ms per loop

In [29]: %timeit test_hdf_table_read_compress()
10 loops, best of 3: 60.6 ms per loop

In [22]: %timeit test_csv_read()
1 loops, best of 3: 620 ms per loop

Space on disk (in bytes)

25843712 Apr 8 14:11 test.sql
24007368 Apr 8 14:11 test_fixed.hdf
15580682 Apr 8 14:11 test_fixed_compress.hdf
24458444 Apr 8 14:11 test_table.hdf
16797283 Apr 8 14:11 test_table_compress.hdf
46152810 Apr 8 14:11 test.csv

And here’s the code

```python
import sqlite3
import os
from pandas.io import sql
```
df = pd.DataFrame(randn(1000000,2),columns=list('AB'))

def test_sql_write(df):
 if os.path.exists('test.sql'):
 os.remove('test.sql')
 sql_db = sqlite3.connect('test.sql')
 df.to_sql(name='test_table', con=sql_db)
 sql_db.close()

def test_sql_read():
 sql_db = sqlite3.connect('test.sql')
 pd.read_sql_query("select * from test_table", sql_db)
 sql_db.close()

def test_hdf_fixed_write(df):
 df.to_hdf('test_fixed.hdf','test',mode='w')

def test_hdf_fixed_read():
 pd.read_hdf('test_fixed.hdf','test')

def test_hdf_fixed_write_compress(df):
 df.to_hdf('test_fixed_compress.hdf','test',mode='w',complib='blosc')

def test_hdf_fixed_read_compress():
 pd.read_hdf('test_fixed_compress.hdf','test')

def test_hdf_table_write(df):
 df.to_hdf('test_table.hdf','test',mode='w',format='table')

def test_hdf_table_read():
 pd.read_hdf('test_table.hdf','test')

def test_hdf_table_write_compress(df):
 df.to_hdf('test_table_compress.hdf','test',mode='w',complib='blosc',format='table')

def test_hdf_table_read_compress():
 pd.read_hdf('test_table_compress.hdf','test')

def test_csv_write(df):
 df.to_csv('test.csv',mode='w')

def test_csv_read():
 pd.read_csv('test.csv',index_col=0)
CHAPTER
TWENTYSIX

REMOTE DATA ACCESS

DataReader

The sub-package pandas.io.data is removed in favor of a separately installable pandas-datareader package. This will allow the data modules to be independently updated to your pandas installation. The API for pandas-datareader v0.1.1 is the same as in pandas v0.16.1. (GH8961)

You should replace the imports of the following:

```python
from pandas.io import data, wb
```

With:

```python
from pandas_datareader import data, wb
```

Google Analytics

The ga module provides a wrapper for Google Analytics API to simplify retrieving traffic data. Result sets are parsed into a pandas DataFrame with a shape and data types derived from the source table.

Configuring Access to Google Analytics

The first thing you need to do is to setup accesses to Google Analytics API. Follow the steps below:

1. **In the Google Developers Console**

 (a) enable the Analytics API

 (b) create a new project

 (c) create a new Client ID for an “Installed Application” (in the “APIs & auth / Credentials section” of the newly created project)

 (d) download it (JSON file)

2. **On your machine**

 (a) rename it to `client_secrets.json`

 (b) move it to the pandas/io module directory

The first time you use the `read_ga()` function, a browser window will open to ask you to authentify to the Google API. Do proceed.
Using the Google Analytics API

The following will fetch users and pageviews (metrics) data per day of the week, for the first semester of 2014, from a particular property.

```python
import pandas.io.ga as ga
ga.read_ga(
    account_id = "2360420",
    profile_id = "19462946",
    property_id = "UA-2360420-5",
    metrics = ['users', 'pageviews'],
    dimensions = ['dayOfWeek'],
    start_date = "2014-01-01",
    end_date = "2014-08-01",
    index_col = 0,
    filters = "pagePath=~aboutus;ga:country==France",
)
```

The only mandatory arguments are `metrics`, `dimensions` and `start_date`. We strongly recommend that you always specify the `account_id`, `profile_id` and `property_id` to avoid accessing the wrong data bucket in Google Analytics.

The `index_col` argument indicates which dimension(s) has to be taken as index.

The `filters` argument indicates the filtering to apply to the query. In the above example, the page URL has to contain `aboutus` AND the visitors country has to be France.

Detailed information in the following:

- pandas & google analytics, by yhat
- Google Analytics integration in pandas, by Chang She
- Google Analytics Dimensions and Metrics Reference
Cython (Writing C extensions for pandas)

For many use cases writing pandas in pure python and numpy is sufficient. In some computationally heavy applications however, it can be possible to achieve sizeable speed-ups by offloading work to cython.

This tutorial assumes you have refactored as much as possible in python, for example trying to remove for loops and making use of numpy vectorization, it’s always worth optimising in python first.

This tutorial walks through a “typical” process of cythonizing a slow computation. We use an example from the cython documentation but in the context of pandas. Our final cythonized solution is around 100 times faster than the pure python.

Pure python

We have a DataFrame to which we want to apply a function row-wise.

```python
In [1]: df = pd.DataFrame({'a': np.random.randn(1000),
...:                     'b': np.random.randn(1000),
...:                     'N': np.random.randint(100, 1000, (1000)),
...:                     'x': 'x'})
...:

In [2]: df
Out[2]:
   N   a         b   x
0  585  0.469112 -0.218470  x
1  841 -0.282863 -0.061645  x
2  251 -1.509059 -0.723780  x
3  972 -1.135632  0.551225  x
...  ...        ...  ...  ...
993  931  0.342097  0.215341  x
994  931  0.342097  0.215341  x
995  374 -1.512743  0.874737  x
996  246  0.933753  1.120790  x
997  157 -0.308013  0.198768  x
998  977 -0.079915  1.757555  x
999  770 -1.010589 -1.115680  x
[1000 rows x 4 columns]
```
Here’s the function in pure python:

```python
In [3]: def f(x):
    ...:     return x * (x - 1)
    ...

In [4]: def integrate_f(a, b, N):
    ...:     s = 0
    ...:     dx = (b - a) / N
    ...:     for i in range(N):
    ...:         s += f(a + i * dx)
    ...:     return s * dx
    ...
```

We achieve our result by using apply (row-wise):

```python
In [7]: %timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 174 ms per loop
```

But clearly this isn’t fast enough for us. Let’s take a look and see where the time is spent during this operation (limited to the most time consuming four calls) using the prun ipython magic function:

```python
In [5]: %prun -l 4 df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
```

```
Ordered by: internal time
List reduced from 128 to 4 due to restriction <4>
ncalls  tottime  percall  cumtime  percall filename:lineno(function)
1000  0.193  0.000  0.290  0.000 <ipython-input-4-91e33489f136>:1(integrate_f)
552423  0.089  0.000  0.089  0.000 <ipython-input-3-bc41a25943f6>:1(f)
3000  0.011  0.000  0.060  0.000 base.py:2146(get_value)
1000  0.008  0.000  0.008  0.000 {range}
```

By far the majority of time is spend inside either integrate_f or f, hence we’ll concentrate our efforts cythonizing these two functions.

Note: In python 2 replacing the range with its generator counterpart (xrange) would mean the range line would vanish. In python 3 range is already a generator.

Plain cython

First we’re going to need to import the cython magic function to ipython (for cython versions < 0.21 you can use %load_ext cythonmagic):

```python
In [6]: %load_ext Cython
```

Now, let’s simply copy our functions over to cython as is (the suffix is here to distinguish between function versions):

```python
In [7]: %cython
    ...: def f_plain(x):
    ...:     return x * (x - 1)
    ...
    ...: def integrate_f_plain(a, b, N):
    ...:     s = 0
    ...:     dx = (b - a) / N
    ...:     for i in range(N):
    ...:         s += f(a + i * dx)
    ...:     return s * dx
    ...
```
dx = (b - a) / N
for i in range(N):
s += f_plain(a + i * dx)
return s * dx

Note: If you’re having trouble pasting the above into your ipython, you may need to be using bleeding edge ipython for paste to play well with cell magics.

In [4]: %timeit df.apply(lambda x: integrate_f_plain(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 85.5 ms per loop

Already this has shaved a third off, not too bad for a simple copy and paste.

Adding type

We get another huge improvement simply by providing type information:

In [8]: %%cython
cdef double f_typed(double x) except -2:
 return x * (x - 1)
cdef double integrate_f_typed(double a, double b, int N):
cdef int i
cdef double s, dx
s = 0
dx = (b - a) / N
for i in range(N):
s += f_typed(a + i * dx)
return s * dx

In [4]: %timeit df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), axis=1)
10 loops, best of 3: 20.3 ms per loop

Now, we’re talking! It’s now over ten times faster than the original python implementation, and we haven’t really modified the code. Let’s have another look at what’s eating up time:

In [9]: %prun -l 4 df.apply(lambda x: integrate_f_typed(x['a'], x['b'], x['N']), __axis=1)
118490 function calls (113481 primitive calls) in 0.093 seconds

Ordered by: internal time
List reduced from 124 to 4 due to restriction <4>

ncalls ttime percall ctime percall filename:lineno(function)
3000 0.011 0.000 0.064 0.000 base.py:2146(get_value)
3000 0.006 0.000 0.072 0.000 series.py:600(__getitem__)
3000 0.005 0.000 0.014 0.000 base.py:1131(_convert_scalar_indexer)
9024 0.005 0.000 0.012 0.000 {getattr}

27.1. Cython (Writing C extensions for pandas)
Using ndarray

It’s calling series... a lot! It’s creating a Series from each row, and get-ting from both the index and the series (three times for each row). Function calls are expensive in python, so maybe we could minimise these by cythonizing the apply part.

Note: We are now passing ndarrays into the cython function, fortunately cython plays very nicely with numpy.

```
In [10]: %%cython
....: cimport numpy as np
....: import numpy as np
....:
....: cdef double f_typed(double x)
....:     return x * (x - 1)
....:
....: cpdef double integrate_f_typed(double a, double b, int N):
....:     cdef int i
....:     cdef double s, dx
....:     s = 0
....:     dx = (b - a) / N
....:     for i in range(N):
....:         s += f_typed(a + i * dx)
....:     return s * dx
....:
....: cpdef np.ndarray[double] apply_integrate_f(np.ndarray col_a, np.ndarray col_b, np.ndarray col_N):
....:     assert (col_a.dtype == np.float and col_b.dtype == np.float and col_N.dtype == np.int)
....:     cdef Py_ssize_t i, n = len(col_N)
....:     assert (len(col_a) == len(col_b) == n)
....:     cdef np.ndarray[double] res = np.empty(n)
....:     for i in range(len(col_a)):
....:         res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
....:     return res
```

The implementation is simple, it creates an array of zeros and loops over the rows, applying our integrate_f_typed, and putting this in the zeros array.

Warning: In 0.13.0 since Series has internally been refactored to no longer sub-class ndarray but instead subclass NDFrame, you can not pass a Series directly as a ndarray typed parameter to a cython function. Instead pass the actual ndarray using the .values attribute of the Series.

Prior to 0.13.0
```
apply_integrate_f(df['a'], df['b'], df['N'])
```

Use .values to get the underlying ndarray
```
apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
```

Note: Loops like this would be extremely slow in python, but in Cython looping over numpy arrays is fast.

```
In [4]: %timeit apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
1000 loops, best of 3: 1.25 ms per loop
```
We’ve gotten another big improvement. Let’s check again where the time is spent:

```
In [11]: %prun -l 4 apply_integrate_f(df['a'].values, df['b'].values, df['N'].values)
```

```
208 function calls in 0.002 seconds
Ordered by: internal time
List reduced from 53 to 4 due to restriction <4>
```

```
nrcalls   tottime    percall  cumtime    percall  filename:lineno(function)
          1   0.002  0.002  0.002  0.002   _cython_magic_
          3   0.000  0.000  0.000  0.000    internals.py:4031(__init__)  
          9   0.000  0.000  0.000  0.000    generic.py:2746(__setattr__)  
          3   0.000  0.000  0.000  0.000    internals.py:3565(iget)
```

As one might expect, the majority of the time is now spent in `apply_integrate_f`, so if we wanted to make anymore efficiencies we must continue to concentrate our efforts here.

More advanced techniques

There is still hope for improvement. Here’s an example of using some more advanced cython techniques:

```
In [12]: %%cython
    ....: import cython
    ....: import numpy as np
    ....: import numpy as np
    ....: cdef double f_typed(double x) except 0:
    ....:     return x * (x - 1)
    ....: cpdef double integrate_f_typed(double a, double b, int N):
    ....:     cdef int i
    ....:     cdef double s, dx
    ....:     s = 0
    ....:     dx = (b - a) / N
    ....:     for i in range(N):
    ....:         s += f_typed(a + i * dx)
    ....:     return s * dx
    ....: @cython.boundscheck(False)
    ....: @cython.wraparound(False)
    ....:     cdef int i, n = len(col_N)
    ....:     assert len(col_a) == len(col_b) == n
    ....:     cdef np.ndarray[double] res = np.empty(n)
    ....:     for i in range(n):
    ....:         res[i] = integrate_f_typed(col_a[i], col_b[i], col_N[i])
    ....:     return res
```

```
In [4]: %timeit apply_integrate_f_wrap(df['a'].values, df['b'].values, df['N'].values)
```

```
1000 loops, best of 3: 987 us per loop
```

Even faster, with the caveat that a bug in our cython code (an off-by-one error, for example) might cause a segfault because memory access isn’t checked.
Using numba

A recent alternative to statically compiling cython code, is to use a *dynamic jit-compiler*, numba.

Numba gives you the power to speed up your applications with high performance functions written directly in Python. With a few annotations, array-oriented and math-heavy Python code can be just-in-time compiled to native machine instructions, similar in performance to C, C++ and Fortran, without having to switch languages or Python interpreters.

Numba works by generating optimized machine code using the LLVM compiler infrastructure at import time, runtime, or statically (using the included pycc tool). Numba supports compilation of Python to run on either CPU or GPU hardware, and is designed to integrate with the Python scientific software stack.

Note: You will need to install numba. This is easy with conda, by using: conda install numba, see installing using miniconda.

Note: As of numba version 0.20, pandas objects cannot be passed directly to numba-compiled functions. Instead, one must pass the numpy array underlying the pandas object to the numba-compiled function as demonstrated below.

Jit

Using numba to just-in-time compile your code. We simply take the plain python code from above and annotate with the @jit decorator.

```python
import numba

@numba.jit
def f_plain(x):
    return x * (x - 1)

@numba.jit
def integrate_f_numba(a, b, N):
    s = 0
    dx = (b - a) / N
    for i in range(N):
        s += f_plain(a + i * dx)
    return s * dx

@numba.jit
def apply_integrate_f_numba(col_a, col_b, col_N):
    n = len(col_N)
    result = np.empty(n, dtype='float64')
    assert len(col_a) == len(col_b) == n
    for i in range(n):
        result[i] = integrate_f_numba(col_a[i], col_b[i], col_N[i])
    return result

@numba.jit
def compute_numba(df):
    result = apply_integrate_f_numba(df['a'].values, df['b'].values, df['N'].values)
    return pd.Series(result, index=df.index, name='result')
```

Note that we directly pass numpy arrays to the numba function. compute_numba is just a wrapper that provides a nicer interface by passing/returning pandas objects.
Vectorize

`numba` can also be used to write vectorized functions that do not require the user to explicitly loop over the observations of a vector; a vectorized function will be applied to each row automatically. Consider the following toy example of doubling each observation:

```python
import numba

def double_every_value_nonumba(x):
    return x*2

@numba.vectorize
def double_every_value_withnumba(x):
    return x*2

# Custom function without numba
In [5]: %timeit df['col1_doubled'] = df.a.apply(double_every_value_nonumba)
1000 loops, best of 3: 797 us per loop

# Standard implementation (faster than a custom function)
In [6]: %timeit df['col1_doubled'] = df.a*2
1000 loops, best of 3: 233 us per loop

# Custom function with numba
In [7]: %timeit df['col1_doubled'] = double_every_value_withnumba(df.a.values)
1000 loops, best of 3: 145 us per loop
```

Caveats

Note: `numba` will execute on any function, but can only accelerate certain classes of functions.

`numba` is best at accelerating functions that apply numerical functions to numpy arrays. When passed a function that only uses operations it knows how to accelerate, it will execute in `nopython` mode.

If `numba` is passed a function that includes something it doesn’t know how to work with – a category that currently includes sets, lists, dictionaries, or string functions – it will revert to `object` mode. In `object` mode, `numba` will execute but your code will not speed up significantly. If you would prefer that `numba` throw an error if it cannot compile a function in a way that speeds up your code, pass `numba` the argument `nopython=True` (e.g. `@numba.jit(nopython=True)`). For more on troubleshooting `numba` modes, see the `numba` troubleshooting page.

Read more in the `numba` docs.

Expression Evaluation via `eval()` (Experimental)

New in version 0.13.
The top-level function `pandas.eval()` implements expression evaluation of `Series` and `DataFrame` objects.

Note: To benefit from using `eval()` you need to install `numexpr`. See the recommended dependencies section for more details.

The point of using `eval()` for expression evaluation rather than plain Python is two-fold: 1) large `DataFrame` objects are evaluated more efficiently and 2) large arithmetic and boolean expressions are evaluated all at once by the underlying engine (by default `numexpr` is used for evaluation).

Note: You should not use `eval()` for simple expressions or for expressions involving small DataFrames. In fact, `eval()` is many orders of magnitude slower for smaller expressions/objects than plain ol' Python. A good rule of thumb is to only use `eval()` when you have a `DataFrame` with more than 10,000 rows.

`eval()` supports all arithmetic expressions supported by the engine in addition to some extensions available only in pandas.

Note: The larger the frame and the larger the expression the more speedup you will see from using `eval()`.

Supported Syntax

These operations are supported by `pandas.eval()`:

- Arithmetic operations except for the left shift (`<<`) and right shift (`>>`) operators, e.g., `df + 2 * pi / s ** 4 % 42 - the_golden_ratio`
- Comparison operations, including chained comparisons, e.g., `2 < df < df2`
- Boolean operations, e.g., `df < df2 and df3 < df4 or not df_bool`
- List and tuple literals, e.g., `[1,2] or (1,2)`
- Attribute access, e.g., `df.a`
- Subscript expressions, e.g., `df[0]`
- Simple variable evaluation, e.g., `pd.eval('df')` (this is not very useful)
- Math functions, `sin, cos, exp, log, expm1, log1p, sqrt, sinh, cosh, tanh, arcsin, arccos, arctan, arccosh, arcsinh, arctanh, abs and arctan2`.

This Python syntax is **not** allowed:

- Expressions
 - Function calls other than math functions.
 - `is/is not` operations
 - `if` expressions
 - `lambda` expressions
 - list/set/dict comprehensions
 - Literal dict and set expressions
 - `yield` expressions
 - Generator expressions
– Boolean expressions consisting of only scalar values

• Statements
 – Neither simple nor compound statements are allowed. This includes things like `for`, `while`, and `if`.

eval() Examples

`pandas.eval()` works well with expressions containing large arrays.

First let’s create a few decent-sized arrays to play with:

```
In [13]: nrows, ncols = 20000, 100
In [14]: df1, df2, df3, df4 = [pd.DataFrame(np.random.randn(nrows, ncols)) for _ in range(4)]
```

Now let’s compare adding them together using plain ol’ Python versus `eval()`:

```
In [15]: %timeit df1 + df2 + df3 + df4
   10 loops, best of 3: 24.6 ms per loop
In [16]: %timeit pd.eval('df1 + df2 + df3 + df4')
   100 loops, best of 3: 8.36 ms per loop
```

Now let’s do the same thing but with comparisons:

```
In [17]: %timeit (df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)
   10 loops, best of 3: 30.9 ms per loop
In [18]: %timeit pd.eval('(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)')
   100 loops, best of 3: 16.4 ms per loop
```

`eval()` also works with unaligned pandas objects:

```
In [19]: s = pd.Series(np.random.randn(50))
In [20]: %timeit df1 + df2 + df3 + df4 + s
   10 loops, best of 3: 38.4 ms per loop
In [21]: %timeit pd.eval('df1 + df2 + df3 + df4 + s')
   100 loops, best of 3: 9.31 ms per loop
```

Note: Operations such as

```
1 and 2  # would parse to 1 & 2, but should evaluate to 2
3 or 4   # would parse to 3 | 4, but should evaluate to 3
~1       # this is okay, but slower when using eval
```

should be performed in Python. An exception will be raised if you try to perform any boolean/bitwise operations with scalar operands that are not of type `bool` or `np.bool_`. Again, you should perform these kinds of operations in plain Python.
The `DataFrame.eval` method (Experimental)

New in version 0.13.

In addition to the top level `pandas.eval()` function you can also evaluate an expression in the “context” of a `DataFrame`.

```python
In [22]: df = pd.DataFrame(np.random.randn(5, 2), columns=['a', 'b'])
In [23]: df.eval('a + b')
Out[23]:
   0   1
0 -0.246747
1  0.867786
2 -1.626063
3 -1.134978
4 -1.027798
```

Any expression that is a valid `pandas.eval()` expression is also a valid `DataFrame.eval()` expression, with the added benefit that you don’t have to prefix the name of the `DataFrame` to the column(s) you’re interested in evaluating.

In addition, you can perform assignment of columns within an expression. This allows for formulaic evaluation. The assignment target can be a new column name or an existing column name, and it must be a valid Python identifier.

New in version 0.18.0.

The `inplace` keyword determines whether this assignment will performed on the original `DataFrame` or return a copy with the new column.

Warning: For backwards compatibility, `inplace` defaults to `True` if not specified. This will change in a future version of pandas - if your code depends on an inplace assignment you should update to explicitly set `inplace=True`.

```python
In [24]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))
In [25]: df.eval('c = a + b', inplace=True)
In [26]: df.eval('d = a + b + c', inplace=True)
In [27]: df.eval('a = 1', inplace=True)
In [28]: df
Out[28]:
   a  b  c  d
0  0  5  5 10
1  1  6  7 14
2  2  7  9 18
3  3  8 11 22
4  4  9 13 26
```

When `inplace` is set to `False`, a copy of the `DataFrame` with the new or modified columns is returned and the original frame is unchanged.

```python
In [29]: df
Out[29]:
   a  b  c  d
```

Chapter 27. Enhancing Performance
In [30]: df.eval('e = a - c', inplace=False)
Out[30]:
 a b c d e
0 1 5 5 10 -4
1 1 6 7 14 -6
2 1 7 9 18 -8
3 1 8 11 22 -10
4 1 9 13 26 -12

In [31]: df
Out[31]:
 a b c d
0 1 5 5 10
1 1 6 7 14
2 1 7 9 18
3 1 8 11 22
4 1 9 13 26

New in version 0.18.0.

As a convenience, multiple assignments can be performed by using a multi-line string.

In [32]: df.eval('''
....: c = a + b
....: d = a + b + c
....: a = 1''', inplace=False)
.....:
Out[32]:
 a b c d
0 1 5 6 12
1 1 6 7 14
2 1 7 8 16
3 1 8 9 18
4 1 9 10 20

The equivalent in standard Python would be

In [33]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))
In [34]: df['c'] = df.a + df.b
In [35]: df['d'] = df.a + df.b + df.c
In [36]: df['a'] = 1
In [37]: df
Out[37]:
 a b c d
0 1 5 5 10
1 1 6 7 14
2 1 7 9 18
3 1 8 11 22
New in version 0.18.0.
The `query` method gained the `inplace` keyword which determines whether the query modifies the original frame.

```python
In [38]: df = pd.DataFrame(dict(a=range(5), b=range(5, 10)))
In [39]: df.query('a > 2')
Out[39]:
   a  b
0  3  3
1  4  4
In [40]: df.query('a > 2', inplace=True)
In [41]: df
Out[41]:
   a  b
0  3  3
1  4  4
```

Warning: Unlike with `eval`, the default value for `inplace` for `query` is `False`. This is consistent with prior versions of pandas.

Local Variables

In pandas version 0.14 the local variable API has changed. In pandas 0.13.x, you could refer to local variables the same way you would in standard Python. For example,

```python
df = pd.DataFrame(np.random.randn(5, 2), columns=['a', 'b'])
newcol = np.random.randn(len(df))
df.eval('b + newcol')
```

```
UndefinedVariableError: name 'newcol' is not defined
```

As you can see from the exception generated, this syntax is no longer allowed. You must *explicitly reference* any local variable that you want to use in an expression by placing the `@` character in front of the name. For example,

```python
In [42]: df = pd.DataFrame(np.random.randn(5, 2), columns=list('ab'))
In [43]: newcol = np.random.randn(len(df))
In [44]: df.eval('b + @newcol')
Out[44]:
   b
0 -0.173926
1  2.493083
2 -0.881831
3 -0.691045
4  1.334703
dtype: float64
In [45]: df.query('b < @newcol')
Out[45]:
    a  b
0  0.590998 -0.794776
1  0.861095  0.205071
2 -0.293756 -0.386757
3  0.481741 -0.859259
4  0.024727  0.595712
```
If you don’t prefix the local variable with @, pandas will raise an exception telling you the variable is undefined.

When using `DataFrame.eval()` and `DataFrame.query()`, this allows you to have a local variable and a DataFrame column with the same name in an expression.

```
In [46]: a = np.random.randn()
In [47]: df.query('@a < a')
Out[47]:
   a   b
0 0.863987 -0.115998
In [48]: df.loc[a < df.a]  # same as the previous expression
Out[48]:
   a   b
0 0.863987 -0.115998
```

With `pandas.eval()` you cannot use the @ prefix at all, because it isn’t defined in that context. Pandas will let you know this if you try to use @ in a top-level call to `pandas.eval()`. For example,

```
In [49]: a, b = 1, 2
In [50]: pd.eval('@a + b')
File "<string>", line unknown
SyntaxError: The '@' prefix is not allowed in top-level eval calls, please refer to your variables by name without the '@' prefix
```

In this case, you should simply refer to the variables like you would in standard Python.

```
In [51]: pd.eval('a + b')
Out[51]: 3
```

pandas.eval() Parsers

There are two different parsers and two different engines you can use as the backend.

The default 'pandas' parser allows a more intuitive syntax for expressing query-like operations (comparisons, conjunctions and disjunctions). In particular, the precedence of the & and | operators is made equal to the precedence of the corresponding boolean operations and or or.

For example, the above conjunction can be written without parentheses. Alternatively, you can use the 'python' parser to enforce strict Python semantics.

```
In [52]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'
In [53]: x = pd.eval(expr, parser='python')
In [54]: expr_no_parens = 'df1 > 0 & df2 > 0 & df3 > 0 & df4 > 0'
In [55]: y = pd.eval(expr_no_parens, parser='pandas')
In [56]: np.all(x == y)
Out[56]: True
```
The same expression can be “anded” together with the word `and` as well:

```python
In [57]: expr = '(df1 > 0) & (df2 > 0) & (df3 > 0) & (df4 > 0)'
In [58]: x = pd.eval(expr, parser='python')
In [59]: expr_with_ands = 'df1 > 0 and df2 > 0 and df3 > 0 and df4 > 0'
In [60]: y = pd.eval(expr_with_ands, parser='pandas')
In [61]: np.all(x == y)
Out[61]: True
```

The `and` and `or` operators here have the same precedence that they would in vanilla Python.

pandas.eval() Backends

There’s also the option to make `eval()` operate identical to plain ol’ Python.

Note: Using the `python` engine is generally not useful, except for testing other evaluation engines against it. You will achieve no performance benefits using `eval()` with engine='python' and in fact may incur a performance hit.

You can see this by using `pandas.eval()` with the `python` engine. It is a bit slower (not by much) than evaluating the same expression in Python:

```python
In [62]: %timeit df1 + df2 + df3 + df4
10 loops, best of 3: 24.2 ms per loop

In [63]: %timeit pd.eval('df1 + df2 + df3 + df4', engine='python')
10 loops, best of 3: 25.2 ms per loop
```

pandas.eval() Performance

`eval()` is intended to speed up certain kinds of operations. In particular, those operations involving complex expressions with large `DataFrame/Series` objects should see a significant performance benefit. Here is a plot showing the running time of `pandas.eval()` as function of the size of the frame involved in the computation. The two lines are two different engines.
Note: Operations with smallish objects (around 15k-20k rows) are faster using plain Python:

This plot was created using a DataFrame with 3 columns each containing floating point values generated using numpy.random.randn().

Technical Minutia Regarding Expression Evaluation

Expressions that would result in an object dtype or involve datetime operations (because of NaT) must be evaluated in Python space. The main reason for this behavior is to maintain backwards compatibility with versions of numpy < 1.7. In those versions of numpy a call to ndarray.astype(str) will truncate any strings that are more than 60 characters in length. Second, we can’t pass object arrays to numexpr thus string comparisons must be evaluated in Python space.

The upshot is that this only applies to object-dtype’d expressions. So, if you have an expression—for example
the numeric part of the comparison (nums == 1) will be evaluated by numexpr.

In general, `DataFrame.query()`/`pandas.eval()` will evaluate the subexpressions that can be evaluated by numexpr and those that must be evaluated in Python space transparently to the user. This is done by inferring the result type of an expression from its arguments and operators.
Note: The SparsePanel class has been removed in 0.19.0

We have implemented “sparse” versions of Series and DataFrame. These are not sparse in the typical “mostly 0”. Rather, you can view these objects as being “compressed” where any data matching a specific value (NaN / missing value, though any value can be chosen) is omitted. A special SparseIndex object tracks where data has been “sparsified”. This will make much more sense in an example. All of the standard pandas data structures have a to_sparse method:

```
In [1]: ts = pd.Series(randn(10))
In [2]: ts[2:-2] = np.nan
In [3]: sts = ts.to_sparse()
In [4]: sts
Out[4]:
0   0.469112
1  -0.282863
2   NaN
3   NaN
4   NaN
5   NaN
6   NaN
7   NaN
8  -0.861849
9  -2.104569
dtype: float64
BlockIndex
Block locations: array([0, 8], dtype=int32)
Block lengths: array([2, 2], dtype=int32)
```

The `to_sparse` method takes a kind argument (for the sparse index, see below) and a fill_value. So if we had a mostly zero Series, we could convert it to sparse with `fill_value=0`:

```
In [5]: ts.fillna(0).to_sparse(fill_value=0)
Out[5]:
0   0.469112
1  -0.282863
2   0.000000
3   0.000000
4   0.000000
5   0.000000
```
The sparse objects exist for memory efficiency reasons. Suppose you had a large, mostly NA DataFrame:

```python
In [6]: df = pd.DataFrame(randn(10000, 4))
In [7]: df.ix[:9998] = np.nan
In [8]: sdf = df.to_sparse()
In [9]: sdf
Out[9]:
   0   1   2   3
0  NaN NaN NaN NaN
1  NaN NaN NaN NaN
2  NaN NaN NaN NaN
3  NaN NaN NaN NaN
4  NaN NaN NaN NaN
5  NaN NaN NaN NaN
6  NaN NaN NaN NaN
..  ... ...  ...
9993 NaN NaN NaN NaN
9994 NaN NaN NaN NaN
9995 NaN NaN NaN NaN
9996 NaN NaN NaN NaN
9997 NaN NaN NaN NaN
9998 NaN NaN NaN NaN
9999 0.280249 -1.648493 1.490865 -0.890819
[10000 rows x 4 columns]
```

As you can see, the density (% of values that have not been “compressed”) is extremely low. This sparse object takes up much less memory on disk (pickled) and in the Python interpreter. Functionally, their behavior should be nearly identical to their dense counterparts.

Any sparse object can be converted back to the standard dense form by calling `to_dense`:

```python
In [10]: sdf.density
Out[10]: 0.0001
```

```python
In [11]: sts.to_dense()
Out[11]:
   0   1   2   3
0  0.469112  NaN  NaN  NaN
1 -0.282863  NaN  NaN  NaN
2  NaN  NaN  NaN  NaN
3  NaN  NaN  NaN  NaN
4  NaN  NaN  NaN  NaN
5  NaN  NaN  NaN  NaN
6  NaN  NaN  NaN  NaN
7  NaN  NaN  NaN  NaN
8 -0.861849  NaN  NaN  NaN
```

1028 Chapter 28. Sparse data structures
SparseArray is the base layer for all of the sparse indexed data structures. It is a 1-dimensional ndarray-like object storing only values distinct from the fill_value:

```python
In [12]: arr = np.random.randn(10)
In [14]: sparr = pd.SparseArray(arr)
In [15]: sparr
Out[15]:
[-1.95566352972, -1.6588664276, nan, nan, nan, 1.15893288864, 0.145297113733, nan, 0.
   ˓→606027190513, 1.33421134013]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9], dtype=int32)
```

Like the indexed objects (SparseSeries, SparseDataFrame), a SparseArray can be converted back to a regular ndarray by calling `to_dense`:

```python
In [16]: sparr.to_dense()
Out[16]:
array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453, nan, 0.606 , 1.3342])
```

SparseList

The SparseList class has been deprecated and will be removed in a future version. See the docs of a previous version for documentation on SparseList.

SparseIndex objects

Two kinds of SparseIndex are implemented, block and integer. We recommend using block as it’s more memory efficient. The integer format keeps an arrays of all of the locations where the data are not equal to the fill value. The block format tracks only the locations and sizes of blocks of data.

Sparse Dtypes

Sparse data should have the same dtype as its dense representation. Currently, float64, int64 and bool dtypes are supported. Depending on the original dtype, fill_value default changes:

- float64: np.nan
- int64: 0
In [17]: s = pd.Series([1, np.nan, np.nan])

In [18]: s
Out[18]:
0 1.0
1 NaN
2 NaN
dtype: float64

In [19]: s.to_sparse()
Out[19]:
0 1.0
1 NaN
2 NaN
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [20]: s = pd.Series([1, 0, 0])

In [21]: s
Out[21]:
0 1
1 0
2 0
dtype: int64

In [22]: s.to_sparse()
Out[22]:
0 1
1 0
2 0
dtype: int64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [23]: s = pd.Series([True, False, True])

In [24]: s
Out[24]:
0 True
1 False
2 True
dtype: bool

In [25]: s.to_sparse()
Out[25]:
0 True
1 False
2 True
dtype: bool
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 1], dtype=int32)
You can change the dtype using `.astype()`, the result is also sparse. Note that `.astype()` also affects to the `fill_value` to keep its dense representation.

```python
In [26]: s = pd.Series([1, 0, 0, 0, 0])

In [27]: s
Out[27]:
   0   1
   1   0
   2   0
   3   0
   4   0
dtype: int64

In [28]: ss = s.to_sparse()

In [29]: ss
Out[29]:
   0   1
   1   0
   2   0
   3   0
   4   0
dtype: int64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [30]: ss.astype(np.float64)
Out[30]:
   0   1.0
   1   0.0
   2   0.0
   3   0.0
   4   0.0
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)
```

It raises if any value cannot be coerced to specified dtype.

```python
In [1]: ss = pd.Series([1, np.nan, np.nan]).to_sparse()
   0   1.0
   1   NaN
   2   NaN
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([1], dtype=int32)

In [2]: ss.astype(np.int64)
ValueError: unable to coerce current fill_value nan to int64 dtype
```

28.4. Sparse Dtypes
Sparse Calculation

You can apply NumPy *ufuncs* to `SparseArray` and get a `SparseArray` as a result.

```
In [31]: arr = pd.SparseArray([1., np.nan, np.nan, -2., np.nan])
In [32]: np.abs(arr)
Out[32]:
[1.0, nan, nan, 2.0, nan]
Fill: nan
IntIndex
Indices: array([0, 3], dtype=int32)
```

The *ufunc* is also applied to `fill_value`. This is needed to get the correct dense result.

```
In [33]: arr = pd.SparseArray([1., -1, -1, -2., -1], fill_value=-1)
In [34]: np.abs(arr)
Out[34]:
[1.0, 1.0, 1.0, 2.0, 1.0]
Fill: 1
IntIndex
Indices: array([0, 3], dtype=int32)
```

Interaction with scipy.sparse

Experimental api to transform between sparse pandas and scipy.sparse structures.

A `SparseSeries.to_coo()` method is implemented for transforming a `SparseSeries` indexed by a `MultiIndex` to a scipy.sparse.coo_matrix.

The method requires a `MultiIndex` with two or more levels.

```
In [36]: s = pd.Series([3.0, np.nan, 1.0, 3.0, np.nan, np.nan])
In [37]: s.index = pd.MultiIndex.from_tuples([(1, 2, 'a', 0),
                                           (1, 2, 'a', 1),
                                           (1, 1, 'b', 0),
                                           (1, 1, 'b', 1),
                                           (2, 1, 'b', 0),
                                           (2, 1, 'b', 1)],
                                           names=['A', 'B', 'C', 'D'])
In [38]: s
Out[38]:
      A  B  C  D
    1  2  a  0   3.0
        1   NaN
    1  b  0   1.0
        1   3.0
    2  1  b  0   NaN
        1   NaN
```
SparseSeries

In [39]: ss = s.to_sparse()

In [40]: ss
Out[40]:
A B C D
1 2 a 0 3.0
 1 NaN
1 b 0 1.0
 1 3.0
2 1 b 0 NaN
 1 NaN
dtype: float64
BlockIndex
Block locations: array([0, 2], dtype=int32)
Block lengths: array([1, 2], dtype=int32)

In the example below, we transform the SparseSeries to a sparse representation of a 2-d array by specifying that the first and second MultiIndex levels define labels for the rows and the third and fourth levels define labels for the columns. We also specify that the column and row labels should be sorted in the final sparse representation.

In [41]: A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
.....: column_levels=['C', 'D'],
.....: sort_labels=True)
.....:

In [42]: A
Out[42]:
<3x4 sparse matrix of type '<type 'numpy.float64'>'
 with 3 stored elements in COOrdinate format>

In [43]: A.todense()
Out[43]:
matrix([[0., 0., 1., 3.],
 [3., 0., 0., 0.],
 [0., 0., 0., 0.]])

In [44]: rows
Out[44]: [(1, 1), (1, 2), (2, 1)]

In [45]: columns
Out[45]: [('a', 0), ('a', 1), ('b', 0), ('b', 1)]

Specifying different row and column labels (and not sorting them) yields a different sparse matrix:

In [46]: A, rows, columns = ss.to_coo(row_levels=['A', 'B', 'C'],
.....: column_levels=['D'],
.....: sort_labels=False)
.....:

In [47]: A
Out[47]:
<3x2 sparse matrix of type '<type 'numpy.float64'>'
 with 3 stored elements in COOrdinate format>

In [48]: A.todense()
A convenience method `SparseSeries.from_coo()` is implemented for creating a `SparseSeries` from a `scipy.sparse.coo_matrix`.

```python
In [51]: from scipy import sparse

In [52]: A = sparse.coo_matrix(((3.0, 1.0, 2.0), ([1, 0, 0], [0, 2, 3])), shape=(3, 4))

In [53]: A
Out[53]:
<3x4 sparse matrix of type '<type 'numpy.float64'>'
with 3 stored elements in COOrdinate format>

In [54]: A.todense()
Out[54]:
matrix([[ 0., 0., 1., 2.],
        [ 3., 0., 0., 0.],
        [ 0., 0., 0., 0.]])
```

The default behaviour (with `dense_index=False`) simply returns a `SparseSeries` containing only the non-null entries.

```python
In [55]: ss = pd.SparseSeries.from_coo(A)

In [56]: ss
Out[56]:
0 2 1.0
3 2.0
1 0 3.0
dtype: float64
```

Specifying `dense_index=True` will result in an index that is the Cartesian product of the row and columns coordinates of the matrix. Note that this will consume a significant amount of memory (relative to `dense_index=False`) if the sparse matrix is large (and sparse) enough.

```python
In [57]: ss_dense = pd.SparseSeries.from_coo(A, dense_index=True)

In [58]: ss_dense
Out[58]:
0 0 NaN
1 1 NaN
2 2 1.0
3 3 2.0
```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NaN</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NaN</td>
<td></td>
</tr>
</tbody>
</table>

dtype: float64
BlockIndex
Block locations: array([2], dtype=int32)
Block lengths: array([3], dtype=int32)
Using If/Truth Statements with pandas

pandas follows the numpy convention of raising an error when you try to convert something to a `bool`. This happens in a `if` or when using the boolean operations, `and`, `or`, or `not`. It is not clear what the result of

```python
>>> if pd.Series([False, True, False]):
    ...
```

should be. Should it be `True` because it’s not zero-length? `False` because there are `False` values? It is unclear, so instead, pandas raises a `ValueError`:

```python
>>> if pd.Series([False, True, False]):
    print("I was true")
Traceback
    ...
ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
```

If you see that, you need to explicitly choose what you want to do with it (e.g., use `any()`, `all()` or `empty`). or, you might want to compare if the pandas object is `None`

```python
>>> if pd.Series([False, True, False]) is not None:
    print("I was not None")
```

or return if any value is `True`.

```python
>>> if pd.Series([False, True, False]).any():
    print("I am any")
```

To evaluate single-element pandas objects in a boolean context, use the method `.bool()`:

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>pd.Series([True]).bool()</code></td>
</tr>
<tr>
<td>2</td>
<td><code>pd.Series([False]).bool()</code></td>
</tr>
<tr>
<td>3</td>
<td><code>pd.DataFrame([[True]]).bool()</code></td>
</tr>
<tr>
<td>4</td>
<td><code>pd.DataFrame([[False]]).bool()</code></td>
</tr>
</tbody>
</table>
Bitwise boolean

Bitwise boolean operators like `==` and `!=` will return a boolean `Series`, which is almost always what you want anyways.

```python
>>> s = pd.Series(range(5))
>>> s == 4
0   False
1   False
2   False
3   False
4    True
dtype: bool
```

See `boolean comparisons` for more examples.

Using the `in` operator

Using the Python `in` operator on a Series tests for membership in the index, not membership among the values.

If this behavior is surprising, keep in mind that using `in` on a Python dictionary tests keys, not values, and Series are dict-like. To test for membership in the values, use the method `isin()`:

For DataFrames, likewise, `in` applies to the column axis, testing for membership in the list of column names.

NaN, Integer NA values and NA type promotions

Choice of NA representation

For lack of NA (missing) support from the ground up in NumPy and Python in general, we were given the difficult choice between either

- A masked array solution: an array of data and an array of boolean values indicating whether a value
- Using a special sentinel value, bit pattern, or set of sentinel values to denote NA across the dtypes

For many reasons we chose the latter. After years of production use it has proven, at least in my opinion, to be the best decision given the state of affairs in NumPy and Python in general. The special value `NaN` (Not-A-Number) is used everywhere as the NA value, and there are API functions `isnull` and `notnull` which can be used across the dtypes to detect NA values.

However, it comes with it a couple of trade-offs which I most certainly have not ignored.

Support for integer NA

In the absence of high performance NA support being built into NumPy from the ground up, the primary casualty is the ability to represent NAs in integer arrays. For example:

```python
In [5]: s = pd.Series([1, 2, 3, 4, 5], index=list('abcde'))
In [6]: s
Out[6]:
a  1
b  2
c  3
```
This trade-off is made largely for memory and performance reasons, and also so that the resulting Series continues to be “numeric”. One possibility is to use `dtype=object` arrays instead.

NA type promotions

When introducing NAs into an existing Series or DataFrame via `reindex` or some other means, boolean and integer types will be promoted to a different `dtype` in order to store the NAs. These are summarized by this table:

<table>
<thead>
<tr>
<th>Typeclass</th>
<th>Promotion dtype for storing NAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>floating</td>
<td>no change</td>
</tr>
<tr>
<td>object</td>
<td>no change</td>
</tr>
<tr>
<td>integer</td>
<td>cast to float64</td>
</tr>
<tr>
<td>boolean</td>
<td>cast to object</td>
</tr>
</tbody>
</table>

While this may seem like a heavy trade-off, I have found very few cases where this is an issue in practice. Some explanation for the motivation here in the next section.

Why not make NumPy like R?

Many people have suggested that NumPy should simply emulate the NA support present in the more domain-specific statistical programming language R. Part of the reason is the NumPy type hierarchy:

<table>
<thead>
<tr>
<th>Typeclass</th>
<th>Dtypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>numpy.floating</td>
<td>float16, float32, float64, float128</td>
</tr>
<tr>
<td>numpy.integer</td>
<td>int8, int16, int32, int64</td>
</tr>
<tr>
<td>numpy.unsignedinteger</td>
<td>uint8, uint16, uint32, uint64</td>
</tr>
<tr>
<td>numpy.object_</td>
<td>object_</td>
</tr>
<tr>
<td>numpy.bool_</td>
<td>bool_</td>
</tr>
<tr>
<td>numpy.character</td>
<td>string_, unicode_</td>
</tr>
</tbody>
</table>

The R language, by contrast, only has a handful of built-in data types: integer, numeric (floating-point), character, and boolean. NA types are implemented by reserving special bit patterns for each type to be used as the missing value. While doing this with the full NumPy type hierarchy would be possible, it would be a more substantial trade-off (especially for the 8- and 16-bit data types) and implementation undertaking.
An alternate approach is that of using masked arrays. A masked array is an array of data with an associated boolean
mask denoting whether each value should be considered *NA* or not. I am personally not in love with this approach as I
feel that overall it places a fairly heavy burden on the user and the library implementer. Additionally, it exacts a fairly
high performance cost when working with numerical data compared with the simple approach of using *NaN*. Thus,
I have chosen the Pythonic “practicality beats purity” approach and traded integer *NA* capability for a much simpler
approach of using a special value in float and object arrays to denote *NA*, and promoting integer arrays to floating when
NAs must be introduced.

Integer indexing

Label-based indexing with integer axis labels is a thorny topic. It has been discussed heavily on mailing lists and
among various members of the scientific Python community. In pandas, our general viewpoint is that labels matter
more than integer locations. Therefore, with an integer axis index *only* label-based indexing is possible with the
standard tools like `.ix`. The following code will generate exceptions:

```python
s = pd.Series(range(5))
s[-1]
df = pd.DataFrame(np.random.randn(5, 4))
df
df.ix[-2:]
```

This deliberate decision was made to prevent ambiguities and subtle bugs (many users reported finding bugs when the
API change was made to stop “falling back” on position-based indexing).

Label-based slicing conventions

Non-monotonic indexes require exact matches

If the index of a *Series* or *DataFrame* is monotonically increasing or decreasing, then the bounds of a label-based
slice can be outside the range of the index, much like slice indexing a normal Python list. Monotonicity of an index
can be tested with the `is_monotonic_increasing` and `is_monotonic_decreasing` attributes.

```
In [11]: df = pd.DataFrame(index=[2,3,3,4,5], columns=['data'], data=range(5))
In [12]: df.index.is_monotonic_increasing
Out[12]: True
# no rows 0 or 1, but still returns rows 2, 3 (both of them), and 4:
In [13]: df.loc[0:4, :]
Out[13]:
   data
2    0
3    1
3    2
4    3
# slice is are outside the index, so empty DataFrame is returned
In [14]: df.loc[13:15, :]
Out[14]:
Empty DataFrame
Columns: [data]
Index: []
```
On the other hand, if the index is not monotonic, then both slice bounds must be unique members of the index.

```python
In [15]: df = pd.DataFrame(index=[2,3,1,4,3,5], columns=['data'], data=range(6))
In [16]: df.index.is_monotonic_increasing
Out[16]: False

# OK because 2 and 4 are in the index
In [17]: df.loc[2:4, :]
Out[17]:
   data
2   0
3   1
1   2
4   3

# 0 is not in the index
In [9]: df.loc[0:4, :]
KeyError: 0

# 3 is not a unique label
In [11]: df.loc[2:3, :]
KeyError: 'Cannot get right slice bound for non-unique label: 3'
```

Endpoints are inclusive

Compared with standard Python sequence slicing in which the slice endpoint is not inclusive, label-based slicing in pandas is **inclusive**. The primary reason for this is that it is often not possible to easily determine the “successor” or next element after a particular label in an index. For example, consider the following Series:

```python
In [18]: s = pd.Series(np.random.randn(6), index=list('abcdef'))
In [19]: s
Out[19]:
   a   1.544821
   b  -1.708552
   c   1.545458
   d  -0.735738
   e  -0.649091
   f  -0.403878
dtype: float64

Suppose we wished to slice from c to e, using integers this would be

```python
In [20]: s[2:5]
Out[20]:
 c 1.545458
 d -0.735738
 e -0.649091
dtype: float64
```

However, if you only had c and e, determining the next element in the index can be somewhat complicated. For example, the following does not work:

```python
s.ix['c':'e'+1]
```
A very common use case is to limit a time series to start and end at two specific dates. To enable this, we made the design decision to make label-based slicing include both endpoints:

```python
In [21]: s.ix['c':'e']
Out[21]:
 c 1.545458
 d -0.735738
 e -0.649091
 dtype: float64
```

This is most definitely a “practicality beats purity” sort of thing, but it is something to watch out for if you expect label-based slicing to behave exactly in the way that standard Python integer slicing works.

## Miscellaneous indexing gotchas

### Reindex versus ix gotchas

Many users will find themselves using the `ix` indexing capabilities as a concise means of selecting data from a pandas object:

```python
In [22]: df = pd.DataFrame(np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=list('abcdef'))

In [23]: df
Out[23]:
 one two three four
 a -2.474932 0.975891 -0.204206 0.452707
 b 3.478418 -0.591538 -0.508560 0.047946
 c -0.170009 -1.615606 -0.894382 1.334681
 d -0.418002 -0.690649 0.128522 0.429260
 e 1.207515 -1.308877 -0.548792 -1.520879
 f 1.153696 0.609378 -0.825763 0.218223
```

```python
In [24]: df.ix[['b', 'c', 'e']]
Out[24]:
 one two three four
 b 3.478418 -0.591538 -0.508560 0.047946
 c -0.170009 -1.615606 -0.894382 1.334681
 e 1.207515 -1.308877 -0.548792 -1.520879
```

This is, of course, completely equivalent in this case to using the `reindex` method:

```python
In [25]: df.reindex(['b', 'c', 'e'])
Out[25]:
 one two three four
 b 3.478418 -0.591538 -0.508560 0.047946
 c -0.170009 -1.615606 -0.894382 1.334681
 e 1.207515 -1.308877 -0.548792 -1.520879
```

Some might conclude that `ix` and `reindex` are 100% equivalent based on this. This is indeed true except in the case of integer indexing. For example, the above operation could alternately have been expressed as:
If you pass \([1,2,4]\) to \texttt{reindex} you will get another thing entirely:

\begin{verbatim}
In [27]: df.reindex([1, 2, 4])
Out[27]:
   one  two  three  four
1   NaN  NaN  NaN  NaN
2   NaN  NaN  NaN  NaN
4   NaN  NaN  NaN  NaN
\end{verbatim}

So it’s important to remember that \texttt{reindex} is \textbf{strict label indexing only}. This can lead to some potentially surprising results in pathological cases where an index contains, say, both integers and strings:

\begin{verbatim}
In [28]: s = pd.Series([1, 2, 3], index=['a', 0, 1])
In [29]: s
Out[29]:
     a
0  1
1  2
dtype: int64
In [30]: s.ix[[0, 1]]
Out[30]:
     0
0  2
1  3
dtype: int64
In [31]: s.reindex([0, 1])
Out[31]:
     0
0  2
1  3
dtype: int64
\end{verbatim}

Because the index in this case does not contain solely integers, \texttt{ix} falls back on integer indexing. By contrast, \texttt{reindex} only looks for the values passed in the index, thus finding the integers 0 and 1. While it would be possible to insert some logic to check whether a passed sequence is all contained in the index, that logic would exact a very high cost in large data sets.

**Reindex potentially changes underlying Series dtype**

The use of \texttt{reindex_like} can potentially change the dtype of a \texttt{Series}.

\begin{verbatim}
In [32]: series = pd.Series([1, 2, 3])
In [33]: x = pd.Series([True])
In [34]: x.dtype
Out[34]: dtype('bool')
\end{verbatim}
This is because `reindex_like` silently inserts NaNs and the `dtype` changes accordingly. This can cause some issues when using numpy ufuncs such as `numpy.logical_and`.

See the [this old issue](https://github.com/pandas-dev/pandas/issues/1161) for a more detailed discussion.

### Parsing Dates from Text Files

When parsing multiple text file columns into a single date column, the new date column is prepended to the data and then `index_col` specification is indexed off of the new set of columns rather than the original ones:

```python
In [37]: print(open('tmp.csv').read())
KORD,19990127, 19:00:00, 18:56:00, 0.8100
KORD,19990127, 20:00:00, 19:56:00, -0.0100
KORD,19990127, 21:00:00, 20:56:00, -0.5900
KORD,19990127, 21:00:00, 21:18:00, -0.9900
KORD,19990127, 22:00:00, 21:56:00, -0.5900
KORD,19990127, 23:00:00, 22:56:00, -0.5900

In [38]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]}

In [39]: df = pd.read_csv('tmp.csv', header=None,
 parse_dates=date_spec,
 keep_date_col=True,
 index_col=0)

index_col=0 refers to the combined column "nominal" and not the original
first column of 'KORD' strings

In [40]: df
```
Differences with NumPy

For Series and DataFrame objects, \texttt{var} normalizes by N−1 to produce unbiased estimates of the sample variance, while NumPy’s \texttt{var} normalizes by N, which measures the variance of the sample. Note that \texttt{cov} normalizes by N−1 in both pandas and NumPy.

Thread-safety

As of pandas 0.11, pandas is not 100% thread safe. The known issues relate to the \texttt{DataFrame.copy} method. If you are doing a lot of copying of DataFrame objects shared among threads, we recommend holding locks inside the threads where the data copying occurs.

See this link for more information.

HTML Table Parsing

There are some versioning issues surrounding the libraries that are used to parse HTML tables in the top-level pandas io function \texttt{read_html}.

Issues with \texttt{lxml}

- **Benefits**
  - \texttt{lxml} is very fast
  - \texttt{lxml} requires Cython to install correctly.
- **Drawbacks**
  - \texttt{lxml} does not make any guarantees about the results of its parse \emph{unless} it is given strictly valid markup.
  - In light of the above, we have chosen to allow you, the user, to use the \texttt{lxml} backend, but this backend will use \texttt{html5lib} if \texttt{lxml} fails to parse
  - It is therefore \emph{highly recommended} that you install both \texttt{BeautifulSoup4} and \texttt{html5lib}, so that you will still get a valid result (provided everything else is valid) even if \texttt{lxml} fails.

Issues with \texttt{BeautifulSoup4} using \texttt{lxml} as a backend

- The above issues hold here as well since \texttt{BeautifulSoup4} is essentially just a wrapper around a parser backend.

Issues with \texttt{BeautifulSoup4} using \texttt{html5lib} as a backend

- **Benefits**
  - \texttt{html5lib} is far more lenient than \texttt{lxml} and consequently deals with real-life markup in a much saner way rather than just, e.g., dropping an element without notifying you.
  - \texttt{html5lib} generates valid HTML5 markup from invalid markup automatically. This is extremely important for parsing HTML tables, since it guarantees a valid document. However, that does NOT mean that it is “correct”, since the process of fixing markup does not have a single definition.
  - \texttt{html5lib} is pure Python and requires no additional build steps beyond its own installation.
- **Drawbacks**
  - The biggest drawback to using \texttt{html5lib} is that it is slow as molasses. However consider the fact that many tables on the web are not big enough for the parsing algorithm runtime to matter. It is more likely that the
bottleneck will be in the process of reading the raw text from the URL over the web, i.e., IO (input-output). For very large tables, this might not be true.

**Issues with using Anaconda**

- Anaconda ships with lxml version 3.2.0; the following workaround for Anaconda was successfully used to deal with the versioning issues surrounding lxml and BeautifulSoup4.

**Note:** Unless you have both:

- A strong restriction on the upper bound of the runtime of some code that incorporates read_html()
- Complete knowledge that the HTML you will be parsing will be 100% valid at all times

then you should install html5lib and things will work swimmingly without you having to muck around with conda. If you want the best of both worlds then install both html5lib and lxml. If you do install lxml then you need to perform the following commands to ensure that lxml will work correctly:

```
remove the included version
conda remove lxml

install the latest version of lxml
pip install 'git+git://github.com/lxml/lxml.git'

install the latest version of beautifulsoup4
pip install 'bzr+lp:beautifulsoup'
```

Note that you need bzf and git installed to perform the last two operations.

---

**Byte-Ordering Issues**

Occasionally you may have to deal with data that were created on a machine with a different byte order than the one on which you are running Python. A common symptom of this issue is an error like

```
Traceback...
ValueError: Big-endian buffer not supported on little-endian compiler
```

To deal with this issue you should convert the underlying NumPy array to the native system byte order before passing it to Series/DataFrame/Panel constructors using something similar to the following:

```
In [41]: x = np.array(list(range(10)), '>'i4') # big endian
In [42]: newx = x.byteswap().newbyteorder() # force native byteorder
In [43]: s = pd.Series(newx)
```

See the NumPy documentation on byte order for more details.
Updating your code to use rpy2 functions

In v0.16.0, the pandas.rpy module has been deprecated and users are pointed to the similar functionality in rpy2 itself (rpy2 >= 2.4).

Instead of importing `import pandas.rpy.common as com`, the following imports should be done to activate the pandas conversion support in rpy2:

```python
from rpy2.robjects import pandas2ri
pandas2ri.activate()
```

Converting data frames back and forth between rpy2 and pandas should be largely automated (no need to convert explicitly, it will be done on the fly in most rpy2 functions).

To convert explicitly, the functions are `pandas2ri.py2ri()` and `pandas2ri.ri2py()`. So these functions can be used to replace the existing functions in pandas:

```
• com.convert_to_r_dataframe(df) should be replaced with pandas2ri.py2ri(df)
• com.convert_robj(rdf) should be replaced with pandas2ri.ri2py(rdf)
```

Note: these functions are for the latest version (rpy2 2.5.x) and were called `pandas2ri.pandas2ri()` and `pandas2ri.ri2pandas()` previously.

Some of the other functionality in pandas.rpy can be replaced easily as well. For example to load R data as done with the load_data function, the current method:

```
df_iris = com.load_data('iris')
```

can be replaced with:

```python
from rpy2.robjects import r
r.data('iris')
df_iris = pandas2ri.ri2py(r[name])
```

The convert_to_r_matrix function can be replaced by the normal `pandas2ri.py2ri` to convert dataframes, with a subsequent call to `R as.matrix` function.
Warning: Not all conversion functions in rpy2 are working exactly the same as the current methods in pandas. If you experience problems or limitations in comparison to the ones in pandas, please report this at the issue tracker.

See also the documentation of the rpy2 project.

R interface with rpy2

If your computer has R and rpy2 (> 2.2) installed (which will be left to the reader), you will be able to leverage the below functionality. On Windows, doing this is quite an ordeal at the moment, but users on Unix-like systems should find it quite easy. rpy2 evolves in time, and is currently reaching its release 2.3, while the current interface is designed for the 2.2.x series. We recommend to use 2.2.x over other series unless you are prepared to fix parts of the code, yet the rpy2-2.3.0 introduces improvements such as a better R-Python bridge memory management layer so it might be a good idea to bite the bullet and submit patches for the few minor differences that need to be fixed.

```sh
if installing for the first time
hg clone http://bitbucket.org/lgautier/rpy2
cd rpy2
hg pull
gu update version_2.2.x
sudo python setup.py install
```

Note: To use R packages with this interface, you will need to install them inside R yourself. At the moment it cannot install them for you.

Once you have done installed R and rpy2, you should be able to import pandas.rpy.common without a hitch.

Transferring R data sets into Python

The load_data function retrieves an R data set and converts it to the appropriate pandas object (most likely a DataFrame):

```python
In [1]: import pandas.rpy.common as com

In [2]: infert = com.load_data('infert')

In [3]: infert.head()
```

<table>
<thead>
<tr>
<th>education</th>
<th>age</th>
<th>parity</th>
<th>induced</th>
<th>case</th>
<th>spontaneous</th>
<th>stratum</th>
<th>pooled.stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5yrs</td>
<td>26.0</td>
<td>6.0</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>0-5yrs</td>
<td>42.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>0-5yrs</td>
<td>39.0</td>
<td>6.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>3</td>
<td>4.0</td>
</tr>
<tr>
<td>0-5yrs</td>
<td>34.0</td>
<td>4.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>4</td>
<td>2.0</td>
</tr>
<tr>
<td>6-1lyrs</td>
<td>35.0</td>
<td>3.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>5</td>
<td>32.0</td>
</tr>
</tbody>
</table>

Converting DataFrames into R objects

New in version 0.8.
Starting from pandas 0.8, there is experimental support to convert DataFrames into the equivalent R object (that is, data.frame):

```python
In [4]: import pandas.rpy.common as com

In [5]: df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C':[7,8,9]},
 index=['one', 'two', 'three'])

In [6]: r_dataframe = com.convert_to_r_dataframe(df)

In [7]: print(type(r_dataframe))
<class 'rpy2.robjects.vectors.DataFrame'>

In [8]: print(r_dataframe)
 A B C
one 1 4 7
two 2 5 8
three 3 6 9
```

The DataFrame's index is stored as the rownames attribute of the data.frame instance.

You can also use convert_to_r_matrix to obtain a Matrix instance, but bear in mind that it will only work with homogeneously-typed DataFrames (as R matrices bear no information on the data type):

```python
In [9]: import pandas.rpy.common as com

In [10]: r_matrix = com.convert_to_r_matrix(df)

In [11]: print(type(r_matrix))
<class 'rpy2.robjects.vectors.Matrix'>

In [12]: print(r_matrix)
 A B C
one 1 4 7
two 2 5 8
three 3 6 9
```

### Calling R functions with pandas objects

### High-level interface to R estimators
Increasingly, packages are being built on top of pandas to address specific needs in data preparation, analysis and visualization. This is encouraging because it means pandas is not only helping users to handle their data tasks but also that it provides a better starting point for developers to build powerful and more focused data tools. The creation of libraries that complement pandas’ functionality also allows pandas development to remain focused around it’s original requirements.

This is an in-exhaustive list of projects that build on pandas in order to provide tools in the PyData space.

We’d like to make it easier for users to find these project, if you know of other substantial projects that you feel should be on this list, please let us know.

**Statistics and Machine Learning**

**Statsmodels**

Statsmodels is the prominent python “statistics and econometrics library” and it has a long-standing special relationship with pandas. Statsmodels provides powerful statistics, econometrics, analysis and modeling functionality that is out of pandas’ scope. Statsmodels leverages pandas objects as the underlying data container for computation.

**sklearn-pandas**

Use pandas DataFrames in your scikit-learn ML pipeline.

**Visualization**

**Bokeh**

Bokeh is a Python interactive visualization library for large datasets that natively uses the latest web technologies. Its goal is to provide elegant, concise construction of novel graphics in the style of Protovis/D3, while delivering high-performance interactivity over large data to thin clients.

**yhat/ggplot**

Hadley Wickham’s ggplot2 is a foundational exploratory visualization package for the R language. Based on “The Grammar of Graphics” it provides a powerful, declarative and extremely general way to generate bespoke plots of any kind of data. It’s really quite incredible. Various implementations to other languages are available, but a faithful
implementation for Python users has long been missing. Although still young (as of Jan-2014), the yhat/ggplot project has been progressing quickly in that direction.

**Seaborn**

Although pandas has quite a bit of “just plot it” functionality built-in, visualization and in particular statistical graphics is a vast field with a long tradition and lots of ground to cover. The Seaborn project builds on top of pandas and matplotlib to provide easy plotting of data which extends to more advanced types of plots then those offered by pandas.

**Vincent**

The Vincent project leverages Vega (that in turn, leverages d3) to create plots. Although functional, as of Summer 2016 the Vincent project has not been updated in over two years and is unlikely to receive further updates.

**IPython Vega**

Like Vincent, the IPython Vega project leverages Vega to create plots, but primarily targets the IPython Notebook environment.

**Plotly**

Plotly’s Python API enables interactive figures and web shareability. Maps, 2D, 3D, and live-streaming graphs are rendered with WebGL and D3.js. The library supports plotting directly from a pandas DataFrame and cloud-based collaboration. Users of matplotlib, ggplot for Python, and Seaborn can convert figures into interactive web-based plots. Plots can be drawn in IPython Notebooks, edited with R or MATLAB, modified in a GUI, or embedded in apps and dashboards. Plotly is free for unlimited sharing, and has cloud, offline, or on-premise accounts for private use.

**Pandas-Qt**

Spun off from the main pandas library, the Pandas-Qt library enables DataFrame visualization and manipulation in PyQt4 and PySide applications.

**IDE**

**IPython**

IPython is an interactive command shell and distributed computing environment. IPython Notebook is a web application for creating IPython notebooks. An IPython notebook is a JSON document containing an ordered list of input/output cells which can contain code, text, mathematics, plots and rich media. IPython notebooks can be converted to a number of open standard output formats (HTML, HTML presentation slides, LaTeX, PDF, ReStructuredText, Markdown, Python) through ‘Download As’ in the web interface and ipython nbconvert in a shell.

Pandas DataFrames implement _repr_html_ methods which are utilized by IPython Notebook for displaying (abbreviated) HTML tables. (Note: HTML tables may or may not be compatible with non-HTML IPython output formats.)
quantopian/qgrid

qgrid is “an interactive grid for sorting and filtering DataFrames in IPython Notebook” built with SlickGrid.

Spyder

Spyder is a cross-platform Qt-based open-source Python IDE with editing, testing, debugging, and introspection features. Spyder can now introspect and display Pandas DataFrames and show both “column wise min/max and global min/max coloring.”

API

pandas-datareader

pandas-datareader is a remote data access library for pandas. pandas.io from pandas < 0.17.0 is now refactored/split-off and importable from pandas_datareader (PyPI:pandas-datareader). Many/most of the supported APIs have at least a documentation paragraph in the pandas-datareader docs:

The following data feeds are available:

- Yahoo! Finance
- Google Finance
- FRED
- Fama/French
- World Bank
- OECD
- Eurostat
- EDGAR Index

quandl/Python

Quandl API for Python wraps the Quandl REST API to return Pandas DataFrames with timeseries indexes.

pydatastream

PyDatastream is a Python interface to the Thomson Dataworks Enterprise (DWE/Datastream) SOAP API to return indexed Pandas DataFrames or Panels with financial data. This package requires valid credentials for this API (non-free).

pandaSDMX

pandaSDMX is an extensible library to retrieve and acquire statistical data and metadata disseminated in SDMX 2.1. This standard is currently supported by the European statistics office (Eurostat) and the European Central Bank (ECB). Datasets may be returned as pandas Series or multi-indexed DataFrames.
fredapi

fredapi is a Python interface to the Federal Reserve Economic Data (FRED) provided by the Federal Reserve Bank of St. Louis. It works with both the FRED database and ALFRED database that contains point-in-time data (i.e. historic data revisions). fredapi provides a wrapper in python to the FRED HTTP API, and also provides several convenient methods for parsing and analyzing point-in-time data from ALFRED. fredapi makes use of pandas and returns data in a Series or DataFrame. This module requires a FRED API key that you can obtain for free on the FRED website.

Domain Specific

Geopandas

Geopandas extends pandas data objects to include geographic information which support geometric operations. If your work entails maps and geographical coordinates, and you love pandas, you should take a close look at Geopandas.

xarray

xarray brings the labeled data power of pandas to the physical sciences by providing N-dimensional variants of the core pandas data structures. It aims to provide a pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which pandas excels.

Out-of-core

Dask

Dask is a flexible parallel computing library for analytics. Dask allow a familiar DataFrame interface to out-of-core, parallel and distributed computing.

Blaze

Blaze provides a standard API for doing computations with various in-memory and on-disk backends: NumPy, Pandas, SQLAlchemy, MongoDB, PyTables, PySpark.

Odo

Odo provides a uniform API for moving data between different formats. It uses pandas own read_csv for CSV IO and leverages many existing packages such as PyTables, h5py, and pymongo to move data between non pandas formats. Its graph based approach is also extensible by end users for custom formats that may be too specific for the core of odo.
COMPARISON WITH R / R LIBRARIES

Since pandas aims to provide a lot of the data manipulation and analysis functionality that people use R for, this page was started to provide a more detailed look at the R language and its many third party libraries as they relate to pandas. In comparisons with R and CRAN libraries, we care about the following things:

- **Functionality / flexibility**: what can/cannot be done with each tool
- **Performance**: how fast are operations. Hard numbers/benchmarks are preferable
- **Ease-of-use**: Is one tool easier/harder to use (you may have to be the judge of this, given side-by-side code comparisons)

This page is also here to offer a bit of a translation guide for users of these R packages.

For transfer of DataFrame objects from pandas to R, one option is to use HDF5 files, see External Compatibility for an example.

Quick Reference

We’ll start off with a quick reference guide pairing some common R operations using dplyr with pandas equivalents.

### Querying, Filtering, Sampling

<table>
<thead>
<tr>
<th>R</th>
<th>pandas</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim(df)</td>
<td>df.shape</td>
</tr>
<tr>
<td>head(df)</td>
<td>df.head()</td>
</tr>
<tr>
<td>slice(df, 1:10)</td>
<td>df.iloc[:9]</td>
</tr>
<tr>
<td>filter(df, col1 == 1, col2 == 1)</td>
<td>df.query('col1 == 1 &amp; col2 == 1')</td>
</tr>
<tr>
<td>df[df$col1 == 1 &amp; df$col2 == 1,]</td>
<td>df[(df.col1 == 1) &amp; (df.col2 == 1)]</td>
</tr>
<tr>
<td>select(df, col1, col2)</td>
<td>df[['col1', 'col2']]</td>
</tr>
<tr>
<td>select(df, col1:col3)</td>
<td>df.loc[:, 'col1':'col3']</td>
</tr>
<tr>
<td>select(df, -(col1:col3))</td>
<td>df.drop(cols_to_drop, axis=1)</td>
</tr>
<tr>
<td>distinct(select(df, col1))</td>
<td>df[['col1']].drop_duplicates()</td>
</tr>
<tr>
<td>distinct(select(df, col1, col2))</td>
<td>df[['col1','col2']].drop_duplicates()</td>
</tr>
<tr>
<td>sample_n(df, 10)</td>
<td>df.sample(n=10)</td>
</tr>
<tr>
<td>sample_frac(df, 0.01)</td>
<td>df.sample(frac=0.01)</td>
</tr>
</tbody>
</table>

¹ R’s shorthand for a subrange of columns (select(df, col1:col3)) can be approached cleanly in pandas, if you have the list of columns, for example df[cols[1:3]] or df.drop(cols[1:3]), but doing this by column name is a bit messy.
pandas: powerful Python data analysis toolkit, Release 0.19.2

Sorting

<table>
<thead>
<tr>
<th>R</th>
<th>pandas</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>arrange(df, col1, col2)</code></td>
<td><code>df.sort_values(['col1', 'col2'])</code></td>
</tr>
<tr>
<td><code>arrange(df, desc(col1))</code></td>
<td><code>df.sort_values('col1', ascending=False)</code></td>
</tr>
</tbody>
</table>

Transforming

<table>
<thead>
<tr>
<th>R</th>
<th>pandas</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>select(df, col_one = col1)</code></td>
<td><code>df.rename(columns={'col1': 'col_one'})</code></td>
</tr>
<tr>
<td><code>rename(df, col_one = col1)</code></td>
<td><code>df.rename(columns={'col1': 'col_one'})</code></td>
</tr>
<tr>
<td><code>mutate(df, c=a-b)</code></td>
<td><code>df.assign(c=df.a-df.b)</code></td>
</tr>
</tbody>
</table>

Grouping and Summarizing

<table>
<thead>
<tr>
<th>R</th>
<th>pandas</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>summary(df)</code></td>
<td><code>df.describe()</code></td>
</tr>
<tr>
<td><code>gdf &lt;- group_by(df, col1)</code></td>
<td><code>gdf = df.groupby('col1')</code></td>
</tr>
<tr>
<td><code>summarise(gdf, avg=mean(col1, na.rm=TRUE))</code></td>
<td><code>df.groupby('col1').agg({'col1': 'mean'})</code></td>
</tr>
<tr>
<td><code>summarise(gdf, total=sum(col1))</code></td>
<td><code>df.groupby('col1').sum()</code></td>
</tr>
</tbody>
</table>

Base R

Slicing with R’s c

R makes it easy to access data.frame columns by name

```r
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
```

or by integer location

```r
df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]
```

Selecting multiple columns by name in pandas is straightforward

```python
In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))
In [2]: df[['a', 'c']]
Out[2]:
a c
0 -1.039575 -0.424972
1 0.567020 -1.087401
2 -0.673690 -1.478427
3 0.524988 0.577046
4 -1.715002 -0.370647
5 -1.157892 0.844885
```
Selecting multiple noncontiguous columns by integer location can be achieved with a combination of the `iloc` indexer attribute and `numpy.r_`.

```python
In [4]: named = list('abcdefg')

In [5]: n = 30

In [6]: columns = named + np.arange(len(named), n).tolist()

In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns)

In [8]: df.iloc[:, np.r_[10, 24:30]]
```

```
a b c d e f g
0 1.075770 1.643563 0.219242 -0.267574 -0.705005 0.478777 0.152761
1 1.140552 0.974068 -0.457040 0.747513 0.285080 0.062874 -0.306081
2 1.053152 -0.539045 1.304506 0.942156 -0.745782 0.574067 0.471707
3 2.539623 0.392675 0.686931 -0.688041 0.463026 0.802742 -0.120032
4 1.458743 0.052388 0.855505 0.324356 0.378234 0.551362 0.476940
5 0.383652 0.847357 -0.935598 0.749975 -0.064707 -0.285767 0.338414
6 0.413738 1.140115 0.181953 0.385796 -0.009252 0.505828 -0.002212
7 2.499588 1.279949 1.515997 1.065542 0.731821 0.455251 0.121486
8 1.868714 0.431228 -0.309390 0.404380 0.900125 -0.123535 0.040605
9 1.257770 0.280073 0.323357 0.210139 0.267778 0.109272 0.217824
10 0.013782 0.684674 0.141002 0.474500 0.396093 -0.035758 0.324902
11 0.565149 0.059374 0.457596 0.205482 -0.397869 0.067768 -0.292991
12 0.440028 0.507348 0.747861 -0.044429 -0.180852 0.339475 -0.267246
13 0.816184 0.276380 0.308251 0.013114 0.469524 -0.177403 0.043981
14 0.431337 1.742678 0.403166 0.412912 0.217251 0.305995 -0.235767
15 0.662203 0.681826 0.621161 0.399001 -0.067337 0.109079 0.088527
16 0.045834 0.657694 -0.181984 0.178620 -0.723270 0.030850 0.415495
17 2.047068 0.298967 0.784009 0.414235 0.161573 0.478590 -0.028929
18 1.698741 0.283418 0.551327 -0.288601 0.549045 -0.067367 0.248040
19 0.746680 0.140273 0.457956 0.165239 0.730224 0.009472 0.216652
20 0.246285 0.248312 -0.320861 0.106394 0.123997 0.081244 -0.320406
21 0.042297 -0.395317 0.032903 0.123937 0.184949 0.178127 -0.295403
22 0.357711 0.622000 0.140713 0.212557 0.096540 0.030832 -0.267328
23 0.028038 0.145776 -0.004128 0.049729 0.084711 0.178919 0.650009
24 0.775109 0.427517 0.387658 0.082361 0.422894 -0.144125 0.393294
25 0.505348 0.395829 0.147645 0.063824 0.464815 0.067337 0.295042
26 0.324785 0.188326 -0.209870 0.180988 0.080773 0.204176 0.363584
27 0.104292 0.146516 -0.204380 0.103456 0.049085 0.161803 0.334103
```

32.2. Base R 1057
aggregate

In R you may want to split data into subsets and compute the mean for each. Using a data.frame called df and splitting it into groups by1 and by2:

```r
df <- data.frame(
 v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
 v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
 by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
 by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
```

The `groupby()` method is similar to base R `aggregate` function.

```
In [9]: df = pd.DataFrame({
 ...: 'v1': [1,3,5,7,8,3,5, np.nan, 4,5,7,9],
 ...: 'v2': [11,33,55,77,88,33,55, np.nan, 44,55,77,99],
 ...: 'by1': ['red', 'blue', 1, 2, np.nan, 'big', 1, 2, 'red', 1, np.nan, 12],
 ...: 'by2': ['wet', 'dry', 99, 95, np.nan, 'damp', 95, 99, 'red', 99, np.nan, np.nan],
 ...: })

In [10]: g = df.groupby(["by1","by2"])

In [11]: g[['v1','v2']].mean()
Out[11]:
 v1 v2
by1 by2
```
For more details and examples see the groupby documentation.

**match / %in%**

A common way to select data in R is using %in% which is defined using the function `match`. The operator %in% is used to return a logical vector indicating if there is a match or not:

```r
s <- 0:4
s %in% c(2,4)
```

The `isin()` method is similar to R %in% operator:

```python
In [12]: s = pd.Series(np.arange(5),dtype=np.float32)
In [13]: s.isin([2, 4])
Out[13]:
0 False
1 False
2 True
3 False
4 True
dtype: bool
```

The `match` function returns a vector of the positions of matches of its first argument in its second:

```r
s <- 0:4
match(s, c(2,4))
```

The `apply()` method can be used to replicate this:

```python
In [14]: s = pd.Series(np.arange(5),dtype=np.float32)
In [15]: pd.Series(pd.match(s,[2,4],np.nan))
Out[15]:
0 NaN
1 NaN
2 0.0
3 NaN
4 1.0
dtype: float64
```

For more details and examples see the reshaping documentation.

**tapply**

tapply is similar to aggregate, but data can be in a ragged array, since the subclass sizes are possibly irregular.
Using a data.frame called `baseball`, and retrieving information based on the array `team`:

```r
baseball <-
 data.frame(
 team = gl(5, 5,
 labels = paste("Team", LETTERS[1:5])),
 player = sample(letters, 25),
 batting.average = runif(25, .200, .400))

tapply(baseball$batting.average, baseball.example$team,
 max)
```

In pandas we may use `pivot_table()` method to handle this:

```python
In [16]: import random
In [17]: import string
In [18]: baseball = pd.DataFrame({
 : 'team': ["team \d" % (x+1) for x in range(5)]*5,
 : 'player': random.sample(list(string.ascii_lowercase),25),
 : 'batting avg': np.random.uniform(.200, .400, 25)
 : })

In [19]: baseball.pivot_table(values='batting avg', columns='team', aggfunc=np.max)
Out[19]:
 team
 team 1 0.394457
 team 2 0.395730
 team 3 0.343015
 team 4 0.388863
 team 5 0.377379
Name: batting avg, dtype: float64
```

For more details and examples see the reshaping documentation.

subset

New in version 0.13.

The `query()` method is similar to the base R `subset` function. In R you might want to get the rows of a data.frame where one column’s values are less than another column’s values:

```r
df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
subset(df$a <= df$b,) # note the comma
```

In pandas, there are a few ways to perform subsetting. You can use `query()` or pass an expression as if it were an index/slice as well as standard boolean indexing:

```python
In [20]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [21]: df.query('a <= b')
Out[21]:
a b
0 -1.003455 -0.990738
1 0.083515 0.548796
```
For more details and examples see the query documentation.

**with**

New in version 0.13.

An expression using a data.frame called df in R with the columns a and b would be evaluated using `with` like so:

```r
df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b # same as the previous expression
```

In **pandas** the equivalent expression, using the `eval()` method, would be:

```python
In [24]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [25]: df.eval('a + b')
Out[25]:
 0 1 2 3 4 5 6 7 8
-0.920205 -0.860236 1.154370 0.188140 -1.163718 0.001397 -0.825694 -1.138198 -1.708034 1.148616
dtype: float64
```

```python
In [26]: df.a + df.b # same as the previous expression
Out[26]:
 0 1 2
-0.920205 -0.860236 1.154370
```

32.2. Base R
In certain cases `eval()` will be much faster than evaluation in pure Python. For more details and examples see the `eval` documentation.

**plyr**

`plyr` is an R library for the split-apply-combine strategy for data analysis. The functions revolve around three data structures in R, a for arrays, l for lists, and d for data.frame. The table below shows how these data structures could be mapped in Python.

<table>
<thead>
<tr>
<th>R</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>list</td>
</tr>
<tr>
<td>lists</td>
<td>dictionary or list of objects</td>
</tr>
<tr>
<td>data.frame</td>
<td>dataframe</td>
</tr>
</tbody>
</table>

**ddply**

An expression using a data.frame called `df` in R where you want to summarize `x` by `month`:

```r
require(plyr)
df <- data.frame(
x = runif(120, 1, 168),
y = runif(120, 7, 334),
z = runif(120, 1.7, 20.7),
month = rep(c(5, 6, 7, 8), 30),
week = sample(1:4, 120, TRUE)
)
ddply(df, .(month, week), summarize,
 mean = round(mean(x), 2),
 sd = round(sd(x), 2))
```

In pandas the equivalent expression, using the `groupby()` method, would be:

```python
In [27]: df = pd.DataFrame({
.....: 'x': np.random.uniform(1., 168., 120),
.....: 'y': np.random.uniform(7., 334., 120),
.....: 'z': np.random.uniform(1.7, 20.7, 120),
.....: 'month': [5, 6, 7, 8]*30,
.....: 'week': np.random.randint(1, 4, 120)
.....: })
In [28]: grouped = df.groupby(["month", "week"])
In [29]: grouped['x'].agg([np.mean, np.std])
```
For more details and examples see the groupby documentation.

**reshape / reshape2**

**melt.array**

An expression using a 3 dimensional array called `a` in R where you want to melt it into a data.frame:

```r
a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))
```

In Python, since `a` is a list, you can simply use list comprehension.

```python
In [30]: a = np.array(list(range(1,24))+[np.NAN]).reshape(2,3,4)
In [31]: pd.DataFrame([tuple(list(x)+[val]) for x, val in np.ndenumerate(a)])
```

```
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 0 0 0 1.0
1 0 0 1 2.0
2 0 0 2 3.0
3 0 0 3 4.0
4 0 1 0 5.0
5 0 1 1 6.0
6 0 1 2 7.0
7 0 1 3 8.0
8 0 1 4 9.0
9 0 1 5 10.0
10 0 1 6 11.0
11 0 1 7 12.0
12 0 1 8 13.0
13 0 1 9 14.0
14 0 1 10 15.0
15 0 1 11 16.0
16 0 1 12 17.0
17 0 1 13 18.0
18 0 1 14 19.0
19 0 1 15 20.0
20 0 1 16 21.0
21 0 1 17 22.0
22 0 1 18 23.0
23 0 1 19 NaN
...
[24 rows x 4 columns]
```
**melt.list**

An expression using a list called `a` in R where you want to melt it into a data.frame:

```r
a <- as.list(c(1:4, NA))
data.frame(melt(a))
```

In Python, this list would be a list of tuples, so `DataFrame()` method would convert it to a dataframe as required.

```python
In [32]: a = list(enumerate(list(range(1,5))+[np.NAN]))
In [33]: pd.DataFrame(a)
Out[33]:
 0 1 1.0
 1 1 2.0
 2 2 3.0
 3 3 4.0
 4 4 NaN
```

For more details and examples see the **Into to Data Structures documentation**.

**melt.data.frame**

An expression using a data.frame called `cheese` in R where you want to reshape the data.frame:

```r
cheese <- data.frame(
 first = c('John', 'Mary'),
 last = c('Doe', 'Bo'),
 height = c(5.5, 6.0),
 weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))
```

In Python, the `melt()` method is the R equivalent:

```python
In [34]: cheese = pd.DataFrame({'first' : ['John', 'Mary'],
 : 'last' : ['Doe', 'Bo'],
 : 'height' : [5.5, 6.0],
 : 'weight' : [130, 150]})
In [35]: pd.melt(cheese, id_vars=['first', 'last'])
Out[35]:
 first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
In [36]: cheese.set_index(['first', 'last']).stack() # alternative way
Out[36]:
 first last
 John Doe height 5.5
 weight 130.0
 Mary Bo height 6.0
```

Chapter 32. Comparison with R / R libraries
weight 150.0
dtype: float64

For more details and examples see the reshaping documentation.

**cast**

In R `acast` is an expression using a data.frame called `df` in R to cast into a higher dimensional array:

```r
df <- data.frame(
 x = runif(12, 1, 168),
 y = runif(12, 7, 334),
 z = runif(12, 1.7, 20.7),
 month = rep(c(5,6,7),4),
 week = rep(c(1,2), 6)
)
mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)
```

In Python the best way is to make use of `pivot_table()`:

```python
In [37]: df = pd.DataFrame({
 : 'x': np.random.uniform(1., 168., 12),
 : 'y': np.random.uniform(7., 334., 12),
 : 'z': np.random.uniform(1.7, 20.7, 12),
 : 'month': [5,6,7]*4,
 : 'week': [1,2]*6
 : })
 :
In [38]: mdf = pd.melt(df, id_vars=['month', 'week'])
In [39]: pd.pivot_table(mdf, values='value', index=['variable','week'],
 : columns=['month'], aggfunc=np.mean)
Out[39]:
 month 5 6 7
 variable week
 x 1 114.001700 132.227290 65.808204
 2 124.669553 147.495706 82.882820
 y 1 225.636630 301.864228 91.706834
 2 57.692665 215.851669 218.004383
 z 1 17.793871 7.124644 17.679823
 2 15.068355 13.873974 9.394966
```

Similarly for `dcast` which uses a data.frame called `df` in R to aggregate information based on `Animal` and `FeedType`:

```r
df <- data.frame(
 Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
 'Animal2', 'Animal3'),
 FeedType = c('A', 'B', 'A', 'B', 'B', 'A', 'A'),
 Amount = c(10, 7, 4, 2, 5, 6, 2)
)
```
Python can approach this in two different ways. Firstly, similar to above using `pivot_table()`:

```python
In [40]: df = pd.DataFrame(
 : {'Animal': ['Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
 : 'Animal2', 'Animal3'],
 : 'FeedType': ['A', 'B', 'A', 'A', 'B', 'B', 'A'],
 : 'Amount': [10, 7, 4, 2, 5, 6, 2],
 : })

In [41]: df.pivot_table(values='Amount', index='Animal', columns='FeedType', aggfunc='sum')
Out[41]:
FeedType A B
Animal
Animal1 10 5
Animal2 2 13
Animal3 6 NaN
```

The second approach is to use the `groupby()` method:

```python
In [42]: df.groupby(['Animal','FeedType'])['Amount'].sum()
Out[42]:
Animal FeedType
Animal1 A 10
 B 5
Animal2 A 2
 B 13
Animal3 A 6
Name: Amount, dtype: int64
```

For more details and examples see the reshaping documentation or the groupby documentation.

---

**factor**

New in version 0.15.

pandas has a data type for categorical data.

```python
cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))
```

In pandas this is accomplished with `pd.cut` and `astype("category")`:

```python
In [43]: pd.cut(pd.Series([1,2,3,4,5,6]), 3)
Out[43]:
0 (0.995, 2.667]
1 (0.995, 2.667]
2 (2.667, 4.333]
3 (2.667, 4.333]
4 (4.333, 6]
5 (4.333, 6]
dtype: category
```
Categories (3, object): [(0.995, 2.667] < (2.667, 4.333] < (4.333, 6]]

In [44]: pd.Series([1,2,3,2,2,3]).astype("category")
Out[44]:
   0  1
   1  2
   2  3
   3  2
   4  2
   5  3
dtype: category
Categories (3, int64): [1, 2, 3]

For more details and examples see categorical introduction and the API documentation. There is also a documentation regarding the differences to R's factor.
Since many potential pandas users have some familiarity with SQL, this page is meant to provide some examples of how various SQL operations would be performed using pandas.

If you’re new to pandas, you might want to first read through *10 Minutes to pandas* to familiarize yourself with the library.

As is customary, we import pandas and numpy as follows:

```python
In [1]: import pandas as pd
In [2]: import numpy as np
```

Most of the examples will utilize the `tips` dataset found within pandas tests. We’ll read the data into a DataFrame called `tips` and assume we have a database table of the same name and structure.

```python
In [3]: url = 'https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv'
In [4]: tips = pd.read_csv(url)
In [5]: tips.head()
```

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>21.01</td>
<td>3.50</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>23.68</td>
<td>3.31</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>24.59</td>
<td>3.61</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
</tbody>
</table>

**SELECT**

In SQL, selection is done using a comma-separated list of columns you’d like to select (or a * to select all columns):

```sql
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
```

With pandas, column selection is done by passing a list of column names to your DataFrame:

```python
In [6]: tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
Out[6]:
<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>smoker</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>21.01</td>
<td>3.50</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>23.68</td>
<td>3.31</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>24.59</td>
<td>3.61</td>
<td>Female</td>
<td></td>
</tr>
</tbody>
</table>
```
Calling the DataFrame without the list of column names would display all columns (akin to SQL’s `*`).

WHERE

Filtering in SQL is done via a WHERE clause.

```
SELECT *
FROM tips
WHERE time = 'Dinner'
LIMIT 5;
```

DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.

```
In [7]: tips[tips['time'] == 'Dinner'].head(5)
Out[7]:
 total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
```

The above statement is simply passing a Series of True/False objects to the DataFrame, returning all rows with True.

```
In [8]: is_dinner = tips['time'] == 'Dinner'
In [9]: is_dinner.value_counts()
Out[9]:
 True 176
 False 68
Name: time, dtype: int64

In [10]: tips[is_dinner].head(5)
Out[10]:
 total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
```

Just like SQL’s OR and AND, multiple conditions can be passed to a DataFrame using | (OR) and & (AND).

```
-- tips of more than $5.00 at Dinner meals
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
```
# tips of more than $5.00 at Dinner meals

In [11]: tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]

Out[11]:

<table>
<thead>
<tr>
<th></th>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>39.42</td>
<td>7.58</td>
<td>Male</td>
<td>No</td>
<td>Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>44</td>
<td>30.40</td>
<td>5.60</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>47</td>
<td>32.40</td>
<td>6.00</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>52</td>
<td>34.81</td>
<td>5.20</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>59</td>
<td>48.27</td>
<td>6.73</td>
<td>Male</td>
<td>No</td>
<td>Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>116</td>
<td>29.93</td>
<td>5.07</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>155</td>
<td>29.85</td>
<td>5.14</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>5</td>
</tr>
<tr>
<td>170</td>
<td>50.81</td>
<td>10.00</td>
<td>Male</td>
<td>Yes</td>
<td>Sat</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>172</td>
<td>7.25</td>
<td>5.15</td>
<td>Male</td>
<td>Yes</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>181</td>
<td>23.33</td>
<td>5.65</td>
<td>Male</td>
<td>Yes</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>183</td>
<td>23.17</td>
<td>6.50</td>
<td>Male</td>
<td>Yes</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>211</td>
<td>25.89</td>
<td>5.16</td>
<td>Male</td>
<td>Yes</td>
<td>Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>212</td>
<td>48.33</td>
<td>9.00</td>
<td>Male</td>
<td>No</td>
<td>Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>214</td>
<td>28.17</td>
<td>6.50</td>
<td>Female</td>
<td>Yes</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>239</td>
<td>29.03</td>
<td>5.92</td>
<td>Male</td>
<td>No</td>
<td>Sat</td>
<td>Dinner</td>
<td>3</td>
</tr>
</tbody>
</table>

-- tips by parties of at least 5 diners OR bill total was more than $45

SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;

# tips by parties of at least 5 diners OR bill total was more than $45

In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]

Out[12]:

<table>
<thead>
<tr>
<th></th>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>48.27</td>
<td>6.73</td>
<td>Male</td>
<td>No</td>
<td>Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>125</td>
<td>29.80</td>
<td>4.20</td>
<td>Female</td>
<td>No</td>
<td>Thur</td>
<td>Lunch</td>
<td>6</td>
</tr>
<tr>
<td>141</td>
<td>34.30</td>
<td>6.70</td>
<td>Male</td>
<td>No</td>
<td>Thur</td>
<td>Lunch</td>
<td>6</td>
</tr>
<tr>
<td>142</td>
<td>41.19</td>
<td>5.00</td>
<td>Male</td>
<td>No</td>
<td>Thur</td>
<td>Lunch</td>
<td>5</td>
</tr>
<tr>
<td>143</td>
<td>27.05</td>
<td>5.00</td>
<td>Female</td>
<td>No</td>
<td>Thur</td>
<td>Lunch</td>
<td>6</td>
</tr>
<tr>
<td>155</td>
<td>29.85</td>
<td>5.14</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>5</td>
</tr>
<tr>
<td>156</td>
<td>48.17</td>
<td>5.00</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>6</td>
</tr>
<tr>
<td>170</td>
<td>50.81</td>
<td>10.00</td>
<td>Male</td>
<td>Yes</td>
<td>Sat</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>182</td>
<td>45.35</td>
<td>3.50</td>
<td>Male</td>
<td>Yes</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>185</td>
<td>20.69</td>
<td>5.00</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>5</td>
</tr>
<tr>
<td>187</td>
<td>30.46</td>
<td>2.00</td>
<td>Male</td>
<td>Yes</td>
<td>Sun</td>
<td>Dinner</td>
<td>5</td>
</tr>
<tr>
<td>212</td>
<td>48.33</td>
<td>9.00</td>
<td>Male</td>
<td>No</td>
<td>Sat</td>
<td>Dinner</td>
<td>4</td>
</tr>
<tr>
<td>216</td>
<td>28.15</td>
<td>3.00</td>
<td>Male</td>
<td>Yes</td>
<td>Sat</td>
<td>Dinner</td>
<td>5</td>
</tr>
</tbody>
</table>

NULL checking is done using the `notnull()` and `isnull()` methods.

          'col2': ['F', np.NaN, 'G', 'H', 'I']})

In [14]: frame

Out[14]:

<table>
<thead>
<tr>
<th>col1</th>
<th>col2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>NaN</td>
</tr>
<tr>
<td>NaN</td>
<td>G</td>
</tr>
<tr>
<td>C</td>
<td>H</td>
</tr>
<tr>
<td>D</td>
<td>I</td>
</tr>
</tbody>
</table>
Assume we have a table of the same structure as our DataFrame above. We can see only the records where `col2` IS NULL with the following query:

```sql
SELECT *
FROM frame
WHERE col2 IS NULL;
```

```
In [15]: frame[frame['col2'].isnull()]
Out[15]:
col1 col2
1 B NaN
```

Getting items where `col1` IS NOT NULL can be done with `notnull()`.

```sql
SELECT *
FROM frame
WHERE col1 IS NOT NULL;
```

```
In [16]: frame[frame['col1'].notnull()]
Out[16]:
col1 col2
0 A F
1 B NaN
3 C H
4 D I
```

**GROUP BY**

In pandas, SQL's GROUP BY operations are performed using the similarly named `groupby()` method. `groupby()` typically refers to a process where we'd like to split a dataset into groups, apply some function (typically aggregation), and then combine the groups together.

A common SQL operation would be getting the count of records in each group throughout a dataset. For instance, a query getting us the number of tips left by sex:

```sql
SELECT sex, count(*)
FROM tips
GROUP BY sex;
```

```
/*
Female 87
Male 157
*/
```

The pandas equivalent would be:

```
In [17]: tips.groupby('sex').size()
Out[17]:
sex
Female 87
Male 157
dtype: int64
```

Notice that in the pandas code we used `size()` and not `count()`. This is because `count()` applies the function to each column, returning the number of not null records within each.
## 33.3. GROUP BY

In [18]: tips.groupby('sex').count()
Out[18]:

<table>
<thead>
<tr>
<th></th>
<th>total_bill</th>
<th>tip</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>Male</td>
<td>157</td>
<td>157</td>
<td>157</td>
<td>157</td>
<td>157</td>
<td>157</td>
</tr>
</tbody>
</table>

Alternatively, we could have applied the `count()` method to an individual column:

In [19]: tips.groupby('sex')['total_bill'].count()
Out[19]:

<table>
<thead>
<tr>
<th>sex</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>87</td>
</tr>
<tr>
<td>Male</td>
<td>157</td>
</tr>
</tbody>
</table>

Name: total_bill, dtype: int64

Multiple functions can also be applied at once. For instance, say we’d like to see how tip amount differs by day of the week - `agg()` allows you to pass a dictionary to your grouped DataFrame, indicating which functions to apply to specific columns.

```
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
*/
```

In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size})
Out[20]:

<table>
<thead>
<tr>
<th>day</th>
<th>tip</th>
<th>day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri</td>
<td>2.734737</td>
<td>19</td>
</tr>
<tr>
<td>Sat</td>
<td>2.993103</td>
<td>87</td>
</tr>
<tr>
<td>Sun</td>
<td>3.255132</td>
<td>76</td>
</tr>
<tr>
<td>Thur</td>
<td>2.771452</td>
<td>62</td>
</tr>
</tbody>
</table>

Grouping by more than one column is done by passing a list of columns to the `groupby()` method.

```
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
No smoker day
No Fri 4 2.812500
Sat 45 3.102889
Sun 57 3.167895
Thur 45 2.673778
Yes smoker day
Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thur 17 3.030000
*/
```
JOIN

JOINs can be performed with `join()` or `merge()`. By default, `join()` will join the DataFrames on their indices. Each method has parameters allowing you to specify the type of join to perform (LEFT, RIGHT, INNER, FULL) or the columns to join on (column names or indices).

```
In [22]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
 'value': np.random.randn(4)})
...:
In [23]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
 'value': np.random.randn(4)})
...:
Assume we have two database tables of the same name and structure as our DataFrames.
Now let's go over the various types of JOINs.

INNER JOIN

SELECT *
FROM df1
INNER JOIN df2
 ON df1.key = df2.key;

merge performs an INNER JOIN by default
In [24]: pd.merge(df1, df2, on='key')
Out[24]:
 key value_x value_y
0 B -0.318214 0.543581
1 D 2.169960 -0.426067
2 D 2.169960 1.138079
```

`merge()` also offers parameters for cases when you'd like to join one DataFrame's column with another DataFrame's index.

```
In [25]: indexed_df2 = df2.set_index('key')
In [26]: pd.merge(df1, indexed_df2, left_on='key', right_index=True)
```
LEFT OUTER JOIN

-- show all records from df1
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;

# show all records from df1
In [27]: pd.merge(df1, df2, on='key', how='left')
Out[27]:
   key value_x  value_y
0   A  0.116174  NaN
1   B -0.318214  0.543581
2   C  0.285261  NaN
3   D  2.169960 -0.426067
4   D  2.169960  1.138079

RIGHT JOIN

-- show all records from df2
SELECT *
FROM df1
RIGHT OUTER JOIN df2
ON df1.key = df2.key;

# show all records from df2
In [28]: pd.merge(df1, df2, on='key', how='right')
Out[28]:
   key value_x  value_y
0   B -0.318214  0.543581
1   D  2.169960 -0.426067
2   D  2.169960  1.138079
3   E  NaN        0.086073

FULL JOIN

pandas also allows for FULL JOINs, which display both sides of the dataset, whether or not the joined columns find a match. As of writing, FULL JOINs are not supported in all RDBMS (MySQL).

-- show all records from both tables
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;
UNION

UNION ALL can be performed using `concat()`.

```python
In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
 'rank': range(1, 4))

In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
 'rank': [1, 4, 5])
```

```sql
/*
 city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/
```

```python
In [32]: pd.concat([df1, df2])
Out[32]:
<table>
<thead>
<tr>
<th>city</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago</td>
<td>1</td>
</tr>
<tr>
<td>San Francisco</td>
<td>2</td>
</tr>
<tr>
<td>New York City</td>
<td>3</td>
</tr>
<tr>
<td>Chicago</td>
<td>1</td>
</tr>
<tr>
<td>Boston</td>
<td>4</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>5</td>
</tr>
</tbody>
</table>
```

SQL’s UNION is similar to UNION ALL, however UNION will remove duplicate rows.

```sql
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
```
-- notice that there is only one Chicago record this time
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Boston 4
Los Angeles 5
*/

In pandas, you can use \texttt{concat()} in conjunction with \texttt{drop_duplicates()}.  

\begin{verbatim}
In [33]: pd.concat([df1, df2]).drop_duplicates()
Out[33]:
   city  rank
0  Chicago  1
1      San Francisco  2
2    New York City  3
1       Boston  4
2       Los Angeles  5
\end{verbatim}

\section*{Pandas equivalents for some SQL analytic and aggregate functions}

\subsection*{Top N rows with offset}

\begin{verbatim}
-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;
\end{verbatim}

\begin{verbatim}
In [34]: tips.nlargest(10+5, columns='tip').tail(10)
Out[34]:
     total_bill  tip  sex  smoker  day     time  size
183    23.17  6.50  Male     Yes  Sun   Dinner  4
214    28.17  6.50 Female   Yes  Sat   Dinner  3
  47    32.40  6.00  Male      No  Sun   Dinner  4
239    29.03  5.92  Male      No  Sun   Dinner  3
  88    24.71  5.85  Male      No Thur  Lunch  2
181    23.33  5.65  Male     Yes  Sun   Dinner  2
  44    30.40  5.60  Male      No  Sun   Dinner  4
  52    34.81  5.20 Female   Yes  Sun   Dinner  4
  85    34.83  5.17 Female   Yes Thur  Lunch  4
211    25.89  5.16  Male     Yes  Sun   Dinner  4
\end{verbatim}

\subsection*{Top N rows per group}

\begin{verbatim}
-- Oracle's \texttt{ROW_NUMBER()} analytic function
SELECT * FROM ( 
    SELECT 
        t.*, 
    ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn 
FROM tips t
\end{verbatim}
WHERE rn < 3
ORDER BY day, rn;

In [35]: (tips.assign(rn=tips.sort_values(['total_bill'], ascending=False)
       ....: .groupby(['day'])
       ....: .cumcount() + 1)
       ....: .query('rn < 3')
       ....: .sort_values(['day','rn'])
       ....: )
Out[35]:
   total_bill  tip  sex smoker  day  time  size  rn
  95    40.17  4.73  Male   Yes  Fri  Dinner   4   1
  90    28.97  3.00  Male   Yes  Fri  Dinner   2   2
 170    50.81 10.00  Male   Yes  Sat  Dinner   3   1
 212    48.33   9.00  Male    No  Sat  Dinner   4   2
 156    48.17   5.00  Male    No  Sun  Dinner   6   1
 182    45.35   3.50  Male   Yes  Sun  Dinner   3   2
 197    43.11   5.00 Female   Yes  Thur  Lunch   4   1
 142    41.19   5.00  Male    No  Thur  Lunch   5   2

the same using rank(method='first') function

In [36]: (tips.assign(rnk=tips.groupby(['day'])['total_bill']
       ....: .rank(method='first', ascending=False))
       ....: .query('rnk < 3')
       ....: .sort_values(['day','rnk'])
       ....: )
Out[36]:
   total_bill  tip  sex smoker  day  time  size  rnk
  95    40.17  4.73  Male   Yes  Fri  Dinner   4  1.0
  90    28.97  3.00  Male   Yes  Fri  Dinner   2  2.0
 170    50.81 10.00  Male   Yes  Sat  Dinner   3  1.0
 212    48.33   9.00  Male    No  Sat  Dinner   4  2.0
 156    48.17   5.00  Male    No  Sun  Dinner   6  1.0
 182    45.35   3.50  Male   Yes  Sun  Dinner   3  2.0
 197    43.11   5.00 Female   Yes  Thur  Lunch   4  1.0
 142    41.19   5.00  Male    No  Thur  Lunch   5  2.0

-- Oracle's RANK() analytic function

SELECT * FROM (
    SELECT *
    FROM tips t
    WHERE tip < 2
) WHERE rnk < 3
ORDER BY sex, rnk;

Let's find tips with (rank < 3) per gender group for (tips < 2). Notice that when using rank(method='min') function rnk_min remains the same for the same tip (as Oracle’s RANK() function)

In [37]: (tips[tips['tip'] < 2]
       ....: .assign(rnk_min=tips.groupby(['sex'])['tip'])
       ....: )

1078 Chapter 33. Comparison with SQL
In pandas we select the rows that should remain, instead of deleting them

In [39]: tips = tips.loc[tips['tip'] <= 9]
For potential users coming from SAS this page is meant to demonstrate how different SAS operations would be performed in pandas.

If you’re new to pandas, you might want to first read through *10 Minutes to pandas* to familiarize yourself with the library.

As is customary, we import pandas and numpy as follows:

```python
In [1]: import pandas as pd
In [2]: import numpy as np
```

**Note:** Throughout this tutorial, the pandas DataFrame will be displayed by calling `df.head()`, which displays the first N (default 5) rows of the DataFrame. This is often used in interactive work (e.g. Jupyter notebook or terminal) - the equivalent in SAS would be:

```
proc print data=df(obs=5);
run;
```

## Data Structures

### General Terminology Translation

<table>
<thead>
<tr>
<th>pandas</th>
<th>SAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame</td>
<td>data set</td>
</tr>
<tr>
<td>column</td>
<td>variable</td>
</tr>
<tr>
<td>row</td>
<td>observation</td>
</tr>
<tr>
<td>groupby</td>
<td>BY-group</td>
</tr>
<tr>
<td>NaN</td>
<td>.</td>
</tr>
</tbody>
</table>

**DataFrame / Series**

A DataFrame in pandas is analogous to a SAS data set - a two-dimensional data source with labeled columns that can be of different types. As will be shown in this document, almost any operation that can be applied to a data set using SAS’s DATA step, can also be accomplished in pandas.
A `Series` is the data structure that represents one column of a `DataFrame`. SAS doesn’t have a separate data structure for a single column, but in general, working with a `Series` is analogous to referencing a column in the `DATA` step.

**Index**

Every `DataFrame` and `Series` has an Index - which are labels on the rows of the data. SAS does not have an exactly analogous concept. A data set’s row are essentially unlabeled, other than an implicit integer index that can be accessed during the `DATA` step (\_\_N\_\_).

In pandas, if no index is specified, an integer index is also used by default (first row = 0, second row = 1, and so on). While using a labeled Index or MultiIndex can enable sophisticated analyses and is ultimately an important part of pandas to understand, for this comparison we will essentially ignore the Index and just treat the DataFrame as a collection of columns. Please see the indexing documentation for much more on how to use an Index effectively.

**Data Input / Output**

**Constructing a DataFrame from Values**

A SAS data set can be built from specified values by placing the data after a `datalines` statement and specifying the column names.

``` SAS
data df;
 input x y;
datalines;
 1 2
 3 4
 5 6
;run;
```

A pandas DataFrame can be constructed in many different ways, but for a small number of values, it is often convenient to specify it as a python dictionary, where the keys are the column names and the values are the data.

``` python
In [3]: df = pd.DataFrame(
 ...: {'x': [1, 3, 5],
 ...: 'y': [2, 4, 6]})

In [4]: df
Out[4]:
 x y
0 1 2
1 3 4
2 5 6
```

**Reading External Data**

Like SAS, pandas provides utilities for reading in data from many formats. The `tips` dataset, found within the pandas tests (csv) will be used in many of the following examples.

SAS provides `PROC IMPORT` to read csv data into a data set.
The pandas method is `read_csv()`, which works similarly.

```python
In [5]: url = 'https://raw.github.com/pandas-dev/pandas/master/pandas/tests/data/tips.csv'

In [6]: tips = pd.read_csv(url)

In [7]: tips.head()
```

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>10.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>21.01</td>
<td>3.50</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
</tr>
<tr>
<td>23.68</td>
<td>3.31</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
</tr>
<tr>
<td>24.59</td>
<td>3.61</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
</tr>
</tbody>
</table>

Like PROC IMPORT, read_csv can take a number of parameters to specify how the data should be parsed. For example, if the data was instead tab delimited, and did not have column names, the pandas command would be:

```python
tips = pd.read_csv('tips.csv', sep='\t', header=None)
```

In addition to text/csv, pandas supports a variety of other data formats such as Excel, HDF5, and SQL databases. These are all read via a `pd.read_*` function. See the IO documentation for more details.

## Exporting Data

The inverse of PROC IMPORT in SAS is PROC EXPORT

```python
proc export data=tips outfile='tips2.csv' dbms=csv;
run;
```

Similarly in pandas, the opposite of `read_csv` is `to_csv()`, and other data formats follow a similar api.

```python
tips.to_csv('tips2.csv')
```

## Data Operations

### Operations on Columns

In the DATA step, arbitrary math expressions can be used on new or existing columns.

```python
data tips;
 set tips;
 total_bill = total_bill - 2;
 new_bill = total_bill / 2;
run;
```
pandas provides similar vectorized operations by specifying the individual Series in the DataFrame. New columns can be assigned in the same way.

```python
In [8]: tips['total_bill'] = tips['total_bill'] - 2
In [9]: tips['new_bill'] = tips['total_bill'] / 2.0
In [10]: tips.head()
Out[10]:
 total_bill tip sex smoker day time size new_bill
0 14.99 1.01 Female No Sun Dinner 2 7.495
1 8.34 1.66 Male No Sun Dinner 3 4.170
2 19.01 3.50 Male No Sun Dinner 3 9.505
3 21.68 3.31 Male No Sun Dinner 2 10.840
4 22.59 3.61 Female No Sun Dinner 4 11.295
```

### Filtering

Filtering in SAS is done with an `if` or `where` statement, on one or more columns.

```sas
data tips;
 set tips;
 if total_bill > 10;
run;

data tips;
 set tips;
 where total_bill > 10;
 /* equivalent in this case - where happens before the
 DATA step begins and can also be used in PROC statements */
run;
```

DataFrames can be filtered in multiple ways; the most intuitive of which is using boolean indexing.

```python
In [11]: tips[tips['total_bill'] > 10].head()
Out[11]:
 total_bill tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
1 8.34 1.66 Male No Sun Dinner 3
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
```

### If/Then Logic

In SAS, if/then logic can be used to create new columns.

```sas
data tips;
 set tips;
 format bucket $4.;
 if total_bill < 10 then bucket = 'low';
 else bucket = 'high';
run;
```
The same operation in pandas can be accomplished using the `where` method from `numpy`.

In [12]: tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')

In [13]: tips.head()

Out[13]:

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
<th>bucket</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.99</td>
<td>1.01</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
<td>high</td>
</tr>
<tr>
<td>8.34</td>
<td>1.66</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
<td>low</td>
</tr>
<tr>
<td>19.01</td>
<td>3.50</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>3</td>
<td>high</td>
</tr>
<tr>
<td>21.68</td>
<td>3.31</td>
<td>Male</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>2</td>
<td>high</td>
</tr>
<tr>
<td>22.59</td>
<td>3.61</td>
<td>Female</td>
<td>No</td>
<td>Sun</td>
<td>Dinner</td>
<td>4</td>
<td>high</td>
</tr>
</tbody>
</table>

**Date Functionality**

SAS provides a variety of functions to do operations on date/datetime columns.

```sas
data tips;
 set tips;
 format date1 date2 date1_plusmonth mmddyy10.;
 date1 = mdy(1, 15, 2013);
 date2 = mdy(2, 15, 2015);
 date1_year = year(date1);
 date2_month = month(date2);
 * shift date to beginning of next interval;
 date1_next = intnx('MONTH', date1, 1);
 * count intervals between dates;
 months_between = intck('MONTH', date1, date2);
run;
```

The equivalent pandas operations are shown below. In addition to these functions pandas supports other Time Series features not available in Base SAS (such as resampling and and custom offsets) - see the `timeseries documentation` for more details.

```python
In [14]: tips['date1'] = pd.Timestamp('2013-01-15')
In [15]: tips['date2'] = pd.Timestamp('2015-02-15')
In [16]: tips['date1_year'] = tips['date1'].dt.year
In [17]: tips['date2_month'] = tips['date2'].dt.month
In [18]: tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()
In [19]: tips['months_between'] = (tips['date2'].dt.to_period('M') - tips['date1'].dt.to_period('M'))
In [20]: tips[['date1', 'date2', 'date1_year', 'date2_month',
 'date1_next', 'months_between']].head()

Out[20]:

<table>
<thead>
<tr>
<th>date1</th>
<th>date2</th>
<th>date1_year</th>
<th>date2_month</th>
<th>date1_next</th>
<th>months_between</th>
</tr>
</thead>
</table>
Selection of Columns

SAS provides keywords in the DATA step to select, drop, and rename columns.

```sas
data tips;
   set tips;
   keep sex total_bill tip;
run;

data tips;
   set tips;
   drop sex;
run;

data tips;
   set tips;
   rename total_bill=total_bill_2;
run;
```

The same operations are expressed in pandas below.

```python
# keep
In [21]: tips[['sex', 'total_bill', 'tip']].head()
Out[21]:
   sex       total_bill  tip
0 Female  14.99  1.01
1  Male   8.34  1.66
2  Male  19.01  3.50
3  Male  21.68  3.31
4 Female 22.59  3.61

# drop
In [22]: tips.drop('sex', axis=1).head()
Out[22]:
    total_bill  tip smoker day time size
0    14.99  1.01   No  Sun  Dinner   2
1     8.34  1.66   No  Sun  Dinner   3
2    19.01  3.50   No  Sun  Dinner   3
3    21.68  3.31   No  Sun  Dinner   2
4    22.59  3.61   No  Sun  Dinner   4

# rename
In [23]: tips.rename(columns={'total_bill':'total_bill_2'}).head()
Out[23]:
   total_bill_2  tip  sex smoker day time size
0   14.99  1.01 Female  No  Sun  Dinner   2
1    8.34  1.66  Male  No  Sun  Dinner   3
2   19.01  3.50  Male  No  Sun  Dinner   3
3   21.68  3.31  Male  No  Sun  Dinner   2
4   22.59  3.61 Female  No  Sun  Dinner   4
```
Sorting by Values

Sorting in SAS is accomplished via `PROC SORT`:

```sas
proc sort data=tips;
  by sex total_bill;
run;
```

Pandas objects have a `sort_values()` method, which takes a list of columns to sort by.

```python
In [24]: tips = tips.sort_values(['sex', 'total_bill'])
In [25]: tips.head()
Out[25]:
   total_bill  tip  sex  smoker  day  time  size
 0       67  1.07 Female   Yes  Sat  Dinner   1
 1       92  3.75 Female   Yes  Fri  Dinner   2
 2      111  5.25 Female    No  Sat  Dinner   1
 3      145  6.35 Female    No  Thur  Lunch   2
 4      135  6.51 Female    No  Thur  Lunch   2
```

Merging

The following tables will be used in the merge examples:

```python
In [26]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
                      'value': np.random.randn(4)})

In [27]: df1
Out[27]:
   key   value
 0  A  -0.857326
 1  B   1.075416
 2  C   0.371727
 3  D   1.065735

In [28]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
                      'value': np.random.randn(4)})

In [29]: df2
Out[29]:
   key   value
 0  B  -0.227314
 1  D   2.102726
 2  D  -0.092796
 3  E   0.094694
```

In SAS, data must be explicitly sorted before merging. Different types of joins are accomplished using the `in=` dummy variables to track whether a match was found in one or both input frames.

```sas
proc sort data=df1;
  by key;
run;
```

34.4. Merging
proc sort data=df2;
 by key;
run;

data left_join inner_join right_join outer_join;
 merge df1(in=a) df2(in=b);
 if a and b then output inner_join;
 if a then output left_join;
 if b then output right_join;
 if a or b then output outer_join;
run;
pandas DataFrames have a `merge()` method, which provides similar functionality. Note that the data does not have to be sorted ahead of time, and different join types are accomplished via the `how` keyword.

In [30]: inner_join = df1.merge(df2, on=['key'], how='inner')

In [31]: inner_join
Out[31]:
 key value_x value_y
0 B 1.075416 -0.227314
1 D 1.065735 2.102726
2 D 1.065735 -0.092796

In [32]: left_join = df1.merge(df2, on=['key'], how='left')

In [33]: left_join
Out[33]:
 key value_x value_y
0 A -0.857326 NaN
1 B 1.075416 -0.227314
2 C 0.371727 NaN
3 D 1.065735 2.102726
4 D 1.065735 -0.092796
5 E NaN 0.094694

In [34]: right_join = df1.merge(df2, on=['key'], how='right')

In [35]: right_join
Out[35]:
 key value_x value_y
0 B 1.075416 -0.227314
1 D 1.065735 2.102726
2 D 1.065735 -0.092796
3 E NaN 0.094694

In [36]: outer_join = df1.merge(df2, on=['key'], how='outer')

In [37]: outer_join
Out[37]:
 key value_x value_y
0 A -0.857326 NaN
1 B 1.075416 -0.227314
2 C 0.371727 NaN
3 D 1.065735 2.102726
4 D 1.065735 -0.092796
5 E NaN 0.094694
Missing Data

Like SAS, pandas has a representation for missing data - which is the special float value NaN (not a number). Many of the semantics are the same, for example missing data propagates through numeric operations, and is ignored by default for aggregations.

```python
In [38]: outer_join
Out[38]:
   key  value_x  value_y
  0   A  -0.857326   NaN
  1   B   1.075416 -0.227314
  2   C   0.371727   NaN
  3   D   1.065735  2.102726
  4   D   1.065735 -0.092796
  5   E    NaN        0.094694

In [39]: outer_join['value_x'] + outer_join['value_y']
Out[39]:
0    NaN
1  0.848102
2    NaN
3  3.168461
4  0.972939
5    NaN
dtype: float64

In [40]: outer_join['value_x'].sum()
Out[40]: 2.72128653544262
```

One difference is that missing data cannot be compared to its sentinel value. For example, in SAS you could do this to filter missing values.

```python
data outer_join_nulls;
  set outer_join;
  if value_x = .;
run;

data outer_join_no_nulls;
  set outer_join;
  if value_x ^= .;
run;
```

Which doesn’t work in in pandas. Instead, the `pd.isnull` or `pd.notnull` functions should be used for comparisons.

```python
In [41]: outer_join[pd.isnull(outer_join['value_x'])]
Out[41]:
   key  value_x  value_y
  5    E    NaN        0.094694

In [42]: outer_join[pd.notnull(outer_join['value_x'])]
Out[42]:
   key  value_x  value_y
  0   A  -0.857326   NaN
  1   B   1.075416 -0.227314
  2   C   0.371727   NaN
  3   D   1.065735  2.102726
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas also provides a variety of methods to work with missing data - some of which would be challenging to express in SAS. For example, there are methods to drop all rows with any missing values, replacing missing values with a specified value, like the mean, or forward filling from previous rows. See the missing data documentation for more.

```
In [43]: outer_join.dropna()
Out[43]:
   key  value_x  value_y
1  B  1.075416 -0.227314
3  D  1.065735  2.102726
4  D  1.065735 -0.092796

In [44]: outer_join.fillna(method='ffill')
Out[44]:
   key  value_x  value_y
  0  A  -0.857326  NaN
  1  B  1.075416 -0.227314
  2  C  0.371727 -0.227314
  3  D  1.065735  2.102726
  4  D  1.065735 -0.092796
  5  E  1.065735  0.094694

In [45]: outer_join['value_x'].fillna(outer_join['value_x'].mean())
Out[45]:
   0   -0.857326
   1    1.075416
   2    0.371727
   3    1.065735
   4    1.065735
   5    0.544257
Name: value_x, dtype: float64
```

GroupBy

Aggregation

SAS’s PROC SUMMARY can be used to group by one or more key variables and compute aggregations on numeric columns.

```
proc summary data=tips nway;
   class sex smoker;
   var total_bill tip;
   output out=tips_summed sum=;
run;
```

pandas provides a flexible `groupby` mechanism that allows similar aggregations. See the `groupby documentation` for more details and examples.

```
In [46]: tips_summed = tips.groupby(['sex', 'smoker'])[['total_bill', 'tip']].sum()
In [47]: tips_summed.head()
Out[47]:
   total_bill  tip
0       1090  Chapter 34. Comparison with SAS
Transformation

In SAS, if the group aggregations need to be used with the original frame, it must be merged back together. For example, to subtract the mean for each observation by smoker group.

```sas
proc summary data=tips missing nway;
 class smoker;
 var total_bill;
 output out=smoker_means mean(total_bill)=group_bill;
run;
proc sort data=tips;
 by smoker;
run;
data tips;
 merge tips(in=a) smoker_means(in=b);
 by smoker;
 adj_total_bill = total_bill - group_bill;
 if a and b;
run;
```

pandas `groupby` provides a `transform` mechanism that allows these type of operations to be succinctly expressed in one operation.

```
In [48]: gb = tips.groupby('smoker')['total_bill']
In [49]: tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')
In [50]: tips.head()
Out[50]:
```

<table>
<thead>
<tr>
<th>total_bill</th>
<th>tip</th>
<th>sex</th>
<th>smoker</th>
<th>day</th>
<th>time</th>
<th>size</th>
<th>adj_total_bill</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>1.07</td>
<td>1.00</td>
<td>Female</td>
<td>Yes</td>
<td>Sat</td>
<td>1</td>
<td>-17.686344</td>
</tr>
<tr>
<td>92</td>
<td>3.75</td>
<td>1.00</td>
<td>Female</td>
<td>Yes</td>
<td>Fri</td>
<td>2</td>
<td>-15.006344</td>
</tr>
<tr>
<td>111</td>
<td>5.25</td>
<td>1.00</td>
<td>Female</td>
<td>No</td>
<td>Sat</td>
<td>1</td>
<td>-11.938278</td>
</tr>
<tr>
<td>145</td>
<td>6.35</td>
<td>1.50</td>
<td>Female</td>
<td>No</td>
<td>Thur</td>
<td>2</td>
<td>-10.838278</td>
</tr>
<tr>
<td>135</td>
<td>6.51</td>
<td>1.25</td>
<td>Female</td>
<td>No</td>
<td>Thur</td>
<td>2</td>
<td>-10.678278</td>
</tr>
</tbody>
</table>

By Group Processing

In addition to aggregation, pandas `groupby` can be used to replicate most other by group processing from SAS. For example, this `DATA` step reads the data by sex/smoker group and filters to the first entry for each.

```
proc sort data=tips;
 by sex smoker;
run;
data tips_first;
```
set tips;
  by sex smoker;
  if FIRST.sex or FIRST.smoker then output;
run;

In pandas this would be written as:

```
In [51]: tips.groupby(['sex', 'smoker']).first()
Out[51]:
 total_bill tip day time size adj_total_bill
sex smoker
Female No 5.25 1.00 Sat Dinner 1 -11.938278
 Yes 1.07 1.00 Sat Dinner 1 -17.686344
Male No 5.51 2.00 Thur Lunch 2 -11.678278
 Yes 5.25 5.15 Sun Dinner 2 -13.506344
```

**Other Considerations**

**Disk vs Memory**

pandas operates exclusively in memory, where a SAS data set exists on disk. This means that the size of data able to
be loaded in pandas is limited by your machine’s memory, but also that the operations on that data may be faster.

If out of core processing is needed, one possibility is the `dask.dataframe` library (currently in development) which
provides a subset of pandas functionality for an on-disk DataFrame.

**Data Interop**

pandas provides a `read_sas()` method that can read SAS data saved in the XPORT format. The ability to read
SAS’s binary format is planned for a future release.

```
libname xportout xport 'transport-file.xpt';
data xportout.tips;
 set tips(rename=(total_bill=tbill));
 * xport variable names limited to 6 characters;
run;

df = pd.read_sas('transport-file.xpt')
```

XPORT is a relatively limited format and the parsing of it is not as optimized as some of the other pandas readers. An
alternative way to interop data between SAS and pandas is to serialize to csv.

```
version 0.17, 10M rows
In [8]: %time df = pd.read_sas('big.xpt')
Wall time: 14.6 s

In [9]: %time df = pd.read_csv('big.csv')
Wall time: 4.86 s
```
### Input/Output

#### Pickling

**read_pickle**

```python
read_pickle(path)
```

Load pickled pandas object (or any other pickled object) from the specified file path.

**pandas.read_pickle**

```python
pandas.read_pickle(path)
```

Load pickled pandas object (or any other pickled object) from the specified file path.

*Warning:* Loading pickled data received from untrusted sources can be unsafe. See: [http://docs.python.org/2.7/library/pickle.html](http://docs.python.org/2.7/library/pickle.html)

**Parameters**

- **path**: string
  - File path

**Returns**

- **unpickled**: type of object stored in file

#### Flat File

**read_table**

```python
read_table(filepath_or_buffer[, sep, ...])
```

Read general delimited file into DataFrame.

**read_csv**

```python
read_csv(filepath_or_buffer[, sep, ...])
```

Read CSV (comma-separated) file into DataFrame.

**read_fwf**

```python
read_fwf(filepath_or_buffer[, colspecs, widths])
```

Read a table of fixed-width formatted lines into DataFrame.

**read_msgpack**

```python
read_msgpack(path_or_buf[, encoding, iterator])
```

Load msgpack pandas object from the specified file path.
pandas: powerful Python data analysis toolkit, Release 0.19.2

**pandas.read_table**

```python
pandas.read_table(filepath_or_buffer, sep='\t', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skiprows=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)
```

Read general delimited file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.

**Parameters**

- `filepath_or_buffer` : str, pathlib.Path, py._path.local.LocalPath or any object with a `read()` method (such as a file handle or StringIO)
  
The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.csv

- `sep` : str, default t (tab-stop)
  
  Delimiter to use. If sep is None, will try to automatically determine this. Separators longer than 1 character and different from '\s+' will be interpreted as regular expressions, will force use of the python parsing engine and will ignore quotes in the data.
  
  Regex example: '\\r\\t'

- `delimiter` : str, default None
  
  Alternative argument name for sep.

- `delim_whitespace` : boolean, default False
  
  Specifies whether or not whitespace (e.g. ' ' or '\t') will be used as the sep. Equivalent to setting `sep='\s+'`. If this option is set to True, nothing should be passed in for the delimiter parameter.

  New in version 0.18.1: support for the Python parser.

- `header` : int or list of ints, default 'infer'
  
  Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. Explicitly pass `header=0` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if `skip_blank_lines=True`, so `header=0` denotes the first line of data rather than the first line of the file.

- `names` : array-like, default None
List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list are not allowed unless mangle_dupe_cols=True, which is the default.

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

usecols : array-like, default None

Return a subset of the columns. All elements in this array must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Using this parameter results in much faster parsing time and lower memory usage.

as_recarray : boolean, default False

DEPRECATED: this argument will be removed in a future version. Please call pd.read_csv(...).to_records() instead.

Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the squeeze parameter. In addition, as row indices are not available in such a format, the index_col parameter will be ignored.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python'). Use str or object to preserve and not interpret dtype.

engine : {'c', 'python'}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

skipinitialspace : boolean, default False
Skip spaces after delimiter.

- **skiprows**: list-like or integer, default None
  - Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

- **skipfooter**: int, default 0
  - Number of lines at bottom of file to skip (Unsupported with engine=’c’)

- **nrows**: int, default None
  - Number of rows of file to read. Useful for reading pieces of large files

- **na_values**: scalar, str, list-like, or dict, default None
  - Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘’NA’, ‘NULL’, ‘NaN’, ‘nan’.

- **keep_default_na**: bool, default True
  - If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to.

- **na_filter**: boolean, default True
  - Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

- **verbose**: boolean, default False
  - Indicate number of NA values placed in non-numeric columns

- **skip_blank_lines**: boolean, default True
  - If True, skip over blank lines rather than interpreting as NaN values

- **parse_dates**: boolean or list of ints or names or list of lists or dict, default False
  - • boolean. If True -> try parsing the index.
  - • list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
  - • list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
  - • dict, e.g. {'foo': [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’
  - Note: A fast-path exists for iso8601-formatted dates.

- **infer_datetime_format**: boolean, default False
  - If True and parse_dates is enabled, pandas will attempt to infer the format of the date-time strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

- **keep_date_col**: boolean, default False
If True and parse_dates specifies combining multiple columns then keep the original columns.

**date_parser** : function, default None

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses `dateutil.parser.parser` to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

**dayfirst** : boolean, default False

DD/MM format dates, international and European format

**iterator** : boolean, default False

Return TextFileReader object for iteration or getting chunks with `get_chunk()`.

**chunksize** : int, default None

Return TextFileReader object for iteration. See IO Tools docs for more information on iterator and chunksize.

**compression** : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, zip or xz if filepath_or_buffer is a string ending in ‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’, respectively, and no decompression otherwise. If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

**thousands** : str, default None

Thousands separator

**decimal** : str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

**float_precision** : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

**lineterminator** : str (length 1), default None

Character to break file into lines. Only valid with C parser.

**quotechar** : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

**quoting** : int or csv.QUOTE_* instance, default 0

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

**doublequote** : boolean, default True
When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single quotechar element.

**escapechar** : str (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

**comment** : str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing '#emptyna,b,cn1,2,3' with header=0 will result in 'a,b,c' being treated as the header.

**encoding** : str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings.

**dialect** : str or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char. See csv.Dialect documentation for more details.

**tupleize_cols** : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

**error_bad_lines** : boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

**warn_bad_lines** : boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser).

**low_memory** : boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser)

**buffer_lines** : int, default None

DEPRECATED: this argument will be removed in a future version because its value is not respected by the parser

**compact_ints** : boolean, default False

DEPRECATED: this argument will be removed in a future version

If compact_ints is True, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype possible, either signed or unsigned depending on the specification from the use_unsigned parameter.

**use_unsigned** : boolean, default False
DEPRECATED: this argument will be removed in a future version

If integer columns are being compacted (i.e. compact_ints=True), specify whether the column should be compacted to the smallest signed or unsigned integer dtype.

**memory_map**: boolean, default False

If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

**Returns** `result`: DataFrame or TextParser

---

**pandas.read_csv**

```python
pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar=None, quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)
```

Read CSV (comma-separated) file into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.

**Parameters**

**filepath_or_buffer**: str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file:///local-host/path/to/table.csv

**sep**: str, default ','

Delimiter to use. If sep is None, will try to automatically determine this. Separators longer than 1 character and different from '\s+' will be interpreted as regular expressions, will force use of the python parsing engine and will ignore quotes in the data. Regex example: '\r\t'

**delimiter**: str, default None

Alternative argument name for sep.

**delim_whitespace**: boolean, default False

Specifies whether or not whitespace (e.g. ' ' or ' ') will be used as the sep. Equivalent to setting sep='\s+'. If this option is set to True, nothing should be passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

**header**: int or list of ints, default 'infer'
Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

names : array-like, default None

List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list are not allowed unless mangle_dupe_cols=True, which is the default.

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

usecols : array-like, default None

Return a subset of the columns. All elements in this array must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Using this parameter results in much faster parsing time and lower memory usage.

as_recarray : boolean, default False

DEPRECATED: this argument will be removed in a future version. Please call pd.read_csv(...).to_records() instead.

Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the squeeze parameter. In addition, as row indices are not available in such a format, the index_col parameter will be ignored.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X.0’...'X.N', rather than ‘X’...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} (Unsupported with engine=’python’). Use str or object to preserve and not interpret dtype.

engine : {‘c’, ‘python’}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

converters : dict, default None
Dict of functions for converting values in certain columns. Keys can either be integers or column labels.

- **true_values**: list, default None
  - Values to consider as True

- **false_values**: list, default None
  - Values to consider as False

- **skipinitialspace**: boolean, default False
  - Skip spaces after delimiter.

- **skiprows**: list-like or integer, default None
  - Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

- **skipfooter**: int, default 0
  - Number of lines at bottom of file to skip (Unsupported with engine=’c’)

- **skip_footer**: int, default 0
  - DEPRECATED: use the skipfooter parameter instead, as they are identical

- **nrows**: int, default None
  - Number of rows of file to read. Useful for reading pieces of large files

- **na_values**: scalar, str, list-like, or dict, default None
  - Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’.

- **keep_default_na**: bool, default True
  - If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to.

- **na_filter**: boolean, default True
  - Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file

- **verbose**: boolean, default False
  - Indicate number of NA values placed in non-numeric columns

- **skip_blank_lines**: boolean, default True
  - If True, skip over blank lines rather than interpreting as NaN values

- **parse_dates**: boolean or list of ints or names or list of lists or dict, default False
  - boolean. If True -> try parsing the index.
  - list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column.
  - list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column.
• dict, e.g. {'foo': [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

Note: A fast-path exists for iso8601-formatted dates.

**infer_datetime_format** : boolean, default False

If True and parse_dates is enabled, pandas will attempt to infer the format of the date-time strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

**keep_date_col** : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

**date_parser** : function, default None

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

**dayfirst** : boolean, default False

DD/MM format dates, international and European format

**iterator** : boolean, default False

Return TextFileReader object for iteration or getting chunks with get_chunk().

**chunksize** : int, default None

Return TextFileReader object for iteration. See IO Tools docs for more information on iterator and chunksize.

**compression** : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default ‘infer’

For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, zip or xz if filepath_or_buffer is a string ending in ‘.gz’, ‘.bz2’, ‘.zip’, or ‘.xz’, respectively, and no decompression otherwise. If using ‘zip’, the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

**thousands** : str, default None

Thousands separator

**decimal** : str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

**float_precision** : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

**lineterminator** : str (length 1), default None

Character to break file into lines. Only valid with C parser.

**quotechar** : str (length 1), optional
The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

**quoting**: int or csv.QUOTE_* instance, default 0

Control field quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

**doublequote**: boolean, default True

When quotechar is specified and quoting is not QUOTE_NONE, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single quotechar element.

**escapechar**: str (length 1), default None

One-character string used to escape delimiter when quoting is QUOTE_NONE.

**comment**: str, default None

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True), fully commented lines are ignored by the parameter header but not by skiprows. For example, if comment='#', parsing '#emptyna,b,cn1,2,3' with header=0 will result in 'a,b,c' being treated as the header.

**encoding**: str, default None

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

**dialect**: str or csv.Dialect instance, default None

If None defaults to Excel dialect. Ignored if sep longer than 1 char See csv.Dialect documentation for more details

**tupleize_cols**: boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

**error_bad_lines**: boolean, default True

Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

**warn_bad_lines**: boolean, default True

If error_bad_lines is False, and warn_bad_lines is True, a warning for each “bad line” will be output. (Only valid with C parser)

**low_memory**: boolean, default True

Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the dtype parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize or iterator parameter to return the data in chunks. (Only valid with C parser)

**buffer_lines**: int, default None

DEPRECATED: this argument will be removed in a future version because its value is not respected by the parser
compact_ints : boolean, default False

DEPRECATED: this argument will be removed in a future version

If compact_ints is True, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype possible, either signed or unsigned depending on the specification from the use_unsigned parameter.

use_unsigned : boolean, default False

DEPRECATED: this argument will be removed in a future version

If integer columns are being compacted (i.e. compact_ints=True), specify whether the column should be compacted to the smallest signed or unsigned integer dtype.

memory_map : boolean, default False

If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

Returns result : DataFrame or TextParser

pandas.read_fwf

pandas.read_fwf (filepath_or_buffer, colspecs='infer', widths=None, **kwds)

Read a table of fixed-width formatted lines into DataFrame

Also supports optionally iterating or breaking of the file into chunks.

Additional help can be found in the online docs for IO Tools.

Parameters filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file:///local-host/path/to/table.csv

colspecs : list of pairs (int, int) or ‘infer’. optional

A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to]). String value ‘infer’ can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data (default=’infer’).

widths : list of ints. optional

A list of field widths which can be used instead of ‘colspecs’ if the intervals are contiguous.

delimiter : str, default None

Alternative argument name for sep.

delim_whitespace : boolean, default False

Specifies whether or not whitespace (e.g. ‘ ’ or ‘ ’) will be used as the sep. Equivalent to setting sep=’\s+’. If this option is set to True, nothing should be passed in for the delimiter parameter.

New in version 0.18.1: support for the Python parser.

header : int or list of ints, default ‘infer’
Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. Explicitly pass header=0 to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.

names : array-like, default None

List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list are not allowed unless mangle_dupe_cols=True, which is the default.

index_col : int or sequence or False, default None

Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False to force pandas to _not_ use the first column as the index (row names)

usecols : array-like, default None

Return a subset of the columns. All elements in this array must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid usecols parameter would be [0, 1, 2] or ['foo', 'bar', 'baz']. Using this parameter results in much faster parsing time and lower memory usage.

as_recarray : boolean, default False

DEPRECATED: this argument will be removed in a future version. Please call pd.read_csv(...).to_records() instead.

Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True, this option takes precedence over the squeeze parameter. In addition, as row indices are not available in such a format, the index_col parameter will be ignored.

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

prefix : str, default None

Prefix to add to column numbers when no header, e.g. ‘X’ for X0, X1, ...

mangle_dupe_cols : boolean, default True

Duplicate columns will be specified as ‘X.0’...'X.N’, rather than ‘X’...'X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.

dtype : Type name or dict of column -> type, default None

Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (Unsupported with engine='python'). Use str or object to preserve and not interpret dtype.

converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels

true_values : list, default None

Values to consider as True
false_values : list, default None

Values to consider as False

skipinitialspace : boolean, default False

Skip spaces after delimiter.

skiprows : list-like or integer, default None

Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file

skipfooter : int, default 0

Number of lines at bottom of file to skip (Unsupported with engine='c')

DEPRECATED: use the skipfooter parameter instead, as they are identical

nrows : int, default None

Number of rows of file to read. Useful for reading pieces of large files

na_values : scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’,


keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are over-
ridden, otherwise they’re appended to.

na_filter : boolean, default True

Detect missing value markers (empty strings and the value of na_values). In data with-
out any NAs, passing na_filter=False can improve the performance of reading a large file

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

skip_blank_lines : boolean, default True

If True, skip over blank lines rather than interpreting as NaN values

parse_dates : boolean or list of ints or names or list of lists or dict, default False

• boolean. If True -> try parsing the index.

• list of ints or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate
date column.

• list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date
column.

• dict, e.g. {‘foo’: [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

Note: A fast-path exists for iso8601-formatted dates.

infer_datetime_format : boolean, default False
If True and parse_dates is enabled, pandas will attempt to infer the format of the date-time strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

keep_date_col : boolean, default False

If True and parse_dates specifies combining multiple columns then keep the original columns.

date_parser : function, default None

Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments.

dayfirst : boolean, default False

DD/MM format dates, international and European format

iterator : boolean, default False

Return TextFileReader object for iteration or getting chunks with get_chunk()

chunksize : int, default None

Return TextFileReader object for iteration. See IO Tools docs for more information on iterator and chunksize.

compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, default 'infer'

For on-the-fly decompression of on-disk data. If 'infer', then use gzip, bz2, zip or xz if filepath_or_buffer is a string ending in '.gz', '.bz2', '.zip', or 'xz', respectively, and no decompression otherwise. If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression.

New in version 0.18.1: support for ‘zip’ and ‘xz’ compression.

thousands : str, default None

Thousands separator

decimal : str, default ‘.’

Character to recognize as decimal point (e.g. use ‘,’ for European data).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

lineterminator : str (length 1), default None

Character to break file into lines. Only valid with C parser.

quotechar : str (length 1), optional

The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored.

quoting : int or csv.QUOTE_* instance, default 0
Control field quoting behavior per `csv.QUOTE_*` constants. Use one of `QUOTE_MINIMAL` (0), `QUOTE_ALL` (1), `QUOTE_NONNUMERIC` (2) or `QUOTE_NONE` (3).

**doublequote**: boolean, default `True`

When `quotechar` is specified and quoting is not `QUOTE_NONE`, indicate whether or not to interpret two consecutive `quotechar` elements INSIDE a field as a single `quotechar` element.

**escapechar**: str (length 1), default `None`

One-character string used to escape delimiter when quoting is `QUOTE_NONE`.

**comment**: str, default `None`

Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as `skip_blank_lines=True`), fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if `comment=’#’`, parsing ‘#emptyna,b,cn1,2,3’ with `header=0` will result in ‘a,b,c’ being treated as the header.

**encoding**: str, default `None`

Encoding to use for UTF when reading/writing (ex. ‘utf-8’). List of Python standard encodings

**dialect**: str or `csv.Dialect` instance, default `None`

If `None` defaults to Excel dialect. Ignored if sep longer than 1 char. See `csv.Dialect` documentation for more details

**tupleize_cols**: boolean, default `False`

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

**error_bad_lines**: boolean, default `True`

Lines with too many fields (e.g. a `csv` line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these “bad lines” will dropped from the DataFrame that is returned. (Only valid with C parser)

**warn_bad_lines**: boolean, default `True`

If `error_bad_lines` is False, and `warn_bad_lines` is True, a warning for each “bad line” will be output. (Only valid with C parser).

**low_memory**: boolean, default `True`

Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set `False`, or specify the type with the `dtype` parameter. Note that the entire file is read into a single DataFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser)

**buffer_lines**: int, default `None`

DEPRECATED: this argument will be removed in a future version because its value is not respected by the parser

**compact_ints**: boolean, default `False`
DEPRECATED: this argument will be removed in a future version

If compact_ints is True, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype possible, either signed or unsigned depending on the specification from the use_unsigned parameter.

**use_unsigned** : boolean, default False

DEPRECATED: this argument will be removed in a future version

If integer columns are being compacted (i.e. compact_ints=True), specify whether the column should be compacted to the smallest signed or unsigned integer dtype.

**memory_map** : boolean, default False

If a filepath is provided for filepath_or_buffer, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.

**Returns** result : DataFrame or TextParser

Also, `delimiter` is used to specify the filler character of the fields if it is not spaces (e.g., `~`).

**pandas.read_msgpack**

**pandas.read_msgpack**(path_or_buf, encoding='utf-8', iterator=False, **kwargs)

Load msgpack pandas object from the specified file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

**Parameters**

- **path_or_buf** : string File path, BytesIO like or string
- **encoding** : Encoding for decoding msgpack str type
- **iterator** : boolean, if True, return an iterator to the unpacker
  (default is False)

**Returns** obj : type of object stored in file

**Clipboard**

**read_clipboard(**kwargs**)

Read text from clipboard and pass to read_table.

**pandas.read_clipboard**

**pandas.read_clipboard**( **kwargs**)

Read text from clipboard and pass to read_table. See read_table for the full argument list

If unspecified, sep defaults to ‘s+

**Returns** parsed : DataFrame

**Excel**

35.1. Input/Output
pandas: powerful Python data analysis toolkit, Release 0.19.2

**pandas.read_excel**

```python
pandas.read_excel(io[, sheetname, header, ...])
```

Read an Excel table into a pandas DataFrame

**ExcelFile.parse**

```python
ExcelFile.parse([sheetname, header, ...])
```

Parse specified sheet(s) into a DataFrame

---

**pandas.read_excel**

```python
pandas.read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
```

Read an Excel table into a pandas DataFrame

**Parameters**

- **io**: string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx

- **sheetname**: string, int, mixed list of strings/integers, or None, default 0
  - Strings are used for sheet names, Integers are used in zero-indexed sheet positions.
  - Lists of strings/integers are used to request multiple sheets.
  - Specify None to get all sheets.
  - str/int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets.
  - Available Cases
    - Defaults to 0 -> 1st sheet as a DataFrame
    - 1 -> 2nd sheet as a DataFrame
    - "Sheet1" -> 1st sheet as a DataFrame
    - [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
    - None -> All sheets as a dictionary of DataFrames

- **header**: int, list of ints, default 0
  - Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a MultiIndex

- **skiprows**: list-like
  - Rows to skip at the beginning (0-indexed)

- **skip_footer**: int, default 0
  - Rows at the end to skip (0-indexed)

- **index_col**: int, list of ints, default None
  - Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a MultiIndex

- **names**: array-like, default None
  - List of column names to use. If file contains no header row, then you should explicitly pass header=None
converters : dict, default None

Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content.

true_values : list, default None

Values to consider as True

New in version 0.19.0.

false_values : list, default None

Values to consider as False

New in version 0.19.0.

parse_cols : int or list, default None

- If None then parse all columns,
- If int then indicates last column to be parsed
- If list of ints then indicates list of column numbers to be parsed
- If string then indicates comma separated list of column names and column ranges (e.g. “A:E” or “A,C,E:F”)

squeeze : boolean, default False

If the parsed data only contains one column then return a Series

na_values : scalar, str, list-like, or dict, default None

Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’.

thousands : str, default None

Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format.

keep_default_na : bool, default True

If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to.

verbose : boolean, default False

Indicate number of NA values placed in non-numeric columns

engine: string, default None

If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd

convert_float : boolean, default True

Convert integral floats to int (i.e., 1.0 -> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally

has_index_names : boolean, default None
DEPRECATED: for version 0.17+ index names will be automatically inferred based on index_col. To read Excel output from 0.16.2 and prior that had saved index names, use True.

Returns parsed: DataFrame or Dict of DataFrames

DataFrame from the passed in Excel file. See notes in sheetname argument for more information on when a Dict of Dataframes is returned.

pandas.ExcelFile.parse

ExcelFile.parse(sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, true_values=None, false_values=None, squeeze=False, **kwargs)

Parse specified sheet(s) into a DataFrame

Equivalent to read_excel(ExcelFile, ...) See the read_excel docstring for more info on accepted parameters

JSON

read_json([path_or_buf, orient, typ, dtype, ...]) Convert a JSON string to pandas object

pandas.read_json

pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False)

Convert a JSON string to pandas object

Parameters path_or_buf: a valid JSON string or file-like, default: None

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/table.json

orient: string,

Indication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is:

- 'split': dict like {index -> [index],columns -> [columns],data -> [values]}
- 'records': list like [{column -> value},... ,{column -> value}]
- 'index': dict like {index -> {column -> value}}
- 'columns': dict like {column -> {index -> value}}
- 'values': just the values array

The allowed and default values depend on the value of the typ parameter.

- when typ == 'series',
  - allowed orients are {'split','records','index'}
- default is 'index'
- The Series index must be unique for orient 'index'.
- when typ == 'frame',
  - allowed orients are {'split','records','index','columns','values'}
  - default is 'columns'
- The DataFrame index must be unique for orients 'index' and 'columns'.
- The DataFrame columns must be unique for orients 'index','columns', and 'records'.

**typ** : type of object to recover (series or frame), default 'frame'

**dtype** : boolean or dict, default True

  If True, infer dtypes, if a dict of column to dtype, then use those, if False, then don’t infer dtypes at all, applies only to the data.

**convert_axes** : boolean, default True

  Try to convert the axes to the proper dtypes.

**convert_dates** : boolean, default True

  List of columns to parse for dates; If True, then try to parse datelike columns default is True; a column label is datelike if
  * it ends with '_at',
  * it ends with '_time',
  * it begins with 'timestamp',
  * it is 'modified', or
  * it is 'date'

**keep_default_dates** : boolean, default True

  If parsing dates, then parse the default datelike columns

**numpy** : boolean, default False

  Direct decoding to numpy arrays. Supports numeric data only, but non-numeric column and index labels are supported. Note also that the JSON ordering MUST be the same for each term if numpy=True.

**precise_float** : boolean, default False

  Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False) is to use fast but less precise builtin functionality

**date_unit** : string, default None

  The timestamp unit to detect if converting dates. The default behaviour is to try and detect the correct precision, but if this is not desired then pass one of ‘s’, ‘ms’, ‘us’ or ‘ns’ to force parsing only seconds, milliseconds, microseconds or nanoseconds respectively.

**lines** : boolean, default False

  Read the file as a json object per line.

  New in version 0.19.0.

**encoding** : str, default is ‘utf-8’
pandas: powerful Python data analysis toolkit, Release 0.19.2

The encoding to use to decode py3 bytes.
New in version 0.19.0.
Returns result : Series or DataFrame, depending on the value of typ.
See also:
DataFrame.to_json
Examples
>>> df = pd.DataFrame([['a', 'b'], ['c', 'd']],
...
index=['row 1', 'row 2'],
...
columns=['col 1', 'col 2'])

Encoding/decoding a Dataframe using 'split' formatted JSON:
>>> df.to_json(orient='split')
'{"columns":["col 1","col 2"],
"index":["row 1","row 2"],
"data":[["a","b"],["c","d"]]}'
>>> pd.read_json(_, orient='split')
col 1 col 2
row 1
a
b
row 2
c
d

Encoding/decoding a Dataframe using 'index' formatted JSON:
>>> df.to_json(orient='index')
'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}'
>>> pd.read_json(_, orient='index')
col 1 col 2
row 1
a
b
row 2
c
d

Encoding/decoding a Dataframe using 'records' formatted JSON. Note that index labels are not preserved
with this encoding.
>>> df.to_json(orient='records')
'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]'
>>> pd.read_json(_, orient='records')
col 1 col 2
0
a
b
1
c
d

json_normalize(data[, record_path, meta, ...])

“Normalize” semi-structured JSON data into a flat table

pandas.io.json.json_normalize
pandas.io.json.json_normalize(data, record_path=None,
record_prefix=None)
“Normalize” semi-structured JSON data into a flat table

meta=None,

meta_prefix=None,

Parameters data : dict or list of dicts
Unserialized JSON objects

1114

Chapter 35. API Reference


record_path : string or list of strings, default None

Path in each object to list of records. If not passed, data will be assumed to be an array of records

meta : list of paths (string or list of strings), default None

Fields to use as metadata for each record in resulting table

record_prefix : string, default None

If True, prefix records with dotted (?) path, e.g. foo.bar.field if path to records is ['foo', 'bar']

meta_prefix : string, default None

Returns frame : DataFrame

Examples

```python
>>> data = [{'state': 'Florida',
... 'shortname': 'FL',
... 'info': {
... 'governor': 'Rick Scott',
... },
... 'counties': [{'name': 'Dade', 'population': 12345},
... {'name': 'Broward', 'population': 40000},
... {'name': 'Palm Beach', 'population': 60000}],
... }
...]
...
...
... [{'state': 'Ohio',
... 'shortname': 'OH',
... 'info': {
... 'governor': 'John Kasich',
... },
... 'counties': [{'name': 'Summit', 'population': 1234},
... {'name': 'Cuyahoga', 'population': 1337}],
... }
...]
...
>>> from pandas.io.json import json_normalize
...
>>> result = json_normalize(data, 'counties', ['state', 'shortname',
... ['info', 'governor']])
...
>>> result
... name population info.governor state shortname
... 0 Dade 12345 Rick Scott Florida FL
... 1 Broward 40000 Rick Scott Florida FL
... 2 Palm Beach 60000 Rick Scott Florida FL
... 3 Summit 1234 John Kasich Ohio OH
... 4 Cuyahoga 1337 John Kasich Ohio OH
```

HTML

<table>
<thead>
<tr>
<th>name</th>
<th>population</th>
<th>info.governor</th>
<th>state</th>
<th>shortname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dade</td>
<td>12345</td>
<td>Rick Scott</td>
<td>Florida</td>
<td>FL</td>
</tr>
<tr>
<td>Broward</td>
<td>40000</td>
<td>Rick Scott</td>
<td>Florida</td>
<td>FL</td>
</tr>
<tr>
<td>Palm Beach</td>
<td>60000</td>
<td>Rick Scott</td>
<td>Florida</td>
<td>FL</td>
</tr>
<tr>
<td>Summit</td>
<td>1234</td>
<td>John Kasich</td>
<td>Ohio</td>
<td>OH</td>
</tr>
<tr>
<td>Cuyahoga</td>
<td>1337</td>
<td>John Kasich</td>
<td>Ohio</td>
<td>OH</td>
</tr>
</tbody>
</table>

pandas.read_html

pandas.read_html(io[, match, flavor, header, ...])

Read HTML tables into a list of DataFrame objects.

```python
>>> data = [{'state': 'Florida',
... 'shortname': 'FL',
... 'info': {
... 'governor': 'Rick Scott',
... },
... 'counties': [{'name': 'Dade', 'population': 12345},
... {'name': 'Broward', 'population': 40000},
... {'name': 'Palm Beach', 'population': 60000}],
... }
...]
...
...
... [{'state': 'Ohio',
... 'shortname': 'OH',
... 'info': {
... 'governor': 'John Kasich',
... },
... 'counties': [{'name': 'Summit', 'population': 1234},
... {'name': 'Cuyahoga', 'population': 1337}],
... }
...]
...
>>> from pandas.io.json import json_normalize
...
>>> result = json_normalize(data, 'counties', ['state', 'shortname',
... ['info', 'governor']])
...
>>> result
... name population info.governor state shortname
... 0 Dade 12345 Rick Scott Florida FL
... 1 Broward 40000 Rick Scott Florida FL
... 2 Palm Beach 60000 Rick Scott Florida FL
... 3 Summit 1234 John Kasich Ohio OH
... 4 Cuyahoga 1337 John Kasich Ohio OH
```
Parameters

io : str or file-like

A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts
the http, ftp and file url protocols. If you have a URL that starts with 'https' you
might try removing the 's'.

match : str or compiled regular expression, optional

The set of tables containing text matching this regex or string will be returned. Unless
the HTML is extremely simple you will probably need to pass a non-empty string here.
Defaults to '.+' (match any non-empty string). The default value will return all tables
contained on a page. This value is converted to a regular expression so that there is
consistent behavior between Beautiful Soup and lxml.

flavor : str or None, container of strings

The parsing engine to use. 'bs4' and 'html5lib' are synonymous with each other, they
are both there for backwards compatibility. The default of None tries to use lxml to
parse and if that fails it falls back on bs4 + html5lib.

header : int or list-like or None, optional

The row (or list of rows for a MultiIndex) to use to make the columns headers.

index_col : int or list-like or None, optional

The column (or list of columns) to use to create the index.

skiprows : int or list-like or slice or None, optional

0-based. Number of rows to skip after parsing the column integer. If a sequence of
integers or a slice is given, will skip the rows indexed by that sequence. Note that a
single element sequence means ‘skip the nth row’ whereas an integer means ‘skip n
rows’.

attrs : dict or None, optional

This is a dictionary of attributes that you can pass to use to identify the table in the
HTML. These are not checked for validity before being passed to lxml or Beautiful
Soup. However, these attributes must be valid HTML table attributes to work correctly.
For example,

```python
attrs = {'id': 'table'}
```

is a valid attribute dictionary because the ‘id’ HTML tag attribute is a valid HTML
attribute for any HTML tag as per this document.

```python
attrs = {'asdf': 'table'}
```

is not a valid attribute dictionary because ‘asdf’ is not a valid HTML attribute even if
it is a valid XML attribute. Valid HTML 4.01 table attributes can be found here. A
working draft of the HTML 5 spec can be found here. It contains the latest information
on table attributes for the modern web.

parse_dates : bool, optional

See read_csv() for more details.

tupleize_cols : bool, optional

If False try to parse multiple header rows into a MultiIndex, otherwise return raw
tuples. Defaults to False.
thousands : str, optional
    Separator to use to parse thousands. Defaults to ',', '.

encoding : str or None, optional
    The encoding used to decode the web page. Defaults to None.‘None’ preserves the
    previous encoding behavior, which depends on the underlying parser library (e.g., the
    parser library will try to use the encoding provided by the document).

decimal : str, default ‘.’
    Character to recognize as decimal point (e.g. use ‘,’ for European data).
    New in version 0.19.0.

converters : dict, default None
    Dict of functions for converting values in certain columns. Keys can either be integers or
    column labels, values are functions that take one input argument, the cell (not column)
    content, and return the transformed content.
    New in version 0.19.0.

na_values : iterable, default None
    Custom NA values
    New in version 0.19.0.

keep_default_na : bool, default True
    If na_values are specified and keep_default_na is False the default NaN values are over-
    ridden, otherwise they're appended to
    New in version 0.19.0.

Returns
dfs : list of DataFrames

See also:
pandas.read_csv

Notes

Before using this function you should read the gotchas about the HTML parsing libraries.

Expect to do some cleanup after you call this function. For example, you might need to manually assign column
names if the column names are converted to NaN when you pass the header=0 argument. We try to assume as
little as possible about the structure of the table and push the idiosyncrasies of the HTML contained in the table
to the user.

This function searches for <table> elements and only for <tr> and <th> rows and <td> elements within
each <tr> or <th> element in the table. <td> stands for “table data”.

Similar to read_csv() the header argument is applied after skiprows is applied.

This function will always return a list of DataFrame or it will fail, e.g., it will not return an empty list.

Examples

See the read_html documentation in the IO section of the docs for some examples of reading in HTML tables.
HDFStore: PyTables (HDF5)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read_hdf</code></td>
<td><code>read_hdf(path_or_buf, key=None, **kwargs)</code> read from the store, close it if we opened it</td>
</tr>
<tr>
<td><code>HDFStore.put</code></td>
<td><code>HDFStore.put(key, value, format=None, append=False, **kwargs)</code> Store object in HDFStore</td>
</tr>
<tr>
<td><code>HDFStore.append</code></td>
<td><code>HDFStore.append(key, value[, format, ...])</code> Append to Table in file.</td>
</tr>
<tr>
<td><code>HDFStore.get</code></td>
<td><code>HDFStore.get(key)</code> Retrieve pandas object stored in file</td>
</tr>
<tr>
<td><code>HDFStore.select</code></td>
<td><code>HDFStore.select(key[, where, start, stop, ...])</code> Retrieve pandas object stored in file, optionally based on where criteria</td>
</tr>
</tbody>
</table>

**pandas.read_hdf**

`pandas.read_hdf(path_or_buf, key=None, **kwargs)` read from the store, close it if we opened it

- **Parameters**
  - `path_or_buf`: path (string), buffer, or path object (pathlib.Path or py._path.local.LocalPath) to read from
  - `key`: group identifier in the store. Can be omitted if the HDF file contains a single pandas object.
  - `where`: list of Term (or convertible) objects, optional
  - `start`: optional, integer (defaults to None), row number to start selection
  - `stop`: optional, integer (defaults to None), row number to stop selection
  - `columns`: optional, a list of columns that if not None, will limit the return columns
  - `iterator`: optional, boolean, return an iterator, default False
  - `chunksize`: optional, nrows to include in iteration, return an iterator

- **Returns** The selected object

**pandas.HDFStore.put**

`HDFStore.put(key, value, format=None, append=False, **kwargs)` Store object in HDFStore

- **Parameters**
  - `key`: object
  - `value`: {Series, DataFrame, Panel}
  - `format`: ‘fixed(f)|table(t)’, default is ‘fixed’
    - `fixed(f)` [Fixed format] Fast writing/reading. Not-appendable, nor searchable
    - `table(t)` [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
append : boolean, default False

This will force Table format, append the input data to the existing.

data_columns : list of columns to create as data columns, or True to use all columns. See here # noqa

encoding : default None, provide an encoding for strings
dropna : boolean, default False, do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’

**pandas.HDFStore.append**

HDFStore. **append**(key, value, format=None, append=True, columns=None, dropna=None, **kwargs)

Append to Table in file. Node must already exist and be Table format.

Parameters key : object

value : {Series, DataFrame, Panel, Panel4D}

format: ‘table’ is the default

table(t) [table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default True, append the input data to the existing
data_columns : list of columns, or True, default None

List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.

min_itemsize : dict of columns that specify minimum string sizes

nan_rep : string to use as string nan representation

chunksize : size to chunk the writing

expectedrows : expected TOTAL row size of this table

encoding : default None, provide an encoding for strings
dropna : boolean, default False, do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’

Notes

Does not check if data being appended overlaps with existing data in the table, so be careful

**pandas.HDFStore.get**

HDFStore. **get**(key)

Retrieve pandas object stored in file

Parameters key : object

Returns obj : type of object stored in file
pandas.HDFStore.select

HDFStore.select(key, where=None, start=None, stop=None, columns=None, iterator=False, chunksize=None, auto_close=False, **kwargs)
Retrieves a pandas object stored in file, optionally based on where criteria.

Parameters:
- **key**: object
- **where**: list of Term (or convertable) objects, optional
- **start**: integer (defaults to None), row number to start selection
- **stop**: integer (defaults to None), row number to stop selection
- **columns**: a list of columns that if not None, will limit the return
- **iterator**: boolean, return an iterator, default False
- **chunksize**: nrows to include in iteration, return an iterator
- **auto_close**: boolean, should automatically close the store when finished, default is False

Returns: The selected object

SAS

read_sas(filepath_or_buffer[, format, ...])
Read SAS files stored as either XPORT or SAS7BDAT format files.

pandas.read_sas

pandas.read_sas(filepath_or_buffer, format=None, index=None, encoding=None, chunksize=None, iterator=False)
Read SAS files stored as either XPORT or SAS7BDAT format files.

Parameters:
- **filepath_or_buffer**: string or file-like object
  Path to the SAS file.
- **format**: string {'xport', 'sas7bdat'} or None
  If None, file format is inferred. If 'xport' or 'sas7bdat', uses the corresponding format.
- **index**: identifier of index column, defaults to None
  Identifier of column that should be used as index of the DataFrame.
- **encoding**: string, default is None
  Encoding for text data. If None, text data are stored as raw bytes.
- **chunksize**: int
  Read file chunksize lines at a time, returns iterator.
- **iterator**: bool, defaults to False
  If True, returns an iterator for reading the file incrementally.
Returns DataFrame if iterator=False and chunksize=None, else SAS7BDATReader

or XportReader

SQL

read_sql_table(table_name, con[, schema, ...])
Read SQL database table into a DataFrame.

read_sql_query(sql, con[, index_col, ...])
Read SQL query into a DataFrame.

read_sql(sql, con[, index_col, ...])
Read SQL query or database table into a DataFrame.

Google BigQuery

read_gbq(query[, project_id, index_col, ...])
Load data from Google BigQuery.

to_gbq(dataframe, destination_table, project_id)
Write a DataFrame to a Google BigQuery table.

STATA

read_stata(filepath_or_buffer[, ...])
Read Stata file into DataFrame

pandas.read_stata

pandas.read_stata(filepath_or_buffer[, convert_dates=True, convert_categoricals=True, encoding=None, index=None, convert_missing=False, preserve_dtypes=True, columns=None, order_categoricals=True, chunksize=None, iterator=False])
Read Stata file into DataFrame

Parameters filepath_or_buffer : string or file-like object

Path to .dta file or object implementing a binary read() functions

convert_dates : boolean, defaults to True

Convert date variables to DataFrame time values

convert_categoricals : boolean, defaults to True

Read value labels and convert columns to Categorical/Factor variables

encoding : string, None or encoding

Encoding used to parse the files. None defaults to iso-8859-1.

index : identifier of index column

identifier of column that should be used as index of the DataFrame

convert_missing : boolean, defaults to False

Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissing-Value objects.

preserve_dtypes : boolean, defaults to True
Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64)

**columns**: list or None

Columns to retain. Columns will be returned in the given order. None returns all columns

**order_categoricals**: boolean, defaults to True

Flag indicating whether converted categorical data are ordered.

**chunksize**: int, default None

Return StataReader object for iterations, returns chunks with given number of lines

**iterator**: boolean, default False

Return StataReader object

**Returns** DataFrame or StataReader

### Examples

Read a Stata dta file:

```python
>>> df = pandas.read_stata('filename.dta')
```

Read a Stata dta file in 10,000 line chunks:

```python
>>> itr = pandas.read_stata('filename.dta', chunksize=10000)
>>> for chunk in itr:
>>> do_something(chunk)
```

<table>
<thead>
<tr>
<th>StataReader.data(**kwargs)</th>
<th>DEPRECATED: Reads observations from Stata file, converting them into a dataframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>StataReader.data_label()</td>
<td>Returns data label of Stata file</td>
</tr>
<tr>
<td>StataReader.value_labels()</td>
<td>Returns a dict, associating each variable name a dict, associating</td>
</tr>
<tr>
<td>StataReader.variable_labels()</td>
<td>Returns variable labels as a dict, associating each variable name</td>
</tr>
<tr>
<td>StataWriter.write_file()</td>
<td></td>
</tr>
</tbody>
</table>

### pandas.io.stata.StataReader.data

StataReader.data(**kwargs)

DEPRECATED: Reads observations from Stata file, converting them into a dataframe

This is a legacy method. Use read in new code.

**Parameters**

- **convert_dates**: boolean, defaults to True

  Convert date variables to DataFrame time values

- **convert_categoricals**: boolean, defaults to True

  Read value labels and convert columns to Categorical/Factor variables

- **index**: identifier of index column
identifier of column that should be used as index of the DataFrame

**convert_missing**: boolean, defaults to False

Flag indicating whether to convert missing values to their Stata representations. If False, missing values are replaced with nans. If True, columns containing missing values are returned with object data types and missing values are represented by StataMissing-Value objects.

**preserve_dtypes**: boolean, defaults to True

Preserve Stata datatypes. If False, numeric data are upcast to pandas default types for foreign data (float64 or int64)

**columns**: list or None

Columns to retain. Columns will be returned in the given order. None returns all columns

**order_categoricals**: boolean, defaults to True

Flag indicating whether converted categorical data are ordered.

**Returns** DataFrame

**pandas.io.stata.StataReader.data_label**

StataReader.**data_label()**

Returns data label of Stata file

**pandas.io.stata.StataReader.value_labels**

StataReader.**value_labels()**

Returns a dict, associating each variable name a dict, associating each value its corresponding label

**pandas.io.stata.StataReader.variable_labels**

StataReader.**variable_labels()**

Returns variable labels as a dict, associating each variable name with corresponding label

**pandas.io.stata.StataWriter.write_file**

StataWriter.**write_file()**

**General functions**

**Data manipulations**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>melt(frame[, id_vars, value_vars, var_name, ...])</strong></td>
<td>“Unpivots” a DataFrame from wide format to long format, optionally leaving</td>
</tr>
<tr>
<td><strong>pivot(index, columns, values)</strong></td>
<td>Produce ‘pivot’ table based on 3 columns of this DataFrame.</td>
</tr>
</tbody>
</table>
Table 35.14 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pivot_table</td>
<td>Create a spreadsheet-style pivot table as a DataFrame.</td>
</tr>
<tr>
<td>crosstab</td>
<td>Compute a simple cross-tabulation of two (or more) factors.</td>
</tr>
<tr>
<td>cut</td>
<td>Return indices of half-open bins to which each value of ( x ) belongs.</td>
</tr>
<tr>
<td>qcut</td>
<td>Quantile-based discretization function.</td>
</tr>
<tr>
<td>merge</td>
<td>Merge DataFrame objects by performing a database-style join operation by columns or indexes.</td>
</tr>
<tr>
<td>merge_ordered</td>
<td>Perform merge with optional filling/interpolation designed for ordered data like time series data.</td>
</tr>
<tr>
<td>merge_asof</td>
<td>Perform an asof merge.</td>
</tr>
<tr>
<td>concat</td>
<td>Concatenate pandas objects along a particular axis with optional set logic along the other axes.</td>
</tr>
<tr>
<td>get_dummies</td>
<td>Convert categorical variable into dummy/indicator variables</td>
</tr>
<tr>
<td>factorize</td>
<td>Encode input values as an enumerated type or categorical variable</td>
</tr>
</tbody>
</table>

**pandas.melt**

*pandas.melt* (frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)

“Unpivots” a DataFrame from wide format to long format, optionally leaving identifier variables set.

This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (id_vars), while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, ‘variable’ and ‘value’.

**Parameters**

- frame : DataFrame
  - Column(s) to use as identifier variables.
- id_vars : tuple, list, or ndarray, optional
  - Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars.
- value_vars : tuple, list, or ndarray, optional
  - Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’.
- var_name : scalar
  - Name to use for the ‘variable’ column.
- value_name : scalar, default ‘value’
  - Name to use for the ‘value’ column.
- col_level : int or string, optional
  - If columns are a MultiIndex then use this level to melt.

**See also:**

pivot_table, DataFrame.pivot
Examples

```python
>>> import pandas as pd
>>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'},
 'B': {0: 1, 1: 3, 2: 5},
 'C': {0: 2, 1: 4, 2: 6}})
>>> df
 A B C
0 a 1 2
1 b 3 4
2 c 5 6

>>> pd.melt(df, id_vars=['A'], value_vars=['B'])
 A variable value
0 a B 1
1 b B 3
2 c B 5

>>> pd.melt(df, id_vars=['A'], value_vars=['B', 'C'])
 A variable value
0 a B 1
1 b B 3
2 c B 5
3 a C 2
4 b C 4
5 c C 6

The names of ‘variable’ and ‘value’ columns can be customized:

```python
>>> pd.melt(df, id_vars=['A'], value_vars=['B'],
          var_name='myVarname', value_name='myValname')
     A  myVarname  myValname
0  a      B       1
1  b      B       3
2  c      B       5

If you have multi-index columns:

```python
>>> df.columns = [list('ABC'), list('DEF')]

>>> df
 A B C
 D E F
0 a 1 2
1 b 3 4
2 c 5 6

>>> pd.melt(df, col_level=0, id_vars=['A'], value_vars=['B'])
 A variable value
0 a B 1
1 b B 3
2 c B 5

```python
>>> pd.melt(df, id_vars=[('A', 'D')], value_vars=[('B', 'E')])
(A, D)  variable_0  variable_1  value
0  a      B       E       1
1  b      B       E       3

35.2. General functions 1125
**pandas.pivot**

`pandas.pivot(index, columns, values)`

Produce 'pivot' table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values.

**Parameters**
- **index**: ndarray
  - Labels to use to make new frame’s index
- **columns**: ndarray
  - Labels to use to make new frame’s columns
- **values**: ndarray
  - Values to use for populating new frame’s values

**Returns**
DataFrame

**Notes**

Obviously, all 3 of the input arguments must have the same length

---

**pandas.pivot_table**

`pandas.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')`

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.

**Parameters**
- **data**: DataFrame
  - column to aggregate, optional
- **values**: column, Grouper, array, or list of the previous
  - If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index.
  - If an array is passed, it is being used as the same manner as column values.
- **index**: column, Grouper, array, or list of the previous
  - If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column.
  - If an array is passed, it is being used as the same manner as column values.
- **columns**: column, Grouper, array, or list of the previous
  - If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column.
  - If an array is passed, it is being used as the same manner as column values.
- **aggfunc**: function or list of functions, default numpy.mean
  - If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves)
- **fill_value**: scalar, default None
  - Value to replace missing values with
- **margins**: boolean, default False
Add all row / columns (e.g. for subtotal / grand totals)

**dropna** : boolean, default True

Do not include columns whose entries are all NaN

**margins_name** : string, default ‘All’

Name of the row / column that will contain the totals when margins is True.

**Returns**  **table** : DataFrame

**Examples**

```python
>>> df
 A B C D
0 foo one small 1
1 foo one large 2
2 foo one large 2
3 foo two small 3
4 foo two small 3
5 bar one large 4
6 bar one small 5
7 bar two small 6
8 bar two large 7
```

```python
>>> table = pivot_table(df, values='D', index=['A', 'B'],
 columns=['C'], aggfunc=np.sum)
```

```python
>>> table
 small large
 foo one 1 4
 two 6 NaN
 bar one 5 4
 two 6 7
```

**pandas.crosstab**

**pandas.crosstab** *(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)*

Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed

**Parameters**

- **index** : array-like, Series, or list of arrays/Series
  
  Values to group by in the rows

- **columns** : array-like, Series, or list of arrays/Series
  
  Values to group by in the columns

- **values** : array-like, optional
  
  Array of values to aggregate according to the factors. Requires **aggfunc** be specified.

- **aggfunc** : function, optional
  
  If specified, requires **values** be specified as well

- **rownames** : sequence, default None
If passed, must match number of row arrays passed

**colnames** : sequence, default None

If passed, must match number of column arrays passed

**margins** : boolean, default False

Add row/column margins (subtotals)

**dropna** : boolean, default True

Do not include columns whose entries are all NaN

**normalize** : boolean, {'all', 'index', 'columns'}, or {0,1}, default False

Normalize by dividing all values by the sum of values.

- If passed ‘all’ or True, will normalize over all values.
- If passed ‘index’ will normalize over each row.
- If passed ‘columns’ will normalize over each column.
- If margins is True, will also normalize margin values.

New in version 0.18.1.

**Returns** crosstab : DataFrame

**Notes**

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified.

Any input passed containing Categorical data will have all of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category.

In the event that there aren’t overlapping indexes an empty DataFrame will be returned.

**Examples**

```python
>>> a
array([foo, foo, foo, foo, bar, bar,
 bar, bar, foo, foo, foo], dtype=object)
>>> b
array([one, one, one, two, one, one,
 one, two, two, two, one], dtype=object)
>>> c
array([dull, dull, shiny, dull, dull, shiny,
 shiny, dull, shiny, shiny, shiny], dtype=object)

>>> crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
 b c
a
<table>
<thead>
<tr>
<th>one</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>dull</td>
<td>dull</td>
</tr>
<tr>
<td>shiny</td>
<td>shiny</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bar</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>foo</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
>>> foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
>>> bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
>>> crosstab(foo, bar)
'c' and 'f' are not represented in the data, # but they still will be counted in the output
 col_0 d e f
 row_0
 a 1 0 0
 b 0 1 0
 c 0 0 0
```

**pandas.cut**

`pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)`

Return indices of half-open bins to which each value of `x` belongs.

**Parameters**

- **x**: array-like
  
  Input array to be binned. It has to be 1-dimensional.

- **bins**: int or sequence of scalars
  
  If `bins` is an int, it defines the number of equal-width bins in the range of `x`. However, in this case, the range of `x` is extended by .1% on each side to include the min or max values of `x`. If `bins` is a sequence it defines the bin edges allowing for non-uniform bin width. No extension of the range of `x` is done in this case.

- **right**: bool, optional
  
  Indicates whether the bins include the rightmost edge or not. If right == True (the default), then the bins [1,2,3,4] indicate (1,2], (2,3], (3,4].

- **labels**: array or boolean, default None
  
  Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins.

- **retbins**: bool, optional
  
  Whether to return the bins or not. Can be useful if bins is given as a scalar.

- **precision**: int
  
  The precision at which to store and display the bins labels

- **include_lowest**: bool
  
  Whether the first interval should be left-inclusive or not.

**Returns**

- **out**: Categorical or Series or array of integers if labels is False
  
  The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned.

- **bins**: ndarray of floats
  
  Returned only if `retbins` is True.
Notes

The `cut` function can be useful for going from a continuous variable to a categorical variable. For example, `cut` could convert ages to groups of age ranges.

Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Categorical object

Examples

```python
>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3, retbins=True)
([(0.191, 3.367], (0.191, 3.367], (0.191, 3.367],
 (3.367, 6.533], (6.533, 9.7], (0.191, 3.367])
Categories (3, object): [(0.191, 3.367] < (3.367, 6.533] < (6.533, 9.7]],
array([0.1905 , 3.36666667, 6.53333333, 9.7])
>>> pd.cut(np.array([.2, 1.4, 2.5, 6.2, 9.7, 2.1]), 3,
 labels=["good","medium","bad"])
[good, good, good, medium, bad, good]
Categories (3, object): [good < medium < bad]
>>> pd.cut(np.ones(5), 4, labels=False)
array([1, 1, 1, 1, 1], dtype=int64)
```

`pandas.qcut`

`pandas.qcut` ($x, q$, $labels=None$, $retbins=False$, $precision=3$)

Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point.

**Parameters**

- `x`: ndarray or Series
- `q`: integer or array of quantiles
  - Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0.25, .5, .75, 1.] for quartiles
- `labels`: array or boolean, default None
  - Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins.
- `retbins`: bool, optional
  - Whether to return the bins or not. Can be useful if bins is given as a scalar.
- `precision`: int
  - The precision at which to store and display the bins labels

**Returns**

- `out`: Categorical or Series or array of integers if labels is False
  - The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned.
- `bins`: ndarray of floats
  - Returned only if `retbins` is True.
Notes

Out of bounds values will be NA in the resulting Categorical object

Examples

```python
>>> pd.qcut(range(5), 4)
[[0, 1], [0, 1], (1, 2], (2, 3], (3, 4]]
Categories (4, object): [(0, 1] < (1, 2] < (2, 3] < (3, 4]]
>>> pd.qcut(range(5), 3, labels=["good","medium","bad")
[good, good, medium, bad, bad]
Categories (3, object): [good < medium < bad]
>>> pd.qcut(range(5), 4, labels=False)
array([0, 0, 1, 2, 3], dtype=int64)
```

pandas.merge

pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters

- **left**: DataFrame
  - right : DataFrame
  - how : {'left', 'right', 'outer', 'inner'}, default 'inner'
    - left: use only keys from left frame (SQL: left outer join)
    - right: use only keys from right frame (SQL: right outer join)
    - outer: use union of keys from both frames (SQL: full outer join)
    - inner: use intersection of keys from both frames (SQL: inner join)
  - on : label or list
    - Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.
  - left_on : label or list, or array-like
    - Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns
  - right_on : label or list, or array-like
    - Field names to join on in right DataFrame or vector/list of vectors per left_on docs
  - left_index : boolean, default False
    - Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels
  - right_index : boolean, default False
    - Use the index from the right DataFrame as the join key. Same caveats as left_index
sort : boolean, default False
    Sort the join keys lexicographically in the result DataFrame
suffixes : 2-length sequence (tuple, list, ...)
    Suffix to apply to overlapping column names in the left and right side, respectively
copy : boolean, default True
    If False, do not copy data unnecessarily
indicator : boolean or string, default False
    If True, adds a column to output DataFrame called “_merge” with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of “left_only” for observations whose merge key only appears in ‘left’ DataFrame, “right_only” for observations whose merge key only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is found in both.

New in version 0.17.0.

Returns merged : DataFrame
    The output type will the be same as ‘left’, if it is a subclass of DataFrame.

See also:
merge_ordered, merge_asof

Examples

```python
>>> A
 lkey value
0 foo 1
1 bar 2
2 baz 3
3 foo 4

>>> B
 rkey value
0 foo 5
1 bar 6
2 qux 7
3 bar 8

>>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
 lkey value_x rkey value_y
0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7
```

pandas.merge_ordered

pandas.merge_ordered(left, right, on=None, left_on=None, right_on=None, left_index=None, right_index=None, fill_value=None, fill_method=None, suffixes=('_x', '_y'), how='inner')

Perform merge with optional filling/interpolation designed for ordered data like time series data. Optionally perform group-wise merge (see examples)

Parameters left : DataFrame
    right : DataFrame
on : label or list
Field names to join on. Must be found in both DataFrames.

left_on : label or list, or array-like
Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns

right_on : label or list, or array-like
Field names to join on in right DataFrame or vector/list of vectors per left_on docs

left_by : column name or list of column names
Group left DataFrame by group columns and merge piece by piece with right DataFrame

right_by : column name or list of column names
Group right DataFrame by group columns and merge piece by piece with left DataFrame

fill_method : {'ffill', None}, default None
Interpolation method for data

suffixes : 2-length sequence (tuple, list, ...)
Suffix to apply to overlapping column names in the left and right side, respectively

how : {'left', 'right', 'outer', 'inner'}, default 'outer'
  - left: use only keys from left frame (SQL: left outer join)
  - right: use only keys from right frame (SQL: right outer join)
  - outer: use union of keys from both frames (SQL: full outer join)
  - inner: use intersection of keys from both frames (SQL: inner join)

New in version 0.19.0.

Returns merged : DataFrame
The output type will the be same as ‘left’, if it is a subclass of DataFrame.

See also:
merge, merge_asof

Examples

>>> A
key  lvalue  group
0   a       1   a
1   c       2   a
2   e       3   a
3   a       1   b
4   c       2   b
5   e       3   b

>>> B
key  rvalue
0   b       1
1   c       2
2   d       3

>>> ordered_merge(A, B, fill_method='ffill', left_by='group')
key  lvalue group  rvalue
0   a       1   a   NaN
1   b       1   a   1
2   c       2   a   2
pandas.merge_asof

```
pandas.merge_asof(left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, suffixes=('_x', '_y'), tolerance=None, allow_exact_matches=True)
```

Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys.

For each row in the left DataFrame, we select the last row in the right DataFrame whose ‘on’ key is less than or equal to the left’s key. Both DataFrames must be sorted by the key.

Optionally match on equivalent keys with ‘by’ before searching for nearest match with ‘on’.

New in version 0.19.0.

**Parameters**

- **left** : DataFrame
- **right** : DataFrame
- **on** : label
  - Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given.
- **left_on** : label
  - Field name to join on in left DataFrame.
- **right_on** : label
  - Field name to join on in right DataFrame.
- **left_index** : boolean
  - Use the index of the left DataFrame as the join key. New in version 0.19.2.
- **right_index** : boolean
  - Use the index of the right DataFrame as the join key. New in version 0.19.2.
- **by** : column name or list of column names
  - Match on these columns before performing merge operation.
- **left_by** : column name
  - Field names to match on in the left DataFrame. New in version 0.19.2.
- **right_by** : column name
Field names to match on in the right DataFrame.

New in version 0.19.2.

**suffixes**: 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively

**tolerance**: integer or Timedelta, optional, default None

select asof tolerance within this range; must be compatible to the merge index.

**allow_exact_matches**: boolean, default True

- If True, allow matching the same ‘on’ value (i.e. less-than-or-equal-to)
- If False, don’t match the same ‘on’ value (i.e., strictly less-than)

**Returns**

merged : DataFrame

See also:

*merge, merge_ordered*

**Examples**

```python
>>> left
 a left_val
0 1 a
1 5 b
2 10 c

>>> right
 a right_val
0 1 1
1 2 2
2 3 3
3 6 6
4 7 7

>>> pd.merge_asof(left, right, on='a')
 a left_val right_val
0 1 a 1
1 5 b 3
2 10 c 7

>>> pd.merge_asof(left, right, on='a', allow_exact_matches=False)
 a left_val right_val
0 1 a NaN
1 5 b 3.0
2 10 c 7.0
```

For this example, we can achieve a similar result thru `pd.merge_ordered()`, though its not nearly as performant.

```python
>>> (pd.merge_ordered(left, right, on='a')
... .ffill()
... .drop_duplicates(['left_val'])
...)
```
We can use indexed DataFrames as well.

```python
>>> left
 left_val
 1 a
 5 b
 10 c

>>> right
 right_val
 1 1
 2 2
 3 3
 6 6
 7 7

>>> pd.merge_asof(left, right, left_index=True, right_index=True)
 left_val right_val
 1 a 1
 5 b 3
 10 c 7
```

Here is a real-world times-series example

```python
>>> quotes
 time ticker bid ask
 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93
 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96
 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98
 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00
 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93
 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01
 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88
 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03

>>> trades
 time ticker price quantity
 0 2016-05-25 13:30:00.023 MSFT 51.95 75
 1 2016-05-25 13:30:00.038 MSFT 51.95 155
 2 2016-05-25 13:30:00.048 GOOG 720.77 100
 3 2016-05-25 13:30:00.048 GOOG 720.92 100
 4 2016-05-25 13:30:00.048 AAPL 98.00 100

By default we are taking the asof of the quotes

```python
>>> pd.merge_asof(trades, quotes,
...    on='time',
...    by='ticker')
        time      ticker     price    quantity     bid     ask
  0 2016-05-25 13:30:00.023    MSFT    51.95         75  51.95  51.96
  1 2016-05-25 13:30:00.038    MSFT    51.95       155  51.97  51.98
  2 2016-05-25 13:30:00.048    GOOG    720.77        100  720.50  720.93
```
We only asof within 2ms between the quote time and the trade time

```python
>>> pd.merge_asof(trades, quotes,
...                    on='time',
...                    by='ticker',
...                    tolerance=pd.Timedelta('2ms'))
```

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
<td>51.95</td>
<td>51.96</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.038</td>
<td>MSFT</td>
<td>51.95</td>
<td>155</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.77</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.92</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>AAPL</td>
<td>98.00</td>
<td>100</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However prior data will propagate forward

```python
>>> pd.merge_asof(trades, quotes,
...                    on='time',
...                    by='ticker',
...                    tolerance=pd.Timedelta('10ms'),
...                    allow_exact_matches=False)
```

<table>
<thead>
<tr>
<th>time</th>
<th>ticker</th>
<th>price</th>
<th>quantity</th>
<th>bid</th>
<th>ask</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-05-25 13:30:00.023</td>
<td>MSFT</td>
<td>51.95</td>
<td>75</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.038</td>
<td>MSFT</td>
<td>51.95</td>
<td>155</td>
<td>51.97</td>
<td>51.98</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.77</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>GOOG</td>
<td>720.92</td>
<td>100</td>
<td>720.50</td>
<td>720.93</td>
</tr>
<tr>
<td>2016-05-25 13:30:00.048</td>
<td>AAPL</td>
<td>98.00</td>
<td>100</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>

pandas.concat

`pandas.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)`

Concatenate pandas objects along a particular axis with optional set logic along the other axes. Can also add a layer of hierarchical indexing on the concatenation axis, which may be useful if the labels are the same (or overlapping) on the passed axis number.

Parameters

- `objs`: a sequence or mapping of Series, DataFrame, or Panel objects

 If a dict is passed, the sorted keys will be used as the `keys` argument, unless it is passed, in which case the values will be selected (see below). Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised

- `axis`: {0/’index’, 1/’columns’}, default 0

 The axis to concatenate along

- `join`: {‘inner’, ‘outer’}, default ‘outer’

 How to handle indexers on other axis(es)

- `join_axes`: list of Index objects

 Specific indexes to use for the other n - 1 axes instead of performing inner/outer set logic

- `ignore_index`: boolean, default False
If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join.

keys : sequence, default None

If multiple levels passed, should contain tuples. Construct hierarchical index using the passed keys as the outermost level

levels : list of sequences, default None

Specific levels (unique values) to use for constructing a MultiIndex. Otherwise they will be inferred from the keys

names : list, default None

Names for the levels in the resulting hierarchical index

verify_integrity : boolean, default False

Check whether the new concatenated axis contains duplicates. This can be very expensive relative to the actual data concatenation

copy : boolean, default True

If False, do not copy data unnecessarily

Returns **concatenated** : type of objects

Notes

The keys, levels, and names arguments are all optional

pandas.get_dummies

pandas.get_dummies *(data, prefix=None, prefix_sep='__', dummy_na=False, columns=None, sparse=False, drop_first=False)*

Convert categorical variable into dummy/indicator variables

Parameters

data : array-like, Series, or DataFrame

prefix : string, list of strings, or dict of strings, default None

String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, *prefix* can be a dictionary mapping column names to prefixes.

prefix_sep : string, default ‘__’

If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with *prefix*.

dummy_na : bool, default False

Add a column to indicate NaNs, if False NaNs are ignored.

columns : list-like, default None

Column names in the DataFrame to be encoded. If *columns* is None then all the columns with object or category dtype will be converted.

sparse : bool, default False
Whether the dummy columns should be sparse or not. Returns SparseDataFrame if `data` is a Series or if all columns are included. Otherwise returns a DataFrame with some SparseBlocks.

New in version 0.16.1.

drop_first: bool, default False

Whether to get k-1 dummies out of k categorical levels by removing the first level.

New in version 0.18.0.

Returns

- `dummies`: DataFrame or SparseDataFrame

See also:

`Series.str.get_dummies`

Examples

```python
>>> import pandas as pd
data
```

```python
gpd.get_dummies(s)
a  b  c
0  1  0  0
1  0  1  0
2  0  0  1
3  1  0  0
```

```python
sl = ['a', 'b', np.nan]
```

```python
gpd.get_dummies(sl)
a  b
0  1  0
1  0  1
2  0  0
```

```python
gpd.get_dummies(sl, dummy_na=True)
a  b  NaN
0  1  0
1  0  1
2  0  0
```

```python
df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], 'C': [1, 2, 3]})
```

```python
gpd.get_dummies(df, prefix=['col1', 'col2'])
C  col1_a  col1_b  col2_a  col2_b  col2_c
0  1  1  0  0  1  0
1  2  0  1  1  0  0
2  3  1  0  0  0  1
```
>>> pd.get_dummies(pd.Series(list('abcaa')))
 a b c
0 1 0 0
1 0 1 0
2 0 0 1
3 1 0 0
4 1 0 0

>>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True)
 b c
0 0 0
1 1 0
2 0 1
3 0 0
4 0 0

pandas.factorize

`pandas.factorize(values, sort=False, order=None, na_sentinel=-1, size_hint=None)`

Encode input values as an enumerated type or categorical variable

Parameters

- **values**: ndarray (1-d)

 Sequence

 - **sort**: boolean, default False

 Sort by values

 - **na_sentinel**: int, default -1

 Value to mark “not found”

 - **size_hint**: hint to the hashtable sizer

Returns

- **labels**: the indexer to the original array

 - **uniques**: ndarray (1-d) or Index

 the unique values. Index is returned when passed values is Index or Series

Top-level missing data

- **isnull**(obj)

 Detect missing values (NaN in numeric arrays, None/NaN in object arrays)

- **notnull**(obj)

 Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

pandas.isnull

- **pandas.isnull**(obj)

 Detect missing values (NaN in numeric arrays, None/NaN in object arrays)
Parameters `arr` : ndarray or object value

Object to check for null-ness

Returns `isnull` : array-like of bool or bool

Array or bool indicating whether an object is null or if an array is given which of the
element is null.

See also:

`pandas.notnull` boolean inverse of pandas.isnull

```
pandas.notnull
```

```
pandas.notnull (obj)
```

Replacement for numpy.isfinite / -numpy.isnan which is suitable for use on object arrays.

Parameters `arr` : ndarray or object value

Object to check for not-null-ness

Returns `isnull` : array-like of bool or bool

Array or bool indicating whether an object is not null or if an array is given which of
the element is not null.

See also:

`pandas.isnull` boolean inverse of pandas.notnull

Top-level conversions

```
to_numeric(arg[, errors, downcast]) Convert argument to a numeric type.
```

```
pandas.to_numeric
```

```
pandas.to_numeric (arg, errors='raise', downcast=None)
```

Convert argument to a numeric type.

Parameters `arg` : list, tuple, 1-d array, or Series

errors : {'ignore', 'raise', 'coerce'}, default 'raise'

• If 'raise', then invalid parsing will raise an exception

• If 'coerce', then invalid parsing will be set as NaN

• If 'ignore', then invalid parsing will return the input

downcast : {'integer', 'signed', 'unsigned', 'float'}, default None

If not None, and if the data has been successfully cast to a numerical dtype (or if the
data was numeric to begin with), downcast that resulting data to the smallest numerical
dtype possible according to the following rules:

• ‘integer’ or ‘signed’: smallest signed int dtype (min.: np.int8)

• ‘unsigned’: smallest unsigned int dtype (min.: np.uint8)
• ‘float’: smallest float dtype (min.: np.float32)

As this behaviour is separate from the core conversion to numeric values, any errors raised during the downcasting will be surfaced regardless of the value of the ‘errors’ input.

In addition, downcasting will only occur if the size of the resulting data’s dtype is strictly larger than the dtype it is to be cast to, so if none of the dtypes checked satisfy that specification, no downcasting will be performed on the data.

New in version 0.19.0.

Returns ret: numeric if parsing succeeded.

Return type depends on input. Series if Series, otherwise ndarray

Examples

Take separate series and convert to numeric, coercing when told to

```python
>>> import pandas as pd
>>> s = pd.Series(['1.0', '2', -3])
>>> pd.to_numeric(s)
0  1.0
1  2.0
2 -3.0
dtype: float64
>>> pd.to_numeric(s, downcast='float')
0  1.0
1  2.0
2 -3.0
dtype: float32
>>> pd.to_numeric(s, downcast='signed')
0  1
1  2
2 -3
dtype: int8
>>> s = pd.Series(['apple', '1.0', '2', -3])
>>> pd.to_numeric(s, errors='ignore')
0  apple
1  1.0
2  2
3  -3
dtype: object
>>> pd.to_numeric(s, errors='coerce')
0  NaN
1  1.0
2  2.0
3  -3.0
dtype: float64
```

Top-level dealing with datetimelike

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>to_datetime</code></td>
<td>Convert argument to datetime.</td>
</tr>
<tr>
<td><code>to_timedelta</code></td>
<td>Convert argument to timedelta.</td>
</tr>
</tbody>
</table>
Table 35.17 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>date_range([])</code></td>
<td>Return a fixed frequency datetime index, with day (calendar) as the default</td>
</tr>
<tr>
<td><code>bdate_range([])</code></td>
<td>Return a fixed frequency datetime index, with business day as the default</td>
</tr>
<tr>
<td><code>period_range([])</code></td>
<td>Return a fixed frequency datetime index, with day (calendar) as the default</td>
</tr>
<tr>
<td><code>timedelta_range([])</code></td>
<td>Return a fixed frequency timedelta index, with day as the default</td>
</tr>
<tr>
<td><code>infer_freq()</code></td>
<td>Infer the most likely frequency given the input index.</td>
</tr>
</tbody>
</table>

pandas.to_datetime

`pandas.to_datetime(*args, **kwargs)`

Convert argument to datetime.

- **Parameters**
 - `arg` : string, datetime, list, tuple, 1-d array, Series

 - **errors** : {'ignore', 'raise', 'coerce'}, default 'raise'
 - If 'raise', then invalid parsing will raise an exception
 - If 'coerce', then invalid parsing will be set as NaT
 - If 'ignore', then invalid parsing will return the input

 - **dayfirst** : boolean, default False
 - Specify a date parse order if `arg` is str or its list-likes. If True, parses dates with the day first, eg 10/11/12 is parsed as 2012-11-10. Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug, based on dateutil behavior).

 - **yearfirst** : boolean, default False
 - Specify a date parse order if `arg` is str or its list-likes.
 - If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12.
 - If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil).
 - Warning: yearfirst=True is not strict, but will prefer to parse with year first (this is a known bug, based on dateutil behavior).

 - **utc** : boolean, default None
 - Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well).

 - **box** : boolean, default True
 - If True returns a DatetimeIndex
 - If False returns ndarray of values.

 - **format** : string, default None
 - strftime to parse time, eg “%d/%m/%Y”, note that “%f” will parse all the way up to nanoseconds.

 - **exact** : boolean, True by default
 - If True, require an exact format match.
If False, allow the format to match anywhere in the target string.

unit: string, default ‘ns’
unit of the arg (D,s,ms,us,ns) denote the unit in epoch (e.g. a unix timestamp), which is an integer/float number.

infer_datetime_format: boolean, default False
If True and no *format* is given, attempt to infer the format of the datetime strings, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

Returns ret: datetime if parsing succeeded.
Return type depends on input:
- list-like: DatetimeIndex
- Series: Series of datetime64 dtype
- scalar: Timestamp

In case when it is not possible to return designated types (e.g. when any element of input is before Timestamp.min or after Timestamp.max) return will have datetime.datetime type (or corresponding array/Series).

Examples

Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same

```python
>>> df = pd.DataFrame({'year': [2015, 2016],
                    'month': [2, 3],
                    'day': [4, 5]})
>>> pd.to_datetime(df)
0 2015-02-04
1 2016-03-05
dtype: datetime64[ns]
```

If a date does not meet the timestamp limitations, passing errors=’ignore’ will return the original input instead of raising any exception.

Passing errors=’coerce’ will force an out-of-bounds date to NaT, in addition to forcing non-dates (or non-parseable dates) to NaT.

```python
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
datetime.datetime(1300, 1, 1, 0, 0)
>>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
NaT
```

Passing infer_datetime_format=True can often-times speedup a parsing if its not an ISO8601 format exactly, but in a regular format.

```python

>>> s.head()
0  3/11/2000
1  3/12/2000
2  3/13/2000
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

3 3/11/2000
4 3/12/2000
dtype: object

```plaintext
>>> %timeit pd.to_datetime(s, infer_datetime_format=True)
100 loops, best of 3: 10.4 ms per loop

>>> %timeit pd.to_datetime(s, infer_datetime_format=False)
1 loop, best of 3: 471 ms per loop
```

pandas.to_timedelta

pandas.to_timedelta (*args, **kwargs*)

Convert argument to timedelta

Parameters

- **arg**: string, timedelta, list, tuple, 1-d array, or Series
 - **unit**: unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number
 - **box**: boolean, default True
 - If True returns a Timedelta/TimedeltaIndex of the results
 - If False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns]
 - **errors**: {'ignore', 'raise', 'coerce'}, default ‘raise’
 - If ‘raise’, then invalid parsing will raise an exception
 - If ‘coerce’, then invalid parsing will be set as NaT
 - If ‘ignore’, then invalid parsing will return the input

Returns

- **ret**: timedelta64/arrays of timedelta64 if parsing succeeded

Examples

Parsing a single string to a Timedelta:

```plaintext
>>> pd.to_timedelta('1 days 06:05:01.00003')
Timedelta('1 days 06:05:01.000030')

>>> pd.to_timedelta('15.5us')
Timedelta('0 days 00:00:00.000015')
```

Parsing a list or array of strings:

```plaintext
>>> pd.to_timedelta(['1 days 06:05:01.00003', '15.5us', 'nan'])
TimedeltaIndex(['1 days 06:05:01.000030', '0 days 00:00:00.000015', NaT],
               dtype='timedelta64[ns]', freq=None)
```

Converting numbers by specifying the **unit** keyword argument:

```plaintext
>>> pd.to_timedelta(np.arange(5), unit='s')
TimedeltaIndex(['00:00:00', '00:00:01', '00:00:02', '00:00:03', '00:00:04'],
               dtype='timedelta64[ns]', freq=None)
```
pd.to_timedelta(np.arange(5), unit='d')
TimedeltaIndex(['0 days', '1 days', '2 days', '3 days', '4 days'],
 dtype='timedelta64[ns]', freq=None)

pandas.date_range

pandas.date_range(start=None, end=None, periods=None, freq='D', tz=None, normalize=False, name=None, closed=None, **kwargs)

Return a fixed frequency datetime index, with day (calendar) as the default frequency

Parameters:
- **start**: string or datetime-like, default None
 - Left bound for generating dates
- **end**: string or datetime-like, default None
 - Right bound for generating dates
- **periods**: integer or None, default None
 - If None, must specify start and end
- **freq**: string or DateOffset, default 'D' (calendar daily)
 - Frequency strings can have multiples, e.g. '5H'
- **tz**: string or None
 - Time zone name for returning localized DatetimeIndex, for example Asia/Hong_Kong
- **normalize**: bool, default False
 - Normalize start/end dates to midnight before generating date range
- **name**: str, default None
 - Name of the resulting index
- **closed**: string or None, default None
 - Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None)

Returns **rng**: DatetimeIndex

Notes

2 of start, end, or periods must be specified

To learn more about the frequency strings, please see this link.

pandas.bdate_range

pandas.bdate_range(start=None, end=None, periods=None, freq='B', tz=None, normalize=True, name=None, closed=None, **kwargs)

Return a fixed frequency datetime index, with business day as the default frequency

Parameters:
- **start**: string or datetime-like, default None
 - Left bound for generating dates
end : string or datetime-like, default None
 Right bound for generating dates
periods : integer or None, default None
 If None, must specify start and end
freq : string or DateOffset, default ‘B’ (business daily)
 Frequency strings can have multiples, e.g. ‘5H’
tz : string or None
 Time zone name for returning localized DatetimeIndex, for example Asia/Beijing
normalize : bool, default False
 Normalize start/end dates to midnight before generating date range
name : str, default None
 Name for the resulting index
closed : string or None, default None
 Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both
 sides (None)

Returns rng : DatetimeIndex

Notes

2 of start, end, or periods must be specified
To learn more about the frequency strings, please see this link.

pandas.period_range

pandas.period_range(start=None, end=None, periods=None, freq='D', name=None)
Return a fixed frequency datetime index, with day (calendar) as the default frequency

Parameters start : starting value, period-like, optional
 end : ending value, period-like, optional
periods : int, default None
 Number of periods in the index
freq : str/DateOffset, default ‘D’
 Frequency alias
name : str, default None
 Name for the resulting PeriodIndex

Returns prng : PeriodIndex
pandas.timedelta_range

`pandas.timedelta_range(start=None, end=None, periods=None, freq='D', name=None, closed=None)`

Return a fixed frequency timedelta index, with day as the default frequency

Parameters

- `start`: string or timedelta-like, default None
 - Left bound for generating dates
- `end`: string or datetime-like, default None
 - Right bound for generating dates
- `periods`: integer or None, default None
 - If None, must specify start and end
- `freq`: string or DateOffset, default ‘D’ (calendar daily)
 - Frequency strings can have multiples, e.g. ‘5H’
- `name`: str, default None
 - Name of the resulting index
- `closed`: string or None, default None
 - Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

Returns

`rng`: TimedeltaIndex

Notes

2 of start, end, or periods must be specified.

To learn more about the frequency strings, please see this link.

pandas.infer_freq

`pandas.infer_freq(index, warn=True)`

Infer the most likely frequency given the input index. If the frequency is uncertain, a warning will be printed.

Parameters

- `index`: DatetimeIndex or TimedeltaIndex
 - if passed a Series will use the values of the series (NOT THE INDEX)
- `warn`: boolean, default True

Returns

`freq`: string or None

None if no discernible frequency

TypeError if the index is not datetime-like

ValueError if there are less than three values.

Top-level evaluation

`eval(expr[, parser, engine, truediv, ...])`

Evaluate a Python expression as a string using various backends.
pandas.eval

The *pandas* library provides a function called `pandas.eval` which allows you to evaluate Python expressions as strings. This function can be used to evaluate expressions in various backends, providing flexibility in how computations are performed.

Parameters

- **expr**: str or unicode
 - The expression to evaluate. This string cannot contain any Python statements, only Python expressions.

- **parser**: string, default 'pandas', {'pandas', 'python'}
 - The parser to use to construct the syntax tree from the expression. The default of 'pandas' parses code slightly different than standard Python. Alternatively, you can parse an expression using the 'python' parser to retain strict Python semantics. See the [enhancing performance](#) documentation for more details.

- **engine**: string or None, default 'numexpr', {'python', 'numexpr'}
 - The engine used to evaluate the expression. Supported engines are:
 - None: tries to use numexpr, falls back to python
 - 'numexpr': This default engine evaluates pandas objects using numexpr for large speed ups in complex expressions with large frames.
 - 'python': Performs operations as if you had eval'd in top level python. This engine is generally not that useful.

- **truediv**: bool, optional
 - Whether to use true division, like in Python >= 3

- **local_dict**: dict or None, optional
 - A dictionary of local variables, taken from locals() by default.

- **global_dict**: dict or None, optional
 - A dictionary of global variables, taken from globals() by default.

- **resolvers**: list of dict-like or None, optional
 - A list of objects implementing the `__getitem__` special method that you can use to inject an additional collection of namespaces to use for variable lookup. For example, this is used in the `query()` method to inject the `index` and `columns` variables that refer to their respective `DataFrame` instance attributes.

- **level**: int, optional
 - The number of prior stack frames to traverse and add to the current scope. Most users will not need to change this parameter.

- **target**: a target object for assignment, optional, default is None
 - Essentially this is a passed in resolver

- **inplace**: bool, default True

Supported Operations

- Arithmetic operations: +, -, *, /, **, %, // (in Python engine only)
- Boolean operations: | (or), & (and), and ~ (not)

Series and *DataFrame* objects are supported and behave as they would with plain ol' Python evaluation.
If expression mutates, whether to modify object inplace or return copy with mutation.

WARNING: inplace=None currently falls back to True, but in a future version, will default to False. Use inplace=True explicitly rather than relying on the default.

Returns ndarray, numeric scalar, DataFrame, Series

See also: pandas.DataFrame.query, pandas.DataFrame.eval

Notes

The dtype of any objects involved in an arithmetic `%` operation are recursively cast to float64.

See the enhancing performance documentation for more details.

Testing

| test |
|------|---|
| Run tests for module using nose. |

pandas.test

pandas.test = <bound method NoseTester.test of <pandas.util.nosetester.NoseTester object>>

Run tests for module using nose.

Parameters

- **label** : {'fast', 'full', '', attribute identifier}, optional

 Identifies the tests to run. This can be a string to pass to the nosetests executable with the `-A` option, or one of several special values. Special values are:

 - `fast` - the default - which corresponds to the nosetests `-A` option of `not slow`.
 - `full` - fast (as above) and slow tests as in the `no -A` option to nosetests - this is the same as `''`.
 - None or `''` - run all tests.
 - attribute_identifier - string passed directly to nosetests as `-A`.

- **verbose** : int, optional

 Verbosity value for test outputs, in the range 1-10. Default is 1.

- **extra_argv** : list, optional

 List with any extra arguments to pass to nosetests.

- **doctests** : bool, optional

 If True, run doctests in module. Default is False.

- **coverage** : bool, optional

 If True, report coverage of NumPy code. Default is False. (This requires the coverage module).

- **raise_warnings** : str or sequence of warnings, optional

 This specifies which warnings to configure as ‘raise’ instead of ‘warn’ during the test execution. Valid strings are:
• ‘develop’: equals (DeprecationWarning, RuntimeWarning)
• ‘release’: equals (), don’t raise on any warnings.

Returns result: object

Returns the result of running the tests as a nose.result.TextTestResult object.

Series

Constructor

Series([data, index, dtype, name, copy, ...]) One-dimensional ndarray with axis labels (including time series).

pandas.Series

class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)

One-dimensional ndarray with axis labels (including time series).

Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN).

Operations between Series (+, -, /, *) align values based on their associated index values— they need not be the same length. The result index will be the sorted union of the two indexes.

Parameters data: array-like, dict, or scalar value

Contains data stored in Series

index: array-like or Index (1d)

Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to RangeIndex(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.

dtype: numpy.dtype or None

If None, dtype will be inferred

copy: boolean, default False

Copy input data

Attributes

T return the transpose, which is by definition self
asobject return object Series which contains boxed values
at Fast label-based scalar accessor
axes Return a list of the row axis labels
base return the base object if the memory of the underlying data is Continued on next page

35.3. Series
Table 35.21 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>blocks</code></td>
<td>Internal property, property synonym for <code>as_blocks()</code></td>
</tr>
<tr>
<td><code>data</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>dtype</code></td>
<td>return the dtype object of the underlying data</td>
</tr>
<tr>
<td><code>dtypes</code></td>
<td>return the dtype object of the underlying data</td>
</tr>
<tr>
<td><code>empty</code></td>
<td>True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.</td>
</tr>
<tr>
<td><code>flags</code></td>
<td></td>
</tr>
<tr>
<td><code>fctype</code></td>
<td>return if the data is sparse</td>
</tr>
<tr>
<td><code>ftypes</code></td>
<td>return if the data is sparse</td>
</tr>
<tr>
<td><code>hasnans</code></td>
<td></td>
</tr>
<tr>
<td><code>iat</code></td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td><code>iloc</code></td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td><code>imag</code></td>
<td></td>
</tr>
<tr>
<td><code>is_copy</code></td>
<td></td>
</tr>
<tr>
<td><code>is_monotonic</code></td>
<td>Return boolean if values in the object are</td>
</tr>
<tr>
<td><code>is_monotonic_decreasing</code></td>
<td>Return boolean if values in the object are</td>
</tr>
<tr>
<td><code>is_monotonic_increasing</code></td>
<td>Return boolean if values in the object are</td>
</tr>
<tr>
<td><code>is_time_series</code></td>
<td></td>
</tr>
<tr>
<td><code>is_unique</code></td>
<td>Return boolean if values in the object are unique</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>ix</code></td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td><code>loc</code></td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td><code>name</code></td>
<td></td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td><code>real</code></td>
<td></td>
</tr>
<tr>
<td><code>shape</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>size</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>values</code></td>
<td>Return Series as ndarray or ndarray-like</td>
</tr>
</tbody>
</table>

pandas.Series.T

The `Series.T` method returns the transpose, which is by definition self.

pandas.Series.asobject

The `Series.asobject` method returns object Series which contains boxed values.

This is an internal non-public method
pandas.Series.at

Series.at
Fast label-based scalar accessor

Similarly to loc, at provides label based scalar lookups. You can also set using these indexers.

pandas.Series.axes

Series.axes
Return a list of the row axis labels

pandas.Series.base

Series.base
return the base object if the memory of the underlying data is shared

pandas.Series.blocks

Series.blocks
Internal property, property synonym for as_blocks()

pandas.Series.data

Series.data
return the data pointer of the underlying data

pandas.Series.dtype

Series.dtype
return the dtype object of the underlying data

pandas.Series.dtypes

Series.dtypes
return the dtype object of the underlying data

pandas.Series.empty

Series.empty
True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.

See also:

pandas.Series.dropna, pandas.DataFrame.dropna
Notes

If NDFrame contains only NaNs, it is still not considered empty. See the example below.

Examples

An example of an actual empty DataFrame. Notice the index is empty:

```python
>>> df_empty = pd.DataFrame({'A': []})
```

```output
Empty DataFrame
Columns: [A]
Index: []
```

```python
>>> df_empty.empty
True
```

If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty:

```python
>>> df = pd.DataFrame({'A': [np.nan]})
```

```output
A
0 NaN
```

```python
>>> df.empty
False
>>> df.dropna().empty
True
```

pandas.Series.flags

`Series.flags`

pandas.Series.ftype

`Series.ftype`

return if the data is sparseldense

pandas.Series.ftypes

`Series.ftypes`

return if the data is sparseldense

pandas.Series.hasnans

`Series.hasnans = None`
pandas.Series.iat

Series.iat
Fast integer location scalar accessor.

Similarly to iloc, iat provides integer based lookups. You can also set using these indexers.

pandas.Series.iloc

Series.iloc
Purely integer-location based indexing for selection by position.

.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

Allowed inputs are:

• An integer, e.g. 5.
• A list or array of integers, e.g. [4, 3, 0].
• A slice object with ints, e.g. 1:7.
• A boolean array.

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position

pandas.Series.imag

Series.imag

pandas.Series.is_copy

Series.is_copy = None

pandas.Series.is_monotonic

Series.is_monotonic
Return boolean if values in the object are monotonic_increasing

New in version 0.19.0.

Returns is_monotonic : boolean
pandas.Series.is_monotonic_decreasing

Series.is_monotonic_decreasing
Return boolean if values in the object are monotonic_decreasing
New in version 0.19.0.

Returns is_monotonic_decreasing : boolean

pandas.Series.is_monotonic_increasing

Series.is_monotonic_increasing
Return boolean if values in the object are monotonic_increasing
New in version 0.19.0.

Returns is_monotonic : boolean

pandas.Series.is_time_series

Series.is_time_series

pandas.Series.is_unique

Series.is_unique
Return boolean if values in the object are unique

Returns is_unique : boolean

pandas.Series.itemsize

Series.itemsize
return the size of the dtype of the item of the underlying data

pandas.Series.ix

Series.ix
A primarily label-location based indexer, with integer position fallback.

 ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to
integer positional access unless the corresponding axis is of integer type.

 ix is the most general indexer and will support any of the inputs in .loc and .iloc . ix also supports
floating point label schemes. ix is exceptionally useful when dealing with mixed positional and label
based hierarchial indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported.
Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing.
pandas.Series.loc

Series.loc
Purely label-location based indexer for selection by label.
.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

• A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).
• A list or array of labels, e.g. ['a', 'b', 'c'].
• A slice object with labels, e.g. 'a': 'f' (note that contrary to usual python slices, both the start and the stop are included!).
• A boolean array.
• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

.loc will raise a KeyError when the items are not found.

See more at Selection by Label

pandas.Series.name

Series.name

pandas.Series.nbytes

Series.nbytes
return the number of bytes in the underlying data

pandas.Series.ndim

Series.ndim
return the number of dimensions of the underlying data, by definition 1

pandas.Series.real

Series.real

pandas.Series.shape

Series.shape
return a tuple of the shape of the underlying data
pandas.Series.size

Series.size
return the number of elements in the underlying data

pandas.Series.strides

Series.strides
return the strides of the underlying data

pandas.Series.values

Series.values
Return Series as ndarray or ndarray-like depending on the dtype

Returns arr : numpy.ndarray or ndarray-like

Examples

```python
>>> pd.Series([1, 2, 3]).values
array([1, 2, 3])

>>> pd.Series(list('aabc')).values
array(['a', 'a', 'b', 'c'], dtype=object)

>>> pd.Series(list('aabc')).astype('category').values
[a, a, b, c]
Categories (3, object): [a, b, c]
```

Timezone aware datetime data is converted to UTC:

```python
>>> pd.Series(pd.date_range('20130101', periods=3,
    tz='US/Eastern')).values
array(['2013-01-01T00:00:00.000000000-0500',
    '2013-01-02T00:00:00.000000000-0500',
    '2013-01-03T00:00:00.000000000-0500'], dtype='datetime64[ns]')
```

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken–only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td>add(other[, level, fill_value, axis])</td>
<td>Addition of series and other, element-wise (binary operator add).</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td>align(other[, join, axis, level, copy, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>all([axis, bool_only, skipna, level])</td>
<td>Return whether all elements are True over requested axis</td>
</tr>
</tbody>
</table>
Table 35.22 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>any()</code></td>
<td>any(axis, bool_only, skipna, level)</td>
</tr>
<tr>
<td><code>append()</code></td>
<td>append(to_append[, ignore_index, ...])</td>
</tr>
<tr>
<td><code>apply()</code></td>
<td>apply(func[, convert_dtype, args])</td>
</tr>
<tr>
<td><code>argmax()</code></td>
<td>argmax(axis, skipna)</td>
</tr>
<tr>
<td><code>argmin()</code></td>
<td>argmin(axis, skipna)</td>
</tr>
<tr>
<td><code>argsort()</code></td>
<td>argsort(axis, kind, order)</td>
</tr>
<tr>
<td><code>as_blocks()</code></td>
<td>as_blocks(copy)</td>
</tr>
<tr>
<td><code>as_matrix()</code></td>
<td>as_matrix(columns)</td>
</tr>
<tr>
<td><code>asfreq()</code></td>
<td>asfreq(freq[, method, how, normalize])</td>
</tr>
<tr>
<td><code>asof()</code></td>
<td>asof(where[, subset])</td>
</tr>
<tr>
<td><code>astype()</code></td>
<td>astype(dtype[, copy, raise_on_error])</td>
</tr>
<tr>
<td><code>at_time()</code></td>
<td>at_time(time[, asof])</td>
</tr>
<tr>
<td><code>autocorr()</code></td>
<td>autocorr(lag)</td>
</tr>
<tr>
<td><code>between()</code></td>
<td>between(left, right[, inclusive])</td>
</tr>
<tr>
<td><code>between_time()</code></td>
<td>between_time(start_time, end_time[, ...])</td>
</tr>
<tr>
<td><code>bfill()</code></td>
<td>bfill(axis, inplace, limit, downcast)</td>
</tr>
<tr>
<td><code>bool()</code></td>
<td>bool()</td>
</tr>
<tr>
<td><code>cat()</code></td>
<td>cat</td>
</tr>
<tr>
<td><code>clip()</code></td>
<td>clip(lower, upper, axis)</td>
</tr>
<tr>
<td><code>clip_lower()</code></td>
<td>clip_lower(threshold[, axis])</td>
</tr>
<tr>
<td><code>clip_upper()</code></td>
<td>clip_upper(threshold[, axis])</td>
</tr>
<tr>
<td><code>combine()</code></td>
<td>combine(other, func[, fill_value])</td>
</tr>
<tr>
<td><code>combine_first()</code></td>
<td>combine_first(other)</td>
</tr>
<tr>
<td><code>compound()</code></td>
<td>compound(axis, skipna, level)</td>
</tr>
<tr>
<td><code>compress()</code></td>
<td>compress(condition, *args, **kwargs)</td>
</tr>
<tr>
<td><code>consolidate()</code></td>
<td>consolidate(inplace)</td>
</tr>
<tr>
<td><code>convert_objects()</code></td>
<td>convert_objects((convert_dates, ...))</td>
</tr>
<tr>
<td><code>copy()</code></td>
<td>copy([deep])</td>
</tr>
<tr>
<td><code>corr()</code></td>
<td>corr(other[, method, min_periods])</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>count(level)</td>
</tr>
<tr>
<td><code>cov()</code></td>
<td>cov(other[, min_periods])</td>
</tr>
<tr>
<td><code>cummax()</code></td>
<td>cummax(axis, skipna)</td>
</tr>
<tr>
<td><code>cummin()</code></td>
<td>cummin(axis, skipna)</td>
</tr>
<tr>
<td><code>cumprod()</code></td>
<td>cumprod(axis, skipna)</td>
</tr>
<tr>
<td><code>cumsum()</code></td>
<td>cumsum(axis, skipna)</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.22 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>describe</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>diff([periods])</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>div(other[, level, fill_value, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>divide(other[, level, fill_value, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>dot(other)</code></td>
<td>Matrix multiplication with DataFrame or inner-product with Series</td>
</tr>
<tr>
<td><code>drop(labels[, axis, level, inplace, errors])</code></td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td><code>drop_duplicates(*args, **kwargs)</code></td>
<td>Return Series with duplicate values removed</td>
</tr>
<tr>
<td><code>dropna([axis, inplace])</code></td>
<td>Return Series without null values</td>
</tr>
<tr>
<td><code>dt</code></td>
<td>alias of <code>CombinedDatetimelikeProperties</code></td>
</tr>
<tr>
<td><code>duplicated(*args, **kwargs)</code></td>
<td>Return boolean Series denoting duplicate values</td>
</tr>
<tr>
<td><code>eq(other[, level, fill_value, axis])</code></td>
<td>Equal to of series and other, element-wise (binary operator <code>eq</code>).</td>
</tr>
<tr>
<td><code>equals(other)</code></td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td><code>ewm([com, span, halflife, alpha, ...])</code></td>
<td>Provides exponential weighted functions</td>
</tr>
<tr>
<td><code>expanding([min_periods, freq, center, axis])</code></td>
<td>Provides expanding transformations.</td>
</tr>
<tr>
<td><code>factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>ffill([axis, inplace, limit, downcast])</code></td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td><code>fillna([value, method, axis, inplace, ...])</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter([items, like, regex, axis])</code></td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td><code>first(offset)</code></td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>first_valid_index()</code></td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td><code>floordiv(other[, level, fill_value, axis])</code></td>
<td>Integer division of series and other, element-wise (binary operator <code>floordiv</code>).</td>
</tr>
<tr>
<td><code>from_array(arr[, index, name, dtype, copy, ...])</code></td>
<td>Read CSV file (DISCOURAGED, please use <code>pandas.read_csv()</code> instead).</td>
</tr>
<tr>
<td><code>from_csv(path[, sep, parse_dates, header, ...])</code></td>
<td>Read CSV file (DISCOURAGED, please use <code>pandas.read_csv()</code> instead).</td>
</tr>
<tr>
<td><code>ge(other[, level, fill_value, axis])</code></td>
<td>Greater than or equal to of series and other, element-wise (binary operator <code>ge</code>).</td>
</tr>
<tr>
<td><code>get(key[, default])</code></td>
<td>Get item from object for given key (Dataframe column, Panel slice, etc.).</td>
</tr>
<tr>
<td><code>get_dtypes()</code></td>
<td>Return the counts of dtypes in this object.</td>
</tr>
<tr>
<td><code>get_fnames()</code></td>
<td>Return the counts of ftypes in this object.</td>
</tr>
<tr>
<td><code>get_values(label[, takeable])</code></td>
<td>Quickly retrieve single value at passed index label same as values (but handles sparseness conversions); is a view</td>
</tr>
<tr>
<td><code>groupby([by, axis, level, as_index, sort, ...])</code></td>
<td>Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.</td>
</tr>
<tr>
<td><code>gt(other[, level, fill_value, axis])</code></td>
<td>Greater than of series and other, element-wise (binary operator <code>gt</code>).</td>
</tr>
<tr>
<td><code>head([n])</code></td>
<td>Returns first n rows</td>
</tr>
<tr>
<td><code>hist([by, ax, grid, xlabels, xrot, ...])</code></td>
<td>Draw histogram of the input series using matplotlib</td>
</tr>
</tbody>
</table>
Table 35.22 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>idxmax(axis, skipna)</td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td>idxmin(axis, skipna)</td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td>iget(i[, axis])</td>
<td>DEPRECATED.</td>
</tr>
<tr>
<td>iget_value(i[, axis])</td>
<td>DEPRECATED.</td>
</tr>
<tr>
<td>interpolate(*method, limit, inplace, ...))</td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td>irow(i[, axis])</td>
<td>DEPRECATED.</td>
</tr>
<tr>
<td>isin(values)</td>
<td>Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.</td>
</tr>
<tr>
<td>isnull()</td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td>item()</td>
<td>Return the first element of the underlying data as a python</td>
</tr>
<tr>
<td>iteritems()</td>
<td>Lazily iterate over (index, value) tuples</td>
</tr>
<tr>
<td>iterkv(*args, **kwargs)</td>
<td>iteritems alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td>keys()</td>
<td>Alias for index</td>
</tr>
<tr>
<td>kurt([axis, skipna, level, numeric_only])</td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td>kurtosis([axis, skipna, level, numeric_only])</td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td>last(offset)</td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td>last_valid_index()</td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td>le(other[, level, fill_value, axis])</td>
<td>Less than or equal to of series and other, element-wise (binary operator le).</td>
</tr>
<tr>
<td>lt(other[, level, fill_value, axis])</td>
<td>Less than of series and other, element-wise (binary operator lt).</td>
</tr>
<tr>
<td>mad([axis, skipna, level])</td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td>map(arg[, na_action])</td>
<td>Map values of Series using input correspondence (which can be</td>
</tr>
<tr>
<td>mask(cond[, other, inplace, axis, level, ...])</td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.</td>
</tr>
<tr>
<td>max([axis, skipna, level, numeric_only])</td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td>mean([axis, skipna, level, numeric_only])</td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td>median([axis, skipna, level, numeric_only])</td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td>memory_usage([index, deep])</td>
<td>Memory usage of the Series</td>
</tr>
<tr>
<td>min([axis, skipna, level, numeric_only])</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td>mod(other[, level, fill_value, axis])</td>
<td>Modulo of series and other, element-wise (binary operator mod).</td>
</tr>
<tr>
<td>mode()</td>
<td>Returns the mode(s) of the dataset.</td>
</tr>
<tr>
<td>mul(other[, level, fill_value, axis])</td>
<td>Multiplication of series and other, element-wise (binary operator mul).</td>
</tr>
<tr>
<td>multiply(other[, level, fill_value, axis])</td>
<td>Multiplication of series and other, element-wise (binary operator mul).</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.22 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ne(other[, level, fill_value, axis])</code></td>
<td>Not equal to of series and other, element-wise (binary operator <code>ne</code>).</td>
</tr>
<tr>
<td><code>nlargest(*args, **kwargs)</code></td>
<td>Return the largest n elements.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>Return the indices of the elements that are non-zero</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>nsmallest(*args, **kwargs)</code></td>
<td>Return the smallest n elements.</td>
</tr>
<tr>
<td><code>nonzero()</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>order([na_last, ascending, kind, ...])</code></td>
<td>DEPRECATED: use <code>Series.sort_values()</code></td>
</tr>
<tr>
<td><code>pct_change([periods, fill_method, limit, freq])</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pipe(func, *args, **kwargs)</code></td>
<td>Apply func(self, *args, **kwargs)</td>
</tr>
<tr>
<td><code>plot</code></td>
<td>alias of SeriesPlotMethods</td>
</tr>
<tr>
<td><code>pop(item)</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow(other[, level, fill_value, axis])</code></td>
<td>Exponential power of series and other, element-wise (binary operator <code>pow</code>).</td>
</tr>
<tr>
<td><code>prod([axis, skipna, level, numeric_only])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>product([axis, skipna, level, numeric_only])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>ptp([axis, skipna, level, numeric_only])</code></td>
<td>Returns the difference between the maximum value and the minimum value in the object.</td>
</tr>
<tr>
<td><code>put(*args, **kwargs)</code></td>
<td>Applies the <code>put</code> method to its <code>values</code> attribute if it has one.</td>
</tr>
<tr>
<td><code>quantile([q, interpolation])</code></td>
<td>Return value at the given quantile, a la <code>numpy.percentile</code>.</td>
</tr>
<tr>
<td><code>radd(other[, level, fill_value, axis])</code></td>
<td>Addition of series and other, element-wise (binary operator <code>radd</code>).</td>
</tr>
<tr>
<td><code>rank([axis, method, numeric_only, ...])</code></td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>ravel([order])</code></td>
<td>Return the flattened underlying data as an <code>ndarray</code></td>
</tr>
<tr>
<td><code>rdiv(other[, level, fill_value, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><code>reindex(index)</code></td>
<td>Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_axis(labels[, axis])</code></td>
<td>for compatibility with higher dims</td>
</tr>
<tr>
<td><code>rename_like(other[, method, copy, limit, ...])</code></td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td><code>rename(index)</code></td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>rename_axis(mapper[, axis, copy, inplace])</code></td>
<td>Alter index / / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>reorder_levels(order)</code></td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>repeat(reps, *args, **kwargs)</code></td>
<td>Repeat elements of an Series.</td>
</tr>
<tr>
<td><code>replace(lo_replace, value, inplace, limit, ...)</code></td>
<td>Replace values given in 'lo_replace' with 'value'.</td>
</tr>
<tr>
<td><code>resample(rule[, how, axis, fill_method, ...])</code></td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td><code>reset_index([level, drop, name, inplace])</code></td>
<td>Analogous to the <code>pandas.DataFrame.reset_index()</code> function, see docstring there.</td>
</tr>
<tr>
<td><code>reshape(*args, **kwargs)</code></td>
<td>DEPRECATED: calling this method will raise an error in a future release.</td>
</tr>
<tr>
<td><code>rfloordiv(other[, level, fill_value, axis])</code></td>
<td>Integer division of series and other, element-wise (binary operator <code>rfloordiv</code>).</td>
</tr>
<tr>
<td><code>rmod(other[, level, fill_value, axis])</code></td>
<td>Modulo of series and other, element-wise (binary operator <code>rmod</code>).</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.22 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rmul(other[, level, fill_value, axis])</td>
<td>Multiplication of series and other, element-wise (binary operator rmul).</td>
</tr>
<tr>
<td>rolling(window[, min_periods, freq, center, ...])</td>
<td>Provides rolling window calculations.</td>
</tr>
<tr>
<td>round([decimals])</td>
<td>Round each value in a Series to the given number of decimals.</td>
</tr>
<tr>
<td>rpow(other[, level, fill_value, axis])</td>
<td>Exponential power of series and other, element-wise (binary operator rpow).</td>
</tr>
<tr>
<td>rsub(other[, level, fill_value, axis])</td>
<td>Subtraction of series and other, element-wise (binary operator rsub).</td>
</tr>
<tr>
<td>rtruediv(other[, level, fill_value, axis])</td>
<td>Floating division of series and other, element-wise (binary operator rtruediv).</td>
</tr>
<tr>
<td>sample([n, frac, replace, weights, ...])</td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td>searchsorted(v[, side, sorter])</td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td>select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria.</td>
</tr>
<tr>
<td>sem([axis, skipna, level, ddof, numeric_only])</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td>set_axis(axis, labels)</td>
<td>public version of axis assignment</td>
</tr>
<tr>
<td>set_value(label, value[, takeable])</td>
<td>Quickly set single value at passed label.</td>
</tr>
<tr>
<td>shift([periods, freq, axis])</td>
<td>Shift index by desired number of periods with an optional time freq.</td>
</tr>
<tr>
<td>skew([axis, skipna, level, numeric_only])</td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td>slice_shift([periods, axis])</td>
<td>Equivalent to shift without copying data.</td>
</tr>
<tr>
<td>sort([axis, ascending, kind, na_position, ...])</td>
<td>DEPRECATED: use Series.sort_values(inplace=True)() for INPLACE</td>
</tr>
<tr>
<td>sort_index([axis, level, ascending, ...])</td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td>sort_values([axis, ascending, inplace, ...])</td>
<td>Sort by the values along either axis</td>
</tr>
<tr>
<td>sortlevel([level, ascending, sort_remaining])</td>
<td>Sort Series with MultiIndex by chosen level.</td>
</tr>
<tr>
<td>squeeze() *(**kwargs)</td>
<td>Squeeze length 1 dimensions.</td>
</tr>
<tr>
<td>std([axis, skipna, level, ddof, numeric_only])</td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td>str</td>
<td>alias of StringMethods</td>
</tr>
<tr>
<td>subtract(other[, level, fill_value, axis])</td>
<td>Subtraction of series and other, element-wise (binary operator sub).</td>
</tr>
<tr>
<td>sum([axis, skipna, level, numeric_only])</td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
<tr>
<td>swapaxes(axis1, axis2[, copy])</td>
<td>Interchange axes and swap values axes appropriately.</td>
</tr>
<tr>
<td>swaplevel([i, j, copy])</td>
<td>Swap levels i and j in a MultiIndex.</td>
</tr>
<tr>
<td>tail([n])</td>
<td>Returns last n rows.</td>
</tr>
<tr>
<td>take(indices[, axis, convert, is_copy])</td>
<td>return Series corresponding to requested indices.</td>
</tr>
<tr>
<td>to_clipboard([excel, sep])</td>
<td>Attempt to write text representation of object to the system clipboard. This can be pasted into Excel, for example.</td>
</tr>
<tr>
<td>to_csv([path, index, sep, na_rep, ...])</td>
<td>Write Series to a comma-separated values (csv) file.</td>
</tr>
<tr>
<td>to_dense()</td>
<td>Return dense representation of NDFrame (as opposed to sparse).</td>
</tr>
<tr>
<td>to_dict()</td>
<td>Convert Series to { label -> value } dict.</td>
</tr>
<tr>
<td>to_frame([name])</td>
<td>Convert Series to DataFrame.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.22 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>to_hdf</code></td>
<td>Write the contained data to an HDF5 file using HDFS-store.</td>
</tr>
<tr>
<td><code>to_json</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_msgpack</code></td>
<td>msgpack (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_period</code></td>
<td>Convert Series from DatetimeIndex to PeriodIndex with desired</td>
</tr>
<tr>
<td><code>to_pickle</code></td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_sparse</code></td>
<td>Convert Series to SparseSeries.</td>
</tr>
<tr>
<td><code>to_sql</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_string</code></td>
<td>Render a string representation of the Series</td>
</tr>
<tr>
<td><code>to_timestamp</code></td>
<td>Cast to datetimeindex of timestamps, at beginning of period</td>
</tr>
<tr>
<td><code>to_xarray</code></td>
<td>Return an array object from the pandas object.</td>
</tr>
<tr>
<td><code>tolist</code></td>
<td>Convert Series to a nested list.</td>
</tr>
<tr>
<td><code>tshift</code></td>
<td>Return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>truediv</code></td>
<td>Floating division of series and other, element-wise (binary operator truediv)</td>
</tr>
<tr>
<td><code>truncate</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
<tr>
<td><code>tzh_convert</code></td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td><code>tz_localize</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
<tr>
<td><code>unstack</code></td>
<td>Unstack, a.k.a.</td>
</tr>
<tr>
<td><code>update</code></td>
<td>Modify Series in place using non-NA values from passed Series.</td>
</tr>
<tr>
<td><code>valid</code></td>
<td>Modify Series in place using non-NA values from passed Series.</td>
</tr>
<tr>
<td><code>value_counts</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>var</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td><code>view</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td><code>xs</code></td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
</tbody>
</table>

pandas.Series.abs

Series.abs()
Return an object with absolute value taken–only applicable to objects that are all numeric.

Returns
abs: type of caller

pandas.Series.add

Series.add(other, level=None, fill_value=None, axis=0)
Addition of series and other, element-wise (binary operator add).

Equivalent to series + other, but with support to substitute a fill_value for missing data in one of the inputs.
Parameters

other : Series or scalar value

- **fill_value** : None or float value, default None (NaN)

 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing.

- **level** : int or name

 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result : Series

See also:

Series.radd

Series.add_prefix

Series.add_prefix(prefix)

Concatenate prefix string with panel items names.

- **Parameters**

 - **prefix** : string

- **Returns**

 with_prefix : type of caller

Series.add_suffix

Series.add_suffix(suffix)

Concatenate suffix string with panel items names.

- **Parameters**

 - **suffix** : string

- **Returns**

 with_suffix : type of caller

Series.align

Series.align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)

Align two object on their axes with the specified join method for each axis Index

- **Parameters**

 - **other** : DataFrame or Series

 - **join** : {'outer', 'inner', 'left', 'right'}, default ‘outer’

 - **axis** : allowed axis of the other object, default None

 - **level** : int or level name, default None

 - **copy** : boolean, default True

 - **fill_value** : scalar, default np.NaN

 Value to use for missing values. Defaults to NaN, but can be any “compatible” value
method : str, default None
limit : int, default None
fill_axis : {0, ‘index’}, default 0
Filling axis, method and limit
broadcast_axis : {0, ‘index’}, default None
Broadcast values along this axis, if aligning two objects of different dimensions
New in version 0.17.0.

Returns (left, right) : (Series, type of other)
Aligned objects

pandas.Series.all

Series.all (axis=None, bool_only=None, skipna=None, level=None, **kwargs)
Return whether all elements are True over requested axis

Parameters axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns all : scalar or Series (if level specified)

pandas.Series.any

Series.any (axis=None, bool_only=None, skipna=None, level=None, **kwargs)
Return whether any element is True over requested axis

Parameters axis : {index (0)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns any : scalar or Series (if level specified)
pandas.Series.append

Series.append(to_append, ignore_index=False, verify_integrity=False)
Concatenate two or more Series.

Parameters
- **to_append**: Series or list/tuple of Series
 - ignore_index: boolean, default False
 If True, do not use the index labels.
 - verify_integrity: boolean, default False
 If True, raise Exception on creating index with duplicates

Returns
- appended: Series

Examples

```python
>>> s1 = pd.Series([1, 2, 3])
>>> s2 = pd.Series([4, 5, 6])
>>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5])
>>> s1.append(s2)
0    1
1    2
2    3
3    4
4    5
5    6
dtype: int64
```

```python
>>> s1.append(s3)
0    1
1    2
2    3
3    4
4    5
5    6
dtype: int64
```

With **ignore_index** set to True:

```python
>>> s1.append(s2, ignore_index=True)
0    1
1    2
2    3
3    4
4    5
5    6
dtype: int64
```

With **verify_integrity** set to True:

```python
>>> s1.append(s2, verify_integrity=True)
ValueError: Indexes have overlapping values: [0, 1, 2]
```
pandas.Series.apply

Series.apply (func, convert_dtype=True, args=(), **kwds)
Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values

Parameters

- **func**: function
- **convert_dtype**: boolean, default True
 Try to find better dtype for elementwise function results. If False, leave as dtype=object
- **args**: tuple
 Positional arguments to pass to function in addition to the value

Additional keyword arguments will be passed as keywords to the function

Returns

- **y**: Series or DataFrame if func returns a Series

See also:

Series.map For element-wise operations

Examples

Create a series with typical summer temperatures for each city.

```python
>>> import pandas as pd
>>> import numpy as np

>>> series = pd.Series([20, 21, 12], index=['London', 'New York', 'Helsinki'])
London 20
New York 21
Helsinki 12
dtype: int64
```

Square the values by defining a function and passing it as an argument to apply().

```python
>>> def square(x):
...     return x**2
>>> series.apply(square)
London 400
New York 441
Helsinki 144
dtype: int64
```

Square the values by passing an anonymous function as an argument to apply().

```python
>>> series.apply(lambda x: x**2)
London 400
New York 441
Helsinki 144
dtype: int64
```

Define a custom function that needs additional positional arguments and pass these additional arguments using the args keyword.
```python
>>> def subtract_custom_value(x, custom_value):
...     return x - custom_value
```

```python
>>> series.apply(subtract_custom_value, args=(5,))
London    15
New York  16
Helsinki  7
dtype: int64
```

Define a custom function that takes keyword arguments and pass these arguments to `apply`.

```python
>>> def add_custom_values(x, **kwargs):
...     for month in kwargs:
...         x += kwargs[month]
...     return x
```

```python
>>> series.apply(add_custom_values, june=30, july=20, august=25)
London    95
New York  96
Helsinki  87
dtype: int64
```

Use a function from the Numpy library.

```python
>>> series.apply(np.log)
London    2.995732
New York  3.044522
Helsinki  2.484907
dtype: float64
```

pandas.Series.argmax

`Series.argmax(axis=None, skipna=True, *args, **kwargs)`

Index of first occurrence of maximum of values.

- **Parameters**
 - `skipna`: boolean, default True
 - Exclude NA/null values

- **Returns**
 - `idxmax`: Index of maximum of values

See also:

- `DataFrame.idxmax`
- `numpy.ndarray.argmax`

Notes

This method is the Series version of `ndarray.argmax`.

pandas.Series.argmin

`Series.argmin(axis=None, skipna=True, *args, **kwargs)`

Index of first occurrence of minimum of values.
Parameters skipna : boolean, default True

Exclude NA/null values

Returns idxmin : Index of minimum of values

See also:

DataFrame.idxmin, *numpy.ndarray.argmin*

Notes

This method is the Series version of *ndarray.argmin*.

pandas.Series.argsort

Series.argsort(**axis=0**, **kind=’quicksort’**, **order=None**)
Overrides *ndarray.argsort*. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values

Parameters axis : int (can only be zero)

kind : {'mergesort', 'quicksort', 'heapsort'}, default ‘quicksort’

Choice of sorting algorithm. See *np.sort* for more information. ‘mergesort’ is the only stable algorithm

order : ignored

Returns argsorted : Series, with -1 indicated where nan values are present

See also:

numpy.ndarray.argsort

pandas.Series.as_blocks

Series.as_blocks(**copy=True**)
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in *as_matrix*)

Parameters copy : boolean, default True

Returns values : a dict of dtype -> Constructor Types

pandas.Series.as_matrix

Series.as_matrix(**columns=None**)
Convert the frame to its Numpy-array representation.

Parameters columns: list, optional, default:None

If None, return all columns, otherwise, returns specified columns.

Returns values : ndarray
If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.

See also:

pandas.DataFrame.values

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

This method is provided for backwards compatibility. Generally, it is recommended to use `.values`.

pandas.Series.asfreq

Series.asfreq (freq, method=None, how=None, normalize=False)

Convert TimeSeries to specified frequency.

Optionally provide filling method to pad/backfill missing values.

Parameters

 freq : DateOffset object, or string
 method : {'backfill'/'bfill', 'pad'/'ffill'}, default None
 Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):
 • ’pad’ / ’ffill’: propagate last valid observation forward to next valid
 • ’backfill’ / ’bfill’: use NEXT valid observation to fill
 how : {'start', 'end'}, default end
 For PeriodIndex only, see PeriodIndex.asfreq
 normalize : bool, default False
 Whether to reset output index to midnight

Returns converted : type of caller

Notes

To learn more about the frequency strings, please see this link.

pandas.Series.asof

Series.asof (where, subset=None)

The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame)
New in version 0.19.0: For DataFrame

If there is no good value, NaN is returned.

Parameters

where : date or array of dates

subset : string or list of strings, default None
 if not None use these columns for NaN propagation

Returns

where is scalar

- value or NaN if input is Series
- Series if input is DataFrame

where is Index: same shape object as input

See also:

merge_asof

Notes

Dates are assumed to be sorted Raises if this is not the case

pandas.Series.astype

Series.astype(dtype, copy=True, raise_on_error=True, **kwargs)

Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters

dtype : data type, or dict of column name -> data type

Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

raise_on_error : raise on invalid input

kwargs : keyword arguments to pass on to the constructor

Returns

casted : type of caller

pandas.Series.at_time

Series.at_time(time, asof=False)

Select values at particular time of day (e.g. 9:30AM).

Parameters

time : datetime.time or string

Returns

values_at_time : type of caller

pandas.Series.autocorr

Series.autocorr(lag=1)

Lag-N autocorrelation

Parameters

lag : int, default 1
Number of lags to apply before performing autocorrelation.

Returns

`autocorr` : float

pandas.Series.between

```python
Series.between(left, right, inclusive=True)
```

Return boolean Series equivalent to `left <= series <= right`. NA values will be treated as False.

Parameters

`left` : scalar

 Left boundary

`right` : scalar

 Right boundary

Returns

`is_between` : Series

pandas.Series.between_time

```python
Series.between_time(start_time, end_time, include_start=True, include_end=True)
```

Select values between particular times of the day (e.g., 9:00-9:30 AM).

Parameters

`start_time` : datetime.time or string

`end_time` : datetime.time or string

`include_start` : boolean, default True

`include_end` : boolean, default True

Returns

`values_between_time` : type of caller

pandas.Series.bfill

```python
Series.bfill(axis=None, inplace=False, limit=None, downcast=None)
```

Synonym for `NDFrame.fillna(method='bfill')`

pandas.Series.bool

```python
Series.bool()
```

Return the bool of a single element PandasObject.

This must be a boolean scalar value, either True or False. Raise a `ValueError` if the PandasObject does not have exactly 1 element, or that element is not boolean.

pandas.Series.cat

```python
Series.cat()
```

Accessor object for categorical properties of the Series values.

Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`).
Examples

```python
>>> s.cat.categories
>>> s.cat.categories = list('abc')
>>> s.cat.rename_categories(list('cab'))
>>> s.cat.reorder_categories(list('cab'))
>>> s.cat.add_categories(['d','e'])
>>> s.cat.remove_categories(['d'])
>>> s.cat.remove_unused_categories()
>>> s.cat.set_categories(list('abcde'))
>>> s.cat.as_ordered()
>>> s.cat.as_unordered()
```

tables: power Python data analysis toolkit, Release 0.19.2

pandas.Series.clip

Series.clip(*lower=None, upper=None, axis=None, **kwargs)*

Trim values at input threshold(s).

Parameters

- **lower**: float or array_like, default None
- **upper**: float or array_like, default None
- **axis**: int or string axis name, optional

Align object with lower and upper along the given axis.

Returns

- **clipped**: Series

Examples

```python
>>> df
  0  1
0 0.335232 -1.256177
1 -1.367855  0.746646
2  0.027753 -1.176076
3  0.230930 -0.679613
4  1.261967  0.570967
>>> df.clip(-1.0, 0.5)
                          0
0  0.335232 -1.000000
1 -1.000000  0.500000
2  0.027753 -1.000000
3  0.230930 -0.679613
4  0.500000  0.500000
>>> t
  0  -0.3
  1  -0.2
  2  -0.1
  3   0.0
  4   0.1
dtype: float64
>>> df.clip(t, t + 1, axis=0)
                          0
  0  0.335232 -0.300000
  1 -1.256177  0.746646
  2  0.027753 -0.100000
```
pandas.Series.clip_lower

Series.clip_lower(threshold, axis=None)
Return copy of the input with values below given value(s) truncated.

Parameters:
- threshold : float or array_like
- axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns:
- clipped : same type as input

See also:
- clip

pandas.Series.clip_upper

Series.clip_upper(threshold, axis=None)
Return copy of input with values above given value(s) truncated.

Parameters:
- threshold : float or array_like
- axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns:
- clipped : same type as input

See also:
- clip

pandas.Series.combine

Series.combine(other, func, fill_value=nan)
Perform elementwise binary operation on two Series using given function with optional fill value when an index is missing from one Series or the other.

Parameters:
- other : Series or scalar value
- func : function
- fill_value : scalar value

Returns:
- result : Series

pandas.Series.combine_first

Series.combine_first(other)
Combine Series values, choosing the calling Series’s values first. Result index will be the union of the two indexes.

Parameters:
- other : Series
Returns y: Series

pandas.Series.compound

Series.compound (axis=None, skipna=None, level=None)
Return the compound percentage of the values for the requested axis

Parameters axis : {index (0)}
skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
 a scalar
numeric_only : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything, then
 use only numeric data. Not implemented for Series.

Returns compounded : scalar or Series (if level specified)

pandas.Series.compress

Series.compress (condition, *args, **kwargs)
Return selected slices of an array along given axis as a Series

See also:
numpy.ndarray.compress

pandas.Series.consolidate

Series.consolidate (inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).
Mainly an internal API function, but available here to the savvy user

Parameters inplace : boolean, default False
 If False return new object, otherwise modify existing object

Returns consolidated : type of caller

pandas.Series.convert_objects

Series.convert_objects (convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
Deprecated.
Attempt to infer better dtype for object columns

Parameters convert_dates : boolean, default True
 If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible
 values becoming NaT.
convert_numeric : boolean, default False

If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN.

convert_timedeltas : boolean, default True

If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.

copy : boolean, default True

If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace.

Returns converted : same as input object

See also:

pandas.to_datetime Convert argument to datetime.
pandas.to_timedelta Convert argument to timedelta.
pandas.to_numeric Return a fixed frequency timedelta index, with day as the default.

pandas.Series.copy

Series.copy (deep=True)

Make a copy of this objects data.

Parameters deep : boolean or string, default True

Make a deep copy, including a copy of the data and the indices. With deep=False neither the indices or the data are copied.

Note that when deep=True data is copied, actual python objects will not be copied recursively, only the reference to the object. This is in contrast to copy.deepcopy in the Standard Library, which recursively copies object data.

Returns copy : type of caller

pandas.Series.corr

Series.corr (other, method='pearson', min_periods=None)

Compute correlation with other Series, excluding missing values

Parameters other : Series

method : {'pearson', 'kendall', 'spearman'}

• pearson : standard correlation coefficient
• kendall : Kendall Tau correlation coefficient
• spearman : Spearman rank correlation

min_periods : int, optional

Minimum number of observations needed to have a valid result

Returns correlation : float
pandas.Series.count

`Series.count(level=None)`
Return number of non-NA/null observations in the Series

Parameters
- `level`: int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series

Returns
- `nobs`: int or Series (if level specified)

pandas.Series.cov

`Series.cov(other, min_periods=None)`
Compute covariance with Series, excluding missing values

Parameters
- `other`: Series
- `min_periods`: int, optional
 Minimum number of observations needed to have a valid result

Returns
- `covariance`: float
 Normalized by N-1 (unbiased estimator).

pandas.Series.cummax

`Series.cummax(axis=None, skipna=True, **kwargs)`
Return cumulative max over requested axis.

Parameters
- `axis`: {index (0)}
- `skipna`: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- `cummax`: scalar

pandas.Series.cummin

`Series.cummin(axis=None, skipna=True, **kwargs)`
Return cumulative minimum over requested axis.

Parameters
- `axis`: {index (0)}
- `skipna`: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- `cummin`: scalar

pandas.Series.cumprod

`Series.cumprod(axis=None, skipna=True, **kwargs)`
Return cumulative product over requested axis.
Parameters

axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
cumprod : scalar

pandas.Series.cumsum

Series.cumsum(axis=None, skipna=True, *args, **kwargs)
Return cumulative sum over requested axis.

Parameters

axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
cumsum : scalar

pandas.Series.describe

Series.describe(percentiles=None, include=None, exclude=None)
Generate various summary statistics, excluding NaN values.

Parameters

percentiles : array-like, optional

The percentiles to include in the output. Should all be in the interval [0, 1]. By default
percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

include, exclude : list-like, ‘all’, or None (default)

Specify the form of the returned result. Either:

- None to both (default). The result will include only numeric-typed columns or, if
 none are, only categorical columns.
- A list of dtypes or strings to be included/excluded. To select all numeric types use
 numpy numpy.number. To select categorical objects use type object. See also the
 select_dtypes documentation. eg. df.describe(include=['O'])
- If include is the string ‘all’, the output column-set will match the input one.

Returns

summary: NDFrame of summary statistics

See also:

Dataframe.select_dtypes

Notes

The output DataFrame index depends on the requested dtypes:

For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.

For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and
frequency of the most common. Timestamps also include the first and last items.
For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.

If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

The include, exclude arguments are ignored for Series.

pandas.Series.diff

Series.diff(periods=1)

1st discrete difference of object

- **Parameters** periods: int, default 1
 - Periods to shift for forming difference

- **Returns** diffed: Series

pandas.Series.div

Series.div(other, level=None, fill_value=None, axis=0)

Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of the inputs.

- **Parameters** other: Series or scalar value
 - fill_value: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - level: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

- **Returns** result: Series

- **See also:**
 - Series.rtruediv

pandas.Series.divide

Series.divide(other, level=None, fill_value=None, axis=0)

Floating division of series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in one of the inputs.

- **Parameters** other: Series or scalar value
 - fill_value: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.rtruediv

pandas.Series.dot

Series.dot (other)

Matrix multiplication with DataFrame or inner-product with Series objects

Parameters other : Series or DataFrame

Returns dot_product : scalar or Series

pandas.Series.drop

Series.drop (labels, axis=0, level=None, inplace=False, errors='raise')

Return new object with labels in requested axis removed.

Parameters labels : single label or list-like

axis : int or axis name

level : int or level name, default None

For MultiIndex

inplace : bool, default False

If True, do operation inplace and return None.

errors : {'ignore', 'raise'}, default 'raise'

If 'ignore', suppress error and existing labels are dropped.

New in version 0.16.1.

Returns dropped : type of caller

pandas.Series.drop_duplicates

Series.drop_duplicates (*args, **kwargs)

Return Series with duplicate values removed

Parameters keep : {'first', 'last', False}, default 'first'

• first : Drop duplicates except for the first occurrence.

• last : Drop duplicates except for the last occurrence.

• False : Drop all duplicates.

take_last : deprecated

inplace : boolean, default False

If True, performs operation inplace and returns None.
Returns deduplicated : Series

pandas.Series.dropna

Series.dropna(axis=0, inplace=False, **kwargs)
Return Series without null values

Returns valid : Series

inplace : boolean, default False
Do operation in place.

pandas.Series.dt

Series.dt()
Accessor object for datetimelike properties of the Series values.

Examples

```python
>>> s.dt.hour
>>> s.dt.second
>>> s.dt.quarter
```

Returns a Series indexed like the original Series. Raises TypeError if the Series does not contain datetimelike values.

pandas.Series.duplicated

Series.duplicated(*args, **kwargs)
Return boolean Series denoting duplicate values

Parameters keep : {'first', 'last', False}, default 'first'

- first : Mark duplicates as True except for the first occurrence.
- last : Mark duplicates as True except for the last occurrence.
- False : Mark all duplicates as True.

take_last : deprecated

Returns duplicated : Series

pandas.Series.eq

Series.eq(other, level=None, fill_value=None, axis=0)
Equal to of series and other, element-wise (binary operator eq).

Equivalent to series == other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other: Series or scalar value

fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result : Series

See also:

Series.None

pandas.Series.equals

Series.equals(other)

Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Series.ewm

Series.ewm(com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0)

Provides exponential weighted functions

New in version 0.18.0.

Parameters

com : float, optional

Specify decay in terms of center of mass, \(\alpha = 1/(1 + \text{com}) \), for \(\text{com} \geq 0 \)

span : float, optional

Specify decay in terms of span, \(\alpha = 2/(\text{span} + 1) \), for \(\text{span} \geq 1 \)

halflife : float, optional

Specify decay in terms of half-life, \(\alpha = 1-exp(\log(0.5)/\text{halflife}) \), for \(\text{halflife} > 0 \)

alpha : float, optional

Specify smoothing factor \(\alpha \) directly, \(0 < \alpha \leq 1 \)

New in version 0.18.0.

min_periods : int, default 0

Minimum number of observations in window required to have a value (otherwise result is NA).

freq : None or string alias / date offset object, default=None (DEPRECATED)

Frequency to conform to before computing statistic

adjust : boolean, default True

Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

ignore_na : boolean, default False

Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior
Returns a Window sub-classed for the particular operation

Notes

Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation.

The freq keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of resample() (i.e. using the mean).

When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1.

When adjust is False, weighted averages are calculated recursively as:

- `weighted_average[0] = arg[0];`
- `weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i].`

When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False).

When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False).

More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows

Examples

```python
>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
   B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0

>>> df.ewm(com=0.5).mean()
   B
0  0.000000
1  0.750000
2  1.615385
3  1.615385
4  3.670213
```

pandas.Series.expanding

Series.expanding(min_periods=1, freq=None, center=False, axis=0)

Provides expanding transformations.

New in version 0.18.0.

Parameters

- `min_periods` : int, default None
Minimum number of observations in window required to have a value (otherwise result is NA).

freq : string or DateOffset object, optional (default None) (DEPRECATED)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

center : boolean, default False
Set the labels at the center of the window.

axis : int or string, default 0

Returns a Window sub-classed for the particular operation

Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

Examples

```python
>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
   B
0  0.0
1  1.0
2  2.0
3  NaN
4  4.0

>>> df.expanding(2).sum()
   B
0  NaN
1  1.0
2  3.0
3  3.0
4  7.0
```

pandas.Series.factorize

Series` .factorize (sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters

- **sort** : boolean, default False
 Sort by values

- **na_sentinel** : int, default -1
 Value to mark “not found”

Returns

- **labels** : the indexer to the original array
- **uniques** : the unique Index
pandas.Series.ffill

```
Series.ffill (axis=None, inplace=False, limit=None, downcast=None)
    Synonym for NDFrame.fillna(method='ffill')
```

pandas.Seriesfillna

```
Series.fillna (value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
    Fill NA/NaN values using the specified method

- **Parameters**

  - **value**: scalar, dict, Series, or DataFrame
    
    Value to use to fill holes (e.g. 0), alternately a `dict/Series/DataFrame` of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

  - **method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None
    
    Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

  - **axis**: {0, 'index'}

  - **inplace**: boolean, default False
    
    If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

  - **limit**: int, default None
    
    If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled.

  - **downcast**: dict, default is None
    
    a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

- **Returns** filled : Series

- **See also**:

  - reindex, asfreq

pandas.Series.filter

```
Series.filter (items=None, like=None, regex=None, axis=None)
 Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

- **Parameters**

 - **items**: list-like

 List of info axis to restrict to (must not all be present)

 - **like**: string
Keep info axis where “arg in col == True”

regex : string (regular expression)

Keep info axis with re.search(regex, col) == True

axis : int or string axis name

The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’ for DataFrame

Returns same type as input object

See also:
pandas.DataFrame.select

Notes

The items,like, and regex parameters are enforced to be mutually exclusive.
axis defaults to the info axis that is used when indexing with [].

Examples

```python
>>> df
  one  two  three
mouse 1  2  3
rabbit 4  5  6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
  one  three
mouse 1  3
rabbit 4  6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
  one  three
mouse 1  3
rabbit 4  6

>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
  one  two  three
rabbit 4  5  6
```

pandas.Series.first

Series.first(offset)

Convenience method for subsetting initial periods of time series data based on a date offset.

Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller
Examples

ts.first('10D') -> First 10 days

pandas.Series.first_valid_index

Series.first_valid_index()
Return label for first non-NA/null value

pandas.Series.floordiv

Series.floordiv(other, level=None, fill_value=None, axis=0)
Integer division of series and other, element-wise (binary operator floordiv).

Equivalent to series // other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters other: Series or scalar value

fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be
 missing

level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result: Series

See also:

Series.rfloordiv

pandas.Series.from_array

classmethod Series.from_array(arr, index=None, name=None, dtype=None, copy=False, fast-
path=False)

pandas.Series.from_csv

classmethod Series.from_csv(path, sep=', ', parse_dates=True, header=None, index_col=0, en-
coding=None, infer_datetime_format=False)
Read CSV file (DISCOURAGED, please use pandas.read_csv() instead).

It is preferable to use the more powerful pandas.read_csv() for most general purposes, but
from_csv makes for an easy roundtrip to and from a file (the exact counterpart of to_csv), especially
with a time Series.

This method only differs from pandas.read_csv() in some defaults:

• index_col is 0 instead of None (take first column as index by default)

• header is None instead of 0 (the first row is not used as the column names)

• parse_dates is True instead of False (try parsing the index as datetime by default)
With `pandas.read_csv()`, the option `squeeze=True` can be used to return a Series like `from_csv`.

Parameters

- `path`: string file path or file handle / StringIO
 - `sep`: string, default ‘,’
 - Field delimiter
 - `parse_dates`: boolean, default True
 - Parse dates. Different default from `read_table`
 - `header`: int, default None
 - Row to use as header (skip prior rows)
 - `index_col`: int or sequence, default 0
 - Column to use for index. If a sequence is given, a MultiIndex is used. Different default from `read_table`
 - `encoding`: string, optional
 - a string representing the encoding to use if the contents are non-ascii, for python versions prior to 3
 - `infer_datetime_format`: boolean, default False
 - If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

Returns

- `y`: Series

See also:

- `pandas.read_csv`

pandas.Series.ge

`Series.ge(other, level=None, fill_value=None, axis=0)`

Greater than or equal to of series and other, element-wise (binary operator `ge`).

Equivalent to `series >= other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters

- `other`: Series or scalar value
 - `fill_value`: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - `level`: int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

- `result`: Series

See also:

- `Series.None`
pandas.Series.get

Series.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found.

Parameters key : object

Returns value : type of items contained in object

pandas.Series.get_dtype_counts

Series.get_dtype_counts()
Return the counts of dtypes in this object.

pandas.Series.get_ftype_counts

Series.get_ftype_counts()
Return the counts of ftypes in this object.

pandas.Series.get_value

Series.get_value(label, takeable=False)
Quickly retrieve single value at passed index label

Parameters index : label

takeable : interpret the index as indexers, default False

Returns value : scalar value

pandas.Series.get_values

Series.get_values()
same as values (but handles sparseness conversions); is a view

pandas.Series.groupby

Series.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

Parameters by : mapping function / list of functions, dict, Series, or tuple /
list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups

axis : int, default 0

level : int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels
as_index : boolean, default True
For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

sort : boolean, default True
Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces

squeeze : boolean, default False
reduce the dimensionality of the return type if possible, otherwise return a consistent type

Returns GroupBy object

Examples

DataFrame results

```python
>>> data.groupby(func, axis=0).mean()
>>> data.groupby(['col1', 'col2'])['col3'].mean()
```

DataFrame with hierarchical index

```python
>>> data.groupby(['col1', 'col2']).mean()
```

pandas.Series.gt

Series.gt (other, level=None, fill_value=None, axis=0)
Greater than of series and other, element-wise (binary operator gt).
Equivalent to series > other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other: Series or scalar value

fill_value : None or float scalar, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:
Series.None
pandas.Series.head

Series.head(n=5)
 Returns first n rows

pandas.Series.hist

Series.hist(by=None, ax=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, figsize=None, bins=10, **kwds)
 Draw histogram of the input series using matplotlib

 Parameters by : object, optional
 If passed, then used to form histograms for separate groups
 ax : matplotlib axis object
 If not passed, uses gca()
 grid : boolean, default True
 Whether to show axis grid lines
 xlabelsize : int, default None
 If specified changes the x-axis label size
 xrot : float, default None
 rotation of x axis labels
 ylabelsize : int, default None
 If specified changes the y-axis label size
 yrot : float, default None
 rotation of y axis labels
 figsize : tuple, default None
 figure size in inches by default
 bins: integer, default 10
 Number of histogram bins to be used
 kwds : keywords
 To be passed to the actual plotting function

Notes

See matplotlib documentation online for more on this

pandas.Series.idxmax

Series.idxmax(axis=None, skipna=True, *args, **kwargs)
 Index of first occurrence of maximum of values.

 Parameters skipna : boolean, default True
Exclude NA/null values

Returns idxmax: Index of maximum of values

See also:
DataFrame.idxmax, numpy.ndarray.argmax

Notes

This method is the Series version of ndarray.argmax.

pandas.Series.idxmin

Series.idxmin(axis=None, skipna=True, *args, **kwargs)
Index of first occurrence of minimum of values.

Parameters skipna : boolean, default True
Exclude NA/null values

Returns idxmin: Index of minimum of values

See also:
DataFrame.idxmin, numpy.ndarray.argmin

Notes

This method is the Series version of ndarray.argmin.

pandas.Series.iget

Series.iget(i, axis=0)
DEPRECATED. Use .iloc[i] or .iat[i] instead

pandas.Series.iget_value

Series.iget_value(i, axis=0)
DEPRECATED. Use .iloc[i] or .iat[i] instead

pandas.Series.interpolate

Series.interpolate(method='linear', axis=0, limit=None, inplace=False,
 limit_direction='forward', downcast=None, **kwargs)
Interpolate values according to different methods.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters method : {'linear', 'time', 'index', 'values', 'nearest', 'zero',
 'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline',
 'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}
axis: {0, 1}, default 0
 - 0: fill column-by-column
 - 1: fill row-by-row

limit: int, default None.
 - Maximum number of consecutive NaNs to fill.

limit_direction: {'forward', 'backward', 'both'}, defaults to 'forward'
 - If limit is specified, consecutive NaNs will be filled in this direction.
 - New in version 0.17.0.

inplace: bool, default False
 - Update the NDFrame in place if possible.

downcast: optional, {'infer'} or None, defaults to None
 - Downcast dtypes if possible.

kwargs: keyword arguments to pass on to the interpolating function.

Returns
 - Series or DataFrame of same shape interpolated at the NaNs

See also:
 - `reindex`, `replace`, `fillna`

Examples

Filling in NaNs
```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0    0
1    1
2    2
3    3
dtype: float64
```

pandas.Series.irow

Series.irow(i, axis=0)

DEPRECATED. Use .iloc[i] or .iat[i] instead

pandas.Series.isin

Series.isin(values)

Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.

Parameters

values : set or list-like

The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element.

New in version 0.18.1.

Support for values as a set

Returns

isin : Series (bool dtype)

Raises

TypeError

• If values is a string

See also:

pandas.DataFrame.isin

Examples

```python
>>> s = pd.Series(list('abc'))
>>> s.isin(['a', 'c', 'e'])
0   True
1  False
2   True
dtype: bool
```

Passing a single string as s.isin('a') will raise an error. Use a list of one element instead:

```python
>>> s.isin(['a'])
0   True
1  False
2  False
dtype: bool
```
pandas.Series.isnull

Series.isnull()
 Return a boolean same-sized object indicating if the values are null.
 See also:

 notnull boolean inverse of isnull

pandas.Series.item

Series.item()
 return the first element of the underlying data as a python scalar

pandas.Series.iteritems

Series.iteritems()
 Lazily iterate over (index, value) tuples

pandas.Series.iterkv

Series.iterkv(*args, **kwargs)
 iteritems alias used to get around 2to3. Deprecated

pandas.Series.keys

Series.keys()
 Alias for index

pandas.Series.kurt

Series.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
 Return unbiased kurtosis over requested axis using Fisher's definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

 Parameters axis : {index (0)}
 skipna : boolean, default True
 level : int or level name, default None
 numeric_only : boolean, default None
 Returns kurt : scalar or Series (if level specified)
pandas.Series.kurtosis

Series.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters
- **axis**: {index (0)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns
- **kurt**: scalar or Series (if level specified)

pandas.Series.last

Series.last(offset)

Convenience method for subsetting final periods of time series data based on a date offset.

Parameters
- **offset**: string, DateOffset, dateutil.relativedelta

Returns
- **subset**: type of caller

Examples

ts.last('5M') -> Last 5 months

pandas.Series.last_valid_index

Series.last_valid_index()

Return label for last non-NA/null value

pandas.Series.le

Series.le(other, level=None, fill_value=None, axis=0)

Less than or equal to of series and other, element-wise (binary operator le).

Equivalent to series <= other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- **other**: Series or scalar value
- **fill_value**: None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.None

pandas.Series.lt

Series.lt (other, level=None, fill_value=None, axis=0)

Less than of series and other, element-wise (binary operator lt).

Equivalent to series < other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.None

pandas.Series.mad

Series.mad (axis=None, skipna=None, level=None)

Return the mean absolute deviation of the values for the requested axis

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns mad : scalar or Series (if level specified)
pandas.Series.map

Series.map(arg, na_action=None)
Map values of Series using input correspondence (which can be a dict, Series, or function)

Parameters arg : function, dict, or Series
na_action : {None, ‘ignore’}

If ‘ignore’, propagate NA values, without passing them to the mapping function

Returns y : Series
same index as caller

Examples

Map inputs to outputs

```python
glob
```
```python
>>> x
one 1
two 2
three 3
```
```python
>>> y
1 foo
2 bar
3 baz
```
```python
>>> x.map(y)
one foo
two bar
three baz
```

Use na_action to control whether NA values are affected by the mapping function.

```python
>>> s = pd.Series([1, 2, 3, np.nan])
```
```python
>>> s2 = s.map(lambda x: 'this is a string {}'.format(x), na_action=None)
0   this is a string 1.0
1   this is a string 2.0
2   this is a string 3.0
3   this is a string nan
```
```python
dtype: object
```
```python
>>> s3 = s.map(lambda x: 'this is a string {}'.format(x), na_action='ignore')
0   this is a string 1.0
1   this is a string 2.0
2   this is a string 3.0
3      NaN
```
```python
dtype: object
```
```
**pandas.Series.mask**

Series.mask(\texttt{cond}, other=\texttt{nan}, inplace=\texttt{False}, axis=\texttt{None}, level=\texttt{None}, try_cast=\texttt{False}, raise_on_error=\texttt{True})

Return an object of same shape as self and whose corresponding entries are from self where \texttt{cond} is False and otherwise are from other.

**Parameters**

\texttt{cond} : boolean NDFrame, array or callable

If \texttt{cond} is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.

A callable can be used as \texttt{cond}.

\texttt{other} : scalar, NDFrame, or callable

If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.

A callable can be used as \texttt{other}.

\texttt{inplace} : boolean, default False

Whether to perform the operation in place on the data

\texttt{axis} : alignment axis if needed, default None

\texttt{level} : alignment level if needed, default None

\texttt{try_cast} : boolean, default False

try to cast the result back to the input type (if possible),

\texttt{raise_on_error} : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

**Returns**

\texttt{wh} : same type as caller

**See also:**

\texttt{DataFrame.where()}

**Notes**

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if \texttt{cond} is \texttt{False} the element is used; otherwise the corresponding element from the DataFrame \texttt{other} is used.

The signature for \texttt{DataFrame.where()} differs from \texttt{numpy.where()}. Roughly 
\texttt{df1.where(m,df2)} is equivalent to \texttt{np.where(m,df1,df2)}.

For further details and examples see the mask documentation in \textit{indexing}. 

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
Name: 0, dtype: float64
```

```python
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
 A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
```

```python
>>> df.where(m, -df) == np.where(m, df, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

```python
>>> df.where(m, -df) == df.mask(~m, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

pandas.Series.max

Series.max (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)  

This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters  axis: {index (0)}

skipna: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only: boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns  max: scalar or Series (if level specified)
pandas.Series.mean

Series.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters
axis : {index (0)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns mean : scalar or Series (if level specified)

pandas.Series.median

Series.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters
axis : {index (0)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into
a scalar

numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then
use only numeric data. Not implemented for Series.

Returns median : scalar or Series (if level specified)

pandas.Series.memory_usage

Series.memory_usage(index=True, deep=False)
Memory usage of the Series

Parameters
index : bool
Specifies whether to include memory usage of Series index

depth : bool
Introspect the data deeply, interrogate object dtypes for system-level memory consump-
tion

Returns scalar bytes of memory consumed
See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False

pandas.Series.min

Series.min (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns min : scalar or Series (if level specified)

pandas.Series.mod

Series.mod (other, level=None, fill_value=None, axis=0)

Modulo of series and other, element-wise (binary operator mod).

Equivalent to series % other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other: Series or scalar value

fill_value : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.rmod
**pandas.Series.mode**

Series.mode()  
Returns the mode(s) of the dataset.  
Empty if nothing occurs at least 2 times. Always returns Series even if only one value.

**Parameters**  
**sort**: bool, default True  
If True, will lexicographically sort values, if False skips sorting. Result ordering when sort=False is not defined.

**Returns**  
**modes**: Series (sorted)

**pandas.Series.mul**

Series.mul(other, level=None, fill_value=None, axis=0)  
Multiplication of series and other, element-wise (binary operator `mul`).

Equivalent to `series * other`, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters**  
**other**: Series or scalar value  
**fill_value**: None or float value, default None (NaN)  
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing  
**level**: int or name  
Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
**result**: Series  
See also:  
Series.rmul

**pandas.Series.multiply**

Series.multiply(other, level=None, fill_value=None, axis=0)  
Multiplication of series and other, element-wise (binary operator `mul`).

Equivalent to `series * other`, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters**  
**other**: Series or scalar value  
**fill_value**: None or float value, default None (NaN)  
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing  
**level**: int or name  
Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
**result**: Series  
See also:  
Series.rmul
pandas.Series.ne

Series.ne(other, level=None, fill_value=None, axis=0)
Not equal to of series and other, element-wise (binary operator ne).
Equivalent to series != other, but with support to substitute a fill_value for missing data in one of
the inputs.

Parameters
- other: Series or scalar value
- fill_value: None or float value, default None (NaN)
  Fill missing (NaN) values with this value. If both Series are missing, the result will be
  missing
- level: int or name
  Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- result: Series

See also:
- Series.None

pandas.Series.nlargest

Series.nlargest(*args, **kwargs)
Return the largest n elements.

Parameters
- n: int
  Return this many descending sorted values
- keep: ['first', 'last', False], default 'first'
  Where there are duplicate values: - first : take the first occurrence. - last : take
  the last occurrence.
- take_last: deprecated

Returns
- top_n: Series
  The n largest values in the Series, in sorted order

See also:
- Series.nsmallest

Notes
Faster than .sort_values(ascending=False).head(n) for small n relative to the size of the
Series object.

Examples

```python
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(1e6))
>>> s.nlargest(10) # only sorts up to the N requested
```
**pandas.Series.nonzero**

Series.nonzero()

Return the indices of the elements that are non-zero

This method is equivalent to calling `numpy.nonzero` on the series data. For compatibility with NumPy, the return value is the same (a tuple with an array of indices for each dimension), but it will always be a one-item tuple because series only have one dimension.

See also:

`numpy.nonzero`

**Examples**

```python
>>> s = pd.Series([0, 3, 0, 4])
>>> s.nonzero()
(array([1, 3]),)
>>> s.iloc[s.nonzero()[0]]
1 3
3 4
dtype: int64
```

**pandas.Series.notnull**

Series.notnull()

Return a boolean same-sized object indicating if the values are not null.

See also:

`isnull` boolean inverse of notnull

**pandas.Series.nsmallest**

Series.nsmallest(*args, **kwargs)

Return the smallest \( n \) elements.

**Parameters**

- **n** : int
  
  Return this many ascending sorted values

- **keep** : ['first', 'last', False], default 'first'
  
  Where there are duplicate values: - `first` : take the first occurrence. - `last` : take the last occurrence.

- **take_last** : deprecated

**Returns**

- **bottom_n** : Series

  The \( n \) smallest values in the Series, in sorted order
See also:

*Series.nlargest*

Notes

Faster than `.sort_values().head(n)` for small n relative to the size of the `Series` object.

Examples

```python
>>> import pandas as pd
>>> import numpy as np

>>> s = pd.Series(np.random.randn(1e6))
>>> s.nsmallest(10) # only sorts up to the N requested
```

**pandas.Series.nunique**

Series.nunique(`dropna=True`)  
Return number of unique elements in the object.

Excludes NA values by default.

- **Parameters** `dropna`: boolean, default True
  
  Don’t include NaN in the count.

- **Returns** `nunique`: int

**pandas.Series.order**

Series.order(`na_last=None`, `ascending=True`, `kind='quicksort'`, `na_position='last'`, `inplace=False`)  
DEPRECATED: use `Series.sort_values()`  
Sorts Series object, by value, maintaining index-value link. This will return a new Series by default. Series.sort is the equivalent but as an inplace method.

- **Parameters** `na_last`: boolean (optional, default=True)–DEPRECATED; use `na_position`
  
  Put NaN’s at beginning or end

- **ascending**: boolean, default True
  
  Sort ascending. Passing False sorts descending

- **kind**: {'mergesort', 'quicksort', 'heapsort'}, default ‘quicksort’
  
  Choice of sorting algorithm. See np.sort for more information. ‘mergesort’ is the only stable algorithm

- **na_position**: {'first', 'last'} (optional, default='last')
  
  ‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

- **inplace**: boolean, default False
  
  Do operation in place.
Returns y : Series

See also:

Series.sort_values

pandas.Series.pct_change

Series.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwargs)
Percent change over given number of periods.

Parameters periods : int, default 1
   Periods to shift for forming percent change

fill_method : str, default 'pad'
   How to handle NAs before computing percent changes

limit : int, default None
   The number of consecutive NAs to fill before stopping

freq : DateOffset, timedelta, or offset alias string, optional
   Increment to use from time series API (e.g. 'M' or BDay())

Returns chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.Series.pipe

Series.pipe(func, *args, **kwargs)
Apply func(self, *args, **kwargs)
New in version 0.16.2.

Parameters func : function
   function to apply to the NDFrame. args, and kwargs are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the NDFrame.

args : positional arguments passed into func.

kwargs : a dictionary of keyword arguments passed into func.

Returns object : the return type of func.

See also:
pandas.DataFrame.apply, pandas.DataFrame.applymap, pandas.Series.map
Notes

Use `.pipe` when chaining together functions that expect on Series or DataFrames. Instead of writing

```python
>>> f(g(h(df), arg1=a), arg2=b, arg3=c)
```

You can write

```python
>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(f, arg2=b, arg3=c)
...)
```

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose `f` takes its data as `arg2`:

```python
>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe((f, 'arg2'), arg1=a, arg3=c)
...)
```

**pandas.Series.plot**

`Series.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)`

Make plots of Series using matplotlib / pylab.

*New in version 0.17.0:* Each plot kind has a corresponding method on the `Series.plot` accessor: `s.plot(kind='line')` is equivalent to `s.plot.line()`.

**Parameters**

- **data**: Series
  - **kind**: str
    - 'line': line plot (default)
    - 'bar': vertical bar plot
    - 'barh': horizontal bar plot
    - 'hist': histogram
    - 'box': boxplot
    - 'kde': Kernel Density Estimation plot
    - 'density': same as 'kde'
    - 'area': area plot
    - 'pie': pie plot
  - **ax**: matplotlib axes object
    If not passed, uses gca()
  - **figsize**: a tuple (width, height) in inches
  - **use_index**: boolean, default True
Use index as ticks for x axis

title : string
    Title to use for the plot
grid : boolean, default None (matlab style default)
    Axis grid lines
legend : False/True/'reverse'
    Place legend on axis subplots
style : list or dict
    matplotlib line style per column
logx : boolean, default False
    Use log scaling on x axis
logy : boolean, default False
    Use log scaling on y axis
loglog : boolean, default False
    Use log scaling on both x and y axes
xticks : sequence
    Values to use for the xticks
yticks : sequence
    Values to use for the yticks
xlim : 2-tuple/list
    ylim : 2-tuple/list
    rot : int, default None
        Rotation for ticks (xticks for vertical, yticks for horizontal plots)
fontsize : int, default None
    Font size for xticks and yticks
colormap : str or matplotlib colormap object, default None
    Colormap to select colors from. If string, load colormap with that name from matplotlib.
colorbar : boolean, optional
    If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)
position : float
    Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
layout : tuple (optional)
    (rows, columns) for the layout of the plot
table : boolean, Series or DataFrame, default False
If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table.

**yerr** : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

**xerr** : same types as yerr.

**label** : label argument to provide to plot

**secondary_y** : boolean or sequence of ints, default False

If True then y-axis will be on the right

**mark_right** : boolean, default True

When using a secondary_y axis, automatically mark the column labels with ``(right)`` in the legend

**kwds** : keywords

Options to pass to matplotlib plotting method

**Returns** **axes** : matplotlib.AxesSubplot or np.array of them

**Notes**

- See matplotlib documentation online for more on this subject
- If kind = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by position keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

**pandas.Series.pop**

**Series.pop**(item)

Return item and drop from frame. Raise KeyError if not found.

**pandas.Series.pow**

**Series.pow**(other, level=None, fill_value=None, axis=0)

Exponential power of series and other, element-wise (binary operator pow).

Equivalent to series ** other, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters** **other** : Series or scalar value

**fill_value** : None or float value, default None (NaN)

Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

**level** : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns** **result** : Series
### pandas.Series.prod

**Series.prod** *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Return the product of the values for the requested axis

**Parameters**
- `axis` : {index (0)}
- `skipna` : boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- `numeric_only` : boolean, default None
  - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**
- `prod` : scalar or Series (if level specified)

### pandas.Series.product

**Series.product** *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Return the product of the values for the requested axis

**Parameters**
- `axis` : {index (0)}
- `skipna` : boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
- `numeric_only` : boolean, default None
  - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**
- `prod` : scalar or Series (if level specified)

### pandas.Series.ptp

**Series.ptp** *(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)*

Returns the difference between the maximum value and the minimum value in the object. This is the equivalent of the numpy.ndarray method ptp.

**Parameters**
- `axis` : {index (0)}
- `skipna` : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level** : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

**numeric_only** : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

**ptp** : scalar or Series (if level specified)

---

### pandas.Series.put

**Series.put** (*args, **kwargs)

Applies the *put* method to its *values* attribute if it has one.

**See also:**

numpy.ndarray.put

---

### pandas.Series.quantile

**Series.quantile** *(q=0.5, interpolation='linear')*

Return value at the given quantile, a la numpy.percentile.

**Parameters**

**q** : float or array-like, default 0.5 (50% quantile)

0 <= q <= 1, the quantile(s) to compute

**interpolation** : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}

New in version 0.18.0.

This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:

- linear: $i + (j - i) \times \text{fraction}$, where fraction is the fractional part of the index surrounded by i and j.
- lower: i.
- higher: j.
- nearest: i or j whichever is nearest.
- midpoint: $(i + j) / 2$.

**Returns**

**quantile** : float or Series

if q is an array, a Series will be returned where the index is q and the values are the quantiles.

**Examples**
```python
>>> s = Series([1, 2, 3, 4])
>>> s.quantile(.5)
2.5
>>> s.quantile([.25, .5, .75])
0.25 1.75
0.50 2.50
0.75 3.25
dtype: float64
```

**pandas.Series.radd**

`Series.radd(other, level=None, fill_value=None, axis=0)`

Addition of series and other, element-wise (binary operator `radd`).

Equivalent to `other + series`, but with support to substitute a `fill_value` for missing data in one of the inputs.

**Parameters**

- `other`: Series or scalar value
  - `fill_value`: None or float value, default None (NaN)
    - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
  - `level`: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

- `result`: Series

**See also**

- `Series.add`

**pandas.Series.rank**

`Series.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)`

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

**Parameters**

- `axis`: {0 or ‘index’, 1 or ‘columns’}, default 0
  - Index to direct ranking
  - average: average rank of group
  - min: lowest rank in group
  - max: highest rank in group
  - first: ranks assigned in order they appear in the array
  - dense: like ‘min’, but rank always increases by 1 between groups
- `numeric_only`: boolean, default None
  - Include only float, int, boolean data. Valid only for DataFrame or Panel objects
- `na_option`: {‘keep’, ‘top’, ‘bottom’}
• keep: leave NA values where they are
• top: smallest rank if ascending
• bottom: smallest rank if descending

ascending : boolean, default True
False for ranks by high (1) to low (N)
pct : boolean, default False
Computes percentage rank of data

Returns ranks : same type as caller

**pandas.Series.ravel**

Series.ravel (order='C')
Return the flattened underlying data as an ndarray

See also:
numpy.ndarray.ravel

**pandas.Series.rdiv**

Series.rdiv (other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv).
Equivalent to other / series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other: Series or scalar value
fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also: Series.truediv

**pandas.Series.reindex**

Series.reindex(index=None, **kwargs)
Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters index : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
method : [None, ‘backfill’/'bfill', ‘pad’/'ffill', ‘nearest' ], optional

method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.

- default: don’t fill gaps
- pad / ffill: propagate last valid observation forward to next valid
- backfill / bfill: use next valid observation to fill gap
- nearest: use nearest valid observations to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance.

New in version 0.17.0.

Returns reindexed : Series

Examples

Create a dataframe with some fictional data.

```python
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
... 'http_status': [200, 200, 404, 404, 301],
... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0],
... index=index)
>>> df
 http_status response_time
Firefox 200 0.04
Chrome 200 0.02
Safari 404 0.07
IE10 404 0.08
Konqueror 301 1.00
```

Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned NaN.

```python
>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', 'Chrome']
>>> df.reindex(new_index)
 http_status response_time
Safari 404 0.07
Iceweasel 404 0.08
Comodo Dragon 301 1.00
IE10 404 0.08
Chrome 200 0.02
```
We can fill in the missing values by passing a value to the keyword `fill_value`. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword `method` to fill the NaN values.

```python
>>> df.reindex(new_index, fill_value=0)
http_status response_time
Safari 404 0.07
Iceweasel 0 NaN
Comodo Dragon 0 NaN
IE10 404 0.08
Chrome 200 0.02
```

```python
>>> df.reindex(new_index, fill_value='missing')
http_status response_time
Safari 404 0.07
Iceweasel missing missing
Comodo Dragon missing missing
IE10 404 0.08
Chrome 200 0.02
```

To further illustrate the filling functionality in `reindex`, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).

```python
>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')

>>> df2 = pd.DataFrame({'prices': [100, 101, np.nan, 100, 89, 88]},
 index=date_index)

>>> df2
prices
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
```

Suppose we decide to expand the dataframe to cover a wider date range.

```python
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')

>>> df2.reindex(date_index2)
prices
2009-12-29 NaN
2009-12-30 NaN
2009-12-31 NaN
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN
```
The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with NaN. If desired, we can fill in the missing values using one of several options.

For example, to backpropagate the last valid value to fill the NaN values, pass bfill as an argument to the method keyword.

```python
>>> df2.reindex(date_index2, method='bfill')
 prices
2009-12-29 100
2009-12-30 100
2009-12-31 100
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN
```

Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN values present in the original dataframe, use the fillna() method.

**pandas.Series.reindex_axis**

```python
Series.reindex_axis(labels, axis=0, **kwargs)
```

for compatibility with higher dims

**pandas.Series.reindex_like**

```python
Series.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)
```

Return an object with matching indices to myself.

**Parameters**

- `other`: Object
- `method`: string or None
- `copy`: boolean, default True
- `limit`: int, default None
- `tolerance`: optional

Maximum number of consecutive labels to fill for inexact matches.

Maximum distance between labels of the other object and this object for inexact matches.

New in version 0.17.0.

**Returns**

`reindexed`: same as input

**Notes**

Like calling `s.reindex(index=other.index, columns=other.columns, method=...)`
pandas.Series.rename

Series.rename(index=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change Series.name with a scalar value (Series only).

Parameters index : scalar, list-like, dict-like or function, optional
Scalar or list-like will alter the Series.name attribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis’ values

copy : boolean, default True
Also copy underlying data

inplace : boolean, default False
Whether to return a new Series. If True then value of copy is ignored.

Returns renamed : Series (new object)

See also:
pandas.NDFrame.rename_axis

Examples

```python
>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2
2 3
dtype: int64
>>> s.rename("my_name") # scalar, changes Series.name
0 1
1 2
2 3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2) # function, changes labels
0 1
1 2
4 3
dtype: int64
>>> s.rename({1: 3, 2: 5}) # mapping, changes labels
0 1
3 2
5 3
dtype: int64
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(2)
... TypeError: 'int' object is not callable
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
 a c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
```
pandas.Series.rename_axis

Series.rename_axis(mapper, axis=0, copy=True, inplace=False)
Alters index and / or columns using input function or functions. A scalar or list-like for mapper will alter the Index.name or MultiIndex.names attribute. A function or dict for mapper will alter the labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters mapper : scalar, list-like, dict-like or function, optional

axis : int or string, default 0

copy : boolean, default True
    Also copy underlying data

inplace : boolean, default False

Returns renamed : type of caller

See also:
pandas.NDFrame.rename, pandas.Index.rename

Examples

```python
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename_axis("foo") # scalar, alters df.index.name
 A B
foo
 0 1 4
 1 2 5
 2 3 6
>>> df.rename_axis(lambda x: 2 * x) # function: alters labels
 A B
 0 1 4
 2 2 5
 4 3 6
>>> df.rename_axis({"A": "ehh", "C": "see"}, axis="columns") # mapping
 ehh B
 0 1 4
 1 2 5
 2 3 6
```

pandas.Series.reorder_levels

Series.reorder_levels(order)
Rearranges index levels using input order. May not drop or duplicate levels

Parameters order: list of int representing new level order.
(reference level by number or key)

axis: where to reorder levels

Returns type of caller (new object)

pandas.Series.repeat

Series.repeat(reps, *args, **kwargs)

Repeat elements of an Series. Refer to numpy.ndarray.repeat for more information about the reps argument.

See also:

numpy.ndarray.repeat

pandas.Series.replace

Series.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in 'to_replace' with 'value'.

Parameters to_replace: str, regex, list, dict, Series, numeric, or None

- str or regex:
  - str: string exactly matching to_replace will be replaced with value
  - regex: regexs matching to_replace will be replaced with value
- list of str, regex, or numeric:
  - First, if to_replace and value are both lists, they must be the same length.
  - Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
  - str and regex rules apply as above.
- dict:
  - Nested dictionaries, e.g., {'a': {'b': nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
  - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
- None:
  - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value: scalar, dict, list, str, regex, default None
Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

**inplace** : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

**limit** : int, default None

Maximum size gap to forward or backward fill

**regex** : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

**method** : string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when to_replace is a list.

**Returns** filled : NDFrame

**Raises**

- **AssertionError**
  - If regex is not a bool and to_replace is not None.

- **TypeError**
  - If to_replace is a dict and value is not a list, dict, ndarray, or Series
  - If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series.

- **ValueError**
  - If to_replace and value are lists or ndarrays, but they are not the same length.

**See also:**

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

**Notes**

- Regex substitution is performed under the hood with re.sub. The rules for substitution for re.sub are the same.

- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtypes to be matched. However, if those floating point numbers are strings, then you can do this.

- This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.
pandas.Series.resample

Series.resample (rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)

Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword.

Parameters

**rule**: string
  the offset string or object representing target conversion

**axis**: int, optional, default 0

**closed**: {'right', 'left'}
  Which side of bin interval is closed

**label**: {'right', 'left'}
  Which bin edge label to label bucket with

**convention**: {'start', 'end', 's', 'e'}

**loffset**: timedelta
  Adjust the resampled time labels

**base**: int, default 0
  For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

**on**: string, optional
  For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.
  New in version 0.19.0.

**level**: string or int, optional
  For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like.
  New in version 0.19.0.

To learn more about the offset strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__.

Examples

Start by creating a series with 9 one minute timestamps.

```python
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
```

35.3. Series

1223
Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

```python
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket `2000-01-01 00:03:00` contains the value 3, but the summed value in the resampled bucket with the label `2000-01-01 00:03:00` does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

```python
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

```python
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
```

Upsample the series into 30 second bins.

```python
>>> series.resample('30S').asfreq()[0:5] # select first 5 rows
2000-01-01 00:00:00 0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2
Freq: 30S, dtype: float64
```

Upsample the series into 30 second bins and fill the NaN values using the `pad` method.

```python
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```
Upsample the series into 30 second bins and fill the NaN values using the bfill method.

```python
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```

Pass a custom function via apply

```python
>>> def custom_resampler(array_like):
... return np.sum(array_like)+5

>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
```

### pandas.Series.reset_index

Series.reset_index(level=None, drop=False, name=None, inplace=False)

Analogous to the pandas.DataFrame.reset_index() function, see docstring there.

- **Parameters**
  - `level`: int, str, tuple, or list, default None
    - Only remove the given levels from the index. Removes all levels by default
  - `drop`: boolean, default False
    - Do not try to insert index into dataframe columns
  - `name`: object, default None
    - The name of the column corresponding to the Series values
  - `inplace`: boolean, default False
    - Modify the Series in place (do not create a new object)

- **Returns**
  - `resetted`: DataFrame, or Series if drop == True

### pandas.Series.reshape

Series.reshape(*args, **kwargs)

DEPRECATED: calling this method will raise an error in a future release. Please call .values.reshape(...) instead.

return an ndarray with the values shape if the specified shape matches exactly the current shape, then return self (for compat)

- **See also**
  - numpy.ndarray.reshape
pandas.Series.rfloordiv

Series.rfloordiv(other, level=None, fill_value=None, axis=0)
Integer division of series and other, element-wise (binary operator rfloordiv).
Equivalent to other // series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
other: Series or scalar value
fill_value: None or float value, default None (NaN)
    Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level: int or name
    Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: Series

See also:
Series.floordiv

pandas.Series.rmod

Series.rmod(other, level=None, fill_value=None, axis=0)
Modulo of series and other, element-wise (binary operator rmod).
Equivalent to other % series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
other: Series or scalar value
fill_value: None or float value, default None (NaN)
    Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
level: int or name
    Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
result: Series

See also:
Series.mod

pandas.Series.rmul

Series.rmul(other, level=None, fill_value=None, axis=0)
Multiplication of series and other, element-wise (binary operator rmul).
Equivalent to other * series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
other: Series or scalar value
fill_value: None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

**level** : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**  
**result** : Series

**See also:**  
*Series.mul*

### pandas.Series.rolling

**Series.rolling** *(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0)*  
Provides rolling window calculations.

New in version 0.18.0.

**Parameters**  
**window** : int, or offset

Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size.

If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0

**min_periods** : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, this will default to 1.

**freq** : string or DateOffset object, optional (default None) (DEPRECATED)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False

Set the labels at the center of the window.

**win_type** : string, default None

Provide a window type. See the notes below.

**on** : string, optional

For a DataFrame, column on which to calculate the rolling window, rather than the index

New in version 0.19.0.

**axis** : int or string, default 0

**Returns**  
a Window or Rolling sub-classed for the particular operation

### Notes

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`. 
The *freq* keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of *resample()* (i.e. using the *mean*).

To learn more about the offsets & frequency strings, please see this link.

The recognized *win_types* are:

- boxcar
- triang
- blackman
- hamming
- bartlett
- parzen
- bohman
- blackmanharris
- nuttall
- barthann
- kaiser (needs beta)
- gaussian (needs std)
- general_gaussian (needs power, width)
- slepian (needs width).

**Examples**

```python
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
>>> df
 B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0
```

Rolling sum with a window length of 2, using the ‘triang’ window type.

```python
>>> df.rolling(2, win_type='triang').sum()
 B
0 NaN
1 1.0
2 2.5
3 NaN
4 NaN
```

Rolling sum with a window length of 2, *min_periods* defaults to the window length.

```python
>>> df.rolling(2).sum()
 B
0 NaN
1 1.0
```
```python
2 3.0
3 NaN
4 NaN

Same as above, but explicitly set the min_periods

```python
df.rolling(2, min_periods=1).sum()
```

```
B
0  0.0
1  1.0
2  3.0
3  2.0
4  4.0

A ragged (meaning not-a-regular frequency), time-indexed DataFrame

```python
df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
 index = [pd.Timestamp('20130101 09:00:00'),
 pd.Timestamp('20130101 09:00:02'),
 pd.Timestamp('20130101 09:00:03'),
 pd.Timestamp('20130101 09:00:05'),
 pd.Timestamp('20130101 09:00:06')))
```

```
>>> df
 B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1.

```python
df.rolling('2s').sum()
```

```
B
2013-01-01 09:00:00  0.0
2013-01-01 09:00:02  1.0
2013-01-01 09:00:03  2.0
2013-01-01 09:00:05  NaN
2013-01-01 09:00:06  4.0
```

pandas.Series.round

`Series.round(decimals=0, *args, **kwargs)`

Round each value in a Series to the given number of decimals.

Parameters decimals: int

Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point.

Returns Series object

See also:

`numpy.around, DataFrame.round`
pandas.Series.rpow

Series.rpow(other, level=None, fill_value=None, axis=0)
Exponential power of series and other, element-wise (binary operator rpow).
Equivalent to other ** series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- other: Series or scalar value
- fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
- level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- result : Series

See also:
- Series.pow

pandas.Series.rsub

Series.rsub(other, level=None, fill_value=None, axis=0)
Subtraction of series and other, element-wise (binary operator rsub).
Equivalent to other - series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- other: Series or scalar value
- fill_value : None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
- level : int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- result : Series

See also:
- Series.sub

pandas.Series.rtruediv

Series.rtruediv(other, level=None, fill_value=None, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv).
Equivalent to other / series, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters
- other: Series or scalar value
- fill_value : None or float value, default None (NaN)
Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : Series

See also:

Series.truediv

pandas.Series.sample

Series.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

Returns a random sample of items from an axis of object.

New in version 0.16.1.

Parameters n : int, optional

Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.

frac : float, optional

Fraction of axis items to return. Cannot be used with n.

replace : boolean, optional

Sample with or without replacement. Default = False.

weights : str or ndarray-like, optional

Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed.

random_state : int or numpy.random.RandomState, optional

Seed for the random number generator (if int), or numpy RandomState object.

axis : int or string, optional

Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels).

Returns A new object of same type as caller.

Examples

Generate an example Series and DataFrame:
```python
>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0    -0.038497
1     1.820773
2    -0.972766
3    -1.598270
4    -1.095526
dtype: float64
```n
```python
df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
```

Next extract a random sample from both of these objects...

3 random elements from the Series:

```python
>>> s.sample(n=3)
27    -0.994689
55    -1.049016
67    -0.224565
dtype: float64
```

And a random 10% of the DataFrame with replacement:

```python
>>> df.sample(frac=0.1, replace=True)
```

pandas.Series.searchsorted

```python
Series.searchsorted(v, side='left', sorter=None)
```

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted Series `self` such that, if the corresponding elements in `v` were inserted before the indices, the order of `self` would be preserved.

Parameters

- `v` : array_like

 Values to insert into `self`.

- `side` : {'left', 'right'}, optional

 If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`).

- `sorter` : 1-D array_like, optional

 Optional array of integer indices that sort `self` into ascending order. They are typically the result of `np.argsort`.

1232 Chapter 35. API Reference
Returns indices : array of ints

Array of insertion points with the same shape as v.

See also:
numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

Examples

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0    1
1    2
2    3
dtype: int64
>>> x.searchsorted(4)
array([3])
>>> x.searchsorted([0, 4])
array([0, 3])
>>> x.searchsorted([1, 3], side='left')
array([0, 2])
>>> x.searchsorted([1, 3], side='right')
array([1, 3])

>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
Categories (4, object): [apple < bread < cheese < milk]
>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar
>>> x.searchsorted(['bread'])
array([1])
>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])
>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4]) # eggs before milk
```

pandas.Series.select

Series.select (crit, axis=0)

Return data corresponding to axis labels matching criteria

Parameters

- **crit** : function

 To be called on each index (label). Should return True or False

- **axis** : int

Returns

- **selection** : type of caller
pandas.Series.sem

Series.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

- **axis**: {index (0)}
 - **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
 - **ddof**: int, default 1
 - degrees of freedom
 - **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **sem**: scalar or Series (if level specified)

pandas.Series.set_axis

Series.set_axis(axis, labels)

Public version of axis assignment

pandas.Series.set_value

Series.set_value(label, value, takeable=False)

Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index

Parameters

- **label**: object
 - Partial indexing with MultiIndex not allowed
 - **value**: object
 - Scalar value
 - **takeable**: interpret the index as indexers, default False

Returns

- **series**: Series
 - If label is contained, will be reference to calling Series, otherwise a new object

pandas.Series.shift

Series.shift(periods=1, freq=None, axis=0)

Shift index by desired number of periods with an optional time freq

Parameters

- **periods**: int
Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, optional

Increment to use from the tseries module or time rule (e.g. ‘EOM’). See Notes.

axis : {0, ‘index’}

Returns shifted : Series

Notes

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

pandas.Series.skew

Series.skew (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased skew over requested axis Normalized by N-1

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns skew : scalar or Series (if level specified)

pandas.Series.slice_shift

Series.slice_shift (periods=1, axis=0)

Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters periods : int

Number of periods to move, can be positive or negative

Returns shifted : same type as caller

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.
pandas.Series.sort

```
Series.sort (axis=0, ascending=True, kind='quicksort', na_position='last', inplace=True)
```

DEPRECATED: use `Series.sort_values(inplace=True)` for INPLACE sorting

Sort values and index labels by value. This is an inplace sort by default. `Series.order` is the equivalent but returns a new Series.

Parameters

- `axis`: int (can only be zero)
- `ascending`: boolean, default True
 Sort ascending. Passing False sorts descending
- `kind`: {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort'
 Choice of sorting algorithm. See `np.sort` for more information. `mergesort` is the only stable algorithm
- `na_position`: {'first', 'last'} (optional, default='last')
 'first' puts NaNs at the beginning 'last' puts NaNs at the end
- `inplace`: boolean, default True
 Do operation in place.

See also:

`Series.sort_values`

pandas.Series.sort_index

```
Series.sort_index (axis=0, level=None, ascending=True, inplace=False, sort_remaining=True)
```

Sort object by labels (along an axis)

Parameters

- `axis`: index to direct sorting
- `level`: int or level name or list of ints or list of level names
 if not None, sort on values in specified index level(s)
- `ascending`: boolean, default True
 Sort ascending vs. descending
- `inplace`: bool, default False
 if True, perform operation in-place
- `kind`: {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
 Choice of sorting algorithm. See also `ndarray.np.sort` for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.
- `na_position`: {'first', 'last'}, default 'last'
 'first' puts NaNs at the beginning, 'last' puts NaNs at the end
- `sort_remaining`: bool, default True
 if true and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level

Returns

- `sorted_obj` : Series
pandas.Series.sort_values

```python
Series.sort_values(axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
```

Sort by the values along either axis

New in version 0.17.0.

Parameters

- **axis** : {0, ‘index’}, default 0
 - Axis to direct sorting
- **ascending** : bool or list of bool, default True
 - Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.
- **inplace** : bool, default False
 - if True, perform operation in-place
- **kind** : {'quicksort', 'mergesort', 'heapsort'}, default ‘quicksort’
 - Choice of sorting algorithm. See also ndarray.np.sort for more information. **mergesort** is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.
- **na_position** : {'first', 'last'}, default ‘last’
 - first puts NaNs at the beginning, last puts NaNs at the end

Returns

- **sorted_obj** : Series

pandas.Series.sortlevel

```python
Series.sortlevel(level=0, ascending=True, sort_remaining=True)
```

Sort Series with MultiIndex by chosen level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

Parameters

- **level** : int or level name, default None
 - ascending : bool, default True

Returns

- **sorted** : Series

See also:

- `Series.sort_index`

pandas.Series.squeeze

```python
Series.squeeze(**kwargs)
```

Squeeze length 1 dimensions.

pandas.Series.std

```python
Series.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
```

Return sample standard deviation over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument
Parameters

axis: {index (0)}

- **skipna**: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **level**: int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

- **ddof**: int, default 1

 degrees of freedom

- **numeric_only**: boolean, default None

 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **std**: scalar or Series (if level specified)

pandas.Series.str

Series.str()

Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

```python
>>> s.str.split('_')
```

```python
>>> s.str.replace('_', '')
```

pandas.Series.sub

Series.sub(other, level=None, fill_value=None, axis=0)

Subtraction of series and other, element-wise (binary operator sub).

Equivalent to `series -other`, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

- **other**: Series or scalar value

 - **fill_value**: None or float value, default None (NaN)

 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing

 - **level**: int or name

 Broadcast across a level, matching Index values on the passed MultiIndex level

 Returns

 - **result**: Series

See also

- `Series.rsub`
pandas.Series.subtract

`Series.subtract (other, level=None, fill_value=None, axis=0)`

Subtraction of series and other, element-wise (binary operator `sub`).

Equivalent to `series - other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters
- **other:** Series or scalar value
 - **fill_value:** None or float value, default None (NaN)
 - Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 - **level:** int or name
 - Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
- **result:** Series

See also:
- `Series.rsub`

pandas.Series.sum

`Series.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return the sum of the values for the requested axis.

Parameters
- **axis:** {index (0)}
 - **skipna:** boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **level:** int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar
 - **numeric_only:** boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns
- **sum:** scalar or Series (if level specified)

pandas.Series.swapaxes

`Series.swapaxes (axis1, axis2, copy=True)`

Interchange axes and swap values axes appropriately.

Returns
- **y:** same as input

pandas.Series.swaplevel

`Series.swaplevel (i=-2, j=-1, copy=True)`

Swap levels i and j in a MultiIndex
pandas: powerful Python data analysis toolkit, Release 0.19.2

Parameters \(i, j \) : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.

Returns swapped : Series

Changed in version 0.18.1: The indexes \(i \) and \(j \) are now optional, and default to the two innermost levels of the index.

pandas.Series.tail

```
Series.tail(n=5)
```

Returns last \(n \) rows

pandas.Series.take

```
Series.take(indices, axis=0, convert=True, is_copy=False, **kwargs)
```

return Series corresponding to requested indices

Parameters indices : list / array of ints

convert : translate negative to positive indices (default)

Returns taken : Series

See also:

```
numpy.ndarray.take
```

pandas.Series.to_clipboard

```
Series.to_clipboard(excel=None, sep=None, **kwargs)
```

Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters excel : boolean, defaults to True

if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard

sep : optional, defaults to tab

other keywords are passed to to_csv

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none
pandas.Series.to_csv

Series.to_csv(path=None, index=True, sep=',', na_rep='', float_format=None, header=False, index_label=None, mode='w', encoding=None, date_format=None, decimal='.

Write Series to a comma-separated values (csv) file

Parameters

path : string or file handle, default None
 File path or object, if None is provided the result is returned as a string.

na_rep : string, default ‘’
 Missing data representation

float_format : string, default None
 Format string for floating point numbers

header : boolean, default False
 Write out series name

index : boolean, default True
 Write row names (index)

index_label : string or sequence, default None
 Column label for index column(s) if desired. If None is given, and header and
 index are True, then the index names are used. A sequence should be given if the
 DataFrame uses MultiIndex.

mode : Python write mode, default ‘w’

sep : character, default ‘,”
 Field delimiter for the output file.

encoding : string, optional
 a string representing the encoding to use if the contents are non-ascii, for python
 versions prior to 3

date_format: string, default None
 Format string for datetime objects.

decimal: string, default ‘.’
 Character recognized as decimal separator. E.g. use ‘.’ for European data

pandas.Series.to_dense

Series.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

pandas.Series.to_dict

Series.to_dict()
Convert Series to {label -> value} dict

Returns

value_dict : dict

35.3. Series
pandas.Series.to_frame

```python
Series.to_frame (name=None)
```
Convert Series to DataFrame

Parameters

- **name**: object, default None
 The passed name should substitute for the series name (if it has one).

Returns

- **data_frame**: DataFrame

pandas.Series.to_hdf

```python
Series.to_hdf (path_or_buf, key, **kwargs)
```
Write the contained data to an HDF5 file using HDFStore.

Parameters

- **path_or_buf**: the path (string) or HDFStore object
- **key**: string
 Identifier for the group in the store
- **mode**: optional, {‘a’, ‘w’, ‘r+’}, default ‘a’
 - ‘w’ Write; a new file is created (an existing file with the same name would be deleted).
 - ‘a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
 - ‘r+’ It is similar to ‘a’, but the file must already exist.
- **format**: ‘fixed(f)|table(t)’, default is ‘fixed’
 - fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
 - table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
- **append**: boolean, default False
 For Table formats, append the input data to the existing
- **data_columns**: list of columns, or True, default None
 List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.
 Applicable only to format=’table’.
- **complevel**: int, 1-9, default 0
 If a complib is specified compression will be applied where possible
- **complib**: {‘zlib’, ‘bzip2’, ‘lzma’, ‘blosc’, None}, default None
 If complevel is > 0 apply compression to objects written in the store wherever possible
- **fletcher32**: bool, default False
 If applying compression use the fletcher32 checksum
- **dropna**: boolean, default False.
If true, ALL nan rows will not be written to store.

pandas.Series.to_json

Series.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters

- **path_or_buf**: the path or buffer to write the result string

 if this is None, return a StringIO of the converted string

- **orient**: string

 - Series

 - default is ‘index’

 - allowed values are: {'split','records','index’}

 - DataFrame

 - default is ‘columns’

 - allowed values are: {'split','records','index’,'columns','values’}

 - The format of the JSON string

 - split : dict like {index -> [index], columns -> [columns], data -> [values]}

 - records : list like [{column -> value}, ... , {column -> value}]

 - index : dict like {index -> {column -> value}}

 - columns : dict like {column -> {index -> value}}

 - values : just the values array

- **date_format**: {'epoch', 'iso'}

 Type of date conversion. *epoch* = epoch milliseconds, *iso* = ISO8601, default is epoch.

- **double_precision**: The number of decimal places to use when encoding floating point values, default 10.

- **force_ascii**: force encoded string to be ASCII, default True.

- **date_unit**: string, default ‘ms’ (milliseconds)

 The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

- **default_handler**: callable, default None

 Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

- **lines**: boolean, default False
If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like.

New in version 0.19.0.

Returns same type as input object with filtered info axis

pandas.Series.to_msgpack

Series.to_msgpack(path_or_buf=None, encoding='utf-8', **kwargs)

msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters

path : string
File path, buffer-like, or None
 if None, return generated string

append : boolean
whether to append to an existing msgpack
 (default is False)

compress : type of compressor (zlib or blosc), default to None (no compression)

pandas.Series.to_period

Series.to_period(freq=None, copy=True)

Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed)

Parameters

freq : string, default

Returns

ts : Series with PeriodIndex

pandas.Series.to_pickle

Series.to_pickle(path)

Pickle (serialize) object to input file path.

Parameters

path : string
 File path

pandas.Series.to_sparse

Series.to_sparse(kind='block', fill_value=None)

Convert Series to SparseSeries

Parameters

kind : {'block', 'integer'}

fill_value : float, defaults to NaN (missing)

Returns

sp : SparseSeries
pandas.Series.to_sql

Series.to_sql(name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None)
Write records stored in a DataFrame to a SQL database.

Parameters name : string
Name of SQL table

con : SQLAlchemy engine or DBAPI2 connection (legacy mode)
Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.

flavor : ‘sqlite’, default None
DEPRECATED: this parameter will be removed in a future version, as ‘sqlite’ is the only supported option if SQLAlchemy is not installed.

schema : string, default None
Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default ‘fail’
- fail: If table exists, do nothing.
- replace: If table exists, drop it, recreate it, and insert data.
- append: If table exists, insert data. Create if does not exist.

index : boolean, default True
Write DataFrame index as a column.

index_label : string or sequence, default None
Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None
If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

dtype : dict of column name to SQL type, default None
Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection.

pandas.Series.to_string

Series.to_string(buf=None, na_rep='NaN', float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None)
Render a string representation of the Series

Parameters buf : StringIO-like, optional
buffer to write to

na_rep : string, optional
string representation of NAN to use, default ‘NaN’
float_format : one-parameter function, optional

Formatter function to apply to columns’ elements if they are floats default None

header : boolean, default True

Add the Series header (index name)

index : bool, optional

Add index (row) labels, default True

length : boolean, default False

Add the Series length

dtype : boolean, default False

Add the Series dtype

name : boolean, default False

Add the Series name if not None

max_rows : int, optional

Maximum number of rows to show before truncating. If None, show all.

Returns

formatted : string (if not buffer passed)

pandas.Series.to_timestamp

Series.to_timestamp(freq=None, how='start', copy=True)

Cast to datetimeindex of timestamps, at beginning of period

Parameters

freq : string, default frequency of PeriodIndex

Desired frequency

how : {'s', 'e', 'start', 'end'}

Convention for converting period to timestamp; start of period vs. end

Returns

ts : Series with DatetimeIndex

pandas.Series.to_xarray

Series.to_xarray()

Return an xarray object from the pandas object.

Returns

a DataArray for a Series

a Dataset for a DataFrame

a DataArray for higher dims

Notes

See the xarray docs
Examples

```python
>>> df = pd.DataFrame({'A' : [1, 1, 2],
    'B' : ['foo', 'bar', 'foo'],
    'C' : np.arange(4.,7))

>>> df
   A  B   C
0  1  foo 4.0
1  1  bar 5.0
2  2  foo 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:
  * index (index) int64 0 1 2
Data variables:
  A (index) int64 1 1 2
  B (index) object 'foo' 'bar' 'foo'
  C (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A' : [1, 1, 2],
    'B' : ['foo', 'bar', 'foo'],
    'C' : np.arange(4.,7))
    .set_index([['B','A'])

>>> df
   C
B A
foo 1 4.0
bar 1 5.0
foo 2 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:
  * B (B) object 'bar' 'foo'
  * A (A) int64 1 2
Data variables:
  C (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
    items=list('ABCD'),
    major_axis=pd.date_range('20130101', periods=3),
    minor_axis=['first', 'second'])

>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[0, 1],
        [2, 3],
        [4, 5],
        [6, 7]],
       dtype=int64, dims=('items', 'major_axis', 'minor_axis'),
       coords={'items': ['A', 'B', 'C', 'D'],
               'major_axis': ['2013-01-01', '2013-01-02', '2013-01-03'],
               'minor_axis': ['first', 'second'])
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
[[ 4, 5],
 [ 6, 7],
 [ 8, 9],
[10, 11]],
[[12, 13],
 [14, 15],
 [16, 17]],
[[18, 19],
 [20, 21],
 [22, 23]])
```

Coordinates:
* items (items) object 'A' 'B' 'C' 'D'
* major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03
* minor_axis (minor_axis) object 'first' 'second'

pandas.Series.tolist

`Series.tolist()`
Convert Series to a nested list

pandas.Series.transpose

`Series.transpose(*args, **kwargs)`
return the transpose, which is by definition self

pandas.Series.truediv

`Series.truediv(other, level=None, fill_value=None, axis=0)`
Floating division of series and other, element-wise (binary operator `truediv`).
Equivalent to `series / other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

Parameters
* other: Series or scalar value
 * fill_value: None or float value, default None (NaN)
 Fill missing (NaN) values with this value. If both Series are missing, the result will be missing
 * level: int or name
 Broadcast across a level, matching Index values on the passed MultiIndex level

Returns
* result: Series

See also:
`Series.rtruediv`

pandas.Series.truncate

`Series.truncate(before=None, after=None, axis=None, copy=True)`
Truncates a sorted NDFrame before and/or after some particular index value. If the axis contains only
datetime values, before/after parameters are converted to datetime values.

Parameters

- **before**: date
 - Truncate before index value
- **after**: date
 - Truncate after index value
- **axis**: the truncation axis, defaults to the stat axis
- **copy**: boolean, default is True,
 - return a copy of the truncated section

Returns

- **truncated**: type of caller

pandas.Series.tshift

Series.tshift(periods=1, freq=None, axis=0)
Shift the time index, using the index’s frequency if available.

Parameters

- **periods**: int
 - Number of periods to move, can be positive or negative
- **freq**: DateOffset, timedelta, or time rule string, default None
 - Increment to use from the tseries module or time rule (e.g. ‘EOM’)
- **axis**: int or basestring
 - Corresponds to the axis that contains the Index

Returns

- **shifted**: NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown

pandas.Series.tz_convert

Series.tz_convert(tz, axis=0, level=None, copy=True)
Convert tz-aware axis to target time zone.

Parameters

- **tz**: string or pytz.timezone object
- **axis**: the axis to convert
- **level**: int, str, default None
 - If axis ia a MultiIndex, convert a specific level. Otherwise must be None
- **copy**: boolean, default True
 - Also make a copy of the underlying data

Raises

- **TypeError**
 - If the axis is tz-naive.
pandas.Series.tz_localize

Series.tz_localize(*args, **kwargs)
Localize tz-naive TimeSeries to target time zone.

Parameters tz : string or pytz.timezone object
- axis : the axis to localize
- level : int, str, default None
 - If axis ia a MultiIndex, localize a specific level. Otherwise must be None
- copy : boolean, default True
 - Also make a copy of the underlying data
- ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times
- infer_dst : boolean, default False (DEPRECATED)
 - Attempt to infer fall dst-transition hours based on order

Raises TypeError
- If the TimeSeries is tz-aware and tz is not None.

pandas.Series.unique

Series.unique()
Return np.ndarray of unique values in the object. Significantly faster than numpy.unique. Includes NA values. The order of the original is preserved.

Returns uniques : np.ndarray

pandas.Series.unstack

Series.unstack(level=-1, fill_value=None)
Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted.

Parameters level : int, string, or list of these, default last level
- Level(s) to unstack, can pass level name
- fill_value : replace NaN with this value if the unstack produces missing values

Returns unstacked : DataFrame
Examples

>>> s
one a 1.
one b 2.
two a 3.
two b 4.

>>> s.unstack(level=-1)
a b
one 1. 2.
two 3. 4.

>>> s.unstack(level=0)
one two
a 1. 2.
b 3. 4.

pandas.Series.update

Series.update(other)
Modify Series in place using non-NA values from passed Series. Aligns on index

Parameters other : Series

pandas.Series.valid

Series.valid(inplace=False, **kwargs)

pandas.Series.value_counts

Series.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.
The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize : boolean, default False
If True then the object returned will contain the relative frequencies of the unique values.

sort : boolean, default True
Sort by values

ascending : boolean, default False
Sort in ascending order

bins : integer, optional
Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python

dropna : boolean, default True

Don’t include counts of NaN.

Returns counts : Series

**pandas.Series.var**

Series.var (axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)

Return unbiased variance over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {index (0)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar

ddof : int, default 1

degrees of freedom

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns var : scalar or Series (if level specified)

**pandas.Series.view**

Series.view (dtype=None)

**pandas.Series.where**

Series.where (cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters cond : boolean NDFrame, array or callable

If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.

A callable can be used as cond.

other : scalar, NDFrame, or callable

1252 Chapter 35. API Reference
If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.

A callable can be used as other.

**inplace**: boolean, default False

Whether to perform the operation in place on the data

**axis**: alignment axis if needed, default None

**level**: alignment level if needed, default None

**try_cast**: boolean, default False

Try to cast the result back to the input type (if possible).

**raise_on_error**: boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

**Returns**

- **wh**: same type as caller

**See also**

- `DataFrame.mask()`

**Notes**

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if `cond` is True the element is used; otherwise the corresponding element from the DataFrame `other` is used.

The signature for `DataFrame.where()` differs from `numpy.where()`. Roughly `df1.where(m, df2)` is equivalent to `np.where(m, df1, df2)`.

For further details and examples see the `where` documentation in `indexing`.

**Examples**

```python
code
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
 A B
0 0 -1
1 1 3
2 2 -5
3 3 -7
4 4 -9
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
>>> df.where(m, -df) == np.where(m, df, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```
```
>>> df.where(m, -df) == df.mask(~m, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

**pandas.Series.xls**

```python
pandas.Series.xls(key, axis=0, level=None, drop_level=True)
```

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

**Parameters**

- **key** : object
  
  Some label contained in the index, or partially in a MultiIndex

- **axis** : int, default 0
  
  Axis to retrieve cross-section on

- **level** : object, defaults to first n levels (n=1 or len(key))
  
  In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.

- **drop_level** : boolean, default True
  
  If False, returns object with same levels as self.

**Returns**

- **xs** : Series or DataFrame

**Notes**

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs functionality, see *MultiIndex Slicers*

**Examples**

```python
>>> df
 A B C
a 4 5 2
b 4 0 9
c 9 7 3
```
```
>>> df.xls('a')
 A
0 4
```
```python
>>> df = pd.DataFrame(
 index=['first', 'second', 'baz'],
 columns=['A', 'B', 'C', 'D'],
 data=[[1, 4, 1, 8, 9],
 [1, 7, 5, 5, 0],
 [1, 6, 6, 8, 0]],
 dtype='int')
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

```python
>>> df.xs('C', axis=1)
Name: a
```

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

```python
>>> df
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>second</td>
<td>third</td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>one</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>two</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>baz</td>
<td>one</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>three</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

```python
>>> df.xs(('baz', 'three'))
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>third</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

```python
>>> df.xs(('one', level=1))
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bar</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>baz</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

```python
>>> df.xs(('baz', 2), level=[0, 'third'])
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>three</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

### Attributes

#### Axes

- **index**: axis labels

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.values</code></td>
<td>Return Series as ndarray or ndarray-like</td>
</tr>
<tr>
<td><code>Series.dtype</code></td>
<td>Return the dtype object of the underlying data</td>
</tr>
<tr>
<td><code>Series.fstype</code></td>
<td>Return if the data is sparse</td>
</tr>
<tr>
<td><code>Series.shape</code></td>
<td>Return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>Series.nbytes</code></td>
<td>Return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>Series.ndim</code></td>
<td>Return the number of dimensions of the underlying data</td>
</tr>
<tr>
<td><code>Series.size</code></td>
<td>Return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>Series.strides</code></td>
<td>Return the strides of the underlying data</td>
</tr>
<tr>
<td><code>Series.itemsize</code></td>
<td>Return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>Series.base</code></td>
<td>Return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>Series.T</code></td>
<td>Return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>Series.memory_usage([index, deep])</code></td>
<td>Memory usage of the Series</td>
</tr>
</tbody>
</table>
Series.astype(dtype[, copy, raise_on_error])
Cast object to input numpy.dtype

Series.copy([deep])
Make a copy of this objects data.

Series.isnull()
Return a boolean same-sized object indicating if the values are null.

Series.notnull()
Return a boolean same-sized object indicating if the values are not null.

Indexing, iteration

Series.get(key[, default])
Get item from object for given key (DataFrame column, Panel slice, etc.).

Series.at
Fast label-based scalar accessor

Series.iat
Fast integer location scalar accessor.

Series.ix
A primarily label-location based indexer, with integer position fallback.

Series.loc
Purely label-location based indexer for selection by label.

Series.iloc
Purely integer-location based indexing for selection by position.

Series.__iter__()
provide iteration over the values of the Series

Series.iteritems()
Lazily iterate over (index, value) tuples

pandas.Series.__iter__
 provide iteration over the values of the Series box values if necessary

For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation.

Binary operator functions

Series.add(other[, level, fill_value, axis])
Addition of series and other, element-wise (binary operator add).

Series.sub(other[, level, fill_value, axis])
Subtraction of series and other, element-wise (binary operator sub).

Series.mul(other[, level, fill_value, axis])
Multiplication of series and other, element-wise (binary operator mul).

Series.div(other[, level, fill_value, axis])
Floating division of series and other, element-wise (binary operator truediv).

Series.truediv(other[, level, fill_value, axis])
Floating division of series and other, element-wise (binary operator truediv).

Series.floordiv(other[, level, fill_value, axis])
Integer division of series and other, element-wise (binary operator floordiv).

Series.mod(other[, level, fill_value, axis])
Modulo of series and other, element-wise (binary operator mod).

Series.radd(other[, level, fill_value, axis])
Addition of series and other, element-wise (binary operator radd).

Continued on next page
Series.rsub(other[, level, fill_value, axis]) Subtraction of series and other, element-wise (binary operator rsub).

Series.rmul(other[, level, fill_value, axis]) Multiplication of series and other, element-wise (binary operator rmul).

Series.rdiv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (binary operator rtruediv).

Series.rtruediv(other[, level, fill_value, axis]) Floating division of series and other, element-wise (binary operator rtruediv).

Series.rfloordiv(other[, level, fill_value, ...]) Integer division of series and other, element-wise (binary operator rfloordiv).

Series.rmod(other[, level, fill_value, axis]) Modulo of series and other, element-wise (binary operator rmod).

Series.rpow(other[, level, fill_value, axis]) Exponential power of series and other, element-wise (binary operator rpow).

Series.combine(other, func[, fill_value]) Perform elementwise binary operation on two Series using given function.

Series.combine_first(other) Combine Series values, choosing the calling Series’s values first.

Series.round([decimals]) Round each value in a Series to the given number of decimals.

Series.lt(other[, level, fill_value, axis]) Less than of series and other, element-wise (binary operator lt).

Series.gt(other[, level, fill_value, axis]) Greater than of series and other, element-wise (binary operator gt).

Series.le(other[, level, fill_value, axis]) Less than or equal to of series and other, element-wise (binary operator le).

Series.ge(other[, level, fill_value, axis]) Greater than or equal to of series and other, element-wise (binary operator ge).

Series.ne(other[, level, fill_value, axis]) Not equal to of series and other, element-wise (binary operator ne).

Series.eq(other[, level, fill_value, axis]) Equal to of series and other, element-wise (binary operator eq).

Function application, GroupBy & Window

Series.apply(func[, convert_dtype, args]) Invoke function on values of Series.

Series.map(arg, na_action) Map values of Series using input correspondence (which can be

Series.groupby([by, axis, level, as_index, ...]) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

Series.rolling(window[, min_periods, freq, ...]) Provides rolling window calculations.

Series.expanding([min_periods, freq, ...]) Provides expanding transformations.

Series.ewm([com, span, halflife, alpha, ...]) Provides exponential weighted functions

Computations / Descriptive Stats
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.abs()</code></td>
<td>Return an object with absolute value taken—only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td><code>Series.all()</code></td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td><code>Series.any()</code></td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td><code>Series.autocorr()</code></td>
<td>Lag-N autocorrelation</td>
</tr>
<tr>
<td><code>Series.between()</code></td>
<td>Return boolean Series equivalent to left &lt;= series &lt;= right</td>
</tr>
<tr>
<td><code>Series.clip()</code></td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>Series.clip_lower()</code></td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>Series.clip_upper()</code></td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>Series.corr()</code></td>
<td>Compute correlation with other Series, excluding missing values</td>
</tr>
<tr>
<td><code>Series.count()</code></td>
<td>Return number of non-NA/null observations in the Series</td>
</tr>
<tr>
<td><code>Series.cov()</code></td>
<td>Compute covariance with Series, excluding missing values</td>
</tr>
<tr>
<td><code>Series.cummax()</code></td>
<td>Return cumulative max over requested axis</td>
</tr>
<tr>
<td><code>Series.cummin()</code></td>
<td>Return cumulative minimum over requested axis</td>
</tr>
<tr>
<td><code>Series.cumprod()</code></td>
<td>Return cumulative product over requested axis</td>
</tr>
<tr>
<td><code>Series.cumsum()</code></td>
<td>Return cumulative sum over requested axis</td>
</tr>
<tr>
<td><code>Series.describe()</code></td>
<td>Generate various summary statistics, excluding NaN values</td>
</tr>
<tr>
<td><code>Series.diff()</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>Series.factorize()</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>Series.kurt()</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>Series.mad()</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.max()</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>Series.mean()</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.median()</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.min()</code></td>
<td>This method returns the minimum of the values in the object</td>
</tr>
<tr>
<td><code>Series.mode()</code></td>
<td>Returns the mode(s) of the dataset.</td>
</tr>
<tr>
<td><code>Series.nlargest()</code></td>
<td>Return the largest $n$ elements.</td>
</tr>
<tr>
<td><code>Series.nsmallest()</code></td>
<td>Return the smallest $n$ elements.</td>
</tr>
<tr>
<td><code>Series.pct_change()</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>Series.prod()</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.quantile()</code></td>
<td>Return value at the given quantile, a la numpy.percentile.</td>
</tr>
<tr>
<td><code>Series.rank()</code></td>
<td>Compute numerical data ranks (1 through $n$) along axis.</td>
</tr>
<tr>
<td><code>Series.sem()</code></td>
<td>Return unbiased standard error of the mean over requested axis</td>
</tr>
<tr>
<td><code>Series.skew()</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>Series.std()</code></td>
<td>Return sample standard deviation over requested axis</td>
</tr>
<tr>
<td><code>Series.sum()</code></td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td><code>Series.var()</code></td>
<td>Return unbiased variance over requested axis</td>
</tr>
<tr>
<td><code>Series.unique()</code></td>
<td>Return np.ndarray of unique values in the object.</td>
</tr>
<tr>
<td><code>Series.nunique()</code></td>
<td>Return number of unique elements in the object</td>
</tr>
<tr>
<td><code>Series.is_unique</code></td>
<td>Return boolean if values in the object are unique</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.28 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.is_monotonic</td>
<td>Return boolean if values in the object are</td>
</tr>
<tr>
<td>Series.is_monotonic_increasing</td>
<td>Return boolean if values in the object are</td>
</tr>
<tr>
<td>Series.is_monotonic_decreasing</td>
<td>Return boolean if values in the object are</td>
</tr>
<tr>
<td>Series.value_counts([normalize, sort, ...])</td>
<td>Returns object containing counts of unique values.</td>
</tr>
</tbody>
</table>

Reindexing / Selection / Label manipulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.align(other[, join, axis, level, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>Series.drop(labels[, axis, level, inplace, ...])</td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td>Series.drop_duplicates(*args, **kwargs)</td>
<td>Return Series with duplicate values removed</td>
</tr>
<tr>
<td>Series.duplicated(*args, **kwargs)</td>
<td>Return boolean Series denoting duplicate values</td>
</tr>
<tr>
<td>Series.equals(other)</td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td>Series.first(offset)</td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td>Series.head([n])</td>
<td>Returns first n rows</td>
</tr>
<tr>
<td>Series.idxmax([axis, skipna])</td>
<td>Index of first occurrence of maximum of values.</td>
</tr>
<tr>
<td>Series.idxmin([axis, skipna])</td>
<td>Index of first occurrence of minimum of values.</td>
</tr>
<tr>
<td>Series.isin(values)</td>
<td>Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values.</td>
</tr>
<tr>
<td>Series.last(offset)</td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td>Series.reindex([index])</td>
<td>Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td>Series.reindex_like(other[, method, copy, ...])</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td>Series.rename([index])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td>Series.rename_axis(mapper[, axis, copy, inplace])</td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td>Series.reset_index([level, drop, name, inplace])</td>
<td>Analogous to the pandas.DataFrame.reset_index() function, see docstring there.</td>
</tr>
<tr>
<td>Series.sample([n, frac, replace, weights, ...])</td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td>Series.select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>Series.take(indices[, axis, convert, is_copy])</td>
<td>return Series corresponding to requested indices</td>
</tr>
<tr>
<td>Series.tail([n])</td>
<td>Returns last n rows</td>
</tr>
<tr>
<td>Series.truncate([before, after, axis, copy])</td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
<tr>
<td>Series.where(cond[, other, inplace, axis, ...])</td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td>Series.mask(cond[, other, inplace, axis, ...])</td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.</td>
</tr>
</tbody>
</table>

Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dropna([axis, inplace])</td>
<td>Return Series without null values</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.30 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.fillna()</code></td>
<td>Fill NA/Nan values using the specified method</td>
</tr>
<tr>
<td><code>Series.interpolate()</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
</tbody>
</table>

**Reshaping, sorting**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.argsort()</code></td>
<td>Overrides ndarray.argsort.</td>
</tr>
<tr>
<td><code>Series.reorder_levels()</code></td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>Series.sort_values()</code></td>
<td>Sort by the values along either axis</td>
</tr>
<tr>
<td><code>Series.sort_index()</code></td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td><code>Series.sortlevel()</code></td>
<td>Sort Series with MultiIndex by chosen level.</td>
</tr>
<tr>
<td><code>Series.swaplevel()</code></td>
<td>Swap levels i and j in a MultiIndex</td>
</tr>
<tr>
<td><code>Series.unstack()</code></td>
<td>Unstack, a.k.a.</td>
</tr>
<tr>
<td><code>Series.searchsorted()</code></td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
</tbody>
</table>

**Combining / joining / merging**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.append()</code></td>
<td>Concatenate two or more Series.</td>
</tr>
<tr>
<td><code>Series.replace()</code></td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td><code>Series.update()</code></td>
<td>Modify Series in place using non-NA values from passed Series.</td>
</tr>
</tbody>
</table>

**Time series-related**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.asfreq()</code></td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td><code>Series.asof()</code></td>
<td>The last row without any NaN is taken (or the last row without</td>
</tr>
<tr>
<td></td>
<td>the last row without)</td>
</tr>
<tr>
<td><code>Series.shift()</code></td>
<td>Shift index by desired number of periods with an optional time freq</td>
</tr>
<tr>
<td><code>Series.first_valid_index()</code></td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td><code>Series.last_valid_index()</code></td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td><code>Series.resample()</code></td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td><code>Series.tz_convert()</code></td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td><code>Series.tz_localize()</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
</tbody>
</table>

**Datetimelike Properties**

Series.dt can be used to access the values of the series as datetimelike and return several properties. These can be accessed like `Series.dt.<property>`.

**Datetime Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.dt.date</code></td>
<td>Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).</td>
</tr>
</tbody>
</table>
Table 35.34 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dt.time</td>
<td>Returns numpy array of datetime.time.</td>
</tr>
<tr>
<td>Series.dt.year</td>
<td>The year of the datetime</td>
</tr>
<tr>
<td>Series.dt.month</td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td>Series.dt.day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>Series.dt.hour</td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td>Series.dt.minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>Series.dt.second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>Series.dt.microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>Series.dt.nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>Series.dt.week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>Series.dt.weekofyear</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>Series.dt.weekday</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>Series.dt.weekday_name</td>
<td>The name of day in a week (ex: Friday)</td>
</tr>
<tr>
<td>Series.dt.dayofyear</td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td>Series.dt.quarter</td>
<td>The quarter of the date</td>
</tr>
<tr>
<td>Series.dt.is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td>Series.dt.is_leap_year</td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
<tr>
<td>Series.dt.daysinmonth</td>
<td>The number of days in the month</td>
</tr>
<tr>
<td>Series.dt.days_in_month</td>
<td>The number of days in the month</td>
</tr>
<tr>
<td>Series.dt.tz</td>
<td></td>
</tr>
<tr>
<td>Series.dt.freq</td>
<td>get/set the frequency of the Index</td>
</tr>
</tbody>
</table>

**pandas.Series.dt.date**

Series.dt.date

Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).

**pandas.Series.dt.time**

Series.dt.time

Returns numpy array of datetime.time. The time part of the Timestamps.

**pandas.Series.dt.year**

Series.dt.year

The year of the datetime
pandas.Series.dt.month

Series.dt.month
The month as January=1, December=12

pandas.Series.dt.day

Series.dt.day
The days of the datetime

pandas.Series.dt.hour

Series.dt.hour
The hours of the datetime

pandas.Series.dt.minute

Series.dt.minute
The minutes of the datetime

pandas.Series.dt.second

Series.dt.second
The seconds of the datetime

pandas.Series.dt.microsecond

Series.dt.microsecond
The microseconds of the datetime

pandas.Series.dt.nanosecond

Series.dt.nanosecond
The nanoseconds of the datetime

pandas.Series.dt.week

Series.dt.week
The week ordinal of the year

pandas.Series.dt.weekofyear

Series.dt.weekofyear
The week ordinal of the year
pandas.Series.dt.dayofweek

Series.dt.dayofweek
The day of the week with Monday=0, Sunday=6

pandas.Series.dt.weekday

Series.dt.weekday
The day of the week with Monday=0, Sunday=6

pandas.Series.dt.weekday_name

Series.dt.weekday_name
The name of day in a week (ex: Friday)
New in version 0.18.1.

pandas.Series.dt.dayofyear

Series.dt.dayofyear
The ordinal day of the year

pandas.Series.dt.quarter

Series.dt.quarter
The quarter of the date

pandas.Series.dt.is_month_start

Series.dt.is_month_start
Logical indicating if first day of month (defined by frequency)

pandas.Series.dt.is_month_end

Series.dt.is_month_end
Logical indicating if last day of month (defined by frequency)

pandas.Series.dt.is_quarter_start

Series.dt.is_quarter_start
Logical indicating if first day of quarter (defined by frequency)

pandas.Series.dt.is_quarter_end

Series.dt.is_quarter_end
Logical indicating if last day of quarter (defined by frequency)
pandas.Series.dt.is_year_start

Series.dt.is_year_start
Logical indicating if first day of year (defined by frequency)

pandas.Series.dt.is_year_end

Series.dt.is_year_end
Logical indicating if last day of year (defined by frequency)

pandas.Series.dt.is_leap_year

Series.dt.is_leap_year
Logical indicating if the date belongs to a leap year

pandas.Series.dt.daysinmonth

Series.dt.daysinmonth
The number of days in the month
New in version 0.16.0.

pandas.Series.dt.days_in_month

Series.dt.days_in_month
The number of days in the month
New in version 0.16.0.

pandas.Series.dt.tz

Series.dt.tz

pandas.Series.dt.freq

Series.dt.freq
get/set the frequency of the Index

Datetime Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dt.to_period(*args, **kwargs)</td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td>Series.dt.to_pydatetime()</td>
<td></td>
</tr>
<tr>
<td>Series.dt.tz_localize(*args, **kwargs)</td>
<td>Localize tz-naive DatetimeIndex to given time zone (using</td>
</tr>
<tr>
<td>Series.dt.tz_convert(*args, **kwargs)</td>
<td>Convert tz-aware DatetimeIndex from one time zone to another (using</td>
</tr>
<tr>
<td>Series.dt.normalize(*args, **kwargs)</td>
<td>Return DatetimeIndex with times to midnight.</td>
</tr>
<tr>
<td>Series.dt.strftime(*args, **kwargs)</td>
<td>Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library.</td>
</tr>
<tr>
<td>Series.dt.round(*args, **kwargs)</td>
<td>round the index to the specified freq</td>
</tr>
</tbody>
</table>

Continued on next page
Series.dt.floor(*args, **kwargs) floor the index to the specified freq

Series.dt.ceil(*args, **kwargs) ceil the index to the specified freq

Series.dt.to_period

Series.dt.to_period(*args, **kwargs)

Cast to PeriodIndex at a particular frequency

Series.dt.to_pydatetime

Series.dt.to_pydatetime()

Series.dt.tz_localize

Series.dt.tz_localize(*args, **kwargs)

Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex

Parameters

- tz: string, pytz.timezone, dateutil.tz.tzfile or None
  Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time.

- ambiguous: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
  - ‘infer’ will attempt to infer fall dst-transition hours based on order
  - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
  - ‘NaT’ will return NaT where there are ambiguous times
  - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

- errors: ‘raise’, ‘coerce’, default ‘raise’
  - ‘raise’ will raise a NonExistentTimeError if a timestamp is not valid in the specified timezone (e.g. due to a transition from or to DST time)
  - ‘coerce’ will return NaT if the timestamp can not be converted into the specified timezone

New in version 0.19.0.

- infer_dst: boolean, default False (DEPRECATED)
  Attempt to infer fall dst-transition hours based on order

Returns

- localized: DatetimeIndex

Raises

TypeErrors

If the DatetimeIndex is tz-aware and tz is not None.
pandas.Series.dt.tz_convert

Series.dt.tz_convert(*args, **kwargs)
Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None
    Time zone for time. Corresponding timestamps would be converted to time zone of
    the TimeSeries. None will remove timezone holding UTC time.

Returns normalized : DatetimeIndex

Raises TypeError
    If DatetimeIndex is tz-naive.

pandas.Series.dt.normalize

Series.dt.normalize(*args, **kwargs)
Return DatetimeIndex with times to midnight. Length is unaltered

Returns normalized : DatetimeIndex

pandas.Series.dt.strftime

Series.dt.strftime(*args, **kwargs)
Return an array of formatted strings specified by date_format, which supports the same string format as the
python standard library. Details of the string format can be found in python string format doc
New in version 0.17.0.

Parameters date_format : str
    date format string (e.g. “%Y-%m-%d”)

Returns ndarray of formatted strings

pandas.Series.dt.round

Series.dt.round(*args, **kwargs)
round the index to the specified freq

Parameters freq : freq string/object

Returns index of same type

Raises ValueError if the freq cannot be converted

pandas.Series.dt.floor

Series.dt.floor(*args, **kwargs)
floor the index to the specified freq

Parameters freq : freq string/object

Returns index of same type

Raises ValueError if the freq cannot be converted
pandas.Series.dt.ceil

Series.dt.ceil(*args, **kwargs)
    ceil the index to the specified freq

    Parameters freq : freq string/object
    Returns index of same type
    Raises ValueError if the freq cannot be converted

Timedelta Properties

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.dt.days</td>
<td>Number of days for each element.</td>
</tr>
<tr>
<td>Series.dt.seconds</td>
<td>Number of seconds (&gt;= 0 and less than 1 day) for each element.</td>
</tr>
<tr>
<td>Series.dt.microseconds</td>
<td>Number of microseconds (&gt;= 0 and less than 1 second) for each element.</td>
</tr>
<tr>
<td>Series.dt.nanoseconds</td>
<td>Number of nanoseconds (&gt;= 0 and less than 1 microsecond) for each element.</td>
</tr>
<tr>
<td>Series.dt.components</td>
<td>Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.</td>
</tr>
</tbody>
</table>

pandas.Series.dt.days

Series.dt.days
    Number of days for each element.

pandas.Series.dt.seconds

Series.dt.seconds
    Number of seconds (>= 0 and less than 1 day) for each element.

pandas.Series.dt.microseconds

Series.dt.microseconds
    Number of microseconds (>= 0 and less than 1 second) for each element.

pandas.Series.dt.nanoseconds

Series.dt.nanoseconds
    Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.

pandas.Series.dt.components

Series.dt.components
    Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.

    Returns a DataFrame

Timedelta Methods
pandas: powerful Python data analysis toolkit, Release 0.19.2

Series.dt.to_pydatetime()

Series.dt.total_seconds(*args, **kwargs) Total duration of each element expressed in seconds.

pandas.Series.dt.to_pydatetime

Series.dt.to_pydatetime()

pandas.Series.dt.total_seconds

Series.dt.total_seconds(*args, **kwargs) Total duration of each element expressed in seconds.
    New in version 0.17.0.

String handling

Series.str can be used to access the values of the series as strings and apply several methods to it. These can be accessed like Series.str.<function/property>.

Series.str.capitalize() Convert strings in the Series/Index to be capitalized.
Series.str.cat([others, sep, na_rep]) Concatenate strings in the Series/Index with given separator.
Series.str.center(width[, fillchar]) Filling left and right side of strings in the Series/Index with an additional character.
Series.str.contains(pat[, case, flags, na, ...]) Return boolean Series/array whether given pattern/regex is contained in each string in the Series/Index.
Series.str.count(pat[, flags]) Count occurrences of pattern in each string of the Series/Index.
Series.str.decode(encoding[, errors]) Decode character string in the Series/Index using indicated encoding.
Series.str.encode(encoding[, errors]) Encode character string in the Series/Index using indicated encoding.
Series.str.endswith(pat[, na]) Return boolean Series indicating whether each string in the Series/Index ends with passed pattern.
Series.str.extract(pat[, flags, expand]) For each subject string in the Series, extract groups from the first match of regular expression pat.
Series.str.extractall(pat[, flags]) For each subject string in the Series, extract groups from all matches of regular expression pat.
Series.str.find(sub[, start, end]) Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end].
Series.str.findall(pat[, flags]) Find all occurrences of pattern or regular expression in the Series/Index.
Series.str.get(i) Extract element from lists, tuples, or strings in each element in the Series/Index.
Series.str.index(sub[, start, end]) Return lowest indexes in each strings where the substring is fully contained between [start:end].
Series.str.join(sep) Join lists contained as elements in the Series/Index with passed delimiter.
Series.str.len() Compute length of each string in the Series/Index.

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.str.ljust()</code></td>
<td>Filling right side of strings in the Series/Index with an additional character.</td>
</tr>
<tr>
<td><code>Series.str.lower()</code></td>
<td>Convert strings in the Series/Index to lowercase.</td>
</tr>
<tr>
<td><code>Series.str.lstrip()</code></td>
<td>Strip whitespace (including newlines) from each string in the Series/Index from left side.</td>
</tr>
<tr>
<td><code>Series.str.match()</code></td>
<td>Deprecated: Find groups in each string in the Series/Index using passed regular expression.</td>
</tr>
<tr>
<td><code>Series.str.normalize()</code></td>
<td>Return the Unicode normal form for the strings in the Series/Index.</td>
</tr>
<tr>
<td><code>Series.str.pad()</code></td>
<td>Pad strings in the Series/Index with an additional character to specified side.</td>
</tr>
<tr>
<td><code>Series.str.partition()</code></td>
<td>Split the string at the first occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator.</td>
</tr>
<tr>
<td><code>Series.str.repeat()</code></td>
<td>Duplicate each string in the Series/Index by indicated number of times.</td>
</tr>
<tr>
<td><code>Series.str.replace()</code></td>
<td>Replace occurrences of pattern/regex in the Series/Index with some other string.</td>
</tr>
<tr>
<td><code>Series.str.rfind()</code></td>
<td>Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end].</td>
</tr>
<tr>
<td><code>Series.str.rindex()</code></td>
<td>Return highest indexes in each strings where the substring is fully contained between [start:end].</td>
</tr>
<tr>
<td><code>Series.str.rjust()</code></td>
<td>Filling left side of strings in the Series/Index with an additional character.</td>
</tr>
<tr>
<td><code>Series.str.rpartition()</code></td>
<td>Split the string at the last occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator.</td>
</tr>
<tr>
<td><code>Series.str.rstrip()</code></td>
<td>Strip whitespace (including newlines) from each string in the Series/Index from right side.</td>
</tr>
<tr>
<td><code>Series.str.slice()</code></td>
<td>Slice substrings from each element in the Series/Index.</td>
</tr>
<tr>
<td><code>Series.str.slice_replace()</code></td>
<td>Replace a slice of each string in the Series/Index with another string.</td>
</tr>
<tr>
<td><code>Series.str.split()</code></td>
<td>Split each string (a la re.split) in the Series/Index by given pattern, propagating NA values.</td>
</tr>
<tr>
<td><code>Series.str.rsplit()</code></td>
<td>Split each string in the Series/Index by the given delimiter string, starting at the end of the string and working to the front.</td>
</tr>
<tr>
<td><code>Series.str.startswith()</code></td>
<td>Return boolean Series/array indicating whether each string in the Series/Index starts with passed pattern.</td>
</tr>
<tr>
<td><code>Series.str.strip()</code></td>
<td>Strip whitespace (including newlines) from each string in the Series/Index from left and right sides.</td>
</tr>
<tr>
<td><code>Series.str.swapcase()</code></td>
<td>Convert strings in the Series/Index to be swapcased.</td>
</tr>
<tr>
<td><code>Series.str.title()</code></td>
<td>Convert strings in the Series/Index to titlecase.</td>
</tr>
<tr>
<td><code>Series.str.translate()</code></td>
<td>Map all characters in the string through the given mapping table.</td>
</tr>
<tr>
<td><code>Series.str.upper()</code></td>
<td>Convert strings in the Series/Index to uppercase.</td>
</tr>
<tr>
<td><code>Series.str.wrap()</code></td>
<td>Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width.</td>
</tr>
<tr>
<td><code>Series.str.zfill()</code></td>
<td>Filling left side of strings in the Series/Index with 0.</td>
</tr>
<tr>
<td><code>Series.str.isalnum()</code></td>
<td>Check whether all characters in each string in the Series/Index are alphanumeric.</td>
</tr>
</tbody>
</table>
### Table 35.38 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.str.isalpha()</code></td>
<td>Check whether all characters in each string in the Series/Index are alphabetic.</td>
</tr>
<tr>
<td><code>Series.str.isdigit()</code></td>
<td>Check whether all characters in each string in the Series/Index are digits.</td>
</tr>
<tr>
<td><code>Series.str.isspace()</code></td>
<td>Check whether all characters in each string in the Series/Index are whitespace.</td>
</tr>
<tr>
<td><code>Series.str.islower()</code></td>
<td>Check whether all characters in each string in the Series/Index are lowercase.</td>
</tr>
<tr>
<td><code>Series.str.isupper()</code></td>
<td>Check whether all characters in each string in the Series/Index are uppercase.</td>
</tr>
<tr>
<td><code>Series.str.istitle()</code></td>
<td>Check whether all characters in each string in the Series/Index are titlecase.</td>
</tr>
<tr>
<td><code>Series.str.isnumeric()</code></td>
<td>Check whether all characters in each string in the Series/Index are numeric.</td>
</tr>
<tr>
<td><code>Series.str.isdecimal()</code></td>
<td>Check whether all characters in each string in the Series/Index are decimal.</td>
</tr>
<tr>
<td><code>Series.str.get_dummies([sep])</code></td>
<td>Split each string in the Series by sep and return a frame of dummy/indicator variables.</td>
</tr>
</tbody>
</table>

### pandas.Series.str.capitalize

`Series.str.capitalize()`  
Convert strings in the Series/Index to be capitalized. Equivalent to `str.capitalize()`.

**Returns** converted: Series/Index of objects

### pandas.Series.str.cat

`Series.str.cat(others=None, sep=None, na_rep=None)`  
Concatenate strings in the Series/Index with given separator.

**Parameters** others: list-like, or list of list-likes

If None, returns `str` concatenating strings of the Series

sep: string or None, default None

na_rep: string or None, default None

If None, NA in the series are ignored.

**Returns** concat: Series/Index of objects or str

### Examples

When `na_rep` is `None` (default behavior), NaN value(s) in the Series are ignored.

```python
>>> Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ')
a b c
```

```python
>>> Series(['a', 'b', np.nan, 'c']).str.cat(sep=' ', na_rep='?')
a b ? c
```
If `others` is specified, corresponding values are concatenated with the separator. Result will be a Series of strings.

```python
>>> Series(["a", "b", "c"]).str.cat(["A", "B", "C"], sep=",")
0 a,A
1 b,B
2 c,C
dtype: object
```

Otherwise, strings in the Series are concatenated. Result will be a string.

```python
>>> Series(["a", "b", "c"]).str.cat(sep=",")
'a,b,c'
```

Also, you can pass a list of list-likes.

```python
>>> Series(["a", "b"]).str.cat([["x", "y"], ["1", "2"]], sep=",")
0 a,x,1
1 b,y,2
dtype: object
```

### pandas.Series.str.center

Series.**center**(width, fillchar=' ')

Filling left and right side of strings in the Series/Index with an additional character. Equivalent to `str.center()`.

**Parameters**

- `width` : int
  Minimum width of resulting string; additional characters will be filled with `fillchar`

- `fillchar` : str
  Additional character for filling, default is whitespace

**Returns**

- `filled` : Series/Index of objects

### pandas.Series.str.contains

Series.**contains**(pat, case=True, flags=0, na=nan, regex=True)

Return boolean Series/array whether given pattern/regex is contained in each string in the Series/Index.

**Parameters**

- `pat` : string
  Character sequence or regular expression

- `case` : boolean, default True
  If True, case sensitive

- `flags` : int, default 0 (no flags)
  re module flags, e.g. re.IGNORECASE

- `na` : default NaN, fill value for missing values.

- `regex` : bool, default True
  If True use re.search, otherwise use Python in operator
Returns contained: Series/array of boolean values

See also:

match analogous, but stricter, relying on re.match instead of re.search

pandas.Series.str.count

Series.str.count (pat, flags=0, **kwargs)
Count occurrences of pattern in each string of the Series/Index.

Parameters pat: string, valid regular expression
flags: int, default 0 (no flags)
re module flags, e.g. re.IGNORECASE

Returns counts: Series/Index of integer values

pandas.Series.str.decode

Series.str.decode (encoding, errors='strict')
Decode character string in the Series/Index using indicated encoding. Equivalent to str.decode() in python2 and bytes.decode() in python3.

Parameters encoding: str
errors: str, optional

Returns decoded: Series/Index of objects

pandas.Series.str.encode

Series.str.encode (encoding, errors='strict')
Encode character string in the Series/Index using indicated encoding. Equivalent to str.encode().

Parameters encoding: str
errors: str, optional

Returns encoded: Series/Index of objects

pandas.Series.str.endswith

Series.str.endswith (pat, na=nan)
Return boolean Series indicating whether each string in the Series/Index ends with passed pattern. Equivalent to str.endswith().

Parameters pat: string
Character sequence
na: bool, default NaN

Returns endswith: Series/array of boolean values
pandas.Series.str.extract

Series.str.extract(pat, flags=0, expand=None)
For each subject string in the Series, extract groups from the first match of regular expression pat.

New in version 0.13.0.

Parameters pat : string
    Regular expression pattern with capturing groups
flags : int, default 0 (no flags)
    re module flags, e.g. re.IGNORECASE
.. versionadded:: 0.18.0
expand : bool, default False
    • If True, return DataFrame.
    • If False, return Series/Index/DataFrame.

Returns DataFrame with one row for each subject string, and one column for each group. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. The dtype of each result column is always object, even when no match is found. If expand=False and pat has only one capture group, then return a Series (if subject is a Series) or Index (if subject is an Index).

See also:

extractall returns all matches (not just the first match)

Examples

A pattern with two groups will return a DataFrame with two columns. Non-matches will be NaN.

```python
>>> s = Series(['a1', 'b2', 'c3'])
>>> s.str.extract('([^ab])(\d)')
 0 1
0 a 1
1 b 2
2 NaN NaN
```

A pattern may contain optional groups.

```python
>>> s.str.extract('([^ab])?(\d)')
 0 1
0 a 1
1 b 2
2 NaN 3
```

Named groups will become column names in the result.
A pattern with one group will return a DataFrame with one column if expand=True.

```
>>> s.str.extract('(?P<letter>[ab])(?P<digit>\d)')
 letter digit
0 a 1
1 b 2
2 NaN NaN
```

A pattern with one group will return a Series if expand=False.

```
>>> s.str.extract('[ab] (\d)', expand=False)
0 1
1 2
2 NaN
dtype: object
```

```
pandas.Series.str.extractall
```

Series.str.extractall(pat, flags=0)

For each subject string in the Series, extract groups from all matches of regular expression pat. When each subject string in the Series has exactly one match, extractall(pat).xs(0, level='match') is the same as extract(pat).

New in version 0.18.0.

**Parameters**

- **pat** : string
  Regular expression pattern with capturing groups

- **flags** : int, default 0 (no flags)
  re module flags, e.g. re.IGNORECASE

**Returns**

A DataFrame with one row for each match, and one column for each group. Its rows have a MultiIndex with first levels that come from the subject Series. The last level is named ‘match’ and indicates the order in the subject. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used.

**See also:**

- **extract** returns first match only (not all matches)

**Examples**

A pattern with one group will return a DataFrame with one column. Indices with no matches will not appear in the result.
>>> s = Series(["ala2", "bl", "cl"], index=["A", "B", "C"])
>>> s.str.extractall("[ab](\d)")

0
match
A 0 1
   1 2
B 0 1

Capture group names are used for column names of the result.

>>> s.str.extractall("[ab]({P<digit>\d})")
digit
match
A 0 1
   1 2
B 0 1

A pattern with two groups will return a DataFrame with two columns.

>>> s.str.extractall("(?P<letter>[ab])(?P<digit>\d)")
letter digit
match
A 0 a 1
   1 a 2
B 0 b 1

Optional groups that do not match are NaN in the result.

>>> s.str.extractall("(?P<letter>[ab])?(?P<digit>\d)")
letter digit
match
A 0 a 1
   1 a 2
B 0 b 1
C 0 NaN 1

**pandas.Series.str.find**

Series.str.find(*sub*, *start=0, end=None*)

Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard str.find().

**Parameters**

- **sub** : str
  Substring being searched
- **start** : int
  Left edge index
- **end** : int
  Right edge index

**Returns**

- **found** : Series/Index of integer values

**See also**

- rfind Return highest indexes in each strings
**pandas.Series.str.findall**

Series.str.findall(pat, flags=0, **kwargs)

Find all occurrences of pattern or regular expression in the Series/Index. Equivalent to `re.findall()`.

**Parameters**
- **pat**: string
  Pattern or regular expression
- **flags**: int, default 0 (no flags)
  re module flags, e.g. re.IGNORECASE

**Returns**
- **matches**: Series/Index of lists

**See also**:
- `extractall` returns DataFrame with one column per capture group

**pandas.Series.str.get**

Series.str.get(i)

Extract element from lists, tuples, or strings in each element in the Series/Index.

**Parameters**
- **i**: int
  Integer index (location)

**Returns**
- **items**: Series/Index of objects

**pandas.Series.str.index**

Series.str.index(sub, start=0, end=None)

Return lowest indexes in each strings where the substring is fully contained between [start:end]. This is the same as `str.find` except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard `str.index`.

**Parameters**
- **sub**: str
  Substring being searched
- **start**: int
  Left edge index
- **end**: int
  Right edge index

**Returns**
- **found**: Series/Index of objects

**See also**:
- `rindex` Return highest indexes in each strings

**pandas.Series.str.join**

Series.str.join(sep)

Join lists contained as elements in the Series/Index with passed delimiter. Equivalent to `str.join()`.

**Parameters**
- **sep**: string
Delimited

Returns joined: Series/Index of objects

**pandas.Series.str.len**

`Series.str.len()`

Compute length of each string in the Series/Index.

Returns lengths: Series/Index of integer values

**pandas.Series.str.ljust**

`Series.str.ljust(width, fillchar=')'

Filling right side of strings in the Series/Index with an additional character. Equivalent to `str.ljust()`.

Parameters width: int

  Minimum width of resulting string; additional characters will be filled with fillchar

fillchar: str

  Additional character for filling, default is whitespace

Returns filled: Series/Index of objects

**pandas.Series.str.lower**

`Series.str.lower()`

Convert strings in the Series/Index to lowercase. Equivalent to `str.lower()`.

Returns converted: Series/Index of objects

**pandas.Series.str.lstrip**

`Series.str.lstrip(to_strip=None)`

Strip whitespace (including newlines) from each string in the Series/Index from left side. Equivalent to `str.lstrip()`.

Returns stripped: Series/Index of objects

**pandas.Series.str.match**

`Series.str.match(pat, case=True, flags=0, na=nan, as_indexer=False)`

Deprecated: Find groups in each string in the Series/Index using passed regular expression. If as_indexer=True, determine if each string matches a regular expression.

Parameters pat: string

  Character sequence or regular expression

case: boolean, default True

  If True, case sensitive

flags: int, default 0 (no flags)
re module flags, e.g. re.IGNORECASE

**na**: default NaN, fill value for missing values.

**as_indexer**: False, by default, gives deprecated behavior better achieved using `str_extract`. True return boolean indexer.

### Returns

- Series/array of boolean values if `as_indexer=True`
- Series/Index of tuples if `as_indexer=False`, default but deprecated

### See also:

- `contains` analogous, but less strict, relying on `re.search` instead of `re.match`
- `extract` now preferred to the deprecated usage of `match` (as_indexer=False)

### Notes

To extract matched groups, which is the deprecated behavior of `match`, use `str.extract`.

### pandas.Series.str.normalize

`Series.str.normalize(form)`

Return the Unicode normal form for the strings in the Series/Index. For more information on the forms, see the `unicodedata.normalize()`.

**Parameters**

- **form**: {'NFC', 'NFKC', 'NFD', 'NFKD'}
  
  Unicode form

**Returns**

- **normalized**: Series/Index of objects

### pandas.Series.str.pad

`Series.str.pad(width, side='left', fillchar=' ')`

Pad strings in the Series/Index with an additional character to specified side.

**Parameters**

- **width**: int
  
  Minimum width of resulting string; additional characters will be filled with spaces

- **side**: {'left', 'right', 'both'}, default 'left'

- **fillchar**: str
  
  Additional character for filling, default is whitespace

**Returns**

- **padded**: Series/Index of objects
pandas.Series.str.partition

Series.str.partition(pat=' ', expand=True)
Split the string at the first occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 elements containing the string itself, followed by two empty strings.

**Parameters**
- **pat**: string, default whitespace
  - String to split on.
- **expand**: bool, default True
  - If True, return DataFrame/MultiIndex expanding dimensionality.
  - If False, return Series/Index.

**Returns**
- **split**: DataFrame/MultiIndex or Series/Index of objects

**See also:**
- **rpartition** Split the string at the last occurrence of sep

**Examples**

```python
>>> s = Series(['A_B_C', 'D_E_F', 'X'])
0 A_B_C
1 D_E_F
2 X
dtype: object

>>> s.str.partition('_')
0 1 2
0 A _ B_C
1 D _ E_F
2 X

>>> s.str.rpartition('_')
0 1 2
0 A_B _ C
1 D_E _ F
2 X
```

pandas.Series.str.repeat

Series.str.repeat(repeats)
Duplicate each string in the Series/Index by indicated number of times.

**Parameters**
- **repeats**: int or array
  - Same value for all (int) or different value per (array)

**Returns**
- **repeated**: Series/Index of objects
**pandas.Series.str.replace**

Series.str.replace(pat, repl, n=-1, case=True, flags=0)
Replace occurrences of pattern/regex in the Series/Index with some other string. Equivalent to str.replace() or re.sub().

Parameters
- **pat**: string
  - Character sequence or regular expression
- **repl**: string
  - Replacement sequence
- **n**: int, default -1 (all)
  - Number of replacements to make from start
- **case**: boolean, default True
  - If True, case sensitive
- **flags**: int, default 0 (no flags)
  - Re module flags, e.g. re.IGNORECASE

Returns **replaced**: Series/Index of objects

**pandas.Series.str.rfind**

Series.str.rfind(sub, start=0, end=None)
Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard str.rfind().

Parameters
- **sub**: str
  - Substring being searched
- **start**: int
  - Left edge index
- **end**: int
  - Right edge index

Returns **found**: Series/Index of integer values

See also:
- find Return lowest indexes in each strings

**pandas.Series.str.rindex**

Series.str.rindex(sub, start=0, end=None)
Return highest indexes in each strings where the substring is fully contained between [start:end]. This is the same as str.rfind except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard str.rindex.

Parameters
- **sub**: str
  - Substring being searched
**start**: int

Left edge index

**end**: int

Right edge index

**Returns**

**found**: Series/Index of objects

See also:

**index** Return lowest indexes in each strings

---

**pandas.Series.str.rjust**

Series.str.rjust(width, fillchar=' ')

Filling left side of strings in the Series/Index with an additional character. Equivalent to str.rjust().

**Parameters**

**width**: int

Minimum width of resulting string; additional characters will be filled with **fillchar**

**fillchar**: str

Additional character for filling, default is whitespace

**Returns**

**filled**: Series/Index of objects

---

**pandas.Series.str.rpartition**

Series.str.rpartition(pat=' ', expand=True)

Split the string at the last occurrence of **sep**, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return 3 elements containing two empty strings, followed by the string itself.

**Parameters**

**pat**: string, default whitespace

String to split on.

**expand**: bool, default True

• If True, return DataFrame/MultiIndex expanding dimensionality.

• If False, return Series/Index.

**Returns**

**split**: DataFrame/MultiIndex or Series/Index of objects

See also:

**partition** Split the string at the first occurrence of **sep**

---

**Examples**

```python
>>> s = Series(['A_B_C', 'D_E_F', 'X'])
0 A_B_C
1 D_E_F
2 X
dtype: object
```
>>> s.str.partition('_')
     0   1  2
    0  A _ B_C
    1  D _ E_F
    2    X

>>> s.str.rpartition('_')
     0   1  2
    0  A_B _ C
    1  D_E _ F
    2    X

**pandas.Series.str.rstrip**

Series.str.rstrip(to_strip=None)

Strip whitespace (including newlines) from each string in the Series/Index from right side. Equivalent to str.rstrip().

Returns stripped : Series/Index of objects

**pandas.Series.str.slice**

Series.str.slice(start=None, stop=None, step=None)

Slice substrings from each element in the Series/Index

Parameters start : int or None

stop : int or None

step : int or None

Returns sliced : Series/Index of objects

**pandas.Series.str.slice_replace**

Series.str.slice_replace(start=None, stop=None, repl=None)

Replace a slice of each string in the Series/Index with another string.

Parameters start : int or None

stop : int or None

repl : str or None

String for replacement

Returns replaced : Series/Index of objects

**pandas.Series.str.split**

Series.str.split(pat=None, n=-1, expand=False)

Split each string (a la re.split) in the Series/Index by given pattern, propagating NA values. Equivalent to str.split().

Parameters pat : string, default None

String or regular expression to split on. If None, splits on whitespace
n : int, default -1 (all)
    None, 0 and -1 will be interpreted as return all splits

expand : bool, default False
    • If True, return DataFrame/MultiIndex expanding dimensionality.
    • If False, return Series/Index.
    New in version 0.16.1.

return_type : deprecated, use expand

Returns split : Series/Index or DataFrame/MultiIndex of objects

pandas.Series.str.rsplit

Series.str.rsplit(pat=None, n=-1, expand=False)
    Split each string in the Series/Index by the given delimiter string, starting at the end of the string and working
to the front. Equivalent to \texttt{str.rsplit()}.
    New in version 0.16.2.

Parameters pat : string, default None
    Separator to split on. If None, splits on whitespace

n : int, default -1 (all)
    None, 0 and -1 will be interpreted as return all splits

expand : bool, default False
    • If True, return DataFrame/MultiIndex expanding dimensionality.
    • If False, return Series/Index.

Returns split : Series/Index or DataFrame/MultiIndex of objects

pandas.Series.str.startswith

Series.str.startswith(pat, na=nan)
    Return boolean Series/array indicating whether each string in the Series/Index starts with passed pattern.
    Equivalent to \texttt{str.startswith()}.

Parameters pat : string
    Character sequence

na : bool, default NaN

Returns startswith : Series/array of boolean values

pandas.Series.str.strip

Series.str.strip(to_strip=None)
    Strip whitespace (including newlines) from each string in the Series/Index from left and right sides. Equivalent
to \texttt{str.strip()}.

Returns stripped : Series/Index of objects
pandas.Series.str.swapcase

Series.str.swapcase()
Convert strings in the Series/Index to be swapcased. Equivalent to str.swapcase().

Returns converted : Series/Index of objects

pandas.Series.str.title

Series.str.title()
Convert strings in the Series/Index to titlecase. Equivalent to str.title().

Returns converted : Series/Index of objects

pandas.Series.str.translate

Series.str.translate(table, deletechars=None)
Map all characters in the string through the given mapping table. Equivalent to standard str.translate(). Note that the optional argument deletechars is only valid if you are using python 2. For python 3, character deletion should be specified via the table argument.

Parameters table : dict (python 3), str or None (python 2)
In python 3, table is a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted. str.maketrans() is a helper function for making translation tables.
In python 2, table is either a string of length 256 or None. If the table argument is None, no translation is applied and the operation simply removes the characters in deletechars. string.maketrans() is a helper function for making translation tables.

deletechars : str, optional (python 2)
A string of characters to delete. This argument is only valid in python 2.

Returns translated : Series/Index of objects

pandas.Series.str.upper

Series.str.upper()
Convert strings in the Series/Index to uppercase. Equivalent to str.upper().

Returns converted : Series/Index of objects

pandas.Series.str.wrap

Series.str.wrap(width, **kwargs)
Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. This method has the same keyword parameters and defaults as textwrap.TextWrapper.

Parameters width : int
Maximum line-width

expand_tabs : bool, optional
If true, tab characters will be expanded to spaces (default: True)
replace_whitespace : bool, optional

If true, each whitespace character (as defined by string.whitespace) remaining after tab expansion will be replaced by a single space (default: True)

drop_whitespace : bool, optional

If true, whitespace that, after wrapping, happens to end up at the beginning or end of a line is dropped (default: True)

break_long_words : bool, optional

If true, then words longer than width will be broken in order to ensure that no lines are longer than width. If it is false, long words will not be broken, and some lines may be longer than width. (default: True)

break_on_hyphens : bool, optional

If true, wrapping will occur preferably on whitespace and right after hyphens in compound words, as it is customary in English. If false, only whitespaces will be considered as potentially good places for line breaks, but you need to set break_long_words to false if you want truly inseparable words. (default: True)

Returns wrapped : Series/Index of objects

Notes

Internally, this method uses a textwrap.TextWrapper instance with default settings. To achieve behavior matching R’s stringr library str_wrap function, use the arguments:

•expand_tabs = False
•replace_whitespace = True
•drop_whitespace = True
•break_long_words = False
•break_on_hyphens = False

Examples

>>> s = pd.Series(['line to be wrapped', 'another line to be wrapped'])
>>> s.str.wrap(12)
0   line to be
     wrapped
1   another line
      to be
     wrapped

pandas.Series.str.zfill

Series.str.zfill(width)

Filling left side of strings in the Series/Index with 0. Equivalent to str.zfill().

Parameters width : int

Minimum width of resulting string; additional characters will be filled with 0

Returns filled : Series/Index of objects
pandas.Series.str.isalnum

Series.str.isalnum()
Check whether all characters in each string in the Series/Index are alphanumeric. Equivalent to str.isalnum().

Returns is : Series/array of boolean values

pandas.Series.str.isalpha

Series.str.isalpha()
Check whether all characters in each string in the Series/Index are alphabetic. Equivalent to str.isalpha().

Returns is : Series/array of boolean values

pandas.Series.str.isdigit

Series.str.isdigit()
Check whether all characters in each string in the Series/Index are digits. Equivalent to str.isdigit().

Returns is : Series/array of boolean values

pandas.Series.str.isspace

Series.str.isspace()
Check whether all characters in each string in the Series/Index are whitespace. Equivalent to str.isspace().

Returns is : Series/array of boolean values

pandas.Series.str.islower

Series.str.islower()
Check whether all characters in each string in the Series/Index are lowercase. Equivalent to str.islower().

Returns is : Series/array of boolean values

pandas.Series.str.isupper

Series.str.isupper()
Check whether all characters in each string in the Series/Index are uppercase. Equivalent to str.isupper().

Returns is : Series/array of boolean values

pandas.Series.str.istitle

Series.str.istitle()
Check whether all characters in each string in the Series/Index are titlecase. Equivalent to str.istitle().

Returns is : Series/array of boolean values
**pandas.Series.str.isnumeric**

```python
Series.isnumeric()
```
Check whether all characters in each string in the Series/Index are numeric. Equivalent to `str.isnumeric()`.

**Returns**
- `Series/array of boolean values`

**pandas.Series.str.isdecimal**

```python
Series.isdecimal()
```
Check whether all characters in each string in the Series/Index are decimal. Equivalent to `str.isdecimal()`.

**Returns**
- `Series/array of boolean values`

**pandas.Series.str.get_dummies**

```python
Series.get_dummies(sep='|')
```
Split each string in the Series by sep and return a frame of dummy/indicator variables.

**Parameters**
- `sep` : string, default “|”
  - String to split on.

**Returns**
- `dummies` : DataFrame

**See also:**
- `pandas.get_dummies`

**Examples**

```python
>>> Series(["a|b", 'a', 'a|c']).str.get_dummies()
a b c
0 1 1 0
1 1 0 0
2 1 0 1
```

```python
>>> Series(["a|b", np.nan, 'a|c']).str.get_dummies()
a b c
0 1 1 0
1 0 0 0
2 1 0 1
```

**Categorical**

If the Series is of dtype category, `Series.cat` can be used to change the the categorical data. This accessor is similar to the `Series.dt` or `Series.str` and has the following usable methods and properties:

<table>
<thead>
<tr>
<th><strong>Series.cat.categories</strong></th>
<th>The categories of this categorical.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Series.cat.ordered</strong></td>
<td>Gets the ordered attribute</td>
</tr>
<tr>
<td><strong>Series.cat.codes</strong></td>
<td></td>
</tr>
</tbody>
</table>
pandas.Series.cat.categories

Series.cat.categories
The categories of this categorical.

Setting assigns new values to each category (effectively a rename of each individual category).

The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.

Assigning to categories is an inplace operation!

Raises ValueError
If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories

See also:
rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories, set_categories

pandas.Series.cat.ordered

Series.cat.ordered
Gets the ordered attribute

pandas.Series.cat.codes

Series.cat.codes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series.cat.rename_categories(*args, **kwargs)</td>
<td>Renames categories.</td>
</tr>
<tr>
<td>Series.cat.reorder_categories(*args, **kwargs)</td>
<td>Reorders categories as specified in new_categories.</td>
</tr>
<tr>
<td>Series.cat.add_categories(*args, **kwargs)</td>
<td>Add new categories.</td>
</tr>
<tr>
<td>Series.cat.remove_categories(*args, **kwargs)</td>
<td>Removes the specified categories.</td>
</tr>
<tr>
<td>Series.cat.remove_unused_categories(*args, ...)</td>
<td>Removes categories which are not used.</td>
</tr>
<tr>
<td>Series.cat.set_categories(*args, **kwargs)</td>
<td>Sets the categories to the specified new_categories.</td>
</tr>
<tr>
<td>Series.cat.as_ordered(*args, **kwargs)</td>
<td>Sets the Categorical to be ordered</td>
</tr>
<tr>
<td>Series.cat.as_unordered(*args, **kwargs)</td>
<td>Sets the Categorical to be unordered</td>
</tr>
</tbody>
</table>

pandas.Series.cat.rename_categories

Series.cat.rename_categories(*args, **kwargs)
Renames categories.

The new categories has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.

Parameters new_categories : Index-like
The renamed categories.

inplace : boolean (default: False)
Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories.

**Returns** `cat` : Categorical with renamed categories added or None if inplace.

**Raises** `ValueError`

If the new categories do not have the same number of items than the current categories or do not validate as categories

**See also:**

`reorder_categories, add_categories, remove_categories, remove_unused_categories, set_categories`

### pandas.Series.cat.reorder_categories

`Series.cat.reorder_categories(*args, **kwargs)`

Reorders categories as specified in new_categories.

**new_categories** need to include all old categories and no new category items.

**Parameters**

`new_categories` : Index-like

The categories in new order.

`ordered` : boolean, optional

Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

`inplace` : boolean (default: False)

Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

**Returns** `cat` : Categorical with reordered categories or None if inplace.

**Raises** `ValueError`

If the new categories do not contain all old category items or any new ones

**See also:**

`rename_categories, add_categories, remove_categories, remove_unused_categories, set_categories`

### pandas.Series.cat.add_categories

`Series.cat.add_categories(*args, **kwargs)`

Add new categories.

`new_categories` will be included at the last/highest place in the categories and will be unused directly after this call.

**Parameters**

`new_categories` : category or list-like of category

The new categories to be included.

`inplace` : boolean (default: False)

Whether or not to add the categories inplace or return a copy of this categorical with added categories.
**Returns** cat: Categorical with new categories added or None if inplace.

**Raises** ValueError

If the new categories include old categories or do not validate as categories

See also:

rename_categories, reorder_categories, remove_categories, remove_unused_categories, set_categories

### pandas.Series.cat.remove_categories

Series.cat.remove_categories(*args, **kwargs)

Removes the specified categories.

removals must be included in the old categories. Values which were in the removed categories will be set to NaN

**Parameters** removals: category or list of categories

The categories which should be removed.

inplace: boolean (default: False)

Whether or not to remove the categories inplace or return a copy of this categorical with removed categories.

**Returns** cat: Categorical with removed categories or None if inplace.

**Raises** ValueError

If the removals are not contained in the categories

See also:

rename_categories, reorder_categories, add_categories, remove_unused_categories, set_categories

### pandas.Series.cat.remove_unused_categories

Series.cat.remove_unused_categories(*args, **kwargs)

Removes categories which are not used.

**Parameters** inplace: boolean (default: False)

Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped.

**Returns** cat: Categorical with unused categories dropped or None if inplace.

See also:

rename_categories, reorder_categories, add_categories, remove_categories, set_categories

### pandas.Series.cat.set_categories

Series.cat.set_categories(*args, **kwargs)

Sets the categories to the specified new_categories.
new_categories can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If rename=True, the categories will simply be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively).

This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods.

On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string.

**Parameters**

- **new_categories** : Index-like
  
The categories in new order.

- **ordered** : boolean, (default: False)
  
  Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

- **rename** : boolean (default: False)
  
  Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories.

- **inplace** : boolean (default: False)
  
  Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

**Returns**

- **cat** : Categorical with reordered categories or None if inplace.

**Raises**

- **ValueError**
  
  If new_categories does not validate as categories

**See also:**

- rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories

### pandas.Series.cat.as_ordered

```
Series.cat.as_ordered(*args, **kwargs)
```

Sets the Categorical to be ordered

**Parameters**

- **inplace** : boolean (default: False)
  
  Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to True

### pandas.Series.cat.as_unordered

```
Series.cat.as_unordered(*args, **kwargs)
```

Sets the Categorical to be unordered

**Parameters**

- **inplace** : boolean (default: False)
  
  Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to False
To create a Series of dtype `category`, use `cat = s.astype("category")`.

The following two `Categorical` constructors are considered API but should only be used when adding ordering information or special categories is need at creation time of the categorical data:

<table>
<thead>
<tr>
<th><code>Categorical(values[, categories, ordered, ...])</code></th>
<th>Represents a categorical variable in classic R / S-plus fashion</th>
</tr>
</thead>
</table>

**pandas.Categorical**

```python
class pandas.Categorical(values, categories=None, ordered=False, name=None, fastpath=False)
```

Represents a categorical variable in classic R / S-plus fashion

Categoricals can only take on only a limited, and usually fixed, number of possible values (categories). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible.

All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values.

**Parameters**

- `values` : list-like
  The values of the categorical. If categories are given, values not in categories will be replaced with NaN.

- `categories` : Index-like (unique), optional
  The unique categories for this categorical. If not given, the categories are assumed to be the unique values of values.

- `ordered` : boolean, (default False)
  Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will not be ordered.

**Raises**

- `ValueError`
  If the categories do not validate.

- `TypeError`
  If an explicit `ordered=True` is given but no `categories` and the `values` are not sortable.

**Examples**

```python
>>> from pandas import Categorical
>>> Categorical([1, 2, 3, 1, 2, 3])
[1, 2, 3, 1, 2, 3]
Categories (3, int64): [1 < 2 < 3]

>>> Categorical(['a', 'b', 'c', 'a', 'b', 'c'])
[a, b, c, a, b, c]
Categories (3, object): [a < b < c]

>>> a = Categorical(['a','b','c','a','b','c'], ['c', 'b', 'a'], ordered=True)
```
```python
>>> a.min()
'c'
```

**Categorical.from_codes**

```python
Categorical.from_codes(codes, categories[, ...])
```

Make a Categorical type from codes and categories arrays.

This constructor is useful if you already have codes and categories and so do not need the (computation intensive) factorization step, which is usually done on the constructor.

If your data does not follow this convention, please use the normal constructor.

**Parameters**

- `codes` : array-like, integers
  An integer array, where each integer points to a category in categories or -1 for NaN
- `categories` : index-like
  The categories for the categorical. Items need to be unique.
- `ordered` : boolean, (default False)
  Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will be unordered.

**np.asarray(categorical)** works by implementing the array interface. Be aware, that this converts the Categorical back to a numpy array, so levels and order information is not preserved!

**pandas.Categorical.__array__(dtype)**

The numpy array interface.

**pandas.Categorical.__array__(dtype=None)**

The numpy array interface.

**Returns**

- `values` : numpy array
  A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype

**Plotting**

`Series.plot` is both a callable method and a namespace attribute for specific plotting methods of the form `Series.plot.<kind>`.

```
Series.plot(kind, ax, figsize, ...)
```

Series plotting accessor and method

- `Series.plot.area(*kwds)` Area plot
- `Series.plot.bar(*kwds)` Vertical bar plot
- `Series.plot.barh(*kwds)` Horizontal bar plot
- `Series.plot.box(*kwds)` Boxplot

Continued on next page

35.3. Series 1293
Table 35.45 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Series.plot.density</code></td>
<td>Kernel Density Estimate plot</td>
</tr>
<tr>
<td><code>Series.plot.hist</code></td>
<td>Histogram</td>
</tr>
<tr>
<td><code>Series.plot.kde</code></td>
<td>Kernel Density Estimate plot</td>
</tr>
<tr>
<td><code>Series.plot.line</code></td>
<td>Line plot</td>
</tr>
<tr>
<td><code>Series.plot.pie</code></td>
<td>Pie chart</td>
</tr>
</tbody>
</table>

**pandas.Series.plot.area**

Function: `Series.plot.area(**kwds)`

Area plot

New in version 0.17.0.

**Parameters**

**kwds**: optional

Keyword arguments to pass on to `pandas.Series.plot()`.

**Returns**

axes: matplotlib.AxesSubplot or np.array of them

**pandas.Series.plot.bar**

Function: `Series.plot.bar(**kwds)`

Vertical bar plot

New in version 0.17.0.

**Parameters**

**kwds**: optional

Keyword arguments to pass on to `pandas.Series.plot()`.

**Returns**

axes: matplotlib.AxesSubplot or np.array of them

**pandas.Series.plot.barh**

Function: `Series.plot.barh(**kwds)`

Horizontal bar plot

New in version 0.17.0.

**Parameters**

**kwds**: optional

Keyword arguments to pass on to `pandas.Series.plot()`.

**Returns**

axes: matplotlib.AxesSubplot or np.array of them

**pandas.Series.plot.box**

Function: `Series.plot.box(**kwds)`

Boxplot

New in version 0.17.0.

**Parameters**

**kwds**: optional

Keyword arguments to pass on to `pandas.Series.plot()`.

**Returns**

axes: matplotlib.AxesSubplot or np.array of them
pandas.Series.plot.density

Series.plot.density(**kwds)
Kernel Density Estimate plot

New in version 0.17.0.

Parameters **kwds : optional
Keyword arguments to pass on to pandas.Series.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

pandas.Series.plot.hist

Series.plot.hist(bins=10, **kwds)
Histogram

New in version 0.17.0.

Parameters bins: integer, default 10
Number of histogram bins to be used

**kwds : optional
Keyword arguments to pass on to pandas.Series.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

pandas.Series.plot.kde

Series.plot.kde(**kwds)
Kernel Density Estimate plot

New in version 0.17.0.

Parameters **kwds : optional
Keyword arguments to pass on to pandas.Series.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

pandas.Series.plot.line

Series.plot.line(**kwds)
Line plot

New in version 0.17.0.

Parameters **kwds : optional
Keyword arguments to pass on to pandas.Series.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them
pandas.Series.plot.pie

Series.plot.pie(**kwds)
Pie chart

New in version 0.17.0.

Parameters
**kwds: optional
Keyword arguments to pass on to pandas.Series.plot().

Returns
axes: matplotlib.AxesSubplot or np.array of them

Series.hist([by, ax, grid, xlabelsize, ...])
Draw histogram of the input series using matplotlib

Serialization / IO / Conversion

Series.from_csv(path[, sep, parse_dates, ...])
Read CSV file (DISCOURAGED, please use pandas.read_csv() instead).

Series.to_pickle(path)
Pickle (serialize) object to input file path.

Series.to_csv([path, index, sep, na_rep, ...])
Write Series to a comma-separated values (csv) file

Series.to_dict()  
Convert Series to [label -> value] dict

Series.to_frame([name])
Convert Series to DataFrame

Series.to_xarray()
Return an xarray object from the pandas object.

Series.to_hdf(path_or_buf, key, **kwargs)
Write the contained data to an HDF5 file using HDFStore.

Series.to_sqll(name, con[, flavor, schema, ...])
Write records stored in a DataFrame to a SQL database.

Series.to_msgpack([path_or_buf, encoding])
msgpack (serialize) object to input file path

Series.to_json([path_or_buf, orient, ...])
Convert the object to a JSON string.

Series.to_coo(row_levels=(0, ...))
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex.

Series.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

Series.to_string([buf, na_rep, ...])
Render a string representation of the Series

Series.to_clipboard([excel, sep])
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

pandas.DataFrame.to_sparse

df.to_sparse(row_levels=(0, ...), column_levels=(1, ...), sort_labels=False)
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex.

Use row_levels and column_levels to determine the row and column coordinates respectively. row_levels and column_levels are the names (labels) or numbers of the levels. {row_levels, column_levels} must be a partition of the MultiIndex level names (or numbers).

New in version 0.16.0.

Parameters
row_levels : tuple/list

Chapter 35. API Reference
column_levels : tuple/list

sort_labels : bool, default False

Sort the row and column labels before forming the sparse matrix.

Returns

- y : scipy.sparse.coo_matrix
- rows : list (row labels)
- columns : list (column labels)

Examples

```python
>>> from numpy import nan

>>> s = Series([3.0, nan, 1.0, 3.0, nan, nan])

>>> s.index = MultiIndex.from_tuples([(1, 2, 'a', 0),
 (1, 1, 'b', 0),
 (1, 1, 'b', 1),
 (2, 1, 'b', 0),
 (2, 1, 'b', 1)],
 names=['A', 'B', 'C', 'D'])

>>> ss = s.to_sparse()

>>> A, rows, columns = ss.to_coo(row_levels=['A', 'B'],
 column_levels=['C', 'D'],
 sort_labels=True)

>>> A
<3x4 sparse matrix of type '<class 'numpy.float64'>'
with 3 stored elements in COOrdinate format>

>>> A.todense()
matrix([[0., 0., 1., 3.],
 [3., 0., 0., 0.],
 [0., 0., 0., 0.]]

>>> rows
[(1, 1), (1, 2), (2, 1)]

>>> columns
[('a', 0), ('a', 1), ('b', 0), ('b', 1)]
```

pandas.SparseSeries.from_coo

classmethod SparseSeries.from_coo(A, dense_index=False)

Create a SparseSeries from a scipy.sparse.coo_matrix.

New in version 0.16.0.

Parameters

- A : scipy.sparse.coo_matrix

- dense_index : bool, default False

If False (default), the SparseSeries index consists of only the coords of the non-null entries of the original coo_matrix. If True, the SparseSeries index consists of the full sorted (row, col) coordinates of the coo_matrix.

Returns

- s : SparseSeries
Examples

```python
>>> from scipy import sparse
>>> A = sparse.coo_matrix(((3.0, 1.0, 2.0), ([1, 0, 0], [0, 2, 3])),
 shape=(3, 4))
>>> A
<3x4 sparse matrix of type '<class 'numpy.float64'>'
 with 3 stored elements in COOrdinate format>
>>> A.todense()
matrix([[0., 0., 1., 2.],
 [3., 0., 0., 0.],
 [0., 0., 0., 0.]])
>>> ss = SparseSeries.from_coo(A)
>>> ss
0 2 1
 3 2
1 0 3
dtype: float64
BlockIndex
Block locations: array([0], dtype=int32)
Block lengths: array([3], dtype=int32)
```

### DataFrame

**Constructor**

```
DataFrame([data, index, columns, dtype, copy])
```

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns).

**pandas.DataFrame**

```
class pandas.DataFrame (data=None, index=None, columns=None, dtype=None, copy=False)
```

Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure

**Parameters**

- data : numpy ndarray (structured or homogeneous), dict, or DataFrame
  - Dict can contain Series, arrays, constants, or list-like objects
- index : Index or array-like
  - Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided
- columns : Index or array-like
  - Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided
- dtype : dtype, default None
  - Data type to force, otherwise infer
copy : boolean, default False

Copy data from inputs. Only affects DataFrame / 2d ndarray input

See also:

**DataFrame.from_records** constructor from tuples, also record arrays

**DataFrame.from_dict** from dicts of Series, arrays, or dicts

**DataFrame.from_items** from sequence of (key, value) pairs

**pandas.read_csv, pandas.read_table, pandas.read_clipboard**

Examples

```python
>>> d = {'col1': ts1, 'col2': ts2}
>>> df = DataFrame(data=d, index=index)
>>> df2 = DataFrame(np.random.randn(10, 5))
>>> df3 = DataFrame(np.random.randn(10, 5),
... columns=['a', 'b', 'c', 'd', 'e'])
```

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td>at</td>
<td>Fast label-based scalar accessor</td>
</tr>
<tr>
<td>axes</td>
<td>Return a list with the row axis labels and column axis labels as the only members.</td>
</tr>
<tr>
<td>blocks</td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td>dtypes</td>
<td>Return the dtypes in this object.</td>
</tr>
<tr>
<td>empty</td>
<td>True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.</td>
</tr>
<tr>
<td>ftypes</td>
<td>Return the ftypes (indication of sparse/dense and dtype) in this object.</td>
</tr>
<tr>
<td>iat</td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td>iloc</td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td>is_copy</td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td>ix</td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td>ndim</td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td>shape</td>
<td>Return a tuple representing the dimensionality of the DataFrame.</td>
</tr>
<tr>
<td>size</td>
<td>number of elements in the NDFrame</td>
</tr>
<tr>
<td>style</td>
<td>Property returning a Styler object containing methods for building a styled HTML representation for the DataFrame.</td>
</tr>
<tr>
<td>values</td>
<td>Numpy representation of NDFrame</td>
</tr>
</tbody>
</table>
pandas.DataFrame.T

DataFrameITranspose index and columns

pandas.DataFrame.at

DataFrame.at
Fast label-based scalar accessor

Similarly to loc, at provides label based scalar lookups. You can also set using these indexers.

pandas.DataFrame.axes

DataFrame.axes
Return a list with the row axis labels and column axis labels as the only members. They are returned in that order.

pandas.DataFrame.blocks

DataFrame.blocks
Internal property, property synonym for as_blocks()

pandas.DataFrame.dtypes

DataFrame.dtypes
Return the dtypes in this object.

pandas.DataFrame.empty

DataFrame.empty
True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.
See also:
pandas.Series.dropna, pandas.DataFrame.dropna

Notes

If NDFrame contains only NaNs, it is still not considered empty. See the example below.

Examples

An example of an actual empty DataFrame. Notice the index is empty:
If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty:

```
>>> df = pd.DataFrame({'A': [np.nan]})
>>> df
 A
0 NaN
>>> df.empty
False
>>> df.dropna().empty
True
```

**pandas.DataFrame.ftypes**

```
DataFrame.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.
```

**pandas.DataFrame.iat**

```
DataFrame.iat
Fast integer location scalar accessor.
Similarly to iloc, iat provides integer based lookups. You can also set using these indexers.
```

**pandas.DataFrame.iloc**

```
DataFrame.iloc
Purely integer-location based indexing for selection by position.
.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.
Allowed inputs are:

- An integer, e.g. 5.
- A list or array of integers, e.g. [4, 3, 0].
- A slice object with ints, e.g. 1:7.
- A boolean array.
- A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).
```
**pandas.DataFrame.is_copy**

DataFrame.is_copy = None

**pandas.DataFrame.ix**

DataFrame.ix

A primarily label-location based indexer, with integer position fallback.

.ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type.

.ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierarchical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing.

**pandas.DataFrame.loc**

DataFrame.loc

Purely label-location based indexer for selection by label.

.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

• A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).

• A list or array of labels, e.g. ['a', 'b', 'c'].

• A slice object with labels, e.g. 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!).

• A boolean array.

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

.loc will raise a KeyError when the items are not found.

See more at Selection by Label

**pandas.DataFrame.ndim**

DataFrame.ndim

Number of axes / array dimensions
pandas.DataFrame.shape

DataFrame.shape
Return a tuple representing the dimensionality of the DataFrame.

pandas.DataFrame.size

Dataframe.size
number of elements in the NDFrame

pandas.DataFrame.style

Dataframe.style
Property returning a Styler object containing methods for building a styled HTML representation for the DataFrame.

See also:
pandas.formats.style.Styler

pandas.DataFrame.values

Dataframe.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken—only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td>add(other[, axis, level, fill_value])</td>
<td>Addition of dataframe and other, element-wise (binary operator add).</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td>align(other[, join, axis, level, copy, ...])</td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td>all([axis, bool_only, skipna, level])</td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td>any([axis, bool_only, skipna, level])</td>
<td>Return whether any element is True over requested axis</td>
</tr>
</tbody>
</table>
### Table 35.51 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>append()</code></td>
<td>Append rows of <code>other</code> to the end of this frame, returning a new object.</td>
</tr>
<tr>
<td><code>apply()</code></td>
<td>Applies function along input axis of DataFrame.</td>
</tr>
<tr>
<td><code>applymap()</code></td>
<td>Apply a function to a DataFrame that is intended to operate elementwise, i.e.</td>
</tr>
<tr>
<td><code>as_blocks()</code></td>
<td>Convert the frame to a dict of dtype -&gt; Constructor Types that each has a homogeneous dtype.</td>
</tr>
<tr>
<td><code>as_matrix()</code></td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td><code>asfreq()</code></td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td><code>asof()</code></td>
<td>The last row without any NaN is taken (or the last row without)</td>
</tr>
<tr>
<td><code>assign()</code></td>
<td>Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.</td>
</tr>
<tr>
<td><code>astype()</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>at_time()</code></td>
<td>Select values at particular time of day (e.g. 9:00-9:30 AM).</td>
</tr>
<tr>
<td><code>between_time()</code></td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM).</td>
</tr>
<tr>
<td><code>bfill()</code></td>
<td>Synonym for NDFrame.fillna(method='bfill')</td>
</tr>
<tr>
<td><code>bool()</code></td>
<td>Return the bool of a single element PandasObject.</td>
</tr>
<tr>
<td><code>boxplot()</code></td>
<td>Make a box plot from DataFrame column optionally grouped by some columns or</td>
</tr>
<tr>
<td><code>clip()</code></td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>clip_lower()</code></td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>clip_upper()</code></td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>combine()</code></td>
<td>Add two DataFrame objects and do not propagate NaN values, so if for a</td>
</tr>
<tr>
<td><code>combineAdd()</code></td>
<td>DEPRECATED.</td>
</tr>
<tr>
<td><code>combineMult()</code></td>
<td>DEPRECATED.</td>
</tr>
<tr>
<td><code>combine_first()</code></td>
<td>Combine two DataFrame objects and default to non-null values in frame calling the method.</td>
</tr>
<tr>
<td><code>compound()</code></td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td><code>consolidate()</code></td>
<td>Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).</td>
</tr>
<tr>
<td><code>convert_objects()</code></td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>copy()</code></td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td><code>corr()</code></td>
<td>Compute pairwise correlation of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>corrwith()</code></td>
<td>Compute pairwise correlation between rows or columns of two DataFrame objects.</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Return Series with number of non-NA/null observations over requested axis.</td>
</tr>
<tr>
<td><code>cov()</code></td>
<td>Compute pairwise covariance of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>cummax()</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin()</code></td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td><code>cumprod()</code></td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td><code>cumsum()</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>describe</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>diff</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>div</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>true_div</code>).</td>
</tr>
<tr>
<td><code>divide</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>true_div</code>).</td>
</tr>
<tr>
<td><code>dot</code></td>
<td>Matrix multiplication with DataFrame or Series objects</td>
</tr>
<tr>
<td><code>drop</code></td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td><code>drop_duplicates</code></td>
<td>Return DataFrame with duplicate rows removed, optionally only</td>
</tr>
<tr>
<td><code>dropna</code></td>
<td>Return object with labels on given axis omitted where alternately any</td>
</tr>
<tr>
<td><code>equ</code></td>
<td>Wrapper for flexible comparison methods <code>eq</code></td>
</tr>
<tr>
<td><code>equals</code></td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td><code>eval</code></td>
<td>Evaluate an expression in the context of the calling DataFrame instance.</td>
</tr>
<tr>
<td><code>ewm</code></td>
<td>Provides exponential weighted functions</td>
</tr>
<tr>
<td><code>expanding</code></td>
<td>Provides expanding transformations</td>
</tr>
<tr>
<td><code>ffill</code></td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td><code>fillna</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter</code></td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td><code>first</code></td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>first_valid_index</code></td>
<td>Return label for first non-NA/null value</td>
</tr>
<tr>
<td><code>floordiv</code></td>
<td>Integer division of dataframe and other, element-wise (binary operator <code>floordiv</code>).</td>
</tr>
<tr>
<td><code>from_csv</code></td>
<td>Read CSV file (DISCOURAGED, please use <code>pandas.read_csv()</code> instead).</td>
</tr>
<tr>
<td><code>from_dict</code></td>
<td>Construct DataFrame from dict of array-like or dicts</td>
</tr>
<tr>
<td><code>from_items</code></td>
<td>Convert (key, value) pairs to DataFrame.</td>
</tr>
<tr>
<td><code>from_records</code></td>
<td>Convert structured or record ndarray to DataFrame</td>
</tr>
<tr>
<td><code>get</code></td>
<td>Wrapper for flexible comparison methods <code>get</code></td>
</tr>
<tr>
<td><code>get_dtypes</code></td>
<td>Return the counts of dtypes in this object</td>
</tr>
<tr>
<td><code>get_values</code></td>
<td>Quickly retrieve single value at passed column and index</td>
</tr>
<tr>
<td><code>groupby</code></td>
<td>Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.</td>
</tr>
<tr>
<td><code>gt</code></td>
<td>Wrapper for flexible comparison methods <code>gt</code></td>
</tr>
<tr>
<td><code>head</code></td>
<td>Returns first n rows</td>
</tr>
</tbody>
</table>

Continued on next page
**pandas: powerful Python data analysis toolkit, Release 0.19.2**

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hist</code>([data[, column, by, grid, xlabels, ...]])</td>
<td>Draw histogram of the DataFrame’s series using matplotlib / pylab.</td>
</tr>
<tr>
<td><code>iloc[i]</code></td>
<td>DEPRECATED.</td>
</tr>
<tr>
<td><code>idxmax([axis, skipna])</code></td>
<td>Return index of first occurrence of maximum over requested axis.</td>
</tr>
<tr>
<td><code>idxmin([axis, skipna])</code></td>
<td>Return index of first occurrence of minimum over requested axis.</td>
</tr>
<tr>
<td><code>iget_value(i, j)</code></td>
<td>DEPRECATED.</td>
</tr>
<tr>
<td><code>info([verbose, buf, max_cols, memory_usage, ...])</code></td>
<td>Concise summary of a DataFrame.</td>
</tr>
<tr>
<td><code>insert(loc, column, value[, allow_duplicates])</code></td>
<td>Insert column into DataFrame at specified location.</td>
</tr>
<tr>
<td><code>interpolate([method, axis, limit, inplace, ...])</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>irow(i[, copy])</code></td>
<td>DEPRECATED.</td>
</tr>
<tr>
<td><code>isin(values)</code></td>
<td>Return boolean DataFrame showing whether each element in the DataFrame is contained in values.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Iterator over (column name, Series) pairs.</td>
</tr>
<tr>
<td><code>iterkv(*args, **kwargs)</code></td>
<td>Iteritems alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td><code>iterrows()</code></td>
<td>Iterate over DataFrame rows as (index, Series) pairs.</td>
</tr>
<tr>
<td><code>itertuples([index, name])</code></td>
<td>Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.</td>
</tr>
<tr>
<td><code>join(other[, on, how, lsuffix, rsuffix, sort])</code></td>
<td>Join columns with other DataFrame either on index or on a key column.</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td>Get the ‘info axis’ (see Indexing for more)</td>
</tr>
<tr>
<td><code>kurt([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>kurtosis([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>last_valid_index()</code></td>
<td>Return label for last non-NA/null value</td>
</tr>
<tr>
<td><code>le(other[, axis, level])</code></td>
<td>Wrapper for flexible comparison methods le</td>
</tr>
<tr>
<td><code>lookup(row_labels, col_labels)</code></td>
<td>Label-based “fancy indexing” function for DataFrame.</td>
</tr>
<tr>
<td><code>lt(other[, axis, level])</code></td>
<td>Wrapper for flexible comparison methods lt</td>
</tr>
<tr>
<td><code>mad([axis, skipna, level])</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>mask[cond[, other, inplace, axis, level, ...]])</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.</td>
</tr>
<tr>
<td><code>max([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>median([axis, skipna, level, numeric_only])</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>memory_usage([index, deep])</code></td>
<td>Memory usage of DataFrame columns.</td>
</tr>
<tr>
<td><code>merge(right[, how, on, left_on, right_on, ...])</code></td>
<td>Merge DataFrame objects by performing a database-style join operation by columns or indexes.</td>
</tr>
<tr>
<td><code>min([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
</tbody>
</table>

**Table 35.51 – continued from previous page**
### Table 35.51 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mod</code></td>
<td>Modulo of dataframe and other, element-wise (binary operator <code>mod</code>).</td>
</tr>
<tr>
<td><code>mode</code></td>
<td>Gets the mode(s) of each element along the axis selected.</td>
</tr>
<tr>
<td><code>mul</code></td>
<td>Multiplication of dataframe and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>multiply</code></td>
<td>Multiplication of dataframe and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>ne</code></td>
<td>Wrapper for flexible comparison methods <code>ne</code>.</td>
</tr>
<tr>
<td><code>nlargest</code></td>
<td>Get the rows of a DataFrame sorted by the n largest values of <code>columns</code>.</td>
</tr>
<tr>
<td><code>notnull</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>nsmallest</code></td>
<td>Get the rows of a DataFrame sorted by the n smallest values of <code>columns</code>.</td>
</tr>
<tr>
<td><code>pct_change</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pipe</code></td>
<td>Apply <code>func(self, *args, **kwargs)</code></td>
</tr>
<tr>
<td><code>pivot</code></td>
<td>Reshape data (produce a “pivot” table) based on column values.</td>
</tr>
<tr>
<td><code>pivot_table</code></td>
<td>Create a spreadsheet-style pivot table as a DataFrame.</td>
</tr>
<tr>
<td><code>plot</code></td>
<td>Alias of FramePlotMethods</td>
</tr>
<tr>
<td><code>pop</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow</code></td>
<td>Exponential power of dataframe and other, element-wise (binary operator <code>pow</code>).</td>
</tr>
<tr>
<td><code>prod</code></td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td><code>product</code></td>
<td>Return the product of the values for the requested axis.</td>
</tr>
<tr>
<td><code>quantile</code></td>
<td>Return values at the given quantile over requested axis, a la numpy.percentile.</td>
</tr>
<tr>
<td><code>query</code></td>
<td>Query the columns of a frame with a boolean expression.</td>
</tr>
<tr>
<td><code>radd</code></td>
<td>Addition of dataframe and other, element-wise (binary operator <code>radd</code>).</td>
</tr>
<tr>
<td><code>rank</code></td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>rdiv</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><code>reindex</code></td>
<td>Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_axis</code></td>
<td>Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_like</code></td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td><code>rename</code></td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>rename_axis</code></td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>reorder_levels</code></td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>replace</code></td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td><code>resample</code></td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.51 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reset_index([level, drop, inplace, ...])</code></td>
<td>For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc.</td>
</tr>
<tr>
<td><code>rfloordiv(other[, axis, level, fill_value])</code></td>
<td>Integer division of dataframe and other, element-wise (binary operator <code>rfloordiv</code>).</td>
</tr>
<tr>
<td><code>rmod(other[, axis, level, fill_value])</code></td>
<td>Modulo of dataframe and other, element-wise (binary operator <code>rmod</code>).</td>
</tr>
<tr>
<td><code>rmul(other[, axis, level, fill_value])</code></td>
<td>Multiplication of dataframe and other, element-wise (binary operator <code>rmul</code>).</td>
</tr>
<tr>
<td><code>rolling(window[, min_periods, freq, center, ...])</code></td>
<td>Provides rolling window calculations.</td>
</tr>
<tr>
<td><code>round([decimals])</code></td>
<td>Round a DataFrame to a variable number of decimal places.</td>
</tr>
<tr>
<td><code>rpow(other[, axis, level, fill_value])</code></td>
<td>Exponential power of dataframe and other, element-wise (binary operator <code>rpow</code>).</td>
</tr>
<tr>
<td><code>rsub(other[, axis, level, fill_value])</code></td>
<td>Subtraction of dataframe and other, element-wise (binary operator <code>rsub</code>).</td>
</tr>
<tr>
<td><code>rtruediv(other[, axis, level, fill_value])</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><code>sample([n, frac, replace, weights, ...])</code></td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td><code>select(crit[, axis])</code></td>
<td>Return data corresponding to axis labels matching criteria.</td>
</tr>
<tr>
<td><code>select_dtypes([include, exclude])</code></td>
<td>Return a subset of a DataFrame including/excluding columns based on their <code>dtype</code>.</td>
</tr>
<tr>
<td><code>sem([axis, skipna, level, ddof, numeric_only])</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>set_axis(axis, labels)</code></td>
<td>Public version of axis assignment.</td>
</tr>
<tr>
<td><code>set_index(keys[, drop, append, inplace, ...])</code></td>
<td>Set the DataFrame index (row labels) using one or more existing columns.</td>
</tr>
<tr>
<td><code>set_value(index, col, value[, takeable])</code></td>
<td>Put single value at passed column and index.</td>
</tr>
<tr>
<td><code>shift([periods, freq, axis])</code></td>
<td>Shift index by desired number of periods with an optional time freq.</td>
</tr>
<tr>
<td><code>skew([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td><code>slice_shift([periods, axis])</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort([columns, axis, ascending, inplace, ...])</code></td>
<td>DEPRECATED: use <code>DataFrame.sort_values()</code></td>
</tr>
<tr>
<td><code>sort_index([axis, level, ascending, ...])</code></td>
<td>Sort object by labels (along an axis).</td>
</tr>
<tr>
<td><code>sort_values(by[, axis, ascending, inplace, ...])</code></td>
<td>Sort by the values along either axis.</td>
</tr>
<tr>
<td><code>sortlevel([level, axis, ascending, inplace, ...])</code></td>
<td>Sort multilevel index by chosen axis and primary level.</td>
</tr>
<tr>
<td><code>squeeze(**kwargs)</code></td>
<td>Squeeze length 1 dimensions.</td>
</tr>
<tr>
<td><code>stack([level, dropna])</code></td>
<td>Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.</td>
</tr>
<tr>
<td><code>std([axis, skipna, level, ddof, numeric_only])</code></td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>sub(other[, axis, level, fill_value])</code></td>
<td>Subtraction of dataframe and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
<tr>
<td><code>subtract(other[, axis, level, fill_value])</code></td>
<td>Subtraction of dataframe and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
<tr>
<td><code>sum([axis, skipna, level, numeric_only])</code></td>
<td>Return the sum of the values for the requested axis.</td>
</tr>
</tbody>
</table>
### Table 35.51 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>swapaxes</code></td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td><code>swaplevel</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td><code>tail</code></td>
<td>Returns last n rows</td>
</tr>
<tr>
<td><code>take</code></td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><code>to_clipboard</code></td>
<td>Attempt to write text representation of object to the system clipboard</td>
</tr>
<tr>
<td><code>to_csv</code></td>
<td>Write DataFrame to a comma-separated values (csv) file</td>
</tr>
<tr>
<td><code>to_dense</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td><code>to_dict</code></td>
<td>Convert DataFrame to dictionary.</td>
</tr>
<tr>
<td><code>to_excel</code></td>
<td>Write DataFrame to an excel sheet</td>
</tr>
<tr>
<td><code>to_gbq</code></td>
<td>Write a DataFrame to a Google BigQuery table.</td>
</tr>
<tr>
<td><code>to_hdf</code></td>
<td>Write the contained data to an HDF5 file using HDFStore.</td>
</tr>
<tr>
<td><code>to_html</code></td>
<td>Render a DataFrame as an HTML table.</td>
</tr>
<tr>
<td><code>to_json</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_latex</code></td>
<td>Render a DataFrame to a tabular environment table.</td>
</tr>
<tr>
<td><code>to_msgpack</code></td>
<td>msgpack (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_panel</code></td>
<td>Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.</td>
</tr>
<tr>
<td><code>to_period</code></td>
<td>Convert DataFrame from DatetimeIndex to PeriodIndex with desired</td>
</tr>
<tr>
<td><code>to_pickle</code></td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_records</code></td>
<td>Convert DataFrame to record array.</td>
</tr>
<tr>
<td><code>to_sparse</code></td>
<td>Convert to SparseDataFrame</td>
</tr>
<tr>
<td><code>to_sql</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_stata</code></td>
<td>A class for writing Stata binary dta files from array-like objects</td>
</tr>
<tr>
<td><code>to_string</code></td>
<td>Render a DataFrame to a console-friendly tabular output.</td>
</tr>
<tr>
<td><code>to_timestamp</code></td>
<td>Cast to DatetimeIndex of timestamps, at beginning of period</td>
</tr>
<tr>
<td><code>to_xarray</code></td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td><code>transpose</code></td>
<td>Transpose index and columns</td>
</tr>
<tr>
<td><code>truediv</code></td>
<td>Floating division of dataframe and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>truncate</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
<tr>
<td><code>tshift</code></td>
<td>Shift the time index, using the index’s frequency if available.</td>
</tr>
<tr>
<td><code>tz_convert</code></td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td><code>tz_localize</code></td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
<tr>
<td><code>unstack</code></td>
<td>Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.</td>
</tr>
<tr>
<td><code>update</code></td>
<td>Modify DataFrame in place using non-NA values from passed DataFrame.</td>
</tr>
<tr>
<td><code>var</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>where</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td><code>xs</code></td>
<td>Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.</td>
</tr>
</tbody>
</table>

### pandas.DataFrame.abs

```
DataFrame.abs()
```

Return an object with absolute value taken—only applicable to objects that are all numeric.

**Returns**

`abs`: type of caller

### pandas.DataFrame.add

```
DataFrame.add(other, axis='columns', level=None, fill_value=None)
```

Addition of dataframe and other, element-wise (binary operator `add`).

Equivalent to `dataframe + other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

**Parameters**

- `other`: Series, DataFrame, or constant
- `axis`: {0, 1, ‘index’, ‘columns’}
  - For Series input, axis to match Series index on
- `fill_value`: None or float value, default None
  - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- `level`: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

`result`: DataFrame

**See also:**

`DataFrame.radd`

**Notes**

Mismatched indices will be unioned together

### pandas.DataFrame.add_prefix

```
DataFrame.add_prefix(prefix)
```

Concatenate prefix string with panel items names.

**Parameters**

- `prefix`: string

**Returns**

`with_prefix`: type of caller
**pandas.DataFrame.add_suffix**

Dataframe.

add_suffix(suffix)

Concatenate suffix string with panel items names.

Parameters suffix : string

Returns with_suffix : type of caller

---

**pandas.DataFrame.align**

Dataframe.

align(other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None)

Align two object on their axes with the specified join method for each axis Index

Parameters other : DataFrame or Series

join : {'outer', 'inner', 'left', 'right'}, default 'outer'

axis : allowed axis of the other object, default None

Align on index (0), columns (1), or both (None)

level : int or level name, default None

Broadcast across a level, matching Index values on the passed MultiIndex level

copy : boolean, default True

Always returns new objects. If copy=False and no reindexing is required then original objects are returned.

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

method : str, default None

limit : int, default None

fill_axis : {0 or ‘index’, 1 or ‘columns’}, default 0

Filling axis, method and limit

broadcast_axis : {0 or ‘index’, 1 or ‘columns’}, default None

Broadcast values along this axis, if aligning two objects of different dimensions

New in version 0.17.0.

Returns (left, right) : (DataFrame, type of other)

Aligned objects

---

**pandas.DataFrame.all**

Dataframe.

all(axis=None, bool_only=None, skipna=None, level=None, **kwargs)

Return whether all elements are True over requested axis

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns all : Series or DataFrame (if level specified)

def pandas.DataFrame.any

DataFrame.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs)

Return whether any element is True over requested axis

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns any : Series or DataFrame (if level specified)

def pandas.DataFrame.append

DataFrame.append(other, ignore_index=False, verify_integrity=False)

Append rows of other to the end of this frame, returning a new object. Columns not in this frame are added as new columns.

Parameters other : DataFrame or Series/dict-like object, or list of these

The data to append.

ignore_index : boolean, default False

If True, do not use the index labels.

verify_integrity : boolean, default False

If True, raise ValueError on creating index with duplicates.

Returns appended : DataFrame

See also:

pandas.concat  General function to concatenate DataFrame, Series or Panel objects
Notes

If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged.

Examples

```python
>>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB'))
>>> df
 A B
0 1 2
1 3 4
>>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB'))
>>> df.append(df2)
 A B
0 1 2
1 3 4
2 5 6
3 7 8
```

With `ignore_index` set to True:

```python
>>> df.append(df2, ignore_index=True)
 A B
0 1 2
1 3 4
2 5 6
3 7 8
```

pandas.DataFrame.apply

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

Applies function along input axis of DataFrame.

Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty.

**Parameters**

- `func`: function
  
  Function to apply to each column/row

- `axis`: {0 or ‘index’, 1 or ‘columns’}, default 0
  
  - 0 or ‘index’: apply function to each column
  
  - 1 or ‘columns’: apply function to each row

- `broadcast`: boolean, default False
  
  For aggregation functions, return object of same size with values propagated

- `raw`: boolean, default False
  
  If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance
reduce : boolean or None, default None

Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned.

args : tuple

Positional arguments to pass to function in addition to the array/series

**Additional keyword arguments will be passed as keywords to the function**

Returns applied : Series or DataFrame

See also:

*DataFrame.applymap* For elementwise operations

Notes

In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.

Examples

```python
>>> df.apply(numpy.sqrt) # returns DataFrame
>>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0)
>>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)
```

pandas.DataFrame.applymap

DataFrame .applymap (func)

Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame

Parameters  

func : function

Python function, returns a single value from a single value

Returns applied : DataFrame

See also:

*DataFrame.apply* For operations on rows/columns

Examples
pandas.DataFrame.as_blocks

DataFrame.as_blocks (copy=True)
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters copy : boolean, default True

Returns values : a dict of dtype -> Constructor Types

pandas.DataFrame.as_matrix

DataFrame.as_matrix (columns=None)
Convert the frame to its Numpy-array representation.

Parameters columns: list, optional, default:None
If None, return all columns, otherwise, returns specified columns.

Returns values : ndarray
If the caller is heterogeneous and contains booleans or objects, the result will be of dtype=object. See Notes.

See also:
pandas.DataFrame.values

Notes

Return is NOT a Numpy-matrix, rather, a Numpy-array.

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcase to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

This method is provided for backwards compatibility. Generally, it is recommended to use `.values`.
pandas.DataFrame.asfreq

DataFrame.asfreq(freq=None, method=None, how=None, normalize=False)
Convert TimeSeries to specified frequency.

Optionally provide filling method to pad/backfill missing values.

**Parameters**
- **freq**: DateOffset object, or string
  - **method**: {'backfill'/'bfill', 'pad'/'ffill'}, default None
  - Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):
    - 'pad' / 'ffill': propagate last valid observation forward to next valid
    - 'backfill' / 'bfill': use NEXT valid observation to fill
  - **how**: {'start', 'end'}, default end
  - For PeriodIndex only, see PeriodIndex.asfreq
  - **normalize**: bool, default False
  - Whether to reset output index to midnight

**Returns**
- converted: type of caller

**Notes**
To learn more about the frequency strings, please see this link.

pandas.DataFrame.asof

DataFrame.asof(where=None, subset=None)
The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame)

New in version 0.19.0: For DataFrame
If there is no good value, NaN is returned.

**Parameters**
- **where**: date or array of dates
  - **subset**: string or list of strings, default None
    - if not None use these columns for NaN propagation

**Returns**
- where is scalar
  - value or NaN if input is Series
  - Series if input is DataFrame
  - where is Index: same shape object as input

**See also:**
merge_asof
Notes

Dates are assumed to be sorted. Raises if this is not the case.

**pandas.DataFrame.assign**

```python
DataFrame.assign(**kwargs)
```

Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.

New in version 0.16.0.

**Parameters** `kwargs`:
- `keyword, value pairs`,
  - keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn’t check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned.

**Returns** `df`:
- DataFrame
  - A new DataFrame with the new columns in addition to all the existing columns.

Notes

Since `kwargs` is a dictionary, the order of your arguments may not be preserved. The make things predictable, the columns are inserted in alphabetical order, at the end of your DataFrame. Assigning multiple columns within the same `assign` is possible, but you cannot reference other columns created within the same `assign` call.

Examples

```python
>>> df = DataFrame({'A': range(1, 11), 'B': np.random.randn(10)})
```

Where the value is a callable, evaluated on `df`:

```python
>>> df.assign(ln_A = lambda x: np.log(x.A))
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>ln_A</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.426905</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-0.780949</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-0.418711</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-0.269708</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-0.274002</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-0.500792</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.649697</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-1.495604</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0.549296</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-0.758542</td>
</tr>
</tbody>
</table>

Where the value already exists and is inserted:

```python
>>> newcol = np.log(df['A'])
>>> df.assign(ln_A=newcol)
```

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>ln_A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.19.2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.426905</td>
<td>0.000000</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-0.780949</td>
<td>0.693147</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>-0.418711</td>
<td>1.098612</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>-0.269708</td>
<td>1.386294</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-0.274002</td>
<td>1.609438</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>-0.500792</td>
<td>1.791759</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1.649697</td>
<td>1.945910</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>-1.495604</td>
<td>2.079442</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0.549296</td>
<td>2.197225</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-0.758542</td>
<td>2.302585</td>
</tr>
</tbody>
</table>

pandas.DataFrame.astype

DataFrame.astype(dtype, copy=True, raise_on_error=True, **kwargs)

Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters
dtype: data type, or dict of column name -> data type

Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.

raise_on_error: raise on invalid input

kwargs: keyword arguments to pass on to the constructor

Returns
casted: type of caller

pandas.DataFrame.at_time

DataFrame.at_time(time, asof=False)

Select values at particular time of day (e.g. 9:30AM).

Parameters
time: datetime.time or string

Returns
values_at_time: type of caller

pandas.DataFrame.between_time

DataFrame.between_time(start_time, end_time, include_start=True, include_end=True)

Select values between particular times of the day (e.g., 9:00-9:30 AM).

Parameters
start_time: datetime.time or string

date_time: datetime.time or string

include_start: boolean, default True

include_end: boolean, default True

Returns
values_between_time: type of caller
**pandas.DataFrame.bfill**

`DataFrame.bfill` *(axis=None, inplace=False, limit=None, downcast=None)*

Synonym for `NDFrame.fillna(method='bfill')`.

**pandas.DataFrame.bool**

`DataFrame.bool()`

Return the bool of a single element PandasObject.

This must be a boolean scalar value, either True or False. Raise a `ValueError` if the PandasObject does not have exactly 1 element, or that element is not boolean.

**pandas.DataFrame.boxplot**

`DataFrame.boxplot` *(column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds)*

Make a box plot from DataFrame column optionally grouped by some columns or other inputs.

**Parameters**
- **data**: the pandas object holding the data
  - **column**: column name or list of names, or vector
    - Can be any valid input to groupby
  - **by**: string or sequence
    - Column in the DataFrame to group by
  - **ax**: Matplotlib axes object, optional
  - **fontsize**: int or string
  - **rot**: label rotation angle
  - **figsize**: A tuple (width, height) in inches
  - **grid**: Setting this to True will show the grid
  - **layout**: tuple (optional)
    - (rows, columns) for the layout of the plot
  - **return_type**: {None, 'axes', 'dict', 'both'}, default None
    - The kind of object to return. The default is `axes` ‘axes’ returns the matplotlib axes the boxplot is drawn on; ‘dict’ returns a dictionary whose values are the matplotlib Lines of the boxplot; ‘both’ returns a namedtuple with the axes and dict.
    - When grouping with `by`, a Series mapping columns to `return_type` is returned, unless `return_type` is `None`, in which case a NumPy array of axes is returned with the same shape as `layout`. See the prose documentation for more.
  - **kwds**: other plotting keyword arguments to be passed to matplotlib boxplot function

**Returns**
- **lines**: dict
  - **ax**: matplotlib Axes
Notes

Use return_type='dict' when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned.

pandas.DataFrame.clip

DataFrame.clip(lower=None, upper=None, axis=None, *args, **kwargs)

Trim values at input threshold(s).

Parameters

lower : float or array_like, default None

upper : float or array_like, default None

axis : int or string axis name, optional

Align object with lower and upper along the given axis.

Returns

clipped : Series

Examples

```python
>>> df
 0 1
0 0.335232 -1.256177
1 -1.367855 0.746646
2 0.027753 -1.176076
3 0.230930 -0.679613
4 1.261967 0.570967

>>> df.clip(-1.0, 0.5)
 0 1
0 0.335232 -1.000000
1 -1.000000 0.500000
2 0.027753 -1.000000
3 0.230930 -0.679613
4 0.500000 0.500000

>>> t
 0 1
0 -0.3
1 -0.2
2 -0.1
3 0.0
4 0.1

dtype: float64

>>> df.clip(t, t + 1, axis=0)
 0 1
0 0.335232 -0.300000
1 -0.200000 0.746646
2 0.027753 -0.100000
3 0.230930 0.000000
4 1.100000 0.570967
```
pandas.DataFrame.clip_lower

DataFrame.clip_lower(threshold, axis=None)
Return copy of the input with values below given value(s) truncated.

Parameters
threshold : float or array_like
axis : int or string axis name, optional
Align object with threshold along the given axis.

Returns
clipped : same type as input

See also:
clip

pandas.DataFrame.clip_upper

DataFrame.clip_upper(threshold, axis=None)
Return copy of input with values above given value(s) truncated.

Parameters
threshold : float or array_like
axis : int or string axis name, optional
Align object with threshold along the given axis.

Returns
clipped : same type as input

See also:
clip

pandas.DataFrame.combine

DataFrame.combine(other, func, fill_value=None, overwrite=True)
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters
other : DataFrame
func : function
fill_value : scalar value
overwrite : boolean, default True
If True then overwrite values for common keys in the calling frame

Returns
result : DataFrame

pandas.DataFrame.combineAdd

DataFrame.combineAdd(other)
DEPRECATED. Use DataFrame.add(other, fill_value=0.) instead.
Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters
other : DataFrame
Returns DataFrame

See also:

DataFrame.add

**pandas.DataFrame.combineMult**

DataFrame.combineMult(*other*)

DEPRECATED. Use DataFrame.mul(*other, fill_value=1.*) instead.

Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame’s value (which might be NaN as well)

Parameters other : DataFrame

Returns DataFrame

See also:

DataFrame.mul

**pandas.DataFrame.combine_first**

DataFrame.combine_first(*other*)

Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns

Parameters other : DataFrame

Returns combined : DataFrame

**Examples**

a’s values prioritized, use values from b to fill holes:

```python
>>> a.combine_first(b)
```

**pandas.DataFrame.compound**

DataFrame.compound(*axis=None, skipna=None, level=None*)

Return the compound percentage of the values for the requested axis

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
**Returns compounded**: Series or DataFrame (if level specified)

**pandas.DataFrame.consolidate**

DataFrame.consolidate(inplace=False)

Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user

**Parameters inplace**: boolean, default False

If False return new object, otherwise modify existing object

**Returns consolidated**: type of caller

**pandas.DataFrame.convert_objects**

DataFrame.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)

Deprecated.

Attempt to infer better dtype for object columns

**Parameters convert_dates**: boolean, default True

If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.

**convert_numeric**: boolean, default False

If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN.

**convert_timedeltas**: boolean, default True

If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.

**copy**: boolean, default True

If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace.

**Returns converted**: same as input object

See also:

- **pandas.to_datetime** Convert argument to datetime.
- **pandas.to_timedelta** Convert argument to timedelta.
- **pandas.to_numeric** Return a fixed frequency timedelta index, with day as the default.

**pandas.DataFrame.copy**

DataFrame.copy(deep=True)

Make a copy of this objects data.

**Parameters deep**: boolean or string, default True
Make a deep copy, including a copy of the data and the indices. With `deep=False` neither the indices or the data are copied.

Note that when `deep=True` data is copied, actual python objects will not be copied recursively, only the reference to the object. This is in contrast to `copy.deepcopy` in the Standard Library, which recursively copies object data.

**Returns**
- `copy`: type of caller

### pandas.DataFrame.corr

**DataFrame.corr**(method='pearson', min_periods=1)

Compute pairwise correlation of columns, excluding NA/null values.

**Parameters**
- `method`: {'pearson', 'kendall', 'spearman'}
  - `pearson`: standard correlation coefficient
  - `kendall`: Kendall Tau correlation coefficient
  - `spearman`: Spearman rank correlation
- `min_periods`: int, optional
  Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation

**Returns**
- `y`: DataFrame

### pandas.DataFrame.corrwith

**DataFrame.corrwith**(other, axis=0, drop=False)

Compute pairwise correlation between rows or columns of two DataFrame objects.

**Parameters**
- `other`: DataFrame
- `axis`: {0 or ‘index’, 1 or ‘columns’}, default 0
  - 0 or ‘index’ to compute column-wise, 1 or ‘columns’ for row-wise
- `drop`: boolean, default False
  - Drop missing indices from result, default returns union of all

**Returns**
- `correls`: Series

### pandas.DataFrame.count

**DataFrame.count**(axis=0, level=None, numeric_only=False)

Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None)

**Parameters**
- `axis`: {0 or ‘index’, 1 or ‘columns’}, default 0
  - 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise
- `level`: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only : boolean, default False

Include only float, int, boolean data

Returns count : Series (or DataFrame if level specified)

pandas.DataFrame.cov

DataFrame.cov(min_periods=None)

Compute pairwise covariance of columns, excluding NA/null values

Parameters min_periods : int, optional

Minimum number of observations required per pair of columns to have a valid result.

Returns y : DataFrame

Notes

y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator).

pandas.DataFrame.cummax

DataFrame.cummax(axis=None, skipna=True, *args, **kwargs)

Return cumulative max over requested axis.

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cummax : Series

pandas.DataFrame.cummin

DataFrame.cummin(axis=None, skipna=True, *args, **kwargs)

Return cumulative minimum over requested axis.

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cummin : Series

pandas.DataFrame.cumprod

DataFrame.cumprod(axis=None, skipna=True, *args, **kwargs)

Return cumulative product over requested axis.

Parameters axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cumprod : Series

pandas.DataFrame.cumsum

DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)
Return cumulative sum over requested axis.

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns cumsum : Series

pandas.DataFrame.describe

DataFrame.describe(percentiles=None, include=None, exclude=None)
Generate various summary statistics, excluding NaN values.

Parameters percentiles : array-like, optional

The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

include, exclude : list-like, ‘all’, or None (default)

Specify the form of the returned result. Either:
• None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
• A list of dtypes or strings to be included/excluded. To select all numeric types use numpy number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])
• If include is the string ‘all’, the output column-set will match the input one.

Returns summary: NDFrame of summary statistics

See also:
DataFrame.select_dtypes

Notes

The output DataFrame index depends on the requested dtypes:

For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.

For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.

For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

The include, exclude arguments are ignored for Series.

**pandas.DataFrame.diff**

```python
DataFrame.diff(periods=1, axis=0)
```

1st discrete difference of object

**Parameters**
- **periods**: int, default 1
  - Periods to shift for forming difference
- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
  - Take difference over rows (0) or columns (1).

**Returns**
- **diffed**: DataFrame

**pandas.DataFrame.div**

```python
DataFrame.div(other, axis='columns', level=None, fill_value=None)
```

Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to `dataframe / other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

**Parameters**
- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
  - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
  - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**
- **result**: DataFrame

**See also**

- `DataFrame.rtruediv`

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.divide**

```python
DataFrame.divide(other, axis='columns', level=None, fill_value=None)
```

Floating division of dataframe and other, element-wise (binary operator truediv).
Equivalent to `dataframe / other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

**Parameters**

- **other**: Series, DataFrame, or constant
  - **axis**: `{0, 1, ‘index’, ‘columns’}`
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

- **result**: DataFrame

**See also:**

`DataFrame.rtruediv`

**Notes**

Mismatched indices will be unioned together

### pandas.DataFrame.dot

**DataFrame.dot**(other)

Matrix multiplication with DataFrame or Series objects

**Parameters**

- **other**: DataFrame or Series

**Returns**

- **dot_product**: DataFrame or Series

### pandas.DataFrame.drop

**DataFrame.drop**(labels, axis=0, level=None, inplace=False, errors=’raise’)

Return new object with labels in requested axis removed.

**Parameters**

- **labels**: single label or list-like
  - **axis**: int or axis name
  - **level**: int or level name, default None
    - For MultiIndex
  - **inplace**: bool, default False
    - If True, do operation inplace and return None.
  - **errors**: {‘ignore’, ‘raise’}, default ‘raise’
    - If ‘ignore’, suppress error and existing labels are dropped.
    - New in version 0.16.1.

**Returns**

- **dropped**: type of caller
pandas.DataFrame.drop_duplicates

DataFrame.drop_duplicates(*args, **kwargs)
   Return DataFrame with duplicate rows removed, optionally only considering certain columns
   Parameters subset : column label or sequence of labels, optional
      Only consider certain columns for identifying duplicates, by default use all of the columns
   keep : {'first', 'last', False}, default 'first'
      • first : Drop duplicates except for the first occurrence.
      • last : Drop duplicates except for the last occurrence.
      • False : Drop all duplicates.
   take_last : deprecated
   inplace : boolean, default False
      Whether to drop duplicates in place or to return a copy
   Returns deduplicated : DataFrame

pandas.DataFrame.dropna

DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
   Return object with labels on given axis omitted where alternately any or all of the data are missing
   Parameters axis : {0 or ‘index’, 1 or ‘columns’}, or tuple/list thereof
      Pass tuple or list to drop on multiple axes
   how : {'any', 'all'}
      • any : if any NA values are present, drop that label
      • all : if all values are NA, drop that label
   thresh : int, default None
      int value : require that many non-NA values
   subset : array-like
      Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include
   inplace : boolean, default False
      If True, do operation inplace and return None.
   Returns dropped : DataFrame

pandas.DataFrame.duplicated

DataFrame.duplicated(*args, **kwargs)
   Return boolean Series denoting duplicate rows, optionally only considering certain columns
   Parameters subset : column label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by default use all of the columns.

**keep** : {'first', 'last', False}, default 'first'
- **first**: Mark duplicates as True except for the first occurrence.
- **last**: Mark duplicates as True except for the last occurrence.
- **False**: Mark all duplicates as True.

**take_last**: deprecated

**Returns**

**duplicated**: Series

### pandas.DataFrame.eq

**DataFrame.eq**(other, axis='columns', level=None)
Wrapper for flexible comparison methods eq

### pandas.DataFrame.equals

**DataFrame.equals**(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

### pandas.DataFrame.eval

**DataFrame.eval**(expr, inplace=None, **kwargs)
Evaluate an expression in the context of the calling DataFrame instance.

**Parameters**

**expr**: string
The expression string to evaluate.

**inplace**: bool
If the expression contains an assignment, whether to return a new DataFrame or mutate the existing.

WARNING: inplace=None currently falls back to to True, but in a future version, will default to False. Use inplace=True explicitly rather than relying on the default.

New in version 0.18.0.

**kwargs**: dict
See the documentation for `eval()` for complete details on the keyword arguments accepted by `query()`.

**Returns**

**ret**: ndarray, scalar, or pandas object

See also:

[pandas.DataFrame.query, pandas.DataFrame.assign, pandas.eval]
Notes

For more details see the API documentation for `eval()`. For detailed examples see `enhancing performance with eval`.

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame

>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.eval('a + b')
>>> df.eval('c = a + b')
```

`pandas.DataFrame.ewm`

DataFrame.ewm (com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0)

Provides exponential weighted functions

New in version 0.18.0.

Parameters

- **com**: float, optional
  Specify decay in terms of center of mass, $\alpha = 1/(1 + \text{com})$, for $\text{com} \geq 0$

- **span**: float, optional
  Specify decay in terms of span, $\alpha = 2/(\text{span} + 1)$, for $\text{span} \geq 1$

- **halflife**: float, optional
  Specify decay in terms of half-life, $\alpha = 1 - \exp(\log(0.5)/\text{halflife})$, for $\text{halflife} > 0$

- **alpha**: float, optional
  Specify smoothing factor $\alpha$ directly, $0 < \alpha \leq 1$

  New in version 0.18.0.

- **min_periods**: int, default 0
  Minimum number of observations in window required to have a value (otherwise result is NA).

- **freq**: None or string alias / date offset object, default=None (DEPRECATED)
  Frequency to conform to before computing statistic

- **adjust**: boolean, default True
  Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average)

- **ignore_na**: boolean, default False
  Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior

Returns

a Window sub-classed for the particular operation
Notes

Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation.

The \textit{freq} keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of \texttt{resample()} (i.e. using the \texttt{mean}).

When adjust is True (default), weighted averages are calculated using weights \((1-\text{alpha})^{n-1}, (1-\text{alpha})^{n-2}, \ldots, 1-\text{alpha}, 1\).

When adjust is False, weighted averages are calculated recursively as:

$$\text{weighted\_average}[0] = \text{arg}[0]; \text{weighted\_average}[i] = (1-\text{alpha})\text{\_weighted\_average}[i-1] + \text{alpha}\text{\_arg}[i].$$

When ignore\_na is False (default), weights are based on absolute positions. For example, the weights of \(x\) and \(y\) used in calculating the final weighted average of \([x, \text{None}, y]\) are \((1-\text{alpha})^{2}\) and 1 (if adjust is True), and \((1-\text{alpha})^{2}\) and alpha (if adjust is False).

When ignore\_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of \(x\) and \(y\) used in calculating the final weighted average of \([x, \text{None}, y]\) are 1-\text{alpha} and 1 (if adjust is True), and 1-\text{alpha} and alpha (if adjust is False).

More details can be found at \url{http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows}

Examples

```python
>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
 B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

>>> df.ewm(com=0.5).mean()
 B
0 0.000000
1 0.750000
2 1.615385
3 1.615385
4 3.670213
```

\texttt{pandas.DataFrame.expanding}

\texttt{DataFrame.expanding}(\texttt{min\_periods=1, freq=None, center=False, axis=0})

Provides expanding transformations.

New in version 0.18.0.

Parameters \texttt{min\_periods} : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA).

\texttt{freq} : string or DateOffset object, optional (default None) (DEPRECATED)
Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False
Set the labels at the center of the window.

**axis** : int or string, default 0

**Returns** a Window sub-classed for the particular operation

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

**Examples**

```python
>>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]})
 B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0

>>> df.expanding(2).sum()
 B
0 NaN
1 1.0
2 3.0
3 3.0
4 7.0
```

**pandas.DataFrame.ffill**

DataFrame.

**ffill** (axis=None, inplace=False, limit=None, downcast=None)

Synonym for NDFrame.fillna(method='ffill')

**pandas.DataFrame.fillna**

DataFrame.

**fillna** (value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)

Fill NA/NaN values using the specified method

**Parameters**

**value** : scalar, dict, Series, or DataFrame
Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.
**method**: {'backfill', 'bfill', 'pad', 'ffill', None}, default None

Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

**axis**: {0 or ‘index’, 1 or ‘columns’}

**inplace**: boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

**limit**: int, default None

If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled.

**downcast**: dict, default is None

A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

**Returns**: filled : DataFrame

**See also**: reindex, asfreq

**pandas.DataFrame.filter**

Dataframe.filter(items=None, like=None, regex=None, axis=None)

Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

**Parameters**

**items**: list-like

List of info axis to restrict to (must not all be present)

**like**: string

Keep info axis where “arg in col == True”

**regex**: string (regular expression)

Keep info axis with re.search(regex, col) == True

**axis**: int or string axis name

The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’ for DataFrame

**Returns**: same type as input object

**See also**: pandas.DataFrame.select
Notes

The `items`, `like`, and `regex` parameters are enforced to be mutually exclusive. `axis` defaults to the info axis that is used when indexing with `[]`.

Examples

```python
>>> df
one two three
mouse 1 2 3
rabbit 4 5 6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
one three
mouse 1 3
rabbit 4 6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
one three
mouse 1 3
rabbit 4 6

>>> # select rows containing 'bbi'
>>> df.filter(like='bbi', axis=0)
one two three
rabbit 4 5 6
```

**pandas.DataFrame.first**

`DataFrame.first(offset)`

Convenience method for subsetting initial periods of time series data based on a date offset.

- **Parameters**
  - `offset`: string, `DateOffset`, `dateutil.relativedelta`

- **Returns**
  - `subset`: type of caller

**Examples**

`ts.first('10D') -> First 10 days`

**pandas.DataFrame.first_valid_index**

`DataFrame.first_valid_index()`

Return label for first non-NA/null value
**pandas.DataFrame.floordiv**

`DataFrame.floordiv(other, axis='columns', level=None, fill_value=None)`

Integer division of dataframe and other, element-wise (binary operator `floordiv`).

Equivalent to `dataframe // other`, but with support to substitute a `fill_value` for missing data in one of the inputs.

**Parameters**

- `other` : Series, DataFrame, or constant
- `axis` : {0, 1, ‘index’, ‘columns’}
  
  For Series input, axis to match Series index on
- `fill_value` : None or float value, default None
  
  Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- `level` : int or name
  
  Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

- `result` : DataFrame

**See also:**

`DataFrame.rfloordiv`

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.from_csv**

`classmethod DataFrame.from_csv(path, header=0, sep=',', index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False)`

Read CSV file (DISCOURAGED, please use `pandas.read_csv()` instead).

It is preferable to use the more powerful `pandas.read_csv()` for most general purposes, but `from_csv` makes for an easy roundtrip to and from a file (the exact counterpart of `to_csv`), especially with a DataFrame of time series data.

This method only differs from the preferred `pandas.read_csv()` in some defaults:

- `index_col` is 0 instead of None (take first column as index by default)
- `parse_dates` is True instead of False (try parsing the index as datetime by default)

So a `pd.DataFrame.from_csv(path)` can be replaced by `pd.read_csv(path, index_col=0, parse_dates=True)`.

**Parameters**

- `path` : string file path or file handle / StringIO
- `header` : int, default 0
  
  Row to use as header (skip prior rows)
- `sep` : string, default ‘,’
  
  Field delimiter
**index_col**: int or sequence, default 0

Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table

**parse_dates**: boolean, default True

Parse dates. Different default from read_table

**tupleize_cols**: boolean, default False

Write multi_index columns as a list of tuples (if True) or new (expanded format) if False

**infer_datetime_format**: boolean, default False

If True and parse_dates is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up.

**Returns**

y : DataFrame

**See also:**

pandas.read_csv

---

**pandas.DataFrame.from_dict**

**classmethod** DataFrame.from_dict(data, orient='columns', dtype=None)

Construct DataFrame from dict of array-like or dicts

**Parameters**

**data**: dict

{field : array-like} or {field : dict}

**orient**: {'columns', 'index'}, default 'columns'

The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'.

**dtype**: dtype, default None

Data type to force, otherwise infer

**Returns**

DataFrame

---

**pandas.DataFrame.from_items**

**classmethod** DataFrame.from_items(items, columns=None, orient='columns')

Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series.

**Parameters**

**items**: sequence of (key, value) pairs

Values should be arrays or Series.

**columns**: sequence of column labels, optional

Must be passed if orient='index'.

**orient**: {'columns', 'index'}, default 'columns'
The “orientation” of the data. If the keys of the input correspond to column labels, pass ‘columns’ (default). Otherwise if the keys correspond to the index, pass ‘index’.

Returns frame : DataFrame

pandas.DataFrame.from_records

classmethod DataFrame.from_records (data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None)

Convert structured or record ndarray to DataFrame

Parameters data : ndarray (structured dtype), list of tuples, dict, or DataFrame

index : string, list of fields, array-like
    Field of array to use as the index, alternately a specific set of input labels to use

exclude : sequence, default None
    Columns or fields to exclude

columns : sequence, default None
    Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns)

c o e r c e_float : boolean, default False
    Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets

Returns df : DataFrame

pandas.DataFrame.ge

DataFrame.ge (other, axis='columns', level=None)

Wrapper for flexible comparison methods ge

pandas.DataFrame.get

DataFrame.get (key, default=None)

Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found.

Parameters key : object

Returns value : type of items contained in object

pandas.DataFrame.get_dtype_counts

DataFrame.get_dtype_counts ()

Return the counts of dtypes in this object.
pandas.DataFrame.get_ftype_counts

DataFrame.get_ftype_counts()
Return the counts of ftypes in this object.

pandas.DataFrame.get_value

DataFrame.get_value(index, col, takeable=False)
Quickly retrieve single value at passed column and index

Parameters
index : row label
col : column label
takeable : interpret the index/col as indexers, default False

Returns
value : scalar value

pandas.DataFrame.get_values

DataFrame.get_values()
same as values (but handles sparseness conversions)

pandas.DataFrame.groupby

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

Parameters
by : mapping function / list of functions, dict, Series, or tuple / list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups
axis : int, default 0
level : int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels
as_index : boolean, default True
For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output
sort : boolean, default True
Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.
group_keys : boolean, default True
When calling apply, add group keys to index to identify pieces
squeeze : boolean, default False
reduce the dimensionality of the return type if possible, otherwise return a consistent type

**Returns** GroupBy object

**Examples**

DataFrame results

```python
>>> data.groupby(func, axis=0).mean()
>>> data.groupby(["col1", "col2"])['col3'].mean()
```

DataFrame with hierarchical index

```python
>>> data.groupby(["col1", "col2"]).mean()
```

**pandas.DataFrame.gt**

DataFrame.gt(\(other, axis='columns', level=None\))

Wrapper for flexible comparison methods gt

**pandas.DataFrame.head**

DataFrame.head(\(n=5\))

Returns first \(n\) rows

**pandas.DataFrame.hist**

DataFrame.hist(\(data, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds\))

Draw histogram of the DataFrame’s series using matplotlib / pylab.

**Parameters**

- **data**: DataFrame
  - **column**: string or sequence
    - If passed, will be used to limit data to a subset of columns
  - **by**: object, optional
    - If passed, then used to form histograms for separate groups
  - **grid**: boolean, default True
    - Whether to show axis grid lines
  - **xlabelsize**: int, default None
    - If specified changes the x-axis label size
  - **xrot**: float, default None
    - rotation of x axis labels
  - **ylabelsize**: int, default None
    - If specified changes the y-axis label size
  - **yrot**: float, default None
    - rotation of y axis labels
If specified changes the y-axis label size

**yrot**: float, default None

rotation of y axis labels

**ax**: matplotlib axes object, default None

sharex: boolean, default True if ax is None else False

In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure!

sharey: boolean, default False

In case subplots=True, share y axis and set some y axis labels to invisible

**figsize**: tuple

The size of the figure to create in inches by default

**layout**: (optional) a tuple (rows, columns) for the layout of the histograms

**bins**: integer, default 10

Number of histogram bins to be used

kwds: other plotting keyword arguments

To be passed to hist function

### pandas.DataFrame.icol

**DataFrame.icol(i)**

DEPRECATED. Use .iloc[:,i] instead

### pandas.DataFrame.idxmax

**DataFrame.idxmax(axis=0, skipna=True)**

Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

**Parameters**

axis: {0 or ‘index’, 1 or ‘columns’}, default 0

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be first index.

**Returns**

idxmax: Series

**See also:**

*Series.idxmax*

**Notes**

This method is the DataFrame version of ndarray.argmax.
**pandas.DataFrame.idxmin**

Dataframe.idxmin (axis=0, skipna=True)  
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

**Parameters**  
axis: {0 or ‘index’, 1 or ‘columns’}, default 0  
0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

skipna: boolean, default True  
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**  
idxmin : Series

**See also:**  
Series.idxmin

**Notes**

This method is the DataFrame version of ndarray.argmin.

**pandas.DataFrame.iget_value**

Dataframe.iget_value (i,j)  
DEPRECATED. Use .iat [i,j] instead

**pandas.DataFrame.info**

Dataframe.info (verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)  
Concise summary of a DataFrame.

**Parameters**  
verbose: {None, True, False}, optional  
Whether to print the full summary. None follows the display.max_info_columns setting. True or False overrides the display.max_info_columns setting.

buf: writable buffer, defaults to sys.stdout

max_cols: int, default None  
Determines whether full summary or short summary is printed. None follows the display.max_info_columns setting.

memory_usage: boolean/string, default None  
Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the display.memory_usage setting. True or False overrides the display.memory_usage setting. A value of ‘deep’ is equivalent of True, with deep introspection. Memory usage is shown in human-readable units (base-2 representation).

null_counts: boolean, default None  
Whether to show the non-null counts
• If None, then only show if the frame is smaller than max_info_rows and max_info_columns.
• If True, always show counts.
• If False, never show counts.

pandas.DataFrame.insert

DataFrame.insert(loc, column, value, allow_duplicates=False)
Insert column into DataFrame at specified location.
If allow_duplicates is False, raises Exception if column is already contained in the DataFrame.

Parameters

loc : int
  Must have 0 <= loc <= len(columns)

column : object

data : scalar, Series, or array-like

pandas.DataFrame.interpolate

DataFrame.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs)
Interpolate values according to different methods.
Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters

method : {'linear', 'time', 'index', 'values', 'nearest', 'zero',
  'slinear', 'quadratic', 'cubic', 'krogh', 'polynomial', 'spline',
  'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}

• 'linear': ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default
• 'time': interpolation works on daily and higher resolution data to interpolate given length of interval
• 'index', 'values': use the actual numerical values of the index
• 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial' is passed to scipy.interpolate.interp1d. Both 'polynomial' and 'spline' require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=4). These use the actual numerical values of the index.
• 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. See the scipy documentation for more on their behavior here and here
• 'from_derivatives' refers to BPoly.from_derivatives which replaces 'piecewise_polynomial' interpolation method in scipy 0.18

New in version 0.18.1: Added support for the ‘akima’ method Added interpolate method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18; backwards-compatible with scipy < 0.18
axis : {0, 1}, default 0

• 0: fill column-by-column
• 1: fill row-by-row

limit : int, default None.

Maximum number of consecutive NaNs to fill.

limit_direction : {'forward', 'backward', 'both'}, defaults to ‘forward’

If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.17.0.

inplace : bool, default False

Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

df: keyword arguments to pass on to the interpolating function.

Returns  Series or DataFrame of same shape interpolated at the NaNs

See also:  reindex, replace, fillna

Examples

Filling in NaNs

```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64
```

pandas.DataFrame.irow

DataFrame.irow(i, copy=False)

DEPRECATED. Use .iloc[i] instead

pandas.DataFrame.isin

DataFrame.isin(values)

Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

Parameters values : iterable, Series, DataFrame or dictionary

The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dictionary, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match.
**Returns**  DataFrame of booleans

**Examples**

When values is a list:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> df.isin([1, 3, 12, 'a'])
 A B
0 True True
1 False False
2 True False
```

When values is a dict:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]})
>>> df.isin({'A': [1, 3], 'B': [4, 7, 12]})
 A B
0 True False # Note that B didn't match the 1 here.
1 False True
2 True True
```

When values is a Series or DataFrame:

```python
>>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']})
>>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']})
>>> df.isin(other)
 A B
0 True False # Column A in `other` has a 3, but not at index 1.
1 False False
2 True True
```

**pandas.DataFrame.isnull**

DataFrame.isnull()  
Return a boolean same-sized object indicating if the values are null.

See also:

notnull  boolean inverse of isnull

**pandas.DataFrame.iteritems**

DataFrame.iteritems()  
Iterator over (column name, Series) pairs.

See also:

iterrows  Iterate over DataFrame rows as (index, Series) pairs.

itertuples  Iterate over DataFrame rows as namedtuples of the values.
pandas.DataFrame.iterkv

```
DataFrame.iterkv(*args, **kwargs)
iteritems alias used to get around 2to3. Deprecated
```

pandas.DataFrame.iterrows

```
DataFrame.iterrows()
Iterate over DataFrame rows as (index, Series) pairs.

Returns it : generator
A generator that iterates over the rows of the frame.

See also:

iterrows Iterate over DataFrame rows as namedtuples of the values.
iteritems Iterate over (column name, Series) pairs.
```

Notes

1. Because `iterrows` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example,

```python
>>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float'])
>>> row = next(df.iterrows())[1]
>>> row
int 1.0
float 1.5
Name: 0, dtype: float64
>>> print(row['int'].dtype)
float64
>>> print(df['int'].dtype)
int64
```

To preserve dtypes while iterating over the rows, it is better to use `itertuples()` which returns namedtuples of the values and which is generally faster than `iterrows`.

2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect.

pandas.DataFrame.itertuples

```
DataFrame.itertuples(index=True, name='Pandas')
Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple.

Parameters index : boolean, default True
 If True, return the index as the first element of the tuple.

name : string, default “Pandas”
 The name of the returned namedtuples or None to return regular tuples.

See also:
```
**iterrows** Iterate over DataFrame rows as (index, Series) pairs.

**iteritems** Iterate over (column name, Series) pairs.

**Notes**

The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned.

**Examples**

```python
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]},
 index=['a', 'b'])
>>> df
 col1 col2
a 1 0.1
b 2 0.2
>>> for row in df.itertuples():
... print(row)
...Pandas(Index='a', col1=1, col2=0.10000000000000001)
Pandas(Index='b', col1=2, col2=0.20000000000000001)
```

**pandas.DataFrame.join**

Dataframe join

**DataFrame.join**(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)

Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list.

**Parameters**

- **other** : DataFrame, Series with name field set, or list of DataFrame

  Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame

- **on** : column name, tuple/list of column names, or array-like

  Column(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation

- **how** : {'left’, ‘right’, ‘outer’, ‘inner’}, default: ‘left’

  How to handle the operation of the two objects.

  - left: use calling frame’s index (or column if on is specified)
  - right: use other frame’s index
  - outer: form union of calling frame’s index (or column if on is specified) with other frame’s index
  - inner: form intersection of calling frame’s index (or column if on is specified) with other frame’s index

- **lsuffix** : string
Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

sort : boolean, default False

Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame

Returns joined : DataFrame

See also:

dataframe.merge For column(s)-on-column(s) operations

Notes

on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects

Examples

```python
>>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'],
... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})

>>> caller
 A key
0 A0 K0
1 A1 K1
2 A2 K2
3 A3 K3
4 A4 K4
5 A5 K5

>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'],
... 'B': ['B0', 'B1', 'B2']})

>>> other
 B key
0 B0 K0
1 B1 K1
2 B2 K2

Join DataFrames using their indexes.

>>> caller.join(other, lsuffix='_caller', rsuffix='_other')

 A key_caller B key_other
0 A0 K0 B0 K0
1 A1 K1 B1 K1
2 A2 K2 B2 K2
3 A3 NaN NaN NaN
4 A4 NaN NaN NaN
5 A5 NaN NaN NaN
```
If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index.

```python
>>> caller.set_index('key').join(other.set_index('key'))
```

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td></td>
</tr>
<tr>
<td>K0</td>
<td>A0</td>
</tr>
<tr>
<td>K1</td>
<td>A1</td>
</tr>
<tr>
<td>K2</td>
<td>A2</td>
</tr>
<tr>
<td>K3</td>
<td>A3</td>
</tr>
<tr>
<td>K4</td>
<td>A4</td>
</tr>
<tr>
<td>K5</td>
<td>A5</td>
</tr>
</tbody>
</table>

Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other’s index but we can use any column in the caller. This method preserves the original caller’s index in the result.

```python
>>> caller.join(other.set_index('key'), on='key')
```

<table>
<thead>
<tr>
<th>A</th>
<th>key</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A0</td>
<td>K0</td>
</tr>
<tr>
<td>1</td>
<td>A1</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>K2</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>K3</td>
</tr>
<tr>
<td>4</td>
<td>A4</td>
<td>K4</td>
</tr>
<tr>
<td>5</td>
<td>A5</td>
<td>K5</td>
</tr>
</tbody>
</table>

**pandas.DataFrame.keys**

`DataFrame.keys()`

Get the ‘info axis’ (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.

**pandas.DataFrame.kurt**

`DataFrame.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters:

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
  Exlude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
  Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
**pandas.DataFrame.kurtosis**

DataFrame.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

**Parameters**

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
  - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

- **kurt**: Series or DataFrame (if level specified)

**Examples**

ts.last(‘5M’) -> Last 5 months

**pandas.DataFrame.last_valid_index**

DataFrame.last_valid_index()

Return label for last non-NA/null value

**pandas.DataFrame.le**

DataFrame.le(other, axis=’columns’, level=None)

Wrapper for flexible comparison methods le
**pandas.DataFrame.lookup**

DataFrame.lookup(row_labels, col_labels)
Label-based “fancy indexing” function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair.

**Parameters**
- **row_labels**: sequence
  The row labels to use for lookup
- **col_labels**: sequence
  The column labels to use for lookup

**Notes**

Akin to:

```python
result = []
for row, col in zip(row_labels, col_labels):
 result.append(df.get_value(row, col))
```

**Examples**

`values` [ndarray] The found values

**pandas.DataFrame.lt**

DataFrame.lt(other, axis='columns', level=None)
Wrapper for flexible comparison methods lt

**pandas.DataFrame.mad**

DataFrame.mad(axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

**Parameters**
- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
  Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**
- **mad**: Series or DataFrame (if level specified)
pandas.DataFrame.mask

DataFrame.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

Parameters cond : boolean NDFrame, array or callable

   If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

   New in version 0.18.1.

   A callable can be used as cond.

other : scalar, NDFrame, or callable

   If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

   New in version 0.18.1.

   A callable can be used as other.

inplace : boolean, default False

   Whether to perform the operation in place on the data

axis : alignment axis if needed, default None

level : alignment level if needed, default None

try_cast : boolean, default False

   try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

   Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

See also:

DataFrame.where()

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is False the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the mask documentation in indexing.
Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
```

```python
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
 A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 8 9
```

```python
>>> df.where(m, -df) == np.where(m, df, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

```python
>>> df.where(m, -df) == df.mask(~m, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

---

**pandas.DataFrame.max**

```
DataFrame.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

This method returns the maximum of the values in the object. If you want the index of the maximum, use `idxmax`. This is the equivalent of the `numpy.ndarray` method `argmax`.

**Parameters**

- `axis` : {index (0), columns (1)}
- `skipna` : boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level` : int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- `numeric_only` : boolean, default None
  - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

- `max` : Series or DataFrame (if level specified)
pandas.DataFrame.mean

DataFrame.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the mean of the values for the requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a Series
numeric_only : boolean, default None
    Include only float, int, boolean columns. If None, will attempt to use everything,
    then use only numeric data. Not implemented for Series.

Returns mean : Series or DataFrame (if level specified)

pandas.DataFrame.median

DataFrame.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
    Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
    If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
    into a Series
numeric_only : boolean, default None
    Include only float, int, boolean columns. If None, will attempt to use everything,
    then use only numeric data. Not implemented for Series.

Returns median : Series or DataFrame (if level specified)

pandas.DataFrame.memory_usage

DataFrame.memory_usage(index=True, deep=False)
Memory usage of DataFrame columns.

Parameters index : bool
    Specifies whether to include memory usage of DataFrame’s index in returned
    Series. If index=True (default is False) the first index of the Series is Index.
deep : bool
    Introspect the data deeply, interrogate object dtypes for system-level memory
    consumption

Returns sizes : Series
A series with column names as index and memory usage of columns with units of bytes.

See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False

pandas.DataFrame.merge

DataFrame.merge(right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False)

Merge DataFrame objects by performing a database-style join operation by columns or indexes.

If joining columns on columns, the DataFrame indexes will be ignored. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on.

Parameters right : DataFrame

how : {'left', 'right', 'outer', 'inner'}, default 'inner'

• left: use only keys from left frame (SQL: left outer join)
• right: use only keys from right frame (SQL: right outer join)
• outer: use union of keys from both frames (SQL: full outer join)
• inner: use intersection of keys from both frames (SQL: inner join)

on : label or list

Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default.

left_on : label or list, or array-like

Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns

right_on : label or list, or array-like

Field names to join on in right DataFrame or vector/list of vectors per left_on docs

left_index : boolean, default False

Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels

right_index : boolean, default False

Use the index from the right DataFrame as the join key. Same caveats as left_index

sort : boolean, default False
Sort the join keys lexicographically in the result DataFrame

**suffixes**: 2-length sequence (tuple, list, ...)

Suffix to apply to overlapping column names in the left and right side, respectively

**copy**: boolean, default True

If False, do not copy data unnecessarily

**indicator**: boolean or string, default False

If True, adds a column to output DataFrame called “_merge” with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of “left_only” for observations whose merge key only appears in ‘left’ DataFrame, “right_only” for observations whose merge key only appears in ‘right’ DataFrame, and “both” if the observation’s merge key is found in both.

New in version 0.17.0.

**Returns** merged: DataFrame

The output type will be same as ‘left’, if it is a subclass of DataFrame.

See also:

merge_ordered, merge_asof

**Examples**

```python
>>> A
lkey value
0 foo 1
1 bar 2
2 baz 3
3 foo 4

>>> B
rkey value
0 foo 5
1 bar 6
2 qux 7

>>> A.merge(B, left_on='lkey', right_on='rkey', how='outer')
lkey value_x rkey value_y
0 foo 1 foo 5
1 foo 4 foo 5
2 bar 2 bar 6
3 bar 2 bar 8
4 baz 3 NaN NaN
5 NaN NaN qux 7
```

**pandas.DataFrame.min**

DataFrame.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the minimum of the values in the object. If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

**Parameters** axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

**numeric_only**: boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

*min*: Series or DataFrame (if level specified)

---

**pandas.DataFrame.mod**

DataFrame.mod(other, axis='columns', level=None, fill_value=None)

Modulo of dataframe and other, element-wise (binary operator mod).

Equivalent to **dataframe % other**, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters**

*other*: Series, DataFrame, or constant

*axis*: {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

*fill_value*: None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

*level*: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

**result**: DataFrame

See also:

*DataFrame.rmod*

**Notes**

Mismatched indices will be unioned together

---

**pandas.DataFrame.mode**

DataFrame.mode(axis=0, numeric_only=False)

 Gets the mode(s) of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan.

Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe df, you can just do this: df.fillna(df.mode().iloc[0])

**Parameters**

*axis*: {0 or ‘index’, 1 or ‘columns’}, default 0

* 0 or ‘index’: get mode of each column
• 1 or 'columns' : get mode of each row

numeric_only : boolean, default False
if True, only apply to numeric columns

Returns modes : DataFrame (sorted)

Examples

```python
>>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]})
```
```python
>>> df.mode()
A
0 1
1 2
```

pandas.DataFrame.mul

DataFrame.mul (other, axis='columns', level=None, fill_value=None)
Multiplication of dataframe and other, element-wise (binary operator mul).
Equivalent to dataframe * other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
    For Series input, axis to match Series index on
fill_value : None or float value, default None
    Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
    Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:
DataFrame.rmul

Notes
Mismatched indices will be unioned together

pandas.DataFrame.multiply

DataFrame.multiply (other, axis='columns', level=None, fill_value=None)
Multiplication of dataframe and other, element-wise (binary operator mul).
Equivalent to dataframe * other, but with support to substitute a fill_value for missing data in one of the inputs.
**Parameters** other : Series, DataFrame, or constant

  axis : {0, 1, ‘index’, ‘columns’}

  For Series input, axis to match Series index on

  fill_value : None or float value, default None

  Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

  level : int or name

  Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns** result : DataFrame

See also:

*Dataframe.rmul*

Notes

Mismatched indices will be unioned together

**pandas.DataFrame.ne**

*Dataframe.ne*(other, axis=’columns’, level=None)

Wrapper for flexible comparison methods ne

**pandas.DataFrame.nlargest**

*Dataframe.nlargest*(n, columns, keep=’first’)

Get the rows of a DataFrame sorted by the n largest values of columns.

New in version 0.17.0.

Parameters n : int

  Number of items to retrieve

  columns : list or str

  Column name or names to order by

  keep : {‘first’, ‘last’, False}, default ‘first’

  Where there are duplicate values: - first : take the first occurrence. - last : take the last occurrence.

**Returns** DataFrame

Examples

```python
>>> df = DataFrame({'a': [1, 10, 8, 11, -1],
... 'b': list('abcdc'),
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
>>> df.nlargest(3, 'a')
```

1359
pandas.DataFrame.notnull

DataFrame.notnull()  
Return a boolean same-sized object indicating if the values are not null.

See also:

isnull boolean inverse of notnull

pandas.DataFrame.nsmallest

DataFrame.nsmallest(n, columns, keep='first')  
Get the rows of a DataFrame sorted by the n smallest values of columns.

New in version 0.17.0.

Parameters  

n : int  
Number of items to retrieve

columns : list or str  
Column name or names to order by

keep : {'first', 'last', False}, default ‘first’
   Where there are duplicate values: - first : take the first occurrence. - last : take the last occurrence.

Returns  

DataFrame

Examples

```python
>>> df = DataFrame({'a': [1, 10, 8, 11, -1],
... 'b': list('abdce'),
... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]})
>>> df.nsmallest(3, 'a')
 a b c
4 -1 e 4
0 1 a 1
2 8 d NaN
```

pandas.DataFrame.pct_change

DataFrame.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwargs)

Percent change over given number of periods.

Parameters  

periods : int, default 1
   Periods to shift for forming percent change
fill_method: str, default ‘pad’

How to handle NAs before computing percent changes

limit: int, default None

The number of consecutive NAs to fill before stopping

freq: DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

Returns chg: NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.DataFrame.pipe

DataFrame.pipe(func, *args, **kwargs)

Apply func(self, *args, **kwargs)

New in version 0.16.2.

Parameters func: function

function to apply to the NDFrame. args, and kwargs are passed into func.

Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects the NDFrame.

args: positional arguments passed into func.

kwargs: a dictionary of keyword arguments passed into func.

Returns object: the return type of func.

See also:
pandas.DataFrame.apply, pandas.DataFrame.applymap, pandas.Series.map

Notes

Use .pipe when chaining together functions that expect on Series or DataFrames. Instead of writing

```python
>>> f(g(h(df), arg1=a), arg2=b, arg3=c)
```

You can write

```python
>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(f, arg2=b, arg3=c)
...)
```

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose f takes its data as arg2:
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe((f, 'arg2'), arg1=a, arg3=c)
...)
```

**pandas.DataFrame.pivot**

`DataFrame.pivot(index=None, columns=None, values=None)`

Reshape data (produce a “pivot” table) based on column values. Uses unique values from index / columns to form axes of the resulting DataFrame.

**Parameters**

- `index`: string or object, optional
  
  Column name to use to make new frame’s index. If None, uses existing index.

- `columns`: string or object
  
  Column name to use to make new frame’s columns

- `values`: string or object, optional
  
  Column name to use for populating new frame’s values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns

**Returns**

- `pivoted`: DataFrame

**See also:**

- `DataFrame.pivot_table` generalization of pivot that can handle duplicate values for one index/column pair

- `DataFrame.unstack` pivot based on the index values instead of a column

**Notes**

For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods

**Examples**

```python
>>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
 'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
 'baz': [1, 2, 3, 4, 5, 6]})
>>> df
 foo bar baz
0 one A 1
1 one B 2
2 one C 3
3 two A 4
4 two B 5
5 two C 6
```
>>> df.pivot(index='foo', columns='bar', values='baz')
   A  B  C
one 1  2  3
two 4  5  6

>>> df.pivot(index='foo', columns='bar')['baz']
   A  B  C
one 1  2  3
two 4  5  6

pandas.DataFrame.pivot_table

DataFrame.pivot_table(data=None, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame.

Parameters:

- **data**: DataFrame
- **values**: column to aggregate, optional
- **index**: column, Grouper, array, or list of the previous
  If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.
- **columns**: column, Grouper, array, or list of the previous
  If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.
- **aggfunc**: function or list of functions, default numpy.mean
  If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves).
- **fill_value**: scalar, default None
  Value to replace missing values with
- **margins**: boolean, default False
  Add all row / columns (e.g. for subtotal / grand totals)
- **dropna**: boolean, default True
  Do not include columns whose entries are all NaN
- **margins_name**: string, default ‘All’
  Name of the row / column that will contain the totals when margins is True.

Returns:

- **table**: DataFrame
Examples

```python
>>> df
 A B C D
 0 foo one small 1
 1 foo one large 2
 2 foo one large 2
 3 foo two small 3
 4 foo two small 3
 5 bar one large 4
 6 bar one small 5
 7 bar two small 6
 8 bar two large 7
```

```python
>>> table = pivot_table(df, values='D', index=['A', 'B'],
... columns=['C'], aggfunc=np.sum)
```

```python
>>> table
 small large
foo 1 4
 2 NaN
bar 5 4
 6 7
```

`pandas.DataFrame.plot`

`DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds)`

Make plots of DataFrame using matplotlib / pylab.

*New in version 0.17.0:* Each plot kind has a corresponding method on the `DataFrame.plot` accessor: `df.plot(kind='line')` is equivalent to `df.plot.line()`.

**Parameters**

- **data**: DataFrame
  - `x`: label or position, default None
  - `y`: label or position, default None
    - Allows plotting of one column versus another
  - `kind`: str
    - ‘line’: line plot (default)
    - ‘bar’: vertical bar plot
    - ‘barh’: horizontal bar plot
    - ‘hist’: histogram
    - ‘box’: boxplot
    - ‘kde’: Kernel Density Estimation plot
    - ‘density’: same as ‘kde’
• ‘area’ : area plot
• ‘pie’ : pie plot
• ‘scatter’ : scatter plot
• ‘hexbin’ : hexbin plot

**ax** : matplotlib axes object, default None

**subplots** : boolean, default False

Make separate subplots for each column

**sharex** : boolean, default True if ax is None else False

In case subplots=True, share x axis and set some x axis labels to invisible; defaults
to True if ax is None otherwise False if an ax is passed in; Be aware, that passing
in both an ax and sharex=True will alter all x axis labels for all axis in a figure!

**sharey** : boolean, default False

In case subplots=True, share y axis and set some y axis labels to invisible

**layout** : tuple (optional)

(rows, columns) for the layout of subplots

**figsize** : a tuple (width, height) in inches

**use_index** : boolean, default True

Use index as ticks for x axis

**title** : string

Title to use for the plot

**grid** : boolean, default None (matlab style default)

Axis grid lines

**legend** : False/True/‘reverse’

Place legend on axis subplots

**style** : list or dict

matplotlib line style per column

**logx** : boolean, default False

Use log scaling on x axis

**logy** : boolean, default False

Use log scaling on y axis

**loglog** : boolean, default False

Use log scaling on both x and y axes

**xticks** : sequence

Values to use for the xticks

**yticks** : sequence

Values to use for the yticks
**xlim** : 2-tuple/list

**ylim** : 2-tuple/list

**rot** : int, default None

Rotation for ticks (xticks for vertical, yticks for horizontal plots)

**fontsize** : int, default None

Font size for xticks and yticks

**colormap** : str or matplotlib colormap object, default None

Colormap to select colors from. If string, load colormap with that name from matplotlib.

**colorbar** : boolean, optional

If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)

**position** : float

Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

**layout** : tuple (optional)

(rows, columns) for the layout of the plot

**table** : boolean, Series or DataFrame, default False

If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.

**yerr** : DataFrame, Series, array-like, dict and str

See Plotting with Error Bars for detail.

**xerr** : same types as yerr.

**stacked** : boolean, default False in line and bar plots, and True in area plot. If True, create stacked plot.

**sort_columns** : boolean, default False

Sort column names to determine plot ordering

**secondary_y** : boolean or sequence, default False

Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis

**mark_right** : boolean, default True

When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend

**kwds** : keywords

Options to pass to matplotlib plotting method

**Returns** **axes** : matplotlib.AxesSubplot or np.array of them
Notes

• See matplotlib documentation online for more on this subject

• If \texttt{kind} = ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout by \texttt{position} keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)

• If \texttt{kind} = ‘scatter’ and the argument \texttt{c} is the name of a dataframe column, the values of that column are used to color each point.

• If \texttt{kind} = ‘hexbin’, you can control the size of the bins with the \texttt{gridsize} argument. By default, a histogram of the counts around each \((x, y)\) point is computed. You can specify alternative aggregations by passing values to the \texttt{C} and \texttt{reduce_C_function} arguments. \texttt{C} specifies the value at each \((x, y)\) point and \texttt{reduce_C_function} is a function of one argument that reduces all the values in a bin to a single number (e.g. \texttt{mean}, \texttt{max}, \texttt{sum}, \texttt{std}).

\texttt{pandas.DataFrame.pop}

\texttt{DataFrame.pop(item)}

Return item and drop from frame. Raise KeyError if not found.

\texttt{pandas.DataFrame.pow}

\texttt{DataFrame.pow(other, axis=’columns’, level=None, fill_value=None)}

Exponential power of dataframe and other, element-wise (binary operator \texttt{pow}).

Equivalent to \texttt{dataframe ** other}, but with support to substitute a \texttt{fill_value} for missing data in one of the inputs.

Parameters 

\begin{itemize}
\item \texttt{other} : Series, DataFrame, or constant
\item \texttt{axis} : 0, 1, ‘index’, ‘columns’
\item \texttt{fill_value} : None or float value, default None
\item \texttt{level} : int or name
\end{itemize}

Returns \texttt{result} : DataFrame

See also:

\texttt{DataFrame.rpow}

Notes

Mismatched indices will be unioned together
pandas.DataFrame.prod

DataFrame.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters
axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns prod : Series or DataFrame (if level specified)

pandas.DataFrame.product

DataFrame.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters
axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns prod : Series or DataFrame (if level specified)

pandas.DataFrame.quantile

DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation='linear')
Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters
q : float or array-like, default 0.5 (50% quantile)
0 <= q <= 1, the quantile(s) to compute
axis : {0, 1, ‘index’, ‘columns’} (default 0)
0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
New in version 0.18.0.

This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:

- **linear**: \( i + (j - i) \times \text{fraction} \), where *fraction* is the fractional part of the index surrounded by i and j.
- **lower**: i.
- **higher**: j.
- **nearest**: i or j whichever is nearest.
- **midpoint**: \( (i + j) / 2 \).

**Returns** quantiles : Series or DataFrame

- If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles.
- If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

**Examples**

```python
>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
 columns=['a', 'b'])
>>> df.quantile(.1)
a 1.3
b 3.7
dtype: float64
>>> df.quantile([.1, .5])
 a b
0.1 1.3 3.7
0.5 2.5 55.0
```

**pandas.DataFrame.query**

DataFrame.query(expr, inplace=False, **kwargs)

Query the columns of a frame with a boolean expression.

New in version 0.13.

**Parameters**

- **expr** : string
  The query string to evaluate. You can refer to variables in the environment by prefixing them with an ‘@’ character like @a + b.

- **inplace** : bool
  Whether the query should modify the data in place or return a modified copy

  New in version 0.18.0.

- **kwargs** : dict
  See the documentation for `pandas.eval()` for complete details on the keyword arguments accepted by `DataFrame.query()`.

**Returns**

- **q** : DataFrame
See also:

pandas.eval, DataFrame.eval

Notes

The result of the evaluation of this expression is first passed to DataFrame.loc and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to DataFrame.__getitem__().

This method uses the top-level pandas.eval() function to evaluate the passed query.

The query() method uses a slightly modified Python syntax by default. For example, the & and | (bitwise) operators have the precedence of their boolean cousins, and and or. This is syntactically valid Python, however the semantics are different.

You can change the semantics of the expression by passing the keyword argument parser='python'. This enforces the same semantics as evaluation in Python space. Likewise, you can pass engine='python' to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using numexpr as the engine.

The DataFrame.index and DataFrame.columns attributes of the DataFrame instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier index is used for the frame index; you can also use the name of the index to identify it in a query.

For further details and examples see the query documentation in indexing.

Examples

```python
>>> from numpy.random import randn
>>> from pandas import DataFrame
>>> df = DataFrame(randn(10, 2), columns=list('ab'))
>>> df.query('a > b')
```

# same result as the previous expression

```
pandas.DataFrame.radd
```

DataFrame.radd(other, axis='columns', level=None, fill_value=None)

Addition of dataframe and other, element-wise (binary operator radd).

Equivalent to other + dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level
Returns result: DataFrame

See also:
DataFrame.add

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rank

DataFrame.rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

Parameters

axis: {0 or ‘index’, 1 or ‘columns’}, default 0
    index to direct ranking

method: {'average', 'min', 'max', 'first', 'dense'}
    • average: average rank of group
    • min: lowest rank in group
    • max: highest rank in group
    • first: ranks assigned in order they appear in the array
    • dense: like ‘min’, but rank always increases by 1 between groups

numeric_only: boolean, default None
    Include only float, int, boolean data. Valid only for DataFrame or Panel objects

na_option: {'keep', 'top', 'bottom'}
    • keep: leave NA values where they are
    • top: smallest rank if ascending
    • bottom: smallest rank if descending

ascending: boolean, default True
    False for ranks by high (1) to low (N)

pct: boolean, default False
    Computes percentage rank of data

Returns ranks: same type as caller

pandas.DataFrame.rdiv

DataFrame.rdiv(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator rtruediv).

Equivalent to other / dataframe, but with support to substitute a fill_value for missing data in one of the inputs.
**Parameters**

- **other**: Series, DataFrame, or constant
- **axis**: {0, 1, ‘index’, ‘columns’}
  - For Series input, axis to match Series index on
- **fill_value**: None or float value, default None
  - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
- **level**: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

- **result**: DataFrame

**See also**

- `DataFrame.truediv`

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.reindex**

- **DataFrame.reindex**(*index=None, columns=None, **kwargs*)
  - Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

**Parameters**

- **index, columns**: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **method**: {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional
  - Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.
    - default: don’t fill gaps
    - pad / ffill: propagate last valid observation forward to next valid
    - backfill / bfill: use next valid observation to fill gap
    - nearest: use nearest valid observations to fill gap
- **copy**: boolean, default True
  - Return a new object, even if the passed indexes are the same
- **level**: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level
- **fill_value**: scalar, default np.NaN
  - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

Maximum distance between original and new labels for inexact matches.
The values of the index at the matching locations most satisfy the equation

$$\text{abs(index[indexer] - target)} \leq \text{tolerance}$$

New in version 0.17.0.

Returns reindexed : DataFrame

Examples

Create a dataframe with some fictional data.

```python
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
... 'http_status': [200, 200, 404, 404, 301],
... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0],
... index=index)
>>> df
 http_status response_time
Firefox 200 0.04
Chrome 200 0.02
Safari 404 0.07
IE10 404 0.08
Konqueror 301 1.00
```

Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned NaN.

```python
>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', 'Chrome']
>>> df.reindex(new_index)
 http_status response_time
Safari 404 0.07
Iceweasel NaN NaN
Comodo Dragon NaN NaN
IE10 404 0.08
Chrome 200 0.02
```

We can fill in the missing values by passing a value to the keyword fill_value. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword method to fill the NaN values.

```python
>>> df.reindex(new_index, fill_value=0)
 http_status response_time
Safari 404 0.07
Iceweasel 0 0.00
Comodo Dragon 0 0.00
IE10 404 0.08
Chrome 200 0.02
```

```python
>>> df.reindex(new_index, fill_value='missing')
 http_status response_time
Safari 404 0.07
Iceweasel NaN NaN
Comodo Dragon NaN NaN
IE10 404 0.08
Chrome 200 0.02
```
To further illustrate the filling functionality in `reindex`, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).

```python
>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({'prices': [100, 101, np.nan, 100, 89, 88]}, index=date_index)
>>> df2
 prices
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
```

Suppose we decide to expand the dataframe to cover a wider date range.

```python
>>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D')
>>> df2.reindex(date_index2)
 prices
2009-12-29 NaN
2009-12-30 NaN
2009-12-31 NaN
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN
```

The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with NaN. If desired, we can fill in the missing values using one of several options. For example, to backpropagate the last valid value to fill the NaN values, pass bfill as an argument to the method keyword.

```python
>>> df2.reindex(date_index2, method='bfill')
 prices
2009-12-29 100
2009-12-30 100
2009-12-31 100
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN
```

Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at

---

**pandas: powerful Python data analysis toolkit, Release 0.19.2**

<table>
<thead>
<tr>
<th>Browser</th>
<th>Version</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safari</td>
<td>404</td>
<td>0.07</td>
</tr>
<tr>
<td>Iceweasel</td>
<td>missing</td>
<td>missing</td>
</tr>
<tr>
<td>Comodo Dragon</td>
<td>missing</td>
<td>missing</td>
</tr>
<tr>
<td>IE10</td>
<td>404</td>
<td>0.08</td>
</tr>
<tr>
<td>Chrome</td>
<td>200</td>
<td>0.02</td>
</tr>
</tbody>
</table>
dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN values present in the original dataframe, use the `fillna()` method.

**pandas.DataFrame.reindex_axis**

`DataFrame.reindex_axis(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=np.nan)`

Conform input object to new index with optional filling logic, placing NA/Nan in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

**Parameters**

- `labels`: array-like
  New labels / index to conform to. Preferably an Index object to avoid duplicating data
- `axis`: {0 or ‘index’, 1 or ‘columns’}
  Method to use for filling holes in reindexed DataFrame:
  - default: don’t fill gaps
  - pad / ffill: propagate last valid observation forward to next valid
  - backfill / bfill: use next valid observation to fill gap
  - nearest: use nearest valid observations to fill gap
- `copy`: boolean, default True
  Return a new object, even if the passed indexes are the same
- `level`: int or name
  Broadcast across a level, matching Index values on the passed MultiIndex level
- `limit`: int, default None
  Maximum number of consecutive elements to forward or backward fill
- `tolerance`: optional
  Maximum distance between original and new labels for inexact matches.
  The values of the index at the matching locations most satisfy the equation `abs(index[indexer] - target) <= tolerance`.

New in version 0.17.0.

**Returns**

`reindexed`: DataFrame

**See also:**

`reindex`, `reindex_like`

**Examples**

```python
>>> df.reindex_axis({'A', 'B', 'C'}, axis=1)
```
pandas.DataFrame.reindex_like

DataFrame.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)
Return an object with matching indices to myself.

Parameters
- **other**: Object
- **method**: string or None
- **copy**: boolean, default True
- **limit**: int, default None
  - Maximum number of consecutive labels to fill for inexact matches.
- **tolerance**: optional
  - Maximum distance between labels of the other object and this object for inexact matches.
  - New in version 0.17.0.

Returns
- **reindexed**: same as input

Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.DataFrame.rename

DataFrame.rename(index=None, columns=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change Series.name with a scalar value (Series only).

Parameters
- **index, columns**: scalar, list-like, dict-like or function, optional
  - Scalar or list-like will alter the Series.name attribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis’ values
- **copy**: boolean, default True
  - Also copy underlying data
- **inplace**: boolean, default False
  - Whether to return a new DataFrame. If True then value of copy is ignored.

Returns
- **renamed**: DataFrame (new object)

See also:

pandas.NDFrame.rename_axis

Examples
>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2
2 3
dtype: int64
>>> s.rename("my_name")  # scalar, changes Series.name
0 1
1 2
2 3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2)  # function, changes labels
0 1
1 2
4 3
dtype: int64
>>> s.rename({1: 3, 2: 5})  # mapping, changes labels
0 1
3 2
5 3
dtype: int64
>>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
>>> df.rename(2)  
...  
TypeError: 'int' object is not callable
>>> df.rename(index=str, columns={'A': 'a', 'B': 'c'})
   a  c
0 1 4
1 2 5
2 3 6
>>> df.rename(index=str, columns={'A': 'a', 'C': 'c'})
   a  B
0 1 4
1 2 5
2 3 6

pandas.DataFrame.rename_axis

DataFrame.rename_axis (mapper, axis=0, copy=True, inplace=False)
Alter index and / or columns using input function or functions. A scaler or list-like for mapper will alter the Index.name or MultiIndex.names attribute. A function or dict for mapper will alter the labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters mapper : scalar, list-like, dict-like or function, optional
axis : int or string, default 0
copy : boolean, default True
Also copy underlying data
inplace : boolean, default False

Returns renamed : type of caller

See also:
pandas.NDFrame.rename, pandas.Index.rename
Examples

```python
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename_axis("foo") # scalar, alters df.index.name
 A B
 foo
 0 1 4
 1 2 5
 2 3 6

>>> df.rename_axis(lambda x: 2 * x) # function: alters labels
 A B
 0 1 4
 2 2 5
 4 3 6

>>> df.rename_axis({"A": "ehh", "C": "see"}, axis="columns") # mapping
 ehh B
 0 1 4
 1 2 5
 2 3 6
```

**pandas.DataFrame.reorder_levels**

DataFrame.reorder_levels(order, axis=0)

Rearrange index levels using input order. May not drop or duplicate levels

**Parameters** order : list of int or list of str

- List representing new level order. Reference level by number (position) or by key (label).

  axis : int

- Where to reorder levels.

**Returns** type of caller (new object)

**pandas.DataFrame.replace**

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in ‘to_replace’ with ‘value’.

**Parameters** to_replace : str, regex, list, dict, Series, numeric, or None

- str or regex:
  - str: string exactly matching to_replace will be replaced with value
  - regex: regexes matching to_replace will be replaced with value

- list of str, regex, or numeric:
  - First, if to_replace and value are both lists, they must be the same length.
  - Second, if regex=True then all of the strings in both lists will be interpreted as regexes otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
- str and regex rules apply as above.

• dict:
  - Nested dictionaries, e.g., `{a: {'b': nan}}`, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
  - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

• None:
  - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill

regex : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.

method : string, optional, {‘pad’, ‘ffill’, ‘bfill’}

The method to use when for replacement, when to_replace is a list.

Returns filled : NDFrame

Raises AssertionError

• If regex is not a bool and to_replace is not None.

TypeError

• If to_replace is a dict and value is not a list, dict, ndarray, or Series

• If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series.

ValueError

• If to_replace and value are lists or ndarrays, but they are not the same length.

See also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna
Notes

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.
- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
- This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

`pandas.DataFrame.resample`

`DataFrame.resample(rule, how=None, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)`

Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the on or level keyword.

**Parameters**

- `rule` : string
  the offset string or object representing target conversion
- `axis` : int, optional, default 0
- `closed` : {'right', 'left'}
  Which side of bin interval is closed
- `label` : {'right', 'left'}
  Which bin edge label to label bucket with
- `convention` : {'start', 'end', 's', 'e'}
- `loffset` : timedelta
  Adjust the resampled time labels
- `base` : int, default 0
  For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ’5min’ frequency, base could range from 0 through 4. Defaults to 0
- `on` : string, optional
  For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.
  New in version 0.19.0.
- `level` : string or int, optional
  For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like.
  New in version 0.19.0.
To learn more about the offset strings, please see ‘this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>’.

Examples

Start by creating a series with 9 one minute timestamps.

```python
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
```

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

```python
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket `2000-01-01 00:03:00` contains the value 3, but the summed value in the resampled bucket with the label “2000-01-01 00:03:00” does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

```python
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

```python
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
```

Upsample the series into 30 second bins.

```python
>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0
2000-01-01 00:00:30 NaN
```
Upsample the series into 30 second bins and fill the NaN values using the `pad` method.

```python
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```

Upsample the series into 30 second bins and fill the NaN values using the `bfill` method.

```python
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```

Pass a custom function via `apply`.

```python
>>> def custom_resampler(array_like):
... return np.sum(array_like)+5

>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
```

### pandas.DataFrame.reset_index

DataFrame's `reset_index` function

For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default ‘index’ or ‘level_0’ (if ‘index’ is already taken) will be used.

**Parameters**
- `level` : int, str, tuple, or list, default None
  - Only remove the given levels from the index. Removes all levels by default
- `drop` : boolean, default False
  - Do not try to insert index into dataframe columns. This resets the index to the default integer index.
- `inplace` : boolean, default False
  - Modify the DataFrame in place (do not create a new object)
- `col_level` : int or str, default 0
  -
If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level.

**col_fill**: object, default ‘’

If the columns have multiple levels, determines how the other levels are named.
If None then the index name is repeated.

**Returns resetted**: DataFrame

### pandas.DataFrame.rfloordiv

**DataFrame.rfloordiv**(other, axis=’columns’, level=None, fill_value=None)

Integer division of dataframe and other, element-wise (binary operator `rfloordiv`).
Equivalent to `other // dataframe`, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters**

- **other**: Series, DataFrame, or constant
  - **axis**: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

**result**: DataFrame

**See also**:

- `DataFrame.floordiv`

**Notes**

Mismatched indices will be unioned together

### pandas.DataFrame.rmod

**DataFrame.rmod**(other, axis=’columns’, level=None, fill_value=None)

Modulo of dataframe and other, element-wise (binary operator `rmod`).
Equivalent to `other % dataframe`, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters**

- **other**: Series, DataFrame, or constant
  - **axis**: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:

DataFrame.mod

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rmul

DataFrame.rmul (other, axis='columns', level=None, fill_value=None)

Multiplication of dataframe and other, element-wise (binary operator rmul).
Equivalent to other * dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant

axis : {0, 1, ‘index’, ‘columns’}

For Series input, axis to match Series index on

fill_value : None or float value, default None

Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:

DataFrame.mul

Notes

Mismatched indices will be unioned together

pandas.DataFrame.rolling

DataFrame.rolling (window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0)

Provides rolling window calculations.
New in version 0.18.0.

Parameters window : int, or offset
Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size.

If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0

**min_periods** : int, default None

Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, this will default to 1.

**freq** : string or DateOffset object, optional (default None) (DEPRECATED)

Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object.

**center** : boolean, default False

Set the labels at the center of the window.

**win_type** : string, default None

Provide a window type. See the notes below.

**on** : string, optional

For a DataFrame, column on which to calculate the rolling window, rather than the index

New in version 0.19.0.

**axis** : int or string, default 0

**Returns** a Window or Rolling sub-classed for the particular operation

**Notes**

By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting `center=True`.

The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of `resample()` (i.e. using the `mean`).

To learn more about the offsets & frequency strings, please see this link.

The recognized `win_types` are:

- boxcar
- triang
- blackman
- hamming
- bartlett
- parzen
- bohman
- blackmanharris
- nuttall
Examples

```python
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
```

Rolling sum with a window length of 2, using the ‘triang’ window type.

```python
>>> df.rolling(2, win_type='triang').sum()
```

Rolling sum with a window length of 2, min_periods defaults to the window length.

```python
>>> df.rolling(2).sum()
```

Same as above, but explicitly set the min_periods

```python
>>> df.rolling(2, min_periods=1).sum()
```

A ragged (meaning not-a-regular frequency), time-indexed DataFrame

```python
>>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
... index = [pd.Timestamp('20130101 09:00:00'),
... pd.Timestamp('20130101 09:00:02'),
... pd.Timestamp('20130101 09:00:03'),
... pd.Timestamp('20130101 09:00:05'),
... pd.Timestamp('20130101 09:00:06')])
```
Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1.

```python
>>> df.rolling('2s').sum()
```

### pandas.DataFrame.round

**DataFrame.round**(decimals=0, \*args, **kwargs)

Round a DataFrame to a variable number of decimal places.

New in version 0.17.0.

**Parameters decimals** : int, dict, Series

Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if decimals is a dict-like, or in the index if decimals is a Series. Any columns not included in decimals will be left as is. Elements of decimals which are not columns of the input will be ignored.

**Returns** DataFrame object

**See also:**

numpy.around, Series.round

**Examples**

```python
>>> df = pd.DataFrame(np.random.random((3, 3)),
... columns=['A', 'B', 'C'], index=['first', 'second', 'third'])
>>> df.rolling('2s').sum()
```

```python
>>> df.round(2)
```
```python
import pandas as pd

data = pd.DataFrame({'A': [0.03, 0.04, 0.88], 'B': [0.992815, 0.645646, 0.149370], 'C': [0.17, 0.58, 0.49]})

>>> df.round({'A': 1, 'C': 2})
 A B C
first 0.0 0.00 0.17
second 0.0 0.65 0.58
third 0.9 0.49 0.49

decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C'])

>>> df.round(decimals)
 A B C
first 0.0 1 0.17
second 0.0 1 0.58
third 0.9 0 0.49
```

**pandas.DataFrame.rpow**

DataFrame.rpow(other, axis='columns', level=None, fill_value=None)

Exponential power of dataframe and other, element-wise (binary operator rpow).

Equivalent to other ** dataframe, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters**

- **other**: Series, DataFrame, or constant
  - **axis**: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

- **result**: DataFrame

See also:

- **DataFrame.pow**

**Notes**

Mismatched indices will be unioned together

**pandas.DataFrame.rsub**

DataFrame.rsub(other, axis='columns', level=None, fill_value=None)

Subtraction of dataframe and other, element-wise (binary operator rsub).

Equivalent to other - dataframe, but with support to substitute a fill_value for missing data in one of the inputs.
**Parameters**

- **other**: Series, DataFrame, or constant
  - **axis**: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

- **result**: DataFrame

**See also**:

- `DataFrame.sub`

**Notes**

Mismatched indices will be unioned together

---

**pandas.DataFrame.rtruediv**

DataFrame.rtruediv(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator `rtruediv`).

Equivalent to `other / dataframe`, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters**

- **other**: Series, DataFrame, or constant
  - **axis**: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
  - **level**: int or name
    - Broadcast across a level, matching Index values on the passed MultiIndex level

**Returns**

- **result**: DataFrame

**See also**:

- `DataFrame.truediv`

**Notes**

Mismatched indices will be unioned together
pandas.DataFrame.sample

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

Returns a random sample of items from an axis of object.

New in version 0.16.1.

Parameters:

- **n**: int, optional
  Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.

- **frac**: float, optional
  Fraction of axis items to return. Cannot be used with n.

- **replace**: boolean, optional
  Sample with or without replacement. Default = False.

- **weights**: str or ndarray-like, optional
  Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed.

- **random_state**: int or numpy.random.RandomState, optional
  Seed for the random number generator (if int), or numpy RandomState object.

- **axis**: int or string, optional
  Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels).

Returns

A new object of same type as caller.

Examples

Generate an example Series and DataFrame:

```python
>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0 -0.038497
1 1.820773
2 -0.972766
3 -1.598270
4 -1.095526
dtype: float64

>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()
 A B C D
0 0.016443 -2.318952 -0.566372 -1.028078
1 -1.051921 0.438836 0.658280 0.175797
2 -1.243569 -0.364626 0.215065 0.057736
```
Next extract a random sample from both of these objects...

3 random elements from the Series:

```python
>>> s.sample(n=3)
27 -0.994689
55 -1.049016
67 -0.224565
dtype: float64
```

And a random 10% of the DataFrame with replacement:

```python
>>> df.sample(frac=0.1, replace=True)
 A B C D
35 1.981780 0.142106 1.817165 -0.290805
49 -1.336199 -0.448634 -0.789640 0.217116
40 0.823173 -0.078816 1.009536 1.015108
15 1.421154 -0.055301 -1.922594 -0.019696
 6 -0.148339 0.832938 1.787600 -1.383767
```

### pandas.DataFrame.select

DataFrame.select (crit, axis=0)

Return data corresponding to axis labels matching criteria

**Parameters**
- **crit**: function
  - To be called on each index (label). Should return True or False
- **axis**: int

**Returns**
- **selection**: type of caller

### pandas.DataFrame.select_dtypes

DataFrame.select_dtypes(include=None, exclude=None)

Return a subset of a DataFrame including/excluding columns based on their dtype.

**Parameters**
- **include**, **exclude**: list-like
  - A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these.

**Returns**
- **subset**: DataFrame
  - The subset of the frame including the dtypes in include and excluding the dtypes in exclude.

**Raises**
- **ValueError**
  - If both of include and exclude are empty
  - If include and exclude have overlapping elements
  - If any kind of string dtype is passed in.
Type Error

• If either of `include` or `exclude` is not a sequence

Notes

• To select all numeric types use the numpy dtype `numpy.number`
• To select strings you must use the object dtype, but note that this will return all object dtype columns
• See the numpy dtype hierarchy
• To select Pandas categorical dtypes, use ‘category’

Examples

```python
>>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'),
... 'b': [True, False] * 3,
... 'c': [1.0, 2.0] * 3})
>>> df
 a b c
0 0.3962 True 1
1 0.1459 False 2
2 0.2623 True 1
3 0.0764 False 2
4 -0.9703 True 1
5 -1.2094 False 2

>>> df.select_dtypes(include=['float64'])
 c
0 1
1 2
2 1
3 2
4 1
5 2

>>> df.select_dtypes(exclude=['floating'])
 b
0 True
1 False
2 True
3 False
4 True
5 False
```

`pandas.DataFrame.sem`

DataFrame.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis : {index (0), columns (1)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

**level**: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

**ddof**: int, default 1

degrees of freedom

**numeric_only**: boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

- **sem**: Series or DataFrame (if level specified)

### pandas.DataFrame.set_axis

DataFrame.set_axis(axis, labels)

Public version of axis assignment

### pandas.DataFrame.set_index

DataFrame.set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)

Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object.

**Parameters**

- **keys**: column label or list of column labels / arrays
- **drop**: boolean, default True
  
  Delete columns to be used as the new index
- **append**: boolean, default False
  
  Whether to append columns to existing index
- **inplace**: boolean, default False
  
  Modify the DataFrame in place (do not create a new object)
- **verify_integrity**: boolean, default False
  
  Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method

**Returns**

- **dataframe**: DataFrame

### Examples

```python
>>> indexed_df = df.set_index(['A', 'B'])
>>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]])
>>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]])
```
**pandas.DataFrame.set_value**

`DataFrame.set_value(index, col, value, takeable=False)`

Put single value at passed column and index

**Parameters**

- **index**: row label
- **col**: column label
- **value**: scalar value
- **takeable**: interpret the index/col as indexers, default False

**Returns**

- **frame**: DataFrame
  
  If label pair is contained, will be reference to calling DataFrame, otherwise a new object

**pandas.DataFrame.shift**

`DataFrame.shift(periods=1, freq=None, axis=0)`

Shift index by desired number of periods with an optional time freq

**Parameters**

- **periods**: int
  
  Number of periods to move, can be positive or negative
- **freq**: DateOffset, timedelta, or time rule string, optional
  
  Increment to use from the tseries module or time rule (e.g. ‘EOM’). See Notes.
- **axis**: {0 or ‘index’, 1 or ‘columns’}

**Returns**

- **shifted**: DataFrame

**Notes**

If freq is specified then the index values are shifted but the data is not realigned. That is, use freq if you would like to extend the index when shifting and preserve the original data.

**pandas.DataFrame.skew**

`DataFrame.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return unbiased skew over requested axis Normalized by N-1

**Parameters**

- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
  
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **numeric_only**: boolean, default None
  
  Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
pandas: powerful Python data analysis toolkit, Release 0.19.2

Returns skew: Series or DataFrame (if level specified)

**pandas.DataFrame.slice_shift**

DataFrame.slice_shift(periods=1, axis=0)

Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

**Parameters periods**: int

Number of periods to move, can be positive or negative

Returns shifted: same type as caller

**Notes**

While the slice_shift is faster than shift, you may pay for it later during alignment.

**pandas.DataFrame.sort**

DataFrame.sort(columns=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', **kwargs)

DEPRECATED: use DataFrame.sort_values()

Sort DataFrame either by labels (along either axis) or by the values in column(s)

**Parameters columns**: object

Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index.

**ascending**: boolean or list, default True

Sort ascending vs. descending. Specify list for multiple sort orders

**axis**: {0 or ‘index’, 1 or ‘columns’}, default 0

Sort index/rows versus columns

**inplace**: boolean, default False

Sort the DataFrame without creating a new instance

**kind**: {'quicksort', ‘mergesort’, ‘heapsort’}, optional

This option is only applied when sorting on a single column or label.

**na_position**: {'first', ‘last’} (optional, default=’last’)

‘first’ puts NaNs at the beginning ‘last’ puts NaNs at the end

Returns sorted: DataFrame

**Examples**

```python
>>> result = df.sort(['A', 'B'], ascending=[1, 0])
```
pandas.DataFrame.sort_index

DataFrame.sort_index (axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None)
Sort object by labels (along an axis)

Parameters axis : index, columns to direct sorting

level : int or level name or list of ints or list of level names
    if not None, sort on values in specified index level(s)

ascending : boolean, default True
    Sort ascending vs. descending

inplace : bool, default False
    if True, perform operation in-place

kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
    Choice of sorting algorithm. See also ndarray.np.sort for more information.
    mergesort is the only stable algorithm. For DataFrames, this option is only applied
    when sorting on a single column or label.

na_position : {'first', 'last'}, default 'last'
    first puts NaNs at the beginning, last puts NaNs at the end

sort_remaining : bool, default True
    if true and sorting by level and index is multilevel, sort by other levels too (in
    order) after sorting by specified level

Returns sorted_obj : DataFrame

pandas.DataFrame.sort_values

DataFrame.sort_values (by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
Sort by the values along either axis
New in version 0.17.0.

Parameters by : str or list of str
    Name or list of names which refer to the axis items.

axis : {0 or ‘index’, 1 or ‘columns’}, default 0
    Axis to direct sorting

ascending : bool or list of bool, default True
    Sort ascending vs. descending. Specify list for multiple sort orders. If this is a
    list of bools, must match the length of the by.

inplace : bool, default False
    if True, perform operation in-place

kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also np.sort for more information. 

`mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.

**na_position**: `{'first', 'last'}`, default `last`  

`first` puts NaNs at the beginning, `last` puts NaNs at the end

**Returns** `sorted_obj`: DataFrame

### pandas.DataFrame.sortlevel

DataFrame.sortlevel(*level=0, axis=0, ascending=True, inplace=False, sort_remaining=True*)

Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order)

**Parameters**

- **level**: int
- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
- **ascending**: boolean, default True
- **inplace**: boolean, default False  

Sort the DataFrame without creating a new instance

- **sort_remaining**: boolean, default True  

Sort by the other levels too.

**Returns** `sorted`: DataFrame

**See also:**

DataFrame.sort_index

### pandas.DataFrame.squeeze

DataFrame.squeeze(**kwargs**)

Squeeze length 1 dimensions.

### pandas.DataFrame.stack

DataFrame.stack(*level=-1, dropna=True*)

Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels. The level involved will automatically get sorted.

**Parameters**

- **level**: int, string, or list of these, default last level  

  Level(s) to stack, can pass level name

- **dropna**: boolean, default True  

  Whether to drop rows in the resulting Frame/Series with no valid values

**Returns** `stacked`: DataFrame or Series
Examples

```python
>>> s
 a b
one 1. 2.
two 3. 4.
```
```python
>>> s.stack()
 a b
one 1
 2
two 3
 4
```

**pandas.DataFrame.std**

```python
def pandas.DataFrame.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs):
 """Return sample standard deviation over requested axis."
 """
```

Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters**

- **axis**: {index (0), columns (1)}
  - **skipna**: boolean, default True
    - Exclude NA/null values. If an entire row/column is NA, the result will be NA
  - **level**: int or level name, default None
    - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
  - **ddof**: int, default 1
    - degrees of freedom
  - **numeric_only**: boolean, default None
    - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

- **std**: Series or DataFrame (if level specified)

**pandas.DataFrame.sub**

```python
def pandas.DataFrame.sub(other, axis='columns', level=None, fill_value=None):
 """Subtraction of dataframe and other, element-wise (binary operator sub)."
 """
```

Equivalent to dataframe -other, but with support to substitute a fill_value for missing data in one of the inputs.

**Parameters**

- **other**: Series, DataFrame, or constant
  - **axis**: {0, 1, ‘index’, ‘columns’}
    - For Series input, axis to match Series index on
  - **fill_value**: None or float value, default None
    - Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:
DataFrame.rsub

Notes
Mismatched indices will be unioned together

pandas.DataFrame.subtract

DataFrame.subtract (other, axis='columns', level=None, fill_value=None)
Subtraction of dataframe and other, element-wise (binary operator sub).
Equivalent to dataframe - other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns result : DataFrame

See also:
DataFrame.rsub

Notes
Mismatched indices will be unioned together

pandas.DataFrame.sum

DataFrame.sum (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the sum of the values for the requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

**numeric_only** : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns sum** : Series or DataFrame (if level specified)

**pandas.DataFrame.swapaxes**

*DataFrame.swapaxes*(axis1, axis2, copy=True)

Interchange axes and swap values axes appropriately

**Returns y** : same as input

**pandas.DataFrame.swaplevel**

*DataFrame.swaplevel*(i=-2, j=-1, axis=0)

Swap levels i and j in a MultiIndex on a particular axis

**Parameters i, j** : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.

**Returns swapped** : type of caller (new object)

Changed in version 0.18.1: The indexes i and j are now optional, and default to the two innermost levels of the index.

**pandas.DataFrame.tail**

*DataFrame.tail*(n=5)

Returns last n rows

**pandas.DataFrame.take**

*DataFrame.take*(indices, axis=0, convert=True, is_copy=True, **kwargs)

Analogous to ndarray.take

**Parameters indices** : list / array of ints

axis : int, default 0

convert : translate neg to pos indices (default)

is_copy : mark the returned frame as a copy

**Returns taken** : type of caller
DataFrame.to_clipboard

DataFrame.to_clipboard(excel=None, sep=None, **kwargs)

Attempt to write text representation of object to the system clipboard. This can be pasted into Excel, for example.

**Parameters**

- **excel**: boolean, defaults to True
  - If True, use the provided separator, writing in a csv format for allowing easy pasting into Excel. If False, write a string representation of the object to the clipboard.
- **sep**: optional, defaults to tab
- **other keywords are passed to to_csv**

**Notes**

**Requirements for your platform**

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none

DataFrame.to_csv

DataFrame.to_csv(path_or_buf=None, sep=',', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression=None, quoting=None, quotechar='', line_terminator='
', chunksize=None, tupleize_cols=False, date_format=None, doublequote=True, escapechar=None, decimal='. ')

Write DataFrame to a comma-separated values (csv) file.

**Parameters**

- **path_or_buf**: string or file handle, default None
  - File path or object, if None is provided the result is returned as a string.
- **sep**: character, default ‘,’
  - Field delimiter for the output file.
- **na_rep**: string, default ‘’
  - Missing data representation
- **float_format**: string, default None
  - Format string for floating point numbers
- **columns**: sequence, optional
  - Columns to write
- **header**: boolean or list of string, default True
  - Write out column names. If a list of string is given it is assumed to be aliases for the column names
- **index**: boolean, default True
  - Write row names (index)
index_label : string or sequence, or False, default None

Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if
the DataFrame uses MultiIndex. If False do not print fields for index names. Use
index_label=False for easier importing in R

date : str
Python write mode, default ’w’

coding : string, optional

A string representing the encoding to use in the output file, defaults to ‘ascii’ on
Python 2 and ‘utf-8’ on Python 3.

compression : string, optional

A string representing the compression to use in the output file, allowed values are
’gzip’, ’bz2’, ’xz’, only used when the first argument is a filename

delimiter : string, default ’

The newline character or character sequence to use in the output file

quoting : optional constant from csv module

defaults to csv.QUOTE_MINIMAL. If you have set a float_format then floats are
converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as
non-numeric

quotechar : string (length 1), default ‘”’

character used to quote fields

doublequote : boolean, default True

Control quoting of quotechar inside a field

escapechar : string (length 1), default None

charaacter used to escape sep and quotechar when appropriate

chunksize : int or None

rows to write at a time

tupleize_cols : boolean, default False

write multi_index columns as a list of tuples (if True) or new (expanded format)
if False)

date_format : string, default None

Format string for datetime objects

decimal: string, default ‘.’

Character recognized as decimal separator. E.g. use ‘,’ for European data

New in version 0.16.0.

pandas.DataFrame.to_dense

DataFrame.to_dense()

Return dense representation of NDFrame (as opposed to sparse)
**pandas: powerful Python data analysis toolkit, Release 0.19.2**

**pandas.DataFrame.to_dict**

DataFrame.to_dict(orient='dict')

Convert DataFrame to dictionary.

**Parameters**

orient : str {'dict', 'list', 'series', 'split', 'records', 'index'}

Determines the type of the values of the dictionary.

- dict (default) : dict like {column -> {index -> value}}
- list : dict like {column -> [values]}
- series : dict like {column -> Series(values)}
- split : dict like {index -> [index], columns -> [columns], data -> [values]}
- records : list like [{column -> value}, ... , {column -> value}]
- index : dict like {index -> {column -> value}}

New in version 0.17.0.

Abbreviations are allowed. *s* indicates *series* and *sp* indicates *split*.

**Returns**

result : dict like {column -> {index -> value}}

**pandas.DataFrame.to_excel**

DataFrame.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True)

Write DataFrame to a excel sheet

**Parameters**

excel_writer : string or ExcelWriter object

File path or existing ExcelWriter

sheet_name : string, default ‘Sheet1’

Name of sheet which will contain DataFrame

na_rep : string, default ‘’

Missing data representation

float_format : string, default None

Format string for floating point numbers

columns : sequence, optional

Columns to write

header : boolean or list of string, default True

Write out column names. If a list of string is given it is assumed to be aliases for the column names

index : boolean, default True

Write row names (index)

index_label : string or sequence, default None
Column label for index column(s) if desired. If None is given, and header and index are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

**startrow** :
upper left cell row to dump data frame

**startcol** :
upper left cell column to dump data frame

**engine** : string, default None
write engine to use - you can also set this via the options
io.excel.xlsx.writer, io.excel.xls.writer, and
io.excel.xlsm.writer.

**merge_cells** : boolean, default True
Write MultiIndex and Hierarchical Rows as merged cells.

**encoding**: string, default None
encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively.

**inf_rep** : string, default ‘inf’
Representation for infinity (there is no native representation for infinity in Excel)

**Notes**

If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook:

```python
>>> writer = ExcelWriter('output.xlsx')
>>> df1.to_excel(writer,'Sheet1')
>>> df2.to_excel(writer,'Sheet2')
>>> writer.save()
```

For compatibility with to_csv, to_excel serializes lists and dicts to strings before writing.

**pandas.DataFrame.to_gbq**

DataFrame.to_gbq (**destination_table**, **project_id**, chunksize=10000, **verbose**=True, **reauth**=False,
**if_exists**='fail', **private_key**=None)
Write a DataFrame to a Google BigQuery table.

THIS IS AN EXPERIMENTAL LIBRARY

**Parameters**

**dataframe** : DataFrame
DataFrame to be written

**destination_table** : string
Name of table to be written, in the form ‘dataset.tablename’

**project_id** : str
Google BigQuery Account project ID.
chunksize : int (default 10000)
Number of rows to be inserted in each chunk from the dataframe.

verbose : boolean (default True)
Show percentage complete

reauth : boolean (default False)
Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used.

if_exists : {'fail', 'replace', 'append'}, default 'fail'
‘fail’: If table exists, do nothing. ‘replace’: If table exists, drop it, recreate it, and insert data. ‘append’: If table exists, insert data. Create if does not exist.

private_key : str (optional)
Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host)

New in version 0.17.0.

pandas.DataFrame.to_hdf

DataFrame.to_hdf (path_or_buf, key, **kwargs)
Write the contained data to an HDF5 file using HDFStore.

Parameters path_or_buf : the path (string) or HDFStore object
key : string
identifier for the group in the store

mode : optional, {'a', 'w', 'r+'}, default 'a'
'w' Write; a new file is created (an existing file with the same name would be deleted).
'a' Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
'r+' It is similar to 'a', but the file must already exist.

format : {'fixed(f)|table(t)', default is 'fixed'
fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False
For Table formats, append the input data to the existing

data_columns : list of columns, or True, default None
List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.
Applicable only to format='table'.

35.4. DataFrame
complevel : int, 1-9, default 0
If a complib is specified compression will be applied where possible

complib : {'zlib', 'bz2', 'lzma', 'blosc'}, default None
If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False
If applying compression use the fletcher32 checksum

dropna : boolean, default False.
If true, ALL nan rows will not be written to store.

```
pandas.DataFrame.to_html
```

DataFrame.to_html (buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False, notebook=False, decimal='. ', border=None)

Render a DataFrame as an HTML table.

to_html-specific options:

bold_rows [boolean, default True] Make the row labels bold in the output
classes [str or list or tuple, default None] CSS class(es) to apply to the resulting html table
escape [boolean, default True] Convert the characters <, >, and & to HTML-safe sequences.
max_rows [int, optional] Maximum number of rows to show before truncating. If None, show all.
max_cols [int, optional] Maximum number of columns to show before truncating. If None, show all.
decimal [string, default ‘.’] Character recognized as decimal separator, e.g. ‘,’ in Europe

Parameters

buf : StringIO-like, optional
buffer to write to
columns : sequence, optional
the subset of columns to write; default None writes all columns
col_space : int, optional
the minimum width of each column
header : bool, optional
whether to print column labels, default True
index : bool, optional
whether to print index (row) labels, default True
**na_rep**: string, optional

string representation of NAN to use, default ‘NaN’

**formatters**: list or dict of one-parameter functions, optional

formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

**float_format**: one-parameter function, optional

formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.

**sparsify**: bool, optional

Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True

**index_names**: bool, optional

Prints the names of the indexes, default True

**line_width**: int, optional

Width to wrap a line in characters, default no wrap

**justify**: {'left', 'right'}, default None

Left or right-justify the column labels. If None uses the option from the print configuration (controlled by set_option), ‘right’ out of the box.

**Returns** formatted: string (or unicode, depending on data and options)

### pandas.DataFrame.to_json

DataFrame.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

**Parameters** path_or_buf : the path or buffer to write the result string

if this is None, return a StringIO of the converted string

orient : string

- Series
  - default is ‘index’
  - allowed values are: {'split','records','index’}
- DataFrame
  - default is ‘columns’
  - allowed values are: {'split','records','index','columns','values’}
- The format of the JSON string
  - split : dict like {index -> [index], columns -> [columns], data -> [values]}

35.4. DataFrame 1407
- records : list like [{column -> value}, ... , {column -> value}]
- index : dict like {index -> {column -> value}}
- columns : dict like {column -> {index -> value}}
- values : just the values array

date_format : {'epoch', 'iso'}
Type of date conversion. epoch = epoch milliseconds, iso’ = ISO8601, default is epoch.

double_precision : The number of decimal places to use when encoding floating point values, default 10.

force_ascii : force encoded string to be ASCII, default True.

date_unit : string, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

default_handler : callable, default None
Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

dates : boolean, default False
If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like.

New in version 0.19.0.

Returns same type as input object with filtered info axis

pandas.DataFrame.to_latex

DataFrame.to_latex(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparse=False, index_names=True, bold_rows=True, column_format=None, longtable=None, escape=None, encoding=None, decimal='.', )
Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires usepackage{booktabs}.

to_latex-specific options:

bold_rows [boolean, default True] Make the row labels bold in the output

column_format [str, default None] The columns format as specified in LaTeX table format e.g ‘rcl’ for 3 columns

longtable [boolean, default will be read from the pandas config module] default: False Use a longtable environment instead of tabular. Requires adding a usepackage{longtable} to your LaTeX preamble.

escape [boolean, default will be read from the pandas config module] default: True When set to False prevents from escaping latex special characters in column names.

encoding [str, default None] A string representing the encoding to use in the output file, defaults to ‘ascii’ on Python 2 and ‘utf-8’ on Python 3.
**decimal** [string, default ‘.’] Character recognized as decimal separator, e.g. ‘,’ in Europe

New in version 0.18.0.

**Parameters**

- **buf**: StringIO-like, optional
  - buffer to write to
- **columns**: sequence, optional
  - the subset of columns to write; default None writes all columns
- **col_space**: int, optional
  - the minimum width of each column
- **header**: bool, optional
  - whether to print column labels, default True
- **index**: bool, optional
  - whether to print index (row) labels, default True
- **na_rep**: string, optional
  - string representation of NaN to use, default ‘NaN’
- **formatters**: list or dict of one-parameter functions, optional
  - formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.
- **float_format**: one-parameter function, optional
  - formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.
- **sparsify**: bool, optional
  - Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row, default True
- **index_names**: bool, optional
  - Prints the names of the indexes, default True
- **line_width**: int, optional
  - Width to wrap a line in characters, default no wrap

**Returns**

- **formatted**: string (or unicode, depending on data and options)

---

**pandas.DataFrame.to_msgpack**

DataFrame.to_msgpack(*path_or_buf=None, encoding='utf-8', **kwargs*)

msgpack (serialize) object to input file path

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

**Parameters**

- **path**: string
  - File path, buffer-like, or None
  - if None, return generated string
- **append**: boolean whether to append to an existing msgpack
pandas: powerful Python data analysis toolkit, Release 0.19.2

    (default is False)
    compress : type of compressor (zlib or blosc), default to None (no
            compression)

pandas.DataFrame.to_panel

DataFrame.to_panel()  
Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.
Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later

    Returns panel : Panel

pandas.DataFrame.to_period

DataFrame.to_period(freq=None, axis=0, copy=True)  
Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if
not passed)

    Parameters freq : string, default
        axis : {0 or ‘index’, 1 or ‘columns’}, default 0
            The axis to convert (the index by default)
        copy : boolean, default True
            If False then underlying input data is not copied

    Returns ts : TimeSeries with PeriodIndex

pandas.DataFrame.to_pickle

DataFrame.to_pickle(path)  
Pickle (serialize) object to input file path.

    Parameters path : string
        File path

pandas.DataFrame.to_records

DataFrame.to_records(index=True, convert_datetime64=True)  
Convert DataFrame to record array. Index will be put in the ‘index’ field of the record array if requested

    Parameters index : boolean, default True
        Include index in resulting record array, stored in ‘index’ field
        convert_datetime64 : boolean, default True
            Whether to convert the index to datetime.datetime if it is a DatetimeIndex

    Returns y : recarray
**pandas.DataFrame.to_sparse**

Dataframe.to_sparse(fill_value=None, kind='block')

Convert to SparseDataFrame

Parameters

- **fill_value**: float, default NaN
- **kind**: {‘block’, ‘integer’}

Returns y : SparseDataFrame

**pandas.DataFrame.to_stata**

Dataframe.to_stata(fname, convert_dates=None, write_index=True, encoding='latin-1', byteorder=None, time_stamp=None, dataset_label=None, variable_labels=None)

A class for writing Stata binary dta files from array-like objects

Parameters

- **fname**: str or buffer
  - String path of file-like object
- **convert_dates**: dict
  - Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are ‘tc’, ‘td’, ‘tm’, ‘tw’, ‘th’, ‘tq’, ‘ty’. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to ‘tc’. Raises NotImplementedError if a datetime column has timezone information
- **write_index**: bool
  - Write the index to Stata dataset.
- **encoding**: str
  - Default is latin-1. Unicode is not supported
- **byteorder**: str
  - Can be “>”, “<”, “little”, or “big”. default is sys.byteorder
- **time_stamp**: datetime
  - A datetime to use as file creation date. Default is the current time.
- **dataset_label**: str
  - A label for the data set. Must be 80 characters or smaller.
- **variable_labels**: dict
  - Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller.

New in version 0.19.0.

Raises

- **NotImplementedError**
  - If datetimes contain timezone information
  - Column dtype is not representable in Stata
- **ValueError**
• Columns listed in convert_dates are not either datetime64[ns] or datet ime.datetime
• Column listed in convert_dates is not in DataFrame
• Categorical label contains more than 32,000 characters

New in version 0.19.0.

Examples

```python
>>> writer = StataWriter('./data_file.dta', data)
>>> writer.write_file()

Or with dates

```python
>>> writer = StataWriter('./date_data_file.dta', data, {2: 'tw'})
``` python
```
>>> writer.write_file()

pandas.DataFrame.to_string

DataFrame.to_string(buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False)

Render a DataFrame to a console-friendly tabular output.

Parameters

buf : StringIO-like, optional
    buffer to write to

columns : sequence, optional
    the subset of columns to write; default None writes all columns

col_space : int, optional
    the minimum width of each column

header : bool, optional
    whether to print column labels, default True

index : bool, optional
    whether to print index (row) labels, default True

na_rep : string, optional
    string representation of NaN to use, default ‘NaN’

formatters : list or dict of one-parameter functions, optional
    formatter functions to apply to columns’ elements by position or name, default None. The result of each function must be a unicode string. List must be of length equal to the number of columns.

float_format : one-parameter function, optional
    formatter function to apply to columns’ elements if they are floats, default None. The result of this function must be a unicode string.
```
sparsify : bool, optional
 Set to False for a DataFrame with a hierarchical index to print every multiindex
 key at each row, default True

index_names : bool, optional
 Prints the names of the indexes, default True

line_width : int, optional
 Width to wrap a line in characters, default no wrap

justify : {'left', 'right'}, default None
 Left or right-justify the column labels. If None uses the option from the print
 configuration (controlled by set_option), ‘right’ out of the box.

Returns formatted : string (or unicode, depending on data and options)

pandas.DataFrame.to_timestamp

DataFrame.to_timestamp(freq=None, how='start', axis=0, copy=True)
 Cast to DatetimeIndex of timestamps, at beginning of period

Parameters freq : string, default frequency of PeriodIndex
 Desired frequency

how : {'s', 'e', 'start', 'end'}
 Convention for converting period to timestamp; start of period vs. end

axis : {0 or ‘index’, 1 or ‘columns’}, default 0
 The axis to convert (the index by default)

copy : boolean, default True
 If false then underlying input data is not copied

Returns df : DataFrame with DatetimeIndex

pandas.DataFrame.to_xarray

DataFrame.to_xarray()
 Return an xarray object from the pandas object.

Returns a DataArray for a Series
 a Dataset for a DataFrame
 a DataArray for higher dims

Notes

See the xarray docs
Examples

```python
>>> df = pd.DataFrame({'A': [1, 1, 2],
                    'B': ['foo', 'bar', 'foo'],
                    'C': np.arange(4.,7)})

>>> df
   A   B   C
0  1  foo  4.0
1  1  bar  5.0
2  2  foo  6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:
  * index     (index) int64 0 1 2
Data variables:
  A     (index) int64 1 1 2
  B     (index) object 'foo' 'bar' 'foo'
  C     (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A': [1, 1, 2],
                    'B': ['foo', 'bar', 'foo'],
                    'C': np.arange(4.,7)}).set_index(['B','A'])

>>> df
   C
B A
foo 1 4.0
bar 1 5.0
foo 2 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:
  * B     (B) object 'bar' 'foo'
  * A     (A) int64 1 2
Data variables:
  C     (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
                items=list('ABCD'),
                major_axis=pd.date_range('20130101', periods=3),
                minor_axis=['first', 'second'])

>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[ 0,  1],
       [ 2,  3],
       [ 4,  5],
       [ 6,  7]])
```

pandas: powerful Python data analysis toolkit, Release 0.19.2

Chapter 35. API Reference
pandas.DataFrame.transpose

DataFrame.transpose(*args, **kwargs)

Transpose index and columns

pandas.DataFrame.truediv

DataFrame.truediv(other, axis='columns', level=None, fill_value=None)

Floating division of dataframe and other, element-wise (binary operator truediv).

Equivalent to dataframe / other, but with support to substitute a fill_value for missing data in one of the inputs.

Parameters

other : Series, DataFrame, or constant
axis : {0, 1, ‘index’, ‘columns’}
For Series input, axis to match Series index on
fill_value : None or float value, default None
Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing
level : int or name
Broadcast across a level, matching Index values on the passed MultiIndex level

Returns

result : DataFrame

See also:
DataFrame.rtruediv

Notes

Mismatched indices will be unioned together
pandas.DataFrame.truncate

DataFrame.truncate(before=None, after=None, axis=None, copy=True)

Truncates a sorted NDFrame before and/or after some particular index value. If the axis contains only
datetime values, before/after parameters are converted to datetime values.

- **Parameters**
 - **before**: date
 - Truncate before index value
 - **after**: date
 - Truncate after index value
 - **axis**: the truncation axis, defaults to the stat axis
 - **copy**: boolean, default is True,
 - return a copy of the truncated section

- **Returns**
 - **truncated**: type of caller

pandas.DataFrame.tshift

DataFrame.tshift(periods=1, freq=None, axis=0)

Shift the time index, using the index’s frequency if available.

- **Parameters**
 - **periods**: int
 - Number of periods to move, can be positive or negative
 - **freq**: DateOffset, timedelta, or time rule string, default None
 - Increment to use from the tseries module or time rule (e.g. ‘EOM’)
 - **axis**: int or basestring
 - Corresponds to the axis that contains the Index

- **Returns**
 - **shifted**: NDFrame

Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those
attributes exist, a ValueError is thrown

pandas.DataFrame.tz_convert

DataFrame.tz_convert(tz, axis=0, level=None, copy=True)

Convert tz-aware axis to target time zone.

- **Parameters**
 - **tz**: string or pytz.timezone object
 - **axis**: the axis to convert
 - **level**: int, str, default None
 - If axis ia a MultiIndex, convert a specific level. Otherwise must be None
 - **copy**: boolean, default True
Also make a copy of the underlying data

Raises **TypeError**
If the axis is tz-naive.

pandas.DataFrame.tz_localize

DataFrame.tz_localize (*args, **kwargs*)**
Localize tz-naive TimeSeries to target time zone.

Parameters
- **tz** : string or pytz.timezone object
 - the axis to localize
- **axis** : int, str, default None
 - If axis ia a MultiIndex, localize a specific level. Otherwise must be None
- **level** : int, str, default None
 - Also make a copy of the underlying data
- **copy** : boolean, default True
 - ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
 - ‘infer’ will attempt to infer fall dst-transition hours based on order
 - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times)
 - ‘NaT’ will return NaT where there are ambiguous times
 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times
- **infer_dst** : boolean, default False (DEPRECATED)
 - Attempt to infer fall dst-transition hours based on order

Raises **TypeError**
If the TimeSeries is tz-aware and tz is not None.

pandas.DataFrame.unstack

DataFrame.unstack (level=-1, fill_value=None*)**
Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted.

Parameters
- **level** : int, string, or list of these, default -1 (last level)
 - Level(s) of index to unstack, can pass level name
- **fill_value** : replace NaN with this value if the unstack produces missing values

Returns **unstacked** : DataFrame or Series

See also:

- **DataFrame.pivot**
Pivot a table based on column values.
Dataframe.stack Pivot a level of the column labels (inverse operation from `unstack`).

Examples

```python
>>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'),
... ('two', 'a'), ('two', 'b')])
>>> s = pd.Series(np.arange(1.0, 5.0), index=index)
>>> s
one a 1.0
   b 2.0
two a 3.0
    b 4.0
dtype: float64
```

```python
>>> s.unstack(level=-1)
a  b
one 1.0 2.0
two 3.0 4.0
```

```python
>>> s.unstack(level=0)
one  two
   a 1.0 3.0
   b 2.0 4.0
```

```python
>>> df = s.unstack(level=0)
>>> df.unstack()
one a 1.0
   b 2.0
two a 3.0
   b 4.0
dtype: float64
```

pandas.DataFrame.update

DataFrame.

update(o**ther**, **join**='left', **overwrite**=True, **filter_func**=None, **raise_conflict**=False)

Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices

Parameters

- **other**: DataFrame, or object coercible into a DataFrame
- **join**: {'left'}, default ‘left’
- **overwrite**: boolean, default True
 - If True then overwrite values for common keys in the calling frame
- **filter_func**: callable(1d-array) -> 1d-array<boolean>, default None
 - Can choose to replace values other than NA. Return True for values that should be updated
- **raise_conflict**: boolean
 - If True, will raise an error if the DataFrame and other both contain data in the same place.
pandas.DataFrame.var

`DataFrame.var(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)`
Return unbiased variance over requested axis. Normalized by N-1 by default. This can be changed using the ddof argument

- **Parameters**
 - **axis**: {index (0), columns (1)}
 - **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 - **level**: int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
 - **ddof**: int, default 1
 degrees of freedom
 - **numeric_only**: boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

- **Returns**
 - **var**: Series or DataFrame (if level specified)

pandas.DataFrame.where

`DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)`
Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

- **Parameters**
 - **cond**: boolean NDFrame, array or callable
 If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

 New in version 0.18.1.

 A callable can be used as cond.
 - **other**: scalar, NDFrame, or callable
 If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

 New in version 0.18.1.

 A callable can be used as other.
 - **inplace**: boolean, default False
 Whether to perform the operation in place on the data
 - **axis**: alignment axis if needed, default None
 - **level**: alignment level if needed, default None
 - **try_cast**: boolean, default False
try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

See also:

DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,df2) is equivalent to np.where(m,df1,df2).

For further details and examples see the where documentation in indexing.

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0  NaN
1  1.0
2  2.0
3  3.0
4  4.0

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
A B
0  0 -1
1 -2  3
2 -4 -5
3  6 -7
4 -8  9

>>> df.where(m, -df) == np.where(m, df, -df)
A B
0  True True
1  True True
2  True True
3  True True
4  True True

>>> df.where(m, -df) == df.mask(~m, -df)
A B
0  True True
1  True True
2  True True
3  True True
4  True True
```
pandas.DataFrame.xs

DataFrame.xs (key, axis=0, level=None, drop_level=True)

Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Defaults to cross-section on the rows (axis=0).

Parameters key : object

Some label contained in the index, or partially in a MultiIndex

axis : int, default 0

Axis to retrieve cross-section on

level : object, defaults to first n levels (n=1 or len(key))

In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position.

drop_level : boolean, default True

If False, returns object with same levels as self.

Returns xs : Series or DataFrame

Notes

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of xs functionality, see MultiIndex Slicers

Examples

```python
df
A B C D
first second third
bar one 1 4 1 8 9
two 1 7 5 5 0
baz one 1 6 6 8 0
two 2 5 3 5 3
>>> df.xs(('baz', 'three'))
35.4. DataFrame
```

35.4. DataFrame
Attributes and underlying data

Axes

- **index**: row labels
- **columns**: column labels

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.as_matrix([columns])</td>
<td>Convert the frame to its Numpy-array representation.</td>
</tr>
<tr>
<td>DataFrame.dtypes</td>
<td>Return the dtypes in this object.</td>
</tr>
<tr>
<td>DataFrame.ftypes</td>
<td>Return the ftypes (indication of sparse/dense and dtype) in this object.</td>
</tr>
<tr>
<td>DataFrame.get_dtypes()</td>
<td>Return the counts of dtypes in this object.</td>
</tr>
<tr>
<td>DataFrame.get_fatypes()</td>
<td>Return the counts of ftypes in this object.</td>
</tr>
<tr>
<td>DataFrame.select_dtypes([include, exclude])</td>
<td>Return a subset of a DataFrame including/excluding columns based on their dtype.</td>
</tr>
<tr>
<td>DataFrame.values</td>
<td>Numpy representation of NDFrame</td>
</tr>
<tr>
<td>DataFrame.axes</td>
<td>Return a list with the row axis labels and column axis labels as the only members.</td>
</tr>
<tr>
<td>DataFrame.ndim</td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td>DataFrame.size</td>
<td>number of elements in the NDFrame</td>
</tr>
<tr>
<td>DataFrame.shape</td>
<td>Return a tuple representing the dimensionality of the DataFrame.</td>
</tr>
<tr>
<td>DataFrame.memory_usage([index, deep])</td>
<td>Memory usage of DataFrame columns.</td>
</tr>
</tbody>
</table>

Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.astype(dtype[, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>DataFrame.convert_objects([convert_dates, ...])</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>DataFrame.copy([deep])</td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td>DataFrame.isnull()</td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td>DataFrame.notnull()</td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
</tbody>
</table>

Indexing, iteration
DataFrame.head([n])
Returns first n rows

DataFrame.at
Fast label-based scalar accessor

DataFrame.iat
Fast integer location scalar accessor.

DataFrame.ix
A primarily label-location based indexer, with integer position fallback.

DataFrame.loc
Purely label-location based indexer for selection by label.

DataFrame.iloc
Purely integer-location based indexing for selection by position.

DataFrame.insert(loc, column, value[, ...]) Insert column into DataFrame at specified location.

DataFrame.__iter__()
Iterate over infor axis

DataFrame.iteritems()
Iterator over (column name, Series) pairs.

DataFrame.iterrows()
Iterate over DataFrame rows as (index, Series) pairs.

DataFrame.lookup(row_labels, col_labels) Label-based “fancy indexing” function for DataFrame.

DataFrame.pop(item) Return item and drop from frame.

DataFrame.tail([n])
Returns last n rows

DataFrame.xs(key[, axis, level, drop_level]) Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.

DataFrame.isin(values) Return boolean DataFrame showing whether each element in the DataFrame is contained in values.

DataFrame.where(cond[, other, inplace, ...]) Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

DataFrame.mask(cond[, other, inplace, axis, ...]) Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

DataFrame.query(expr[, inplace]) Query the columns of a frame with a boolean expression.

pandas.DataFrame.__iter__

DataFrame.__iter__()
Iterate over infor axis

For more information on .at, .iat, .ix, .loc, and .iloc, see the indexing documentation.

Binary operator functions

DataFrame.add(other[, axis, level, fill_value]) Addition of dataframe and other, element-wise (binary operator add).

DataFrame.sub(other[, axis, level, fill_value]) Subtraction of dataframe and other, element-wise (binary operator sub).

DataFrame.mul(other[, axis, level, fill_value]) Multiplication of dataframe and other, element-wise (binary operator mul).

DataFrame.div(other[, axis, level, fill_value]) Floating division of dataframe and other, element-wise (binary operator truediv).

DataFrame.truediv(other[, axis, level, ...]) Floating division of dataframe and other, element-wise (binary operator truediv).

DataFrame.floordiv(other[, axis, level, ...]) Integer division of dataframe and other, element-wise (binary operator floordiv).

Continued on next page
Table 35.55 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.mod(other[, axis, level, fill_value])</td>
<td>Modulo of dataframe and other, element-wise (binary operator \texttt{mod}).</td>
</tr>
<tr>
<td>DataFrame.pow(other[, axis, level, fill_value])</td>
<td>Exponential power of dataframe and other, element-wise (binary operator \texttt{pow}).</td>
</tr>
<tr>
<td>DataFrame.radd(other[, axis, level, fill_value])</td>
<td>Addition of dataframe and other, element-wise (binary operator \texttt{radd}).</td>
</tr>
<tr>
<td>DataFrame.rsub(other[, axis, level, fill_value])</td>
<td>Subtraction of dataframe and other, element-wise (binary operator \texttt{rsub}).</td>
</tr>
<tr>
<td>DataFrame.rmul(other[, axis, level, fill_value])</td>
<td>Multiplication of dataframe and other, element-wise (binary operator \texttt{rmul}).</td>
</tr>
<tr>
<td>DataFrame.rdiv(other[, axis, level, fill_value])</td>
<td>Floating division of dataframe and other, element-wise (binary operator \texttt{rtruediv}).</td>
</tr>
<tr>
<td>DataFrame.rtruediv(other[, axis, level, ...])</td>
<td>Floating division of dataframe and other, element-wise (binary operator \texttt{rtruediv}).</td>
</tr>
<tr>
<td>DataFrame.rfloordiv(other[, axis, level, ...])</td>
<td>Integer division of dataframe and other, element-wise (binary operator \texttt{rfloordiv}).</td>
</tr>
<tr>
<td>DataFrame.rmod(other[, axis, level, fill_value])</td>
<td>Modulo of dataframe and other, element-wise (binary operator \texttt{rmod}).</td>
</tr>
<tr>
<td>DataFrame.rpow(other[, axis, level, fill_value])</td>
<td>Exponential power of dataframe and other, element-wise (binary operator \texttt{rpow}).</td>
</tr>
<tr>
<td>DataFrame.lt(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods \texttt{lt}.</td>
</tr>
<tr>
<td>DataFrame.gt(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods \texttt{gt}.</td>
</tr>
<tr>
<td>DataFrame.le(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods \texttt{le}.</td>
</tr>
<tr>
<td>DataFrame.ge(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods \texttt{ge}.</td>
</tr>
<tr>
<td>DataFrame.ne(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods \texttt{ne}.</td>
</tr>
<tr>
<td>DataFrame.eq(other[, axis, level])</td>
<td>Wrapper for flexible comparison methods \texttt{eq}.</td>
</tr>
<tr>
<td>DataFrame.combine(other, func[, fill_value, ...])</td>
<td>Add two DataFrame objects and do not propagate NaN values, so if for a</td>
</tr>
<tr>
<td>DataFrame.combine_first(other)</td>
<td>Combine two DataFrame objects and default to non-null values in frame calling the method.</td>
</tr>
</tbody>
</table>

Function application, GroupBy & Window

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.apply(func[, axis, broadcast, ...])</td>
<td>Applies function along input axis of DataFrame.</td>
</tr>
<tr>
<td>DataFrame.applymap(func)</td>
<td>Apply a function to a DataFrame that is intended to operate elementwise, i.e.</td>
</tr>
<tr>
<td>DataFrame.groupby([by, axis, level, ...])</td>
<td>Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.</td>
</tr>
<tr>
<td>DataFrame.rolling(window[, min_periods, ...])</td>
<td>Provides rolling window calculations.</td>
</tr>
<tr>
<td>DataFrame.expanding([min_periods, freq, ...])</td>
<td>Provides expanding transformations.</td>
</tr>
<tr>
<td>DataFrame.ewm([com, span, halflife, alpha, ...])</td>
<td>Provides exponential weighted functions</td>
</tr>
</tbody>
</table>

Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.abs()</td>
<td>Return an object with absolute value taken–only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td>DataFrame.all([axis, bool_only, skipna, level])</td>
<td>Return whether all elements are True over requested axis</td>
</tr>
</tbody>
</table>

Continued on next page
DataFrame.any([axis, bool_only, skipna, level]) Return whether any element is True over requested axis.

DataFrame.clip(lower, upper, axis) Trim values at input threshold(s).

DataFrame.clip_lower(threshold[, axis]) Return copy of the input with values below given value(s) truncated.

DataFrame.clip_upper(threshold[, axis]) Return copy of input with values above given value(s) truncated.

DataFrame.corr([method, min_periods]) Compute pairwise correlation of columns, excluding NA/null values.

DataFrame.corrwith(other[, axis, drop]) Compute pairwise correlation between rows or columns of two DataFrame objects.

DataFrame.count([axis, level, numeric_only]) Return Series with number of non-NA/null observations over requested axis.

DataFrame.cov([min_periods]) Compute pairwise covariance of columns, excluding NA/null values.

DataFrame.cummax([axis, skipna]) Return cumulative max over requested axis.

DataFrame.cummin([axis, skipna]) Return cumulative minimum over requested axis.

DataFrame.cumprod([axis, skipna]) Return cumulative product over requested axis.

DataFrame.cumsum([axis, skipna]) Return cumulative sum over requested axis.

DataFrame.describe([percentiles, include, ...]) Generate various summary statistics, excluding NaN values.

DataFrame.diff([periods, axis]) 1st discrete difference of object.

DataFrame.eval(expr[, inplace]) Evaluate an expression in the context of the calling DataFrame instance.

DataFrame.kurt([axis, skipna, level, ...]) Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).

DataFrame.mad([axis, skipna, level]) Return the mean absolute deviation of the values for the requested axis.

DataFrame.max([axis, skipna, level, ...]) This method returns the maximum of the values in the object.

DataFrame.mean([axis, skipna, level, ...]) Return the mean of the values for the requested axis.

DataFrame.median([axis, skipna, level, ...]) Return the median of the values for the requested axis.

DataFrame.min([axis, skipna, level, ...]) This method returns the minimum of the values in the object.

DataFrame.mode([axis, numeric_only]) Gets the mode(s) of each element along the axis selected.

DataFrame.pct_change([periods, fill_method, ...]) Percent change over given number of periods.

DataFrame.prod([axis, skipna, level, ...]) Return product of the values for the requested axis.

DataFrame.quantile([q, axis, numeric_only, ...]) Return values at the given quantile over requested axis, a la numpy.percentile.

DataFrame.rank([axis, method, numeric_only, ...]) Compute numerical data ranks (1 through n) along axis.

DataFrame.round([decimals]) Round a DataFrame to a variable number of decimal places.

DataFrame.sem([axis, skipna, level, ddof, ...]) Return unbiased standard error of the mean over requested axis.

DataFrame.skew([axis, skipna, level, ...]) Return unbiased skew over requested axis.

DataFrame.sum([axis, skipna, level, ...]) Return the sum of the values for the requested axis.

DataFrame.std([axis, skipna, level, ddof, ...]) Return sample standard deviation over requested axis.

DataFrame.var([axis, skipna, level, ddof, ...]) Return unbiased variance over requested axis.

Reindexing / Selection / Label manipulation

DataFrame.add_prefix(prefix) Concatenate prefix string with panel items names.

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.add_suffix(suffix)</code></td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td><code>DataFrame.align(other[, join, axis, level, ...])</code></td>
<td>Align two object on their axes with the</td>
</tr>
<tr>
<td><code>DataFrame.drop(labels[, axis, level, ...])</code></td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td><code>DataFrame.drop_duplicates(*args, **kwargs)</code></td>
<td>Return DataFrame with duplicate rows removed, optionally only</td>
</tr>
<tr>
<td><code>DataFrame.duplicated(*args, **kwargs)</code></td>
<td>Return boolean Series denoting duplicate rows, optionally only</td>
</tr>
<tr>
<td><code>DataFrame.equals(other)</code></td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td><code>DataFrame.filter(items, like, regex, axis)</code></td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td><code>DataFrame.first(offset)</code></td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>DataFrame.head([n])</code></td>
<td>Returns first n rows</td>
</tr>
<tr>
<td><code>DataFrame.idxmax(axis, skipna)</code></td>
<td>Return index of first occurrence of maximum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.idxmin(axis, skipna)</code></td>
<td>Return index of first occurrence of minimum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrame.last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>DataFrame.reindex([index, columns])</code></td>
<td>Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>DataFrame.reindex_axis(labels[, axis, ...])</code></td>
<td>Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>DataFrame.reindex_like(other[, method, ...])</code></td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td><code>DataFrame.rename(index, columns)</code></td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>DataFrame.rename_axis(mapper[, axis, copy, ...])</code></td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>DataFrame.reset_index([level, drop, ...])</code></td>
<td>For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to ‘level_0’, ‘level_1’, etc.</td>
</tr>
<tr>
<td><code>DataFrame.sample([n, frac, replace, ...])</code></td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td><code>DataFrame.select(crit[, axis])</code></td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td><code>DataFrame.set_index(keys[, drop, append, ...])</code></td>
<td>Set the DataFrame index (row labels) using one or more existing columns.</td>
</tr>
<tr>
<td><code>DataFrame.tail([n])</code></td>
<td>Returns last n rows</td>
</tr>
<tr>
<td><code>DataFrame.take(indices[, axis, convert, is_copy])</code></td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><code>DataFrame.truncate([before, after, axis, copy])</code></td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
</tbody>
</table>

Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.dropna([axis, how, thresh, ...])</code></td>
<td>Return object with labels on given axis omitted where alternately any</td>
</tr>
<tr>
<td><code>DataFrame.fillna([value, method, axis, ...])</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>DataFrame.replace([to_replace, value, ...])</code></td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
</tbody>
</table>
Reshaping, sorting, transposing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.pivot([index, columns, values])</code></td>
<td>Reshape data (produce a “pivot” table) based on column values.</td>
</tr>
<tr>
<td><code>DataFrame.reorder_levels(order[, axis])</code></td>
<td>Rearrange index levels using input order.</td>
</tr>
<tr>
<td><code>DataFrame.sort_values(by[, axis, ascending, ...])</code></td>
<td>Sort by the values along either axis.</td>
</tr>
<tr>
<td><code>DataFrame.sort_index([axis, level, ...])</code></td>
<td>Sort object by labels (along an axis).</td>
</tr>
<tr>
<td><code>DataFrame.sortlevel([level, axis, ...])</code></td>
<td>Sort multilevel index by chosen axis and primary level.</td>
</tr>
<tr>
<td><code>DataFrame.nlargest(n, columns[, keep])</code></td>
<td>Get the rows of a DataFrame sorted by the n largest values of columns.</td>
</tr>
<tr>
<td><code>DataFrame.nsmallest(n, columns[, keep])</code></td>
<td>Get the rows of a DataFrame sorted by the n smallest values of columns.</td>
</tr>
<tr>
<td><code>DataFrame.swaplevel([i, j, axis])</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis.</td>
</tr>
<tr>
<td><code>DataFrame.stack([level, dropna])</code></td>
<td>Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.</td>
</tr>
<tr>
<td><code>DataFrame.unstack([level, fill_value])</code></td>
<td>Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels.</td>
</tr>
<tr>
<td><code>DataFrame.T</code></td>
<td>Transpose index and columns.</td>
</tr>
<tr>
<td><code>DataFrame.to_panel()</code></td>
<td>Transform long (stacked) format (DataFrame) into wide (3D, Panel) format.</td>
</tr>
<tr>
<td><code>DataFrame.to_xarray()</code></td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td><code>DataFrame.transpose(*args, **kwargs)</code></td>
<td>Transpose index and columns.</td>
</tr>
</tbody>
</table>

Combining / joining / merging

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.append(other[, ignore_index, ...])</code></td>
<td>Append rows of other to the end of this frame, returning a new object.</td>
</tr>
<tr>
<td><code>DataFrame.assign(**kwargs)</code></td>
<td>Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones.</td>
</tr>
<tr>
<td><code>DataFrame.join(other[, on, how, lsuffix, ...])</code></td>
<td>Join columns with other DataFrame either on index or on a key column.</td>
</tr>
<tr>
<td><code>DataFrame.merge(right[, how, on, left_on, ...])</code></td>
<td>Merge DataFrame objects by performing a database-style join operation by columns or indexes.</td>
</tr>
<tr>
<td><code>DataFrame.update(other[, join, overwrite, ...])</code></td>
<td>Modify DataFrame in place using non-NA values from passed DataFrame.</td>
</tr>
</tbody>
</table>

Time series-related

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrame.asfreq(freq[, method, how, normalize])</code></td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td><code>DataFrame.asof(where[, subset])</code></td>
<td>The last row without any NaN is taken (or the last row without).</td>
</tr>
<tr>
<td><code>DataFrame.shift([periods, freq, axis])</code></td>
<td>Shift index by desired number of periods with an optional time freq.</td>
</tr>
<tr>
<td><code>DataFrame.first_valid_index()</code></td>
<td>Return label for first non-NA/null value.</td>
</tr>
</tbody>
</table>

Continued on next page
DataFrame.last_valid_index() Return label for last non-NA/null value
DataFrame.resample(rule[, how, axis, ...]) Convenience method for frequency conversion and resampling of time series.
DataFrame.to_period([freq, axis, copy]) Convert DataFrame from DatetimeIndex to PeriodIndex with desired
DataFrame.to_timestamp([freq, how, axis, copy]) Cast to DatetimeIndex of timestamps, at beginning of period
DataFrame.tz_convert(tz[, axis, level, copy]) Convert tz-aware axis to target time zone.
DataFrame.tz_localize(*args, **kwargs) Localize tz-naive TimeSeries to target time zone.

Plotting

DataFrame.plot is both a callable method and a namespace attribute for specific plotting methods of the form DataFrame.plot.<kind>.

DataFrame.plot([x, y, kind, ax,]) DataFrame plotting accessor and method

DataFrame.plot.area(x=None, y=None, **kwds) Area plot
DataFrame.plot.bar(x=None, y=None, **kwds) Vertical bar plot
DataFrame.plot.barh(x=None, y=None, **kwds) Horizontal bar plot
DataFrame.plot.box(by) Boxplot
DataFrame.plot.density(**kwds) Kernel Density Estimate plot
DataFrame.plot.hexbin(x, y[, C, ...]) Hexbin plot
DataFrame.plot.hist(by, bins) Histogram
DataFrame.plot.kde(**kwds) Kernel Density Estimate plot
DataFrame.plot.line(x, y) Line plot
DataFrame.plot.pie(y) Pie chart
DataFrame.plot.scatter(x, y[, s, c]) Scatter plot

pandas.DataFrame.plot.area

DataFrame.plot.area(x=None, y=None, **kwds)
Area plot
New in version 0.17.0.

Parameters x, y : label or position, optional
Coordinates for each point.

**kwds : optional
Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

pandas.DataFrame.plot.bar

DataFrame.plot.bar(x=None, y=None, **kwds)
Vertical bar plot
New in version 0.17.0.
Parameters `x, y`: label or position, optional

Coordinates for each point.

kwds: optional

Keyword arguments to pass on to `pandas.DataFrame.plot()`.

Returns `axes`: matplotlib.AxesSubplot or np.array of them

pandas.DataFrame.plot.barh

```python
dataFrame.plot.barh(x=None, y=None, **kwds)
```

Horizontal bar plot

New in version 0.17.0.

Parameters `x, y`: label or position, optional

Coordinates for each point.

kwds: optional

Keyword arguments to pass on to `pandas.DataFrame.plot()`.

Returns `axes`: matplotlib.AxesSubplot or np.array of them

pandas.DataFrame.plot.box

```python
dataFrame.plot.box(by=None, **kwds)
```

Boxplot

New in version 0.17.0.

Parameters `by`: string or sequence

Column in the DataFrame to group by.

kwds: optional

Keyword arguments to pass on to `pandas.DataFrame.plot()`.

Returns `axes`: matplotlib.AxesSubplot or np.array of them

pandas.DataFrame.plot.density

```python
dataFrame.plot.density(**kwds)
```

Kernel Density Estimate plot

New in version 0.17.0.

Parameters `**kwds`: optional

Keyword arguments to pass on to `pandas.DataFrame.plot()`.

Returns `axes`: matplotlib.AxesSubplot or np.array of them

pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.DataFrame.plot.hexbin

DataFrame.plot.hexbin(x, y, C=None, reduce_C_function=None, gridsize=None, **kwds)

Hexbin plot

New in version 0.17.0.

Parameters x, y : label or position, optional
 Coordinates for each point.
C : label or position, optional
 The value at each (x, y) point.
reduce_C_function : callable, optional
 Function of one argument that reduces all the values in a bin to a single number (e.g. mean, max, sum, std).
gridsize : int, optional
 Number of bins.
**kwds : optional
 Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

pandas.DataFrame.plot.hist

DataFrame.plot.hist(by=None, bins=10, **kwds)

Histogram

New in version 0.17.0.

Parameters by : string or sequence
 Column in the DataFrame to group by.
bins: integer, default 10
 Number of histogram bins to be used
**kwds : optional
 Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them

pandas.DataFrame.plot.kde

DataFrame.plot.kde(**kwds)

Kernel Density Estimate plot

New in version 0.17.0.

Parameters **kwds : optional
 Keyword arguments to pass on to pandas.DataFrame.plot().

Returns axes : matplotlib.AxesSubplot or np.array of them
pandas.DataFrame.plot.line

Data.plot.line(x=None, y=None, **kwds)

Line plot

New in version 0.17.0.

Parameters

- **x, y**: label or position, optional
 - Coordinates for each point.
- **kwds**: optional
 - Keyword arguments to pass on to `pandas.DataFrame.plot()`.

Returns

- axes: matplotlib.AxesSubplot or np.array of them

pandas.DataFrame.plot.pie

Data.plot.pie(y=None, **kwds)

Pie chart

New in version 0.17.0.

Parameters

- **y**: label or position, optional
 - Column to plot.
- **kwds**: optional
 - Keyword arguments to pass on to `pandas.DataFrame.plot()`.

Returns

- axes: matplotlib.AxesSubplot or np.array of them

pandas.DataFrame.plot.scatter

Data.plot.scatter(x, y, s=None, c=None, **kwds)

Scatter plot

New in version 0.17.0.

Parameters

- **x, y**: label or position, optional
 - Coordinates for each point.
- **s**: scalar or array_like, optional
 - Size of each point.
- **c**: label or position, optional
 - Color of each point.
- **kwds**: optional
 - Keyword arguments to pass on to `pandas.DataFrame.plot()`.

Returns

- axes: matplotlib.AxesSubplot or np.array of them

```
DataFrame.boxplot([column, by, ax, ...])
```

Make a box plot from DataFrame column optionally grouped by some columns or

```
DataFrame.hist(data[, column, by, grid, ...])
```

Draw histogram of the DataFrame’s series using matplotlib / pylab.

35.4. DataFrame
Serialization / IO / Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame.from_csv</td>
<td>Read CSV file (DISCOURAGED, please use pandas.read_csv() instead).</td>
</tr>
<tr>
<td>DataFrame.from_dict</td>
<td>Construct DataFrame from dict of array-like or dicts.</td>
</tr>
<tr>
<td>DataFrame.from_items</td>
<td>Convert (key, value) pairs to DataFrame.</td>
</tr>
<tr>
<td>DataFrame.from_records</td>
<td>Convert structured or record ndarray to DataFrame.</td>
</tr>
<tr>
<td>DataFrame.info</td>
<td>Concise summary of a DataFrame.</td>
</tr>
<tr>
<td>DataFrame.to_pickle</td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td>DataFrame.to_csv</td>
<td>Write DataFrame to a comma-separated values (csv) file.</td>
</tr>
<tr>
<td>DataFrame.to_hdf</td>
<td>Write the contained data to an HDF5 file using HDFStore.</td>
</tr>
<tr>
<td>DataFrame.to_sql</td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td>DataFrame.to_dict</td>
<td>Convert DataFrame to dictionary.</td>
</tr>
<tr>
<td>DataFrame.to_excel</td>
<td>Write DataFrame to an excel sheet.</td>
</tr>
<tr>
<td>DataFrame.to_json</td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td>DataFrame.to_html</td>
<td>Render a DataFrame as an HTML table.</td>
</tr>
<tr>
<td>DataFrame.to_latex</td>
<td>Render a DataFrame to a tabular environment table.</td>
</tr>
<tr>
<td>DataFrame.to_stata</td>
<td>A class for writing Stata binary dta files from array-like objects.</td>
</tr>
<tr>
<td>DataFrame.to_msgpack</td>
<td>msgpack (serialize) object to input file path.</td>
</tr>
<tr>
<td>DataFrame.to_gbq</td>
<td>Write a DataFrame to a Google BigQuery table.</td>
</tr>
<tr>
<td>DataFrame.to_records</td>
<td>Convert DataFrame to record array.</td>
</tr>
<tr>
<td>DataFrame.to_sparse</td>
<td>Convert to SparseDataFrame.</td>
</tr>
<tr>
<td>DataFrame.to_dense</td>
<td>Return dense representation of NDFrame (as opposed to sparse).</td>
</tr>
<tr>
<td>DataFrame.to_string</td>
<td>Render a DataFrame to a console-friendly tabular output.</td>
</tr>
<tr>
<td>DataFrame.to_clipboard</td>
<td>Attempt to write text representation of object to the system clipboard.</td>
</tr>
</tbody>
</table>

Panel

Constructor

Panel([[data, items, major_axis, minor_axis, ...]]) Represents wide format panel data, stored as 3-dimensional array

```python
class pandas.Panel (data=None, items=None, major_axis=None, minor_axis=None, copy=False, dtypes=None)

Represents wide format panel data, stored as 3-dimensional array
```

Parameters:
- **data**: ndarray (items x major x minor), or dict of DataFrames
- **items**: Index or array-like
 - axis=0
- **major_axis**: Index or array-like
 - axis=1
minor_axis: Index or array-like

- `axis=2`

dtype: dtype, default `None`

- Data type to force, otherwise infer

copy: boolean, default `False`

- Copy data from inputs. Only affects DataFrame / 2d ndarray input

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>at</code></td>
<td>Fast label-based scalar accessor</td>
</tr>
<tr>
<td><code>axes</code></td>
<td>Return index label(s) of the internal NDFrame</td>
</tr>
<tr>
<td><code>blocks</code></td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td><code>dtypes</code></td>
<td>Return the dtypes in this object.</td>
</tr>
<tr>
<td><code>empty</code></td>
<td>True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.</td>
</tr>
<tr>
<td><code>ftypes</code></td>
<td>Return the ftypes (indication of sparse/dense and dtype) in this object.</td>
</tr>
<tr>
<td><code>iat</code></td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td><code>iloc</code></td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td><code>is_copy</code></td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td><code>ix</code></td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>Return a tuple of axis dimensions</td>
</tr>
<tr>
<td><code>size</code></td>
<td>Number of elements in the NDFrame</td>
</tr>
<tr>
<td><code>values</code></td>
<td>Numpy representation of NDFrame</td>
</tr>
</tbody>
</table>

pandas.Panel.at

- `Panel.at`

 Fast label-based scalar accessor

 Similarly to `loc`, `at` provides `label` based scalar lookups. You can also set using these indexers.

pandas.Panel.axes

- `Panel.axes`

 Return index label(s) of the internal NDFrame

pandas.Panel.blocks

- `Panel.blocks`

 Internal property, property synonym for as_blocks()
pandas.Panel.dtypes

Panel.dtypes
Return the dtypes in this object.

pandas.Panel.empty

Panel.empty
True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.

See also:
pandas.Series.dropna, pandas.DataFrame.dropna

Notes

If NDFrame contains only NaNs, it is still not considered empty. See the example below.

Examples

An example of an actual empty DataFrame. Notice the index is empty:

```python
>>> df_empty = pd.DataFrame({'A' : []})
>>> df_empty
Empty DataFrame
Columns: [A]
Index: []
>>> df_empty.empty
True
```

If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty:

```python
>>> df = pd.DataFrame({'A' : [np.nan]})
>>> df
  A
0 NaN
>>> df.empty
False
>>> df.dropna().empty
True
```

pandas.Panel.ftypes

Panel.ftypes
Return the ftypes (indication of sparse/dense and dtype) in this object.

pandas.Panel.iat

Panel.iat
Fast integer location scalar accessor.
Similarly to `iloc`, `iat` provides integer based lookups. You can also set using these indexers.

pandas.Panel.iloc

Panel `iloc`

Purely integer-location based indexing for selection by position.

`.iloc[]` is primarily integer position based (from 0 to `length-1` of the axis), but may also be used with a boolean array.

Allowed inputs are:

- An integer, e.g. 5.
- A list or array of integers, e.g. `[4, 3, 0]`.
- A slice object with ints, e.g. `1:7`.
- A boolean array.
- A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

`.iloc` will raise `IndexError` if a requested indexer is out-of-bounds, except `slice` indexers which allow out-of-bounds indexing (this conforms with python/numpy `slice` semantics).

See more at *Selection by Position*

pandas.Panel.is_copy

Panel `is_copy = None`

pandas.Panel.ix

Panel `ix`

A primarily label-location based indexer, with integer position fallback.

`.ix[]` supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type.

`.ix` is the most general indexer and will support any of the inputs in `.loc` and `.iloc`. `.ix` also supports floating point label schemes. `.ix` is exceptionally useful when dealing with mixed positional and label based hierachical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use `.iloc` or `.loc`.

See more at *Advanced Indexing*.

pandas.Panel.loc

Panel `loc`

Purely label-location based indexer for selection by label.

`.loc[]` is primarily label based, but may also be used with a boolean array.

Allowed inputs are:
• A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).

• A list or array of labels, e.g. ['a', 'b', 'c'].

• A slice object with labels, e.g. 'a':'f' (note that contrary to usual python slices, both the start and the stop are included!).

• A boolean array.

• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

.loc will raise a KeyError when the items are not found.

See more at Selection by Label

pandas.Panel.ndim

Panel.ndim
Number of axes / array dimensions

pandas.Panel.shape

Panel.shape
Return a tuple of axis dimensions

pandas.Panel.size

Panel.size
number of elements in the NDFrame

pandas.Panel.values

Panel.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

Methods
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs()</td>
<td>Return an object with absolute value taken–only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td>add(other[, axis])</td>
<td>Addition of series and other, element-wise (binary operator <code>add</code>).</td>
</tr>
<tr>
<td>add_prefix(prefix)</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td>add_suffix(suffix)</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td>align(other, **kwargs)</td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td>all([axis, bool_only, skipna, level])</td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td>any([axis, bool_only, skipna, level])</td>
<td>Applies function along axis (or axes) of the Panel</td>
</tr>
<tr>
<td>as_blocks([copy])</td>
<td>Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.</td>
</tr>
<tr>
<td>as_matrix()</td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td>asfreq(freq[, method, how, normalize])</td>
<td>The last row without any NaN is taken (or the last row without</td>
</tr>
<tr>
<td>asof(where[, subset])</td>
<td>Select values at particular time of day (e.g.</td>
</tr>
<tr>
<td>astype(dtype[, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td>at_time(time[, asof])</td>
<td>Select values between particular times of the day (e.g., 9:00-9:30 AM).</td>
</tr>
<tr>
<td>between_time(start_time, end_time[, ...])</td>
<td>Synonym for NDFrame.fillna(method='bfill')</td>
</tr>
<tr>
<td>bool()</td>
<td>Return the bool of a single element PandasObject.</td>
</tr>
<tr>
<td>clip([lower, upper, axis])</td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td>clip_lower(threshold[, axis])</td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td>clip_upper(threshold[, axis])</td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td>compound([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td>conform(frame[, axis])</td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
<tr>
<td>consolidate([inplace])</td>
<td>Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).</td>
</tr>
<tr>
<td>convert_objects([convert_dates, ...])</td>
<td>Deprecated.</td>
</tr>
<tr>
<td>copy([deep])</td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td>count([axis])</td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td>cummax([axis, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td>cummin([axis, skipna])</td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td>cumprod([axis, skipna])</td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td>cumsum([axis, skipna])</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td>describe([percentiles, include, exclude])</td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td>div(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td>divide(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td>drop(labels[, axis, level, inplace, errors])</td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td>dropna([axis, how, inplace])</td>
<td>Drop 2D from panel, holding passed axis constant</td>
</tr>
<tr>
<td>eq(other[, axis])</td>
<td>Wrapper for comparison method eq</td>
</tr>
</tbody>
</table>

Continued on next page
equals(other) | Determines if two NDFrame objects contain the same elements.

ffill(axis, inplace, limit, downcast) | Synonym for NDFrame.fillna(method='ffill')

fillna(value, method, axis, inplace, ...) | Fill NA/NaN values using the specified method

filter(items, like, regex, axis) | Subset rows or columns of dataframe according to labels in the specified index.

first(offset) | Convenience method for subsetting initial periods of time series data based on a date offset.

floordiv(other[, axis]) | Integer division of series and other, element-wise (binary operator \texttt{floordiv}).

fromDict(data[, intersect, orient, dtype]) | Construct Panel from dict of DataFrame objects

from_dict(data[, intersect, orient, dtype]) | Construct Panel from dict of DataFrame objects

get(key[, default]) | Get item from object for given key (DataFrame column, Panel slice, etc.).

get_dtypes_counts(()) | Return the counts of dtypes in this object.

get_ftypes_counts(()) | Return the counts of ftypes in this object.

get_values(*args, **kwrags) | Quickly retrieve single value at (item, major, minor) location

get_values(()) | same as values (but handles sparseness conversions)

groupby(function[, axis]) | Group data on given axis, returning GroupBy object

gt(other[, axis]) | Wrapper for comparison method \texttt{gt}

head(n) | Convenience method for subsetting final periods of time series data based on a date offset.

interpolate(method, axis, limit, inplace, ...) | Interpolate values according to different methods.

isnull(()) | Return a boolean same-sized object indicating if the values are null.

iteritems(()) | Iterate over (label, values) on info axis

iterkv(*args, **kwrags) | iteritems alias used to get around 2to3. Deprecated

join(other[, how, lsuffix, rsuffix]) | Join items with other Panel either on major and minor axes column

keys(()) | Get the ‘info axis’ (see Indexing for more)

kurt(axis, skipna, level, numeric_only) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).

kurtosis(axis, skipna, level, numeric_only) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0).

last(offset) | Convenience method for subsetting final periods of time series data based on a date offset.

le(other[, axis]) | Wrapper for comparison method \texttt{le}

lt(other[, axis]) | Wrapper for comparison method \texttt{lt}

mad(axis, skipna, level) | Return the mean absolute deviation of the values for the requested axis

major_xs(key) | Return slice of panel along major axis

mask(cond[, other, inplace, axis, level, ...]) | Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

max(axis, skipna, level, numeric_only) | This method returns the maximum of the values in the object.

mean(axis, skipna, level, numeric_only) | Return the mean of the values for the requested axis

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>median</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>min</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>minor_xs</code></td>
<td>Return slice of panel along minor axis</td>
</tr>
<tr>
<td><code>mod</code></td>
<td>Modulo of series and other, element-wise (binary operator <code>mod</code>).</td>
</tr>
<tr>
<td><code>mul</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>multiply</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>ne</code></td>
<td>Wrapper for comparison method <code>ne</code></td>
</tr>
<tr>
<td><code>notnull</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>pct_change</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pipe</code></td>
<td>Apply <code>func(self, *args, **kwargs)</code></td>
</tr>
<tr>
<td><code>pop</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow</code></td>
<td>Exponential power of series and other, element-wise (binary operator <code>pow</code>).</td>
</tr>
<tr>
<td><code>prod</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>product</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>radd</code></td>
<td>Addition of series and other, element-wise (binary operator <code>radd</code>).</td>
</tr>
<tr>
<td><code>rank</code></td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>rdiv</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><code>reindex</code></td>
<td>Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_axis</code></td>
<td>Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_like</code></td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td><code>rename</code></td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>rename_axis</code></td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>replace</code></td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td><code>resample</code></td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td><code>rfloordiv</code></td>
<td>Integer division of series and other, element-wise (binary operator <code>rfloordiv</code>).</td>
</tr>
<tr>
<td><code>rmod</code></td>
<td>Modulo of series and other, element-wise (binary operator <code>rmod</code>).</td>
</tr>
<tr>
<td><code>rmul</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>rmul</code>).</td>
</tr>
<tr>
<td><code>round</code></td>
<td>Round each value in Panel to a specified number of decimal places.</td>
</tr>
<tr>
<td><code>rpow</code></td>
<td>Exponential power of series and other, element-wise (binary operator <code>rpow</code>).</td>
</tr>
<tr>
<td><code>rsub</code></td>
<td>Subtraction of series and other, element-wise (binary operator <code>rsub</code>).</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.69 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rtruediv(other[, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator (rtruediv)).</td>
</tr>
<tr>
<td><code>sample([n, frac, replace, weights, ...])</code></td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td><code>select(crit[, axis])</code></td>
<td>Return data corresponding to axis labels matching criteria.</td>
</tr>
<tr>
<td><code>sem([axis, skipna, level, ddof, numeric_only])</code></td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td><code>set_axis(axis, labels)</code></td>
<td>Public version of axis assignment.</td>
</tr>
<tr>
<td><code>set_value(*args, **kwargs)</code></td>
<td>Quickly set single value at (item, major, minor) location.</td>
</tr>
<tr>
<td><code>shift([periods, freq, axis])</code></td>
<td>Shift index by desired number of periods with an optional time freq.</td>
</tr>
<tr>
<td><code>skew([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased skew over requested axis.</td>
</tr>
<tr>
<td><code>slice_shift([periods, axis])</code></td>
<td>Equivalent to <code>shift</code> without copying data.</td>
</tr>
<tr>
<td><code>sort_index([axis, level, ascending, ...])</code></td>
<td>Sort object by labels (along an axis).</td>
</tr>
<tr>
<td><code>sort_values(by[, axis, ascending, inplace, ...])</code></td>
<td></td>
</tr>
<tr>
<td><code>squeeze(**kwargs)</code></td>
<td>Squeeze length 1 dimensions.</td>
</tr>
<tr>
<td><code>std([axis, skipna, level, ddof, numeric_only])</code></td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>subtract(other[, axis])</code></td>
<td>Subtraction of series and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
<tr>
<td><code>swapaxes(axis1, axis2[, copy])</code></td>
<td>Interchange axes and swap values axes appropriately.</td>
</tr>
<tr>
<td><code>swaplevel([i, j, axis])</code></td>
<td>Swap levels i and j in a MultiIndex on a particular axis.</td>
</tr>
<tr>
<td><code>tail([n])</code></td>
<td></td>
</tr>
<tr>
<td><code>take(indices[, axis, convert, is_copy])</code></td>
<td>Analogous to <code>ndarray.take</code>.</td>
</tr>
<tr>
<td><code>to_clipboard([excel, sep])</code></td>
<td>Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.</td>
</tr>
<tr>
<td><code>to_dense()</code></td>
<td>Return dense representation of NDFrame (as opposed to sparse).</td>
</tr>
<tr>
<td><code>to_excel(path[, na_rep, engine])</code></td>
<td>Write each DataFrame in Panel to a separate excel sheet.</td>
</tr>
<tr>
<td><code>to_frame([filter_observations])</code></td>
<td>Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes.</td>
</tr>
<tr>
<td><code>to_hdf(path_or_buf, key, **kwargs)</code></td>
<td>Write the contained data to an HDF5 file using HDFS-tore.</td>
</tr>
<tr>
<td><code>to_json([path_or_buf, orient, date_format, ...])</code></td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td><code>to_long(**kwargs)</code></td>
<td>msgpack (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_pickle(path)</code></td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>to_sparse(**kwargs)</code></td>
<td>NOT IMPLEMENTED: do not call this method, as sparsifying is not supported for Panel objects and will raise an error.</td>
</tr>
<tr>
<td><code>to_sql(name, con[, flavor, schema, ...])</code></td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td><code>to_xarray()</code></td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td><code>transpose(**kwargs)</code></td>
<td>Permute the dimensions of the Panel.</td>
</tr>
</tbody>
</table>

Continued on next page

Table 35.69 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>truediv(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td>truncate([before, after, axis, copy])</td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
<tr>
<td>tshift(periods, freq, axis)</td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td>tz_convert(tz[, axis, level, copy])</td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
<tr>
<td>update(other[, join, overwrite, ...])</td>
<td>Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel.</td>
</tr>
<tr>
<td>var(axis, skipna, level, ddof, numeric_only)</td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td>where(cond[, other, inplace, axis, level, ...])</td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td>xs(key[, axis])</td>
<td>Return slice of panel along selected axis</td>
</tr>
</tbody>
</table>

pandas.Panel.abs

`Panel.abs()`

Return an object with absolute value taken–only applicable to objects that are all numeric.

Returns: abs: type of caller

pandas.Panel.add

`Panel.add(other, axis=0)`

Addition of series and other, element-wise (binary operator `add`). Equivalent to `panel + other`.

Parameters

- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Axis to broadcast over

Returns: Panel

See also:

- `Panel.radd`

pandas.Panel.add_prefix

`Panel.add_prefix(prefix)`

Concatenate prefix string with panel items names.

Parameters

- **prefix**: string

Returns: with_prefix: type of caller

pandas.Panel.add_suffix

`Panel.add_suffix(suffix)`

Concatenate suffix string with panel items names.

Parameters

- **suffix**: string

35.5. Panel 1441
Returns with_suffix : type of caller

pandas.Panel.align

Panel.align(other, **kwargs)

pandas.Panel.all

Panel.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs)

Return whether all elements are True over requested axis

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns all : DataFrame or Panel (if level specified)

pandas.Panel.any

Panel.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs)

Return whether any element is True over requested axis

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

bool_only : boolean, default None

Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns any : DataFrame or Panel (if level specified)

pandas.Panel.apply

Panel.apply(func, axis='major', **kwargs)

Applies function along axis (or axes) of the Panel

Parameters func : function
Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, the combination of major_axis/ minor_axis will each be passed as a Series; if axis = (‘items’, ‘major’), DataFrames of items & major axis will be passed

axis: {‘items’, ‘minor’, ‘major’}, or {0, 1, 2}, or a tuple with two axes

Additional keyword arguments will be passed as keywords to the function

Returns result : Panel, DataFrame, or Series

Examples

Returns a Panel with the square root of each element

```python
>>> p = pd.Panel(np.random.rand(4,3,2))
>>> p.apply(np.sqrt)
```

Equivalent to p.sum(1), returning a DataFrame

```python
>>> p.apply(lambda x: x.sum(), axis=1)
```

Equivalent to previous:

```python
>>> p.apply(lambda x: x.sum(), axis='minor')
```

Return the shapes of each DataFrame over axis 2 (i.e the shapes of items x major), as a Series

```python
>>> p.apply(lambda x: x.shape, axis=(0,1))
```

pandas.Panel.as_blocks

Panel.as_blocks (copy=True)
Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

NOTE: the dtypes of the blocks WILL BE PRESERVED HERE (unlike in as_matrix)

Parameters copy : boolean, default True

Returns values : a dict of dtype -> Constructor Types

pandas.Panel.as_matrix

Panel.as_matrix()

pandas.Panel.asfreq

Panel.asfreq (freq=None, method=None, how=None, normalize=False)
Convert TimeSeries to specified frequency.

Optionally provide filling method to pad/backfill missing values.
Parameters freq: DateOffset object, or string

- method: {'backfill'/'bfill', 'pad'/ffill'}, default None
 Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):
 - 'pad' / 'ffill': propagate last valid observation forward to next valid
 - 'backfill' / 'bfill': use NEXT valid observation to fill

- how: {'start', 'end'}, default end
 For PeriodIndex only, see PeriodIndex.asfreq

- normalize: bool, default False
 Whether to reset output index to midnight

Returns converted: type of caller

Notes

To learn more about the frequency strings, please see this link.

pandas.Panel.asof

Panel.asof(where, subset=None)
The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame)
New in version 0.19.0: For DataFrame
If there is no good value, NaN is returned.

- Parameters where: date or array of dates
- subset: string or list of strings, default None
 if not None use these columns for NaN propagation

Returns where is scalar
 - value or NaN if input is Series
 - Series if input is DataFrame
 where is Index: same shape object as input

See also:
merge_asof

Notes

Dates are assumed to be sorted Raises if this is not the case
pandas.Panel.astype

Panel.astype(dtype, copy=True, raise_on_error=True, **kwargs)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters
dtype : data type, or dict of column name -> data type
Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.
raise_on_error : raise on invalid input
kwargs : keyword arguments to pass on to the constructor

Returns
casted : type of caller

pandas.Panel.at_time

Panel.at_time(time, asof=False)
Select values at particular time of day (e.g. 9:30AM).

Parameters
time : datetime.time or string

Returns
values_at_time : type of caller

pandas.Panel.between_time

Panel.between_time(start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM).

Parameters
start_time : datetime.time or string
date_time : datetime.time or string
include_start : boolean, default True
include_end : boolean, default True

Returns
values_between_time : type of caller

pandas.Panel.bfill

Panel.bfill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.Panel.bool

Panel.bool()
Return the bool of a single element PandasObject.

This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean
pandas.Panel.clip

Panel.clip(lower=None, upper=None, axis=None, *args, **kwargs)

Trim values at input threshold(s).

Parameters
- `lower`: float or array_like, default None
- `upper`: float or array_like, default None
- `axis`: int or string axis name, optional

Align object with lower and upper along the given axis.

Returns
- `clipped`: Series

Examples

```python
>>> df
  0   1
0  0.335232 -1.256177
1 -1.367855  0.746646
2  0.027753 -1.176076
3  0.230930 -0.679613
4  1.261967  0.570967

>>> df.clip(-1.0, 0.5)
  0   1
0  0.335232 -1.000000
1 -1.000000  0.500000
2  0.027753 -1.000000
3  0.230930 -0.679613
4  0.500000  0.500000

>>> t
  0   -0.3
  1    -0.2
  2    -0.1
  3     0.0
  4     0.1

dtype: float64

>>> df.clip(t, t + 1, axis=0)
  0   1
0  0.335232 -0.300000
1 -0.200000  0.746646
2  0.027753 -0.100000
3  0.230930  0.000000
4  1.100000  0.570967
```

pandas.Panel.clip_lower

Panel.clip_lower(threshold, axis=None)

Return copy of the input with values below given value(s) truncated.

Parameters
- `threshold`: float or array_like
- `axis`: int or string axis name, optional

Align object with threshold along the given axis.

Returns
- `clipped`: same type as input
See also:
clip

pandas.Panel.clip_upper

Panel.clip_upper (threshold, axis=None)
Return copy of input with values above given value(s) truncated.

Parameters
threshold : float or array_like
axis : int or string axis name, optional

Align object with threshold along the given axis.

Returns clipped : same type as input
See also:
clip

pandas.Panel.compound

Panel.compound (axis=None, skipna=None, level=None)
Return the compound percentage of the values for the requested axis.

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a DataFrame
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns compounded : DataFrame or Panel (if level specified)

pandas.Panel.conform

Panel.conform (frame, axis='items')
Conform input DataFrame to align with chosen axis pair.

Parameters
frame : DataFrame
axis : {'items', 'major', 'minor'}

Axis the input corresponds to. E.g., if axis='major', then the frame's columns
would be items, and the index would be values of the minor axis

Returns DataFrame
pandas.Panel.consolidate

Panel.consolidate(inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). Mainly an internal API function, but available here to the savvy user.

Parameters inplace : boolean, default False
If False return new object, otherwise modify existing object

Returns consolidated : type of caller

pandas.Panel.convert_objects

Panel.convert_objects(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)
Deprecated.
Attempt to infer better dtype for object columns

Parameters convert_dates : boolean, default True
If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.

convert_numeric : boolean, default False
If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN.

convert_timedeltas : boolean, default True
If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.

copy : boolean, default True
If True, return a copy even if no copy is necessary (e.g. no conversion was done).
Note: This is meant for internal use, and should not be confused with inplace.

Returns converted : same as input object

See also:

pandas.to_datetime Convert argument to datetime.
pandas.to_timedelta Convert argument to timedelta.
pandas.to_numeric Return a fixed frequency timedelta index, with day as the default.

pandas.Panel.copy

Panel.copy(deep=True)
Make a copy of this objects data.

Parameters deep : boolean or string, default True
Make a deep copy, including a copy of the data and the indices. With deep=False neither the indices or the data are copied.
Note that when `deep=True` data is copied, actual python objects will not be copied recursively, only the reference to the object. This is in contrast to `copy.deepcopy` in the Standard Library, which recursively copies object data.

Returns
- `copy`: type of caller

pandas.Panel.count

Panel.count *(axis='major')*

Return number of observations over requested axis.

- **Parameters**
 - `axis`: {'items', 'major', 'minor'} or {0, 1, 2}

- **Returns**
 - `count`: DataFrame

pandas.Panel.cummax

Panel.cummax *(axis=None, skipna=True, *args, **kwargs)*

Return cumulative max over requested axis.

- **Parameters**
 - `axis`: {items (0), major_axis (1), minor_axis (2)}
 - `skipna`: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **Returns**
 - `cummax`: DataFrame

pandas.Panel.cummin

Panel.cummin *(axis=None, skipna=True, *args, **kwargs)*

Return cumulative minimum over requested axis.

- **Parameters**
 - `axis`: {items (0), major_axis (1), minor_axis (2)}
 - `skipna`: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **Returns**
 - `cummin`: DataFrame

pandas.Panel.cumprod

Panel.cumprod *(axis=None, skipna=True, *args, **kwargs)*

Return cumulative product over requested axis.

- **Parameters**
 - `axis`: {items (0), major_axis (1), minor_axis (2)}
 - `skipna`: boolean, default True

 Exclude NA/null values. If an entire row/column is NA, the result will be NA

- **Returns**
 - `cumprod`: DataFrame
pandas.Panel.cumsum

Panel.cumsum(axis=None, skipna=True, *args, **kwargs)

Return cumulative sum over requested axis.

Parameters
- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns
- **cumsum**: DataFrame

pandas.Panel.describe

Panel.describe(percentiles=None, include=None, exclude=None)

Generate various summary statistics, excluding NaN values.

Parameters
- **percentiles**: array-like, optional
 The percentiles to include in the output. Should all be in the interval [0, 1]. By default `percentiles` is [0.25, 0.5, 0.75], returning the 25th, 50th, and 75th percentiles.
- **include, exclude**: list-like, 'all', or None (default)
 Specify the form of the returned result. Either:
 - None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
 - A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])
 - If include is the string 'all', the output column-set will match the input one.

Returns
- **summary**: NDFrame of summary statistics

See also:
- `DataFrame.select_dtypes`

Notes

The output DataFrame index depends on the requested dtypes:

For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.

For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.

For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.

If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

The include, exclude arguments are ignored for Series.
pandas.Panel.div

Panel.div(other, axis=0)
Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel / other.

Parameters
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

See also:
Panel.rtruediv

pandas.Panel.divide

Panel.divide(other, axis=0)
Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel / other.

Parameters
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

See also:
Panel.rtruediv

pandas.Panel.drop

Panel.drop(labels, axis=0, level=None, inplace=False, errors='raise')
Return new object with labels in requested axis removed.

Parameters
- **labels**: single label or list-like
- **axis**: int or axis name
- **level**: int or level name, default None
 For MultiIndex
- **inplace**: bool, default False
 If True, do operation inplace and return None.
- **errors**: {'ignore', 'raise'}, default 'raise'
 If 'ignore', suppress error and existing labels are dropped.
 New in version 0.16.1.

Returns
- **dropped**: type of caller
pandas.Panel.dropna

Panel.dropna(axis=0, how='any', inplace=False)
Drop 2D from panel, holding passed axis constant

- **Parameters**
 - axis : int, default 0

 Axis to hold constant. E.g. axis=1 will drop major_axis entries having a certain amount of NA data
 - how : {'all', 'any'}, default 'any'

 ‘any’: one or more values are NA in the DataFrame along the axis. For ‘all’ they all must be.
 - inplace : bool, default False

 If True, do operation inplace and return None.

- **Returns**
 - dropped : Panel

pandas.Panel.eq

Panel.eq(other, axis=None)
Wrapper for comparison method eq

pandas.Panel.equals

Panel.equals(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Panel.ffill

Panel.ffill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='ffill')

pandas.Panel.fillna

Panel.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
Fill NA/NaN values using the specified method

- **Parameters**
 - value : scalar, dict, Series, or DataFrame

 Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

 Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}

inplace : boolean, default False

If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None

If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled.

downcast : dict, default is None

a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : Panel

See also:

reindex, asfreq

pandas.Panel.filter

Panel.filter(items=None, like=None, regex=None, axis=None)

Subset rows or columns of dataframe according to labels in the specified index.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

Parameters

- **items** : list-like
 - List of info axis to restrict to (must not all be present)

- **like** : string
 - Keep info axis where “arg in col == True”

- **regex** : string (regular expression)
 - Keep info axis with re.search(regex, col) == True

- **axis** : int or string axis name
 - The axis to filter on. By default this is the info axis, ‘index’ for Series, ‘columns’ for DataFrame

Returns same type as input object

See also:

pandas.DataFrame.select

Notes

The items, like, and regex parameters are enforced to be mutually exclusive.

axis defaults to the info axis that is used when indexing with [].
Examples

```python
>>> df
  one  two  three
mouse  1   2   3
rabbit 4   5   6

>>> # select columns by name
>>> df.filter(items=['one', 'three'])
  one  three
mouse  1   3
rabbit 4   6

>>> # select columns by regular expression
>>> df.filter(regex='e$', axis=1)
  one  three
mouse  1   3
rabbit 4   6

>>> # select rows containing 'bbi'
>>> df.filter(like='bbl', axis=0)  # last character is lowercase
  one  two  three
rabbit 4   5   6
```

pandas.Panel.first

Panel.first(offset)

Convenience method for subsetting initial periods of time series data based on a date offset.

Parameters offset : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

ts.first('10D') -> First 10 days

pandas.Panel.floordiv

Panel.floordiv(other, axis=0)

Integer division of series and other, element-wise (binary operator floordiv). Equivalent to panel // other.

Parameters other : DataFrame or Panel

 axis : {items, major_axis, minor_axis}

 Axis to broadcast over

Returns Panel

See also:

Panel.rfloordiv
pandas.Panel.fromDict

classmethod Panel.fromDict(data, intersect=False, orient='items', dtype=None)
Construct Panel from dict of DataFrame objects

Parameters
- data : dict
 {field : DataFrame}
- intersect : boolean
 Intersect indexes of input DataFrames
- orient : {'items', 'minor'}, default 'items'
 The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’
- dtype : dtype, default None
 Data type to force, otherwise infer

Returns
- Panel

pandas.Panel.from_dict

classmethod Panel.from_dict(data, intersect=False, orient='items', dtype=None)
Construct Panel from dict of DataFrame objects

Parameters
- data : dict
 {field : DataFrame}
- intersect : boolean
 Intersect indexes of input DataFrames
- orient : {'items', 'minor'}, default 'items'
 The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’
- dtype : dtype, default None
 Data type to force, otherwise infer

Returns
- Panel

pandas.Panel.ge

Panel.ge(other, axis=None)
Wrapper for comparison method ge
pandas.Panel.get

Panel.get(key, default=None)
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found.

Parameters key : object
Returns value : type of items contained in object

pandas.Panel.get_dtype_counts

Panel.get_dtype_counts()
Return the counts of dtypes in this object.

pandas.Panel.get_ftype_counts

Panel.get_ftype_counts()
Return the counts of ftypes in this object.

pandas.Panel.get_value

Panel.get_value(*args, **kwargs)
Quickly retrieve single value at (item, major, minor) location

Parameters item : item label (panel item)
major : major axis label (panel item row)
minor : minor axis label (panel item column)
takeable : interpret the passed labels as indexers, default False
Returns value : scalar value

pandas.Panel.get_values

Panel.get_values()
same as values (but handles sparseness conversions)

pandas.Panel.groupby

Panel.groupby(function, axis='major')
Group data on given axis, returning GroupBy object

Parameters function : callable
Mapping function for chosen access
axis : {'major', 'minor', 'items'}, default 'major'
Returns grouped : PanelGroupBy
pandas.Panel.gt

`Panel.gt(\text{other, axis=None})`

Wrapper for comparison method `gt`.

pandas.Panel.head

`Panel.head(n=5)`

pandas.Panel.interpolate

`Panel.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs)`

Interpolate values according to different methods.

Please note that only `method='linear'` is supported for DataFrames/Series with a MultiIndex.

Parameters

- **method**: {'linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'barycentric', 'polynomial', 'spline', 'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}
 - `linear`: ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default
 - `time`: interpolation works on daily and higher resolution data to interpolate given length of interval
 - `index`, `values`: use the actual numerical values of the index
 - `nearest`, `zero`, `slinear`, `quadratic`, `cubic`, `barycentric`, `polynomial` is passed to `scipy.interpolate.interp1d`. Both `polynomial` and `spline` require that you also specify an `order` (int), e.g. `df.interpolate(method='polynomial', order=4)`. These use the actual numerical values of the index.
 - `krogh`, `piecewise_polynomial`, `spline`, `pchip` and `akima` are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. See the scipy documentation for more on their behavior here and here
 - `from_derivatives` refers to `BPoly.from_derivatives` which replaces `piecewise_polynomial` interpolation method in scipy 0.18.

- **axis**: {0, 1}, default 0
 - 0: fill column-by-column
 - 1: fill row-by-row

- **limit**: int, default None.
 - Maximum number of consecutive NaNs to fill.

- **limit_direction**: {'forward', 'backward', 'both'}, defaults to ‘forward’
If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.17.0.

inplace : bool, default False

Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None

Downcast dtypes if possible.

kwargs : keyword arguments to pass on to the interpolating function.

Returns Series or DataFrame of same shape interpolated at the NaNs

See also:

reindex, replace, fillna

Examples

Filling in NaNs

```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0   0
1   1
2   2
3   3
dtype: float64
```

pandas.Panel.isnull

Panel.*isnull*()

Return a boolean same-sized object indicating if the values are null.

See also:

notnull boolean inverse of isnull

pandas.Panel.iteritems

Panel.*iteritems*()

Iterate over (label, values) on info axis

This is index for Series, columns for DataFrame, major_axis for Panel, and so on.

pandas.Panel.iterkv

Panel.*iterkv*(*args, **kwargs*)

iteritems alias used to get around 2to3. Deprecated
pandas.Panel.join

Panel.join(other, how='left', lsuffix='', rsuffix='')
Join items with other Panel either on major and minor axes column

Parameters other : Panel or list of Panels

Index should be similar to one of the columns in this one

how : {'left', 'right', 'outer', 'inner'}

How to handle indexes of the two objects. Default: ‘left’ for joining on index,
None otherwise * left: use calling frame’s index * right: use input frame’s index
* outer: form union of indexes * inner: use intersection of indexes

lsuffix : string

Suffix to use from left frame’s overlapping columns

rsuffix : string

Suffix to use from right frame’s overlapping columns

Returns joined : Panel

pandas.Panel.keys

Panel.keys()
Get the ‘info axis’ (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.Panel.kurt

Panel.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns kurt : DataFrame or Panel (if level specified)
pandas.Panel.kurtosis

Panel.kurtosis(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters
axis: {items (0), major_axis (1), minor_axis (2)}
skipna: boolean, default True
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
level: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
numeric_only: boolean, default None
Returns kurt: DataFrame or Panel (if level specified)

pandas.Panel.last

Panel.last(offset)
Convenience method for subsetting final periods of time series data based on a date offset.

Parameters
offset: string, DateOffset, dateutil.relativedelta
Returns subset: type of caller

Examples

ts.last(‘5M’) -> Last 5 months

pandas.Panel.le

Panel.le(other, axis=None)
Wrapper for comparison method le

pandas.Panel.lt

Panel.lt(other, axis=None)
Wrapper for comparison method lt

pandas.Panel.mad

Panel.mad(axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

Parameters
axis: {items (0), major_axis (1), minor_axis (2)}
skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame.

numeric_only: boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns mad: DataFrame or Panel (if level specified)

pandas.Panel.major_xs

Panel.major_xs(key)

Return slice of panel along major axis.

Parameters key: object

Major axis label

Returns y: DataFrame

index -> minor axis, columns -> items

Notes

major_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of major_xs functionality, see MultiIndex Slicers.

pandas.Panel.mask

Panel.mask(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

Parameters cond: boolean NDFrame, array or callable

If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.

A callable can be used as cond.

other: scalar, NDFrame, or callable

If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.

A callable can be used as other.
inplace : boolean, default False

Whether to perform the operation in place on the data

axis : alignment axis if needed, default None

level : alignment level if needed, default None

try_cast : boolean, default False

try to cast the result back to the input type (if possible),

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

See also:

DataFrame.where()

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is False the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,df2) is equivalent to np.where(m,df1,df2).

For further details and examples see the mask documentation in indexing.

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0    NaN
1     1.0
2     2.0
3     3.0
4     4.0
Name: 0, dtype: float64

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
   A  B
0  0  -1
1  1   3
2  2  -5
3  3  -7
4  4   9

>>> df.where(m, -df) == np.where(m, df, -df)
   A  B
0  True  True
1  True  True
2  True  True
3  True  True
4  True  True
```
```python
>>> df.where(m, -df) == df.mask(~m, -df)
A  B
0  True True
1  True True
2  True True
3  True True
4  True True
```

pandas.Panel.max

```python
Panel.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Parameters

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **max**: DataFrame or Panel (if level specified)

pandas.Panel.mean

```python
Panel.mean(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the mean of the values for the requested axis.

Parameters

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **mean**: DataFrame or Panel (if level specified)
pandas.Panel.median

Panel.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the median of the values for the requested axis

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame
numeric_only : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything,
 then use only numeric data. Not implemented for Series.

Returns
median : DataFrame or Panel (if level specified)

pandas.Panel.min

Panel.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
This method returns the minimum of the values in the object. If you want the index of the minimum,
use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}
skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame
numeric_only : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything,
 then use only numeric data. Not implemented for Series.

Returns
min : DataFrame or Panel (if level specified)

pandas.Panel.minor_xs

Panel.minor_xs(key)
Return slice of panel along minor axis

Parameters
key : object
 Minor axis label

Returns
y : DataFrame
 index -> major axis, columns -> items
Notes

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of minor_xs functionality, see MultiIndex Slicers

pandas.Panel.mod

Panel.mod(other, axis=0)

Modulo of series and other, element-wise (binary operator mod). Equivalent to panel % other.

Parameters
other : DataFrame or Panel
axis : {items, major_axis, minor_axis}

Returns
Panel

See also:
Panel.rmod

pandas.Panel.mul

Panel.mul(other, axis=0)

Multiplication of series and other, element-wise (binary operator mul). Equivalent to panel * other.

Parameters
other : DataFrame or Panel
axis : {items, major_axis, minor_axis}

Returns
Panel

See also:
Panel.rmul

pandas.Panel.multiply

Panel.multiply(other, axis=0)

Multiplication of series and other, element-wise (binary operator mul). Equivalent to panel * other.

Parameters
other : DataFrame or Panel
axis : {items, major_axis, minor_axis}

Returns
Panel

See also:
Panel.rmul
pandas.DataFrame

Panel.ne

Panel.ne(other, axis=None)

Wrapper for comparison method ne

Panel.notnull

Panel.notnull()

Return a boolean same-sized object indicating if the values are not null.

See also:

isnull boolean inverse of notnull

Panel.pct_change

Panel.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwargs)

Percent change over given number of periods.

Parameters periods : int, default 1

Periods to shift for forming percent change

fill_method : str, default 'pad'

How to handle NAs before computing percent changes

limit : int, default None

The number of consecutive NAs to fill before stopping

freq : DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

Returns chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

Panel.pipe

Panel.pipe(func, *args, **kwargs)

Apply func(self, *args, **kwargs)

New in version 0.16.2.

Parameters func : function

function to apply to the DataFrame. args, and kwargs are passed into func.
Alternatively a (callable, data_keyword) tuple where data_keyword
is a string indicating the keyword of callable that expects the DataFrame.
args: positional arguments passed into `func`.

kwargs: a dictionary of keyword arguments passed into `func`.

Returns **object**: the return type of `func`.

See also:

`pandas.DataFrame.apply`, `pandas.DataFrame.applymap`, `pandas.Series.map`

Notes

Use `.pipe` when chaining together functions that expect on Series or DataFrames. Instead of writing

```python
>>> f(g(h(df), arg1=a), arg2=b, arg3=c)
```

You can write

```python
>>> (df.pipe(h)
...     .pipe(g, arg1=a)
...     .pipe(f, arg2=b, arg3=c)
... )
```

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose `f` takes its data as `arg2`:

```python
>>> (df.pipe(h)
...     .pipe(g, arg1=a)
...     .pipe((f, 'arg2'), arg1=a, arg3=c)
... )
```

`pandas.Panel.pop`

Panel.[`pop`][item]

Return item and drop from frame. Raise KeyError if not found.

`pandas.Panel.pow`

Panel.[`pow`][other, axis=0]

Exponential power of series and other, element-wise (binary operator `pow`). Equivalent to `panel ** other`.

Parameters **other**: DataFrame or Panel

axis: `{items, major_axis, minor_axis}`

Axis to broadcast over

Returns Panel

See also:

`Panel.rpow`
pandas.Panel.prod

Panel.prod(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis

Parameters

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **prod**: DataFrame or Panel (if level specified)

pandas.Panel.product

Panel.product(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the product of the values for the requested axis

Parameters

- **axis**: {items (0), major_axis (1), minor_axis (2)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- **numeric_only**: boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns

- **prod**: DataFrame or Panel (if level specified)

pandas.Panel.radd

Panel.radd(other, axis=0)

Addition of series and other, element-wise (binary operator radd). Equivalent to other + panel.

Parameters

- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}
 - Axis to broadcast over

Returns

- **Panel**

See also:

- Panel.add
pandas.Panel.rank

Panel.rank\((axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)\)
Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values.

Parameters
- **axis**: {0 or ‘index’, 1 or ‘columns’}, default 0
 - index to direct ranking
- **method**: {'average', 'min', 'max', 'first', 'dense'}
 - average: average rank of group
 - min: lowest rank in group
 - max: highest rank in group
 - first: ranks assigned in order they appear in the array
 - dense: like ‘min’, but rank always increases by 1 between groups
- **numeric_only**: boolean, default None
 - Include only float, int, boolean data. Valid only for DataFrame or Panel objects
- **na_option**: {'keep', 'top', 'bottom'}
 - keep: leave NA values where they are
 - top: smallest rank if ascending
 - bottom: smallest rank if descending
- **ascending**: boolean, default True
 - False for ranks by high (1) to low (N)
- **pct**: boolean, default False
 - Computes percentage rank of data

Returns** ranks**: same type as caller

pandas.Panel.rdiv

Panel.rdiv\((other, axis=0)\)
Floating division of series and other, element-wise (binary operator rtruediv). Equivalent to \(other / panel\).

Parameters
- **other**: DataFrame or Panel
- **axis**: {items, major_axis, minor_axis}
 - Axis to broadcast over

Returns** Panel

See also:
- Panel.truediv
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.Panel.reindex

Panel.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)

Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters items, major_axis, minor_axis : array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data

method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.

• default: don’t fill gaps
• pad / ffill: propagate last valid observation forward to next valid
• backfill / bfill: use next valid observation to fill gap
• nearest: use nearest valid observations to fill gap

copy : boolean, default True

Return a new object, even if the passed indexes are the same

level : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

fill_value : scalar, default np.NaN

Value to use for missing values. Defaults to NaN, but can be any “compatible” value

limit : int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance : optional

Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation

abs(index[indexer] - target) <= tolerance.

New in version 0.17.0.

Returns reindexed : Panel

Examples

Create a dataframe with some fictional data.

```python
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
...     'http_status': [200, 200, 404, 404, 301],
...     'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]
...     index=index)
```
Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned NaN.

```
>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ...
             'Chrome']
>>> df.reindex(new_index)
```

We can fill in the missing values by passing a value to the keyword `fill_value`. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword `method` to fill the NaN values.

```
>>> df.reindex(new_index, fill_value=0)
>>> df.reindex(new_index, fill_value='missing')
```

To further illustrate the filling functionality in `reindex`, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).

```
>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({'prices': [100, 101, np.nan, 100, 89, 88]},
                      index=date_index)
>>> df2
```

Suppose we decide to expand the dataframe to cover a wider date range.
The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with NaN. If desired, we can fill in the missing values using one of several options.

For example, to backpropagate the last valid value to fill the NaN values, pass `bfill` as an argument to the `method` keyword.

```python
>>> df2.reindex(date_index2, method='bfill')
```

Please note that the NaN value present in the original data frame (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN values present in the original data frame, use the `fillna()` method.

pandas.Panel.reindex_axis

Panel. reindex_axis *(labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)*
Conform input object to new index with optional filling logic, placing NA/Nan in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters
labels : array-like
New labels / index to conform to. Preferably an Index object to avoid duplicating data
axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}
method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional
Method to use for filling holes in reindexed DataFrame:
 * default: don’t fill gaps
• pad / ffill: propagate last valid observation forward to next valid
• backfill / bfill: use next valid observation to fill gap
• nearest: use nearest valid observations to fill gap

copy: boolean, default True

Return a new object, even if the passed indexes are the same

level: int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

limit: int, default None

Maximum number of consecutive elements to forward or backward fill

tolerance: optional

Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation

```
abs(index[indexer] - target) <= tolerance.
```

New in version 0.17.0.

Returns: reindexed : Panel

See also: reindex, reindex_like

Examples

```
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```

pandas.Panel.reindex_like

Panel.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)

Return an object with matching indices to myself.

Parameters

- **other**: Object
- **method**: string or None
- **copy**: boolean, default True
- **limit**: int, default None
 - Maximum number of consecutive labels to fill for inexact matches.
- **tolerance**: optional
 - Maximum distance between labels of the other object and this object for inexact matches.

New in version 0.17.0.

Returns

- **reindexed**: same as input
Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Panel.rename

Panel.rename(items=None, major_axis=None, minor_axis=None, **kwargs)
Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change Series.name with a scalar value (Series only).

Parameters items, major_axis, minor_axis : scalar, list-like, dict-like or function, optional
Scalar or list-like will alter the Series.name attribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis’ values

copy : boolean, default True
Also copy underlying data

inplace : boolean, default False
Whether to return a new Panel. If True then value of copy is ignored.

Returns renamed : Panel (new object)

See also:
pandas.NDFrame.rename_axis

Examples

```python
>>> s = pd.Series([1, 2, 3])
>>> s
0    1
1    2
2    3
Name: 0, dtype: int64
```
```
>>> s.rename("my_name")  # scalar, changes Series.name
0    1
1    2
2    3
Name: my_name, dtype: int64
```
```
>>> s.rename(lambda x: x ** 2)  # function, changes labels
0    1
1    2
4    3
dtype: int64
```
```
>>> s.rename({1: 3, 2: 5})  # mapping, changes labels
0    1
3    2
5    3
dtype: int64
```
```
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(2)
...
TypeError: 'int' object is not callable
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```
    a  c
  0  1  4
  1  2  5
  2  3  6
```

```python
>>> df.rename(index=str, columns={"A": "a", "C": "c"})
      a  B
  0  1  4
  1  2  5
  2  3  6
```

35.5. Panel

pandas.Panel.rename_axis

Panel.rename_axis(mapper, axis=0, copy=True, inplace=False)

Alter index and / or columns using input function or functions. A scaler or list-like for mapper will alter the Index.name or MultiIndex.names attribute. A function or dict for mapper will alter the labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

Parameters

mapper: scalar, list-like, dict-like or function, optional

axis: int or string, default 0

copy: boolean, default True

Also copy underlying data

inplace: boolean, default False

Returns

renamed: type of caller

See also:
pandas.NDFrame.rename, pandas.Index.rename

Examples

```python
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename_axis("foo")  # scalar, alters df.index.name
     foo
  0  1  4
  1  2  5
  2  3  6
```

```python
>>> df.rename_axis(lambda x: 2 * x)  # function: alters labels
     A  B
  0  1  4
  2  2  5
  4  3  6
```

```python
>>> df.rename_axis({"A": "ehh", "C": "see"}, axis="columns")  # mapping
     ehh  B
  0  1  4
  1  2  5
  2  3  6
```
pandas.Panel.replace

Panel.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in ‘to_replace’ with ‘value’.

Parameters to_replace : str, regex, list, dict, Series, numeric, or None

- str or regex:
 - str: string exactly matching to_replace will be replaced with value
 - regex: regexs matching to_replace will be replaced with value
- list of str, regex, or numeric:
 - First, if to_replace and value are both lists, they must be the same length.
 - Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for value since there are only a few possible substitution regexes you can use.
 - str and regex rules apply as above.
- dict:
 - Nested dictionaries, e.g., {‘a’: {‘b’: nan}}, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
 - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.
- None:
 - This means that the regex argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If value is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

value : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

inplace : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

limit : int, default None

Maximum size gap to forward or backward fill

regex : bool or same types as to_replace, default False

Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string. Otherwise, to_replace must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.
method: string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when `to_replace` is a list.

Returns `filled` : NDFrame

Raises `AssertionError`

- If `regex` is not a `bool` and `to_replace` is not `None`.

TypeError

- If `to_replace` is a `dict` and `value` is not a `list`, `dict`, `ndarray`, or `Series`.
- If `to_replace` is `None` and `regex` is not compilable into a regular expression or is a list, `dict`, `ndarray`, or `Series`.

ValueError

- If `to_replace` and `value` are lists or `ndarrays`, but they are not the same length.

See also:

NDFrame.reindex, NDFrame.asfreq, NDFrame.fillna

Notes

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.
- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
- This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

pandas.Panel.resample

Panel.resample(
`rule`, `how=None`, `axis=0`, `fill_method=None`, `closed=None`, `label=None`, `convention='start'`, `kind=None`, `loffset=None`, `limit=None`, `base=0`, `on=None`, `level=None`)

Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (DatetimeIndex, PeriodIndex, or TimedeltaIndex), or pass datetime-like values to the `on` or `level` keyword.

Parameters

- `rule` : string
The offset string or object representing target conversion
- `axis` : int, optional, default 0
- `closed` : {'right', 'left'}
Which side of bin interval is closed
- `label` : {'right', 'left'}
Which bin edge label to label bucket with
convention : {'start', 'end', 's', 'e'}

loffset : timedelta
 Adjust the resampled time labels

base : int, default 0
 For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

on : string, optional
 For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.

 New in version 0.19.0.

level : string or int, optional
 For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like.

 New in version 0.19.0.

To learn more about the offset strings, please see ‘this link

<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>‘.

Examples

Start by creating a series with 9 one minute timestamps.

```python
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00    0
2000-01-01 00:01:00    1
2000-01-01 00:02:00    2
2000-01-01 00:03:00    3
2000-01-01 00:04:00    4
2000-01-01 00:05:00    5
2000-01-01 00:06:00    6
2000-01-01 00:07:00    7
2000-01-01 00:08:00    8
Freq: T, dtype: int64
```

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

```python
>>> series.resample('3T').sum()
2000-01-01 00:00:00    3
2000-01-01 00:03:00   12
2000-01-01 00:06:00   21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the summed value in the resampled bucket with the label ‘2000-01-01 00:03:00’ does not include 3 (if it
did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

```python
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00   3
2000-01-01 00:06:00   12
2000-01-01 00:09:00   21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

```python
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00   0
2000-01-01 00:03:00   6
2000-01-01 00:06:00  15
2000-01-01 00:09:00  15
Freq: 3T, dtype: int64
```

Upsample the series into 30 second bins.

```python
>>> series.resample('30S').asfreq()[0:5] # select first 5 rows
2000-01-01 00:00:00   0
2000-01-01 00:00:30   NaN
2000-01-01 00:01:00   1
2000-01-01 00:01:30   NaN
2000-01-01 00:02:00   2
Freq: 30S, dtype: float64
```

Upsample the series into 30 second bins and fill the NaN values using the pad method.

```python
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00   0
2000-01-01 00:00:30   0
2000-01-01 00:01:00   1
2000-01-01 00:01:30   1
2000-01-01 00:02:00   2
Freq: 30S, dtype: int64
```

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

```python
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00   0
2000-01-01 00:00:30   1
2000-01-01 00:01:00   1
2000-01-01 00:01:30   2
2000-01-01 00:02:00   2
Freq: 30S, dtype: int64
```

Pass a custom function via apply

```python
>>> def custom_resampler(array_like):
...     return np.sum(array_like)+5

>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00   8
2000-01-01 00:03:00  17
2000-01-01 00:06:00  26
Freq: 3T, dtype: int64
```
pandas.Panel.rfloordiv

Panel.rfloordiv(other, axis=0)

Integer division of series and other, element-wise (binary operator rfloordiv). Equivalent to other // panel.

Parameters
- `other`: DataFrame or Panel
- `axis`: {items, major_axis, minor_axis}

Returns
- Panel

See also:
- `Panel.floordiv`

pandas.Panel.rmod

Panel.rmod(other, axis=0)

Modulo of series and other, element-wise (binary operator rmod). Equivalent to other % panel.

Parameters
- `other`: DataFrame or Panel
- `axis`: {items, major_axis, minor_axis}

Returns
- Panel

See also:
- `Panel.mod`

pandas.Panel.rmul

Panel.rmul(other, axis=0)

Multiplication of series and other, element-wise (binary operator rmul). Equivalent to other * panel.

Parameters
- `other`: DataFrame or Panel
- `axis`: {items, major_axis, minor_axis}

Returns
- Panel

See also:
- `Panel.mul`

pandas.Panel.round

Panel.round(decimals=0, *args, **kwargs)

Round each value in Panel to a specified number of decimal places.

New in version 0.18.0.

Parameters
- `decimals`: int
Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point.

Returns Panel object

See also:

numpy.around

pandas.Panel.rpow

Panel.**rpow**(other, axis=0)

Exponential power of series and other, element-wise (binary operator rpow). Equivalent to other ** panel.

Parameters

other : DataFrame or Panel

axis : [items, major_axis, minor_axis]

Axis to broadcast over

Returns Panel

See also:

Panel.pow

pandas.Panel.rsub

Panel.**rsub**(other, axis=0)

Subtraction of series and other, element-wise (binary operator rsub). Equivalent to other -panel.

Parameters

other : DataFrame or Panel

axis : [items, major_axis, minor_axis]

Axis to broadcast over

Returns Panel

See also:

Panel.sub

pandas.Panel.rtruediv

Panel.**rtruediv**(other, axis=0)

Floating division of series and other, element-wise (binary operator rtruediv). Equivalent to other / panel.

Parameters

other : DataFrame or Panel

axis : [items, major_axis, minor_axis]

Axis to broadcast over

Returns Panel

See also:

Panel.truediv
pandas.Panel.sample

Panel.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

Returns a random sample of items from an axis of object.

New in version 0.16.1.

Parameters

- **n**: int, optional
 Number of items from axis to return. Cannot be used with `frac`. Default = 1 if `frac` = None.

- **frac**: float, optional
 Fraction of axis items to return. Cannot be used with `n`.

- **replace**: boolean, optional
 Sample with or without replacement. Default = False.

- **weights**: str or ndarray-like, optional
 Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed.

- **random_state**: int or numpy.random.RandomState, optional
 Seed for the random number generator (if int), or numpy RandomState object.

- **axis**: int or string, optional
 Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels).

Returns

A new object of same type as caller.

Examples

Generate an example Series and DataFrame:

```python
>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0    -0.038497
1     1.820773
2    -0.972766
3    -1.598270
4    -1.095526
dtype: float64

>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()
A    B    C    D
0  0.016443 -2.318952 -0.566372 -1.028078
1 -1.051921  0.438836  0.658280  -0.175797
2 -1.243569  0.364626  0.215065  0.057736
```
Next extract a random sample from both of these objects...

3 random elements from the `Series`:

```python
>>> s.sample(n=3)
27  -0.994689
55  -1.049016
67  -0.224565
dtype: float64
```

And a random 10% of the `DataFrame` with replacement:

```python
>>> df.sample(frac=0.1, replace=True)
   A        B        C        D
35 1.981780 0.142106 1.817165 -0.290805
49 -1.336199 -0.448634 -0.789640 0.217116
40 0.823173 -0.078816 1.009536 1.015108
15 1.421154 -0.055301 -1.922594 -0.019696
  6 -0.148339 0.832938 1.787600 -1.383767
```

pandas.Panel.select

Panel.select(crit, axis=0)

Return data corresponding to axis labels matching criteria

Parameters
crit : function

To be called on each index (label). Should return True or False

axis : int

Returns
selection : type of caller

pandas.Panel.sem

Panel.sem(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
axis : {items (0), major_axis (1), minor_axis (2)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

ddof : int, default 1

degrees of freedom

numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns
sem: DataFrame or Panel (if level specified)

pandas.Panel.set_axis

Panel.set_axis(axis, labels)
public version of axis assignment

pandas.Panel.set_value

Panel.set_value(*args, **kwargs)
Quickly set single value at (item, major, minor) location

Parameters
item: item label (panel item)
major: major axis label (panel item row)
minor: minor axis label (panel item column)
value: scalar
takeable: interpret the passed labels as indexers, default False

Returns
panel: Panel
If label combo is contained, will be reference to calling Panel, otherwise a new object

pandas.Panel.shift

Panel.shift(periods=1, freq=None, axis='major')
Shift index by desired number of periods with an optional time freq. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. This is different from the behavior of DataFrame.shift()

Parameters
periods: int
Number of periods to move, can be positive or negative
freq: DateOffset, timedelta, or time rule string, optional
axis: {‘items’, ‘major’, ‘minor’} or {0, 1, 2}

Returns
shifted: Panel

pandas.Panel.skew

Panel.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return unbiased skew over requested axis Normalized by N-1

Parameters
axis: {items (0), major_axis (1), minor_axis (2)}
skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None

 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame

numeric_only : boolean, default None

 Include only float, int, boolean columns. If None, will attempt to use everything,
 then use only numeric data. Not implemented for Series.

Returns skew : DataFrame or Panel (if level specified)

pandas.Panel.slice_shift

Panel.slice_shift (periods=1, axis=0)

 Equivalent to shift without copying data. The shifted data will not include the dropped periods and the
 shifted axis will be smaller than the original.

Parameters periods : int

 Number of periods to move, can be positive or negative

Returns shifted : same type as caller

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.Panel.sort_index

Panel.sort_index (axis=0, level=None, ascending=True, inplace=False, kind='quicksort',
 na_position='last', sort_remaining=True)

Sort object by labels (along an axis)

Parameters axis : axes to direct sorting

 level : int or level name or list of ints or list of level names
 if not None, sort on values in specified index level(s)

ascending : boolean, default True

 Sort ascending vs. descending

inplace : bool, default False

 if True, perform operation in-place

kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'

 Choice of sorting algorithm. See also ndarray.sort for more information.
 mergesort is the only stable algorithm. For DataFrames, this option is only ap-
 plied when sorting on a single column or label.

na_position : {'first', 'last'}, default 'last'

 first puts NaNs at the beginning, last puts NaNs at the end

sort_remaining : bool, default True
if true and sorting by level and index is multilevel, sort by other levels too (in
order) after sorting by specified level

Returns
`sorted_obj` : NDFrame

pandas.Panel.sort_values

```python
Panel.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
```

pandas.Panel.squeeze

```python
Panel.squeeze(**kwargs)
```

Squeeze length 1 dimensions.

pandas.Panel.std

```python
Panel.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
```

Return sample standard deviation over requested axis.

- Normalized by N-1 by default. This can be changed using the ddof argument

Parameters
- **axis** : {items (0), major_axis (1), minor_axis (2)}
- **skipna** : boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level** : int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a DataFrame
- **ddof** : int, default 1
 - degrees of freedom
- **numeric_only** : boolean, default None
 - Include only float, int, boolean columns. If None, will attempt to use everything,
 then use only numeric data. Not implemented for Series.

Returns
`std` : DataFrame or Panel (if level specified)

pandas.Panel.sub

```python
Panel.sub(other, axis=0)
```

Subtraction of series and other, element-wise (binary operator `sub`). Equivalent to `panel - other`.

Parameters
- **other** : DataFrame or Panel
- **axis** : {items, major_axis, minor_axis}
 - Axis to broadcast over

Returns
Panel
See also:

Panel.rsub

pandas.Panel.subtract

Panel.subtract \(\text{other, axis}=0 \)

Subtraction of series and other, element-wise (binary operator \textit{sub}). Equivalent to \texttt{panel} \-\texttt{other}.

Parameters

- \texttt{other} : DataFrame or Panel
- \texttt{axis} : \{\texttt{items}, \texttt{major_axis}, \texttt{minor_axis}\}

Returns Panel

See also:

Panel.rsub

pandas.Panel.sum

Panel.sum \(\text{axis}=\text{None, skipna}=\text{None, level}=\text{None, numeric_only}=\text{None, **kwargs} \)

Return the sum of the values for the requested axis

Parameters

- \texttt{axis} : \{\texttt{items (0), major_axis (1), minor_axis (2)}\}
- \texttt{skipna} : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
- \texttt{level} : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame
- \texttt{numeric_only} : boolean, default None
 Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns \texttt{sum} : DataFrame or Panel (if level specified)

pandas.Panel.swapaxes

Panel.swapaxes \(\text{axis1, axis2, copy}=\text{True} \)

Interchange axes and swap values axes appropriately

Returns \texttt{y} : same as input

pandas.Panel.swaplevel

Panel.swaplevel \(i=-2, j=-1, axis=0 \)

Swap levels \(i \) and \(j \) in a MultiIndex on a particular axis

Parameters \texttt{i, j} : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.
pandas: powerful Python data analysis toolkit, Release 0.19.2

Returns swapped: type of caller (new object)

Changed in version 0.18.1: The indexes i and j are now optional, and default to the two innermost levels of the index.

pandas.Panel.tail

Panel\.tail($n=5$)

pandas.Panel.take

Panel\.take$(indices, axis=0, convert=True, is_copy=True, **kwargs)$

Analogous to ndarray.take

Parameters

- **indices**: list / array of ints
- **axis**: int, default 0
- **convert**: translate neg to pos indices (default)
- **is_copy**: mark the returned frame as a copy

Returns

- **taken**: type of caller

pandas.Panel.toLong

Panel\.toLong(*args, **kwargs)

pandas.Panel.to_clipboard

Panel\.to_clipboard$(excel=None, sep=None, **kwargs)$

Attempt to write text representation of object to the system clipboard. This can be pasted into Excel, for example.

Parameters

- **excel**: boolean, defaults to True
 - if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard
- **sep**: optional, defaults to tab
- **other keywords are passed to to_csv**

Notes

Requirements for your platform

- Linux: xclip, or xsel (with gtk or PyQt4 modules)
- Windows: none
- OS X: none
pandas.Panel.to_dense

Panel.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

pandas.Panel.to_excel

Panel.to_excel(path, na_rep='', engine=None, **kwargs)
Write each DataFrame in Panel to a separate excel sheet

Parameters path : string or ExcelWriter object
File path or existing ExcelWriter

na_rep : string, default ''
Missing data representation

generate : string, default None
write engine to use - you can also set this via the options
io.excel.xlsx.writer, io.excel.xls.writer, and
io.excel.xlsm.writer.

Other Parameters float_format : string, default None
Format string for floating point numbers

cols : sequence, optional
Columns to write

header : boolean or list of string, default True
Write out column names. If a list of string is given it is assumed to be aliases for
the column names

index : boolean, default True
Write row names (index)

index_label : string or sequence, default None
Column label for index column(s) if desired. If None is given, and header and
index are True, then the index names are used. A sequence should be given if the
DataFrame uses MultiIndex.

startrow : upper left cell row to dump data frame

startcol : upper left cell column to dump data frame

Notes
Keyword arguments (and na_rep) are passed to the to_excel method for each DataFrame written.

pandas.Panel.to_frame

Panel.to_frame(filter_observations=True)
Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and
whose index is a MultiIndex formed of the Panel’s major and minor axes.
Parameters
filter_observations: boolean, default True

Drop (major, minor) pairs without a complete set of observations across all the items

Returns
y: DataFrame

pandas.Panel.to_hdf

Panel.to_hdf(*path_or_buf, key, **kwargs*)

Write the contained data to an HDF5 file using HDFStore.

Parameters
path_or_buf: the path (string) or HDFStore object

key: string

mode: optional, {'a', 'w', 'r+'}, default 'a'

- 'w': Write; a new file is created (an existing file with the same name would be deleted).
- 'a': Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
- 'r+': It is similar to 'a', but the file must already exist.

format: 'fixed(f)|table(t)', default is 'fixed'

- fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
- table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append: boolean, default False

For Table formats, append the input data to the existing

data_columns: list of columns, or True, default None

List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See [here](#).

Applicable only to format='table'.

complevel: int, 1-9, default 0

If a complib is specified compression will be applied where possible

complib: {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None

If complevel is >0 apply compression to objects written in the store wherever possible

fletcher32: bool, default False

If applying compression use the fletcher32 checksum

dropna: boolean, default False.

If true, ALL nan rows will not be written to store.
pandas.Panel.to_json

Panel.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10, force_ascii=True, date_unit='ms', default_handler=None, lines=False)

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters

path_or_buf : the path or buffer to write the result string

if this is None, return a StringIO of the converted string

orient : string

• Series
 – default is ‘index’
 – allowed values are: {‘split’,’records’,’index’}

• DataFrame
 – default is ‘columns’
 – allowed values are: {‘split’,’records’,’index’,’columns’,’values’}

• The format of the JSON string
 – split : dict like {index -> [index], columns -> [columns], data -> [values]}
 – records : list like [{column -> value}, ... , {column -> value}]
 – index : dict like {index -> {column -> value}}
 – columns : dict like {column -> {index -> value}}
 – values : just the values array

date_format : {‘epoch’, ‘iso’}

Type of date conversion. epoch = epoch milliseconds, iso’ = ISO8601, default is epoch.

double_precision : The number of decimal places to use when encoding floating point values, default 10.

force_ascii : force encoded string to be ASCII, default True.

date_unit : string, default ‘ms’ (milliseconds)

The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

default_handler : callable, default None

Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

lines : boolean, default False

If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like.

New in version 0.19.0.
Returns same type as input object with filtered info axis

pandas.Panel.to_long

```py
Panel.to_long(*args, **kwargs)
```

pandas.Panel.to_msgpack

```py
Panel.to_msgpack(path_or_buf=None, encoding='utf-8', **kwargs)
```

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

Parameters

- **path**: string File path, buffer-like, or None
 - if None, return generated string
- **append**: boolean whether to append to an existing msgpack
 - (default is False)
- **compress**: type of compressor (zlib or blosc), default to None (no compression)

pandas.Panel.to_pickle

```py
Panel.to_pickle(path)
```

Pickle (serialize) object to input file path.

Parameters

- **path**: string File path

pandas.Panel.to_sparse

```py
Panel.to_sparse(*args, **kwargs)
```

NOT IMPLEMENTED: do not call this method, as sparsifying is not supported for Panel objects and will raise an error.

Convert to SparsePanel

pandas.Panel.to_sql

```py
Panel.to_sql(name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None)
```

Write records stored in a DataFrame to a SQL database.

Parameters

- **name**: string
 - Name of SQL table
- **con**: SQLAlchemy engine or DBAPI2 connection (legacy mode)
 - Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
flavor : ‘sqlite’, default None

DEPRECATED: this parameter will be removed in a future version, as ‘sqlite’ is the only supported option if SQLAlchemy is not installed.

schema : string, default None

Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default ‘fail’

• fail: If table exists, do nothing.
• replace: If table exists, drop it, recreate it, and insert data.
• append: If table exists, insert data. Create if does not exist.

index : boolean, default True

Write DataFrame index as a column.

index_label : string or sequence, default None

Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None

If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

dtype : dict of column name to SQL type, default None

Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection.

pandas.Panel.to_xarray

Panel.to_xarray()

Return an xarray object from the pandas object.

Returns a DataArray for a Series

a Dataset for a DataFrame

a DataArray for higher dims

Notes

See the xarray docs

Examples

```python
>>> df = pd.DataFrame({'A' : [1, 1, 2],
    'B' : ['foo', 'bar', 'foo'],
    'C' : np.arange(4.,7))

>>> df
   A  B    C
0  1  foo  4.0
```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>bar 5.0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>foo 6.0</td>
</tr>
</tbody>
</table>

```python
>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:
* index (index) int64 0 1 2
Data variables:
A (index) int64 1 1 2
B (index) object 'foo' 'bar' 'foo'
C (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A': [1, 1, 2],
                    'B': ['foo', 'bar', 'foo'],
                    'C': np.arange(4., 7)}
                   ).set_index(['B', 'A'])

>>> df
   C
B   A
foo 1 4.0
bar 1 5.0
foo 2 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:
* B (B) object 'bar' 'foo'
* A (A) int64 1 2
Data variables:
C (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4, 3, 2),
                 items=list('ABCD'),
                 major_axis=pd.date_range('20130101', periods=3),
                 minor_axis=['first', 'second'])

>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[0, 1],
       [2, 3],
       [4, 5],
       [6, 7],
       [8, 9],
       [10, 11],
       [12, 13],
       [14, 15],
       [16, 17],
       [18, 19],
       [20, 21],
       [22, 23]])
pandas.Panel.transpose

Panel.transpose(*args, **kwargs)

Permute the dimensions of the Panel

Parameters
args : three positional arguments: each one of
{0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}

copy [boolean, default False] Make a copy of the underlying data. Mixed-dtype data will always result in a copy

Returns
y : same as input

Examples

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```

pandas.Panel.truediv

Panel.truediv(other, axis=0)

Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel / other.

Parameters
other : DataFrame or Panel

axis : {items, major_axis, minor_axis}

Axis to broadcast over

Returns
Panel

See also:
Panel.rtruediv

pandas.Panel.truncate

Panel.truncate(before=None, after=None, axis=None, copy=True)

Truncates a sorted NDFrame before and/or after some particular index value. If the axis contains only
datetime values, before/after parameters are converted to datetime values.

Parameters
before : date

Truncate before index value
after : date
  Truncate after index value
axis : the truncation axis, defaults to the stat axis
copy : boolean, default is True,
  return a copy of the truncated section

Returns truncated : type of caller

pandas.Panel.tshift

Panel.tshift (periods=1, freq=None, axis='major')

pandas.Panel.tz_convert

Panel.tz_convert (tz, axis=0, level=None, copy=True)
  Convert tz-aware axis to target time zone.

Parameters
  tz : string or pytz.timezone object
  axis : the axis to convert
  level : int, str, default None
    If axis ia a MultiIndex, convert a specific level. Otherwise must be None
  copy : boolean, default True
    Also make a copy of the underlying data

Raises TypeError
  If the axis is tz-naive.

pandas.Panel.tz_localize

Panel.tz_localize (*args, **kwargs)
  Localize tz-naive TimeSeries to target time zone.

Parameters
  tz : string or pytz.timezone object
  axis : the axis to localize
  level : int, str, default None
    If axis ia a MultiIndex, localize a specific level. Otherwise must be None
  copy : boolean, default True
    Also make a copy of the underlying data

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
  • ‘infer’ will attempt to infer fall dst-transition hours based on order
  • bool-ndarray where True signifies a DST time, False designates a non-DST time (note
    that this flag is only applicable for ambiguous times)
  • ‘NaT’ will return NaT where there are ambiguous times
• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

   **infer_dst** : boolean, default False (DEPRECATED)
   Attempt to infer fall dst-transition hours based on order

   **Raises** **TypeError**
   If the TimeSeries is tz-aware and tz is not None.

**pandas.Panel.update**

*Panel.update*(other, join='left', overwrite=True, filter_func=None, raise_conflict=False)
Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items

**Parameters** other : Panel, or object coercible to Panel

   **join** : How to join individual DataFrames
   {'left', 'right', 'outer', 'inner'}, default ‘left’

   **overwrite** : boolean, default True
   If True then overwrite values for common keys in the calling panel

   **filter_func** : callable(1d-array) -> 1d-array<boolean>, default None
   Can choose to replace values other than NA. Return True for values that should be updated

   **raise_conflict** : bool
   If True, will raise an error if a DataFrame and other both contain data in the same place.

**pandas.Panel.var**

*Panel.var*(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters** axis : {items (0), major_axis (1), minor_axis (2)}

   **skipna** : boolean, default True
   Exclude NA/null values. If an entire row/column is NA, the result will be NA

   **level** : int or level name, default None
   If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame

   **ddof** : int, default 1
   degrees of freedom

   **numeric_only** : boolean, default None
   Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

   **Returns** var : DataFrame or Panel (if level specified)
pandas.Panel.where

Panel.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters

cond : boolean NDFrame, array or callable

If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.

A callable can be used as cond.

other : scalar, NDFrame, or callable

If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.

A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

axis : alignment axis if needed, default None

level : alignment level if needed, default None

try_cast : boolean, default False

try to cast the result back to the input type (if possible).

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Returns

wh : same type as caller

See also:

DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m,df2) is equivalent to np.where(m,df1,df2).

For further details and examples see the where documentation in indexing.
Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
```

```python
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
 A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
```

```python
>>> df.where(m, -df) == np.where(m, df, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

```python
>>> df.where(m, -df) == df.mask(~m, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

**pandas.Panel.xs**

**Panel.xs** *(key, axis=1)*

Return slice of panel along selected axis

**Parameters**

- **key**: object
  - Label
  - **axis**: {'items', 'major', 'minor'}, default 1/'major'

**Returns**

- **y**: ndim(self)-1

**Notes**

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of xs functionality, see *MultiIndex Slicers*
Attributes and underlying data

Axes
• items: axis 0; each item corresponds to a DataFrame contained inside
• major_axis: axis 1; the index (rows) of each of the DataFrames
• minor_axis: axis 2; the columns of each of the DataFrames

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.values</code></td>
<td>Numpy representation of NDFrame</td>
</tr>
<tr>
<td><code>Panel.axes</code></td>
<td>Return index label(s) of the internal NDFrame</td>
</tr>
<tr>
<td><code>Panel.ndim</code></td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td><code>Panel.shape</code></td>
<td>Return a tuple of axis dimensions</td>
</tr>
<tr>
<td><code>Panel.dtypes</code></td>
<td>Return the dtypes in this object.</td>
</tr>
<tr>
<td><code>Panel.ftypes</code></td>
<td>Return the ftypes (indication of sparse/dense and dtype) in this object.</td>
</tr>
<tr>
<td><code>Panel.get_dtype_counts()</code></td>
<td>Return the counts of dtypes in this object.</td>
</tr>
<tr>
<td><code>Panel.get_ftype_counts()</code></td>
<td>Return the counts of ftypes in this object.</td>
</tr>
</tbody>
</table>

Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.astype()</code></td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>Panel.copy()</code></td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td><code>Panel.isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>Panel.notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
</tbody>
</table>

Getting and setting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.get_value()</code></td>
<td>Quickly retrieve single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>Panel.set_value()</code></td>
<td>Quickly set single value at (item, major, minor) location</td>
</tr>
</tbody>
</table>

Indexing, iteration, slicing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.at</code></td>
<td>Fast label-based scalar accessor</td>
</tr>
<tr>
<td><code>Panel.iat</code></td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td><code>Panel.ix</code></td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td><code>Panel.loc</code></td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td><code>Panel.iloc</code></td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td><code>Panel.__iter__()</code></td>
<td>Iterate over info axis</td>
</tr>
<tr>
<td><code>Panel.iteritems()</code></td>
<td>Iterate over (label, values) on info axis</td>
</tr>
<tr>
<td><code>Panel.pop()</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>Panel.xs()</code></td>
<td>Return slice of panel along selected axis</td>
</tr>
</tbody>
</table>

Continued on next page
pandas: powerful Python data analysis toolkit, Release 0.19.2

Table 35.73 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel.major_xs</strong>&lt;br&gt;(key)</td>
<td>Return slice of panel along major axis</td>
</tr>
<tr>
<td><strong>Panel.minor_xs</strong>&lt;br&gt;(key)</td>
<td>Return slice of panel along minor axis</td>
</tr>
</tbody>
</table>

**pandas.Panel.__iter__**

```
Panel.__iter__()
```

Iterate over infor axis

For more information on `.at`, `.iat`, `.ix`, `.loc`, and `.iloc`, see the *indexing documentation*.

**Binary operator functions**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel.add</strong>&lt;br&gt;(other[, axis])</td>
<td>Addition of series and other, element-wise (binary operator <code>add</code>).</td>
</tr>
<tr>
<td><strong>Panel.sub</strong>&lt;br&gt;(other[, axis])</td>
<td>Subtraction of series and other, element-wise (binary operator <code>sub</code>).</td>
</tr>
<tr>
<td><strong>Panel.mul</strong>&lt;br&gt;(other[, axis])</td>
<td>Multiplication of series and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><strong>Panel.div</strong>&lt;br&gt;(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><strong>Panel.truediv</strong>&lt;br&gt;(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><strong>Panel.floordiv</strong>&lt;br&gt;(other[, axis])</td>
<td>Integer division of series and other, element-wise (binary operator <code>floordiv</code>).</td>
</tr>
<tr>
<td><strong>Panel.mod</strong>&lt;br&gt;(other[, axis])</td>
<td>Modulo of series and other, element-wise (binary operator <code>mod</code>).</td>
</tr>
<tr>
<td><strong>Panel.pow</strong>&lt;br&gt;(other[, axis])</td>
<td>Exponential power of series and other, element-wise (binary operator <code>pow</code>).</td>
</tr>
<tr>
<td><strong>Panel.radd</strong>&lt;br&gt;(other[, axis])</td>
<td>Addition of series and other, element-wise (binary operator <code>radd</code>).</td>
</tr>
<tr>
<td><strong>Panel.rsub</strong>&lt;br&gt;(other[, axis])</td>
<td>Subtraction of series and other, element-wise (binary operator <code>rsub</code>).</td>
</tr>
<tr>
<td><strong>Panel.rmul</strong>&lt;br&gt;(other[, axis])</td>
<td>Multiplication of series and other, element-wise (binary operator <code>rmul</code>).</td>
</tr>
<tr>
<td><strong>Panel.rdiv</strong>&lt;br&gt;(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><strong>Panel.rtruediv</strong>&lt;br&gt;(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><strong>Panel.rfloordiv</strong>&lt;br&gt;(other[, axis])</td>
<td>Integer division of series and other, element-wise (binary operator <code>rfloordiv</code>).</td>
</tr>
<tr>
<td><strong>Panel.rmod</strong>&lt;br&gt;(other[, axis])</td>
<td>Modulo of series and other, element-wise (binary operator <code>rmod</code>).</td>
</tr>
<tr>
<td><strong>Panel.rpow</strong>&lt;br&gt;(other[, axis])</td>
<td>Exponential power of series and other, element-wise (binary operator <code>rpow</code>).</td>
</tr>
<tr>
<td><strong>Panel.lt</strong>&lt;br&gt;(other[, axis])</td>
<td>Wrapper for comparison method <code>lt</code></td>
</tr>
<tr>
<td><strong>Panel.gt</strong>&lt;br&gt;(other[, axis])</td>
<td>Wrapper for comparison method <code>gt</code></td>
</tr>
<tr>
<td><strong>Panel.le</strong>&lt;br&gt;(other[, axis])</td>
<td>Wrapper for comparison method <code>le</code></td>
</tr>
<tr>
<td><strong>Panel.ge</strong>&lt;br&gt;(other[, axis])</td>
<td>Wrapper for comparison method <code>ge</code></td>
</tr>
<tr>
<td><strong>Panel.ne</strong>&lt;br&gt;(other[, axis])</td>
<td>Wrapper for comparison method <code>ne</code></td>
</tr>
<tr>
<td><strong>Panel.eq</strong>&lt;br&gt;(other[, axis])</td>
<td>Wrapper for comparison method <code>eq</code></td>
</tr>
</tbody>
</table>
### Function application, GroupBy

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.apply(func[, axis])</code></td>
<td>Applies function along axis (or axes) of the Panel</td>
</tr>
<tr>
<td><code>Panel.groupby(function[, axis])</code></td>
<td>Group data on given axis, returning GroupBy object</td>
</tr>
</tbody>
</table>

### Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.abs()</code></td>
<td>Return an object with absolute value taken—only applicable to objects that are all numeric.</td>
</tr>
<tr>
<td><code>Panel.clip([lower, upper, axis])</code></td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>Panel.clip_lower(threshold[, axis])</code></td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>Panel.clip_upper(threshold[, axis])</code></td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>Panel.count([axis])</code></td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cummax([axis, skipna])</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cummin([axis, skipna])</code></td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cumprod([axis, skipna])</code></td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td><code>Panel.cumsum([axis, skipna])</code></td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>Panel.max([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>Panel.mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>Panel.median([axis, skipna, level, numeric_only])</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
<tr>
<td><code>Panel.min([axis, skipna, level, numeric_only])</code></td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>Panel.pct_change([periods, fill_method, ...])</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>Panel.prod([axis, skipna, level, numeric_only])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>Panel.sem([axis, skipna, level, ddof, ...])</code></td>
<td>Return unbiased standard error of the mean over requested axis</td>
</tr>
<tr>
<td><code>Panel.skew([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td><code>Panel.sum([axis, skipna, level, numeric_only])</code></td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td><code>Panel.std([axis, skipna, level, ddof, ...])</code></td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td><code>Panel.var([axis, skipna, level, ddof, ...])</code></td>
<td>Return unbiased variance over requested axis.</td>
</tr>
</tbody>
</table>

### Reindexing / Selection / Label manipulation

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.add_prefix(prefix)</code></td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td><code>Panel.add_suffix(suffix)</code></td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td><code>Panel.drop(labels[, axis, level, inplace, ...])</code></td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td><code>Panel.equals(other)</code></td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td><code>Panel.filter([items, like, regex, axis])</code></td>
<td>Subset rows or columns of dataframe according to labels in the specified index.</td>
</tr>
<tr>
<td><code>Panel.first(offset)</code></td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>Panel.last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel.reindex</strong>([items, major_axis, minor_axis])</td>
<td>Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><strong>Panel.reindex_axis</strong>(labels[, axis, method, ...])</td>
<td>Conform input object to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.</td>
</tr>
<tr>
<td><strong>Panel.reindex_like</strong>(other[, method, copy, ...])</td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td><strong>Panel.rename</strong>([items, major_axis, minor_axis])</td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><strong>Panel.sample</strong>([n, frac, replace, weights, ...])</td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td><strong>Panel.select</strong>(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria.</td>
</tr>
<tr>
<td><strong>Panel.take</strong>(indices[, axis, convert, is_copy])</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td><strong>Panel.truncate</strong>([before, after, axis, copy])</td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
</tbody>
</table>

### Missing data handling

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel.dropna</strong>([axis, how, inplace])</td>
<td>Drop 2D from panel, holding passed axis constant.</td>
</tr>
<tr>
<td><strong>Panel.fillna</strong>([value, method, axis, inplace, ...])</td>
<td>Fill NA/NaN values using the specified method.</td>
</tr>
</tbody>
</table>

### Reshaping, sorting, transposing

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel.sort_index</strong>([axis, level, ascending, ...])</td>
<td>Sort object by labels (along an axis).</td>
</tr>
<tr>
<td><strong>Panel.swaplevel</strong>([i, j, axis])</td>
<td>Swap levels i and j in a MultiIndex on a particular axis.</td>
</tr>
<tr>
<td><strong>Panel.transpose</strong>(*args, **kwargs)</td>
<td>Permute the dimensions of the Panel.</td>
</tr>
<tr>
<td><strong>Panel.swapaxes</strong>(axis1, axis2[, copy])</td>
<td>Interchange axes and swap values axes appropriately.</td>
</tr>
<tr>
<td><strong>Panel.conform</strong>(frame[, axis])</td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
</tbody>
</table>

### Combining / joining / merging

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel.join</strong>(other[, how, lsuffix, rsuffix])</td>
<td>Join items with other Panel either on major and minor axes column.</td>
</tr>
<tr>
<td><strong>Panel.update</strong>(other[, join, overwrite, ...])</td>
<td>Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel.</td>
</tr>
</tbody>
</table>

### Time series-related

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Panel.asfreq</strong>(freq[, method, how, normalize])</td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td><strong>Panel.shift</strong>([periods, freq, axis])</td>
<td>Shift index by desired number of periods with an optional time freq.</td>
</tr>
<tr>
<td><strong>Panel.resample</strong>(rule[, how, axis, ...])</td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td><strong>Panel.tz_convert</strong>(tz[, axis, level, copy])</td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td><strong>Panel.tz_localize</strong>(**args, **kwargs)</td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
</tbody>
</table>
Serialization / IO / Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel.from_dict</code></td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td><code>Panel.to_pickle</code></td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td><code>Panel.to_excel</code></td>
<td>Write each DataFrame in Panel to a separate excel sheet</td>
</tr>
<tr>
<td><code>Panel.to_hdf</code></td>
<td>Write the contained data to an HDF5 file using HDFStore.</td>
</tr>
<tr>
<td><code>Panel.to_sparse</code></td>
<td>NOT IMPLEMENTED: do not call this method, as sparsifying is not supported for Panel objects and will raise an error.</td>
</tr>
<tr>
<td><code>Panel.to_frame</code></td>
<td>Transform wide format into long (stacked) format as DataFrame whose columns are the Panel’s items and whose index is a MultiIndex formed of the Panel’s major and minor axes.</td>
</tr>
<tr>
<td><code>Panel.to_xarray</code></td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td><code>Panel.to_clipboard</code></td>
<td>Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.</td>
</tr>
</tbody>
</table>

### Panel4D

#### Constructor

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Panel4D()</code></td>
<td>Panel4D is a 4-Dimensional named container very much like a Panel, but having 4 named dimensions.</td>
</tr>
</tbody>
</table>

```python
pandas.Panel4D(data=None, labels=None, items=None, major_axis=None, minor_axis=None, copy=False, dtype=None)
```

Panel4D is a 4-Dimensional named container very much like a Panel, but having 4 named dimensions. It is intended as a test bed for more N-Dimensional named containers.

**DEPRECATED.** Panel4D is deprecated and will be removed in a future version. The recommended way to represent these types of n-dimensional data are with the xarray package. Pandas provides a `.to_xarray()` method to automate this conversion.

**Parameters**
- **data**: ndarray (labels x items x major x minor), or dict of Panels
  - **labels**: Index or array-like
  - **items**: Index or array-like
  - **major_axis**: Index or array-like: axis=2
  - **minor_axis**: Index or array-like: axis=3
  - **dtype**: dtype, default None
- **Data type to force, otherwise infer**
  - **copy**: boolean, default False
  - **Copy data from inputs. Only affects DataFrame / 2d ndarray input**
Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>at</code></td>
<td>Fast label-based scalar accessor</td>
</tr>
<tr>
<td><code>axes</code></td>
<td>Return index label(s) of the internal NDFrame</td>
</tr>
<tr>
<td><code>blocks</code></td>
<td>Internal property, property synonym for as_blocks()</td>
</tr>
<tr>
<td><code>dtypes</code></td>
<td>Return the dtypes in this object.</td>
</tr>
<tr>
<td><code>empty</code></td>
<td>True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.</td>
</tr>
<tr>
<td><code>ftypes</code></td>
<td>Return the ftypes (indication of sparse/dense and dtype) in this object.</td>
</tr>
<tr>
<td><code>iat</code></td>
<td>Fast integer location scalar accessor.</td>
</tr>
<tr>
<td><code>iloc</code></td>
<td>Purely integer-location based indexing for selection by position.</td>
</tr>
<tr>
<td><code>is_copy</code></td>
<td></td>
</tr>
<tr>
<td><code>ix</code></td>
<td>A primarily label-location based indexer, with integer position fallback.</td>
</tr>
<tr>
<td><code>loc</code></td>
<td>Purely label-location based indexer for selection by label.</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>Number of axes / array dimensions</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>Return a tuple of axis dimensions</td>
</tr>
<tr>
<td><code>size</code></td>
<td>number of elements in the NDFrame</td>
</tr>
<tr>
<td><code>values</code></td>
<td>Numpy representation of NDFrame</td>
</tr>
</tbody>
</table>

**pandas.Panel4D.at**

Panel4D.at

Fast label-based scalar accessor

Similarly to `loc`, `at` provides label based scalar lookups. You can also set using these indexers.

**pandas.Panel4D.axes**

Panel4D.axes

Return index label(s) of the internal NDFrame

**pandas.Panel4D.blocks**

Panel4D.blocks

Internal property, property synonym for as_blocks()

**pandas.Panel4D.dtypes**

Panel4D.dtypes

Return the dtypes in this object.
**pandas.Panel4D.empty**

**Panel4D.empty**
True if NDFrame is entirely empty [no items], meaning any of the axes are of length 0.

**See also:**
pandas.Series.dropna, pandas.DataFrame.dropna

**Notes**

If NDFrame contains only NaNs, it is still not considered empty. See the example below.

**Examples**

An example of an actual empty DataFrame. Notice the index is empty:

```python
>>> df_empty = pd.DataFrame({'A' : []})
>>> df_empty
Empty DataFrame
Columns: [A]
Index: []
>>> df_empty.empty
True
```

If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty:

```python
>>> df = pd.DataFrame({'A' : [np.nan]})
>>> df
A
0 NaN
>>> df.empty
False
>>> df.dropna().empty
True
```

**pandas.Panel4D.ftypes**

**Panel4D.ftypes**
Return the ftypes (indication of sparse/dense and dtype) in this object.

**pandas.Panel4D.iat**

**Panel4D.iat**
Fast integer location scalar accessor.

Similarly to iloc, iat provides integer based lookups. You can also set using these indexers.
pandas.Panel4D.iloc

Panel4D.iloc
Purely integer-location based indexing for selection by position.
.iloc[] is primarily integer position based (from 0 to length-1 of the axis), but may also be used with a boolean array.

Allowed inputs are:

• An integer, e.g. 5.
• A list or array of integers, e.g. [4, 3, 0].
• A slice object with ints, e.g. 1:7.
• A boolean array.
• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above).

.iloc will raise IndexError if a requested indexer is out-of-bounds, except slice indexers which allow out-of-bounds indexing (this conforms with python/numpy slice semantics).

See more at Selection by Position

pandas.Panel4D.is_copy

Panel4D.is_copy = None

pandas.Panel4D.ix

Panel4D.ix
A primarily label-location based indexer, with integer position fallback.
.ix[] supports mixed integer and label based access. It is primarily label based, but will fall back to integer positional access unless the corresponding axis is of integer type.
.ix is the most general indexer and will support any of the inputs in .loc and .iloc. .ix also supports floating point label schemes. .ix is exceptionally useful when dealing with mixed positional and label based hierarchical indexes.

However, when an axis is integer based, ONLY label based access and not positional access is supported. Thus, in such cases, it’s usually better to be explicit and use .iloc or .loc.

See more at Advanced Indexing.

pandas.Panel4D.loc

Panel4D.loc
Purely label-location based indexer for selection by label.
.loc[] is primarily label based, but may also be used with a boolean array.

Allowed inputs are:

• A single label, e.g. 5 or 'a', (note that 5 is interpreted as a label of the index, and never as an integer position along the index).
• A list or array of labels, e.g. ['a', 'b', 'c'].
• A slice object with labels, e.g. 'a' : 'f' (note that contrary to usual python slices, both the start and the stop are included!).
• A boolean array.
• A callable function with one argument (the calling Series, DataFrame or Panel) and that returns valid output for indexing (one of the above)

.loc will raise a KeyError when the items are not found.

See more at Selection by Label

pandas.Panel4D.ndim

Panel4D.ndim
Number of axes / array dimensions

pandas.Panel4D.shape

Panel4D.shape
Return a tuple of axis dimensions

pandas.Panel4D.size

Panel4D.size
Number of elements in the NDFrame

pandas.Panel4D.values

Panel4D.values
Numpy representation of NDFrame

Notes

The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks.

e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By numpy.find_common_type convention, mixing int64 and uint64 will result in a float64 dtype.

Methods

abs() Return an object with absolute value taken–only applicable to objects that are all numeric.

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add</code>([other], axis)</td>
<td>Addition of series and other, element-wise (binary operator <code>add</code>).</td>
</tr>
<tr>
<td><code>add_prefix</code>([prefix])</td>
<td>Concatenate prefix string with panel items names.</td>
</tr>
<tr>
<td><code>add_suffix</code>([suffix])</td>
<td>Concatenate suffix string with panel items names.</td>
</tr>
<tr>
<td><code>align</code>([other], **kwargs)</td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td><code>all</code>([axis, bool_only, skipna, level])</td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td><code>apply</code>([func], axis)</td>
<td>Applies function along axis (or axes) of the Panel</td>
</tr>
<tr>
<td><code>as_blocks</code>([copy])</td>
<td>Convert the frame to a dict of dtype -&gt; Constructor Types that each has a homogeneous dtype.</td>
</tr>
<tr>
<td><code>asfreq</code>([freq, method, how, normalize])</td>
<td>Convert TimeSeries to specified frequency.</td>
</tr>
<tr>
<td><code>astype</code>([dtype, copy, raise_on_error])</td>
<td>Cast object to input numpy.dtype</td>
</tr>
<tr>
<td><code>at_time</code>([time], asof)</td>
<td>Select values at particular time of day (e.g., 9:00-9:30 AM).</td>
</tr>
<tr>
<td><code>between_time</code>([start_time, end_time, \ldots])</td>
<td>Select values between particular times of the day (e.g.,</td>
</tr>
<tr>
<td><code>bfill</code>([axis, inplace, limit, downcast])</td>
<td>Synonym for NDFrame.fillna(method='bfill')</td>
</tr>
<tr>
<td><code>bfill()</code></td>
<td>Return the bool of a single element PandasObject.</td>
</tr>
<tr>
<td><code>clip</code>([lower, upper, axis])</td>
<td>Trim values at input threshold(s).</td>
</tr>
<tr>
<td><code>clip_lower</code>([threshold, axis])</td>
<td>Return copy of the input with values below given value(s) truncated.</td>
</tr>
<tr>
<td><code>clip_upper</code>([threshold, axis])</td>
<td>Return copy of input with values above given value(s) truncated.</td>
</tr>
<tr>
<td><code>compound</code>([axis, skipna, level])</td>
<td>Return the compound percentage of the values for the requested axis</td>
</tr>
<tr>
<td><code>conform</code>([frame, axis])</td>
<td>Conform input DataFrame to align with chosen axis pair.</td>
</tr>
<tr>
<td><code>consolidate</code>([inplace])</td>
<td>Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray).</td>
</tr>
<tr>
<td><code>convert_objects</code>([convert_dates, \ldots])</td>
<td>Deprecated.</td>
</tr>
<tr>
<td><code>copy</code>([deep])</td>
<td>Make a copy of this objects data.</td>
</tr>
<tr>
<td><code>count</code>([axis])</td>
<td>Return number of observations over requested axis.</td>
</tr>
<tr>
<td><code>cummax</code>([axis, skipna])</td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>cummin</code>([axis, skipna])</td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td><code>cumprod</code>([axis, skipna])</td>
<td>Return cumulative product over requested axis.</td>
</tr>
<tr>
<td><code>cumsum</code>([axis, skipna])</td>
<td>Return cumulative sum over requested axis.</td>
</tr>
<tr>
<td><code>describe</code>([percentiles, include, exclude])</td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>div</code>([other], axis)</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>divide</code>([other], axis)</td>
<td>Floating division of series and other, element-wise (binary operator <code>truediv</code>).</td>
</tr>
<tr>
<td><code>drop</code>([labels[, axis, level, inplace, errors]])</td>
<td>Return new object with labels in requested axis removed.</td>
</tr>
<tr>
<td><code>dropna</code>([**args, **kwargs])</td>
<td>Wrapper for comparison method <code>eq</code></td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.85 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>equals(other)</code></td>
<td>Determines if two NDFrame objects contain the same elements.</td>
</tr>
<tr>
<td><code>ffill([axis, inplace, limit, downcast])</code></td>
<td>Synonym for NDFrame.fillna(method='ffill')</td>
</tr>
<tr>
<td><code>fillna([value, method, axis, inplace, ...])</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>filter(**args, **kwargs)</code></td>
<td></td>
</tr>
<tr>
<td><code>first(offset)</code></td>
<td>Convenience method for subsetting initial periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>floordiv(other[, axis])</code></td>
<td>Integer division of series and other, element-wise (binary operator <code>floordiv</code>).</td>
</tr>
<tr>
<td><code>fromDict(data[, intersect, orient, dtype])</code></td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td><code>from_dict(data[, intersect, orient, dtype])</code></td>
<td>Construct Panel from dict of DataFrame objects</td>
</tr>
<tr>
<td><code>get(other[, axis])</code></td>
<td>Wrapper for comparison method <code>ge</code></td>
</tr>
<tr>
<td><code>get(key[, default])</code></td>
<td>Get item from object for given key (DataFrame column, Panel slice, etc.).</td>
</tr>
<tr>
<td><code>get_dtype_counts()</code></td>
<td>Return the counts of dtypes in this object.</td>
</tr>
<tr>
<td><code>get_ftype_counts()</code></td>
<td>Return the counts of ftypes in this object.</td>
</tr>
<tr>
<td><code>get_value(**args, **kwargs)</code></td>
<td>Quickly retrieve single value at (item, major, minor) location</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>same as values (but handles sparseness conversions)</td>
</tr>
<tr>
<td><code>groupby(*args, **kwargs)</code></td>
<td></td>
</tr>
<tr>
<td><code>gt(other[, axis])</code></td>
<td>Wrapper for comparison method <code>gt</code></td>
</tr>
<tr>
<td><code>head([n])</code></td>
<td></td>
</tr>
<tr>
<td><code>interpolate([method, axis, limit, inplace, ...])</code></td>
<td>Interpolate values according to different methods.</td>
</tr>
<tr>
<td><code>isnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are null.</td>
</tr>
<tr>
<td><code>iteritems()</code></td>
<td>Iterate over (label, values) on info axis</td>
</tr>
<tr>
<td><code>iterkv(**args, **kwargs)</code></td>
<td>iteritems alias used to get around 2to3. Deprecated</td>
</tr>
<tr>
<td><code>keys()</code></td>
<td>Get the ‘info axis’ (see Indexing for more)</td>
</tr>
<tr>
<td><code>kurt([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher's definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>kurtosis([axis, skipna, level, numeric_only])</code></td>
<td>Return unbiased kurtosis over requested axis using Fisher's definition of kurtosis (kurtosis of normal == 0.0).</td>
</tr>
<tr>
<td><code>last(offset)</code></td>
<td>Convenience method for subsetting final periods of time series data based on a date offset.</td>
</tr>
<tr>
<td><code>le(other[, axis])</code></td>
<td>Wrapper for comparison method <code>le</code></td>
</tr>
<tr>
<td><code>lt(other[, axis])</code></td>
<td>Wrapper for comparison method <code>lt</code></td>
</tr>
<tr>
<td><code>mad([axis, skipna, level])</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>major_xs(key)</code></td>
<td>Return slice of panel along major axis</td>
</tr>
<tr>
<td><code>mask(cond[, other, inplace, axis, level, ...])</code></td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.</td>
</tr>
<tr>
<td><code>max([axis, skipna, level])</code></td>
<td>This method returns the maximum of the values in the object.</td>
</tr>
<tr>
<td><code>mean([axis, skipna, level, numeric_only])</code></td>
<td>Return the mean of the values for the requested axis</td>
</tr>
<tr>
<td><code>median([axis, skipna, level, numeric_only])</code></td>
<td>Return the median of the values for the requested axis</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 35.85 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>min()</code> (<code>axis</code>, <code>skipna</code>, <code>level</code>, <code>numeric_only</code>)</td>
<td>This method returns the minimum of the values in the object.</td>
</tr>
<tr>
<td><code>minor_xs(key)</code></td>
<td>Return slice of panel along minor axis</td>
</tr>
<tr>
<td><code>mod(other[, axis])</code></td>
<td>Modulo of series and other, element-wise (binary operator <code>mod</code>).</td>
</tr>
<tr>
<td><code>mul(other[, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>multiply(other[, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>mul</code>).</td>
</tr>
<tr>
<td><code>ne(other[, axis])</code></td>
<td>Wrapper for comparison method <code>ne</code>.</td>
</tr>
<tr>
<td><code>notnull()</code></td>
<td>Return a boolean same-sized object indicating if the values are not null.</td>
</tr>
<tr>
<td><code>pct_change([periods, fill_method, limit, freq])</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>pipe(func, *args, **kwargs)</code></td>
<td>Apply <code>func(self, *args, **kwargs)</code></td>
</tr>
<tr>
<td><code>pop(item)</code></td>
<td>Return item and drop from frame.</td>
</tr>
<tr>
<td><code>pow(other[, axis])</code></td>
<td>Exponential power of series and other, element-wise (binary operator <code>pow</code>).</td>
</tr>
<tr>
<td><code>prod([axis, skipna, level, numeric_only])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>product([axis, skipna, level, numeric_only])</code></td>
<td>Return the product of the values for the requested axis</td>
</tr>
<tr>
<td><code>radd(other[, axis])</code></td>
<td>Addition of series and other, element-wise (binary operator <code>radd</code>).</td>
</tr>
<tr>
<td><code>rank([axis, method, numeric_only, ...])</code></td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>rdiv(other[, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
<tr>
<td><code>reindex([items, major_axis, minor_axis])</code></td>
<td>Conform Panel to new index with optional filling logic, placing NA/Nan in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_axis(labels[, axis, method, level, ...])</code></td>
<td>Conform input object to new index with optional filling logic, placing NA/Nan in locations having no value in the previous index.</td>
</tr>
<tr>
<td><code>reindex_like(other[, method, copy, limit, ...])</code></td>
<td>Return an object with matching indices to myself.</td>
</tr>
<tr>
<td><code>rename([items, major_axis, minor_axis])</code></td>
<td>Alter axes input function or functions.</td>
</tr>
<tr>
<td><code>rename_axis(mapper[, axis, copy, inplace])</code></td>
<td>Alter index and / or columns using input function or functions.</td>
</tr>
<tr>
<td><code>replace(to_replace, value, inplace[, limit])</code></td>
<td>Replace values given in ‘to_replace’ with ‘value’.</td>
</tr>
<tr>
<td><code>resample(rule[, how, axis, fill_method, ...])</code></td>
<td>Convenience method for frequency conversion and resampling of time series.</td>
</tr>
<tr>
<td><code>rfloordiv(other[, axis])</code></td>
<td>Integer division of series and other, element-wise (binary operator <code>rfloordiv</code>).</td>
</tr>
<tr>
<td><code>rmod(other[, axis])</code></td>
<td>Modulo of series and other, element-wise (binary operator <code>rmod</code>).</td>
</tr>
<tr>
<td><code>rmul(other[, axis])</code></td>
<td>Multiplication of series and other, element-wise (binary operator <code>rmul</code>).</td>
</tr>
<tr>
<td><code>round([decimals])</code></td>
<td>Round each value in Panel to a specified number of decimal places.</td>
</tr>
<tr>
<td><code>rpow(other[, axis])</code></td>
<td>Exponential power of series and other, element-wise (binary operator <code>rpow</code>).</td>
</tr>
<tr>
<td><code>rsub(other[, axis])</code></td>
<td>Subtraction of series and other, element-wise (binary operator <code>rsub</code>).</td>
</tr>
<tr>
<td><code>rtruediv(other[, axis])</code></td>
<td>Floating division of series and other, element-wise (binary operator <code>rtruediv</code>).</td>
</tr>
</tbody>
</table>
Table 35.85 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample([in, frac, replace, weights, ...])</td>
<td>Returns a random sample of items from an axis of object.</td>
</tr>
<tr>
<td>select(crit[, axis])</td>
<td>Return data corresponding to axis labels matching criteria</td>
</tr>
<tr>
<td>sem([axis, skipna, level, ddof, numeric_only])</td>
<td>Return unbiased standard error of the mean over requested axis.</td>
</tr>
<tr>
<td>set_axis(axis, labels)</td>
<td>public version of axis assignment</td>
</tr>
<tr>
<td>set_value(*args, **kwargs)</td>
<td>Quickly set single value at (item, major, minor) location</td>
</tr>
<tr>
<td>shift(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>skew([axis, skipna, level, numeric_only])</td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td>slice_shift([periods, axis])</td>
<td>Equivalent to shift without copying data.</td>
</tr>
<tr>
<td>sort_index([axis, level, ascending, ...])</td>
<td>Sort object by labels (along an axis)</td>
</tr>
<tr>
<td>sort_values(by[, axis, ascending, inplace, ...])</td>
<td></td>
</tr>
<tr>
<td>squeeze(**kwargs)</td>
<td>Squeeze length 1 dimensions.</td>
</tr>
<tr>
<td>std([axis, skipna, level, ddof, numeric_only])</td>
<td>Return sample standard deviation over requested axis.</td>
</tr>
<tr>
<td>sub(other[, axis])</td>
<td>Subtraction of series and other, element-wise (binary operator sub).</td>
</tr>
<tr>
<td>subtract(other[, axis])</td>
<td>Subtraction of series and other, element-wise (binary operator sub).</td>
</tr>
<tr>
<td>sum([axis, skipna, level, numeric_only])</td>
<td>Return the sum of the values for the requested axis</td>
</tr>
<tr>
<td>swapaxes(axis1, axis2[, copy])</td>
<td>Interchange axes and swap values axes appropriately</td>
</tr>
<tr>
<td>swaplevel([i, j, axis])</td>
<td>Swap levels i and j in a MultiIndex on a particular axis</td>
</tr>
<tr>
<td>tail([n])</td>
<td></td>
</tr>
<tr>
<td>take(indices[, axis, convert, is_copy])</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>toLong(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>to_clipboard([excel, sep])</td>
<td>Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.</td>
</tr>
<tr>
<td>to_dense()</td>
<td>Return dense representation of NDFrame (as opposed to sparse)</td>
</tr>
<tr>
<td>to_excel(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>to_frame(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>to_hdf(path_or_buf, key, **kwargs)</td>
<td>Write the contained data to an HDF5 file using HDFStore.</td>
</tr>
<tr>
<td>to_json([path_or_buf, orient, date_format, ...])</td>
<td>Convert the object to a JSON string.</td>
</tr>
<tr>
<td>to_long(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>to_msgpack([path_or_buf, encoding])</td>
<td>msgpack (serialize) object to input file path</td>
</tr>
<tr>
<td>to_pickle(path)</td>
<td>Pickle (serialize) object to input file path.</td>
</tr>
<tr>
<td>to_sparse(*args, **kwargs)</td>
<td></td>
</tr>
<tr>
<td>to_sql(name, con[, flavor, schema, ...])</td>
<td>Write records stored in a DataFrame to a SQL database.</td>
</tr>
<tr>
<td>to_xarray()</td>
<td>Return an xarray object from the pandas object.</td>
</tr>
<tr>
<td>transpose(*args, **kwargs)</td>
<td>Permute the dimensions of the Panel</td>
</tr>
<tr>
<td>truediv(other[, axis])</td>
<td>Floating division of series and other, element-wise (binary operator truediv).</td>
</tr>
<tr>
<td>truncate([before, after, axis, copy])</td>
<td>Truncates a sorted NDFrame before and/or after some particular index value.</td>
</tr>
<tr>
<td>tshift([periods, freq, axis])</td>
<td>Convert tz-aware axis to target time zone.</td>
</tr>
<tr>
<td>tz_convert(tz[, axis, level, copy])</td>
<td></td>
</tr>
<tr>
<td>tz_localize(*args, **kwargs)</td>
<td>Localize tz-naive TimeSeries to target time zone.</td>
</tr>
</tbody>
</table>

Continued on next page

1512 Chapter 35. API Reference
**pandas.Panel4D**

### pandas.Panel4D.abs

Panel4D.abs()

Return an object with absolute value taken—only applicable to objects that are all numeric.

**Returns**

abs: type of caller

### pandas.Panel4D.add

Panel4D.add(other, axis=0)

Addition of series and other, element-wise (binary operator `add`). Equivalent to `panel + other`.

**Parameters**

- other: Panel or Panel4D
- axis: `{labels, items, major_axis, minor_axis}`

Axis to broadcast over

**Returns**

Panel4D

**See also:**

Panel4D.radd

### pandas.Panel4D.add_prefix

Panel4D.add_prefix(prefix)

Concatenate prefix string with panel items names.

**Parameters**

- prefix: string

**Returns**

with_prefix: type of caller

### pandas.Panel4D.add_suffix

Panel4D.add_suffix(suffix)

Concatenate suffix string with panel items names.

**Parameters**

- suffix: string

**Returns**

with_suffix: type of caller

### pandas.Panel4D.align

Panel4D.align(other, **kwargs)

**Table 35.85 – continued from previous page**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>update(other[, join, overwrite, ...])</td>
<td>Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel.</td>
</tr>
<tr>
<td>var(axis, skipna, level, ddof, numeric_only)</td>
<td>Return unbiased variance over requested axis.</td>
</tr>
<tr>
<td>where(cond[, other, inplace, axis, level, ...])</td>
<td>Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.</td>
</tr>
<tr>
<td>xs(key[, axis])</td>
<td>Return slice of panel along selected axis</td>
</tr>
</tbody>
</table>

**pandas.Panel4D.abs**

**Panel4D.abs()**

Return an object with absolute value taken—only applicable to objects that are all numeric.

**Returns**

abs: type of caller

**pandas.Panel4D.add**

**Panel4D.add(other, axis=0)**

Addition of series and other, element-wise (binary operator `add`). Equivalent to `panel + other`.

**Parameters**

- other: Panel or Panel4D
- axis: `{labels, items, major_axis, minor_axis}`

Axis to broadcast over

**Returns**

Panel4D

**See also:**

Panel4D.radd

**pandas.Panel4D.add_prefix**

**Panel4D.add_prefix(prefix)**

Concatenate prefix string with panel items names.

**Parameters**

- prefix: string

**Returns**

with_prefix: type of caller

**pandas.Panel4D.add_suffix**

**Panel4D.add_suffix(suffix)**

Concatenate suffix string with panel items names.

**Parameters**

- suffix: string

**Returns**

with_suffix: type of caller

**pandas.Panel4D.align**

**Panel4D.align(other, **kwargs)**
pandas.Panel4D.all

Panel4D.all (axis=None, bool_only=None, skipna=None, level=None, **kwargs)

Return whether all elements are True over requested axis

Parameters:
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns:
all : Panel or Panel4D (if level specified)

pandas.Panel4D.any

Panel4D.any (axis=None, bool_only=None, skipna=None, level=None, **kwargs)

Return whether any element is True over requested axis

Parameters:
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns:
any : Panel or Panel4D (if level specified)

pandas.Panel4D.apply

Panel4D.apply (func, axis='major', **kwargs)

Applies function along axis (or axes) of the Panel

Parameters:
func : function
Function to apply to each combination of ‘other’ axes e.g. if axis = ‘items’, the combination of major_axis/minor_axis will each be passed as a Series; if axis = (‘items’, ‘major’), DataFrame of items & major axis will be passed

axis : {'items', 'minor', 'major'}, or {0, 1, 2}, or a tuple with two axes

Additional keyword arguments will be passed as keywords to the function
**Returns** result: Panel, DataFrame, or Series

**Examples**

Returns a Panel with the square root of each element

```python
>>> p = pd.Panel(np.random.rand(4,3,2))
>>> p.apply(np.sqrt)
```

Equivalent to `p.sum(1)`, returning a DataFrame

```python
>>> p.apply(lambda x: x.sum(), axis=1)
```

Equivalent to previous:

```python
>>> p.apply(lambda x: x.sum(), axis='minor')
```

Return the shapes of each DataFrame over axis 2 (i.e the shapes of items x major), as a Series

```python
>>> p.apply(lambda x: x.shape, axis=(0,1))
```

**pandas.Panel4D.as_blocks**

`Panel4D.as_blocks(copy=True)`

Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.

**NOTE:** the dtypes of the blocks WILL BE PRESERVED HERE (unlike in `as_matrix`)

**Parameters**

- **copy**: boolean, default True

**Returns**

- **values**: a dict of dtype -> Constructor Types

**pandas.Panel4D.as_matrix**

`Panel4D.as_matrix()`

**pandas.Panel4D.asfreq**

`Panel4D.asfreq(freq=None, method=None, how=None, normalize=False)`

Convert TimeSeries to specified frequency. Optionally provide filling method to pad/backfill missing values.

**Parameters**

- **freq**: DateOffset object, or string
- **method**: {'backfill'/'bfill', ‘pad’/'ffill’}, default None

  Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):
  - ‘pad’ / ‘ffill’: propagate last valid observation forward to next valid
  - ‘backfill’ / ‘bfill’: use NEXT valid observation to fill
how : {‘start’, ‘end’}, default end
    For PeriodIndex only, see PeriodIndex.asfreq
normalize : bool, default False
    Whether to reset output index to midnight
Returns converted : type of caller

Notes
To learn more about the frequency strings, please see this link.

pandas.Panel4D.asof

Panel4D.asof(where, subset=None)
The last row without any NaN is taken (or the last row without NaN considering only the subset of columns in the case of a DataFrame)
New in version 0.19.0: For DataFrame
If there is no good value, NaN is returned.

Parameters where : date or array of dates
    subset : string or list of strings, default None
        if not None use these columns for NaN propagation
Returns where is scalar
    • value or NaN if input is Series
    • Series if input is DataFrame
        where is Index: same shape object as input

See also:
merge_asof

Notes
Dates are assumed to be sorted Raises if this is not the case

pandas.Panel4D.astype

Panel4D.astype(dtype, copy=True, raise_on_error=True, **kwargs)
Cast object to input numpy.dtype Return a copy when copy = True (be really careful with this!)

Parameters dtype : data type, or dict of column name -> data type
    Use a numpy.dtype or Python type to cast entire pandas object to the same type.
    Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a
    numpy.dtype or Python type to cast one or more of the DataFrame’s columns to
    column-specific types.
raise_on_error : raise on invalid input
kwargs : keyword arguments to pass on to the constructor
Returns casted : type of caller

pandas.Panel4D.at_time

Panel4D.at_time (time, asof=False)
Select values at particular time of day (e.g. 9:30AM).
Parameters time : datetime.time or string
Returns values_at_time : type of caller

pandas.Panel4D.between_time

Panel4D.between_time (start_time, end_time, include_start=True, include_end=True)
Select values between particular times of the day (e.g., 9:00-9:30 AM).
Parameters start_time : datetime.time or string
end_time : datetime.time or string
include_start : boolean, default True
include_end : boolean, default True
Returns values_between_time : type of caller

pandas.Panel4D.bfill

Panel4D.bfill (axis=None, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='bfill')

pandas.Panel4D.bool

Panel4D.bool ()
Return the bool of a single element PandasObject.
This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean

pandas.Panel4D.clip

Panel4D.clip (lower=None, upper=None, axis=None, *args, **kwargs)
Trim values at input threshold(s).
Parameters lower : float or array_like, default None
upper : float or array_like, default None
axis : int or string axis name, optional
Align object with lower and upper along the given axis.
Returns clipped : Series
Examples

```python
def
 0 1
0 0.335232 -1.256177
1 -1.367855 0.746646
2 0.027753 -1.176076
3 0.230930 -0.679613
4 1.261967 0.570967
>>> df.clip(-1.0, 0.5)
 0 1
0 0.335232 -1.000000
1 -1.000000 0.500000
2 0.027753 -1.000000
3 0.230930 -0.679613
4 0.500000 0.500000
>>> t
 0 -0.3
 1 -0.2
 2 -0.1
 3 0.0
 4 0.1
dtype: float64
>>> df.clip(t, t + 1, axis=0)
 0 1
0 0.335232 -0.300000
1 -0.200000 0.746646
2 0.027753 -0.100000
3 0.230930 0.000000
4 1.100000 0.570967
```

**pandas.Panel4D.clip_lower**

Panel4D.clip_lower(threshold, axis=None)
Return copy of the input with values below given value(s) truncated.

Parameters:  
threshold : float or array_like  
axis : int or string axis name, optional
Align object with threshold along the given axis.

Returns: clipped : same type as input

See also:  
clip

**pandas.Panel4D.clip_upper**

Panel4D.clip_upper(threshold, axis=None)
Return copy of input with values above given value(s) truncated.

Parameters:  
threshold : float or array_like  
axis : int or string axis name, optional
Align object with threshold along the given axis.
pandas: powerful Python data analysis toolkit, Release 0.19.2

Returns clipped: same type as input

See also:
clip

pandas.Panel4D.compound

Panel4D.compound(axis=None, skipna=None, level=None)
Return the compound percentage of the values for the requested axis

Parameters axis: {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna: boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Panel
numeric_only: boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns compounded: Panel or Panel4D (if level specified)

pandas.Panel4D.conform

Panel4D.conform(frame, axis='items')
Conform input DataFrame to align with chosen axis pair.

Parameters frame: DataFrame
axis: {'items', 'major', 'minor'}
Axis the input corresponds to. E.g., if axis='major', then the frame's columns
would be items, and the index would be values of the minor axis

Returns DataFrame

pandas.Panel4D.consolidate

Panel4D.consolidate(inplace=False)
Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndar-
ray). Mainly an internal API function, but available here to the savvy user

Parameters inplace: boolean, default False
If False return new object, otherwise modify existing object

Returns consolidated: type of caller
pandas.Panel4D.convert_objects

**Panel4D.convert_objects** `(convert_dates=True, convert_numeric=False, convert_timedeltas=True, copy=True)`

Deprecated.

Attempt to infer better dtype for object columns

**Parameters**
- **convert_dates**: boolean, default True
  - If True, convert to date where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.
- **convert_numeric**: boolean, default False
  - If True, attempt to coerce to numbers (including strings), with unconvertible values becoming NaN.
- **convert_timedeltas**: boolean, default True
  - If True, convert to timedelta where possible. If ‘coerce’, force conversion, with unconvertible values becoming NaT.
- **copy**: boolean, default True
  - If True, return a copy even if no copy is necessary (e.g. no conversion was done).

**Returns**
- **converted**: same as input object

**See also:**
- `pandas.to_datetime` Convert argument to datetime.
- `pandas.to_timedelta` Convert argument to timedelta.
- `pandas.to_numeric` Return a fixed frequency timedelta index, with day as the default.

pandas.Panel4D.copy

**Panel4D.copy** *(deep=True)*

Make a copy of this objects data.

**Parameters**
- **deep**: boolean or string, default True
  - Make a deep copy, including a copy of the data and the indices. With `deep=False` neither the indices or the data are copied.

**Returns**
- **copy**: type of caller

pandas.Panel4D.count

**Panel4D.count** *(axis='major')*

Return number of observations over requested axis.

**Parameters**
- **axis**: ‘items’, ‘major’, ‘minor’ or {0, 1, 2}
**pandas.Panel4D.cummax**

Panel4D\texttt{.cummax(axis=None, skipna=True, \*args, **kwargs)}

Return cumulative max over requested axis.

**Parameters**
- \texttt{axis}: \{labels (0), items (1), major_axis (2), minor_axis (3)}
- \texttt{skipna}: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**
- \texttt{cummax}: Panel

**pandas.Panel4D.cummin**

Panel4D\texttt{.cummin(axis=None, skipna=True, \*args, **kwargs)}

Return cumulative minimum over requested axis.

**Parameters**
- \texttt{axis}: \{labels (0), items (1), major_axis (2), minor_axis (3)}
- \texttt{skipna}: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**
- \texttt{cummin}: Panel

**pandas.Panel4D.cumprod**

Panel4D\texttt{.cumprod(axis=None, skipna=True, \*args, **kwargs)}

Return cumulative product over requested axis.

**Parameters**
- \texttt{axis}: \{labels (0), items (1), major_axis (2), minor_axis (3)}
- \texttt{skipna}: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**
- \texttt{cumprod}: Panel

**pandas.Panel4D.cumsum**

Panel4D\texttt{.cumsum(axis=None, skipna=True, \*args, **kwargs)}

Return cumulative sum over requested axis.

**Parameters**
- \texttt{axis}: \{labels (0), items (1), major_axis (2), minor_axis (3)}
- \texttt{skipna}: boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

**Returns**
- \texttt{cumsum}: Panel
pandas.Panel4D.describe

Panel4D.describe(percentiles=None, include=None, exclude=None)
Generate various summary statistics, excluding NaN values.

Parameters percentiles : array-like, optional
The percentiles to include in the output. Should all be in the interval [0, 1]. By default percentiles is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

include, exclude : list-like, ‘all’, or None (default)
Specify the form of the returned result. Either:
• None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
• A list of dtypes or strings to be included/excluded. To select all numeric types use numpy numpy.number. To select categorical objects use type object. See also the select_dtypes documentation. eg. df.describe(include=['O'])
• If include is the string ‘all’, the output column-set will match the input one.

Returns summary: NDFrame of summary statistics

See also:
DataFrame.select_dtypes

Notes

The output DataFrame index depends on the requested dtypes:
For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.
For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.
For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.
If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.
The include, exclude arguments are ignored for Series.

pandas.Panel4D.div

Panel4D.div(other, axis=0)
Floating division of series and other, element-wise (binary operator truediv). Equivalent to panel / other.

Parameters other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns Panel4D
See also:

Panel4D.rtruediv

**pandas.Panel4D.divide**

Panel4D.divide(\texttt{other, axis=0})
Floating division of series and other, element-wise (binary operator true
div). Equivalent to \texttt{panel / other}.

**Parameters**
\begin{itemize}
\item \texttt{other} : Panel or Panel4D
\item \texttt{axis} : \{\texttt{labels, items, major_axis, minor_axis}\}
\end{itemize}

Axis to broadcast over

**Returns**
Panel4D

See also:

Panel4D.rtruediv

**pandas.Panel4D.drop**

Panel4D.drop(\texttt{labels, axis=0, level=None, inplace=False, errors=’raise’})
Return new object with labels in requested axis removed.

**Parameters**
\begin{itemize}
\item \texttt{labels} : single label or list-like
\item \texttt{axis} : int or axis name
\item \texttt{level} : int or level name, default None
\item \texttt{inplace} : bool, default False
\item \texttt{errors} : \{'ignore’, ‘raise’\}, default ‘raise’
\end{itemize}

If ‘ignore’, suppress error and existing labels are dropped.

New in version 0.16.1.

**Returns**
\texttt{dropped} : type of caller

**pandas.Panel4D.dropna**

Panel4D.dropna(\texttt{*args, **kwargs})

**pandas.Panel4D.eq**

Panel4D.eq(\texttt{other, axis=None})
Wrapper for comparison method eq
pandas.Panel4D.equals

Panel4D.equals(other)
Determines if two NDFrame objects contain the same elements. NaNs in the same location are considered equal.

pandas.Panel4D.ffill

Panel4D.ffill(axis=None, inplace=False, limit=None, downcast=None)
Synonym for NDFrame.fillna(method='ffill')

pandas.Panel4D.fillna

Panel4D.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
Fill NA/NaN values using the specified method

Parameters value : scalar, dict, Series, or DataFrame
   Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.

method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
   Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

axis : {0, 1, 2, 'items', 'major_axis', 'minor_axis'}

inplace : boolean, default False
   If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).

limit : int, default None
   If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled.

downcast : dict, default is None
   a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : Panel

See also:
reindex, asfreq
pandas.Panel4D.filter

Panel4D.filter(*args, **kwargs)

pandas.Panel4D.first

Panel4D.first(offset)
Convenience method for subsetting initial periods of time series data based on a date offset.

Parameters
- offset: string, DateOffset, dateutil.relativedelta
Returns
- subset: type of caller

Examples

ts.first('10D') -> First 10 days

pandas.Panel4D.floordiv

Panel4D.floordiv(other, axis=0)
Integer division of series and other, element-wise (binary operator floordiv). Equivalent to panel // other.

Parameters
- other: Panel or Panel4D
- axis: {labels, items, major_axis, minor_axis}
Returns
- Panel4D
See also:
- Panel4D.rfloordiv

pandas.Panel4D.fromDict

Panel4D.fromDict(data, intersect=False, orient='items', dtype=None)
Construct Panel from dict of DataFrame objects

Parameters
- data: dict
  - {field: DataFrame}
- intersect: boolean
  - Intersect indexes of input DataFrames
- orient: {‘items’, ‘minor’}, default ‘items’
  - The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’
- dtype: dtype, default None
  - Data type to force, otherwise infer
**Returns** Panel

### pandas.Panel4D.from_dict

`Panel4D.from_dict(data, intersect=False, orient='items', dtype=None)`  
Construc Panel from dict of DataFrame objects

**Parameters**

- **data**: dict
  
  `{field : DataFrame}`

- **intersect**: boolean
  
  Intersect indexes of input DataFrames

- **orient**: {'items', 'minor'}, default 'items'
  
  The “orientation” of the data. If the keys of the passed dict should be the items of the result panel, pass ‘items’ (default). Otherwise if the columns of the values of the passed DataFrame objects should be the items (which in the case of mixed-dtype data you should do), instead pass ‘minor’

- **dtype**: dtype, default None
  
  Data type to force, otherwise infer

**Returns** Panel

### pandas.Panel4D.ge

`Panel4D.ge(other, axis=None)`  
Wrapper for comparison method ge

### pandas.Panel4D.get

`Panel4D.get(key, default=None)`  
Get item from object for given key (DataFrame column, Panel slice, etc.). Returns default value if not found.

**Parameters**

- **key**: object

**Returns**

- **value**: type of items contained in object

### pandas.Panel4D.get_dtype_counts

`Panel4D.get_dtype_counts()`  
Return the counts of dtypes in this object.

### pandas.Panel4D.get_ftype_counts

`Panel4D.get_ftype_counts()`  
Return the counts of ftypes in this object.
pandas.Panel4D.get_value

Panel4D.get_value(*args, **kwargs)
   Quickly retrieve single value at (item, major, minor) location

   Parameters
   item : item label (panel item)
   major : major axis label (panel item row)
   minor : minor axis label (panel item column)
   takeable : interpret the passed labels as indexers, default False

   Returns
   value : scalar value

pandas.Panel4D.get_values

Panel4D.get_values()
   same as values (but handles sparseness conversions)

pandas.Panel4D.groupby

Panel4D.groupby(*args, **kwargs)

pandas.Panel4D.gt

Panel4D.gt(other, axis=None)
   Wrapper for comparison method gt

pandas.Panel4D.head

Panel4D.head(n=5)

pandas.Panel4D.interpolate

Panel4D.interpolate(method='linear', axis=0, limit=None, inplace=False,
                    limit_direction='forward', downcast=None, **kwargs)
   Interpolate values according to different methods.
   Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

   Parameters
   method : {'linear', 'time', 'index', 'values', 'nearest', 'zero',
             'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh',
             'polynomial', 'spline',
             'piecewise_polynomial', 'from_derivatives', 'pchip',
             'akima'}
   • ‘linear’: ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default
   • ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval
   • ‘index’, ‘values’: use the actual numerical values of the index
• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=4). These use the actual numerical values of the index.

• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. See the scipy documentation for more on their behavior here # noqa and here # noqa

• ‘from_derivatives’ refers to BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18

New in version 0.18.1: Added support for the ‘akima’ method Added interpolate method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18; backwards-compatible with scipy < 0.18

axis : {0, 1}, default 0
  • 0: fill column-by-column
  • 1: fill row-by-row

limit : int, default None.
  Maximum number of consecutive NaNs to fill.

limit_direction : {'forward', 'backward', 'both'}, defaults to ‘forward’
  If limit is specified, consecutive NaNs will be filled in this direction.
  New in version 0.17.0.

inplace : bool, default False
  Update the NDFrame in place if possible.

downcast : optional, ‘infer’ or None, defaults to None
  Downcast dtypes if possible.

kwargs : keyword arguments to pass on to the interpolating function.

Returns Series or DataFrame of same shape interpolated at the NaNs

See also:
reindex, replace, fillna

Examples

Filling in NaNs

```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64
```
pandas.Panel4D.isnull

Panel4D.isnull()

Return a boolean same-sized object indicating if the values are null.

See also:

    notnull  boolean inverse of isnull

pandas.Panel4D.iteritems

Panel4D.iteritems()

Iterate over (label, values) on info axis

This is index for Series, columns for DataFrame, major_axis for Panel, and so on.

pandas.Panel4D.iterkv

Panel4D.iterkv(*args, **kwargs)

iteritems alias used to get around 2to3. Deprecated

pandas.Panel4D.join

Panel4D.join(*args, **kwargs)

pandas.Panel4D.keys

Panel4D.keys()

Get the 'info axis' (see Indexing for more)

This is index for Series, columns for DataFrame and major_axis for Panel.

pandas.Panel4D.kurt

Panel4D.kurt(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Returns kurt : Panel or Panel4D (if level specified)

pandas.Panel4D.kurtosis

Panel4D.kurtosis(\texttt{axis=None}, \texttt{skipna=None}, \texttt{level=None}, \texttt{numeric_only=None}, **\texttt{kwargs})

Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1

Parameters:

- \texttt{axis} : \{\texttt{labels} (0), \texttt{items} (1), \texttt{major\_axis} (2), \texttt{minor\_axis} (3)\}
- \texttt{skipna} : boolean, default True
  
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- \texttt{level} : int or level name, default None
  
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- \texttt{numeric\_only} : boolean, default None
  
  Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns kurt : Panel or Panel4D (if level specified)

pandas.Panel4D.last

Panel4D.last(\texttt{offset})

Convenience method for subsetting final periods of time series data based on a date offset.

Parameters:

- \texttt{offset} : string, DateOffset, dateutil.relativedelta

Returns subset : type of caller

Examples

\texttt{ts.last(’5M’) \rightarrow} Last 5 months

pandas.Panel4D.le

Panel4D.le(\texttt{other}, \texttt{axis=None})

Wrapper for comparison method le

pandas.Panel4D.lt

Panel4D.lt(\texttt{other}, \texttt{axis=None})

Wrapper for comparison method lt
pandas.Panel4D.mad

Panel4D.mad (axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

Parameters:
- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
  Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns:
- **mad**: Panel or Panel4D (if level specified)

pandas.Panel4D.major_xs

Panel4D.major_xs (key)
Return slice of panel along major axis

Parameters:
- **key**: object
  Major axis label

Returns:
- **y**: DataFrame
  index -> minor axis, columns -> items

Notes

major_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of major_xs functionality, see MultiIndex Slicers

pandas.Panel4D.mask

Panel4D.mask (cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)
Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other.

Parameters:
- **cond**: boolean NDFrame, array or callable
  If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).

New in version 0.18.1.
A callable can be used as cond.
other : scalar, NDFrame, or callable

If other is callable, it is computed on the NDFrame and should return scalar or
NDFrame. The callable must not change input NDFrame (though pandas doesn’t
check it).

New in version 0.18.1.
A callable can be used as other.

inplace : boolean, default False

Whether to perform the operation in place on the data

axis : alignment axis if needed, default None

level : alignment level if needed, default None

try_cast : boolean, default False

try to cast the result back to the input type (if possible).

raise_on_error : boolean, default True

Whether to raise on invalid data types (e.g. trying to where on strings)

Returns wh : same type as caller

See also:

DataFrame.where()

Notes

The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
cond is False the element is used; otherwise the corresponding element from the DataFrame other
is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly
df1.where(m,df2) is equivalent to np.where(m,df1,df2).

For further details and examples see the mask documentation in indexing.

Examples

```python
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
```

```python
>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
 A B
0 0 -1
1 -2 3
2 -4 -5
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
3 6 -7
4 -8 9
>>> df.where(m, -df) == np.where(m, df, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
>>> df.where(m, -df) == df.mask(~m, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

**pandas.Panel4D.max**

Panel4D.max (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

This method returns the maximum of the values in the object. If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

**Parameters**

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
  Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

max : Panel or Panel4D (if level specified)

**pandas.Panel4D.mean**

Panel4D.mean (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the mean of the values for the requested axis

**Parameters**

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **numeric_only**: boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

- `mean`: Panel or Panel4D (if level specified)

**pandas.Panel4D.median**

```python
Panel4D.median(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

Return the median of the values for the requested axis

**Parameters**

- `axis`: {labels (0), items (1), major_axis (2), minor_axis (3)}
- `skipna`: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level`: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- `numeric_only`: boolean, default None
  - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

- `median`: Panel or Panel4D (if level specified)

**pandas.Panel4D.min**

```python
Panel4D.min(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
```

This method returns the minimum of the values in the object. If you want the index of the minimum, use `idxmin`. This is the equivalent of the `numpy.ndarray` method `argmin`.

**Parameters**

- `axis`: {labels (0), items (1), major_axis (2), minor_axis (3)}
- `skipna`: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- `level`: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- `numeric_only`: boolean, default None
  - Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns**

- `min`: Panel or Panel4D (if level specified)

**pandas.Panel4D.minor_xs**

```python
Panel4D.minor_xs(key)
```

Return slice of panel along minor axis

**Parameters**

- `key`: object
Minor axis label

**Returns**

\[ y : \text{DataFrame} \]

*index* -> major axis, *columns* -> items

**Notes**

minor_xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of minor_xs functionality, see *MultiIndex Slicers*

**pandas.Panel4D.mod**

\[
\text{Panel4D.mod(} \text{other, axis=}0\text{)}
\]

Modulo of series and other, element-wise (binary operator \textit{mod}). Equivalent to \textit{panel} \% \textit{other}.

**Parameters**

\textit{other} : Panel or Panel4D

\textit{axis} : \{\textit{labels, items, major_axis, minor_axis}\}

*Axis to broadcast over*

**Returns**

Panel4D

**See also:**

\textit{Panel4D.rmod}

**pandas.Panel4D.mul**

\[
\text{Panel4D.mul(} \text{other, axis=}0\text{)}
\]

Multiplication of series and other, element-wise (binary operator \textit{mul}). Equivalent to \textit{panel} \* \textit{other}.

**Parameters**

\textit{other} : Panel or Panel4D

\textit{axis} : \{\textit{labels, items, major_axis, minor_axis}\}

*Axis to broadcast over*

**Returns**

Panel4D

**See also:**

\textit{Panel4D.rmul}

**pandas.Panel4D.multiply**

\[
\text{Panel4D.multiply(} \text{other, axis=}0\text{)}
\]

Multiplication of series and other, element-wise (binary operator \textit{mul}). Equivalent to \textit{panel} \* \textit{other}.

**Parameters**

\textit{other} : Panel or Panel4D

\textit{axis} : \{\textit{labels, items, major_axis, minor_axis}\}

*Axis to broadcast over*

**Returns**

Panel4D
See also:

Panel4D.rmul

pandas.Panel4D.ne

Panel4D.ne(other, axis=None)
Wrapper for comparison method ne

pandas.Panel4D.notnull

Panel4D.notnull()
Return a boolean same-sized object indicating if the values are not null.
See also:

isnull boolean inverse of notnull

pandas.Panel4D.pct_change

Panel4D.pct_change(periods=1, fill_method='pad', limit=None, freq=None, **kwargs)
Percent change over given number of periods.

Parameters

periods : int, default 1
    Periods to shift for forming percent change
fill_method : str, default 'pad'
    How to handle NAs before computing percent changes
limit : int, default None
    The number of consecutive NAs to fill before stopping
freq : DateOffset, timedelta, or offset alias string, optional
    Increment to use from time series API (e.g. ‘M’ or BDay())

Returns

chg : NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.Panel4D.pipe

Panel4D.pipe(func, *args, **kwargs)
Apply func(self, *args, **kwargs)
New in version 0.16.2.

Parameters

func : function
function to apply to the NDFrame. *args* and *kwargs* are passed into *func*. Alternatively a (callable, data_keyword) tuple where *data_keyword* is a string indicating the keyword of callable that expects the NDFrame.

- **args**: positional arguments passed into *func*.
- **kwargs**: a dictionary of keyword arguments passed into *func*.

**Returns** object: the return type of *func*.

**See also:**

`pandas.DataFrame.apply`, `pandas.DataFrame.applymap`, `pandas.Series.map`

**Notes**

Use `.pipe` when chaining together functions that expect on Series or DataFrames. Instead of writing

```python
>>> f(g(h(df), arg1=a), arg2=b, arg3=c)
```

You can write

```python
>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe(f, arg2=b, arg3=c)
...)
```

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose *f* takes its data as *arg2*:

```python
>>> (df.pipe(h)
... .pipe(g, arg1=a)
... .pipe((f, 'arg2'), arg1=a, arg3=c)
...)
```

**pandas.Panel4D.pop**

Panel4D.pop(item)

Return item and drop from frame. Raise KeyError if not found.

**pandas.Panel4D.pow**

Panel4D.pow(other, axis=0)

Exponential power of series and other, element-wise (binary operator pow). Equivalent to `panel ** other`.

- **Parameters**
  - *other*: Panel or Panel4D
  - *axis*: (labels, items, major_axis, minor_axis)

  Axis to broadcast over

- **Returns** Panel4D

**See also:**

`Panel4D.rpow`
pandas.Panel4D.prod

Panel4D.prod (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
    skipna : boolean, default True
        Exclude NA/null values. If an entire row/column is NA, the result will be NA
    level : int or level name, default None
        If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
        into a Panel
    numeric_only : boolean, default None
        Include only float, int, boolean columns. If None, will attempt to use everything,
        then use only numeric data. Not implemented for Series.

Returns
prod : Panel or Panel4D (if level specified)

pandas.Panel4D.product

Panel4D.product (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)
Return the product of the values for the requested axis

Parameters
axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
    skipna : boolean, default True
        Exclude NA/null values. If an entire row/column is NA, the result will be NA
    level : int or level name, default None
        If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
        into a Panel
    numeric_only : boolean, default None
        Include only float, int, boolean columns. If None, will attempt to use everything,
        then use only numeric data. Not implemented for Series.

Returns
prod : Panel or Panel4D (if level specified)

pandas.Panel4D.radd

Panel4D.radd (other, axis=0)
Addition of series and other, element-wise (binary operator radd). Equivalent to other + panel.

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
    Axis to broadcast over

Returns
Panel4D

See also:
Panel4D.add
pandas.Panel4D.rank

Panel4D.rank (axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)
Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values.

Parameters:
axis: {0 or ‘index’, 1 or ‘columns’}, default 0
    index to direct ranking
method: {'average', 'min', 'max', 'first', 'dense'}
    • average: average rank of group
    • min: lowest rank in group
    • max: highest rank in group
    • first: ranks assigned in order they appear in the array
    • dense: like ‘min’, but rank always increases by 1 between groups
numeric_only: boolean, default None
    Include only float, int, boolean data. Valid only for DataFrame or Panel objects
na_option: {'keep', 'top', 'bottom'}
    • keep: leave NA values where they are
    • top: smallest rank if ascending
    • bottom: smallest rank if descending
ascending: boolean, default True
    False for ranks by high (1) to low (N)
pct: boolean, default False
    Computes percentage rank of data

Returns: ranks: same type as caller

pandas.Panel4D.rdiv

Panel4D.rdiv (other, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv). Equivalent to other / panel.

Parameters:
other: Panel or Panel4D
axis: {labels, items, major_axis, minor_axis}
    Axis to broadcast over

Returns: Panel4D
See also:
Panel4D.truediv
pandas.Panel4D.reindex

Panel4D.reindex(items=None, major_axis=None, minor_axis=None, **kwargs)
Conform Panel to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

Parameters:
- **items, major_axis, minor_axis**: array-like, optional (can be specified in order, or as keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data
- **method**: {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional
  - default: don’t fill gaps
  - pad / ffill: propagate last valid observation forward to next valid
  - backfill / bfill: use next valid observation to fill gap
  - nearest: use nearest valid observations to fill gap
- **copy**: boolean, default True
  - Return a new object, even if the passed indexes are the same
- **level**: int or name
  - Broadcast across a level, matching Index values on the passed MultiIndex level
- **fill_value**: scalar, default np.NaN
  - Value to use for missing values. Defaults to NaN, but can be any “compatible” value
- **limit**: int, default None
  - Maximum number of consecutive elements to forward or backward fill
- **tolerance**: optional
  - Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation \( \text{abs(index[indexer] - target)} \leq \text{tolerance} \).
  - New in version 0.17.0.

Returns:
- **reindexed**: Panel

Examples

Create a dataframe with some fictional data.

```python
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror']
>>> df = pd.DataFrame({
... 'http_status': [200, 200, 404, 404, 301],
... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0],
... index=index)
```
Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned NaN.

```
>>> new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ...
 ...'Chrome']
>>> df.reindex(new_index)
 http_status response_time
 Safari 404 0.07
 Iceweasel NaN NaN
Comodo Dragon NaN NaN
 IE10 404 0.08
 Chrome 200 0.02
```

We can fill in the missing values by passing a value to the keyword fill_value. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword method to fill the NaN values.

```
>>> df.reindex(new_index, fill_value=0)
 http_status response_time
 Safari 404 0.07
 Iceweasel 0 0.00
Comodo Dragon 0 0.00
 IE10 404 0.08
 Chrome 200 0.02
```

```
>>> df.reindex(new_index, fill_value='missing')
 http_status response_time
 Safari 404 0.07
 Iceweasel missing missing
Comodo Dragon missing missing
 IE10 404 0.08
 Chrome 200 0.02
```

To further illustrate the filling functionality in reindex, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates).

```
>>> date_index = pd.date_range('1/1/2010', periods=6, freq='D')
>>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]},
 ...index=date_index)
>>> df2
 prices
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
```

Suppose we decide to expand the dataframe to cover a wider date range.
The index entries that did not have a value in the original data frame (for example, ‘2009-12-29’) are by default filled with NaN. If desired, we can fill in the missing values using one of several options. For example, to backpropagate the last valid value to fill the NaN values, pass bfill as an argument to the method keyword.

```
>>> df2.reindex(date_index2, method='bfill')
prices
2009-12-29 100
2009-12-30 100
2009-12-31 100
2010-01-01 100
2010-01-02 101
2010-01-03 NaN
2010-01-04 100
2010-01-05 89
2010-01-06 88
2010-01-07 NaN
```

Please note that the NaN value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the NaN values present in the original dataframe, use the fillna() method.

**pandas.Panel4D.reindex_axis**

Panel4D.reindex_axis (labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=nan)  
Conform input object to new index with optional filling logic, placing NA/Nan in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False

**Parameters**

labels : array-like

New labels / index to conform to. Preferably an Index object to avoid duplicating data

axis : {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}


Method to use for filling holes in reindexed DataFrame:

- default: don’t fill gaps
• pad / fill: propagate last valid observation forward to next valid
• backfill / bfill: use next valid observation to fill gap
• nearest: use nearest valid observations to fill gap

**cop**y : boolean, default True

Return a new object, even if the passed indexes are the same

**level** : int or name

Broadcast across a level, matching Index values on the passed MultiIndex level

**limit** : int, default None

Maximum number of consecutive elements to forward or backward fill

**tolerance** : optional

Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation

\[ \text{abs(index[indexer] - target)} <= \text{tolerance}. \]

New in version 0.17.0.

**Returns** reindexed : Panel

See also:

* reindex, reindex_like

**Examples**

```python
>>> df.reindex_axis(['A', 'B', 'C'], axis=1)
```

**pandas.Panel4D.reindex_like**

Panel4D.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)

Return an object with matching indices to myself.

**Parameters**

**other** : Object

**method** : string or None

**copy** : boolean, default True

**limit** : int, default None

Maximum number of consecutive labels to fill for inexact matches.

**tolerance** : optional

Maximum distance between labels of the other object and this object for inexact matches.

New in version 0.17.0.

**Returns** reindexed : same as input
Notes

Like calling s.reindex(index=other.index, columns=other.columns, method=...)

pandas.Panel4D.rename

Panel4D.rename(items=None, major_axis=None, minor_axis=None, **kwargs)

Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change Series.name with a scalar value (Series only).

Parameters  items, major_axis, minor_axis : scalar, list-like, dict-like or function, optional

Scalar or list-like will alter the Series.name attribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis’ values

copy : boolean, default True

Also copy underlying data

inplace : boolean, default False

Whether to return a new Panel. If True then value of copy is ignored.

Returns  renamed : Panel (new object)

See also:

pandas.NDFrame.rename_axis

Examples

```python
>>> s = pd.Series([1, 2, 3])
>>> s
0 1
1 2
2 3
dtype: int64
>>> s.rename("my_name") # scalar, changes Series.name
0 1
1 2
2 3
Name: my_name, dtype: int64
>>> s.rename(lambda x: x ** 2) # function, changes labels
0 1
1 2
4 3
dtype: int64
>>> s.rename({1: 3, 2: 5}) # mapping, changes labels
0 1
3 2
5 3
dtype: int64
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename(2)
...
TypeError: 'int' object is not callable
>>> df.rename(index=str, columns={"A": "a", "B": "c"})
```
### pandas.Panel4D.rename_axis

**Panel4D.rename_axis** (*mapper, axis=0, copy=True, inplace=False*)

Alter index and / or columns using input function or functions. A scalar or list-like for `mapper` will alter the `Index.name` or `MultiIndex.names` attribute. A function or dict for `mapper` will alter the labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.

**Parameters**

- **mapper**: scalar, list-like, dict-like or function, optional
  - **axis**: int or string, default 0
  - **copy**: boolean, default True
    
    Also copy underlying data
  - **inplace**: boolean, default False

**Returns**

`renamed`: type of caller

**See also:**

`pandas.NDFrame.rename`, `pandas.Index.rename`

**Examples**

```python
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
>>> df.rename_axis("foo") # scalar, alters df.index.name
 A B
0 1 4
1 2 5
2 3 6
```

```python
>>> df.rename_axis(lambda x: 2 * x) # function: alters labels
 A B
0 1 4
2 2 5
4 3 6
```

```python
>>> df.rename_axis({"A": "ehh", "C": "see"}, axis="columns") # mapping
 ehh B
0 1 4
1 2 5
2 3 6
```
pandas.Panel4D.replace

Panel4D.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad', axis=None)

Replace values given in ‘to_replace’ with ‘value’.

**Parameters**

`to_replace` : str, regex, list, dict, Series, numeric, or None

- str or regex:
  - str: string exactly matching `to_replace` will be replaced with `value`
  - regex: regexs matching `to_replace` will be replaced with `value`

- list of str, regex, or numeric:
  - First, if `to_replace` and `value` are both lists, they must be the same length.
  - Second, if `regex=True` then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn’t matter much for `value` since there are only a few possible substitution regexes you can use.
  - str and regex rules apply as above.

- dict:
  - Nested dictionaries, e.g., `{a: {b: nan}}`, are read as follows: look in column ‘a’ for the value ‘b’ and replace it with nan. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) cannot be regular expressions.
  - Keys map to column names and values map to substitution values. You can treat this as a special case of passing two lists except that you are specifying the column to search in.

- None:
  - This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also None then this must be a nested dictionary or Series.

See the examples section for examples of each of these.

`value` : scalar, dict, list, str, regex, default None

Value to use to fill holes (e.g. 0), alternately a dict of values specifying which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

`inplace` : boolean, default False

If True, in place. Note: this will modify any other views on this object (e.g. a column form a DataFrame). Returns the caller if this is True.

`limit` : int, default None

Maximum size gap to forward or backward fill

`regex` : bool or same types as `to_replace`, default False

Whether to interpret `to_replace` and/or `value` as regular expressions. If this is True then `to_replace` must be a string. Otherwise, `to_replace` must be None because this parameter will be interpreted as a regular expression or a list, dict, or array of regular expressions.
**method**: string, optional, {'pad', 'ffill', 'bfill'}

The method to use when for replacement, when `to_replace` is a list.

**Returns**: `filled`: DataFrame

**Raises** **AssertionError**

- If `regex` is not a `bool` and `to_replace` is not `None`.

**TypeError**

- If `to_replace` is a `dict` and `value` is not a `list`, `dict`, `ndarray`, or `Series`.
- If `to_replace` is `None` and `regex` is not compilable into a regular expression or is a list, `dict`, `ndarray`, or `Series`.

**ValueError**

- If `to_replace` and `value` are `lists` or `ndarray`s, but they are not the same length.

**See also:**

`NDFrame.reindex`, `NDFrame.asfreq`, `NDFrame.fillna`

**Notes**

- Regex substitution is performed under the hood with `re.sub`. The rules for substitution for `re.sub` are the same.
- Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers are strings, then you can do this.
- This method has a lot of options. You are encouraged to experiment and play with this method to gain intuition about how it works.

**pandas.Panel4D.resample**

`Panel4D.resample`(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None)

Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (`DatetimeIndex`, `PeriodIndex`, or `TimedeltaIndex`), or pass datetime-like values to the `on` or `level` keyword.

**Parameters**

- **rule**: string
  
  the offset string or object representing target conversion

- **axis**: int, optional, default 0

- **closed**: {'right', 'left'}
  
  Which side of bin interval is closed

- **label**: {'right', 'left'}
  
  Which bin edge label to label bucket with
convention : {'start', 'end', 's', 'e'}

loffset : timedelta

Adjust the resampled time labels

base : int, default 0

For frequencies that evenly subdivide 1 day, the “origin” of the aggregated intervals. For example, for ‘5min’ frequency, base could range from 0 through 4. Defaults to 0

on : string, optional

For a DataFrame, column to use instead of index for resampling. Column must be datetime-like.

New in version 0.19.0.

level : string or int, optional

For a MultiIndex, level (name or number) to use for resampling. Level must be datetime-like.

New in version 0.19.0.

To learn more about the offset strings, please see ‘this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>‘.

Examples

Start by creating a series with 9 one minute timestamps.

```python
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
```

Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin.

```python
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket 2000-01-01 00:03:00 contains the value 3, but the summed value in the resampled bucket with the label ‘2000-01-01 00:03:00’ does not include 3 (if it...
did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one.

```python
>>> series.resample('3T', label='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
```

Downsample the series into 3 minute bins as above, but close the right side of the bin interval.

```python
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
```

Upsample the series into 30 second bins.

```python
>>> series.resample('30S').asfreq()[0:5] # select first 5 rows
2000-01-01 00:00:00 0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2
Freq: 30S, dtype: float64
```

Upsample the series into 30 second bins and fill the NaN values using the pad method.

```python
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```

Upsample the series into 30 second bins and fill the NaN values using the bfill method.

```python
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
```

Pass a custom function via apply

```python
>>> def custom_resampler(array_like):
... return np.sum(array_like)+5
...
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
```
pandas.Panel4D.rfloordiv

Panel4D.rfloordiv(other, axis=0)
Integer division of series and other, element-wise (binary operator rfloordiv). Equivalent to other // panel.

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
   Axis to broadcast over

Returns
Panel4D

See also:
Panel4D.floordiv

pandas.Panel4D.rmod

Panel4D.rmod(other, axis=0)
Modulo of series and other, element-wise (binary operator rmod). Equivalent to other % panel.

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
   Axis to broadcast over

Returns
Panel4D

See also:
Panel4D.mod

pandas.Panel4D.rmul

Panel4D.rmul(other, axis=0)
Multiplication of series and other, element-wise (binary operator rmul). Equivalent to other * panel.

Parameters
other : Panel or Panel4D
axis : {labels, items, major_axis, minor_axis}
   Axis to broadcast over

Returns
Panel4D

See also:
Panel4D.mul

pandas.Panel4D.round

Panel4D.round(decimals=0, *args, **kwargs)
Round each value in Panel to a specified number of decimal places.
New in version 0.18.0.

Parameters
decimals : int
Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point.

Returns Panel object

See also:
numpy.around

pandas.Panel4D.rpow

Panel4D.rpow(other, axis=0)
Exponential power of series and other, element-wise (binary operator rpow). Equivalent to other ** panel.

Parameters other : Panel or Panel4D
    axis : {labels, items, major_axis, minor_axis}
        Axis to broadcast over

Returns Panel4D

See also:
Panel4D.pow

pandas.Panel4D.rsub

Panel4D.rsub(other, axis=0)
Subtraction of series and other, element-wise (binary operator rsub). Equivalent to other - panel.

Parameters other : Panel or Panel4D
    axis : {labels, items, major_axis, minor_axis}
        Axis to broadcast over

Returns Panel4D

See also:
Panel4D.sub

pandas.Panel4D.rtruediv

Panel4D.rtruediv(other, axis=0)
Floating division of series and other, element-wise (binary operator rtruediv). Equivalent to other / panel.

Parameters other : Panel or Panel4D
    axis : {labels, items, major_axis, minor_axis}
        Axis to broadcast over

Returns Panel4D

See also:
Panel4D.truediv
pandas.Panel4D.sample

Panel4D.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

Returns a random sample of items from an axis of an object.

New in version 0.16.1.

Parameters

- n : int, optional
  Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.

- frac : float, optional
  Fraction of axis items to return. Cannot be used with n.

- replace : boolean, optional
  Sample with or without replacement. Default = False.

- weights : str or ndarray-like, optional
  Default ‘None’ results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. inf and -inf values not allowed.

- random_state : int or numpy.random.RandomState, optional
  Seed for the random number generator (if int), or numpy RandomState object.

- axis : int or string, optional
  Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels).

Returns

A new object of same type as caller.

Examples

Generate an example Series and DataFrame:

```python
>>> s = pd.Series(np.random.randn(50))
>>> s.head()
0 -0.038497
1 1.820773
2 -0.972766
3 -1.598270
4 -1.095526
dtype: float64
```
```
>>> df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
>>> df.head()
 A B C D
0 0.016443 -2.318952 -0.566372 -1.028078
1 0.438836 0.642666 -0.135164 0.125797
2 -1.243569 -0.364626 0.215065 0.577360
```
Next extract a random sample from both of these objects...

3 random elements from the Series:

```python
In [3]: s.sample(n=3)
Out[3]:
27 -0.994689
55 -1.049016
67 -0.224565
dtype: float64
```

And a random 10% of the DataFrame with replacement:

```python
In [4]: df.sample(frac=0.1, replace=True)
Out[4]:
 A B C D
35 1.981780 0.142106 1.817165 -0.290805
49 -1.336199 -0.448634 -0.789640 0.217116
40 0.823173 -0.078816 1.009536 1.015108
15 1.421154 -0.055301 -1.922594 -0.019696
 6 -0.148339 0.832938 1.787600 -1.383767
```

---

**pandas.Panel4D.select**

**Panel4D.select** (*crit, axis=0*)

Return data corresponding to axis labels matching criteria

**Parameters**

- **crit**: function
  - To be called on each index (label). Should return True or False
- **axis**: int

**Returns**

**selection**: type of caller

---

**pandas.Panel4D.sem**

**Panel4D.sem** (*axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs*)

Return unbiased standard error of the mean over requested axis.

Normalized by N-1 by default. This can be changed using the ddof argument

**Parameters**

- **axis**: {labels (0), items (1), major_axis (2), minor_axis (3)}
- **skipna**: boolean, default True
  - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
  - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
- **ddof**: int, default 1
  - degrees of freedom
- **numeric_only**: boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns** sem : Panel or Panel4D (if level specified)

`pandas.Panel4D.set_axis`

`Panel4D.set_axis(axis, labels)`

Public version of axis assignment

`pandas.Panel4D.set_value`

`Panel4D.set_value(*args, **kwargs)`

Quickly set single value at (item, major, minor) location

**Parameters**

item : item label (panel item)

major : major axis label (panel item row)

minor : minor axis label (panel item column)

value : scalar

takeable : interpret the passed labels as indexers, default False

**Returns** panel : Panel

If label combo is contained, will be reference to calling Panel, otherwise a new object

`pandas.Panel4D.shift`

`Panel4D.shift(*args, **kwargs)`

`pandas.Panel4D.skew`

`Panel4D.skew(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)`

Return unbiased skew over requested axis Normalized by N-1

**Parameters**

axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

**Returns** skew : Panel or Panel4D (if level specified)
pandas.Panel4D.slice_shift

Panel4D.slice_shift (periods=1, axis=0)
Equivalent to shift without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original.

Parameters

periods : int
Number of periods to move, can be positive or negative

Returns

shifted : same type as caller

Notes

While the slice_shift is faster than shift, you may pay for it later during alignment.

pandas.Panel4D.sort_index

Panel4D.sort_index (axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True)
Sort object by labels (along an axis)

Parameters

axis : axes to direct sorting
level : int or level name or list of ints or list of level names
if not None, sort on values in specified index level(s)
ascending : boolean, default True
Sort ascending vs. descending
inplace : bool, default False
if True, perform operation in-place
kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort'
Choice of sorting algorithm. See also ndarray.np.sort for more information. mergesort is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label.
na_position : {'first', 'last'}, default 'last'
first puts NaNs at the beginning, last puts NaNs at the end
sort_remaining : bool, default True
if true and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level

Returns

sorted_obj : NDFrame

pandas.Panel4D.sort_values

Panel4D.sort_values (by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last')
pandas.Panel4D.squeeze

Panel4D.squeeze(**kwargs)
Squeeze length 1 dimensions.

pandas.Panel4D.std

Panel4D.std(axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs)
Return sample standard deviation over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters

axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Panel

ddof : int, default 1
degrees of freedom

numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns

std : Panel or Panel4D (if level specified)

pandas.Panel4D.sub

Panel4D.sub(other, axis=0)
Subtraction of series and other, element-wise (binary operator sub). Equivalent to panel -other.

Parameters

other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over

Returns

Panel4D

See also:
Panel4D.rsub

pandas.Panel4D.subtract

Panel4D.subtract(other, axis=0)
Subtraction of series and other, element-wise (binary operator sub). Equivalent to panel -other.

Parameters

other : Panel or Panel4D

axis : {labels, items, major_axis, minor_axis}
Axis to broadcast over
pandas: powerful Python data analysis toolkit, Release 0.19.2

Returns Panel4D

See also:

Panel4D.rsub

pandas.Panel4D.sum

Panel4D.sum(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return the sum of the values for the requested axis

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
into a Panel

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything,
then use only numeric data. Not implemented for Series.

Returns sum : Panel or Panel4D (if level specified)

pandas.Panel4D.swapaxes

Panel4D.swapaxes(axis1, axis2, copy=True)

Interchange axes and swap values axes appropriately

Returns y : same as input

pandas.Panel4D.swaplevel

Panel4D.swaplevel(i=-2, j=-1, axis=0)

Swap levels i and j in a MultiIndex on a particular axis

Parameters i, j : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.

Returns swapped : type of caller (new object)

Changed in version 0.18.1: The indexes i and j are now optional, and default to the two
innermost levels of the index.

pandas.Panel4D.tail

Panel4D.tail(n=5)
pandas.Panel4D.take

Panel4D.take(indices, axis=0, convert=True, is_copy=True, **kwargs)
Analogous to ndarray.take

Parameters
indices : list / array of ints
axis : int, default 0
convert : translate neg to pos indices (default)
is_copy : mark the returned frame as a copy

Returns
taken : type of caller

pandas.Panel4D.toLong

Panel4D.toLong(*args, **kwargs)

pandas.Panel4D.to_clipboard

Panel4D.to_clipboard(excel=None, sep=None, **kwargs)
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example.

Parameters
excel : boolean, defaults to True
if True, use the provided separator, writing in a csv format for allowing easy pasting into excel. if False, write a string representation of the object to the clipboard
sep : optional, defaults to tab
other keywords are passed to to_csv

Notes
Requirements for your platform
• Linux: xclip, or xsel (with gtk or PyQt4 modules)
• Windows: none
• OS X: none

pandas.Panel4D.to_dense

Panel4D.to_dense()
Return dense representation of NDFrame (as opposed to sparse)

pandas.Panel4D.to_excel

Panel4D.to_excel(*args, **kwargs)
pandas.Panel4D.to_frame

Panel4D.to_frame(*args, **kwargs)

pandas.Panel4D.to_hdf

Panel4D.to_hdf(path_or_buf, key, **kwargs)
Write the contained data to an HDF5 file using HDFStore.

Parameters

path_or_buf : the path (string) or HDFStore object

key : string
    Identifier for the group in the store

mode : optional, {‘a’, ‘w’, ‘r+’}, default ‘a’
    ‘w’ Write; a new file is created (an existing file with the same name would be deleted).
    ‘a’ Append; an existing file is opened for reading and writing, and if the file does not exist it is created.
    ‘r+’ It is similar to ‘a’, but the file must already exist.

format : ‘fixed(f)’|’table(t)’, default is ‘fixed’
    fixed(f) [Fixed format] Fast writing/reading. Not-appendable, nor searchable
    table(t) [Table format] Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data

append : boolean, default False
    For Table formats, append the input data to the existing

data_columns : list of columns, or True, default None
    List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.

Applicable only to format=’table’.

complevel : int, 1-9, default 0
    If a complib is specified compression will be applied where possible

complib : {‘zlib’, ‘bz2’, ‘lzo’, ‘blosc’, None}, default None
    If complevel is > 0 apply compression to objects written in the store wherever possible

fletcher32 : bool, default False
    If applying compression use the fletcher32 checksum

dropna : boolean, default False.
    If true, ALL nan rows will not be written to store.
**pandas.Panel4D.to_json**

```
Panel4D.to_json(path_or_buf=None, orient=None, date_format='epoch', double_precision=10,
 force_ascii=True, date_unit='ms', default_handler=None, lines=False)
```

Convert the object to a JSON string.

Note NaN’s and None will be converted to null and datetime objects will be converted to UNIX timestamps.

**Parameters**

- **path_or_buf**: the path or buffer to write the result string
  if this is None, return a StringIO of the converted string

- **orient**: string
  - *Series*
    - default is ‘index’
    - allowed values are: {'split','records','index’}
  - *DataFrame*
    - default is ‘columns’
    - allowed values are: {'split','records','index','columns','values’}
  - *The format of the JSON string*
    - split : dict like {index -> [index], columns -> [columns], data -> [values]}
    - records : list like [{column -> value}, ... , {column -> value}]
    - index : dict like {index -> {column -> value}}
    - columns : dict like {column -> {index -> value}}
    - values : just the values array

- **date_format**: {'epoch', ‘iso’}
  Type of date conversion. `epoch` = epoch milliseconds, `iso` = ISO8601, default is epoch.

- **double_precision**: The number of decimal places to use when encoding floating point values, default 10.

- **force_ascii**: force encoded string to be ASCII, default True.

- **date_unit**: string, default ‘ms’ (milliseconds)
  The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.

- **default_handler**: callable, default None
  Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object.

- **lines**: boolean, default False
  If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like.

New in version 0.19.0.
**Returns** same type as input object with filtered info axis

```python
pandas.Panel4D.to_long
```

```python
Panel4D.to_long(*args, **kwargs)
```

```python
pandas.Panel4D.to_msgpack
```

```python
Panel4D.to_msgpack(path_or_buf=None, encoding='utf-8', **kwargs)
```

THIS IS AN EXPERIMENTAL LIBRARY and the storage format may not be stable until a future release.

**Parameters**
- `path` : string File path, buffer-like, or None
  if None, return generated string
- `append` : boolean whether to append to an existing msgpack
  (default is False)
- `compress` : type of compressor (zlib or blosc), default to None (no compression)

```python
pandas.Panel4D.to_pickle
```

```python
Panel4D.to_pickle(path)
```

Pickle (serialize) object to input file path.

**Parameters**
- `path` : string File path

```python
pandas.Panel4D.to_sparse
```

```python
Panel4D.to_sparse(*args, **kwargs)
```

```python
pandas.Panel4D.to_sql
```

```python
Panel4D.to_sql(name, con, flavor=None, schema=None, if_exists='fail', index=True, index_label=None, chunksize=None, dtype=None)
```

Write records stored in a DataFrame to a SQL database.

**Parameters**
- `name` : string Name of SQL table
  - `con` : SQLAlchemy engine or DBAPI2 connection (legacy mode)
    - Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
  - `flavor` : 'sqlite', default None
    - DEPRECATED: this parameter will be removed in a future version, as 'sqlite' is the only supported option if SQLAlchemy is not installed.
schema : string, default None

Specify the schema (if database flavor supports this). If None, use default schema.

if_exists : {'fail', 'replace', 'append'}, default ‘fail’

• fail: If table exists, do nothing.
• replace: If table exists, drop it, recreate it, and insert data.
• append: If table exists, insert data. Create if does not exist.

index : boolean, default True

Write DataFrame index as a column.

index_label : string or sequence, default None

Column label for index column(s). If None is given (default) and index is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex.

chunksize : int, default None

If not None, then rows will be written in batches of this size at a time. If None, all rows will be written at once.

dtype : dict of column name to SQL type, default None

Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection.

pandas.Panel4D.to_xarray

Panel4D.to_xarray()

Return an xarray object from the pandas object.

Returns a DataArray for a Series

a Dataset for a DataFrame

a DataArray for higher dims

Notes

See the xarray docs

Examples

```
>>> df = pd.DataFrame({'A': [1, 1, 2],
 'B': ['foo', 'bar', 'foo'],
 'C': np.arange(4.,7))

>>> df
 A B C
0 1 foo 4.0
1 1 bar 5.0
2 2 foo 6.0
```
>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:
 * index (index) int64 0 1 2
Data variables:
A (index) int64 1 1 2
B (index) object 'foo' 'bar' 'foo'
C (index) float64 4.0 5.0 6.0

>>> df = pd.DataFrame({'A': [1, 1, 2],
                      'B': ['foo', 'bar', 'foo'],
                      'C': np.arange(4., 7)}
                      ).set_index(['B', 'A'])

>>> df

C
B  A
foo 1 4.0
bar 1 5.0
foo 2 6.0

>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:
 * B (B) object 'bar' 'foo'
 * A (A) int64 1 2
Data variables:
C (B, A) float64 5.0 nan 4.0 6.0

>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
               items=list('ABCD'),
               major_axis=pd.date_range('20130101', periods=3),
               minor_axis=['first', 'second'])

>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second

>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[[ 0,  1],
    [ 2,  3],
    [ 4,  5]],
   [[ 6,  7],
    [ 8,  9],
    [10, 11]],
   [[12, 13],
    [14, 15],
    [16, 17]],
   [[18, 19],
    [20, 21],
    [22, 23]]])
Coordinates:
**pandas**: powerful Python data analysis toolkit, Release 0.19.2

<table>
<thead>
<tr>
<th>items</th>
<th>(items) object 'A' 'B' 'C' 'D'</th>
</tr>
</thead>
<tbody>
<tr>
<td>major_axis</td>
<td>(major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03</td>
</tr>
<tr>
<td>* noqa</td>
<td></td>
</tr>
<tr>
<td>minor_axis</td>
<td>(minor_axis) object 'first' 'second'</td>
</tr>
</tbody>
</table>

**pandas.DataFrame.transpose**

`DataFrame.transpose(*args, **kwargs)`

Permute the dimensions of the DataFrame

**Parameters**
- **args**: three positional arguments: each one of
  - {0, 1, 2, ‘items’, ‘major_axis’, ‘minor_axis’}
  - **copy**: boolean, default False Make a copy of the underlying data. Mixed-dtype data will always result in a copy

**Returns**
- **y**: same as input

**Examples**

```python
>>> p.transpose(2, 0, 1)
>>> p.transpose(2, 0, 1, copy=True)
```

**pandas.DataFrame.truediv**

`DataFrame.truediv(other, axis=0)`

Floating division of series and other, element-wise (binary operator `truediv`). Equivalent to `panel / other`.

**Parameters**
- **other**: DataFrame or Panel
  - **axis**: {labels, items, major_axis, minor_axis}

**Returns**
- **DataFrame**: Panel4D

**See also:**
- `Panel4D.rtruediv`

**pandas.DataFrame.truncate**

`DataFrametruncate(before=None, after=None, axis=None, copy=True)`

Truncates a sorted NDFrame before and/or after some particular index value. If the axis contains only datetime values, before/after parameters are converted to datetime values.

**Parameters**
- **before**: date
  - Truncate before index value
- **after**: date
  - Truncate after index value
axis : the truncation axis, defaults to the stat axis

copy : boolean, default is True,
       return a copy of the truncated section

Returns truncated : type of caller

pandas.Panel4D.tshift

Panel4D.tshift(periods=1, freq=None, axis='major')

pandas.Panel4D.tz_convert

Panel4D.tz_convert(tz, axis=0, level=None, copy=True)
   Convert tz-aware axis to target time zone.

   Parameters tz : string or pytz.timezone object
   axis : the axis to convert
   level : int, str, default None
       If axis ia a MultiIndex, convert a specific level. Otherwise must be None
   copy : boolean, default True
       Also make a copy of the underlying data

   Raises TypeError
       If the axis is tz-naive.

pandas.Panel4D.tz_localize

Panel4D.tz_localize(*args, **kwargs)
   Localize tz-naive TimeSeries to target time zone.

   Parameters tz : string or pytz.timezone object
   axis : the axis to localize
   level : int, str, default None
       If axis ia a MultiIndex, localize a specific level. Otherwise must be None
   copy : boolean, default True
       Also make a copy of the underlying data

   ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’
       • ‘infer’ will attempt to infer fall dst-transition hours based on order
       • bool-ndarray where True signifies a DST time. False designates a non-DST time (note
         that this flag is only applicable for ambiguous times)
       • ‘NaT’ will return NaT where there are ambiguous times
       • ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

   infer_dst : boolean, default False (DEPRECATED)
pandas: powerful Python data analysis toolkit, Release 0.19.2

Attempt to infer fall dst-transition hours based on order

Raises TypeError
If the TimeSeries is tz-aware and tz is not None.

pandas.Panel4D.update

Panel4D.update( other, join='left', overwrite=True, filter_func=None, raise_conflict=False )
Modify Panel in place using non-NA values from passed Panel, or object coercible to Panel. Aligns on items

Parameters other : Panel, or object coercible to Panel
join : How to join individual DataFrames
{'left', 'right', 'outer', 'inner'}, default 'left'
overwrite : boolean, default True
If True then overwrite values for common keys in the calling panel
filter_func : callable(1d-array) -> 1d-array<boolean>, default None
Can choose to replace values other than NA. Return True for values that should be updated
raise_conflict : bool
If True, will raise an error if a DataFrame and other both contain data in the same place.

pandas.Panel4D.var

Panel4D.var( axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs )
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument

Parameters axis : {labels (0), items (1), major_axis (2), minor_axis (3)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Panel
ddof : int, default 1
degrees of freedom
numeric_only : boolean, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns var : Panel or Panel4D (if level specified)
Panel4D.where

Panel4D.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)

Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters:
cond : boolean NDFrame, array or callable
  If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).
  New in version 0.18.1.
  A callable can be used as cond.
other : scalar, NDFrame, or callable
  If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).
  New in version 0.18.1.
  A callable can be used as other.
inplace : boolean, default False
  Whether to perform the operation in place on the data
axis : alignment axis if needed, default None
level : alignment level if needed, default None
try_cast : boolean, default False
  try to cast the result back to the input type (if possible),
raise_on_error : boolean, default True
  Whether to raise on invalid data types (e.g. trying to where on strings)

Returns:
wh : same type as caller

See also:
DataFrame.mask()

Notes

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

For further details and examples see the where documentation in indexing.
**Examples**

```python
>>> s = pd.Series(range(5))
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
Name: 0, dtype: float64

>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B'])
>>> m = df % 3 == 0
>>> df.where(m, -df)
 A B
0 0 -1
1 -2 3
2 -4 -5
3 6 -7
4 -8 9
```

```python
>>> df.where(m, -df) == np.where(m, df, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

```python
>>> df.where(m, -df) == df.mask(~m, -df)
 A B
0 True True
1 True True
2 True True
3 True True
4 True True
```

**pandas.Panel4D.xs**

Panel4D.xs (key, axis=1)

Return slice of panel along selected axis

**Parameters**

- **key**: object
  
  Label

- **axis**: {'items', 'major', 'minor'}, default 1/'major'

**Returns**

- **y**: ndim(self)-1

**Notes**

xs is only for getting, not setting values.

MultiIndex Slicers is a generic way to get/set values on any level or levels and is a superset of xs functionality, see MultiIndex Slicers
Serialization / IO / Conversion

Panel4D.to_xarray()  Return an xarray object from the pandas object.

Attributes and underlying data

Axes
- **labels**: axis 1; each label corresponds to a Panel contained inside
- **items**: axis 2; each item corresponds to a DataFrame contained inside
- **major_axis**: axis 3; the index (rows) of each of the DataFrames
- **minor_axis**: axis 4; the columns of each of the DataFrames

Panel4D.values  Numpy representation of NDFrame
Panel4D.axes  Return index label(s) of the internal NDFrame
Panel4D.ndim  Number of axes / array dimensions
Panel4D.size  number of elements in the NDFrame
Panel4D.shape  Return a tuple of axis dimensions
Panel4D.dtypes  Return the dtypes in this object.
Panel4D.ftypes  Return the ftypes (indication of sparse/dense and dtype) in this object.
Panel4D.get_dtype_counts()  Return the counts of dtypes in this object.
Panel4D.get_ftype_counts()  Return the counts of ftypes in this object.

Conversion

Panel4D.astype(dtype[, copy, raise_on_error])  Cast object to input numpy.dtype
Panel4D.copy([deep])  Make a copy of this objects data.
Panel4D.isnull()  Return a boolean same-sized object indicating if the values are null.
Panel4D.notnull()  Return a boolean same-sized object indicating if the values are not null.

Index

Many of these methods or variants thereof are available on the objects that contain an index (Series/Dataframe) and those should most likely be used before calling these methods directly.

Index  Immutable ndarray implementing an ordered, sliceable set.

pandas.Index

class pandas.Index

Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects

Parameters data : array-like (1-dimensional)

dtype : NumPy dtype (default: object)
copy : bool
    Make a copy of input ndarray
name : object
    Name to be stored in the index
tupleize_cols : bool (default: True)
    When True, attempt to create a MultiIndex if possible

Notes

An Index instance can only contain hashable objects

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td>asi8</td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td>base</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
<tr>
<td>dtype</td>
<td></td>
</tr>
<tr>
<td>dtype_str</td>
<td></td>
</tr>
<tr>
<td>flags</td>
<td></td>
</tr>
<tr>
<td>has_duplicates</td>
<td></td>
</tr>
<tr>
<td>hasnans</td>
<td></td>
</tr>
<tr>
<td>inferred_type</td>
<td></td>
</tr>
<tr>
<td>is_all_dates</td>
<td></td>
</tr>
<tr>
<td>is_monotonic</td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td>is_monotonic_decreasing</td>
<td>return if the index is monotonic decreasing (only equal or)</td>
</tr>
<tr>
<td>is_monotonic_increasing</td>
<td>return if the index is monotonic increasing (only equal or)</td>
</tr>
<tr>
<td>is_unique</td>
<td></td>
</tr>
<tr>
<td>itemsize</td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td>name</td>
<td></td>
</tr>
<tr>
<td>names</td>
<td></td>
</tr>
<tr>
<td>nbytes</td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td>ndim</td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td>nlevels</td>
<td></td>
</tr>
<tr>
<td>shape</td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td>size</td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td>strides</td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td>values</td>
<td>return the underlying data as an ndarray</td>
</tr>
</tbody>
</table>
pandas.Index.T

Index.T
return the transpose, which is by definition self

pandas.Index.asi8

Index.asi8 = None

pandas.Index.base

Index.base
return the base object if the memory of the underlying data is shared

pandas.Index.data

Index.data
return the data pointer of the underlying data

pandas.Index.dtype

Index.dtype = None

pandas.Index.dtype_str

Index.dtype_str = None

pandas.Index.flags

Index.flags

pandas.Index.has_duplicates

Index.has_duplicates

pandas.Index.hasnans

Index.hasnans = None

pandas.Index.inferred_type

Index.inferred_type = None

pandas.Index.is_all_dates

Index.is_all_dates = None
pandas.Index.is_monotonic

Index.is_monotonic
alias for is_monotonic_increasing (deprecated)

pandas.Index.is_monotonic_decreasing

Index.is_monotonic_decreasing
return if the index is monotonic decreasing (only equal or decreasing) values.

pandas.Index.is_monotonic_increasing

Index.is_monotonic_increasing
return if the index is monotonic increasing (only equal or increasing) values.

pandas.Index.is_unique

Index.is_unique = None

pandas.Index.itemsize

Index.itemsize
return the size of the dtype of the item of the underlying data

pandas.Index.name

Index.name = None

pandas.Index.names

Index.names

pandas.Index.nbytes

Index.nbytes
return the number of bytes in the underlying data

pandas.Index.ndim

Index.ndim
return the number of dimensions of the underlying data, by definition 1

pandas.Index.nlevels

Index.nlevels
pandas.Index.shape

Index.shape
return a tuple of the shape of the underlying data

pandas.Index.size

Index.size
return the number of elements in the underlying data

pandas.Index.strides

Index.strides
return the strides of the underlying data

pandas.Index.values

Index.values
return the underlying data as an ndarray

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all(*args, **kwargs)</td>
<td>Return whether all elements are True</td>
</tr>
<tr>
<td>any(*args, **kwargs)</td>
<td>Return whether any element is True</td>
</tr>
<tr>
<td>append(other)</td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td>argmax([axis])</td>
<td>return a ndarray of the maximum argument indexer</td>
</tr>
<tr>
<td>argmin([axis])</td>
<td>return a ndarray of the minimum argument indexer</td>
</tr>
<tr>
<td>argsort(*args, **kwargs)</td>
<td>Returns the indices that would sort the index and its underlying data.</td>
</tr>
<tr>
<td>asof(label)</td>
<td>For a sorted index, return the most recent label up to and including the passed label.</td>
</tr>
<tr>
<td>asof_locs(where, mask)</td>
<td>where : array of timestamps</td>
</tr>
<tr>
<td>astype(dtype[, copy])</td>
<td>Create an Index with values cast to dtypes.</td>
</tr>
<tr>
<td>copy([name, deep, dtype])</td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td>delete(loc)</td>
<td>Make new Index with passed location(-s) deleted</td>
</tr>
<tr>
<td>difference(other)</td>
<td>Return a new Index with elements from the index that are not in other.</td>
</tr>
<tr>
<td>drop(labels[, errors])</td>
<td>Make new Index with passed list of labels deleted</td>
</tr>
<tr>
<td>drop_duplicates(*args, **kwargs)</td>
<td>Return Index with duplicate values removed</td>
</tr>
<tr>
<td>dropna([how])</td>
<td>Return Index without NA/NaN values</td>
</tr>
<tr>
<td>duplicated(*args, **kwargs)</td>
<td>Return boolean np.ndarray denoting duplicate values</td>
</tr>
<tr>
<td>equals(other)</td>
<td>Determines if two Index objects contain the same elements.</td>
</tr>
<tr>
<td>factorize([sort, na_sentinel])</td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td>fillna(value, downcast)</td>
<td>Fill NA/NaN values with the specified value</td>
</tr>
<tr>
<td>format([name, formatter])</td>
<td>Render a string representation of the Index</td>
</tr>
<tr>
<td>get_duplicates()</td>
<td></td>
</tr>
</tbody>
</table>
### Table 35.91 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>get_indexer(target[, method, limit, tolerance])</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer_for(target, **kwargs)</code></td>
<td>Guaranteed return of an indexer even when non-unique</td>
</tr>
<tr>
<td><code>get_indexer_non_unique(target)</code></td>
<td>Return an indexer suitable for taking from a non unique index</td>
</tr>
<tr>
<td><code>get_level_values(level)</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc(key[, method, tolerance])</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>get_slice_bound(label, side, kind)</code></td>
<td>Calculate slice bound that corresponds to given label.</td>
</tr>
<tr>
<td><code>get_values(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>Return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>groupby(values)</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>holds_integer()</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Make new Index inserting new item at location.</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Form the intersection of two Index objects.</td>
</tr>
<tr>
<td><code>is_(other)</code></td>
<td>More flexible, faster check like <code>is</code> but that works through views</td>
</tr>
<tr>
<td><code>is_boolean()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_categorical()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td></td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible(kind)</code></td>
<td></td>
</tr>
<tr>
<td><code>isin(values[, level])</code></td>
<td>Compute boolean array of whether each index value is found in the passed set of values.</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>Return the first element of the underlying data as a python</td>
</tr>
<tr>
<td><code>join(other[, how, level, return_indexers])</code></td>
<td>this is an internal non-public method</td>
</tr>
<tr>
<td><code>map(mapper)</code></td>
<td>Apply mapper function to its values.</td>
</tr>
<tr>
<td><code>max()</code></td>
<td>The maximum value of the object</td>
</tr>
<tr>
<td><code>memory_usage([deep])</code></td>
<td>Memory usage of my values</td>
</tr>
<tr>
<td><code>min()</code></td>
<td>The minimum value of the object</td>
</tr>
<tr>
<td><code>nunique([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>order([return_indexer, ascending])</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>putmask(mask, value)</code></td>
<td>Return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>ravel([order])</code></td>
<td>Return an ndarray of the flattened values of the underlying data</td>
</tr>
<tr>
<td><code>reindex(target[, method, level, limit, ...])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>rename(name[, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>repeat(n, *args, **kwargs)</code></td>
<td>Repeat elements of an Index.</td>
</tr>
<tr>
<td><code>reshape(*args, **kwargs)</code></td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
</tbody>
</table>
**searchsorted**(key[, side, sorter]) Find indices where elements should be inserted to maintain order.

**set_names**(names[, level, inplace]) Set new names on index.

**set_value**(arr, key, value) Fast lookup of value from 1-dimensional ndarray.

**shift**(periods, freq) Shift Index containing datetime objects by input number of periods and

**slice_indexer**([start, end, step, kind]) For an ordered Index, compute the slice indexer for input labels and

**slice_locs**([start, end, step, kind]) Compute slice locations for input labels.

**sort**(*args, **kwargs) For internal compatibility with with the Index API

**str** alias of StringMethods

**summary**(name) Compute the symmetric difference of two Index objects.

**take**(indices[, axis, allow_fill, fill_value]) return a new %(klass)s of the values selected by the indices

**to_datetime**(dayfirst) DEPRECATED: use pandas.to_datetime() instead.

**to_native_types**(slicer) slice and dice then format

**to_series**(**kwargs) Create a Series with both index and values equal to the index keys

**tolist**() return a list of the Index values

**transpose**(*args, **kwargs) return the transpose, which is by definition self

**union**(other) Form the union of two Index objects and sorts if possible.

**unique**() Return Index of unique values in the object.

**value_counts**(normalize, sort, ascending, ...) Returns object containing counts of unique values.

**view**(cls)

**where**(cond[, other]) New in version 0.19.0.

---

**pandas.Index.all**

Index.all (*args, **kwargs) Return whether all elements are True

Parameters All arguments to numpy.all are accepted.

Returns all : bool or array_like (if axis is specified)

A single element array_like may be converted to bool.

**pandas.Index.any**

Index.any (*args, **kwargs) Return whether any element is True

Parameters All arguments to numpy.any are accepted.

Returns any : bool or array_like (if axis is specified)

A single element array_like may be converted to bool.
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.Index.append

Index.append(other)
Append a collection of Index options together
  Parameters other : Index or list/tuple of indices
  Returns appended : Index

pandas.Index.argmax

Index.argmax(axis=None)
return a ndarray of the maximum argument indexer
  See also:
  numpy.ndarray.argmax

pandas.Index.argmin

Index.argmin(axis=None)
return a ndarray of the minimum argument indexer
  See also:
  numpy.ndarray.argmin

pandas.Index.argsort

Index.argsort(*args, **kwargs)
Returns the indices that would sort the index and its underlying data.
  Returns argsorted : numpy array
  See also:
  numpy.ndarray.argsort

pandas.Index.asof

Index.asof(label)
For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.
  See also:
  get_loc asof is a thin wrapper around get_loc with method='pad'

pandas.Index.asof_locs

Index.asof_locs(where, mask)
where : array of timestamps mask : array of booleans where data is not NA
pandas.Index.astype

Index.astype(dtype, copy=True)
Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.

Parameters dtype : numpy dtype or pandas type
                  copy : bool, default True

By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.

New in version 0.19.0.

pandas.Index.copy

Index.copy(name=None, deep=False, dtype=None, **kwargs)
Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters name : string, optional
                  deep : boolean, default False
                  dtype : numpy dtype or pandas type

Returns copy : Index

Notes
In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.

pandas.Index.delete

Index.delete(loc)
Make new Index with passed location(-s) deleted

Returns new_index : Index

pandas.Index.difference

Index.difference(other)
Return a new Index with elements from the index that are not in other.
This is the set difference of two Index objects. It’s sorted if sorting is possible.

Parameters other : Index or array-like

Returns difference : Index

Examples
```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.difference(idx2)
Int64Index([1, 2], dtype='int64')
```

**pandas.Index.drop**

```python
Index.drop (labels, errors='raise')
```

Make new Index with passed list of labels deleted

- **Parameters**
  - `labels`: array-like
  - `errors`: {'ignore', 'raise'}, default 'raise'
    
    If 'ignore', suppress error and existing labels are dropped.

- **Returns**
  - `dropped`: Index

**pandas.Index.drop_duplicates**

```python
Index.drop_duplicates(*args, **kwargs)
```

Return Index with duplicate values removed

- **Parameters**
  - `keep`: {'first', 'last', False}, default 'first'
    - first: Drop duplicates except for the first occurrence.
    - last: Drop duplicates except for the last occurrence.
    - False: Drop all duplicates.

- **take_last**: deprecated

- **Returns**
  - `deduplicated`: Index

**pandas.Index.dropna**

```python
Index.dropna (how='any')
```

Return Index without NA/NaN values

- **Parameters**
  - `how`: {'any', 'all'}, default 'any'

    If the Index is a MultiIndex, drop the value when any or all levels are NaN.

- **Returns**
  - `valid`: Index

**pandas.Index.duplicated**

```python
Index.duplicated(*args, **kwargs)
```

Return boolean np.ndarray denoting duplicate values

- **Parameters**
  - `keep`: {'first', 'last', False}, default 'first'
    - first: Mark duplicates as True except for the first occurrence.
    - last: Mark duplicates as True except for the last occurrence.
    - False: Mark all duplicates as True.
take_last : deprecated

Returns duplicated : np.ndarray

**pandas.Index.equals**

Index.equals (other)
Determines if two Index objects contain the same elements.

**pandas.Index.factorize**

Index.factorize (sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False
Sort by values

na_sentinel: int, default -1
Value to mark “not found”

Returns labels : the indexer to the original array
uniques : the unique Index

**pandas.Index.fillna**

Index.fillna (value=None, downcast=None)
Fill NA/NaN values with the specified value

Parameters value : scalar
Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.

downcast : dict, default is None
A dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : %(klass)s

**pandas.Index.format**

Index.format (name=False, formatter=None, **kwargs)
Render a string representation of the Index

**pandas.Index.get_duplicates**

Index.get_duplicates ()
pandas.Index.get_indexer

Index.get_indexer(target, method=None, limit=None, tolerance=None)

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.

Parameters:
- **target**: Index
- **method**: {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
  - default: exact matches only.
  - pad / ffill: find the PREVIOUS index value if no exact match.
  - backfill / bfill: use NEXT index value if no exact match
  - nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.
- **limit**: int, optional
  - Maximum number of consecutive labels in target to match for inexact matches.
- **tolerance**: optional
  - Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation \( \text{abs(index[indexer] - target)} \leq \text{tolerance} \).
  
  New in version 0.17.0.

Returns:
- **indexer**: ndarray of int
  - Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

pandas.Index.get_indexer_for

Index.get_indexer_for(target, **kwargs)

Guaranteed return of an indexer even when non-unique.

pandas.Index.get_indexer_non_unique

Index.get_indexer_non_unique(target)

Return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable.
pandas.Index.get_level_values

Index.get_level_values(level)
Return vector of label values for requested level, equal to the length of the index

Parameters level : int
Returns values : ndarray

pandas.Index.get_loc

Index.get_loc(key, method=None, tolerance=None)
Get integer location for requested label

Parameters key : label
method : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
  • default: exact matches only.
  • pad/ffill: find the PREVIOUS index value if no exact match.
  • backfill/bfill: use NEXT index value if no exact match
  • nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.

tolerance : optional
  Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation abs(index[loc] - key) <= tolerance.

New in version 0.17.0.

Returns loc : int if unique index, possibly slice or mask if not

pandas.Index.get_slice_bound

Index.get_slice_bound(label, side, kind)
Calculate slice bound that corresponds to given label.

Returns leftmost (one-past-the-rightmost if side=='right') position of given label.

Parameters label : object
  side : {‘left’, ‘right’}
  kind : {‘ix’, ‘loc’, ‘getitem’}

pandas.Index.get_value

Index.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing

pandas.Index.get_values

Index.get_values()
return the underlying data as an ndarray
**pandas.Index.groupby**

`Index.groupby(values)`

Group the index labels by a given array of values.

**Parameters**

- `values`: array
  
  Values used to determine the groups.

**Returns**

- `groups`: dict
  
  `{group name -> group labels}`

**pandas.Index.holds_integer**

`Index.holds_integer()`

**pandas.Index.identical**

`Index.identical(other)`

Similar to `equals`, but check that other comparable attributes are also equal.

**pandas.Index.insert**

`Index.insert(loc, item)`

Make new Index inserting new item at location. Follows Python list.append semantics for negative values.

**Parameters**

- `loc`: int
  
  item: object

**Returns**

- `new_index`: Index

**pandas.Index.intersection**

`Index.intersection(other)`

Form the intersection of two Index objects.

This returns a new Index with elements common to the index and `other`. Sortedness of the result is not guaranteed.

**Parameters**

- `other`: Index or array-like

**Returns**

- `intersection`: Index

**Examples**

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.intersection(idx2)
Int64Index([3, 4], dtype='int64')
```
pandas.Index.is

Index.is_(other)
   More flexible, faster check like is but that works through views
   
   Note: this is not the same as Index.identical(), which checks that metadata is also the same.

   Parameters other : object
       other object to compare against.

   Returns True if both have same underlying data, False otherwise : bool

pandas.Index.is_boolean

Index.is_boolean()

pandas.Index.is_categorical

Index.is_categorical()

pandas.Index.is_floating

Index.is_floating()

pandas.Index.is_integer

Index.is_integer()

pandas.Index.is_lexsorted_for_tuple

Index.is_lexsorted_for_tuple(tup)

pandas.Index.is_mixed

Index.is_mixed()

pandas.Index.is_numeric

Index.is_numeric()

pandas.Index.is_object

Index.is_object()

pandas.Index.is_type_compatible

Index.is_type_compatible(kind)
**pandas.Index.isin**

Index.isin(values, level=None)

Parameters

- **values**: set or list-like
  - Sought values.
  - New in version 0.18.1.
  - Support for values as a set
- **level**: str or int, optional
  - Name or position of the index level to use (if the index is a MultiIndex).

Returns **is_contained**: ndarray (boolean dtype)

**Notes**

If level is specified:

- if it is the name of one and only one index level, use that level;
- otherwise it should be a number indicating level position.

**pandas.Index.item**

Index.item()

return the first element of the underlying data as a python scalar

**pandas.Index.join**

Index.join(other, how='left', level=None, return_indexers=False)

Compute join_index and indexers to conform data structures to the new index.

Parameters

- **other**: Index
- **how**: {'left', 'right', 'inner', 'outer'}
- **level**: int or level name, default None
- **return_indexers**: boolean, default False

Returns join_index, (left_indexer, right_indexer)

**pandas.Index.map**

Index.map(mapper)

Apply mapper function to its values.

Parameters **mapper**: callable

Function to be applied.

Returns **applied**: array
pandas.Index.max

Index.max()  
The maximum value of the object

pandas.Index.memory_usage

Index.memory_usage(deep=False)  
Memory usage of my values

Parameters deep : bool  
Introspect the data deeply, interrogate object dtypes for system-level memory consumption

Returns bytes used

See also:
numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False

pandas.Index.min

Index.min()  
The minimum value of the object

pandas.Index.nunique

Index.nunique(dropna=True)  
Return number of unique elements in the object. Excludes NA values by default.

Parameters dropna : boolean, default True  
Don’t include NaN in the count.

Returns nunique : int

pandas.Index.order

Index.order(return_indexer=False, ascending=True)  
Return sorted copy of Index

DEPRECATED: use Index.sort_values()
pandas.Index.putmask

Index.putmask(mask, value)
   return a new Index of the values set with the mask

See also:
   numpy.ndarray.putmask

pandas.Index.ravel

Index.ravel(order='C')
   return an ndarray of the flattened values of the underlying data

See also:
   numpy.ndarray.ravel

pandas.Index.reindex

Index.reindex(target, method=None, level=None, limit=None, tolerance=None)
   Create index with target’s values (move/add/delete values as necessary)

   Parameters  target : an iterable
   Returns  new_index : pd.Index
       Resulting index
    indexer : np.ndarray or None
       Indices of output values in original index

pandas.Index.rename

Index.rename(name, inplace=False)
   Set new names on index. Defaults to returning new index.

   Parameters  name : str or list
       name to set
   inplace : bool
       if True, mutates in place

   Returns  new index (of same type and class...etc) [if inplace, returns None]

pandas.Index.repeat

Index.repeat(n, *args, **kwargs)
   Repeat elements of an Index. Refer to numpy.ndarray.repeat for more information about the n argument.

   See also:
       numpy.ndarray.repeat
pandas.Index.reshape

`Index.reshape(*args, **kwargs)`

NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.

Reshape an Index.

pandas.Index.searchsorted

`Index.searchsorted(key, side='left', sorter=None)`

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted IndexOpsMixin `self` such that, if the corresponding elements in `v` were inserted before the indices, the order of `self` would be preserved.

**Parameters**

- `key`: array_like
  Values to insert into `self`.
- `side`: {'left', 'right'}, optional
  If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`).
- `sorter`: 1-D array_like, optional
  Optional array of integer indices that sort `self` into ascending order. They are typically the result of `np.argsort`.

**Returns**

- `indices`: array of ints
  Array of insertion points with the same shape as `v`.

**See also:**

`numpy.searchsorted`

**Notes**

Binary search is used to find the required insertion points.

**Examples**

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64
>>> x.searchsorted(4)
array([3])
>>> x.searchsorted([0, 4])
array([0, 3])
>>> x.searchsorted([1, 3], side='left')
array([0, 2])
>>> x.searchsorted([1, 3], side='right')
```
```python
array([1, 3])
>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
[array('O', [b'apple', b'bread', b'bread', b'cheese', b'milk'])
Categories (4, object): [apple < bread < cheese < milk]
>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar
>>> x.searchsorted(['bread'])
array([1])
>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])
>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4]) # eggs before milk

pandas.Index.set_names

Index.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters
names : str or sequence
 name(s) to set
level : int, level name, or sequence of int/level names (default None)
 If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
 Otherwise level must be None
inplace : bool
 if True, mutates in place

Returns
new index (of same type and class...etc) [if inplace, returns None]

Examples

>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
 (2, u'one'), (2, u'two')],
 names=['foo', 'bar'])
>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=['foo', 'bar'])
>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=['u'baz', 'u'quz'])

pandas.Index.set_value

Index.set_value(arr, key, value)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing
pandas.Index.shift

Index.shift(periods=1, freq=None)

Shift Index containing datetime objects by input number of periods and DateOffset

Returns shifted : Index

pandas.Index.slice_indexer

Index.slice_indexer(start=None, end=None, step=None, kind=None)

For an ordered Index, compute the slice indexer for input labels and step

Parameters

- **start** : label, default None
 - If None, defaults to the beginning
- **end** : label, default None
 - If None, defaults to the end
- **step** : int, default None
- **kind** : string, default None

Returns indexer : ndarray or slice

Notes

This function assumes that the data is sorted, so use at your own peril

pandas.Index.slice_locs

Index.slice_locs(start=None, end=None, step=None, kind=None)

Compute slice locations for input labels.

Parameters

- **start** : label, default None
 - If None, defaults to the beginning
- **end** : label, default None
 - If None, defaults to the end
- **step** : int, default None
 - If None, defaults to 1
- **kind** : {'ix', 'loc', 'getitem'} or None

Returns start, end : int

pandas.Index.sort

Index.sort(*args, **kwargs)
pandas.Index.sort_values

Index.sort_values (return_indexer=False, ascending=True)
Return sorted copy of Index

pandas.Index.sortlevel

Index.sortlevel (level=None, ascending=True, sort_remaining=None)
For internal compatibility with with the Index API
Sort the Index. This is for compat with MultiIndex

Parameters ascending : boolean, default True
False to sort in descending order
level, sort_remaining are compat parameters

Returns sorted_index : Index

pandas.Index.str

Index.str ()
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python's string methods, with some inspiration from R's stringr package.

Examples

```python
>>> s.str.split('_')
>>> s.str.replace('_', '')
```

pandas.Index.summary

Index.summary (name=None)

pandas.Index.sym_diff

Index.sym_diff (*args, **kwargs)

pandas.Index.symmetric_difference

Index.symmetric_difference (other, result_name=None)
Compute the symmetric difference of two Index objects. It's sorted if sorting is possible.

Parameters other : Index or array-like
result_name : str

Returns symmetric_difference : Index
Notes

symmetric_difference contains elements that appear in either *idx1* or *idx2* but not both. Equivalent to the Index created by *idx1.difference(idx2) | idx2.difference(idx1)* with duplicates dropped.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the `^` operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```

pandas.Index.take

Index.

```python
.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)
```

return a new %(klass)s of the values selected by the indices

For internal compatibility with numpy arrays.

Parameters indices

Indices to be taken

axis

int, optional

The axis over which to select values, always 0.

allow_fill

bool, default True

fill_value

bool, default None

If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn’t hold NA, raise ValueError

See also:

numpy.ndarray.take

pandas.Index.to_datetime

Index.

```python
to_datetime(dayfirst=False)
```

DEPRECATED: use pandas.to_datetime() instead.

For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

pandas.Index.to_native_types

Index.

```python
to_native_types(slicer=None, **kwargs)
```

slice and dice then format
pandas.Index.to_series

Index.to_series(**kwargs)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Returns Series: dtype will be based on the type of the Index values.

pandas.Index.tolist

Index.tolist()
return a list of the Index values

pandas.Index.transpose

Index.transpose(*args, **kwargs)
return the transpose, which is by definition self

pandas.Index.union

Index.union(other)
Form the union of two Index objects and sorts if possible.

Parameters other: Index or array-like

Returns union: Index

Examples

>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.union(idx2)
Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')

pandas.Index.unique

Index.unique()
Return Index of unique values in the object. Significantly faster than numpy.unique. Includes NA values. The order of the original is preserved.

Returns uniques: Index

pandas.Index.value_counts

Index.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize: boolean, default False
If True then the object returned will contain the relative frequencies of the unique values.

sort: boolean, default True

Sort by values

ascending: boolean, default False

Sort in ascending order

bins: integer, optional

Rather than count values, group them into half-open bins, a convenience for `pd.cut`, only works with numeric data

dropna: boolean, default True

Don’t include counts of NaN.

Returns

counts: Series

pandas.Index.view

```
Index.view(cls=None)
```

pandas.Index.where

```
Index.where(cond, other=None)
```

New in version 0.19.0.

Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters

cond: boolean same length as self

other: scalar, or array-like

Attributes

```
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.values</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>Index.is_monotonic</code></td>
<td>alias for <code>is_monotonic_increasing</code> (deprecated)</td>
</tr>
<tr>
<td><code>Index.is_monotonic_increasing</code></td>
<td>return if the index is monotonic increasing (only equal or greater)</td>
</tr>
<tr>
<td><code>Index.is_monotonic_decreasing</code></td>
<td>return if the index is monotonic decreasing (only equal or less)</td>
</tr>
<tr>
<td><code>Index.is_unique</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.has_duplicates</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.dtype</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.inferred_type</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.is_all_dates</code></td>
<td></td>
</tr>
<tr>
<td><code>Index.shape</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>Index.nbytes</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>Index.ndim</code></td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td><code>Index.size</code></td>
<td>return the number of elements in the underlying data,</td>
</tr>
<tr>
<td><code>Index.strides</code></td>
<td>return the strides of the underlying data</td>
</tr>
</tbody>
</table>
```

Continued on next page
Table 35.92 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>Index.base</code></td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>Index.T</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>Index.memory_usage(deep)</code></td>
<td>Memory usage of my values</td>
</tr>
</tbody>
</table>

Modifying and Computations

- `Index.all(*args, **kwargs)` Return whether all elements are True
- `Index.any(*args, **kwargs)` Return whether any element is True
- `Index.argmin([axis])` return a ndarray of the minimum argument indexer
- `Index.argmax([axis])` return a ndarray of the maximum argument indexer
- `Index.copy([name, deep, dtype])` Make a copy of this object.
- `Index.delete(loc)` Make new Index with passed location(-s) deleted
- `Index.drop(labels[, errors])` Make new Index with passed list of labels deleted
- `Index.drop_duplicates(*args, **kwargs)` Return Index with duplicate values removed
- `Index.duplicated(*args, **kwargs)` Return boolean np.ndarray denoting duplicate values
- `Index.equals(other)` Determines if two Index objects contain the same elements.
- `Index.factorize([sort, na_sentinel])` Encode the object as an enumerated type or categorical variable
- `Index.identical(other)` Similar to equals, but check that other comparable attributes are
- `Index.insert(loc, item)` Make new Index inserting new item at location.
- `Index.min()` The minimum value of the object
- `Index.max()` The maximum value of the object
- `Index.reindex(target[, method, level, ...])` Create index with target’s values (move/add/delete values as necessary)
- `Index.repeat(n, *args, **kwargs)` Repeat elements of an Index.
- `Index.where(cond[, other])` New in version 0.19.0.
- `Index.take(indices[, axis, allow_fill, ...])` return a new %(klass)s of the values selected by the indices
- `Index.putmask(mask, value)` return a new Index of the values set with the mask
- `Index.set_names(names[, level, inplace])` Set new names on index.
- `Index.unique()` Return Index of unique values in the object.
- `Index.nunique()` Return number of unique elements in the object.
- `Index.value_counts([normalize, sort, ...])` Returns object containing counts of unique values.
- `Index.fillna([value, downcast])` Fill NA/NaN values with the specified value
- `Index.dropna([how])` Return Index without NA/NaN values

Conversion

- `Index.astype(dtype[, copy])` Create an Index with values cast to dtypes.
- `Index.tolist()` return a list of the Index values
- `Index.to_datetime([dayfirst])` DEPRECATED: use pandas.to_datetime() instead.
- `Index.to_series(*kwargs)` Create a Series with both index and values equal to the index keys
Sorting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.argsort(*args, **kwargs)</code></td>
<td>Returns the indices that would sort the index and its underlying data.</td>
</tr>
<tr>
<td><code>Index.sort_values([return_indexer, ascending])</code></td>
<td>Return sorted copy of Index</td>
</tr>
</tbody>
</table>

Time-specific operations

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.shift([periods, freq])</code></td>
<td>Shift Index containing datetime objects by input number of periods and</td>
</tr>
</tbody>
</table>

Combining / joining / set operations

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.append(other)</code></td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td><code>Index.join(other[, how, level, return_indexers])</code></td>
<td>this is an internal non-public method</td>
</tr>
<tr>
<td><code>Index.intersection(other)</code></td>
<td>Form the intersection of two Index objects.</td>
</tr>
<tr>
<td><code>Index.union(other)</code></td>
<td>Form the union of two Index objects and sorts if possible.</td>
</tr>
<tr>
<td><code>Index.difference(other)</code></td>
<td>Return a new Index with elements from the index that are not in other.</td>
</tr>
<tr>
<td><code>Index.symmetric_difference(other[, result_name])</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
</tbody>
</table>

Selecting

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Index.get_indexer(target[, method, limit, ...])</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>Index.get_indexer_non_unique(target)</code></td>
<td>return an indexer suitable for taking from a non unique index.</td>
</tr>
<tr>
<td><code>Index.get_level_values(level)</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>Index.get_loc(key[, method, tolerance])</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>Index.get_value(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>Index.isin(values[, level])</code></td>
<td>Compute boolean array of whether each index value is found in the passed set of values.</td>
</tr>
<tr>
<td><code>Index.slice_indexer([start, end, step, kind])</code></td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td><code>Index.slice_locs([start, end, step, kind])</code></td>
<td>Compute slice locations for input labels.</td>
</tr>
</tbody>
</table>

CategoricalIndex

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>CategoricalIndex</code></td>
<td>Immutable Index implementing an ordered, sliceable set.</td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.CategoricalIndex

class pandas.CategoricalIndex

Immutable Index implementing an ordered, sliceable set. CategoricalIndex represents a sparsely populated Index with an underlying Categorical.

New in version 0.16.1.

Parameters

- **data**: array-like or Categorical, (1-dimensional)
- **categories**: optional, array-like
- **ordered**: boolean,
 - designating if the categories are ordered
- **copy**: bool
 - Make a copy of input ndarray
- **name**: object
 - Name to be stored in the index

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td>astype</td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td>base</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>categories</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>codes</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>data</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>dtype</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>dtype_str</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>flags</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>has_duplicates</td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td>hasnans</td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td>inferred_type</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>is_all_dates</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>is_monotonic</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>is_monotonic_decreasing</td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td>is_monotonic_increasing</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>is_unique</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>itemsize</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>name</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>names</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>nbytes</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>ndim</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>nlevels</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.100 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ordered</code></td>
<td>Return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>Return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>size</code></td>
<td>Return the strides of the underlying data</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>Return the underlying data, which is a Categorical Index</td>
</tr>
</tbody>
</table>

pandas.CategoricalIndex.T

CategoricalIndex.T

Return the transpose, which is by definition self

pandas.CategoricalIndex.asi8

CategoricalIndex.asi8 = None

pandas.CategoricalIndex.base

CategoricalIndex.base

Return the base object if the memory of the underlying data is shared

pandas.CategoricalIndex.categories

CategoricalIndex.categories

pandas.CategoricalIndex.codes

CategoricalIndex.codes

pandas.CategoricalIndex.data

CategoricalIndex.data

Return the data pointer of the underlying data

pandas.CategoricalIndex.dtype

CategoricalIndex.dtype = None

pandas.CategoricalIndex.dtype_str

CategoricalIndex.dtype_str = None

pandas.CategoricalIndex.flags

CategoricalIndex.flags
pandas.CategoricalIndex.has_duplicates
CategoricalIndex.has_duplicates

pandas.CategoricalIndex.hasnans
CategoricalIndex.hasnans = None

pandas.CategoricalIndex.inferred_type
CategoricalIndex.inferred_type

pandas.CategoricalIndex.is_all_dates
CategoricalIndex.is_all_dates = None

pandas.CategoricalIndex.is_monotonic
CategoricalIndex.is_monotonic
 alias for is_monotonic_increasing (deprecated)

pandas.CategoricalIndex.is_monotonic_decreasing
CategoricalIndex.is_monotonic_decreasing
 return if the index is monotonic decreasing (only equal or decreasing) values.

pandas.CategoricalIndex.is_monotonic_increasing
CategoricalIndex.is_monotonic_increasing
 return if the index is monotonic increasing (only equal or increasing) values.

pandas.CategoricalIndex.is_unique
CategoricalIndex.is_unique = None

pandas.CategoricalIndex.itemsize
CategoricalIndex.itemsize
 return the size of the dtype of the item of the underlying data

pandas.CategoricalIndex.name
CategoricalIndex.name = None

pandas.CategoricalIndex.names
CategoricalIndex.names
pandas.CategoricalIndex.nbytes

CategoricalIndex.nbytes
return the number of bytes in the underlying data

pandas.CategoricalIndex.ndim

CategoricalIndex.ndim
return the number of dimensions of the underlying data, by definition 1

pandas.CategoricalIndex.nlevels

CategoricalIndex.nlevels

pandas.CategoricalIndex.ordered

CategoricalIndex.ordered

pandas.CategoricalIndex.shape

CategoricalIndex.shape
return a tuple of the shape of the underlying data

pandas.CategoricalIndex.size

CategoricalIndex.size
return the number of elements in the underlying data

pandas.CategoricalIndex.strides

CategoricalIndex.strides
return the strides of the underlying data

pandas.CategoricalIndex.values

CategoricalIndex.values
return the underlying data, which is a Categorical

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_categories</td>
<td>Add new categories.</td>
</tr>
<tr>
<td>all([other])</td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td>any([other])</td>
<td>return a ndarray of the maximum argument indexer</td>
</tr>
<tr>
<td>append([other])</td>
<td>return a ndarray of the minimum argument indexer</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.101 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>argsort</code></td>
<td>Sets the Categorical to be ordered</td>
</tr>
<tr>
<td><code>as_ordered</code></td>
<td>Sets the Categorical to be unordered</td>
</tr>
<tr>
<td><code>as_unordered</code></td>
<td>For a sorted index, return the most recent label up to and including the passed label.</td>
</tr>
<tr>
<td><code>asof(label)</code></td>
<td></td>
</tr>
<tr>
<td><code>asof_locs(where, mask)</code></td>
<td></td>
</tr>
<tr>
<td><code>astype(dtype[, copy])</code></td>
<td>Create an Index with values cast to dtypes.</td>
</tr>
<tr>
<td><code>copy([name, deep, dtypes])</code></td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td><code>delete(loc)</code></td>
<td>Make new Index with passed location(-s) deleted</td>
</tr>
<tr>
<td><code>difference(other)</code></td>
<td>Return a new Index with elements from the index that are not in other.</td>
</tr>
<tr>
<td><code>drop(labels[, errors])</code></td>
<td>Make new Index with passed list of labels deleted</td>
</tr>
<tr>
<td><code>drop_duplicates</code></td>
<td>Return Index with duplicate values removed</td>
</tr>
<tr>
<td><code>dropna([how])</code></td>
<td>Return Index without NA/NaN values</td>
</tr>
<tr>
<td><code>duplicated</code></td>
<td>Return boolean np.ndarray denoting duplicate values</td>
</tr>
<tr>
<td><code>equals(other)</code></td>
<td>Determines if two CategoricalIndex objects contain the same elements.</td>
</tr>
<tr>
<td><code>factorize([sort, na_sentinel])</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>fillna(value[, downcast])</code></td>
<td>Fill NA/NaN values with the specified value</td>
</tr>
<tr>
<td><code>format([name, formatter])</code></td>
<td>Render a string representation of the Index</td>
</tr>
<tr>
<td><code>get_duplicates()</code></td>
<td></td>
</tr>
<tr>
<td><code>get_indexer(target[, method, limit, tolerance])</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer_for(target, **kwargs)</code></td>
<td>guaranteed return of an indexer even when non-unique</td>
</tr>
<tr>
<td><code>get_indexer_non_unique(target)</code></td>
<td>this is the same for a CategoricalIndex for get_indexer; the API</td>
</tr>
<tr>
<td><code>get_level_values(level)</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc(key[, method])</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>get_slice_bound(label, side, kind)</code></td>
<td>Calculate slice bound that corresponds to given label.</td>
</tr>
<tr>
<td><code>get_value(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>Return the underlying data as an ndarray.</td>
</tr>
<tr>
<td><code>groupby(values)</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>holds_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Make new Index inserting new item at location.</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Form the intersection of two Index objects.</td>
</tr>
<tr>
<td><code>is_(other)</code></td>
<td>More flexible, faster check like is but that works through views</td>
</tr>
<tr>
<td><code>is_boolean()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_categorical()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td></td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible(kind)</code></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isin(values[, level])</code></td>
<td>Compute boolean array of whether each index value is found in the passed set of values.</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>return the first element of the underlying data as a python object.</td>
</tr>
<tr>
<td><code>join(other[, how, level, return_indexers])</code></td>
<td>this is an internal non-public method</td>
</tr>
<tr>
<td><code>map(mapper)</code></td>
<td>Apply mapper function to its categories (not codes).</td>
</tr>
<tr>
<td><code>max(*args, **kwargs)</code></td>
<td>The maximum value of the object.</td>
</tr>
<tr>
<td><code>memory_usage([deep])</code></td>
<td>Memory usage of my values.</td>
</tr>
<tr>
<td><code>min(*args, **kwargs)</code></td>
<td>The minimum value of the object.</td>
</tr>
<tr>
<td><code>nunique([dropna])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>order([return_indexer, ascending])</code></td>
<td>return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>putmask(mask, value)</code></td>
<td>return a new Index of the values set with the mask</td>
</tr>
<tr>
<td><code>ravel([order])</code></td>
<td>return an ndarray of the flattened values of the underlying data</td>
</tr>
<tr>
<td><code>reindex(target[, method, level, limit, ...])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>remove_categories(*args, **kwargs)</code></td>
<td>Removes the specified categories.</td>
</tr>
<tr>
<td><code>remove_unused_categories(*args, **kwargs)</code></td>
<td>Removes categories which are not used.</td>
</tr>
<tr>
<td><code>rename(name[, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>rename_categories(*args, **kwargs)</code></td>
<td>Renames categories.</td>
</tr>
<tr>
<td><code>reorder_categories(*args, **kwargs)</code></td>
<td>Reorders categories as specified in new_categories.</td>
</tr>
<tr>
<td><code>repeat(*args, **kwargs)</code></td>
<td>Repeat elements of an Index.</td>
</tr>
<tr>
<td><code>reshape(*args, **kwargs)</code></td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
<tr>
<td><code>searchsorted(key[, side, sorter])</code></td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td><code>set_categories(*args, **kwargs)</code></td>
<td>Sets the categories to the specified new_categories.</td>
</tr>
<tr>
<td><code>set_names(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>set_value(arr, key, value)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>shift([periods, freq])</code></td>
<td>Shift Index containing datetime objects by input number of periods and</td>
</tr>
<tr>
<td><code>slice_indexer((start, end, step, kind))</code></td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td><code>slice_locs((start, end, step, kind))</code></td>
<td>Compute slice locations for input labels.</td>
</tr>
<tr>
<td><code>sort(*args, **kwargs)</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>sortlevel([level, ascending, sort_remaining])</code></td>
<td>For internal compatibility with with the Index API</td>
</tr>
<tr>
<td><code>str</code></td>
<td>alias of StringMethods</td>
</tr>
<tr>
<td><code>summary([name])</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>symmetric_difference(other[, result_name])</code></td>
<td>return a new %(klass)s of the values selected by the indices</td>
</tr>
<tr>
<td><code>take(indices[, axis, allow_fill, fill_value])</code></td>
<td>DEPRECATED: use pandas.to_datetime() instead.</td>
</tr>
<tr>
<td><code>to_datetime([dayfirst])</code></td>
<td>slice and dice then format</td>
</tr>
<tr>
<td><code>to_native_types([slicer])</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td></td>
<td>Continued on next page</td>
</tr>
</tbody>
</table>
Table 35.101 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tolist()</code></td>
<td>return a list of the Index values</td>
</tr>
<tr>
<td><code>transpose(*args, **kwargs)</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>union(other)</code></td>
<td>Form the union of two Index objects and sorts if possible.</td>
</tr>
<tr>
<td><code>unique()</code></td>
<td>Return Index of unique values in the object.</td>
</tr>
<tr>
<td><code>value_counts([normalize, sort, ascending, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>view([cls])</code></td>
<td></td>
</tr>
<tr>
<td><code>where(cond[, other])</code></td>
<td>New in version 0.19.0.</td>
</tr>
</tbody>
</table>

pandas.CategoricalIndex.add_categories

CategoricalIndex.add_categories(*args, **kwargs)

Add new categories.

new_categories will be included at the last/highest place in the categories and will be unused directly after this call.

Parameters

- **new_categories**: category or list-like of category
 The new categories to be included.

- **inplace**: boolean (default: False)
 Whether or not to add the categories inplace or return a copy of this categorical with added categories.

Returns

- **cat**: Categorical with new categories added or None if inplace.

Raises

- **ValueError**
 If the new categories include old categories or do not validate as categories

See also:

- `rename_categories`
- `reorder_categories`
- `remove_categories`
- `remove_unused_categories`
- `set_categories`

pandas.CategoricalIndex.all

CategoricalIndex.all(other=\text{None})

pandas.CategoricalIndex.any

CategoricalIndex.any(other=\text{None})

pandas.CategoricalIndex.append

CategoricalIndex.append(other)

Append a collection of Index options together

Parameters

- **other**: Index or list/tuple of indices

Returns

- **appended**: Index
pandas.CategoricalIndex.argmax

CategoricalIndex.argmax(axis=None)
return a ndarray of the maximum argument indexer

See also:
numpy.ndarray.argmax

pandas.CategoricalIndex.argmin

CategoricalIndex.argmin(axis=None)
return a ndarray of the minimum argument indexer

See also:
numpy.ndarray.argmin

pandas.CategoricalIndex.argsort

CategoricalIndex.argsort(*args, **kwargs)

pandas.CategoricalIndex.as_ordered

CategoricalIndex.as_ordered(*args, **kwargs)
Sets the Categorical to be ordered

Parameters inplace : boolean (default: False)
Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to True

pandas.CategoricalIndex.as_unordered

CategoricalIndex.as_unordered(*args, **kwargs)
Sets the Categorical to be unordered

Parameters inplace : boolean (default: False)
Whether or not to set the ordered attribute inplace or return a copy of this categorical with ordered set to False

pandas.CategoricalIndex.asof

CategoricalIndex.asof(label)
For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.

See also:

get_loc asof is a thin wrapper around get_loc with method='pad'
pandas.CategoricalIndex.asof_locs

CategoricalIndex.asof_locs(where, mask)
 where : array of timestamps
 mask : array of booleans where data is not NA

pandas.CategoricalIndex.astype

CategoricalIndex.astype(dtype, copy=True)
 Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.

 Parameters
dtype : numpy dtype or pandas type
 copy : bool, default True

 By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.

 New in version 0.19.0.

pandas.CategoricalIndex.copy

CategoricalIndex.copy(name=None, deep=False, dtype=None, **kwargs)
 Make a copy of this object. Name and dtype sets those attributes on the new object.

 Parameters
ame : string, optional
 deep : boolean, default False
dtype : numpy dtype or pandas type

 Returns
copy : Index

Notes

In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.

pandas.CategoricalIndex.delete

CategoricalIndex.delete(loc)
 Make new Index with passed location(-s) deleted

 Returns
 new_index : Index

pandas.CategoricalIndex.difference

CategoricalIndex.difference(other)
 Return a new Index with elements from the index that are not in other.

 This is the set difference of two Index objects. It’s sorted if sorting is possible.

 Parameters
 other : Index or array-like

 Returns
difference : Index
Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.difference(idx2)
Int64Index([1, 2], dtype='int64')
```

pandas.CategoricalIndex.drop

CategoricalIndex.drop(labels, errors='raise')

Make new Index with passed list of labels deleted

Parameters

- **labels**: array-like
- **errors**: {'ignore', 'raise'}, default 'raise'

 If 'ignore', suppress error and existing labels are dropped.

Returns

- **dropped**: Index

pandas.CategoricalIndex.drop_duplicates

CategoricalIndex.drop_duplicates(*args, **kwargs)

Return Index with duplicate values removed

Parameters

- **keep**: {'first', 'last', False}, default 'first'

 • **first**: Drop duplicates except for the first occurrence.

 • **last**: Drop duplicates except for the last occurrence.

 • **False**: Drop all duplicates.

- **take_last**: deprecated

Returns

- **deduplicated**: Index

pandas.CategoricalIndex.dropna

CategoricalIndex.dropna(how='any')

Return Index without NA/NaN values

Parameters

- **how**: {'any', 'all'}, default 'any'

 If the Index is a MultiIndex, drop the value when any or all levels are NaN.

Returns

- **valid**: Index

pandas.CategoricalIndex.duplicated

CategoricalIndex.duplicated(*args, **kwargs)

Return boolean np.ndarray denoting duplicate values

Parameters

- **keep**: {'first', 'last', False}, default 'first'

 • **first**: Mark duplicates as True except for the first occurrence.

 • **last**: Mark duplicates as True except for the last occurrence.
pandas: powerful Python data analysis toolkit, Release 0.19.2

- False: Mark all duplicates as True.
- take_last: deprecated

Returns duplicated: np.ndarray

pandas.CategoricalIndex.equals

CategoricalIndex.equals(other)

Determines if two CategoricalIndex objects contain the same elements.

pandas.CategoricalIndex.factorize

CategoricalIndex.factorize(sort=False, na_sentinel=-1)

Encode the object as an enumerated type or categorical variable

Parameters
- **sort**: boolean, default False

 Sort by values

- **na_sentinel**: int, default -1

 Value to mark “not found”

Returns
- **labels**: the indexer to the original array
- **uniques**: the unique Index

pandas.CategoricalIndex.fillna

CategoricalIndex.fillna(value, downcast=None)

Fill NA/NaN values with the specified value

Parameters
- **value**: scalar

 Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.

- **downcast**: dict, default is None

 a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns
- **filled**: %(klass)s

pandas.CategoricalIndex.format

CategoricalIndex.format(name=False, formatter=None, **kwargs)

Render a string representation of the Index

pandas.CategoricalIndex.get_duplicates

CategoricalIndex.get_duplicates()
pandas.CategoricalIndex.get_indexer

CategoricalIndex.get_indexer(target=None, limit=None, method=None, tolerance=None)

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. The mask determines whether labels are found or not in the current index.

Parameters
- target : MultiIndex or Index (of tuples)
- method : {'pad', 'ffill', 'backfill', 'bfill'}
 - pad / ffill: propagate LAST valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap

Returns
- indexer, mask : (ndarray, ndarray)

Notes
This is a low-level method and probably should be used at your own risk

Examples

```python
>>> indexer, mask = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
>>> new_values[-mask] = np.nan
```

pandas.CategoricalIndex.get_indexer_for

CategoricalIndex.get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique

pandas.CategoricalIndex.get_indexer_non_unique

CategoricalIndex.get_indexer_non_unique(target)

this is the same for a CategoricalIndex for get_indexer; the API returns the missing values as well

pandas.CategoricalIndex.get_level_values

CategoricalIndex.get_level_values(level)

Return vector of label values for requested level, equal to the length of the index

Parameters
- level : int

Returns
- values : ndarray

pandas.CategoricalIndex.get_loc

CategoricalIndex.get_loc(key=None, method=None)

Get integer location for requested label

Parameters
- key : label
- method : {None}
pandas: powerful Python data analysis toolkit, Release 0.19.2

- default: exact matches only.

Returns loc: int if unique index, possibly slice or mask if not

pandas.CategoricalIndex.get_slice_bound

`CategoricalIndex.get_slice_bound(label, side, kind)`

Calculate slice bound that corresponds to given label.

Returns leftmost (one-past-the-rightmost if `side=='right'`) position of given label.

Parameters
- `label`: object
- `side`: {'left', 'right'}
- `kind`: {'ix', 'loc', 'getitem'}

pandas.CategoricalIndex.get_value

`CategoricalIndex.get_value(series, key)`

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.CategoricalIndex.get_values

`CategoricalIndex.get_values()`

Return the underlying data as an ndarray

pandas.CategoricalIndex.groupby

`CategoricalIndex.groupby(values)`

Group the index labels by a given array of values.

Parameters
- `values`: array
 - Values used to determine the groups.

Returns
- `groups`: dict
 - {group name -> group labels}

pandas.CategoricalIndex.holds_integer

`CategoricalIndex.holds_integer()`

pandas.CategoricalIndex.identical

`CategoricalIndex.identical(other)`

Similar to equals, but check that other comparable attributes are also equal
pandas.CategoricalIndex.insert

CategoricalIndex.insert(loc, item)
Make new Index inserting new item at location. Follows Python list.append semantics for negative values

Parameters
- loc : int
- item : object

Returns new_index : Index

Raises ValueError if the item is not in the categories

pandas.CategoricalIndex.intersection

CategoricalIndex.intersection(other)
Form the intersection of two Index objects.

This returns a new Index with elements common to the index and other. Sortedness of the result is not guaranteed.

Parameters
- other : Index or array-like

Returns intersection : Index

Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.intersection(idx2)
Int64Index([3, 4], dtype='int64')
```

pandas.CategoricalIndex.is

CategoricalIndex.is_(other)
More flexible, faster check like is but that works through views

Note: this is not the same as Index.identical(), which checks that metadata is also the same.

Parameters
- other : object

other object to compare against.

Returns True if both have same underlying data, False otherwise : bool

pandas.CategoricalIndex.is_boolean

CategoricalIndex.is_boolean()

pandas.CategoricalIndex.is_categorical

CategoricalIndex.is_categorical()
pandas.CategoricalIndex.is_floating

CategoricalIndex.is_floating()

pandas.CategoricalIndex.is_integer

CategoricalIndex.is_integer()

pandas.CategoricalIndex.is_lexsorted_for_tuple

CategoricalIndex.is_lexsorted_for_tuple(tup)

pandas.CategoricalIndex.is_mixed

CategoricalIndex.is_mixed()

pandas.CategoricalIndex.is_numeric

CategoricalIndex.is_numeric()

pandas.CategoricalIndex.is_object

CategoricalIndex.is_object()

pandas.CategoricalIndex.is_type_compatible

CategoricalIndex.is_type_compatible(kind)

pandas.CategoricalIndex.isin

CategoricalIndex.isin(values, level=None)

Compute boolean array of whether each index value is found in the passed set of values.

Parameters values : set or list-like

Sought values.

New in version 0.18.1.

Support for values as a set

level : str or int, optional

Name or position of the index level to use (if the index is a MultiIndex).

Returns is_contained : ndarray (boolean dtype)
Notes

If `level` is specified:

- if it is the name of one **and only one** index level, use that level;
- otherwise it should be a number indicating level position.

pandas.CategoricalIndex.item

CategoricalIndex.item()
return the first element of the underlying data as a python scalar

pandas.CategoricalIndex.join

CategoricalIndex.join(other, how='left', level=None, return_indexers=False)
this is an internal non-public method
Compute join_index and indexers to conform data structures to the new index.

Parameters

- **other** : Index
 - how : {'left', 'right', 'inner', 'outer'}
 - level : int or level name, default None
 - return_indexers : boolean, default False

Returns

- join_index, (left_indexer, right_indexer)

pandas.CategoricalIndex.map

CategoricalIndex.map(mapper)
Apply mapper function to its categories (not codes).

Parameters

- mapper : callable
 Function to be applied. When all categories are mapped to different categories, the result will be Categorical which has the same order property as the original. Otherwise, the result will be np.ndarray.

Returns

- applied : Categorical or np.ndarray

pandas.CategoricalIndex.max

CategoricalIndex.max(*args, **kwargs)
The maximum value of the object.
Only ordered Categoricals have a maximum!

Returns

- max : the maximum of this Categorical

Raises

- TypeError
 If the Categorical is not ordered.
pandas.CategoricalIndex.memory_usage

CategoricalIndex.memory_usage(deep=False)
Memory usage of my values

Parameters deep : bool
 Introspect the data deeply, interrogate object dtypes for system-level memory consumption

Returns bytes used

See also:
numpy.ndarray.nbytes

Notes
Memory usage does not include memory consumed by elements that are not components of the array if deep=False

pandas.CategoricalIndex.min

CategoricalIndex.min(*args, **kwargs)
The minimum value of the object.
Only ordered Categoricals have a minimum!

Returns min : the minimum of this Categorical

Raises TypeError
 If the Categorical is not ordered.

pandas.CategoricalIndex.nunique

CategoricalIndex.nunique(dropna=True)
Return number of unique elements in the object.
Excludes NA values by default.

Parameters dropna : boolean, default True
 Don’t include NaN in the count.

Returns nunique : int

pandas.CategoricalIndex.order

CategoricalIndex.order(return_indexer=False, ascending=True)
Return sorted copy of Index

DEPRECATED: use Index.sort_values()
pandas.CategoricalIndex.putmask

CategoricalIndex.putmask(mask, value)
return a new Index of the values set with the mask

See also:

numpy.ndarray.putmask

pandas.CategoricalIndex.ravel

CategoricalIndex.ravel(order='C')
return an ndarray of the flattened values of the underlying data

See also:

numpy.ndarray.ravel

pandas.CategoricalIndex.reindex

CategoricalIndex.reindex(target, method=None, level=None, limit=None, tolerance=None)
Create index with target’s values (move/add/delete values as necessary)

Returns new_index : pd.Index
Resulting index

indexer : np.ndarray or None
Indices of output values in original index

pandas.CategoricalIndex.remove_categories

CategoricalIndex.remove_categories(*args, **kwargs)
Removes the specified categories.

removals must be included in the old categories. Values which were in the removed categories will be set to NaN

Parameters removals : category or list of categories
The categories which should be removed.

inplace : boolean (default: False)
Whether or not to remove the categories inplace or return a copy of this categorical with removed categories.

Returns cat : Categorical with removed categories or None if inplace.

Raises ValueError
If the removals are not contained in the categories

See also:

rename_categories, reorder_categories, add_categories, remove_unused_categories, set_categories
pandas.CategoricalIndex.remove_unused_categories

CategoricalIndex.remove_unused_categories(*args, **kwargs)
Removes categories which are not used.

Parameters inplace : boolean (default: False)
Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped.

Returns cat : Categorical with unused categories dropped or None if inplace.

See also:
rename_categories, reorder_categories, add_categories, remove_categories, set_categories

pandas.CategoricalIndex.rename

CategoricalIndex.rename(name, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters name : str or list
name to set

inplace : bool
if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

pandas.CategoricalIndex.rename_categories

CategoricalIndex.rename_categories(*args, **kwargs)
Renames categories.

The new categories has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.

Parameters new_categories : Index-like
The renamed categories.

inplace : boolean (default: False)
Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories.

Returns cat : Categorical with renamed categories added or None if inplace.

Raises ValueError
If the new categories do not have the same number of items than the current categories or do not validate as categories

See also:
rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories, set_categories
pandas.CategoricalIndex.reorder_categories

CategoricalIndex.reorder_categories(*args, **kwargs)
Reorders categories as specified in new_categories.

new_categories need to include all old categories and no new category items.

Parameters
- **new_categories**: Index-like
 The categories in new order.
- **ordered**: boolean, optional
 Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.
- **inplace**: boolean (default: False)
 Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns
- **cat**: Categorical with reordered categories or None if inplace.

Raises
- ValueError
 If the new categories do not contain all old category items or any new ones

See also:
- rename_categories, add_categories, remove_categories, remove_unused_categories, set_categories

pandas.CategoricalIndex.repeat

CategoricalIndex.repeat(n, *args, **kwargs)
Repeat elements of an Index. Refer to numpy.ndarray.repeat for more information about the *n* argument.

See also:
- numpy.ndarray.repeat

pandas.CategoricalIndex.reshape

CategoricalIndex.reshape(*args, **kwargs)
NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.

Reshape an Index.

pandas.CategoricalIndex.searchsorted

CategoricalIndex.searchsorted(key, side='left', sorter=None)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted IndexOpsMixin *self* such that, if the corresponding elements in *v* were inserted before the indices, the order of *self* would be preserved.

Parameters
- **key**: array_like
 Values to insert into *self*.
side : {'left', 'right'}, optional

If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of self).

sorter : 1-D array_like, optional

Optional array of integer indices that sort self into ascending order. They are typically the result of np.argsort.

Returns indices : array of ints

Array of insertion points with the same shape as v.

See also:
numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

Examples

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64
>>> x.searchsorted(4)
array([3])
>>> x.searchsorted([0, 4])
array([0, 3])
>>> x.searchsorted([1, 3], side='left')
array([0, 2])
>>> x.searchsorted([1, 3], side='right')
array([1, 3])
>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
Categories (4, object): ['apple' < 'bread' < 'cheese' < 'milk']
>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar
>>> x.searchsorted(['bread'])
array([1])
>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])
>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4]) # eggs before milk
```
new_categories can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If rename==True, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively).

This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods.

On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string.

Parameters

- **new_categories**: Index-like

The categories in new order.

- **ordered**: boolean, (default: False)

 Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information.

- **rename**: boolean (default: False)

 Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories.

- **inplace**: boolean (default: False)

 Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories.

Returns

- **cat**: Categorical with reordered categories or None if inplace.

Raises

- **ValueError**

 If new_categories does not validate as categories

See also:

rename_categories, reorder_categories, add_categories, remove_categories, remove_unused_categories

pandas.CategoricalIndex.set_names

CategoricalIndex.set_names *(names, level=None, inplace=False)*

Set new names on index. Defaults to returning new index.

Parameters

- **names**: str or sequence

 name(s) to set

- **level**: int, level name, or sequence of int/level names (default None)

 If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None

- **inplace**: bool

 if True, mutates in place

Returns

- **new index** (of same type and class...etc) [if inplace, returns None]
Examples

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')

>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
                                (2, u'one'), (2, u'two')],
                               names=['foo', 'bar'])

>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
           labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
           names=[u'baz', u'quz'])

>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
           labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
           names=[u'baz', u'bar'])
```

pandas.CategoricalIndex.set_value

CategoricalIndex.set_value(arr, key, value)

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.CategoricalIndex.shift

CategoricalIndex.shift(periods=1, freq=None)

Shift Index containing datetime objects by input number of periods and DateOffset

Returns shifted : Index

pandas.CategoricalIndex.slice_indexer

CategoricalIndex.slice_indexer(start=None, end=None, step=None, kind=None)

For an ordered Index, compute the slice indexer for input labels and step

Parameters start : label, default None

If None, defaults to the beginning

end : label, default None

If None, defaults to the end

step : int, default None

kind : string, default None

Returns indexer : ndarray or slice

Notes

This function assumes that the data is sorted, so use at your own peril
pandas.CategoricalIndex.slice_locs

CategoricalIndex.slice_locs(start=None, end=None, step=None, kind=None)

Compute slice locations for input labels.

Parameters

- start : label, default None
 - If None, defaults to the beginning

- end : label, default None
 - If None, defaults to the end

- step : int, defaults None
 - If None, defaults to 1

- kind : {'ix', 'loc', 'getitem'} or None

Returns

- start, end : int

pandas.CategoricalIndex.sort

CategoricalIndex.sort(*args, **kwargs)

pandas.CategoricalIndex.sort_values

CategoricalIndex.sort_values(return_indexer=False, ascending=True)

Return sorted copy of Index

pandas.CategoricalIndex.sortlevel

CategoricalIndex.sortlevel(level=None, ascending=True, sort_remaining=None)

For internal compatibility with with the Index API

Sort the Index. This is for compat with MultiIndex

Parameters

- ascending : boolean, default True
 - False to sort in descending order

- level, sort_remaining are compat parameters

Returns

- sorted_index : Index

pandas.CategoricalIndex.str

CategoricalIndex.str()

Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

```python
>>> s.str.split('_')
>>> s.str.replace('_', '')
```
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.CategoricalIndex.summary

CategoricalIndex.summary(name=None)

pandas.CategoricalIndex.sym_diff

CategoricalIndex.sym_diff(*args, **kwargs)

pandas.CategoricalIndex.symmetric_difference

CategoricalIndex.symmetric_difference(other, result_name=None)

Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

Parameters

other : Index or array-like
result_name : str

Returns

symmetric_difference : Index

Notes

symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the ^ operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```

pandas.CategoricalIndex.take

CategoricalIndex.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)

return a new %(klass)s of the values selected by the indices

For internal compatibility with numpy arrays.

Parameters

indices : list
Indices to be taken

axis : int, optional
The axis over which to select values, always 0.

allow_fill : bool, default True
fill_value : bool, default None
If `allow_fill=True` and `fill_value` is not `None`, indices specified by `-1` is regarded as NA. If `Index` doesn’t hold NA, raise `ValueError`.

See also:

- `numpy.ndarray.take`
- `pandas.CategoricalIndex.to_datetime`
- `pandas.CategoricalIndex.to_native_types`
- `pandas.CategoricalIndex.to_series`
- `pandas.CategoricalIndex.tolist`
- `pandas.CategoricalIndex.transpose`
- `pandas.CategoricalIndex.union`

pandas.CategoricalIndex.to_datetime

```
CategoricalIndex.to_datetime(dayfirst=False)
```

DEPRECATED: use `pandas.to_datetime()` instead.

For an `Index` containing strings or `datetime.datetime` objects, attempt conversion to `DatetimeIndex`.

pandas.CategoricalIndex.to_native_types

```
CategoricalIndex.to_native_types(slicer=None, **kwargs)
```

Slice and dice then format.

pandas.CategoricalIndex.to_series

```
CategoricalIndex.to_series(**kwargs)
```

Create a `Series` with both index and values equal to the index keys useful with `map` for returning an indexer based on an index.

Returns

- `Series`: `dtype` will be based on the type of the `Index` values.

pandas.CategoricalIndex.tolist

```
CategoricalIndex.tolist()
```

Return a list of the `Index` values.

pandas.CategoricalIndex.transpose

```
CategoricalIndex.transpose(*args, **kwargs)
```

Return the transpose, which is by definition self.

pandas.CategoricalIndex.union

```
CategoricalIndex.union(other)
```

Form the union of two `Index` objects and sorts if possible.

Parameters

- `other`: `Index` or array-like

Returns

- `union`: `Index`

Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.union(idx2)
Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')
```
pandas.CategoricalIndex.unique

CategoricalIndex.unique()

Return Index of unique values in the object. Significantly faster than numpy.unique. Includes NA values. The order of the original is preserved.

Returns uniques : Index

pandas.CategoricalIndex.value_counts

CategoricalIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize : boolean, default False

If True then the object returned will contain the relative frequencies of the unique values.

sort : boolean, default True

Sort by values

ascending : boolean, default False

Sort in ascending order

bins : integer, optional

Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

dropna : boolean, default True

Don’t include counts of NaN.

Returns counts : Series

pandas.CategoricalIndex.view

CategoricalIndex.view(cls=None)

pandas.CategoricalIndex.where

CategoricalIndex.where(cond, other=None)

New in version 0.19.0.

Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

Parameters cond : boolean same length as self

other : scalar, or array-like

Categorical Components
CategoricalIndex.codes
CategoricalIndex.categories
CategoricalIndex.ordered
CategoricalIndex.rename_categories(*args, ...
Renames categories.
CategoricalIndex.reorder_categories(*args, ...
Reorders categories as specified in new_categories.
CategoricalIndex.add_categories(*args, **kwargs)
Add new categories.
CategoricalIndex.remove_categories(*args, ...
Removes the specified categories.
CategoricalIndex.remove_unused_categories(*args, **kwargs)
Removes categories which are not used.
CategoricalIndex.set_categories(*args, **kwargs)
Sets the categories to the specified new_categories.
CategoricalIndex.as_ordered(*args, **kwargs)
Sets the Categorical to be ordered
CategoricalIndex.as_unordered(*args, **kwargs)
Sets the Categorical to be unordered

MultiIndex

MultiIndex
A multi-level, or hierarchical, index object for pandas objects

pandas.MultiIndex

class pandas.MultiIndex
A multi-level, or hierarchical, index object for pandas objects

Parameters

levels : sequence of arrays
The unique labels for each level
labels : sequence of arrays
Integers for each level designating which label at each location
sortorder : optional int
Level of sortedness (must be lexicographically sorted by that level)
names : optional sequence of objects
Names for each of the index levels. (name is accepted for compat)
copy : boolean, default False
Copy the meta-data
verify_integrity : boolean, default True
Check that the levels/labels are consistent and valid
Attributes
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>T</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>asi8</code></td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>base</code></td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>data</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>dtype</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>dtype_str</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>flags</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>has_duplicates</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>inferred_type</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>is_all_dates</code></td>
<td>alias for <code>is_monotonic_increasing</code> (deprecated)</td>
</tr>
<tr>
<td><code>is_monotonic</code></td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td><code>is_monotonic_decreasing</code></td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td><code>is_monotonic_increasing</code></td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td><code>is_unique</code></td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td><code>labels</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>levels</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>levshape</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>lexsort_depth</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>name</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>names</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td><code>nlevels</code></td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>size</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>values</code></td>
<td>return the strides of the underlying data</td>
</tr>
</tbody>
</table>

```python
pandas.MultiIndex.T
```

MultiIndex.T

`return the transpose, which is by definition self`

```python
pandas.MultiIndex.asi8
```

MultiIndex.asi8 = None

```python
pandas.MultiIndex.base
```

MultiIndex.base

`return the base object if the memory of the underlying data is shared`
pandas: powerful Python data analysis toolkit, Release 0.19.2

```
pandas.MultiIndex.data
MultiIndex.data
    return the data pointer of the underlying data

pandas.MultiIndex.dtype
MultiIndex.dtype = None

pandas.MultiIndex.dtype_str
MultiIndex.dtype_str = None

pandas.MultiIndex.flags
MultiIndex.flags

pandas.MultiIndex.has_duplicates
MultiIndex.has_duplicates

pandas.MultiIndex.hasnans
MultiIndex.hasnans = None

pandas.MultiIndex.inferred_type
MultiIndex.inferred_type = None

pandas.MultiIndex.is_all_dates
MultiIndex.is_all_dates

pandas.MultiIndex.is_monotonic
MultiIndex.is_monotonic
    alias for is_monotonic_increasing (deprecated)

pandas.MultiIndex.is_monotonic_decreasing
MultiIndex.is_monotonic_decreasing
    return if the index is monotonic decreasing (only equal or decreasing) values.

pandas.MultiIndex.is_monotonic_increasing
MultiIndex.is_monotonic_increasing
    return if the index is monotonic increasing (only equal or increasing) values.
```
pandas.MultiIndex.is_unique

```
MultiIndex.is_unique = None
```

pandas.MultiIndex.itemsize

```
MultiIndex.itemsize
    return the size of the dtype of the item of the underlying data
```

pandas.MultiIndex.labels

```
MultiIndex.labels
```

pandas.MultiIndex.levels

```
MultiIndex.levels
```

pandas.MultiIndex.levshape

```
MultiIndex.levshape
```

pandas.MultiIndex.lexsort_depth

```
MultiIndex.lexsort_depth = None
```

pandas.MultiIndex.name

```
MultiIndex.name = None
```

pandas.MultiIndex.names

```
MultiIndex.names
    Names of levels in MultiIndex
```

pandas.MultiIndex.nbytes

```
MultiIndex.nbytes = None
```

pandas.MultiIndex.ndim

```
MultiIndex.ndim
    return the number of dimensions of the underlying data, by definition 1
```

pandas.MultiIndex.nlevels

```
MultiIndex.nlevels
```
pandas.MultiIndex.shape

MultiIndex.shape
return a tuple of the shape of the underlying data

pandas.MultiIndex.size

MultiIndex.size
return the number of elements in the underlying data

pandas.MultiIndex.strides

MultiIndex.strides
return the strides of the underlying data

pandas.MultiIndex.values

MultiIndex.values

Methods

all([other])
any([other])
append(other) Append a collection of Index options together
argmax([axis]) return a ndarray of the maximum argument indexer
argmin([axis]) return a ndarray of the minimum argument indexer
argsort(*args, **kwargs)

asof(label) For a sorted index, return the most recent label up to and including the passed label.
asof_locs(where, mask) where : array of timestamps
astype(dtype[, copy]) Create an Index with values cast to dtypes.
copy([names, dtypes, levels, labels, deep, ...]) Make a copy of this object.
delete(loc) Make new index with passed location deleted
difference(other) Compute sorted set difference of two MultiIndex objects
drop(, level, errors) Make new MultiIndex with passed list of labels deleted
drop_duplicates(*args, **kwargs) Return Index with duplicate values removed
droplevel([level]) Return Index with requested level removed.
dropna([how]) Return Index without NA/NaN values
duplicated(*args, **kwargs) Return boolean np.ndarray denoting duplicate values
equal_levels(other) Return True if the levels of both MultiIndex objects are the same
equals(other) Determines if two MultiIndex objects have the same labeling information
factorize([sort, na_sentinel]) Encode the object as an enumerated type or categorical variable
fillna([value, downcast]) Fill NA/NaN values with the specified value
format([space, sparsify, adjoin, names, ...])
from_arrays(arrays[, sortorder, names]) Convert arrays to MultiIndex
Table 35.105 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>from_product(iterables[, sortorder, names])</code></td>
<td>Make a MultiIndex from the cartesian product of multiple iterables</td>
</tr>
<tr>
<td><code>from_tuples(tuples[, sortorder, names])</code></td>
<td>Convert list of tuples to MultiIndex</td>
</tr>
<tr>
<td><code>get_duplicates()</code></td>
<td></td>
</tr>
<tr>
<td><code>get_indexer(target[, method, limit, tolerance])</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer_for(target, **kwargs)</code></td>
<td>Guaranteed return of an indexer even when non-unique</td>
</tr>
<tr>
<td><code>get_indexer_non_unique(target)</code></td>
<td>Return an indexer suitable for taking from a non unique index</td>
</tr>
<tr>
<td><code>get_level_values(level)</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc(key[, method])</code></td>
<td>Get integer location, slice or boolean mask for requested label or tuple.</td>
</tr>
<tr>
<td><code>get_loc_level(key[, level, drop_level])</code></td>
<td>Get integer location slice for requested label or tuple</td>
</tr>
<tr>
<td><code>get_locs(tup)</code></td>
<td>Given a tuple of slices/lists/labels/boolean indexer to a level-wise</td>
</tr>
<tr>
<td><code>get_major_bounds([start, end, step, kind])</code></td>
<td>For an ordered MultiIndex, compute the slice locations for input labels.</td>
</tr>
<tr>
<td><code>get_slice_bound(label, side, kind)</code></td>
<td></td>
</tr>
<tr>
<td><code>get_value(series, key)</code></td>
<td></td>
</tr>
<tr>
<td><code>get_slice_bound(label, side, kind)</code></td>
<td></td>
</tr>
<tr>
<td><code>get_value(series, key)</code></td>
<td></td>
</tr>
<tr>
<td><code>groupby(values)</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>holds_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Make new MultiIndex inserting new item at location</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Form the intersection of two MultiIndex objects, sorting if possible</td>
</tr>
<tr>
<td><code>is_(other)</code></td>
<td>More flexible, faster check like <code>is</code> but that works through views</td>
</tr>
<tr>
<td><code>is_boolean()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_categorical()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted()</code></td>
<td>Return True if the labels are lexicographically sorted</td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td>Return True if we are correctly lexicorted given the passed tuple</td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible(kind)</code></td>
<td></td>
</tr>
<tr>
<td><code>isin(values[, level])</code></td>
<td>Compute boolean array of whether each index value is found in the passed set of values.</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>return the first element of the underlying data as a python</td>
</tr>
<tr>
<td><code>join(other[, how, level, return_indexers])</code></td>
<td>this is an internal non-public method</td>
</tr>
<tr>
<td><code>map(mapper)</code></td>
<td>Apply mapper function to its values.</td>
</tr>
<tr>
<td><code>max()</code></td>
<td>The maximum value of the object</td>
</tr>
<tr>
<td><code>memory_usage([deep])</code></td>
<td>Memory usage of my values</td>
</tr>
<tr>
<td><code>min()</code></td>
<td>The minimum value of the object</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.105 – continued from previous page

- `nunique([dropna])`: Return number of unique elements in the object.
- `order([return_indexer, ascending])`: Return sorted copy of Index.
- `putmask([mask, value])`: Return a new Index of the values set with the mask.
- `ravel([order])`: Return an ndarray of the flattened values of the underlying data.
- `reindex(target[, method, level, limit, ...])`: Create index with target’s values (move/add/delete values as necessary).
- `rename(names[, method, level, limit])`: Set new names on index.
- `reorder_levels(order)`: Rearrange levels using input order.
- `repeat(n, *args, **kwargs)`: NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.
- `reshape(*args, **kwargs)`: NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.
- `searchsorted(key[, side, sorter])`: Find indices where elements should be inserted to maintain order.
- `set_labels(labels[, level, inplace, ...])`: Set new labels on MultiIndex.
- `set_levels(levels[, level, inplace, ...])`: Set new levels on MultiIndex.
- `set_names(names[, level, inplace])`: Set new names on index.
- `set_value(arr, key, value)`: Fast lookup of value from 1-dimensional ndarray.
- `shift([periods, freq])`: Shift Index containing datetime objects by input number of periods and
- `slice_indexer([start, end, step, kind])`: For an ordered Index, compute the slice indexer for input labels and
- `slice_locs([start, end, step, kind])`: For an ordered MultiIndex, compute the slice locations for input labels.
- `sort(*args, **kwargs)`: Return sorted copy of Index.
- `sort_values([return_indexer, ascending])`: Sort MultiIndex at the requested level.
- `str`: alias of StringMethods
- `summary([name])`: Swap level i with level j.
- `sym_diff(*args, **kwargs)`: Compute the symmetric difference of two Index objects.
- `symmetric_difference(other[, result_name])`: Compute the symmetric difference of two Index objects.
- `take(indices[, axis, allow_fill, fill_value])`: Return a new %(klass)s of the values selected by the indices.
- `to_datetime([dayfirst])`: DEPRECATED: use pandas.to_datetime() instead.
- `to_datetime([key[, side, sorter]])`: Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle.
- `to_hierarchical(n_repeat[, n_shuffle])`: Create a Series with both index and values equal to the index keys.
- `tolist()`: return a list of the Index values.
- `transpose(*args, **kwargs)`: return the transpose, which is by definition self.
- `truncat([before, after])`: Slice index between two labels / tuples, return new MultiIndex.
- `union(other)`: Form the union of two MultiIndex objects, sorting if possible.
- `unique()`: Return Index of unique values in the object.
- `value_counts([normalize, sort, ascending, ...])`: Returns object containing counts of unique values.
pandas: powerful Python data analysis toolkit, Release 0.19.2

Table 35.105 – continued from previous page

<table>
<thead>
<tr>
<th>view(cls)</th>
<th>this is defined as a copy with the same identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>where(cond[, other])</td>
<td></td>
</tr>
</tbody>
</table>

```
pandas.MultiIndex.all

MultiIndex.all(other=None)
```

```
pandas.MultiIndex.any

MultiIndex.any(other=None)
```

```
pandas.MultiIndex.append

MultiIndex.append(other)
    Append a collection of Index options together

    Parameters other : Index or list/tuple of indices

    Returns appended : Index
```

```
pandas.MultiIndex.argmax

MultiIndex.argmax(axis=None)
    return a ndarray of the maximum argument indexer

    See also:
    numpy.ndarray.argmax
```

```
pandas.MultiIndex.argmin

MultiIndex.argmin(axis=None)
    return a ndarray of the minimum argument indexer

    See also:
    numpy.ndarray.argmin
```

```
pandas.MultiIndex.argsort

MultiIndex.argsort(*args, **kwargs)
```

```
pandas.MultiIndex.asof

MultiIndex.asof(label)
    For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.

    See also:
    get_loc asof is a thin wrapper around get_loc with method=’pad’
```
pandas.MultiIndex.asof_locs

MultiIndex.asof_locs(\texttt{where, mask})

\texttt{where} : array of timestamps
\texttt{mask} : array of booleans where data is not NA

pandas.MultiIndex.astype

MultiIndex.astype(\texttt{dtype, copy=True})

Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.

\textbf{Parameters} \texttt{dtype} : numpy dtype or pandas type

\texttt{copy} : bool, default True

By default, astype always returns a newly allocated object. If \texttt{copy} is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.

New in version 0.19.0.

pandas.MultiIndex.copy

MultiIndex.copy(\texttt{names=None, dtype=None, levels=None, labels=None, deep=False, _set_identity=False, **kwargs})

Make a copy of this object. Names, dtype, levels and labels can be passed and will be set on new copy.

\textbf{Parameters} \texttt{names} : sequence, optional

\texttt{dtype} : numpy dttype or pandas type, optional

\texttt{levels} : sequence, optional

\texttt{labels} : sequence, optional

\textbf{Returns} \texttt{copy} : MultiIndex

\textbf{Notes}

In most cases, there should be no functional difference from using \texttt{deep}, but if \texttt{deep} is passed it will attempt to deepcopy. This could be potentially expensive on large MultiIndex objects.

pandas.MultiIndex.delete

MultiIndex.delete(\texttt{loc})

Make new index with passed location deleted

\textbf{Returns} \texttt{new_index} : MultiIndex

pandas.MultiIndex.difference

MultiIndex.difference(\texttt{other})

Compute sorted set difference of two MultiIndex objects

\textbf{Returns} \texttt{diff} : MultiIndex
pandas.MultiIndex.drop

MultiIndex.drop (labels, level=None, errors='raise')
Make new MultiIndex with passed list of labels deleted

Parameters labels : array-like
Must be a list of tuples
level : int or level name, default None
Returns dropped : MultiIndex

pandas.MultiIndex.drop_duplicates

MultiIndex.drop_duplicates(*args, **kwargs)
Return Index with duplicate values removed

Parameters keep : {'first', 'last', False}, default ‘first’
• first : Drop duplicates except for the first occurrence.
• last : Drop duplicates except for the last occurrence.
• False : Drop all duplicates.
take_last : deprecated
Returns deduplicated : Index

pandas.MultiIndex.droplevel

MultiIndex.droplevel(level=0)
Return Index with requested level removed. If MultiIndex has only 2 levels, the result will be of Index type not MultiIndex.

Parameters level : int/level name or list thereof
Returns index : Index or MultiIndex

Notes

Does not check if result index is unique or not

pandas.MultiIndex.dropna

MultiIndex.dropna (how='any')
Return Index without NA/NaN values

Parameters how : {'any', 'all'}, default ‘any’
If the Index is a MultiIndex, drop the value when any or all levels are NaN.
Returns valid : Index
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.MultiIndex.duplicated

MultiIndex.duplicated(*args, **kwargs)

Return boolean np.ndarray denoting duplicate values

Parameters keep : {'first', 'last', False}, default ‘first’

- first : Mark duplicates as True except for the first occurrence.
- last : Mark duplicates as True except for the last occurrence.
- False : Mark all duplicates as True.

take_last : deprecated

Returns duplicated : np.ndarray

pandas.MultiIndex.equal_levels

MultiIndex.equal_levels(other)

Return True if the levels of both MultiIndex objects are the same

pandas.MultiIndex.equals

MultiIndex.equals(other)

Determines if two MultiIndex objects have the same labeling information (the levels themselves do not necessarily have to be the same)

See also:

equal_levels

pandas.MultiIndex.factorize

MultiIndex.factorize(sort=False, na_sentinel=-1)

Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False

Sort by values

na_sentinel : int, default -1

Value to mark "not found"

Returns labels : the indexer to the original array

uniques : the unique Index

pandas.MultiIndex.fillna

MultiIndex.fillna(value=None, downcast=None)

Fill NA/NaN values with the specified value

Parameters value : scalar

Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.

downcast : dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which
will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : %(klass)s

pandas.MultiIndex.format

`MultiIndex.format` *(space=2, sparsify=None, adjoin=True, names=False, na_rep=None, formatter=None)*

pandas.MultiIndex.from_arrays

classmethod `MultiIndex.from_arrays` *(arrays, sortorder=None, names=None)*

Convert arrays to MultiIndex

Parameters
- **arrays** : list / sequence of array-likes

 Each array-like gives one level’s value for each data point. `len(arrays)` is the
 number of levels.

- **sortorder** : int or None

 Level of sortedness (must be lexicographically sorted by that level)

Returns
- **index** : MultiIndex

See also:

- `MultiIndex.from_tuples` Convert list of tuples to MultiIndex
- `MultiIndex.from_product` Make a MultiIndex from cartesian product of iterables

Examples

```python
gaps = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']]
gaps = MultiIndex.from_arrays(arrays, names=('number', 'color'))
```

pandas.MultiIndex.from_product

classmethod `MultiIndex.from_product` *(iterables, sortorder=None, names=None)*

Make a MultiIndex from the cartesian product of multiple iterables

Parameters
- **iterables** : list / sequence of iterables

 Each iterable has unique labels for each level of the index.

- **sortorder** : int or None

 Level of sortedness (must be lexicographically sorted by that level).

- **names** : list / sequence of strings or None

 Names for the levels in the index.

Returns
- **index** : MultiIndex

See also:
MultiIndex.from_arrays Convert list of arrays to MultiIndex

MultiIndex.from_tuples Convert list of tuples to MultiIndex

Examples

```python
>>> numbers = [0, 1, 2]
>>> colors = [u'green', u'purple']
>>> MultiIndex.from_product([numbers, colors],
                           names=['number', 'color'])
MultiIndex(levels=[[0, 1, 2], [u'green', u'purple']],
           labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]],
           names=['number', 'color'])
```

pandas.MultiIndex.from_tuples

classmethod `MultiIndex.from_tuples(tuples, sortorder=None, names=None)` Convert list of tuples to MultiIndex

Parameters
- `tuples`: list / sequence of tuple-likes
 Each tuple is the index of one row/column.
- `sortorder`: int or None
 Level of sortedness (must be lexicographically sorted by that level)

Returns
- `index`: MultiIndex

See also:

- **MultiIndex.from_arrays** Convert list of arrays to MultiIndex
- **MultiIndex.from_product** Make a MultiIndex from cartesian product of iterables

Examples

```python
>>> tuples = [(1, u'red'), (1, u'blue'),
             (2, u'red'), (2, u'blue')]
>>> MultiIndex.from_tuples(tuples, names=('number', 'color'))
```

pandas.MultiIndex.get_duplicates

```python
MultiIndex.get_duplicates()
```

pandas.MultiIndex.get_indexer

MultiIndex.get_indexer(target, method=None, limit=None, tolerance=None) Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. The mask determines whether labels are found or not in the current index.
Parameters target: MultiIndex or Index (of tuples)

 method: {'pad', 'ffill', 'backfill', 'bfill'}

 pad / ffill: propagate LAST valid observation forward to next valid backfill / bfill:
 use NEXT valid observation to fill gap

Returns (indexer, mask): (ndarray, ndarray)

Notes

This is a low-level method and probably should be used at your own risk

Examples

```python
>>> indexer, mask = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
>>> new_values[-mask] = np.nan
```

pandas.MultiIndex.get_indexer_for

MultiIndex.get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique

pandas.MultiIndex.get_indexer_non_unique

MultiIndex.get_indexer_non_unique(target)

return an indexer suitable for taking from a non unique index return the labels in the same order as the
target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must
be an iterable

pandas.MultiIndex.get_level_values

MultiIndex.get_level_values(level)

Return vector of label values for requested level, equal to the length of the index

 Parameters level: int or level name

 Returns values: ndarray

pandas.MultiIndex.get_loc

MultiIndex.get_loc(key, method=None)

Get integer location, slice or boolean mask for requested label or tuple. If the key is past the lexsort depth,
the return may be a boolean mask array, otherwise it is always a slice or int.

 Parameters key: label or tuple

 method: None

 Returns loc: int, slice object or boolean mask
pandas.MultiIndex.get_loc_level

MultiIndex.get_loc_level(key, level=0, drop_level=True)
Get integer location slice for requested label or tuple

Parameters key : label or tuple

level : int/level name or list thereof

Returns loc : int or slice object

pandas.MultiIndex.get_locs

MultiIndex.get_locs(tup)
Given a tuple of slices/lists/labels/boolean indexer to a level-wise spec produce an indexer to extract those locations

Parameters key : tuple of (slices/list/labels)

Returns locs : integer list of locations or boolean indexer suitable for passing to iloc

pandas.MultiIndex.get_major_bounds

MultiIndex.get_major_bounds(start=None, end=None, step=None, kind=None)
For an ordered MultiIndex, compute the slice locations for input labels. They can be tuples representing partial levels, e.g. for a MultiIndex with 3 levels, you can pass a single value (corresponding to the first level), or a 1-, 2-, or 3-tuple.

Parameters start : label or tuple, default None

If None, defaults to the beginning

drop : label or tuple

If None, defaults to the end

step : int or None

Slice step

kind : string, optional, defaults None

Returns (start, end) : (int, int)

Notes

This function assumes that the data is sorted by the first level

pandas.MultiIndex.get_slice_bound

MultiIndex.get_slice_bound(label, side, kind)

pandas.MultiIndex.get_value

MultiIndex.get_value(series, key)
pandas.MultiIndex.get_values

MultiIndex.get_values()
 return the underlying data as an ndarray

pandas.MultiIndex.groupby

MultiIndex.groupby(values)
 Group the index labels by a given array of values.
 Parameters values : array
 Values used to determine the groups.
 Returns groups : dict
 {group name -> group labels}

pandas.MultiIndex.holds_integer

MultiIndex.holds_integer()

pandas.MultiIndex.identical

MultiIndex.identical(other)
 Similar to equals, but check that other comparable attributes are also equal

pandas.MultiIndex.insert

MultiIndex.insert(loc, item)
 Make new MultiIndex inserting new item at location
 Parameters loc : int
 item : tuple
 Must be same length as number of levels in the MultiIndex
 Returns new_index : Index

pandas.MultiIndex.intersection

MultiIndex.intersection(other)
 Form the intersection of two MultiIndex objects, sorting if possible
 Parameters other : MultiIndex or array / Index of tuples
 Returns Index

pandas.MultiIndex.is

MultiIndex.is_(other)
 More flexible, faster check like is but that works through views
 Note: this is not the same as Index.identical(), which checks that metadata is also the same.
Parameters other : object
other object to compare against.

Returns True if both have same underlying data, False otherwise : bool

pandas.MultiIndex.is_boolean
MultiIndex.is_boolean()

pandas.MultiIndex.is_categorical
MultiIndex.is_categorical()

pandas.MultiIndex.is_floating
MultiIndex.is_floating()

pandas.MultiIndex.is_integer
MultiIndex.is_integer()

pandas.MultiIndex.is_lexsorted
MultiIndex.is_lexsorted()
 Return True if the labels are lexicographically sorted

pandas.MultiIndex.is_lexsorted_for_tuple
MultiIndex.is_lexsorted_for_tuple(tup)
 Return True if we are correctly lexsorted given the passed tuple

pandas.MultiIndex.is_mixed
MultiIndex.is_mixed()

pandas.MultiIndex.is_numeric
MultiIndex.is_numeric()

pandas.MultiIndex.is_object
MultiIndex.is_object()

pandas.MultiIndex.is_type_compatible
MultiIndex.is_type_compatible(kind)
pandas.MultiIndex.isin

MultiIndex.isin(values, level=None)

Compute boolean array of whether each index value is found in the passed set of values.

Parameters

- **values**: set or list-like

 Sought values.

 New in version 0.18.1.

 Support for values as a set

- **level**: str or int, optional

 Name or position of the index level to use (if the index is a MultiIndex).

Returns

- **is_contained**: ndarray (boolean dtype)

Notes

If `level` is specified:

- if it is the name of one *and only one* index level, use that level;
- otherwise it should be a number indicating level position.

pandas.MultiIndex.item

MultiIndex.item()

return the first element of the underlying data as a python scalar

pandas.MultiIndex.join

MultiIndex.join(other, how='left', level=None, return_indexers=False)

This is an internal non-public method

Compute join_index and indexers to conform data structures to the new index.

Parameters

- **other**: Index

 - **how**: {'left', 'right', 'inner', 'outer'}

 - **level**: int or level name, default None

 - **return_indexers**: boolean, default False

Returns

- **join_index, (left_indexer, right_indexer)**

pandas.MultiIndex.map

MultiIndex.map(mapper)

Apply mapper function to its values.

Parameters

- **mapper**: callable

 Function to be applied.

Returns

- **applied**: array
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.MultiIndex.max

MultiIndex.max()

The maximum value of the object

pandas.MultiIndex.memory_usage

MultiIndex.memory_usage(deep=False)

Memory usage of my values

Parameters

- **deep**: bool
 - Introspect the data deeply, interrogate object dtypes for system-level memory consumption

Returns

- bytes used

See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False

pandas.MultiIndex.min

MultiIndex.min()

The minimum value of the object

pandas.MultiIndex.nunique

MultiIndex.nunique(dropna=True)

Return number of unique elements in the object.

Excludes NA values by default.

Parameters

- **dropna**: boolean, default True
 - Don’t include NaN in the count.

Returns

- **nunique**: int

pandas.MultiIndex.order

MultiIndex.order(return_indexer=False, ascending=True)

Return sorted copy of Index

DEPRECATED: use Index.sort_values()
pandas.MultiIndex.putmask

MultiIndex.putmask(mask, value)
return a new Index of the values set with the mask

See also:
numpy.ndarray.putmask

pandas.MultiIndex.ravel

MultiIndex.ravel(order='C')
return an ndarray of the flattened values of the underlying data

See also:
numpy.ndarray.ravel

pandas.MultiIndex.reindex

MultiIndex.reindex(target, method=None, level=None, limit=None, tolerance=None)
Create index with target’s values (move/add/delete values as necessary)

Returns new_index : pd.MultiIndex
 Resulting index
indexer : np.ndarray or None
 Indices of output values in original index

pandas.MultiIndex.rename

MultiIndex.rename(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters names : str or sequence
 name(s) to set
level : int, level name, or sequence of int/level names (default None)
 If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None
inplace : bool
 if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

Examples

>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')
>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], ['one', 'two']],
          labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
          names=['baz', 'quz'])

MultiIndex(levels=[[1, 2], ['one', 'two']],
          labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
          names=['baz', 'bar'])

pandas.MultiIndex.reorder_levels

MultiIndex.reorder_levels(order)
    Rearrange levels using input order. May not drop or duplicate levels

pandas.MultiIndex.repeat

MultiIndex.repeat(n, *args, **kwargs)

pandas.MultiIndex.reshape

MultiIndex.reshape(*args, **kwargs)
    NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.
    Reshape an Index.

pandas.MultiIndex.searchsorted

MultiIndex.searchsorted(key, side='left', sorter=None)
    Find indices where elements should be inserted to maintain order.
    Find the indices into a sorted IndexOpsMixin self such that, if the corresponding elements in v were inserted before the indices, the order of self would be preserved.

    Parameters key : array_like
        Values to insert into self.
    side : {'left', 'right'}, optional
        If ‘left’, the index of the first suitable location found is given. If ‘right’, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of self).
    sorter : 1-D array_like, optional
        Optional array of integer indices that sort self into ascending order. They are typically the result of np.argsort.
    
    Returns indices : array of ints
        Array of insertion points with the same shape as v.
```
See also:

numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

Examples

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64
>>> x.searchsorted(4)
array([3])
>>> x.searchsorted([0, 4])
array([0, 3])
>>> x.searchsorted([1, 3], side='left')
array([0, 2])
>>> x.searchsorted([1, 3], side='right')
array([1, 3])
>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk'])
[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]
>>> x.searchsorted('bread')
array([1])  # Note: an array, not a scalar
>>> x.searchsorted(['bread'])
array([1])
>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])
>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4])  # eggs before milk
```

pandas.MultiIndex.set_labels

MultiIndex.set_labels(labels, level=None, inplace=False, verify_integrity=True)

Set new labels on MultiIndex. Defaults to returning new index.

Parameters

labels : sequence or list of sequence
 new labels to apply

level : int, level name, or sequence of int/level names (default None)
 level(s) to set (None for all levels)

inplace : bool
 if True, mutates in place

verify_integrity : bool (default True)
 if True, checks that levels and labels are compatible
Returns new index (of same type and class...etc)

Examples

```python
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
                                (2, u'one'), (2, u'two')],
                                names=['foo', 'bar'])
>>> idx.set_labels([[1, 0, 1, 0], [0, 0, 1, 1]],
                  MultiIndex(levels=[[1, 2]], [u'one', u'two']],
                  labels=[[1, 0, 1, 0], [0, 0, 1, 1]],
                  names=['foo', 'bar'])
>>> idx.set_labels([1, 0, 1, 0], level=0)
```

pandas.MultiIndex.set_levels

MultiIndex.set_levels(levels, level=None, inplace=False, verify_integrity=True)

Set new levels on MultiIndex. Defaults to returning new index.

Parameters

- **levels** : sequence or list of sequence
 new level(s) to apply

- **level** : int, level name, or sequence of int/level names (default None)

 level(s) to set (None for all levels)

- **inplace** : bool

 if True, mutates in place

- **verify_integrity** : bool (default True)

 if True, checks that levels and labels are compatible

Returns new index (of same type and class...etc)

Examples

```python
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
                                (2, u'one'), (2, u'two')],
                                names=['foo', 'bar'])
>>> idx.set_levels([['a', 'b'], [1, 2]])
```

1646 Chapter 35. API Reference
MultiIndex(levels=[[‘u’a’, ‘u’b’], [‘u’one’, ‘u’two’]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[‘u’foo’, ‘u’bar’])

>>> idx.set_levels([‘a’, ‘b’], level=‘bar’)
MultiIndex(levels=[[1, 2], [‘u’a’, ‘u’b’]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[‘u’foo’, ‘u’bar’])

pandas.MultiIndex.set_names

MultiIndex.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters

names : str or sequence
 name(s) to set

level : int, level name, or sequence of int/level names (default None)
 If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
 Otherwise level must be None

inplace : bool
 if True, mutates in place

Returns
 new index (of same type and class...etc) [if inplace, returns None]

Examples

>>> Index([1, 2, 3, 4]).set_names(‘foo’)
Int64Index([1, 2, 3, 4], dtype=‘int64’)

>>> Index([1, 2, 3, 4]).set_names([‘foo’])
Int64Index([1, 2, 3, 4], dtype=‘int64’)

idx = MultiIndex.from_tuples([(1, u’one’), (1, u’two’),
 (2, u’one’), (2, u’two’)],
 names=[‘foo’, ‘bar’])

>>> idx.set_names([‘baz’, ‘quz’])
MultiIndex(levels=[[1, 2], [u’one’, u’two’]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
names=[‘u’baz’, ‘u’quz’])

pandas.MultiIndex.set_value

MultiIndex.set_value(arr, key, value)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.MultiIndex.shift

`MultiIndex.shift(periods=1, freq=None)`
Shift Index containing datetime objects by input number of periods and DateOffset
Returns `shifted`: Index

pandas.MultiIndex.slice_indexer

`MultiIndex.slice_indexer(start=None, end=None, step=None, kind=None)`
For an ordered Index, compute the slice indexer for input labels and step
Parameters `start`: label, default None
If None, defaults to the beginning
`end`: label, default None
If None, defaults to the end
`step`: int, default None
`kind`: string, default None
Returns `indexer`: ndarray or slice

Notes

This function assumes that the data is sorted, so use at your own peril

pandas.MultiIndex.slice_locs

`MultiIndex.slice_locs(start=None, end=None, step=None, kind=None)`
For an ordered MultiIndex, compute the slice locations for input labels. They can be tuples representing partial levels, e.g. for a MultiIndex with 3 levels, you can pass a single value (corresponding to the first level), or a 1-, 2-, or 3-tuple.
Parameters `start`: label or tuple, default None
If None, defaults to the beginning
`end`: label or tuple
If None, defaults to the end
`step`: int or None
Slice step
`kind`: string, optional, defaults None
Returns `(start, end)`: (int, int)

Notes

This function assumes that the data is sorted by the first level
pandas.MultiIndex.sort

MultiIndex.sort(*args, **kwargs)

pandas.MultiIndex.sort_values

MultiIndex.sort_values(return_indexer=False, ascending=True)

Return sorted copy of Index

pandas.MultiIndex.sortlevel

MultiIndex.sortlevel(level=0, ascending=True, sort_remaining=True)

Sort MultiIndex at the requested level. The result will respect the original ordering of the associated factor at that level.

Parameters level : list-like, int or str, default 0
 If a string is given, must be a name of the level If list-like must be names or ints of levels.

 ascending : boolean, default True
 False to sort in descending order Can also be a list to specify a directed ordering

 sort_remaining : sort by the remaining levels after level.

Returns sorted_index : MultiIndex

pandas.MultiIndex.str

MultiIndex.str()

Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

```python
>>> s.str.split('_')
>>> s.str.replace('_', '')
```

pandas.MultiIndex.summary

MultiIndex.summary(name=None)

pandas.MultiIndex.swaplevel

MultiIndex.swaplevel(i=-2, j=-1)

Swap level i with level j. Do not change the ordering of anything

Parameters i, j : int, string (can be mixed)

Level of index to be swapped. Can pass level name as string.
Returns swapped : MultiIndex

Changed in version 0.18.1: The indexes i and j are now optional, and default to the two innermost levels of the index.

```python
pandas.MultiIndex.sym_diff
```

```python
MultiIndex.sym_diff(*args, **kwargs)
```

```python
pandas.MultiIndex.symmetric_difference
```

```python
MultiIndex.symmetric_difference(other, result_name=None)
```

Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

Parameters

- **other**: Index or array-like
- **result_name**: str

Returns

- **symmetric_difference**: Index

Notes

symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the ^ operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```

```python
pandas.MultiIndex.take
```

```python
MultiIndex.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)
```

return a new `%class` of the values selected by the indices

For internal compatibility with numpy arrays.

Parameters

- **indices**: list
- **axis**: int, optional

The axis over which to select values, always 0.
allow_fill : bool, default True
fill_value : bool, default None
If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn’t hold NA, raise ValueError

See also:
numpy.ndarray.take

pandas.MultiIndex.to_datetime

MultiIndex.to_datetime(dayfirst=False)
DEPRECATED: use pandas.to_datetime() instead.
For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

pandas.MultiIndex.to_hierarchical

MultiIndex.to_hierarchical(n_repeat, n_shuffle=1)
Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle.
Useful to replicate and rearrange a MultiIndex for combination with another Index with n_repeat items.

Parameters
n_repeat : int
Number of times to repeat the labels on self
n_shuffle : int
Controls the reordering of the labels. If the result is going to be an inner level in a MultiIndex, n_shuffle will need to be greater than one. The size of each label must divisible by n_shuffle.

Returns MultiIndex

Examples

```python
>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
                                (2, u'one'), (2, u'two')])
>>> idx.to_hierarchical(3)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
        [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]])
```

pandas.MultiIndex.to_native_types

MultiIndex.to_native_types(slicer=None, **kwargs)
slice and dice then format
pandas.MultiIndex.to_series

`MultiIndex.to_series(**kwargs)`
Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Returns Series : dtype will be based on the type of the Index values.

pandas.MultiIndex.tolist

`MultiIndex.tolist()`
return a list of the Index values

pandas.MultiIndex.transpose

`MultiIndex.transpose(*args, **kwargs)`
return the transpose, which is by definition self

pandas.MultiIndex.truncate

`MultiIndex.truncate(before=None, after=None)`
Slice index between two labels / tuples, return new MultiIndex

Parameters before : label or tuple, can be partial. Default None
None defaults to start

after : label or tuple, can be partial. Default None
None defaults to end

Returns truncated : MultiIndex

pandas.MultiIndex.union

`MultiIndex.union(other)`
Form the union of two MultiIndex objects, sorting if possible

Parameters other : MultiIndex or array / Index of tuples

Returns Index

```
>>> index.union(index2)
```

pandas.MultiIndex.unique

`MultiIndex.unique()`
Return Index of unique values in the object. Significantly faster than numpy.unique. Includes NA values. The order of the original is preserved.

Returns uniques : Index
pandas.MultiIndex.value_counts

MultiIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters

- **normalize**: boolean, default False
 - If True then the object returned will contain the relative frequencies of the unique values.

- **sort**: boolean, default True
 - Sort by values

- **ascending**: boolean, default False
 - Sort in ascending order

- **bins**: integer, optional
 - Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

- **dropna**: boolean, default True
 - Don’t include counts of NaN.

Returns

- **counts**: Series

pandas.MultiIndex.view

MultiIndex.view(cls=None)

this is defined as a copy with the same identity

pandas.MultiIndex.where

MultiIndex.where(cond, other=None)

MultiIndex Components

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MultiIndex.from_arrays</td>
<td>Convert arrays to MultiIndex</td>
</tr>
<tr>
<td>MultiIndex.from_tuples</td>
<td>Convert list of tuples to MultiIndex</td>
</tr>
<tr>
<td>MultiIndex.from_product</td>
<td>Make a MultiIndex from the cartesian product of multiple iterables</td>
</tr>
<tr>
<td>MultiIndex.set_levels</td>
<td>Set new levels on MultiIndex</td>
</tr>
<tr>
<td>MultiIndex.set_labels</td>
<td>Set new labels on MultiIndex</td>
</tr>
<tr>
<td>MultiIndex.to_hierarchical</td>
<td>Return a MultiIndex reshaped to conform to the shapes given by n_repeat and n_shuffle.</td>
</tr>
<tr>
<td>MultiIndex.is_lexsorted</td>
<td>Return True if the labels are lexicographically sorted</td>
</tr>
<tr>
<td>MultiIndex.droplevel</td>
<td>Return Index with requested level removed</td>
</tr>
<tr>
<td>MultiIndex.swaplevel</td>
<td>Swap level i with level j</td>
</tr>
<tr>
<td>MultiIndex.reorder_levels</td>
<td>Rearrange levels using input order</td>
</tr>
</tbody>
</table>

35.9. MultiIndex 1653
DatetimeIndex

Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information.

pandas.DatetimeIndex

class pandas.DatetimeIndex

Immutable ndarray of datetime64 data, represented internally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency information.

Parameters

- **data**: array-like (1-dimensional), optional

 Optional datetime-like data to construct index with

- **copy**: bool

 Make a copy of input ndarray

- **freq**: string or pandas offset object, optional

 One of pandas date offset strings or corresponding objects

- **start**: starting value, datetime-like, optional

 If data is None, start is used as the start point in generating regular timestamp data.

- **periods**: int, optional, > 0

 Number of periods to generate, if generating index. Takes precedence over end argument

- **end**: end time, datetime-like, optional

 If periods is none, generated index will extend to first conforming time on or just past end argument

- **closed**: string or None, default None

 Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

- **tz**: pytz.timezone or dateutil.tz.tzfile

- **ambiguous**: ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

 - ‘infer’ will attempt to infer fall dst-transition hours based on order

 - bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)

 - ‘NaT’ will return NaT where there are ambiguous times

 - ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

- **infer_dst**: boolean, default False (DEPRECATED)

 Attempt to infer fall dst-transition hours based on order

- **name**: object

 Name to be stored in the index
Notes

To learn more about the frequency strings, please see this link.

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td>asi8</td>
<td>return object Index which contains boxed values</td>
</tr>
<tr>
<td>asobject</td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td>base</td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td>data</td>
<td>Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).</td>
</tr>
<tr>
<td>date</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>day</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>dayofyear</td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td>days_in_month</td>
<td>The number of days in the month</td>
</tr>
<tr>
<td>daysinmonth</td>
<td>The number of days in the month</td>
</tr>
<tr>
<td>dtype</td>
<td></td>
</tr>
<tr>
<td>dtype_str</td>
<td></td>
</tr>
<tr>
<td>flags</td>
<td>get/set the frequency of the Index</td>
</tr>
<tr>
<td>freq</td>
<td>Return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td>freqstr</td>
<td></td>
</tr>
<tr>
<td>has_duplicates</td>
<td></td>
</tr>
<tr>
<td>hasnans</td>
<td></td>
</tr>
<tr>
<td>hour</td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td>inferred_freq</td>
<td></td>
</tr>
<tr>
<td>inferred_type</td>
<td></td>
</tr>
<tr>
<td>is_all_dates</td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
<tr>
<td>is_leap_year</td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td>is_monotonic</td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td>is_monotonic_decreasing</td>
<td>return if the index is monotonic decreasing (only equal or</td>
</tr>
<tr>
<td>is_monotonic_increasing</td>
<td>return if the index is monotonic increasing (only equal or</td>
</tr>
<tr>
<td>is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>is_normalized</td>
<td></td>
</tr>
<tr>
<td>is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>is_unique</td>
<td></td>
</tr>
<tr>
<td>is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.108 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_year_start</code></td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>microsecond</code></td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td><code>minute</code></td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td><code>month</code></td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td><code>name</code></td>
<td></td>
</tr>
<tr>
<td><code>names</code></td>
<td></td>
</tr>
<tr>
<td><code>nanosecond</code></td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td><code>nlevels</code></td>
<td></td>
</tr>
<tr>
<td><code>offset</code></td>
<td></td>
</tr>
<tr>
<td><code>quarter</code></td>
<td>The quarter of the date</td>
</tr>
<tr>
<td><code>resolution</code></td>
<td></td>
</tr>
<tr>
<td><code>second</code></td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>size</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>time</code></td>
<td>Returns numpy array of datetime.time.</td>
</tr>
<tr>
<td><code>tz</code></td>
<td>Alias for tz attribute</td>
</tr>
<tr>
<td><code>values</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>week</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>weekday</code></td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td><code>weekday_name</code></td>
<td>The name of day in a week (ex: Friday)</td>
</tr>
<tr>
<td><code>weekofyear</code></td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td><code>year</code></td>
<td>The year of the datetime</td>
</tr>
</tbody>
</table>

pandas.DatetimeIndex.T

```
DatetimeIndex.T
return the transpose, which is by definition self
```

pandas.DatetimeIndex.asi8

```
DatetimeIndex.asi8
```

pandas.DatetimeIndex.asobject

```
DatetimeIndex.asobject
return object Index which contains boxed values
this is an internal non-public method
```

pandas.DatetimeIndex.base

```
DatetimeIndex.base
return the base object if the memory of the underlying data is shared
```
pandas.DataFrame.data

Datetimex.data
 return the data pointer of the underlying data

pandas.Datetimex.date

Datetimex.date
 Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without time-zone information).

pandas.Datetimex.day

Datetimex.day
 The days of the datetime

pandas.Datetimex.dayofweek

Datetimex.dayofweek
 The day of the week with Monday=0, Sunday=6

pandas.Datetimex.dayofyear

Datetimex.dayofyear
 The ordinal day of the year

pandas.Datetimex.days_in_month

Datetimex.days_in_month
 The number of days in the month
 New in version 0.16.0.

pandas.Datetimex.daysinmonth

Datetimex.daysinmonth
 The number of days in the month
 New in version 0.16.0.

pandas.Datetimex.dtype

Datetimex.dtype = None

pandas.Datetimex.dtype_str

Datetimex.dtype_str = None
pandas: powerful Python data analysis toolkit, Release 0.19.2

```
pandas.DatetimeIndex.flags

DatetimeIndex.flags

pandas.DatetimeIndex.freq

DatetimeIndex.freq
    get/set the frequency of the Index

pandas.DatetimeIndex.freqstr

DatetimeIndex.freqstr
    Return the frequency object as a string if its set, otherwise None

pandas.DatetimeIndex.has_duplicates

DatetimeIndex.has_duplicates

pandas.DatetimeIndex.hasnans

DatetimeIndex.hasnans = None

pandas.DatetimeIndex.hour

DatetimeIndex.hour
    The hours of the datetime

pandas.DatetimeIndex.inferred_freq

DatetimeIndex.inferred_freq = None

pandas.DatetimeIndex.inferred_type

DatetimeIndex.inferred_type

pandas.DatetimeIndex.is_all_dates

DatetimeIndex.is_all_dates

pandas.DatetimeIndex.is_leap_year

DatetimeIndex.is_leap_year
    Logical indicating if the date belongs to a leap year
```
pandas.DatetimeIndex.is_monotonic

DatetimeIndex\texttt{.is_monotonic}
alias for \texttt{is_monotonic_increasing} (deprecated)

pandas.DatetimeIndex.is_monotonic_decreasing

DatetimeIndex\texttt{.is_monotonic_decreasing}
return if the index is monotonic decreasing (only equal or decreasing) values.

pandas.DatetimeIndex.is_monotonic_increasing

DatetimeIndex\texttt{.is_monotonic_increasing}
return if the index is monotonic increasing (only equal or increasing) values.

pandas.DatetimeIndex.is_month_end

DatetimeIndex\texttt{.is_month_end}
Logical indicating if last day of month (defined by frequency)

pandas.DatetimeIndex.is_month_start

DatetimeIndex\texttt{.is_month_start}
Logical indicating if first day of month (defined by frequency)

pandas.DatetimeIndex.is_normalized

DatetimeIndex\texttt{.is_normalized} = \texttt{None}

pandas.DatetimeIndex.is_quarter_end

DatetimeIndex\texttt{.is_quarter_end}
Logical indicating if last day of quarter (defined by frequency)

pandas.DatetimeIndex.is_quarter_start

DatetimeIndex\texttt{.is_quarter_start}
Logical indicating if first day of quarter (defined by frequency)

pandas.DatetimeIndex.is_unique

DatetimeIndex\texttt{.is_unique} = \texttt{None}

pandas.DatetimeIndex.is_year_end

DatetimeIndex\texttt{.is_year_end}
Logical indicating if last day of year (defined by frequency)
pandas.DatetimeIndex.is_year_start

DatetimeIndex.**is_year_start**
Logical indicating if first day of year (defined by frequency)

pandas.DatetimeIndex.itemsize

DatetimeIndex.**itemsize**
return the size of the dtype of the item of the underlying data

pandas.DatetimeIndex.microsecond

DatetimeIndex.**microsecond**
The microseconds of the datetime

pandas.DatetimeIndex.minute

DatetimeIndex.**minute**
The minutes of the datetime

pandas.DatetimeIndex.month

DatetimeIndex.**month**
The month as January=1, December=12

pandas.DatetimeIndex.name

DatetimeIndex.**name** = None

pandas.DatetimeIndex.names

DatetimeIndex.**names**

pandas.DatetimeIndex.nanosecond

DatetimeIndex.**nanosecond**
The nanoseconds of the datetime

pandas.DatetimeIndex.nbytes

DatetimeIndex.**nbytes**
return the number of bytes in the underlying data

pandas.DatetimeIndex.ndim

DatetimeIndex.**ndim**
return the number of dimensions of the underlying data, by definition 1
pandas.DatetimeIndex.nlevels

DatetimeIndex.nlevels

pandas.DatetimeIndex.offset

DatetimeIndex.offset = None

pandas.DatetimeIndex.quarter

DatetimeIndex.quarter
The quarter of the date

pandas.DatetimeIndex.resolution

DatetimeIndex.resolution = None

pandas.DatetimeIndex.second

DatetimeIndex.second
The seconds of the datetime

pandas.DatetimeIndex.shape

DatetimeIndex.shape
return a tuple of the shape of the underlying data

pandas.DatetimeIndex.size

DatetimeIndex.size
return the number of elements in the underlying data

pandas.DatetimeIndex.strides

DatetimeIndex.strides
return the strides of the underlying data

pandas.DatetimeIndex.time

DatetimeIndex.time
Returns numpy array of datetime.time. The time part of the Timestamps.

pandas.DatetimeIndex.tz

DatetimeIndex.tz = None
pandas.DatetimeIndex.tzinfo

DatetimeIndex.tzinfo
 Alias for tz attribute

pandas.DatetimeIndex.values

DatetimeIndex.values
 return the underlying data as an ndarray

pandas.DatetimeIndex.week

DatetimeIndex.week
 The week ordinal of the year

pandas.DatetimeIndex.weekday

DatetimeIndex.weekday
 The day of the week with Monday=0, Sunday=6

pandas.DatetimeIndex.weekday_name

DatetimeIndex.weekday_name
 The name of day in a week (ex: Friday)
 New in version 0.18.1.

pandas.DatetimeIndex.weekofyear

DatetimeIndex.weekofyear
 The week ordinal of the year

pandas.DatetimeIndex.year

DatetimeIndex.year
 The year of the datetime

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all([other])</td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td>any([other])</td>
<td>Append a collection of Index options together</td>
</tr>
<tr>
<td>append(other)</td>
<td>Returns the indices of the maximum values along an axis.</td>
</tr>
<tr>
<td>argmax([axis])</td>
<td>Returns the indices of the minimum values along an axis.</td>
</tr>
<tr>
<td>argmin([axis])</td>
<td>Return the underlying data as an ndarray</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.109 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>argsort</code></td>
<td>Returns the indices that would sort the index and its under-</td>
</tr>
<tr>
<td></td>
<td>lying data.</td>
</tr>
<tr>
<td><code>asof</code></td>
<td>For a sorted index, return the most recent label up to and</td>
</tr>
<tr>
<td></td>
<td>including the passed label.</td>
</tr>
<tr>
<td><code>asof_locs</code></td>
<td>where : array of timestamps</td>
</tr>
<tr>
<td><code>astype</code></td>
<td>Create an Index with values cast to dtypes.</td>
</tr>
<tr>
<td><code>ceil</code></td>
<td>ceil the index to the specified freq</td>
</tr>
<tr>
<td><code>copy</code></td>
<td>Make a copy of this object.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Make a new DatetimeIndex with location(s) deleted.</td>
</tr>
<tr>
<td><code>difference</code></td>
<td>Return a new Index with elements from the index that are not in</td>
</tr>
<tr>
<td></td>
<td>other.</td>
</tr>
<tr>
<td><code>drop</code></td>
<td>Make new Index with passed list of labels deleted</td>
</tr>
<tr>
<td><code>drop_duplicates</code></td>
<td>Return Index with duplicate values removed</td>
</tr>
<tr>
<td><code>dropna</code></td>
<td>Return Index without NA/NaN values</td>
</tr>
<tr>
<td><code>duplicated</code></td>
<td>Return boolean np.ndarray denoting duplicate values</td>
</tr>
<tr>
<td><code>equals</code></td>
<td>Determines if two Index objects contain the same elements.</td>
</tr>
<tr>
<td><code>factorize</code></td>
<td>Encode the object as an enumerated type or categorical variable</td>
</tr>
<tr>
<td><code>fillna</code></td>
<td>Fill NA/NaN values with the specified value</td>
</tr>
<tr>
<td><code>floor</code></td>
<td>floor the index to the specified freq</td>
</tr>
<tr>
<td><code>format</code></td>
<td>Render a string representation of the Index</td>
</tr>
<tr>
<td><code>get_duplicates</code></td>
<td>Compute indexer and mask for new index given the current</td>
</tr>
<tr>
<td></td>
<td>index.</td>
</tr>
<tr>
<td><code>get_indexer</code></td>
<td>guaranteed return of an indexer even when non-unique return an</td>
</tr>
<tr>
<td></td>
<td>indexer suitable for taking from a non unique index</td>
</tr>
<tr>
<td><code>get_level_values</code></td>
<td>Return vector of label values for requested level, equal to the</td>
</tr>
<tr>
<td><code>get_loc</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>get_slice_bound</code></td>
<td>Calculate slice bound that corresponds to given label.</td>
</tr>
<tr>
<td><code>get_value</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_value_maybe_box</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>groupby</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>hold_integer</code></td>
<td>Similar to equals, but check that other comparable attributes</td>
</tr>
<tr>
<td><code>indexer_at_time</code></td>
<td>Select values at particular time of day (e.g.</td>
</tr>
<tr>
<td><code>indexer_between_time</code></td>
<td>Select values between particular times of day (e.g.,</td>
</tr>
<tr>
<td></td>
<td>9:00-9:30AM).</td>
</tr>
<tr>
<td><code>insert</code></td>
<td>Make new Index inserting new item at location</td>
</tr>
<tr>
<td><code>intersection</code></td>
<td>Specialized intersection for DatetimeIndex objects.</td>
</tr>
<tr>
<td><code>is_</code></td>
<td>More flexible, faster check like is but that works through</td>
</tr>
<tr>
<td><code>is_boolean</code></td>
<td>views.</td>
</tr>
<tr>
<td><code>is_categorical</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating</code></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
pandas: powerful Python data analysis toolkit, Release 0.19.2

Table 35.109 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_integer()</code></td>
<td>Compute boolean array of whether each index value is found in the item.</td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td>Return the first element of the underlying data as a python list.</td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td>See Index.join</td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td>Return a new Index of the values set with the mask.</td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td>Return an ndarray of the flattened values of the underlying data.</td>
</tr>
<tr>
<td><code>isin(values)</code></td>
<td>Create index with target’s values (move/add/delete values as necessary).</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>max([axis])</code></td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
<tr>
<td><code>memory_usage([deep])</code></td>
<td>Return DatetimeIndex with times to midnight.</td>
</tr>
<tr>
<td><code>min([axis])</code></td>
<td>Return number of unique elements in the object.</td>
</tr>
<tr>
<td><code>normalize()</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>nunique([dropna])</code></td>
<td>return a new Index of the values set with the mask.</td>
</tr>
<tr>
<td><code>order([return_indexer, ascending])</code></td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
<tr>
<td><code>putmask(mask, value)</code></td>
<td>Compute slice locations for input labels.</td>
</tr>
<tr>
<td><code>ravel([order])</code></td>
<td>Snap time stamps to nearest occurring frequency.</td>
</tr>
<tr>
<td><code>reindex(target[, method, level, limit, ...])</code></td>
<td>Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library.</td>
</tr>
<tr>
<td><code>rename(name[, inplace])</code></td>
<td>For internal compatibility with with the Index API</td>
</tr>
<tr>
<td><code>repeat(repeats, *args, **kwargs)</code></td>
<td>Alias of StringMethods</td>
</tr>
<tr>
<td><code>reshape(*args, **kwargs)</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>round(freq, *args, **kwargs)</code></td>
<td>For internal compatibility with with the Index API</td>
</tr>
<tr>
<td><code>searchsorted(key[, side, sorter])</code></td>
<td>Alias of StringMethods</td>
</tr>
<tr>
<td><code>set_names(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>set_value(arr, key, value)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>shift(n[, freq])</code></td>
<td>Specialized shift which produces a DatetimeIndex</td>
</tr>
<tr>
<td><code>slice_indexer([start, end, step, kind])</code></td>
<td>Compute slice locations for input labels.</td>
</tr>
<tr>
<td><code>slice_locs([start, end, step, kind])</code></td>
<td>Snap time stamps to nearest occurring frequency.</td>
</tr>
<tr>
<td><code>snap([freq])</code></td>
<td>Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library.</td>
</tr>
<tr>
<td><code>sort(*args, **kwargs)</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>sort_values([return_indexer, ascending])</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>sortlevel([level, ascending, sort_remaining])</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>strptime(date_format)</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
</tbody>
</table>
Table 35.109 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>take(indices[, axis, allow_fill, fill_value])</code></td>
<td>return a new Dataset of the values selected by the indices</td>
</tr>
<tr>
<td><code>to_datetime([dayfirst])</code></td>
<td>Convert DatetimeIndex to Float64Index of Julian Dates.</td>
</tr>
<tr>
<td><code>to_julian_date()</code></td>
<td>slice and dice then format</td>
</tr>
<tr>
<td><code>to_period([freq])</code></td>
<td>Cast to PeriodIndex at a particular frequency</td>
</tr>
<tr>
<td><code>to_perioddelta(freq)</code></td>
<td>Calculates TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq.</td>
</tr>
<tr>
<td><code>to_pydatetime()</code></td>
<td>Return DatetimeIndex as object ndarray of datetime objects</td>
</tr>
<tr>
<td><code>to_series([keep_tz])</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td><code>tolist()</code></td>
<td>return a list of the underlying data</td>
</tr>
<tr>
<td><code>transpose(*args, **kwargs)</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>tz_convert(tz)</code></td>
<td>Convert tz-aware DatetimeIndex from one time zone to another (using</td>
</tr>
<tr>
<td></td>
<td>tz_localize(*args, **kwargs) Localize tz-naive DatetimeIndex to given time zone (using</td>
</tr>
<tr>
<td></td>
<td>union(other) Specialized union for DatetimeIndex objects.</td>
</tr>
<tr>
<td></td>
<td>union_many(others) A bit of a hack to accelerate unioning a collection of indexes</td>
</tr>
<tr>
<td><code>unique()</code></td>
<td>Return Index of unique values in the object.</td>
</tr>
<tr>
<td><code>value_counts([normalize, sort, ascending, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>view([cls])</code></td>
<td></td>
</tr>
<tr>
<td><code>where(cond[, other])</code></td>
<td>New in version 0.19.0.</td>
</tr>
</tbody>
</table>

pandas.DatetimeIndex.all

```python
DatetimeIndex.all(\text{other=\text{None}})
```

pandas.DatetimeIndex.any

```python
DatetimeIndex.any(\text{other=\text{None}})
```

pandas.DatetimeIndex.append

```python
DatetimeIndex.append(\text{other})
```

Parameters

- **other**: Index or list/tuple of indices

Returns

- **append**: Index

pandas.DatetimeIndex.argmax

```python
DatetimeIndex.argmax(\text{axis=None, *args, **kwargs})
```

Returns the indices of the maximum values along an axis. See numpy.ndarray.argmax for more information on the `axis` parameter.
See also:
numpy.ndarray.argmax

pandas.DatetimeIndex.argmin

`DatetimeIndex.argmin(axis=None, *args, **kwargs)`

Returns the indices of the minimum values along an axis. See `numpy.ndarray.argmin` for more information on the `axis` parameter.

See also:
numpy.ndarray.argmin

pandas.DatetimeIndex.argsort

`DatetimeIndex.argsort(*args, **kwargs)`

Returns the indices that would sort the index and its underlying data.

Returns `argsorted`: numpy array

See also:
numpy.ndarray.argsort

pandas.DatetimeIndex.asof

`DatetimeIndex.asof(label)`

For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.

See also:

`get_loc` asof is a thin wrapper around `get_loc` with method='pad'

pandas.DatetimeIndex.asof_locs

`DatetimeIndex.asof_locs(where, mask)`

where : array of timestamps
mask : array of booleans where data is not NA

pandas.DatetimeIndex.astype

`DatetimeIndex.astype(dtype, copy=True)`

Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.

Parameters

- `dtype` : numpy dtype or pandas type
- `copy` : bool, default True

By default, `astype` always returns a newly allocated object. If `copy` is set to False and internal requirements on `dtype` are satisfied, the original data is used to create a new Index or the original Index is returned.

New in version 0.19.0.
pandas.DatetimeIndex.ceil

`DatetimeIndex.ceil(freq)`

ceil the index to the specified freq

- **Parameters**
 - `freq`: freq string/object
- **Returns**
 - index of same type
- **Raises**
 - `ValueError` if the freq cannot be converted

pandas.DatetimeIndex.copy

`DatetimeIndex.copy(name=None, deep=False, dtype=None, **kwargs)`

Make a copy of this object. Name and dtype sets those attributes on the new object.

- **Parameters**
 - `name`: string, optional
 - `deep`: boolean, default False
 - `dtype`: numpy dtype or pandas type
- **Returns**
 - `copy`: Index

Notes

In most cases, there should be no functional difference from using `deep`, but if `deep` is passed it will attempt to deepcopy.

pandas.DatetimeIndex.delete

`DatetimeIndex.delete(loc)`

Make a new DatetimeIndex with passed location(s) deleted.

- **Parameters**
 - `loc`: int, slice or array of ints
 Indicate which sub-arrays to remove.
- **Returns**
 - `new_index`: DatetimeIndex

pandas.DatetimeIndex.difference

`DatetimeIndex.difference(other)`

Return a new Index with elements from the index that are not in `other`.

This is the set difference of two Index objects. It’s sorted if sorting is possible.

- **Parameters**
 - `other`: Index or array-like
- **Returns**
 - `difference`: Index

Examples
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.difference(idx2)
Int64Index([1, 2], dtype='int64')
```

pandas.DatetimeIndex.drop

`DatetimeIndex.drop(labels, errors='raise')`

Make new Index with passed list of labels deleted

Parameters

labels : array-like
errors : {'ignore', 'raise'}, default 'raise'

If 'ignore', suppress error and existing labels are dropped.

Returns

dropped : Index

pandas.DatetimeIndex.drop_duplicates

`DatetimeIndex.drop_duplicates(*args, **kwargs)`

Return Index with duplicate values removed

Parameters

keep : {'first', 'last', False}, default 'first'

- first : Drop duplicates except for the first occurrence.
- last : Drop duplicates except for the last occurrence.
- False : Drop all duplicates.

take_last : deprecated

Returns

deduplicated : Index

pandas.DatetimeIndex.dropna

`DatetimeIndex.dropna(how='any')`

Return Index without NA/NaN values

Parameters

how : {'any', 'all'}, default 'any'

If the Index is a MultiIndex, drop the value when any or all levels are NaN.

Returns

valid : Index

pandas.DatetimeIndex.duplicated

`DatetimeIndex.duplicated(*args, **kwargs)`

Return boolean np.ndarray denoting duplicate values

Parameters

keep : {'first', 'last', False}, default 'first'

- first : Mark duplicates as True except for the first occurrence.
- last : Mark duplicates as True except for the last occurrence.
- False : Mark all duplicates as True.

take_last : deprecated
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
take_last : deprecated

Returns duplicated : np.ndarray

pandas.DatetimeIndex.equals

DatetimeIndex.equals(other)
Determines if two Index objects contain the same elements.

pandas.DatetimeIndex.factorize

DatetimeIndex.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False
Sort by values
na_sentinel: int, default -1
Value to mark “not found”
Returns labels : the indexer to the original array
uniques : the unique Index

pandas.DatetimeIndexfillna

DatetimeIndex.fillna(value=None, downcast=None)
Fill NA/NaN values with the specified value

Parameters value : scalar
Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.
downcast : dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)
Returns filled : %(klass)s

pandas.DatetimeIndex.floor

DatetimeIndex.floor(freq)
floor the index to the specified freq

Parameters freq : freq string/object

Returns index of same type
Raises ValueError if the freq cannot be converted

pandas.DatetimeIndex.format

DatetimeIndex.format(name=None, formatter=None, **kwargs)
Render a string representation of the Index
```
pandas.DatetimeIndex.get_duplicates

DatetimeIndex.get_duplicates()

pandas.DatetimeIndex.get_indexer

DatetimeIndex.get_indexer(target, method=None, limit=None, tolerance=None)

Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.

Parameters

- **target** : Index
- **method** : {None, ‘pad’/’ffill’, ‘backfill’/’bfill’, ‘nearest’}, optional
 - default: exact matches only.
 - pad / ffill: find the PREVIOUS index value if no exact match.
 - backfill / bfill: use NEXT index value if no exact match
 - nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.

- **limit** : int, optional
 Maximum number of consecutive labels in target to match for inexact matches.

- **tolerance** : optional
 Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance.

New in version 0.17.0.

Returns

- **indexer** : ndarray of int
 Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.

Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

pandas.DatetimeIndex.get_indexer_for

DatetimeIndex.get_indexer_for(target, **kwargs)

guaranteed return of an indexer even when non-unique

pandas.DatetimeIndex.get_indexer_non_unique

DatetimeIndex.get_indexer_non_unique(target)

return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable
pandas.DatetimeIndex.get_level_values

DatetimeIndex.get_level_values(level)
Return vector of label values for requested level, equal to the length of the index

Parameters level : int
Returns values : ndarray

pandas.DatetimeIndex.get_loc

DatetimeIndex.get_loc(key, method=None, tolerance=None)
Get integer location for requested label

Returns loc : int

pandas.DatetimeIndex.get_slice_bound

DatetimeIndex.get_slice_bound(label, side, kind)
Calculate slice bound that corresponds to given label.
Returns leftmost (one-past-the-rightmost if side==’right’) position of given label.

Parameters label : object
 side : {‘left’, ‘right’}
 kind : {‘ix’, ‘loc’, ‘getitem’}

pandas.DatetimeIndex.get_value

DatetimeIndex.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you’re doing

pandas.DatetimeIndex.get_value_maybe_box

DatetimIndex.get_value_maybe_box(series, key)

pandas.DatetimeIndex.get_values

DatetimeIndex.get_values()
return the underlying data as an ndarray

pandas.DatetimeIndex.groupby

DatetimeIndex.groupby(values)
Group the index labels by a given array of values.

Parameters values : array
 Values used to determine the groups.

Returns groups : dict
 {group name -> group labels}
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.DatetimeIndex.holds_integer

```
DatetimeIndex.holds_integer()
```

pandas.DatetimeIndex.identical

```
DatetimeIndex.identical(other)
```

Similar to equals, but check that other comparable attributes are also equal.

pandas.DatetimeIndex.indexer_at_time

```
DatetimeIndex.indexer_at_time(time, asof=False)
```

Select values at particular time of day (e.g. 9:30AM)

- **Parameters**
 - time: datetime.time or string
- **Returns**
 - values_at_time: TimeSeries

pandas.DatetimeIndex.indexer_between_time

```
DatetimeIndex.indexer_between_time(start_time, end_time, include_start=True, include_end=True)
```

Select values between particular times of day (e.g., 9:00-9:30AM).

Return values of the index between two times. If start_time or end_time are strings then `pandas.tools.to_time` is used to convert to a time object.

- **Parameters**
 - start_time, end_time: datetime.time, str
 - datetime.time or string in appropriate format ("%H:%M", "%H%M", "%I:%M%p", "%I%M%p", "%H:%M:%S", "%H%M%S", "%I:%M:%S%p", "%I%M%S%p")
 - include_start: boolean, default True
 - include_end: boolean, default True
- **Returns**
 - values_between_time: TimeSeries

pandas.DatetimeIndex.insert

```
DatetimeIndex.insert(loc, item)
```

Make new Index inserting new item at location

- **Parameters**
 - loc: int
 - item: object
 - if not either a Python datetime or a numpy integer-like, returned Index dtype will be object rather than datetime.
- **Returns**
 - new_index: Index
pandas.DatetimeIndex.intersection

`DatetimeIndex.intersection(other)`
Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection

Parameters
`other` : DatetimeIndex or array-like

Returns
`y` : Index or DatetimeIndex

pandas.DatetimeIndex.is

`DatetimeIndex.is_(other)`
More flexible, faster check like `is` but that works through views

Note: this is not the same as `Index.identical()`, which checks that metadata is also the same.

Parameters
`other` : object

Returns
`True` if both have same underlying data, `False` otherwise : bool

pandas.DatetimeIndex.is_boolean

`DatetimeIndex.is_boolean()`

pandas.DatetimeIndex.is_categorical

`DatetimeIndex.is_categorical()`

pandas.DatetimeIndex.is_floating

`DatetimeIndex.is_floating()`

pandas.DatetimeIndex.is_integer

`DatetimeIndex.is_integer()`

pandas.DatetimeIndex.is_lexsorted_for_tuple

`DatetimeIndex.is_lexsorted_for_tuple(tup)`

pandas.DatetimeIndex.is_mixed

`DatetimeIndex.is_mixed()`

pandas.DatetimeIndex.is_numeric

`DatetimeIndex.is_numeric()`
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.DatetimeIndex.is_object

`DatetimeIndex.is_object()`

pandas.DatetimeIndex.is_type_compatible

`DatetimeIndex.is_type_compatible(typ)`

pandas.DatetimeIndex.isin

`DatetimeIndex.isin(values)`

Compute boolean array of whether each index value is found in the passed set of values.

Parameters

- `values`: set or sequence of values

Returns

- `is_contained`: ndarray (boolean dtype)

pandas.DatetimeIndex.item

`DatetimeIndex.item()`

Return the first element of the underlying data as a python scalar.

pandas.DatetimeIndex.join

`DatetimeIndex.join(other, how='left', level=None, return_indexers=False)`

See `Index.join`

pandas.DatetimeIndex.map

`DatetimeIndex.map(f)`

pandas.DatetimeIndex.max

`DatetimeIndex.max(axis=None, *args, **kwargs)`

Return the maximum value of the Index or maximum along an axis.

See also:

- `numpy.ndarray.max`

pandas.DatetimeIndex.memory_usage

`DatetimeIndex.memory_usage(deep=False)`

Memory usage of my values.

Parameters

- `deep` : bool

 Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption

Returns

- `bytes used`
See also:

numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False

pandas.DatetimeIndex.min

DatetimeIndex.min(\text{axis}=\text{None}, \ast \text{args}, \ast \ast \text{kwargs})

Return the minimum value of the Index or minimum along an axis.

See also:

numpy.ndarray.min

pandas.DatetimeIndex.normalize

DatetimeIndex.normalize()

Return DatetimeIndex with times to midnight. Length is unaltered

Returns normalized : DatetimeIndex

pandas.DatetimeIndex.nunique

DatetimeIndex.nunique(\text{dropna}=\text{True})

Return number of unique elements in the object.

Excludes NA values by default.

Parameters dropna : boolean, default True

Don’t include NaN in the count.

Returns nunique : int

pandas.DatetimeIndex.order

DatetimeIndex.order(\text{return_indexer}=\text{False}, \text{ascending}=\text{True})

Return sorted copy of Index

DEPRECATED: use Index.sort_values()

pandas.DatetimeIndex.putmask

DatetimeIndex.putmask(mask, value)

return a new Index of the values set with the mask

See also:

numpy.ndarray.putmask
pandas.DatetimeIndex.ravel

```
DatetimeIndex.ravel(order='C')
```
return an ndarray of the flattened values of the underlying data

See also:

```
numpy.ndarray.ravel
```

pandas.DatetimeIndex.reindex

```
DatetimeIndex.reindex(target, method=None, level=None, limit=None, tolerance=None)
```
Create index with target’s values (move/add/delete values as necessary)

Parameters
- **target**: an iterable

Returns
- **new_index**: pd.Index
 Resulting index
- **indexer**: np.ndarray or None
 Indices of output values in original index

pandas.DatetimeIndex.rename

```
DatetimeIndex.rename(name, inplace=False)
```
Set new names on index. Defaults to returning new index.

Parameters
- **name**: str or list
 name to set
- **inplace**: bool
 if True, mutates in place

Returns
- **new index** (of same type and class...etc) [if inplace, returns None]

pandas.DatetimeIndex.repeat

```
DatetimeIndex.repeat(repeats, *args, **kwargs)
```
Analogous to ndarray.repeat

pandas.DatetimeIndex.reshape

```
DatetimeIndex.reshape(*args, **kwargs)
```
NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.

Reshape an Index.
pandas.DatetimeIndex.round

DatetimeIndex.round(freq, *args, **kwargs)
round the index to the specified freq

Parameters freq : freq string/object
Returns index of same type

Raises ValueError if the freq cannot be converted

pandas.DatetimeIndex.searchsorted

DatetimeIndex.searchsorted(key, side='left', sorter=None)
Find indices where elements should be inserted to maintain order.

Find the indices into a sorted DatetimeIndex self such that, if the corresponding elements in v were
inserted before the indices, the order of self would be preserved.

Parameters key : array_like
 Values to insert into self.
side : {'left', 'right'}, optional
 If ‘left’, the index of the first suitable location found is given. If ‘right’, return the
 last such index. If there is no suitable index, return either 0 or N (where N is the
 length of self).

sorter : 1-D array_like, optional
 Optional array of integer indices that sort self into ascending order. They are
 typically the result of np.argsort.

Returns indices : array of ints
 Array of insertion points with the same shape as v.

See also:
numpy.searchsorted

Notes

Binary search is used to find the required insertion points.

Examples

>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64
>>> x.searchsorted(4)
array([3])
>>> x.searchsorted([0, 4])
array([0, 2])
>>> x.searchsorted([0, 3], side='left')
pandas: powerful Python data analysis toolkit, Release 0.19.2

array([0, 2])
>>> x.searchsorted([1, 3], side='right')
array([1, 3])

>>> x = pd.Categorical(['apple', 'bread', 'bread', 'cheese', 'milk '])
[apple, bread, bread, cheese, milk]
Categories (4, object): [apple < bread < cheese < milk]
>>> x.searchsorted('bread')
array([1]) # Note: an array, not a scalar
>>> x.searchsorted(['bread'])
array([1])
>>> x.searchsorted(['bread', 'eggs'])
array([1, 4])
>>> x.searchsorted(['bread', 'eggs'], side='right')
array([3, 4]) # eggs before milk

pandas.DatetimeIndex.set_names

DatetimeIndex.set_names(names, level=None, inplace=False)
Set new names on index. Defaults to returning new index.

Parameters names : str or sequence
 name(s) to set

 level : int, level name, or sequence of int/level names (default None)
 If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
 Otherwise level must be None

 inplace : bool
 if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

Examples

>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')

Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')

idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
 (2, u'one'), (2, u'two')],
 names=['foo', 'bar'])

idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', 'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=['baz', 'quz'])

idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', 'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'bar'])
pandas.DatetimeIndex.set_value

DatetimeIndex.set_value(arr, key, value)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing

pandas.DatetimeIndex.shift

DatetimeIndex.shift(n, freq=None)
Specialized shift which produces a DatetimeIndex

Parameters
n : int
Periods to shift by
freq : DateOffset or timedelta-like, optional

Returns shifted : DatetimeIndex

pandas.DatetimeIndex.slice_indexer

DatetimeIndex.slice_indexer(start=None, end=None, step=None, kind=None)
Return indexer for specified label slice. Index.slice_indexer, customized to handle time slicing.
In addition to functionality provided by Index.slice_indexer, does the following:
• if both start and end are instances of datetime.time, it invokes indexer_between_time
• if start and end are both either string or None perform value-based selection in non-monotonic cases.

pandas.DatetimeIndex.slice_locs

DatetimeIndex.slice_locs(start=None, end=None, step=None, kind=None)
Compute slice locations for input labels.

Parameters
start : label, default None
If None, defaults to the beginning
end : label, default None
If None, defaults to the end
step : int, defaults None
If None, defaults to 1
kind : {'ix', 'loc', 'getitem'} or None

Returns start, end : int

pandas.DatetimeIndex.snap

DatetimeIndex.snap(freq='S')
Snap time stamps to nearest occurring frequency

pandas.DatetimeIndex.sort

DatetimeIndex.sort(*args, **kwargs)
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.DatetimeIndex.sort_values

`DatetimeIndex.sort_values(return_indexer=False, ascending=True)`

Return sorted copy of Index

pandas.DatetimeIndex.sortlevel

`DatetimeIndex.sortlevel(level=None, ascending=True, sort_remaining=None)`

For internal compatibility with the Index API

Sort the Index. This is for compat with MultiIndex

Parameters

- `ascending` : boolean, default True
 - False to sort in descending order

Returns

- `sorted_index` : Index

pandas.DatetimeIndex.str

`DatetimeIndex.str()`

Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

```python
>>> s.str.split('_')
>>> s.str.replace('_', '')
```

pandas.DatetimeIndex.strftime

`DatetimeIndex.strftime(date_format)`

Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in python string format doc

New in version 0.17.0.

Parameters

- `date_format` : str
 - date format string (e.g. “%Y-%m-%d”)

Returns

- ndarray of formatted strings

pandas.DatetimeIndex.summary

`DatetimeIndex.summary(name=None)`

return a summarized representation

pandas.DatetimeIndex.sym_diff

`DatetimeIndex.sym_diff(*args, **kwargs)`

pandas.DatetimeIndex.symmetric_difference

DatetimeIndex.symmetric_difference(other, result_name=None)

Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

Parameters

- **other**: Index or array-like
- **result_name**: str

Returns

- symmetric_difference: Index

Notes

symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
>>> idx2 = Index([2, 3, 4, 5])
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the ^ operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```

pandas.DatetimeIndex.take

DatetimeIndex.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)

return a new %(klass)s of the values selected by the indices

For internal compatibility with numpy arrays.

Parameters

- **indices**: list

 Indices to be taken

 - **axis**: int, optional

 The axis over which to select values, always 0.

 - **allow_fill**: bool, default True

 - **fill_value**: bool, default None

 If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn’t hold NA, raise ValueError

See also

- numpy.ndarray.take
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.DatetimeIndex.to_datetime

```
DatetimeIndex.to_datetime(dayfirst=False)
```

pandas.DatetimeIndex.to_julian_date

```
DatetimeIndex.to_julian_date()

Convert DatetimeIndex to Float64Index of Julian Dates. 0 Julian date is noon January 1, 4713 BC.
http://en.wikipedia.org/wiki/Julian_day
```

pandas.DatetimeIndex.to_native_types

```
DatetimeIndex.to_native_types(slicer=None, **kwargs)

slice and dice then format
```

pandas.DatetimeIndex.to_period

```
DatetimeIndex.to_period(freq=None)

Cast to PeriodIndex at a particular frequency
```

pandas.DatetimeIndex.to_perioddelta

```
DatetimeIndex.to_perioddelta(freq)

Calculates TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq. Used for vectorized offsets

New in version 0.17.0.

Parameters freq : Period frequency

Returns y : TimedeltaIndex
```

pandas.DatetimeIndex.to_pydatetime

```
DatetimeIndex.to_pydatetime()

Return DatetimeIndex as object ndarray of datetime.datetime objects

Returns datetimes : ndarray
```

pandas.DatetimeIndex.to_series

```
DatetimeIndex.to_series(keep_tz=False)

Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index

Parameters keep_tz : optional, defaults False.

return the data keeping the timezone.

If keep_tz is True:
If the timezone is not set, the resulting Series will have a datetime64[ns] dtype.

Otherwise the Series will have an datetime64[ns, tz] dtype; the tz will be preserved.

If keep_tz is False:

Series will have a datetime64[ns] dtype. TZ aware objects will have the tz removed.

Returns Series

**pandas.DatetimeIndex.tolist**

DatetimeIndex.tolist() return a list of the underlying data

**pandas.DatetimeIndex.transpose**

DatetimeIndex.transpose(*args, **kwargs) return the transpose, which is by definition self

**pandas.DatetimeIndex.tz_convert**

DatetimeIndex.tz_convert(tz) Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil)

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time.

Returns normalized : DatetimeIndex

Raises TypeError

If DatetimeIndex is tz-naive.

**pandas.DatetimeIndex.tz_localize**

DatetimeIndex.tz_localize(*args, **kwargs) Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex

Parameters tz : string, pytz.timezone, dateutil.tz.tzfile or None

Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time.

ambiguous : ‘infer’, bool-ndarray, ‘NaT’, default ‘raise’

- ‘infer’ will attempt to infer fall dst-transition hours based on order
- bool-ndarray where True signifies a DST time, False signifies a non-DST time (note that this flag is only applicable for ambiguous times)
- ‘NaT’ will return NaT where there are ambiguous times
• ‘raise’ will raise an AmbiguousTimeError if there are ambiguous times

events: ‘raise’, ‘coerce’, default ‘raise’

• ‘raise’ will raise a NonExistentTimeError if a timestamp is not valid in the specified timezone (e.g. due to a transition from or to DST time)

• ‘coerce’ will return NaT if the timestamp can not be converted into the specified timezone

New in version 0.19.0.

infer_dst: boolean, default False (DEPRECATED)

Attempt to infer fall dst-transition hours based on order

Returns localized : DatetimeIndex

Raises TypeError

If the DatetimeIndex is tz-aware and tz is not None.

pandas.DatetimeIndex.union

DatetimeIndex.union(other)

Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union

Parameters other : DatetimeIndex or array-like

Returns y : Index or DatetimeIndex

pandas.DatetimeIndex.union_many

DatetimeIndex.union_many(others)

A bit of a hack to accelerate unioning a collection of indexes

pandas.DatetimeIndex.unique

DatetimeIndex.unique()

Return Index of unique values in the object. Significantly faster than numpy.unique. Includes NA values. The order of the original is preserved.

Returns uniques : Index

pandas.DatetimeIndex.value_counts

DatetimeIndex.value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Parameters normalize : boolean, default False

If True then the object returned will contain the relative frequencies of the unique values.
sort : boolean, default True
Sort by values

ascending : boolean, default False
Sort in ascending order

bins : integer, optional
Rather than count values, group them into half-open bins, a convenience for
df.cut, only works with numeric data

dropna : boolean, default True
Don’t include counts of NaN.

Returns counts : Series

pandas.DatetimeIndex.view

DatetimeIndex.view(cls=None)

pandas.DatetimeIndex.where

DatetimeIndex.where(cond, other=None)
New in version 0.19.0.
Return an Index of same shape as self and whose corresponding entries are from self where cond is True
and otherwise are from other.

Parameters cond : boolean same length as self
other : scalar, or array-like

Time/Date Components

<table>
<thead>
<tr>
<th>DatetimeIndex.year</th>
<th>The year of the datetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.month</td>
<td>The month as January=1, December=12</td>
</tr>
<tr>
<td>DatetimeIndex.day</td>
<td>The days of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.hour</td>
<td>The hours of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.minute</td>
<td>The minutes of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.second</td>
<td>The seconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.microsecond</td>
<td>The microseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.nanosecond</td>
<td>The nanoseconds of the datetime</td>
</tr>
<tr>
<td>DatetimeIndex.date</td>
<td>Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DatetimeIndex.time</th>
<th>Returns numpy array of datetime.time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.dayofyear</td>
<td>The ordinal day of the year</td>
</tr>
<tr>
<td>DatetimeIndex.weekofyear</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>DatetimeIndex.week</td>
<td>The week ordinal of the year</td>
</tr>
<tr>
<td>DatetimeIndex.dayofweek</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>DatetimeIndex.weekday</td>
<td>The day of the week with Monday=0, Sunday=6</td>
</tr>
<tr>
<td>DatetimeIndex.weekday_name</td>
<td>The name of day in a week (ex: Friday)</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 35.110 – continued from previous page

<table>
<thead>
<tr>
<th>DatetimeIndex.quarter</th>
<th>The quarter of the date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DatetimeIndex.tz</td>
<td>get/set the frequency of the Index</td>
</tr>
<tr>
<td>DatetimeIndex.freq</td>
<td>Return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td>DatetimeIndex.freqstr</td>
<td>Return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td>DatetimeIndex.is_month_start</td>
<td>Logical indicating if first day of month (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_month_end</td>
<td>Logical indicating if last day of month (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_quarter_start</td>
<td>Logical indicating if first day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_quarter_end</td>
<td>Logical indicating if last day of quarter (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_year_start</td>
<td>Logical indicating if first day of year (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_year_end</td>
<td>Logical indicating if last day of year (defined by frequency)</td>
</tr>
<tr>
<td>DatetimeIndex.is_leap_year</td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
<tr>
<td>DatetimeIndex.inferred_freq</td>
<td>Logical indicating if the date belongs to a leap year</td>
</tr>
</tbody>
</table>

### Selecting

| DatetimeIndex.indexer_at_time(time[, asof]) | Select values at particular time of day (e.g. 9:00-9:30AM). |
| DatetimeIndex.indexer_between_time(...[, ...]) | Select values between particular times of day (e.g., 9:00-9:30AM). |

### Time-specific operations

| DatetimeIndex.normalize() | Return DatetimeIndex with times to midnight. |
| DatetimeIndex.strftime(date_format) | Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library. |
| DatetimeIndex.snap(freq) | Snap time stamps to nearest occurring frequency |
| DatetimeIndex.tz_convert(tz) | Convert tz-aware DatetimeIndex from one time zone to another (using |
| DatetimeIndex.tz_localize(*args, **kwargs) | Localize tz-naive DatetimeIndex to given time zone (using |
| DatetimeIndex.round(freq, *args, **kwargs) | round the index to the specified freq |
| DatetimeIndex.floor(freq) | floor the index to the specified freq |
| DatetimeIndex.ceil(freq) | ceil the index to the specified freq |

### Conversion

| DatetimeIndex.to_datetime([dayfirst]) | Cast to PeriodIndex at a particular frequency |
| DatetimeIndex.to_period(freq) | Cast to PeriodIndex at a particular frequency |
| DatetimeIndex.to_perioddelta(freq) | Calculates TimedeltaIndex of difference between index values and index converted to PeriodIndex at specified freq. |
| DatetimeIndex.to_pydatetime() | Return DatetimeIndex as object ndarray of datetime.datetime objects |

Continued on next page
TimedeltaIndex

| TimedeltaIndex | Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects |

class pandas.TimedeltaIndex

Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects

Parameters

data : array-like (1-dimensional), optional
Optional timedelta-like data to construct index with

unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional
which is an integer/float number

freq : a frequency for the index, optional

copy : bool
Make a copy of input ndarray

start : starting value, timedelta-like, optional
If data is None, start is used as the start point in generating regular timedelta data.

periods : int, optional, > 0
Number of periods to generate, if generating index. Takes precedence over end argument

date : end time, timedelta-like, optional
If periods is none, generated index will extend to first conforming time on or just past end argument

closed : string or None, default None
Make the interval closed with respect to the given frequency to the ‘left’, ‘right’, or both sides (None)

name : object
Name to be stored in the index

Notes

To learn more about the frequency strings, please see this link.
Attributes
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>T</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>as16</code></td>
<td>return object Index which contains boxed values</td>
</tr>
<tr>
<td><code>asobject</code></td>
<td>return the base object if the memory of the underlying data is</td>
</tr>
<tr>
<td><code>base</code></td>
<td>Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.</td>
</tr>
<tr>
<td><code>components</code></td>
<td>return the data pointer of the underlying data</td>
</tr>
<tr>
<td><code>data</code></td>
<td>Number of days for each element.</td>
</tr>
<tr>
<td><code>dtype</code></td>
<td>Return the frequency object as a string if its set, otherwise None</td>
</tr>
<tr>
<td><code>dtype_str</code></td>
<td>Number of days for each element.</td>
</tr>
<tr>
<td><code>flags</code></td>
<td>Number of microseconds (&gt;= 0 and less than 1 second) for each element.</td>
</tr>
<tr>
<td><code>freq</code></td>
<td>Number of microseconds (&gt;= 0 and less than 1 microsecond) for each element.</td>
</tr>
<tr>
<td><code>freqstr</code></td>
<td>Number of nanoseconds (&gt;= 0 and less than 1 microsecond) for each element.</td>
</tr>
<tr>
<td><code>has_duplicates</code></td>
<td>return the size of the dtype of the item of the underlying data</td>
</tr>
<tr>
<td><code>hasnans</code></td>
<td>Number of microseconds (&gt;= 0 and less than 1 second) for each element.</td>
</tr>
<tr>
<td><code>inferred_freq</code></td>
<td>Number of nanoseconds (&gt;= 0 and less than 1 microsecond) for each element.</td>
</tr>
<tr>
<td><code>inferred_type</code></td>
<td>return the number of bytes in the underlying data</td>
</tr>
<tr>
<td><code>is_all_dates</code></td>
<td>return the number of dimensions of the underlying data,</td>
</tr>
<tr>
<td><code>is_monotonic</code></td>
<td>alias for is_monotonic_increasing (deprecated)</td>
</tr>
<tr>
<td><code>is_monotonic_decreasing</code></td>
<td>return if the index is monotonic decreasing (only equal or less).</td>
</tr>
<tr>
<td><code>is_monotonic_increasing</code></td>
<td>return if the index is monotonic increasing (only equal or greater).</td>
</tr>
<tr>
<td><code>is_unique</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>itemsize</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>microseconds</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>name</code></td>
<td>Number of seconds (&gt;= 0 and less than 1 day) for each element.</td>
</tr>
<tr>
<td><code>names</code></td>
<td>return a tuple of the shape of the underlying data</td>
</tr>
<tr>
<td><code>nanoseconds</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>nbytes</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>ndim</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>nlevels</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>resolution</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>shape</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>size</code></td>
<td>return the strides of the underlying data</td>
</tr>
<tr>
<td><code>strides</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
<tr>
<td><code>values</code></td>
<td>return the number of elements in the underlying data</td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.TimedeltaIndex.asi8

TimedeltaIndex.asi8

pandas.TimedeltaIndex.asobject

TimedeltaIndex.asobject
    return object Index which contains boxed values
    
    this is an internal non-public method

pandas.TimedeltaIndex.base

TimedeltaIndex.base
    return the base object if the memory of the underlying data is shared

pandas.TimedeltaIndex.components

TimedeltaIndex.components
    Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas.
    
    Returns a DataFrame

pandas.TimedeltaIndex.data

TimedeltaIndex.data
    return the data pointer of the underlying data

pandas.TimedeltaIndex.days

TimedeltaIndex.days
    Number of days for each element.

pandas.TimedeltaIndex.dtype

TimedeltaIndex.dtype

pandas.TimedeltaIndex.dtype_str

TimedeltaIndex.dtype_str = None

pandas.TimedeltaIndex.flags

TimedeltaIndex.flags

pandas.TimedeltaIndex.freq

TimedeltaIndex.freq = None
pandas.TimedeltaIndex.freqstr

TimedeltaIndex.freqstr
Return the frequency object as a string if its set, otherwise None

pandas.TimedeltaIndex.has_duplicates

TimedeltaIndex.has_duplicates

pandas.TimedeltaIndex.hasnans

TimedeltaIndex.hasnans = None

pandas.TimedeltaIndex.inferred_freq

TimedeltaIndex.inferred_freq = None

pandas.TimedeltaIndex.inferred_type

TimedeltaIndex.inferred_type

pandas.TimedeltaIndex.is_all_dates

TimedeltaIndex.is_all_dates

pandas.TimedeltaIndex.is_monotonic

TimedeltaIndex.is_monotonic
alias for is_monotonic_increasing (deprecated)

pandas.TimedeltaIndex.is_monotonic_decreasing

TimedeltaIndex.is_monotonic_decreasing
return if the index is monotonic decreasing (only equal or decreasing) values.

pandas.TimedeltaIndex.is_monotonic_increasing

TimedeltaIndex.is_monotonic_increasing
return if the index is monotonic increasing (only equal or increasing) values.

pandas.TimedeltaIndex.is_unique

TimedeltaIndex.is_unique = None
pandas: powerful Python data analysis toolkit, Release 0.19.2

**pandas.TimedeltaIndex.itemsize**

```
TimedeltaIndex.itemsize
```

return the size of the dtype of the item of the underlying data

**pandas.TimedeltaIndex.microseconds**

```
TimedeltaIndex.microseconds
```

Number of microseconds (>= 0 and less than 1 second) for each element.

**pandas.TimedeltaIndex.name**

```
TimedeltaIndex.name = None
```

**pandas.TimedeltaIndex.names**

```
TimedeltaIndex.names
```

**pandas.TimedeltaIndex.nanoseconds**

```
TimedeltaIndex.nanoseconds
```

Number of nanoseconds (>= 0 and less than 1 microsecond) for each element.

**pandas.TimedeltaIndex.nbytes**

```
TimedeltaIndex.nbytes
```

return the number of bytes in the underlying data

**pandas.TimedeltaIndex.ndim**

```
TimedeltaIndex.ndim
```

return the number of dimensions of the underlying data, by definition 1

**pandas.TimedeltaIndex.nlevels**

```
TimedeltaIndex.nlevels
```

**pandas.TimedeltaIndex.resolution**

```
TimedeltaIndex.resolution = None
```

**pandas.TimedeltaIndex.seconds**

```
TimedeltaIndex.seconds
```

Number of seconds (>= 0 and less than 1 day) for each element.
pandas.TimedeltaIndex.shape

TimedeltaIndex.shape
return a tuple of the shape of the underlying data

pandas.TimedeltaIndex.size

TimedeltaIndex.size
return the number of elements in the underlying data

pandas.TimedeltaIndex.strides

TimedeltaIndex.strides
return the strides of the underlying data

pandas.TimedeltaIndex.values

TimedeltaIndex.values
return the underlying data as an ndarray

Methods

all([other])
any([other])
append(other) Append a collection of Index options together
argmax([axis]) Returns the indices of the maximum values along an axis.
argmin([axis]) Returns the indices of the minimum values along an axis.
argsort(*args, **kwargs) Returns the indices that would sort the index and its underlying data.
asof(label) For a sorted index, return the most recent label up to and including the passed label.
asof_locs(where, mask) where : array of timestamps
astype(dtype[, copy]) Create an Index with values cast to dtypes.
ceil(freq) ceil the index to the specified freq
copy([name, deep, dtype]) Make a copy of this object.
delete([loc]) Make a new DatetimeIndex with passed location(s) deleted.
difference(other) Return a new Index with elements from the index that are not in other.
drop(labels[, errors]) Make new Index with passed list of labels deleted
drop_duplicates(*args, **kwargs) Return Index with duplicate values removed
dropna([how]) Return Index without NA/NaN values
duplicated(*args, **kwargs) Return boolean np.ndarray denoting duplicate values
equals(other) Determines if two Index objects contain the same elements.
factorize([sort, na_sentinel]) Encode the object as an enumerated type or categorical variable

35.11. TimedeltaIndex
### Table 35.116 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fillna([value, downcast])</code></td>
<td>Fill NA/NaN values with the specified value</td>
</tr>
<tr>
<td><code>floor(freq)</code></td>
<td>floor the index to the specified freq</td>
</tr>
<tr>
<td><code>format([name, formatter])</code></td>
<td>Render a string representation of the Index</td>
</tr>
<tr>
<td><code>get_duplicates()</code></td>
<td></td>
</tr>
<tr>
<td><code>get_indexer(target[, method, limit, tolerance])</code></td>
<td>Compute indexer and mask for new index given the current index.</td>
</tr>
<tr>
<td><code>get_indexer_for(target, **kwargs)</code></td>
<td>guaranteed return of an indexer even when non-unique</td>
</tr>
<tr>
<td><code>get_indexer_non_unique(target)</code></td>
<td>return an indexer suitable for taking from a non unique index</td>
</tr>
<tr>
<td><code>get_level_values(level)</code></td>
<td>Return vector of label values for requested level, equal to the length</td>
</tr>
<tr>
<td><code>get_loc(key[, method, tolerance])</code></td>
<td>Get integer location for requested label</td>
</tr>
<tr>
<td><code>get_slice_bound(label, side, kind)</code></td>
<td>Calculate slice bound that corresponds to given label.</td>
</tr>
<tr>
<td><code>get_value(series, key)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>get_value_maybe_box(series, key)</code></td>
<td>return the underlying data as an ndarray</td>
</tr>
<tr>
<td><code>get_values()</code></td>
<td>Group the index labels by a given array of values.</td>
</tr>
<tr>
<td><code>holds_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>identical(other)</code></td>
<td>Similar to equals, but check that other comparable attributes are</td>
</tr>
<tr>
<td><code>insert(loc, item)</code></td>
<td>Make new Index inserting new item at location</td>
</tr>
<tr>
<td><code>intersection(other)</code></td>
<td>Specialized intersection for TimedeltaIndex objects.</td>
</tr>
<tr>
<td><code>is_()</code></td>
<td>More flexible, faster check like is but that works through views</td>
</tr>
<tr>
<td><code>is_boolean()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_categorical()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_floating()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_integer()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_lexsorted_for_tuple(tup)</code></td>
<td></td>
</tr>
<tr>
<td><code>is_mixed()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_numeric()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_object()</code></td>
<td></td>
</tr>
<tr>
<td><code>is_type_compatible(typ)</code></td>
<td></td>
</tr>
<tr>
<td><code>isin(values)</code></td>
<td>Compute boolean array of whether each index value is found in the</td>
</tr>
<tr>
<td><code>item()</code></td>
<td>return the first element of the underlying data as a python</td>
</tr>
</tbody>
</table>
| `join(other[, how, level, return_indexers])` | See Index.join
| `map(f)`                |                                                                               |
| `max([axis])`           | Return the maximum value of the Index or maximum along an axis.              |
| `memory_usage([deep])`  | Memory usage of my values                                                   |
| `min([axis])`           | Return the minimum value of the Index or minimum along an axis.              |
| `nunique([dropna])`     | Return number of unique elements in the object.                             |
| `order([return_indexer, ascending])` | Return sorted copy of Index                                                  |
| `putmask(mask, value)`  | return a new Index of the values set with the mask                           |
| `ravel([order])`        | return an ndarray of the flattened values of the underlying data            |

**Continued on next page**
Table 35.116 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reindex(target[, method, level, limit, ...])</code></td>
<td>Create index with target’s values (move/add/delete values as necessary)</td>
</tr>
<tr>
<td><code>rename(name[, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>repeat(repeats, \*args, \*\*kwargs)</code></td>
<td>Analogous to ndarray.repeat</td>
</tr>
<tr>
<td><code>reshape(\*args, \*\*kwargs)</code></td>
<td>NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.</td>
</tr>
<tr>
<td><code>round(freq, \*args, \*\*kwargs)</code></td>
<td>round the index to the specified freq</td>
</tr>
<tr>
<td><code>searchsorted(key[, side, sorter])</code></td>
<td>Find indices where elements should be inserted to maintain order.</td>
</tr>
<tr>
<td><code>set_names(names[, level, inplace])</code></td>
<td>Set new names on index.</td>
</tr>
<tr>
<td><code>set_value(arr, key, value)</code></td>
<td>Fast lookup of value from 1-dimensional ndarray.</td>
</tr>
<tr>
<td><code>shift(n[, freq])</code></td>
<td>Specialized shift which produces a DatetimeIndex</td>
</tr>
<tr>
<td><code>slice_indexer([start, end, step, kind])</code></td>
<td>For an ordered Index, compute the slice indexer for input labels and</td>
</tr>
<tr>
<td><code>slice_locs([start, end, step, kind])</code></td>
<td>Compute slice locations for input labels.</td>
</tr>
<tr>
<td><code>sort(\*args, \*\*kwargs)</code></td>
<td></td>
</tr>
<tr>
<td><code>sort_values([return_indexer, ascending])</code></td>
<td>Return sorted copy of Index</td>
</tr>
<tr>
<td><code>sortlevel([level, ascending, sort_remaining])</code></td>
<td>For internal compatibility with with the Index API</td>
</tr>
<tr>
<td><code>str</code></td>
<td>alias of StringMethods</td>
</tr>
<tr>
<td><code>summary([name])</code></td>
<td>return a summarized representation</td>
</tr>
<tr>
<td><code>sym_diff(\*args, \*\*kwargs)</code></td>
<td>Compute the symmetric difference of two Index objects.</td>
</tr>
<tr>
<td><code>symmetric_difference(other[, result_name])</code></td>
<td>return a new %(klass)s of the values selected by the indices</td>
</tr>
<tr>
<td><code>take(indices[, axis, allow_fill, fill_value])</code></td>
<td>return a new %(klass)s of the values selected by the indices</td>
</tr>
<tr>
<td><code>to_datetime([dayfirst])</code></td>
<td>DEPRECATED: use pandas.to_datetime() instead.</td>
</tr>
<tr>
<td><code>to_native_types([slicer])</code></td>
<td>slice and dice then format</td>
</tr>
<tr>
<td><code>to_pytdedelta()</code></td>
<td>Return TimedeltaIndex as object ndarray of date-time.timedelta objects</td>
</tr>
<tr>
<td><code>to_series(\*\*kwargs)</code></td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td><code>tolist()</code></td>
<td>return a list of the underlying data</td>
</tr>
<tr>
<td><code>total_seconds()</code></td>
<td>Total duration of each element expressed in seconds.</td>
</tr>
<tr>
<td><code>transpose(\*args, \*\*kwargs)</code></td>
<td>return the transpose, which is by definition self</td>
</tr>
<tr>
<td><code>union(other)</code></td>
<td>Specialized union for TimedeltaIndex objects.</td>
</tr>
<tr>
<td><code>unique()</code></td>
<td>Return Index of unique values in the object.</td>
</tr>
<tr>
<td><code>value_counts([normalize, sort, ascending, ...])</code></td>
<td>Returns object containing counts of unique values.</td>
</tr>
<tr>
<td><code>view([cls])</code></td>
<td></td>
</tr>
<tr>
<td><code>where(cond[, other])</code></td>
<td>New in version 0.19.0.</td>
</tr>
</tbody>
</table>

**pandas.TimedeltaIndex.all**

TimedeltaIndex.all(other=None)

**pandas.TimedeltaIndex.any**

TimedeltaIndex.any(other=None)
pandas.TimedeltaIndex.append

TimedeltaIndex.append(other)

Append a collection of Index options together

Parameters

- other : Index or list/tuple of indices

Returns

- appended : Index

pandas.TimedeltaIndex.argmax

TimedeltaIndex.argmax(axis=None, *args, **kwargs)

Returns the indices of the maximum values along an axis. See numpy.ndarray.argmax for more information on the axis parameter.

See also:

numpy.ndarray.argmax

pandas.TimedeltaIndex.argmin

TimedeltaIndex.argmin(axis=None, *args, **kwargs)

Returns the indices of the minimum values along an axis. See numpy.ndarray.argmin for more information on the axis parameter.

See also:

numpy.ndarray.argmin

pandas.TimedeltaIndex.argsort

TimedeltaIndex.argsort(*args, **kwargs)

Returns the indices that would sort the index and its underlying data.

Returns

- argsorted : numpy array

See also:

numpy.ndarray.argsort

pandas.TimedeltaIndex.asof

TimedeltaIndex.asof(label)

For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found.

See also:

get_loc asof is a thin wrapper around get_loc with method='pad'

pandas.TimedeltaIndex.asof_locs

TimedeltaIndex.asof_locs(where, mask)

where : array of timestamps
mask : array of booleans where data is not NA
pandas.TimedeltaIndex.astype

TimedeltaIndex.astype(dtype, copy=True)
Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.

Parameters dtype : numpy dtype or pandas type
    copy : bool, default True
By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.

New in version 0.19.0.

pandas.TimedeltaIndex.ceil

TimedeltaIndex.ceil(freq)
ceil the index to the specified freq

Parameters freq : freq string/object

Returns index of same type

Raises ValueError if the freq cannot be converted

pandas.TimedeltaIndex.copy

TimedeltaIndex.copy(name=None, deep=False, dtype=None, **kwargs)
Make a copy of this object. Name and dtype sets those attributes on the new object.

Parameters name : string, optional
deep : boolean, default False
dtype : numpy dtype or pandas type

Returns copy : Index

Notes
In most cases, there should be no functional difference from using deep, but if deep is passed it will attempt to deepcopy.

pandas.TimedeltaIndex.delete

TimedeltaIndex.delete(loc)
Make a new DatetimeIndex with passed location(s) deleted.

Parameters loc: int, slice or array of ints
    Indicate which sub-arrays to remove.

Returns new_index : TimedeltaIndex
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.TimedeltaIndex.difference

TimedeltaIndex.difference(other)
Return a new Index with elements from the index that are not in other.
This is the set difference of two Index objects. It’s sorted if sorting is possible.

Parameters other : Index or array-like

Returns difference : Index

Examples

```python
>>> idx1 = pd.Index([1, 2, 3, 4])
>>> idx2 = pd.Index([3, 4, 5, 6])
>>> idx1.difference(idx2)
Int64Index([1, 2], dtype='int64')
```

pandas.TimedeltaIndex.drop

TimedeltaIndex.drop(labels, errors=’raise’)
Make new Index with passed list of labels deleted

Parameters labels : array-like

errors : {‘ignore’, ‘raise’}, default ‘raise’
If ‘ignore’, suppress error and existing labels are dropped.

Returns dropped : Index

pandas.TimedeltaIndex.drop_duplicates

TimedeltaIndex.drop_duplicates(*args, **kwargs)
Return Index with duplicate values removed

Parameters keep : {‘first’, ‘last’, False}, default ‘first’

• first : Drop duplicates except for the first occurrence.
• last : Drop duplicates except for the last occurrence.
• False : Drop all duplicates.

take_last : deprecated

Returns deduplicated : Index

pandas.TimedeltaIndex.dropna

TimedeltaIndex.dropna(how=’any’)
Return Index without NA/NaN values

Parameters how : {‘any’, ‘all’}, default ‘any’
If the Index is a MultiIndex, drop the value when any or all levels are NaN.

Returns valid : Index
pandas.TimedeltaIndex.duplicated

TimedeltaIndex.duplicated(*args, **kwargs)
Return boolean np.ndarray denoting duplicate values

Parameters keep : {'first', 'last', False}, default ‘first’
- first : Mark duplicates as True except for the first occurrence.
- last : Mark duplicates as True except for the last occurrence.
- False : Mark all duplicates as True.

take_last : deprecated

Returns duplicated : np.ndarray

pandas.TimedeltaIndex.equals

TimedeltaIndex.equals(other)
Determines if two Index objects contain the same elements.

pandas.TimedeltaIndex.factorize

TimedeltaIndex.factorize(sort=False, na_sentinel=-1)
Encode the object as an enumerated type or categorical variable

Parameters sort : boolean, default False
    Sort by values

na_sentinel : int, default -1
    Value to mark “not found”

Returns labels : the indexer to the original array
uniques : the unique Index

pandas.TimedeltaIndex.fillna

TimedeltaIndex.fillna(value=None, downcast=None)
Fill NA/NaN values with the specified value

Parameters value : scalar
    Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes.

downcast : dict, default is None
    a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : %(klass)s
pandas.TimedeltaIndex.floor

TimedeltaIndex.floor(freq)
floor the index to the specified freq

Parameters
freq : freq string/object

Returns
index of same type

Raises
ValueError if the freq cannot be converted

pandas.TimedeltaIndex.format

TimedeltaIndex.format(name=False, formatter=None, **kwargs)
Render a string representation of the Index

pandas.TimedeltaIndex.get_duplicates

TimedeltaIndex.get_duplicates()

pandas.TimedeltaIndex.get_indexer

TimedeltaIndex.get_indexer(target, method=None, limit=None, tolerance=None)
Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.

Parameters
- target : Index
  - default: exact matches only.
  - pad / ffill: find the PREVIOUS index value if no exact match.
  - backfill / bfill: use NEXT index value if no exact match.
  - nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.
- limit : int, optional
  Maximum number of consecutive labels in target to match for inexact matches.
- tolerance : optional
  Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation
  
  \[ \text{abs}(\text{index[indexer]} - \text{target}) \leq \text{tolerance}. \]

  New in version 0.17.0.

Returns
- indexer : ndarray of int
  Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.
Examples

```python
>>> indexer = index.get_indexer(new_index)
>>> new_values = cur_values.take(indexer)
```

**pandas.TimedeltaIndex.get_indexer_for**

TimedeltaIndex.get_indexer_for(target, **kwargs)
guaranteed return of an indexer even when non-unique

**pandas.TimedeltaIndex.get_indexer_non_unique**

TimedeltaIndex.get_indexer_non_unique(target)
return an indexer suitable for taking from a non unique index return the labels in the same order as the target, and return a missing indexer into the target (missing are marked as -1 in the indexer); target must be an iterable

**pandas.TimedeltaIndex.get_level_values**

TimedeltaIndex.get_level_values(level)
Return vector of label values for requested level, equal to the length of the index

Parameters level : int

Returns values : ndarray

**pandas.TimedeltaIndex.get_loc**

TimedeltaIndex.get_loc(key, method=None, tolerance=None)
Get integer location for requested label

Returns loc : int

**pandas.TimedeltaIndex.get_slice_bound**

TimedeltaIndex.get_slice_bound(label, side, kind)
Calculate slice bound that corresponds to given label.

Returns leftmost (one-past-the-rightmost if side=='right') position of given label.

Parameters label : object
side : {'left', 'right'}
kind : {'ix', 'loc', 'getitem'}

**pandas.TimedeltaIndex.get_value**

TimedeltaIndex.get_value(series, key)
Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing
pandas.TimedeltaIndex.get_value_maybe_box

TimedeltaIndex.get_value_maybe_box(series, key)

pandas.TimedeltaIndex.get_values

TimedeltaIndex.get_values()
return the underlying data as an ndarray

pandas.TimedeltaIndex.groupby

TimedeltaIndex.groupby(values)
Group the index labels by a given array of values.
Parameters values : array
Values used to determine the groups.
Returns groups : dict
{group name -> group labels}

pandas.TimedeltaIndex.holds_integer

TimedeltaIndex.holds_integer()

pandas.TimedeltaIndex.identical

TimedeltaIndex.identical(other)
Similar to equals, but check that other comparable attributes are also equal

pandas.TimedeltaIndex.insert

TimedeltaIndex.insert(loc, item)
Make new Index inserting new item at location
Parameters loc : int
item : object
if not either a Python datetime or a numpy integer-like, returned Index dtype will
be object rather than datetime.
Returns new_index : Index

pandas.TimedeltaIndex.intersection

TimedeltaIndex.intersection(other)
Specialized intersection for TimedeltaIndex objects. May be much faster than Index.intersection
Parameters other : TimedeltaIndex or array-like
Returns y : Index or TimedeltaIndex
pandas.TimedeltaIndex.is

TimedeltaIndex.is(other)

More flexible, faster check like is but that works through views

Note: this is not the same as Index.identical(), which checks that metadata is also the same.

Parameters other : object

other object to compare against.

Returns True if both have same underlying data, False otherwise : bool

pandas.TimedeltaIndex.is_boolean

TimedeltaIndex.is_boolean()

pandas.TimedeltaIndex.is_categorical

TimedeltaIndex.is_categorical()

pandas.TimedeltaIndex.is_floating

TimedeltaIndex.is_floating()

pandas.TimedeltaIndex.is_integer

TimedeltaIndex.is_integer()

pandas.TimedeltaIndex.is_lexsorted_for_tuple

TimedeltaIndex.is_lexsorted_for_tuple(tup)

pandas.TimedeltaIndex.is_mixed

TimedeltaIndex.is_mixed()

pandas.TimedeltaIndex.is_numeric

TimedeltaIndex.is_numeric()

pandas.TimedeltaIndex.is_object

TimedeltaIndex.is_object()

pandas.TimedeltaIndex.is_type_compatible

TimedeltaIndex.is_type_compatible(typ)
pandas.TimedeltaIndex.isin

TimedeltaIndex.isin(values)
Compute boolean array of whether each index value is found in the passed set of values

Parameters values : set or sequence of values

Returns is_contained : ndarray (boolean dtype)

pandas.TimedeltaIndex.item

TimedeltaIndex.item()
return the first element of the underlying data as a python scalar

pandas.TimedeltaIndex.join

TimedeltaIndex.join(other, how='left', level=None, return_indexers=False)
See Index.join

pandas.TimedeltaIndex.map

TimedeltaIndex.map(f)

pandas.TimedeltaIndex.max

TimedeltaIndex.max(axis=None, *args, **kwargs)
Return the maximum value of the Index or maximum along an axis.

See also:
numpy.ndarray.max

pandas.TimedeltaIndex.memory_usage

TimedeltaIndex.memory_usage(deep=False)
Memory usage of my values

Parameters deep : bool
    Introspect the data deeply, interrogate object dtypes for system-level memory consumption

Returns bytes used

See also:
numpy.ndarray.nbytes

Notes

Memory usage does not include memory consumed by elements that are not components of the array if deep=False
pandas.TimedeltaIndex.min

TimedeltaIndex.min(axis=None, *args, **kwargs)
Return the minimum value of the Index or minimum along an axis.

See also:
numpy.ndarray.min

pandas.TimedeltaIndex.nunique

TimedeltaIndex.nunique(dropna=True)
Return number of unique elements in the object.
Excludes NA values by default.

Parameters  dropna : boolean, default True
Don’t include NaN in the count.

Returns  nunique : int

pandas.TimedeltaIndex.order

TimedeltaIndex.order(return_indexer=False, ascending=True)
Return sorted copy of Index
DEPRECATED: use Index.sort_values()

pandas.TimedeltaIndex.putmask

TimedeltaIndex.putmask(mask, value)
return a new Index of the values set with the mask

See also:
numpy.ndarray.putmask

pandas.TimedeltaIndex.ravel

TimedeltaIndex.ravel(order='C')
return an ndarray of the flattened values of the underlying data

See also:
numpy.ndarray.ravel

pandas.TimedeltaIndex.reindex

TimedeltaIndex.reindex(target, method=None, level=None, limit=None, tolerance=None)
Create index with target’s values (move/add/delete values as necessary)

Parameters  target : an iterable

Returns  new_index : pd.Index
Resulting index
indexer : np.ndarray or None

Indices of output values in original index

### pandas.TimedeltaIndex.rename

TimedeltaIndex.rename(name, inplace=False)

Set new names on index. Defaults to returning new index.

**Parameters**

- **name** : str or list
  
  name to set

- **inplace** : bool
  
  if True, mutates in place

**Returns**

new index (of same type and class...etc) [if inplace, returns None]

### pandas.TimedeltaIndex.repeat

TimedeltaIndex.repeat(repeats, *args, **kwargs)

Analogous to ndarray.repeat

### pandas.TimedeltaIndex.reshape

TimedeltaIndex.reshape(*args, **kwargs)

NOT IMPLEMENTED: do not call this method, as reshaping is not supported for Index objects and will raise an error.

Reshape an Index.

### pandas.TimedeltaIndex.round

TimedeltaIndex.round(freq, *args, **kwargs)

round the index to the specified freq

**Parameters**

- **freq** : freq string/object

**Returns**

index of same type

**Raises**

ValueError if the freq cannot be converted

### pandas.TimedeltaIndex.searchsorted

TimedeltaIndex.searchsorted(key, side='left', sorter=None)

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted TimedeltaIndex self such that, if the corresponding elements in v were inserted before the indices, the order of self would be preserved.

**Parameters**

- **key** : array_like
  
  Values to insert into self.

- **side** : {'left', 'right'}, optional
If ‘left’, the index of the first suitable location found is given. If ‘right’, return the
last such index. If there is no suitable index, return either 0 or N (where N is the
length of self).

**sorter**: 1-D array_like, optional

Optional array of integer indices that sort self into ascending order. They are
typically the result of np.argsort.

**Returns** indices : array of ints

Array of insertion points with the same shape as v.

**See also:**

numpy.searchsorted

**Notes**

Binary search is used to find the required insertion points.

**Examples**

```python
>>> x = pd.Series([1, 2, 3])
>>> x
0 1
1 2
2 3
dtype: int64
>>> x.searchsorted(4)
array([3])
>>> x.searchsorted([0, 4])
array([0, 3])
>>> x.searchsorted([1, 3], side='left')
array([0, 2])
>>> x.searchsorted([1, 3], side='right')
array([1, 3])
>>>
```
name(s) to set

level : int, level name, or sequence of int/level names (default None)

If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels).
Otherwise level must be None

inplace : bool

if True, mutates in place

Returns new index (of same type and class...etc) [if inplace, returns None]

Examples

```python
>>> Index([1, 2, 3, 4]).set_names('foo')
Int64Index([1, 2, 3, 4], dtype='int64')

>>> Index([1, 2, 3, 4]).set_names(['foo'])
Int64Index([1, 2, 3, 4], dtype='int64')

>>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'),
 (2, u'one'), (2, u'two')],
 names=['foo', 'bar'])

>>> idx.set_names(['baz', 'quz'])
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'quz'])

>>> idx.set_names('baz', level=0)
MultiIndex(levels=[[1, 2], [u'one', u'two']],
 labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
 names=[u'baz', u'bar'])
```

pandas.TimedeltaIndex.set_value

TimedeltaIndex.set_value(arr, key, value)

Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing

pandas.TimedeltaIndex.shift

TimedeltaIndex.shift(n, freq=None)

Specialized shift which produces a DatetimeIndex

Parameters

- **n** : int
  Periods to shift by

- **freq** : DateOffset or timedelta-like, optional

Returns shifted : DatetimeIndex

pandas.TimedeltaIndex.slice_indexer

TimedeltaIndex.slice_indexer(start=None, end=None, step=None, kind=None)

For an ordered Index, compute the slice indexer for input labels and step

Parameters

- **start** : label, default None
  If None, defaults to the beginning
end : label, default None
    If None, defaults to the end
step : int, default None
kind : string, default None
Returns indexer : ndarray or slice

Notes

This function assumes that the data is sorted, so use at your own peril

**pandas.TimedeltaIndex.slice_locs**

TimedeltaIndex.slice_locs(start=None, end=None, step=None, kind=None)
Compute slice locations for input labels.

Parameters start : label, default None
    If None, defaults to the beginning
end : label, default None
    If None, defaults to the end
step : int, defaults None
    If None, defaults to 1
kind : {'ix', 'loc', 'getitem'} or None
Returns start, end : int

**pandas.TimedeltaIndex.sort**

TimedeltaIndex.sort(*args, **kwargs)

**pandas.TimedeltaIndex.sort_values**

TimedeltaIndex.sort_values(return_indexer=False, ascending=True)
Return sorted copy of Index

**pandas.TimedeltaIndex.sortlevel**

TimedeltaIndex.sortlevel(level=None, ascending=True, sort_remaining=None)
Sort the Index. This is for compat with MultiIndex

Parameters ascending : boolean, default True
    False to sort in descending order
level, sort_remaining are compat parameters
Returns sorted_index : Index
pandas.TimedeltaIndex.str

TimedeltaIndex.str()
Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples

```python
>>> s.str.split('_')
```
```python
>>> s.str.replace('_', '')
```

pandas.TimedeltaIndex.summary

TimedeltaIndex.summary(name=None)
return a summarized representation

pandas.TimedeltaIndex.sym_diff

TimedeltaIndex.sym_diff(*args, **kwargs)

pandas.TimedeltaIndex.symmetric_difference

TimedeltaIndex.symmetric_difference(other, result_name=None)
Compute the symmetric difference of two Index objects. It’s sorted if sorting is possible.

Parameters

other : Index or array-like
result_name : str

Returns

symmetric_difference : Index

Notes

symmetric_difference contains elements that appear in either idx1 or idx2 but not both. Equivalent to the Index created by idx1.difference(idx2) | idx2.difference(idx1) with duplicates dropped.

Examples

```python
>>> idx1 = Index([1, 2, 3, 4])
```
```python
>>> idx2 = Index([2, 3, 4, 5])
```
```python
>>> idx1.symmetric_difference(idx2)
Int64Index([1, 5], dtype='int64')
```

You can also use the ^ operator:

```python
>>> idx1 ^ idx2
Int64Index([1, 5], dtype='int64')
```
pandas.TimedelatIndex.take

TimedelatIndex.take(indices, axis=0, allow_fill=True, fill_value=None, **kwargs)
return a new %(klass)s of the values selected by the indices
For internal compatibility with numpy arrays.

Parameters indices : list
Indices to be taken
axis : int, optional
The axis over which to select values, always 0.
allow_fill : bool, default True
fill_value : bool, default None
If allow_fill=True and fill_value is not None, indices specified by -1 is regarded
as NA. If Index doesn’t hold NA, raise ValueError

See also:
numpy.ndarray.take

pandas.TimedelatIndex.to_datetime

TimedelatIndex.to_datetime(dayfirst=False)
DEPRECATED: use pandas.to_datetime() instead.
For an Index containing strings or datetime.datetime objects, attempt conversion to DatetimeIndex

pandas.TimedelatIndex.to_native_types

TimedelatIndex.to_native_types(slicer=None, **kwargs)
slice and dice then format

pandas.TimedelatIndex.to_pytimedelta

TimedelatIndex.to_pytimedelta()
Return TimedelatIndex as object ndarray of datetime.timedelta objects

Returns datetimes : ndarray

pandas.TimedelatIndex.to_series

TimedelatIndex.to_series(**kwargs)
Create a Series with both index and values equal to the index keys useful with map for returning an indexer
based on an index

Returns Series : dtype will be based on the type of the Index values.

pandas.TimedelatIndex.tolist

TimedelatIndex.tolist()
return a list of the underlying data
**pandas.TimedeltaIndex.total_seconds**

TimedeltaIndex

```python
total_seconds()
```

Total duration of each element expressed in seconds.

New in version 0.17.0.

**pandas.TimedeltaIndex.transpose**

TimedeltaIndex

```python
transpose(*args, **kwargs)
```

return the transpose, which is by definition self

**pandas.TimedeltaIndex.union**

TimedeltaIndex

```python
union(other)
```

Specialized union for TimedeltaIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union

**Parameters**

- **other**: TimedeltaIndex or array-like

**Returns**

- **y**: Index or TimedeltaIndex

**pandas.TimedeltaIndex.unique**

TimedeltaIndex

```python
unique()
```

Return Index of unique values in the object. Significantly faster than numpy.unique. Includes NA values. The order of the original is preserved.

**Returns**

- **uniques**: Index

**pandas.TimedeltaIndex.value_counts**

TimedeltaIndex

```python
value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
```

Returns object containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

**Parameters**

- **normalize**: boolean, default False
  
  If True then the object returned will contain the relative frequencies of the unique values.

- **sort**: boolean, default True
  
  Sort by values

- **ascending**: boolean, default False
  
  Sort in ascending order

- **bins**: integer, optional
  
  Rather than count values, group them into half-open bins, a convenience for pd.cut, only works with numeric data

- **dropna**: boolean, default True
Don’t include counts of NaN.

**Returns**  
**counts** : Series

*pandas.TimedeltaIndex.view*

TimedeltaIndex.

view(cls=None)

*pandas.TimedeltaIndex.where*

TimedeltaIndex.

where(cond, other=None)

New in version 0.19.0.

Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other.

**Parameters**  
**cond** : boolean same length as self  
**other** : scalar, or array-like

**Components**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimedeltaIndex.days</td>
<td>Number of days for each element.</td>
</tr>
<tr>
<td>TimedeltaIndex.seconds</td>
<td>Number of seconds (&gt;= 0 and less than 1 day) for each element.</td>
</tr>
<tr>
<td>TimedeltaIndex.microseconds</td>
<td>Number of microseconds (&gt;= 0 and less than 1 second) for each element.</td>
</tr>
<tr>
<td>TimedeltaIndex.nanoseconds</td>
<td>Number of nanoseconds (&gt;= 0 and less than 1 microsecond) for each element.</td>
</tr>
<tr>
<td>TimedeltaIndex.components</td>
<td>Return a dataframe of the components (days, hours, minutes, seconds,...)</td>
</tr>
<tr>
<td>TimedeltaIndex.inferred_freq</td>
<td>Conversion by inferring the units of the Timedeltas.</td>
</tr>
</tbody>
</table>

**Conversion**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimedeltaIndex.to_pytdelta()</td>
<td>Return TimedeltaIndex as object ndarray of datetime.timedelta objects</td>
</tr>
<tr>
<td>TimedeltaIndex.to_series(<strong>kwargs</strong>)</td>
<td>Create a Series with both index and values equal to the index keys</td>
</tr>
<tr>
<td>TimedeltaIndex.round(freq, <strong>kwargs</strong>)</td>
<td>round the index to the specified freq</td>
</tr>
<tr>
<td>TimedeltaIndex.floor(freq)</td>
<td>floor the index to the specified freq</td>
</tr>
<tr>
<td>TimedeltaIndex.ceil(freq)</td>
<td>ceil the index to the specified freq</td>
</tr>
</tbody>
</table>

**Window**

Rolling objects are returned by .rolling calls:  
pandas.DataFrame.rolling(),  
pandas.Series.rolling(), etc.  
Expanding objects are returned by .expanding calls:  
pandas.DataFrame.expanding(),  
pandas.Series.expanding(), etc.  
EWM objects are returned by .ewm calls:  
pandas.DataFrame.ewm(),  
pandas.Series.ewm(), etc.
Standard moving window functions

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Rolling.count()</code></td>
<td>rolling count of number of non-NaN observations inside provided window.</td>
</tr>
<tr>
<td><code>Rolling.sum(*args, \*\*kwargs)</code></td>
<td>rolling sum</td>
</tr>
<tr>
<td><code>Rolling.mean(*args, \*\*kwargs)</code></td>
<td>rolling mean</td>
</tr>
<tr>
<td><code>Rolling.median(*\*kwargs)</code></td>
<td>rolling median</td>
</tr>
<tr>
<td><code>Rolling.var([ddof])</code></td>
<td>rolling variance</td>
</tr>
<tr>
<td><code>Rolling.std([ddof])</code></td>
<td>rolling standard deviation</td>
</tr>
<tr>
<td><code>Rolling.min(*args, \*\*kwargs)</code></td>
<td>rolling minimum</td>
</tr>
<tr>
<td><code>Rolling.max(*args, \*\*kwargs)</code></td>
<td>rolling maximum</td>
</tr>
<tr>
<td><code>Rolling.corr([other, pairwise])</code></td>
<td>rolling sample correlation</td>
</tr>
<tr>
<td><code>Rolling.cov([other, pairwise, ddof])</code></td>
<td>rolling sample covariance</td>
</tr>
<tr>
<td><code>Rolling.skew(*\*kwargs)</code></td>
<td>Unbiased rolling skewness</td>
</tr>
<tr>
<td><code>Rolling.kurt(*\*kwargs)</code></td>
<td>Unbiased rolling kurtosis</td>
</tr>
<tr>
<td><code>Rolling.apply(func[, args, kwargs])</code></td>
<td>rolling function apply</td>
</tr>
<tr>
<td><code>Rolling.quantile(quantile, \*\*kwargs)</code></td>
<td>rolling quantile</td>
</tr>
<tr>
<td><code>Window.mean(*args, \*\*kwargs)</code></td>
<td>window mean</td>
</tr>
<tr>
<td><code>Window.sum(*args, \*\*kwargs)</code></td>
<td>window sum</td>
</tr>
</tbody>
</table>

**pandas.core.window.Rolling.count**

Rolling.count()

rolling count of number of non-NaN observations inside provided window.

Returns same type as input

See also: `pandas.Series.rolling`, `pandas.DataFrame.rolling`

**pandas.core.window.Rolling.sum**

Rolling.sum(*args, **kwargs)

rolling sum

Parameters how : string, default None (DEPRECATED)

Method for down- or re-sampling

Returns same type as input

See also: `pandas.Series.rolling`, `pandas.DataFrame.rolling`

**pandas.core.window.Rolling.mean**

Rolling.mean(*args, **kwargs)

rolling mean

Parameters how : string, default None (DEPRECATED)

Method for down- or re-sampling
**Returns** same type as input

See also:

`pandas.Series.rolling`, `pandas.DataFrame.rolling`

### `pandas.core.window.Rolling.median`

`Rolling.median(**kwargs)`

rolling median

**Parameters**

- `how`: string, default ‘median’ (DEPRECATED)
  - Method for down- or re-sampling

**Returns** same type as input

See also:

`pandas.Series.rolling`, `pandas.DataFrame.rolling`

### `pandas.core.window.Rolling.var`

`Rolling.var(ddof=1, *args, **kwargs)`

rolling variance

**Parameters**

- `ddof`: int, default 1
  - Delta Degrees of Freedom. The divisor used in calculations is $N - \text{ddof}$, where $N$ represents the number of elements.

**Returns** same type as input

See also:

`pandas.Series.rolling`, `pandas.DataFrame.rolling`

### `pandas.core.window.Rolling.std`

`Rolling.std(ddof=1, *args, **kwargs)`

rolling standard deviation

**Parameters**

- `ddof`: int, default 1
  - Delta Degrees of Freedom. The divisor used in calculations is $N - \text{ddof}$, where $N$ represents the number of elements.

**Returns** same type as input

See also:

`pandas.Series.rolling`, `pandas.DataFrame.rolling`

### `pandas.core.window.Rolling.min`

`Rolling.min(*args, **kwargs)`

rolling minimum

**Parameters**

- `how`: string, default ‘min’ (DEPRECATED)
  - Method for down- or re-sampling
**pandas**: powerful Python data analysis toolkit, Release 0.19.2

**Returns** same type as input

**See also:**

```
pandas.Series.rolling, pandas.DataFrame.rolling
```

---

### pandas.core.window.Rolling.max

```
Rolling.max(*args, **kwargs)
```

Rolling maximum

**Parameters**

- `how` : string, default ‘max’ (DEPRECATED)
  
  Method for down- or re-sampling

**Returns** same type as input

**See also:**

```
pandas.Series.rolling, pandas.DataFrame.rolling
```

---

### pandas.core.window.Rolling.corr

```
Rolling.corr(other=None, pairwise=None, **kwargs)
```

Rolling sample correlation

**Parameters**

- `other` : Series, DataFrame, or ndarray, optional
  
  if not supplied then will default to self and produce pairwise output

- `pairwise` : bool, default None
  
  If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

**Returns** same type as input

**See also:**

```
pandas.Series.rolling, pandas.DataFrame.rolling
```

---

### pandas.core.window.Rolling.cov

```
Rolling.cov(other=None, pairwise=None, ddof=1, **kwargs)
```

Rolling sample covariance

**Parameters**

- `other` : Series, DataFrame, or ndarray, optional
  
  if not supplied then will default to self and produce pairwise output

- `pairwise` : bool, default None
  
  If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

- `ddof` : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is $N - \text{ddof}$, where $N$ represents the number of elements.

**Returns** same type as input

**See also:**
- `pandas.Series.rolling`
- `pandas.DataFrame.rolling`

### pandas.core.window.Rolling.skew

Rolling.**skew**(**kwargs**)

Unbiased rolling skewness

**Returns** same type as input

**See also:**
- `pandas.Series.rolling`
- `pandas.DataFrame.rolling`

### pandas.core.window.Rolling.kurt

Rolling.**kurt**(**kwargs**)

Unbiased rolling kurtosis

**Returns** same type as input

**See also:**
- `pandas.Series.rolling`
- `pandas.DataFrame.rolling`

### pandas.core.window.Rolling.apply

Rolling.**apply**(func, args=(), kwargs={})

rolling function apply

**Parameters** func : function

Must produce a single value from an ndarray input *args and **kwargs are passed to the function

**Returns** same type as input

**See also:**
- `pandas.Series.rolling`
- `pandas.DataFrame.rolling`

### pandas.core.window.Rolling.quantile

Rolling.**quantile**(quantile, **kwargs**)

rolling quantile

**Parameters** quantile : float

0 <= quantile <= 1

**Returns** same type as input

**See also:**
- `pandas.Series.rolling`
- `pandas.DataFrame.rolling`
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.core.window.Window.mean

Window.mean(*args, **kwargs)

window mean

Parameters how : string, default None (DEPRECATED)
    Method for down- or re-sampling

Returns same type as input

See also:
pandas.Series.window, pandas.DataFrame.window

pandas.core.window.Window.sum

Window.sum(*args, **kwargs)

window sum

Parameters how : string, default None (DEPRECATED)
    Method for down- or re-sampling

Returns same type as input

See also:
pandas.Series.window, pandas.DataFrame.window

Standard expanding window functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expanding.count</td>
<td>expending count of number of non-NaN</td>
</tr>
<tr>
<td>Expanding.sum</td>
<td>expending sum</td>
</tr>
<tr>
<td>Expanding.mean</td>
<td>expending mean</td>
</tr>
<tr>
<td>Expanding.median</td>
<td>expending median</td>
</tr>
<tr>
<td>Expanding.var</td>
<td>expanding variance</td>
</tr>
<tr>
<td>Expanding.std</td>
<td>expanding standard deviation</td>
</tr>
<tr>
<td>Expanding.min</td>
<td>expending minimum</td>
</tr>
<tr>
<td>Expanding.max</td>
<td>expending maximum</td>
</tr>
<tr>
<td>Expanding.corr</td>
<td>expanding sample correlation</td>
</tr>
<tr>
<td>Expanding.cov</td>
<td>expanding sample covariance</td>
</tr>
<tr>
<td>Expanding.skew</td>
<td>Unbiased expanding skewness</td>
</tr>
<tr>
<td>Expanding.kurt</td>
<td>Unbiased expanding kurtosis</td>
</tr>
<tr>
<td>Expanding.apply</td>
<td>expending function apply</td>
</tr>
<tr>
<td>Expanding.quantile</td>
<td>expending quantile</td>
</tr>
</tbody>
</table>

pandas.core.window.Expanding.count

Expanding.count(**kwargs)

expanding count of number of non-NaN observations inside provided window.

Returns same type as input

See also:
**pandas.core.window.Expanding.sum**

Expanding.sum(*args, **kwargs)

expanding sum

**Parameters**
- **how**: string, default None (DEPRECATED)
  - Method for down- or re-sampling

**Returns**
- same type as input

**See also:**
- pandas.Series.expanding, pandas.DataFrame.expanding

**pandas.core.window.Expanding.mean**

Expanding.mean(*args, **kwargs)

expanding mean

**Parameters**
- **how**: string, default None (DEPRECATED)
  - Method for down- or re-sampling

**Returns**
- same type as input

**See also:**
- pandas.Series.expanding, pandas.DataFrame.expanding

**pandas.core.window.Expanding.median**

Expanding.median(**kwargs)

expanding median

**Parameters**
- **how**: string, default ‘median’ (DEPRECATED)
  - Method for down- or re-sampling

**Returns**
- same type as input

**See also:**
- pandas.Series.expanding, pandas.DataFrame.expanding

**pandas.core.window.Expanding.var**

Expanding.var(ddof=1, *args, **kwargs)

expanding variance

**Parameters**
- **ddof**: int, default 1
  - Delta Degrees of Freedom. The divisor used in calculations is \( N - \text{ddof}, \) where \( N \) represents the number of elements.

**Returns**
- same type as input
pandas: powerful Python data analysis toolkit, Release 0.19.2

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

pandas.core.window.Expanding.std

Expanding.std(ddof=1, *args, **kwargs)
expanding standard deviation

Parameters
dof : int, default 1
Delta Degrees of Freedom. The divisor used in calculations is \( N - \text{dof} \), where \( N \) represents the number of elements.

Returns same type as input

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

pandas.core.window.Expanding.min

Expanding.min(*args, **kwargs)
expanding minimum

Parameters
how : string, default ‘min’ (DEPRECATED)
Method for down- or re-sampling

Returns same type as input

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

pandas.core.window.Expanding.max

Expanding.max(*args, **kwargs)
expanding maximum

Parameters
how : string, default ‘max’ (DEPRECATED)
Method for down- or re-sampling

Returns same type as input

See also:

pandas.Series.expanding, pandas.DataFrame.expanding

pandas.core.window.Expanding.corr

Expanding.corr(other=None, pairwise=None, **kwargs)
expanding sample correlation

Parameters
other : Series, DataFrame, or ndarray, optional
if not supplied then will default to self and produce pairwise output

pairwise : bool, default None
If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

**Returns**
same type as input

**See also:**

`pandas.Series.expanding`, `pandas.DataFrame.expanding`

### pandas.core.window.Expanding.cov

Expanding.cov(other=None, pairwise=None, ddof=1, **kwargs)

expanding sample covariance

**Parameters**

- **other**: Series, DataFrame, or ndarray, optional
  if not supplied then will default to self and produce pairwise output

- **pairwise**: bool, default None
  If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

- **ddof**: int, default 1
  Delta Degrees of Freedom. The divisor used in calculations is \( N - \text{ddof} \), where \( N \) represents the number of elements.

**Returns**
same type as input

**See also:**

`pandas.Series.expanding`, `pandas.DataFrame.expanding`

### pandas.core.window.Expanding.skew

Expanding.skew(**kwargs)

Unbiased expanding skewness

**Returns**
same type as input

**See also:**

`pandas.Series.expanding`, `pandas.DataFrame.expanding`

### pandas.core.window.Expanding.kurt

Expanding.kurt(**kwargs)

Unbiased expanding kurtosis

**Returns**
same type as input

**See also:**

`pandas.Series.expanding`, `pandas.DataFrame.expanding`
pandas.core.window.Expanding.apply

Expanding.apply(func, args=(), kwargs={})
expanding function apply

Parameters
func : function
Must produce a single value from an ndarray input *args and **kwargs are passed
to the function

Returns
same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding

pandas.core.window.Expanding.quantile

Expanding.quantile(quantile, **kwarg)
expanding quantile

Parameters
quantile : float
0 <= quantile <= 1

Returns
same type as input

See also:
pandas.Series.expanding, pandas.DataFrame.expanding

Exponentially-weighted moving window functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWM.mean(*args, **kwarg)</td>
<td>exponential weighted moving average</td>
</tr>
<tr>
<td>EWM.std(bias)</td>
<td>exponential weighted moving stddev</td>
</tr>
<tr>
<td>EWM.var(bias)</td>
<td>exponential weighted moving variance</td>
</tr>
<tr>
<td>EWM.corr(other, pairwise)</td>
<td>exponential weighted sample correlation</td>
</tr>
<tr>
<td>EWM.cov(other, pairwise, bias)</td>
<td>exponential weighted sample covariance</td>
</tr>
</tbody>
</table>

pandas.core.window.EWM.mean

EWM.mean(*args, **kwarg)
expansive weighted moving average

Returns
same type as input

See also:
pandas.Series.ewm, pandas.DataFrame.ewm

pandas.core.window.EWM.std

EWM.std(bias=False, *args, **kwarg)
expansive weighted moving stddev

Parameters
bias : boolean, default False
Use a standard estimation bias correction
pandas: powerful Python data analysis toolkit, Release 0.19.2

Returns same type as input

See also:
pandas.Series.ewm, pandas.DataFrame.ewm

pandas.core.window.EWM.var

EWM.var(bias=False, *args, **kwargs)
exponential weighted moving variance

Parameters bias: boolean, default False
Use a standard estimation bias correction

Returns same type as input

See also:
pandas.Series.ewm, pandas.DataFrame.ewm

pandas.core.window.EWM.corr

EWM.corr(other=None, pairwise=None, **kwargs)
exponential weighted sample correlation

Parameters other: Series, DataFrame, or ndarray, optional
if not supplied then will default to self and produce pairwise output

pairwise: bool, default None
If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.

bias: boolean, default False
Use a standard estimation bias correction

Returns same type as input

See also:
pandas.Series.ewm, pandas.DataFrame.ewm

pandas.core.window.EWM.cov

EWM.cov(other=None, pairwise=None, bias=False, **kwargs)
exponential weighted sample covariance

Parameters other: Series, DataFrame, or ndarray, optional
if not supplied then will default to self and produce pairwise output

pairwise: bool, default None
If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a Panel in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.
bias : boolean, default False

Use a standard estimation bias correction

Returns same type as input

See also:

pandas.Series.ewm, pandas.DataFrame.ewm

**GroupBy**

GroupBy objects are returned by groupby calls: pandas.DataFrame.groupby(), pandas.Series.groupby(), etc.

**Indexing, iteration**

<table>
<thead>
<tr>
<th>pandas.core.groupby.GroupBy.<strong>iter</strong>()</th>
<th>Groupby iterator</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupBy.groups</td>
<td>dict {group name -&gt; group labels}</td>
</tr>
<tr>
<td>GroupBy.indices</td>
<td>dict {group name -&gt; group indices}</td>
</tr>
<tr>
<td>GroupBy.get_group(name[, obj])</td>
<td>Constructs NDFrame from group with provided name</td>
</tr>
</tbody>
</table>

**pandas.core.groupby.GroupBy.__iter__**

GroupBy.__iter__()

Groupby iterator

Returns Generator yielding sequence of (name, subsetted object)

for each group

**pandas.core.groupby.GroupBy.groups**

GroupBy.groups
dict {group name -> group labels}

**pandas.core.groupby.GroupBy.indices**

GroupBy.indices
dict {group name -> group indices}

**pandas.core.groupby.GroupBy.get_group**

GroupBy.get_group(name[, obj=\None])

Constructs NDFrame from group with provided name

Parameters name : object

the name of the group to get as a DataFrame

obj : NDFrame, default None

1724 Chapter 35. API Reference
the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used

Returns  group : type of obj

```
Grouper([key, level, freq, axis, sort]) A Grouper allows the user to specify a groupby instruction for a target
```

### pandas.Grouper

class pandas.Grouper(key=None, level=None, freq=None, axis=0, sort=False)

A Grouper allows the user to specify a groupby instruction for a target object

This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object.

These are local specifications and will override 'global' settings, that is the parameters axis and level which are passed to the groupby itself.

**Parameters**

- **key** : string, defaults to None
  - groupby key, which selects the grouping column of the target
- **level** : name/number, defaults to None
  - the level for the target index
- **freq** : string / frequency object, defaults to None
  - This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object. For full specification of available frequencies, please see [here](#).
- **axis** : number/name of the axis, defaults to 0
- **sort** : boolean, default to False
  - whether to sort the resulting labels

**additional kwargs to control time-like groupers (when freq is passed)**

- **closed**: closed end of interval; left or right
- **label**: interval boundary to use for labeling; left or right
- **convention**: {‘start’, ‘end’, ‘e’, ‘s’}

  If grouper is PeriodIndex

**Returns**

A specification for a groupby instruction

### Examples

Syntactic sugar for `df.groupby('A')`

```
>>> df.groupby(Grouper(key='A'))
```

Specify a resample operation on the column ‘date’

```
>>> df.groupby(Grouper(key='date', freq='60s'))
```

Specify a resample operation on the level ‘date’ on the columns axis with a frequency of 60s
>>> df.groupby(Grouper(level='date', freq='60s', axis=1))

Attributes

- `ax`
- `groups`

`pandas.Grouper.ax`

`Grouper.ax`

`pandas.Grouper.groups`

`Grouper.groups`

### Function application

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GroupBy.apply</code></td>
<td>Apply function and combine results together in an intelligent way.</td>
</tr>
<tr>
<td><code>GroupBy.aggregate</code></td>
<td>Apply function and combine results together in an intelligent way.</td>
</tr>
<tr>
<td><code>GroupBy.transform</code></td>
<td>Apply function and combine results together in an intelligent way.</td>
</tr>
</tbody>
</table>

`pandas.core.groupby.GroupBy.apply`

`GroupBy.apply(func, *args, **kwargs)`

Apply function and combine results together in an intelligent way. The split-apply-combine combination rules attempt to be as common sense based as possible. For example:

- case 1: group DataFrame apply aggregation function (f(chunk) -> Series) yield DataFrame, with group axis having group labels
- case 2: group DataFrame apply transform function (f(chunk) -> DataFrame with same indexes) yield DataFrame with resulting chunks glued together
- case 3: group Series apply function with f(chunk) -> DataFrame yield DataFrame with result of chunks glued together

**Parameters**

- `func`: function

**See also:**

`aggregate`, `transform`

**Notes**

See online documentation for full exposition on how to use apply.

In the current implementation apply calls func twice on the first group to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for
the first group.

**pandas.core.groupby.GroupBy.aggregate**

GroupBy.aggregate(func, *args, **kwargs)

**pandas.core.groupby.GroupBy.transform**

GroupBy.transform(func, *args, **kwargs)

### Computations / Descriptive Stats

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupBy.count()</td>
<td>Compute count of group, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.cumcount([ascending])</td>
<td>Number each item in each group from 0 to the length of that group - 1.</td>
</tr>
<tr>
<td>GroupBy.first()</td>
<td>Compute first of group values</td>
</tr>
<tr>
<td>GroupBy.head([n])</td>
<td>Returns first n rows of each group.</td>
</tr>
<tr>
<td>GroupBy.last()</td>
<td>Compute last of group values</td>
</tr>
<tr>
<td>GroupBy.max()</td>
<td>Compute max of group values</td>
</tr>
<tr>
<td>GroupBy.mean(*args, **kwargs)</td>
<td>Compute mean of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.median()</td>
<td>Compute median of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.min()</td>
<td>Compute min of group values</td>
</tr>
<tr>
<td>GroupBy.nth(n[, dropna])</td>
<td>Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints.</td>
</tr>
<tr>
<td>GroupBy.ohlc()</td>
<td>Compute sum of values, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.prod()</td>
<td>Compute prod of group values</td>
</tr>
<tr>
<td>GroupBy.size()</td>
<td>Compute group sizes</td>
</tr>
<tr>
<td>GroupBy.sem([ddof])</td>
<td>Compute standard error of the mean of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.std([ddof])</td>
<td>Compute standard deviation of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.sum()</td>
<td>Compute sum of group values</td>
</tr>
<tr>
<td>GroupBy.var([ddof])</td>
<td>Compute variance of groups, excluding missing values</td>
</tr>
<tr>
<td>GroupBy.tail([n])</td>
<td>Returns last n rows of each group.</td>
</tr>
</tbody>
</table>

**pandas.core.groupby.GroupBy.count**

GroupBy.count()

Compute count of group, excluding missing values

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

**pandas.core.groupby.GroupBy.cumcount**

GroupBy.cumcount(ascending=True)

Number each item in each group from 0 to the length of that group - 1.

Essentially this is equivalent to
```python
>>> self.apply(lambda x: Series(np.arange(len(x)), x.index))

Parameters

ascending: bool, default True

- If False, number in reverse, from length of group - 1 to 0.

See also:

pandas.Series.groupby, *pandas.DataFrame.groupby*, *pandas.Panel.groupby*

Examples

```python
>>> df = pd.DataFrame([[0, 1, 2, 3, 4, 5], ['a', 'a', 'a', 'b', 'b', 'a']], columns=['A'])
>>> df
   A
0 a
1 a
2 a
3 b
4 b
5 a
>>> df.groupby('A').cumcount()
0    0
1    1
2    2
3    0
4    1
5    3
dtype: int64
>>> df.groupby('A').cumcount(ascending=False)
0    3
1    2
2    1
3    1
4    0
5    0
dtype: int64
```

pandas.core.groupby.GroupBy.first

GroupBy.first()

- Compute first of group values

See also:

pandas.Series.groupby, *pandas.DataFrame.groupby*, *pandas.Panel.groupby*

pandas.core.groupby.GroupBy.head

GroupBy.head(n=5)

- Returns first n rows of each group.

 Essentially equivalent to .apply(lambda x: x.head(n)), except ignores as_index flag.
See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

Examples

```python
>>> df = DataFrame([[1, 2], [1, 4], [5, 6]],
                 columns=['A', 'B'])
>>> df.groupby('A', as_index=False).head(1)
   A  B
0  1  2
2  5  6
>>> df.groupby('A').head(1)
   A  B
0  1  2
2  5  6
```

`pandas.core.groupby.GroupBy.last`

GroupBy.

`last()`

Compute last of group values

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

`pandas.core.groupby.GroupBy.max`

GroupBy.

`max()`

Compute max of group values

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

`pandas.core.groupby.GroupBy.mean`

GroupBy.

`mean(*args, **kwargs)`

Compute mean of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

`pandas.core.groupby.GroupBy.median`

GroupBy.

`median()`

Compute median of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.core.groupby.GroupBy.min

GroupBy.min()
Compute min of group values

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.core.groupby.GroupBy.nth

GroupBy.nth(n, dropna=None)
Take the nth row from each group if n is an int, or a subset of rows if n is a list of ints.

If dropna, will take the nth non-null row, dropna is either Truthy (if a Series) or ‘all’, ‘any’ (if a DataFrame); this is equivalent to calling dropna(how=dropna) before the groupby.

Parameters n : int or list of ints
 a single nth value for the row or a list of nth values
dropna : None or str, optional
 apply the specified dropna operation before counting which row is the nth row. Needs to be None, ‘any’ or ‘all’

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

Examples

```python
>>> df = pd.DataFrame({'A': [1, 1, 2, 1, 2],
   ...                   'B': [np.nan, 2, 3, 4, 5]}, columns=['A', 'B'])
>>> g = df.groupby('A')
>>> g.nth(0)
   B
A
1  NaN
2  3.0
>>> g.nth(1)
   B
A
1  2.0
2  5.0
>>> g.nth(-1)
   B
A
1  4.0
2  5.0
>>> g.nth([0, 1])
   B
A
1  NaN
1  2.0
2  3.0
2  5.0
```
Specifying `dropna` allows count ignoring NaN

```python
>>> g.nth(0, dropna='any')
   B
A  
  1 2.0
  2 3.0
```

NaNs denote group exhausted when using dropna

```python
>>> g.nth(3, dropna='any')
   B
A  
  1 NaN
  2 NaN
```

Specifying `as_index=False` in `groupby` keeps the original index.

```python
>>> df.groupby('A', as_index=False).nth(1)
   A   B
  1  1  2.0
  4  2  5.0
```

pandas.core.groupby.GroupBy.ohlc

`GroupBy.ohlc()`

- Compute sum of values, excluding missing values
 For multiple groupings, the result index will be a MultiIndex

 See also:

 `pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

pandas.core.groupby.GroupBy.prod

`GroupBy.prod()`

- Compute prod of group values

 See also:

 `pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

pandas.core.groupby.GroupBy.size

`GroupBy.size()`

- Compute group sizes

 See also:

 `pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

pandas.core.groupby.GroupBy.sem

`GroupBy.sem(ddof=1)`

- Compute standard error of the mean of groups, excluding missing values

 For multiple groupings, the result index will be a MultiIndex
Parameters `ddof`: integer, default 1

degrees of freedom

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

pandas.core.groupby.GroupBy.std

`GroupBy.std(ddof=1, *args, **kwargs)`

Compute standard deviation of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

Parameters `ddof`: integer, default 1

degrees of freedom

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

pandas.core.groupby.GroupBy.sum

`GroupBy.sum()`

Compute sum of group values

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

pandas.core.groupby.GroupBy.var

`GroupBy.var(ddof=1, *args, **kwargs)`

Compute variance of groups, excluding missing values

For multiple groupings, the result index will be a MultiIndex

Parameters `ddof`: integer, default 1

degrees of freedom

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`

pandas.core.groupby.GroupBy.tail

`GroupBy.tail(n=5)`

Returns last n rows of each group

Essentially equivalent to `.apply(lambda x: x.tail(n)), except ignores as_index flag.`

See also:

`pandas.Series.groupby`, `pandas.DataFrame.groupby`, `pandas.Panel.groupby`
Examples

```python
>>> df = DataFrame( [['a', 1], ['a', 2], ['b', 1], ['b', 2]],
    columns=['A', 'B'])
>>> df.groupby('A').tail(1)
    A  B
1  a  2
3  b  2
>>> df.groupby('A').head(1)
    A  B
0  a  1
2  b  1
```

The following methods are available in both `SeriesGroupBy` and `DataFrameGroupBy` objects, but may differ slightly, usually in that the `DataFrameGroupBy` version usually permits the specification of an axis argument, and often an argument indicating whether to restrict application to columns of a specific data type.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DataFrameGroupBy.agg</code></td>
<td>Aggregate using input function or dict of {column -></td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.all</code></td>
<td>Return whether all elements are True over requested axis</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.any</code></td>
<td>Return whether any element is True over requested axis</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.bfill</code></td>
<td>Backward fill the values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.corr</code></td>
<td>Compute pairwise correlation of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.count</code></td>
<td>Compute count of group, excluding missing values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cov</code></td>
<td>Compute pairwise covariance of columns, excluding NA/null values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cummax</code></td>
<td>Return cumulative max over requested axis.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cummin</code></td>
<td>Return cumulative minimum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cumprod</code></td>
<td>Cumulative product for each group</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.cumsum</code></td>
<td>Cumulative sum for each group</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.describe</code></td>
<td>Generate various summary statistics, excluding NaN values.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.diff</code></td>
<td>1st discrete difference of object</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.ffill</code></td>
<td>Forward fill the values</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.fillna</code></td>
<td>Fill NA/NaN values using the specified method</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.hist</code></td>
<td>Draw histogram of the DataFrame’s series using matplotlib/pylab.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.idxmax</code></td>
<td>Return index of first occurrence of maximum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.idxmin</code></td>
<td>Return index of first occurrence of minimum over requested axis.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.mad</code></td>
<td>Return the mean absolute deviation of the values for the requested axis</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.pct_change</code></td>
<td>Percent change over given number of periods.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.plot</code></td>
<td>Class implementing the .plot attribute for groupby objects</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.quantile</code></td>
<td>Return values at the given quantile over requested axis, a la numpy.percentile.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.rank</code></td>
<td>Compute numerical data ranks (1 through n) along axis.</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.resample</code></td>
<td>Provide resampling when using a TimeGrouper</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.shift</code></td>
<td>Shift each group by periods observations</td>
</tr>
<tr>
<td><code>DataFrameGroupBy.size</code></td>
<td>Compute group sizes</td>
</tr>
</tbody>
</table>

Continued on next page
DataFrameGroupBy.skew
DataFrameGroupBy.take
DataFrameGroupBy.tshift

pandas.core.groupby.DataFrameGroupBy.agg

DataFrameGroupBy.agg(arg, *args, **kwargs)
Aggregate using input function or dict of {column -> function}

Parameters arg : function or dict
 Function to use for aggregating groups. If a function, must either work when passed
 a DataFrame or when passed to DataFrame.apply. If passed a dict, the keys must be
 DataFrame column names.

 Accepted Combinations are:
 • string cythonized function name
 • function
 • list of functions
 • dict of columns -> functions
 • nested dict of names -> dicts of functions

 Returns aggregated : DataFrame

See also:
pandas.Series.groupby, pandas.DataFrame.groupby

Notes
Numpy functions mean/median/prod/sum/std/var are special cased so the default behavior is applying the func-
tion along axis=0 (e.g., np.mean(arr_2d, axis=0)) as opposed to mimicking the default Numpy behavior (e.g.,
np.mean(arr_2d)).

pandas.core.groupby.DataFrameGroupBy.all

DataFrameGroupBy.all(axis=None, bool_only=None, skipna=None, level=None, **kwargs)
Return whether all elements are True over requested axis

Parameters axis : {index (0), columns (1)}
 skipna : boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA
 level : int or level name, default None
 If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing
 into a Series
 bool_only : boolean, default None

Table 35.127 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrameGroupBy.skew</td>
<td>Return unbiased skew over requested axis</td>
</tr>
<tr>
<td>DataFrameGroupBy.take</td>
<td>Analogous to ndarray.take</td>
</tr>
<tr>
<td>DataFrameGroupBy.tshift</td>
<td>Shift the time index, using the index’s frequency if available.</td>
</tr>
</tbody>
</table>
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns
- **all**: Series or DataFrame (if level specified)

pandas.core.groupby.DataFrameGroupBy.any

```python
dataframegroupby.any(axis=None, bool_only=None, skipna=None, level=None, **kwargs)
```

Return whether any element is True over requested axis.

Parameters
- **axis**: {index (0), columns (1)}
- **skipna**: boolean, default True
 - Exclude NA/null values. If an entire row/column is NA, the result will be NA
- **level**: int or level name, default None
 - If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series
- **bool_only**: boolean, default None
 - Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.

Returns
- **any**: Series or DataFrame (if level specified)

pandas.core.groupby.DataFrameGroupBy.bfill

```python
dataframegroupby.bfill(limit=None)
```

Backward fill the values.

Parameters
- **limit**: integer, optional
 - Limit of how many values to fill

See also

pandas.core.groupby.DataFrameGroupBy.corr

```python
dataframegroupby.corr(method='pearson', min_periods=1)
```

Compute pairwise correlation of columns, excluding NA/null values.

Parameters
- **method**: {'pearson', 'kendall', 'spearman'}
 - pearson: standard correlation coefficient
 - kendall: Kendall Tau correlation coefficient
 - spearman: Spearman rank correlation
- **min_periods**: int, optional
 - Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation

Returns
- **y**: DataFrame
pandas.core.groupby.DataFrameGroupBy.count

DataFrameGroupBy.count()
Compute count of group, excluding missing values

pandas.core.groupby.DataFrameGroupBy.cov

DataFrameGroupBy.cov(min_periods=None)
Compute pairwise covariance of columns, excluding NA/null values

Parameters

- **min_periods**: int, optional
 Minimum number of observations required per pair of columns to have a valid result.

Returns

- **y**: DataFrame

Notes

y contains the covariance matrix of the DataFrame’s time series. The covariance is normalized by N-1 (unbiased estimator).

pandas.core.groupby.DataFrameGroupBy.cummax

DataFrameGroupBy.cummax(axis=None, skipna=True, *args, **kwargs)
Return cumulative max over requested axis.

Parameters

- **axis**: {index (0), columns (1)}
 - **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns

- **cummax**: Series

pandas.core.groupby.DataFrameGroupBy.cummin

DataFrameGroupBy.cummin(axis=None, skipna=True, *args, **kwargs)
Return cumulative minimum over requested axis.

Parameters

- **axis**: {index (0), columns (1)}
 - **skipna**: boolean, default True
 Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns

- **cummin**: Series

pandas.core.groupby.DataFrameGroupBy.cumprod

DataFrameGroupBy.cumprod(axis=0, *args, **kwargs)
Cumulative product for each group

See also:

pandas.core.groupby.DataFrameGroupBy.cumsum

```
DataFrameGroupBy.cumsum(axis=0, *args, **kwargs)
```
Cumulative sum for each group

See also:

```
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby
```

pandas.core.groupby.DataFrameGroupBy.describe

```
DataFrameGroupBy.describe(percentiles=None, include=None, exclude=None)
```
Generate various summary statistics, excluding NaN values.

Parameters

- **percentiles**: array-like, optional
 The percentiles to include in the output. Should all be in the interval [0, 1]. By default `percentiles` is [.25, .5, .75], returning the 25th, 50th, and 75th percentiles.

- **include, exclude**: list-like, ‘all’, or None (default)
 Specify the form of the returned result. Either:
 - None to both (default). The result will include only numeric-typed columns or, if none are, only categorical columns.
 - A list of dtypes or strings to be included/excluded. To select all numeric types use `numpy.number`. To select categorical objects use type object. See also the select_dtypes documentation. e.g. `df.describe(include=['O'])`
 - If include is the string ‘all’, the output column-set will match the input one.

Returns

`summary`: NDFrame of summary statistics

See also:

```
DataFrame.select_dtypes
```

Notes

The output DataFrame index depends on the requested dtypes:

For numeric dtypes, it will include: count, mean, std, min, max, and lower, 50, and upper percentiles.

For object dtypes (e.g. timestamps or strings), the index will include the count, unique, most common, and frequency of the most common. Timestamps also include the first and last items.

For mixed dtypes, the index will be the union of the corresponding output types. Non-applicable entries will be filled with NaN. Note that mixed-dtype outputs can only be returned from mixed-dtype inputs and appropriate use of the include/exclude arguments.

If multiple values have the highest count, then the count and most common pair will be arbitrarily chosen from among those with the highest count.

The include, exclude arguments are ignored for Series.
pandas.core.groupby.DataFrameGroupBy.diff

DataFrameGroupBy.diff(periods=1, axis=0)
1st discrete difference of object

Parameters:
- periods : int, default 1
 Periods to shift for forming difference
- axis : {0 or ‘index’, 1 or ‘columns’}, default 0
 Take difference over rows (0) or columns (1).

Returns:
diffed : DataFrame

pandas.core.groupby.DataFrameGroupBy.ffill

DataFrameGroupBy.ffill(limit=None)
Forward fill the values

Parameters:
- limit : integer, optional
 limit of how many values to fill

See also:

pandas.core.groupby.DataFrameGroupBy.fillna

DataFrameGroupByfillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
Fill NA/NaN values using the specified method

Parameters:
- value : scalar, dict, Series, or DataFrame
 Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). (values not in the dict/Series/DataFrame will not be filled). This value cannot be a list.
- method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
 Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap
- axis : {0 or ‘index’, 1 or ‘columns’}
- inplace : boolean, default False
 If True, fill in place. Note: this will modify any other views on this object, (e.g. a no-copy slice for a column in a DataFrame).
- limit : int, default None
 If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled.
- downcast : dict, default is None
a dict of item->dtype of what to downcast if possible, or the string ‘infer’ which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible)

Returns filled : DataFrame

See also:

reindex, asfreq

pandas.core.groupby.DataFrameGroupBy.hist

dataFrameGroupBy.hist(*data*, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds)*

Draw histogram of the DataFrame's series using matplotlib / pylab.

Parameters

data : DataFrame

* column : string or sequence

 If passed, will be used to limit data to a subset of columns

* by : object, optional

 If passed, then used to form histograms for separate groups

* grid : boolean, default True

 Whether to show axis grid lines

* xlabelsize : int, default None

 If specified changes the x-axis label size

* xrot : float, default None

 rotation of x axis labels

* ylabelsize : int, default None

 If specified changes the y-axis label size

* yrot : float, default None

 rotation of y axis labels

* ax : matplotlib axes object, default None

* sharex : boolean, default True if ax is None else False

 In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure!

* sharey : boolean, default False

 In case subplots=True, share y axis and set some y axis labels to invisible

* figsize : tuple

 The size of the figure to create in inches by default

* layout: (optional) a tuple (rows, columns) for the layout of the histograms

* bins: integer, default 10

 Number of histogram bins to be used
kwds : other plotting keyword arguments
To be passed to hist function

pandas.core.groupby.DataFrameGroupBy.idxmax

DataFrameGroupBy.idxmax(axis=0, skipna=True)
Return index of first occurrence of maximum over requested axis. NA/null values are excluded.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0
0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be first index.

Returns idxmax : Series

See also:
Series.idxmax

Notes
This method is the DataFrame version of ndarray.argmax.

pandas.core.groupby.DataFrameGroupBy.idxmin

DataFrameGroupBy.idxmin(axis=0, skipna=True)
Return index of first occurrence of minimum over requested axis. NA/null values are excluded.

Parameters axis : {0 or ‘index’, 1 or ‘columns’}, default 0
0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

Returns idxmin : Series

See also:
Series.idxmin

Notes
This method is the DataFrame version of ndarray.argmin.

pandas.core.groupby.DataFrameGroupBy.mad

DataFrameGroupBy.mad(axis=None, skipna=None, level=None)
Return the mean absolute deviation of the values for the requested axis

Parameters axis : {index (0), columns (1)}
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA

level: int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only: boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns mad: Series or DataFrame (if level specified)

pandas.core.groupby.DataFrameGroupBy.pct_change

DataFrameGroupBy.pct_change(*periods=1, fill_method='pad', limit=None, freq=None, **kwargs*)

Percent change over given number of periods.

Parameters periods: int, default 1

Periods to shift for forming percent change

fill_method: str, default 'pad'

How to handle NAs before computing percent changes

limit: int, default None

The number of consecutive NAs to fill before stopping

freq: DateOffset, timedelta, or offset alias string, optional

Increment to use from time series API (e.g. ‘M’ or BDay())

Returns chg: NDFrame

Notes

By default, the percentage change is calculated along the stat axis: 0, or Index, for DataFrame and 1, or minor for Panel. You can change this with the axis keyword argument.

pandas.core.groupby.DataFrameGroupBy.plot

DataFrameGroupBy.plot

Class implementing the .plot attribute for groupby objects

pandas.core.groupby.DataFrameGroupBy.quantile

DataFrameGroupBy.quantile(*q=0.5, axis=0, numeric_only=True, interpolation='linear*)

Return values at the given quantile over requested axis, a la numpy.percentile.

Parameters q: float or array-like, default 0.5 (50% quantile)

0 <= q <= 1, the quantile(s) to compute

axis: {0, 1, ‘index’, ‘columns’} (default 0)

0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise

New in version 0.18.0.

This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j:

- linear: $i + (j - i) \times fraction$, where $fraction$ is the fractional part of the index surrounded by i and j.
- lower: i.
- higher: j.
- nearest: i or j whichever is nearest.
- midpoint: $(i + j) / 2$.

Returns quantiles : Series or DataFrame

- If q is an array, a DataFrame will be returned where the index is q, the columns are the columns of self, and the values are the quantiles.
- If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.

Examples

```python
>>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
                 columns=['a', 'b'])
>>> df.quantile(.1)
a  1.3
b  3.7
dtype: float64
>>> df.quantile([.1, .5])
    a  b
0.1 1.3 3.7
0.5 2.5 55.0
```

pandas.core.groupby.DataFrameGroupBy.rank

DataFrameGroupBy.rank (axis=0, method=’average’, numeric_only=None, na_option=’keep’, ascending=True, pct=False)

Compute numerical data ranks (1 through n) along axis. Equal values are assigned a rank that is the average of the ranks of those values

Parameters axis: {0 or ‘index’, 1 or ‘columns’}, default 0

index to direct ranking

- average: average rank of group
- min: lowest rank in group
- max: highest rank in group
- first: ranks assigned in order they appear in the array
- dense: like ‘min’, but rank always increases by 1 between groups
numeric_only: boolean, default None

Include only float, int, boolean data. Valid only for DataFrame or Panel objects

na_option: {'keep', 'top', 'bottom'}

- keep: leave NA values where they are
- top: smallest rank if ascending
- bottom: smallest rank if descending

ascending: boolean, default True

False for ranks by high (1) to low (N)

pct: boolean, default False

Computes percentage rank of data

Returns **ranks**: same type as caller

pandas.core.groupby.DataFrameGroupBy.resample

DataFrameGroupBy.**resample**(rule, *args, **kwargs)

Provide resampling when using a TimeGrouper Return a new grouper with our resampler appended

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.core.groupby.DataFrameGroupBy.shift

DataFrameGroupBy.**shift**(periods=1, freq=None, axis=0)

Shift each group by periods observations

Parameters **periods**: integer, default 1

number of periods to shift

freq: frequency string

axis: axis to shift, default 0

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.core.groupby.DataFrameGroupBy.size

DataFrameGroupBy.**size**()

Compute group sizes

See also:

pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby
pandas.core.groupby.DataFrameGroupBy.skew

DataFrameGroupBy.skew (axis=None, skipna=None, level=None, numeric_only=None, **kwargs)

Return unbiased skew over requested axis Normalized by N-1

Parameters

axis : {index (0), columns (1)}

skipna : boolean, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA

level : int or level name, default None

If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series

numeric_only : boolean, default None

Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.

Returns skew : Series or DataFrame (if level specified)

pandas.core.groupby.DataFrameGroupBy.take

DataFrameGroupBy.take (indices, axis=0, convert=True, is_copy=True, **kwargs)

Analogous to ndarray.take

Parameters

indices : list / array of ints

axis : int, default 0

convert : translate neg to pos indices (default)

is_copy : mark the returned frame as a copy

Returns taken : type of caller

pandas.core.groupby.DataFrameGroupBy.tshift

DataFrameGroupBy.tshift (periods=1, freq=None, axis=0)

Shift the time index, using the index’s frequency if available.

Parameters

periods : int

Number of periods to move, can be positive or negative

freq : DateOffset, timedelta, or time rule string, default None

Increment to use from the tseries module or time rule (e.g. ‘EOM’)

axis : int or basestring

Corresponds to the axis that contains the Index

Returns shifted : NDFrame
Notes

If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown.

The following methods are available only for SeriesGroupBy objects.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>SeriesGroupBy.nlargest(*args, **kwargs)</code></td>
<td>Return the largest (n) elements.</td>
</tr>
<tr>
<td><code>SeriesGroupBy.nsmallest(*args, **kwargs)</code></td>
<td>Return the smallest (n) elements.</td>
</tr>
<tr>
<td><code>SeriesGroupBy.nunique([dropna])</code></td>
<td>Returns number of unique elements in the group.</td>
</tr>
<tr>
<td><code>SeriesGroupBy.unique()</code></td>
<td>Return np.ndarray of unique values in the object.</td>
</tr>
<tr>
<td><code>SeriesGroupBy.value_counts([normalize, ...])</code></td>
<td></td>
</tr>
</tbody>
</table>

pandas.core.groupby.SeriesGroupBy.nlargest

`SeriesGroupBy.nlargest(*args, **kwargs)`

Return the largest \(n \) elements.

Parameters

- **n**: int
 - Return this many descending sorted values
- **keep**: {'first', 'last', False}, default 'first'
 - Where there are duplicate values: - first: take the first occurrence. - last: take the last occurrence.
- **take_last**: deprecated

Returns

- **top_n**: Series
 - The \(n \) largest values in the Series, in sorted order

See also

- `Series.nsmallest`

Notes

Faster than `.sort_values(ascending=False).head(n)` for small \(n \) relative to the size of the Series object.

Examples

```python
golden
>>> import pandas as pd
>>> import numpy as np
>>> s = pd.Series(np.random.randn(1e6))
>>> s.nlargest(10)  # only sorts up to the N requested
```

pandas.core.groupby.SeriesGroupBy.nsmallest

`SeriesGroupBy.nsmallest(*args, **kwargs)`

Return the smallest \(n \) elements.

Parameters

- **n**: int
Return this many ascending sorted values

\[
\text{keep: } \{\text{‘first’, ‘last’, False}\}, \text{ default ‘first’}
\]

Where there are duplicate values: - \text{first: take the first occurrence.} - \text{last: take the last occurrence.}

\text{take_last: deprecated}

Returns \text{bottom_n: Series}

The n smallest values in the Series, in sorted order

See also:

Series.nlargest

Notes

Faster than .sort_values().head(n) for small \(n\) relative to the size of the Series object.

Examples

```
>>> import pandas as pd
>>> import numpy as np
... s = pd.Series(np.random.randn(1e6))
... s.nsmallest(10)  # only sorts up to the N requested
```

pandas.core.groupby.SeriesGroupBy.nunique

SeriesBy.nunique(\text{dropna=True})

Returns number of unique elements in the group

pandas.core.groupby.SeriesGroupBy.unique

SeriesBy.unique()

Return np.ndarray of unique values in the object. Significantly faster than numpy.unique. Includes NA values. The order of the original is preserved.

Returns uniques : np.ndarray

pandas.core.groupby.SeriesGroupBy.value_counts

SeriesBy.value_counts(\text{normalize=False, sort=True, ascending=False, bins=None, dropna=True})

The following methods are available only for DataFrameGroupBy objects.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrameGroupBy.corrwith(\text{other[, axis, drop]})</td>
<td>Compute pairwise correlation between rows or columns of two DataFrame objects.</td>
</tr>
<tr>
<td>DataFrameGroupBy.boxplot(\text{grouped[, ...]})</td>
<td>Make box plots from DataFrameGroupBy data.</td>
</tr>
</tbody>
</table>
pandas.core.groupby.DataFrameGroupBy.corrwith

DataFrameGroupBy.corrwith(other, axis=0, drop=False)
Compute pairwise correlation between rows or columns of two DataFrame objects.

Parameters other : DataFrame
 axis : {0 or ‘index’, 1 or ‘columns’}, default 0
 0 or ‘index’ to compute column-wise, 1 or ‘columns’ for row-wise
 drop : boolean, default False
 Drop missing indices from result, default returns union of all

Returns correls : Series

pandas.core.groupby.DataFrameGroupBy.boxplot

DataFrameGroupBy.boxplot(grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, **kwds)
Make box plots from DataFrameGroupBy data.

Parameters grouped : Grouped DataFrame
 subplots :
 • False - no subplots will be used
 • True - create a subplot for each group
 column : column name or list of names, or vector
 Can be any valid input to groupby
 fontsize : int or string
 rot : label rotation angle
 grid : Setting this to True will show the grid
 ax : Matplotlib axis object, default None
 figsize : A tuple (width, height) in inches
 layout : tuple (optional)
 (rows, columns) for the layout of the plot
 kwds : other plotting keyword arguments to be passed to matplotlib boxplot function

Returns dict of key/value = group key/DataFrame.boxplot return value
or DataFrame.boxplot return value in case subplots=figures=False

Examples

```python
>>> import pandas
>>> import numpy as np
>>> import itertools

>>> tuples = [t for t in itertools.product(range(1000), range(4))]
```
Resampling

Resampler objects are returned by resample calls: `pandas.DataFrame.resample()`, `pandas.Series.resample()`.

Indexing, iteration

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Resampler.__iter__()</code></td>
<td>Groupby iterator</td>
</tr>
<tr>
<td><code>Resampler.groups</code></td>
<td>dict {group name -> group labels}</td>
</tr>
<tr>
<td><code>Resampler.indices</code></td>
<td>dict {group name -> group indices}</td>
</tr>
<tr>
<td><code>Resampler.get_group(name[, obj])</code></td>
<td>Constructs NDFrame from group with provided name</td>
</tr>
</tbody>
</table>

`pandas.tseries.resample.Resampler.__iter__`

Resampler.__iter__() Groupby iterator

Returns Generator yielding sequence of (name, subsetted object) for each group

`pandas.tseries.resample.Resampler.groups`

Resampler.groups
dict {group name -> group labels}

`pandas.tseries.resample.Resampler.indices`

Resampler.indices
dict {group name -> group indices}

`pandas.tseries.resample.Resampler.get_group` (name, obj=None)

Resampler.get_group (name, obj=None) Constructs NDFrame from group with provided name

Parameters

name : object
the name of the group to get as a DataFrame
obj : NDFrame, default None

the NDFrame to take the DataFrame out of. If it is None, the object groupby was called on will be used

Returns

group : type of obj

Function application

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resampler.apply</td>
<td>Apply aggregation function or functions to resampled groups, yielding</td>
</tr>
<tr>
<td>Resampler.aggregate</td>
<td>Apply aggregation function or functions to resampled groups, yielding</td>
</tr>
<tr>
<td>Resampler.transform</td>
<td>Call function producing a like-indexed Series on each group and return</td>
</tr>
</tbody>
</table>

pandas.tseries.resample.Resampler.apply

Resampler.apply(arg, *args, **kwargs)

Apply aggregation function or functions to resampled groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function

Parameters

func_or_funcs : function or list / dict of functions

List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict

Returns

Series or DataFrame

See also:

transform

Notes

agg is an alias for aggregate. Use it.

Examples

```python
>>> s = Series([1,2,3,4,5],
              index=pd.date_range('20130101',
                                 periods=5,freq='s'))
2013-01-01 00:00:00    1
2013-01-01 00:00:01    2
2013-01-01 00:00:02    3
2013-01-01 00:00:03    4
2013-01-01 00:00:04    5
Freq: S, dtype: int64

>>> r = s.resample('2s')
```

```
DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left, label=left, convention=start, base=0]```
pandas: powerful Python data analysis toolkit, Release 0.19.2

```python
>>> r.agg(np.sum)
2013-01-01 00:00:00 3
2013-01-01 00:00:02 7
2013-01-01 00:00:04 5
Freq: 2S, dtype: int64
```

```python
>>> r.agg(['sum','mean','max'])
 sum mean max
2013-01-01 00:00:00 3 1.5 2
2013-01-01 00:00:02 7 3.5 4
2013-01-01 00:00:04 5 5.0 5
```

```python
>>> r.agg({'result' : lambda x: x.mean() / x.std(),
 'total' : np.sum})
 total result
2013-01-01 00:00:00 3 2.121320
2013-01-01 00:00:02 7 4.949747
2013-01-01 00:00:04 5 NaN
```

`pandas.tseries.resample.Resampler.aggregate`

Resampler.aggregate(arg, *args, **kwargs)

Apply aggregation function or functions to resampled groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function

Parameters

func_or_funcs : function or list / dict of functions

List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict

Returns

Series or DataFrame

See also:

transform

Notes

agg is an alias for aggregate. Use it.

Examples

```python
>>> s = Series([1,2,3,4,5],
 index=pd.date_range('20130101',
 periods=5,freq='s'))
2013-01-01 00:00:00 1
2013-01-01 00:00:01 2
2013-01-01 00:00:02 3
2013-01-01 00:00:03 4
2013-01-01 00:00:04 5
Freq: S, dtype: int64
```
```
>>> r = s.resample('2s')
DatetimeIndexResampler [freq=<2 * Seconds>, axis=0, closed=left,
label=left, convention=start, base=0]

>>> r.agg(np.sum)
2013-01-01 00:00:00 3
2013-01-01 00:00:02 7
2013-01-01 00:00:04 5
Freq: 2S, dtype: int64

>>> r.agg(['sum','mean','max'])
 sum mean max
2013-01-01 00:00:00 3 1.5 2
2013-01-01 00:00:02 7 3.5 4
2013-01-01 00:00:04 5 5.0 5

>>> r.agg({'result' : lambda x: x.mean() / x.std(),
 'total' : np.sum})
total result
2013-01-01 00:00:00 3 2.121320
2013-01-01 00:00:02 7 4.949747
2013-01-01 00:00:04 5 NaN
```

**pandas.tseries.resample.Resampler.transform**

Resampler.transform(arg, *args, **kwargs)

Call function producing a like-indexed Series on each group and return a Series with the transformed values

**Parameters**

- **func** : function
  
  To apply to each group. Should return a Series with the same index

**Returns**

- **transformed** : Series

**Examples**

```
>>> resampled.transform(lambda x: (x - x.mean()) / x.std())
```

**Upsampling**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resampler.ffill([limit])</td>
<td>Forward fill the values</td>
</tr>
<tr>
<td>Resampler.backfill([limit])</td>
<td>Backward fill the values</td>
</tr>
<tr>
<td>Resampler.bfill([limit])</td>
<td>Backward fill the values</td>
</tr>
<tr>
<td>Resampler.pad([limit])</td>
<td>Forward fill the values</td>
</tr>
<tr>
<td>Resampler.fillna(method[, limit])</td>
<td>Fill missing values</td>
</tr>
<tr>
<td>Resampler.asfreq()</td>
<td>return the values at the new freq.</td>
</tr>
<tr>
<td>Resampler.interpolate([method, axis, limit, ...])</td>
<td>Interpolate values according to different methods.</td>
</tr>
</tbody>
</table>
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas.tseries.resample.Resampler.ffill

Resampler.ffill(limit=None)
Forward fill the values

**Parameters**

- **limit**: integer, optional
  limit of how many values to fill

**See also:**
Series.fillna, DataFrame.fillna

pandas.tseries.resample.Resampler.backfill

Resampler.backfill(limit=None)
Backward fill the values

**Parameters**

- **limit**: integer, optional
  limit of how many values to fill

**See also:**
Series.fillna, DataFrame.fillna

pandas.tseries.resample.Resampler.bfill

Resampler.bfill(limit=None)
Backward fill the values

**Parameters**

- **limit**: integer, optional
  limit of how many values to fill

**See also:**
Series.fillna, DataFrame.fillna

pandas.tseries.resample.Resampler.pad

Resampler.pad(limit=None)
Forward fill the values

**Parameters**

- **limit**: integer, optional
  limit of how many values to fill

**See also:**
Series.fillna, DataFrame.fillna

pandas.tseries.resample.Resampler.fillna

Resampler.fillna(method, limit=None)
Fill missing values

**Parameters**

- **method**: str, method of resampling (‘ffill’, ‘bfill’)
  limit : integer, optional
limit of how many values to fill

See also:
Series.fillna, DataFrame.fillna

pandas.tseries.resample.Resampler.asfreq

Resampler.asfreq()
return the values at the new freq, essentially a reindex with (no filling)

pandas.tseries.resample.Resampler.interpolate

Resampler.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', downcast=None, **kwargs)
Interpolate values according to different methods.
New in version 0.18.1.

Please note that only method='linear' is supported for DataFrames/Series with a MultiIndex.

Parameters method : {'linear', 'time', 'index', 'values', 'nearest', 'zero',
'slinear', 'quadratic', 'cubic', 'barycentric', 'krogh', 'polynomial', 'spline',
'piecewise_polynomial', 'from_derivatives', 'pchip', 'akima'}

• ‘linear’: ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. default
• ‘time’: interpolation works on daily and higher resolution data to interpolate given length of interval
• ‘index’, ‘values’: use the actual numerical values of the index
• ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘barycentric’, ‘polynomial’ is passed to scipy.interpolate.interp1d. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g. df.interpolate(method=’polynomial’, order=4). These use the actual numerical values of the index.
• ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’ and ‘akima’ are all wrappers around the scipy interpolation methods of similar names. These use the actual numerical values of the index. See the scipy documentation for more on their behavior here # noqa and here # noqa
• ‘from_derivatives’ refers to BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18

New in version 0.18.1: Added support for the ‘akima’ method Added interpolate method ‘from_derivatives’ which replaces ‘piecewise_polynomial’ in scipy 0.18; backwards-compatible with scipy < 0.18

axis : {0, 1}, default 0

• 0: fill column-by-column
• 1: fill row-by-row

limit : int, default None.
Maximum number of consecutive NaNs to fill.
**limit_direction**: ['forward', 'backward', 'both'], defaults to 'forward'

If limit is specified, consecutive NaNs will be filled in this direction.

New in version 0.17.0.

**inplace**: bool, default False

Update the NDFrame in place if possible.

**downcast**: optional, 'infer' or None, defaults to None

Downcast dtypes if possible.

**kwargs**: keyword arguments to pass on to the interpolating function.

**Returns** Series or DataFrame of same shape interpolated at the NaNs

See also:

reindex, replace, fillna

**Examples**

Filling in NaNs

```python
>>> s = pd.Series([0, 1, np.nan, 3])
>>> s.interpolate()
0 0
1 1
2 2
3 3
dtype: float64
```

**Computations / Descriptive Stats**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Resampler.count()</code></td>
<td>Compute count of group, excluding missing values</td>
</tr>
<tr>
<td><code>Resampler.nunique()</code></td>
<td>Returns number of unique elements in the group</td>
</tr>
<tr>
<td><code>Resampler.first()</code></td>
<td>Compute first of group values</td>
</tr>
<tr>
<td><code>Resampler.last()</code></td>
<td>Compute last of group values</td>
</tr>
<tr>
<td><code>Resampler.max()</code></td>
<td>Compute max of group values</td>
</tr>
<tr>
<td><code>Resampler.min()</code></td>
<td>Compute min of group values</td>
</tr>
<tr>
<td><code>Resampler.median()</code></td>
<td>Compute median of groups, excluding missing values</td>
</tr>
<tr>
<td><code>Resampler.ohlc()</code></td>
<td>Compute sum of values, excluding missing values</td>
</tr>
<tr>
<td><code>Resampler.prod()</code></td>
<td>Compute prod of group values</td>
</tr>
<tr>
<td><code>Resampler.size()</code></td>
<td>Compute group sizes</td>
</tr>
<tr>
<td><code>Resampler.std(ddof)</code></td>
<td>Compute standard error of the mean of groups, excluding missing values</td>
</tr>
<tr>
<td><code>Resampler.sum()</code></td>
<td>Compute sum of group values</td>
</tr>
<tr>
<td><code>Resampler.var(ddof)</code></td>
<td>Compute variance of groups, excluding missing values</td>
</tr>
</tbody>
</table>
pandas.tseries.resample.Resampler.count

Resampler.count(_method='count')
Compute count of group, excluding missing values

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.nunique

Resampler.nunique(_method='nunique')
Returns number of unique elements in the group

pandas.tseries.resample.Resampler.first

Resampler.first(_method='first', *args, **kwargs)
Compute first of group values

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.last

Resampler.last(_method='last', *args, **kwargs)
Compute last of group values

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.max

Resampler.max(_method='max', *args, **kwargs)
Compute max of group values

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.mean

Resampler.mean(_method='mean', *args, **kwargs)
Compute mean of groups, excluding missing values
For multiple groupings, the result index will be a MultiIndex

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby
pandas.tseries.resample.Resampler.median

Resampler.median(_method='median', *args, **kwargs)
Compute median of groups, excluding missing values
For multiple groupings, the result index will be a MultiIndex

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.min

Resampler.min(_method='min', *args, **kwargs)
Compute min of group values

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.ohlc

Resampler.ohlc(_method='ohlc', *args, **kwargs)
Compute sum of values, excluding missing values For multiple groupings, the result index will be a MultiIndex

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.prod

Resampler.prod(_method='prod', *args, **kwargs)
Compute prod of group values

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.size

Resampler.size(_method='size')
Compute group sizes

See also:
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby

pandas.tseries.resample.Resampler.sem

Resampler.sem(_method='sem', *args, **kwargs)
Compute standard error of the mean of groups, excluding missing values
For multiple groupings, the result index will be a MultiIndex

Parameters ddof: integer, default 1
degrees of freedom
See also:

```
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby
```

**pandas.tseries.resample.Resampler.std**

```python
Resampler.std(ddof=1, *args, **kwargs)
```

Compute standard deviation of groups, excluding missing values

**Parameters**

- `ddof` : integer, default 1
degrees of freedom

**pandas.tseries.resample.Resampler.sum**

```python
Resampler.sum(_method='sum', *args, **kwargs)
```

Compute sum of group values

See also:

```
pandas.Series.groupby, pandas.DataFrame.groupby, pandas.Panel.groupby
```

**pandas.tseries.resample.Resampler.var**

```python
Resampler.var(ddof=1, *args, **kwargs)
```

Compute variance of groups, excluding missing values

**Parameters**

- `ddof` : integer, default 1
degrees of freedom

**Style**

Styler objects are returned by `pandas.DataFrame.style`.

**Constructor**

```
Styler(data[, precision, table_styles, ...])
```

Helps style a DataFrame or Series according to the data with HTML and CSS.

**pandas.formats.style.Styler**

```python
class pandas.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, caption=None, table_attributes=None)
```

Helps style a DataFrame or Series according to the data with HTML and CSS.

New in version 0.17.1.

**Warning:** This is a new feature and is under active development. We’ll be adding features and possibly making breaking changes in future releases.
**Parameters**

- `data`: Series or DataFrame
- `precision`: int
  - precision to round floats to, defaults to `pd.options.display.precision`
- `table_styles`: list-like, default None
  - list of `{selector: (attr, value)}` dicts; see Notes
- `uuid`: str, default None
  - a unique identifier to avoid CSS collisions; generated automatically
- `caption`: str, default None
  - caption to attach to the table

**See also:**

`pandas.DataFrame.style`

**Notes**

Most styling will be done by passing style functions into `Styler.apply` or `Styler.applymap`. Style functions should return values with strings containing CSS `'attr: value'` that will be applied to the indicated cells.

If using in the Jupyter notebook, Styler has defined a `_repr_html_` to automatically render itself. Otherwise call `Styler.render` to get the generated HTML.

CSS classes are attached to the generated HTML:

- Index and Column names include `index_name` and `level<k>` where `k` is its level in a MultiIndex
- Index label cells include
  - `row_heading`
  - `row<n>` where `n` is the numeric position of the row
  - `level<k>` where `k` is the level in a MultiIndex
- Column label cells include
  - `* col_heading` * `col<n>` where `n` is the numeric position of the column
  - `* level<k>` where `k` is the level in a MultiIndex
- Blank cells include `blank`
- Data cells include `data`

**Attributes**

**Methods**

- `apply(func[, axis, subset])`
  - Apply a function column-wise, row-wise, or table-wise, updating the HTML representation with the result.
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>applymap</strong>(func[, subset])</td>
<td>Apply a function elementwise, updating the HTML representation with the result.</td>
</tr>
<tr>
<td><strong>background_gradient</strong>(cmap, low, high, axis, ...)</td>
<td>Color the background in a gradient according to the data in each column (optionally row).</td>
</tr>
<tr>
<td><strong>bar</strong>(subset, axis, color, width)</td>
<td>Color the background color proportional to the values in each column.</td>
</tr>
<tr>
<td><strong>clear</strong>()</td>
<td>“Reset” the styler, removing any previously applied styles.</td>
</tr>
<tr>
<td><strong>export</strong>()</td>
<td>Export the styles to applied to the current Styler.</td>
</tr>
<tr>
<td><strong>format</strong>(formatter[, subset])</td>
<td>Format the text display value of cells.</td>
</tr>
<tr>
<td><strong>highlight_max</strong>(subset, color, axis)</td>
<td>Highlight the maximum by shading the background.</td>
</tr>
<tr>
<td><strong>highlight_min</strong>(subset, color, axis)</td>
<td>Highlight the minimum by shading the background.</td>
</tr>
<tr>
<td><strong>highlight_null</strong>(null_color)</td>
<td>Shade the background null_color for missing values.</td>
</tr>
<tr>
<td><strong>render</strong>()</td>
<td>Render the built up styles to HTML.</td>
</tr>
<tr>
<td><strong>set_caption</strong>(caption)</td>
<td>Set the caption on a Styler.</td>
</tr>
<tr>
<td><strong>set_precision</strong>(precision)</td>
<td>Set the precision used to render.</td>
</tr>
<tr>
<td><strong>set_properties</strong>(subset)</td>
<td>Convenience method for setting one or more non-data dependent properties or each cell.</td>
</tr>
<tr>
<td><strong>set_table_attributes</strong>(attributes)</td>
<td>Set the table attributes.</td>
</tr>
<tr>
<td><strong>set_table_styles</strong>(table_styles)</td>
<td>Set the table styles on a Styler.</td>
</tr>
<tr>
<td><strong>set_uuid</strong>(uuid)</td>
<td>Set the uuid for a Styler.</td>
</tr>
<tr>
<td><strong>use</strong>(styles)</td>
<td>Set the styles on the current Styler, possibly using styles from <strong>Styler.export</strong>.</td>
</tr>
</tbody>
</table>

**pandas.formats.style.Styler.apply**

**Styler.apply**(func, axis=0, subset=None, **kwargs)

Apply a function column-wise, row-wise, or table-wise, updating the HTML representation with the result.

New in version 0.17.1.

**Parameters**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>func</td>
<td>function</td>
<td>.func should take a Series or DataFrame (depending on axis), and return an object with the same shape. Must return a DataFrame with identical index and column labels when axis=None</td>
</tr>
<tr>
<td>axis</td>
<td>int, str or None</td>
<td>apply to each column (axis=0 or 'index') or to each row (axis=1 or 'columns') or to the entire DataFrame at once with axis=None</td>
</tr>
<tr>
<td>subset</td>
<td>IndexSlice</td>
<td>a valid indexer to limit data to before applying the function. Consider using a pandas.IndexSlice</td>
</tr>
<tr>
<td>kwargs</td>
<td>dict</td>
<td>pass along to func</td>
</tr>
</tbody>
</table>

**Returns**

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>self</td>
<td>Styler</td>
<td></td>
</tr>
</tbody>
</table>
Notes

The output shape of `func` should match the input, i.e. if \( x \) is the input row, column, or table (depending on `axis`), then `func(x.shape) == x.shape` should be true.

This is similar to `DataFrame.apply`, except that `axis=None` applies the function to the entire DataFrame at once, rather than column-wise or row-wise.

Examples

```python
>>> def highlight_max(x):
... return ['background-color: yellow' if v == x.max() else '' for v in x]
...
>>> df = pd.DataFrame(np.random.randn(5, 2))
>>> df.style.apply(highlight_max)
```

**pandas.formats.style.Styler.applymap**

Styler.applymap(func, subset=None, **kwargs)

Apply a function elementwise, updating the HTML representation with the result.

New in version 0.17.1.

Parameters

- **func**: function
  - `func` should take a scalar and return a scalar

- **subset**: IndexSlice
  - a valid indexer to limit data to before applying the function. Consider using a pandas.IndexSlice

- **kwargs**: dict
  - pass along to `func`

Returns

- **self**: Styler

**pandas.formats.style.Styler.background_gradient**

Styler.background_gradient(cmap='PuBu', low=0, high=0, axis=0, subset=None)

Color the background in a gradient according to the data in each column (optionally row). Requires matplotlib.

New in version 0.17.1.

Parameters

- **cmap**: str or colormap
  - matplotlib colormap

- **low, high**: float
  - compress the range by these values.

- **axis**: int or str
  - 1 or ‘columns’ for columnwise, 0 or ‘index’ for rowwise
subset: IndexSlice

a valid slice for data to limit the style application to

Returns self: Styler

Notes

Tune low and high to keep the text legible by not using the entire range of the color map. These extend the range of the data by low * (x.max() - x.min()) and high * (x.max() - x.min()) before normalizing.

pandas.formats.style.Styler.bar

Styler.bar(subset=None, axis=0, color='#d65f5f', width=100)

Color the background color proportional to the values in each column. Excludes non-numeric data by default.

New in version 0.17.1.

Parameters subset: IndexSlice, default None

a valid slice for data to limit the style application to

axis: int

color: str

width: float

A number between 0 or 100. The largest value will cover width percent of the cell’s width

Returns self: Styler

pandas.formats.style.Styler.clear

Styler.clear()

“Reset” the styler, removing any previously applied styles. Returns None.

pandas.formats.style.Styler.export

Styler.export()

Export the styles to applied to the current Styler. Can be applied to a second style with Styler.use.

New in version 0.17.1.

Returns styles: list

See also:

Styler.use
pandas.formats.style.Styler.format

Styler.format(formatter, subset=None)

Format the text display value of cells.

New in version 0.18.0.

Parameters
- formatter: str, callable, or dict
- subset: IndexSlice

An argument to DataFrame.loc that restricts which elements formatter is applied to.

Returns
- self: Styler

Notes

formatter is either an a or a dict {column name: a} where a is one of
  • str: this will be wrapped in: a.format(x)
  • callable: called with the value of an individual cell

The default display value for numeric values is the “general” (g) format with
pd.options.display.precision precision.

Examples

```python
>>> df = pd.DataFrame(np.random.randn(4, 2), columns=['a', 'b'])
>>> df.style.format("{:.2%}")
>>> df['c'] = ['a', 'b', 'c', 'd']
>>> df.style.format({'C': str.upper})
```

pandas.formats.style.Styler.highlight_max

Styler.highlight_max(subset=None, color='yellow', axis=0)

Highlight the maximum by shading the background

New in version 0.17.1.

Parameters
- subset: IndexSlice, default None
  a valid slice for data to limit the style application to

- color: str, default ‘yellow’

- axis: int, str, or None; default None
  0 or ‘index’ for columnwise, 1 or ‘columns’ for rowwise or None for tablewise
  (the default)

Returns
- self: Styler
**pandas.formats.style.Styler.highlight_min**

Styler.highlight_min(subset=None, color='yellow', axis=0)

Highlight the minimum by shading the background

New in version 0.17.1.

**Parameters**
- **subset**: IndexSlice, default None
  - a valid slice for data to limit the style application to
- **color**: str, default ‘yellow’
- **axis**: int, str, or None; default None
  - 0 or ‘index’ for columnwise, 1 or ‘columns’ for rowwise or None for tablewise (the default)

**Returns**
- self : Styler

**pandas.formats.style.Styler.highlight_null**

Styler.highlight_null(null_color='red')

Shade the background null_color for missing values.

New in version 0.17.1.

**Parameters**
- **null_color**: str

**Returns**
- self : Styler

**pandas.formats.style.Styler.render**

Styler.render()

Render the built up styles to HTML

New in version 0.17.1.

**Returns**
- rendered: str
  - the rendered HTML

**Notes**

Styler objects have defined the _repr_html_ method which automatically calls self.render() when it’s the last item in a Notebook cell. When calling Styler.render() directly, wrap the result in IPython.display.HTML to view the rendered HTML in the notebook.

**pandas.formats.style.Styler.set_caption**

Styler.set_caption(caption)

Set the caption on a Styler

New in version 0.17.1.

**Parameters**
- **caption**: str

**Returns**
- self : Styler
pandas.formats.style.Styler.set_precision

Styler.set_precision(precision)
Set the precision used to render.
New in version 0.17.1.

Parameters precision: int
Returns self : Styler

pandas.formats.style.Styler.set_properties

Styler.set_properties(subset=None, **kwargs)
Convience method for setting one or more non-data dependent properties or each cell.
New in version 0.17.1.

Parameters subset: IndexSlice
a valid slice for data to limit the style application to
kwargs: dict
property: value pairs to be set for each cell

Returns self : Styler

Examples

```python
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_properties(color="white", align="right")
>>> df.style.set_properties(**{"background-color": "yellow"})
```

pandas.formats.style.Styler.set_table_attributes

Styler.set_table_attributes(attributes)
Set the table attributes. These are the items that show up in the opening <table> tag in addition to to
automatic (by default) id.
New in version 0.17.1.

Parameters precision: int
Returns self : Styler

pandas.formats.style.Styler.set_table_styles

Styler.set_table_styles(table_styles)
Set the table styles on a Styler. These are placed in a <style> tag before the generated HTML table.
New in version 0.17.1.

Parameters table_styles: list
Each individual table style should be a dictionary with selector and props keys. selector should be a CSS selector that the style will be applied to (automatically prefixed by the table's UUID) and props should be a list of tuples with (attribute, value).

**Returns** self : Styler

**Examples**

```python
>>> df = pd.DataFrame(np.random.randn(10, 4))
>>> df.style.set_table_styles(
... [{'selector': 'tr:hover',
... 'props': [('background-color', 'yellow')]}
...)
```

**pandas.formats.style.Styler.set_uuid**

Styler.set_uuid(uuid)

Set the uuid for a Styler.

*New in version 0.17.1.*

**Parameters**

uuid: str

**Returns**

self : Styler

**pandas.formats.style.Styler.use**

Styler.use(styles)

Set the styles on the current Styler, possibly using styles from Styler.export.

*New in version 0.17.1.*

**Parameters**

styles: list

list of style functions

**Returns**

self : Styler

See also:

Styler.export

**Style Application**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styler.apply(func[, axis, subset])</td>
<td>Apply a function column-wise, row-wise, or table-wise, updating the HTML representation with the result.</td>
</tr>
<tr>
<td>Styler.applymap(func[, subset])</td>
<td>Apply a function elementwise, updating the HTML representation with the result.</td>
</tr>
<tr>
<td>Styler.format(formatter[, subset])</td>
<td>Format the text display value of cells.</td>
</tr>
<tr>
<td>Styler.set_precision(precision)</td>
<td>Set the precision used to render.</td>
</tr>
<tr>
<td>Styler.set_table_styles(table_styles)</td>
<td>Set the table styles on a Styler.</td>
</tr>
<tr>
<td>Styler.set_caption(caption)</td>
<td>Set the caption on a Styler.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 35.137 – continued from previous page

- **Styler.set_properties**(subset)  
  Convience method for setting one or more non-data dependent properties or each cell.

- **Styler.set_uuid**(uuid)  
  Set the uuid for a Styler.

- **Styler.clear**()  
  “Reset” the styler, removing any previously applied styles.

## Builtin Styles

- **Styler.highlight_max**(subset, color, axis)  
  Highlight the maximum by shading the background.

- **Styler.highlight_min**(subset, color, axis)  
  Highlight the minimum by shading the background.

- **Styler.highlight_null**(null_color)  
  Shade the background null_color for missing values.

- **Styler.background_gradient**(cmap, low, ...)  
  Color the background in a gradient according to the data in each column (optionally row).

- **Styler.bar**(subset, axis, color, width)  
  Color the background color proportional to the values in each column.

## Style Export and Import

- **Styler.render**()  
  Render the built up styles to HTML.

- **Styler.export**()  
  Export the styles to applied to the current Styler.

- **Styler.use**(styles)  
  Set the styles on the current Styler, possibly using styles from Styler.export.

## General utility functions

### Working with options

- **describe_option**(pat[, _print_desc])  
  Prints the description for one or more registered options.

- **reset_option**(pat)  
  Reset one or more options to their default value.

- **get_option**(pat)  
  Retrieves the value of the specified option.

- **set_option**(pat, value)  
  Sets the value of the specified option.

- **option_context**(\*args)  
  Context manager to temporarily set options in the with statement context.

### pandas.describe_option

- **pandas.describe_option**(pat, _print_desc=False) = <pandas.core.config.CallableDynamicDoc object>  
  Prints the description for one or more registered options.

  Call with not arguments to get a listing for all registered options.

  Available options:

  - display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr]
  - display.latex.[escape, longtable, repr]
Parameters `pat` : str

Regexp pattern. All matching keys will have their description displayed.

`_print_desc` : bool, default True

If True (default) the description(s) will be printed to stdout. Otherwise, the description(s) will be returned as a unicode string (for testing).

Returns None by default, the description(s) as a unicode string if `_print_desc` is False

Notes

The available options with its descriptions:

- **display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]

- **display.colheader_justify** ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]

- **display.column_space** No description available. [default: 12] [currently: 12]

- **display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]

- **display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]

- **display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]

- **display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, `max_columns` is still respected, but the output will wrap-around across multiple “pages” if its width exceeds `display.width`. [default: True] [currently: True]

- **display.float_format** [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]

- **display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use `display.max_rows` instead.)
display.large_repr ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escape [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters. method. Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool This specifies if the to_latex method of a DataFrame uses the longtable format. method. Valid values: False,True [default: False] [currently: False]

display.latex.repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False]

display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a ”...” placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of ”...” to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,’deep’ [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]
display.pprint_nest_depth  [int]  Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

display.precision  [int]  Floating point output precision (number of significant digits). This is only a suggestion [default: 6] [currently: 6]

display.show_dimensions  [boolean or ‘truncate’]  Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

display.unicode.ambiguous_as_wide  [boolean]  Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

display.unicode.east_asian_width  [boolean]  Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

display.width  [int]  Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

html.border  [int]  A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr. [default: 1] [currently: 1]


io.hdf.default_format  [format]  default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

io.hdf.dropna_table  [boolean]  drop ALL nan rows when appending to a table [default: False] [currently: False]

mode.chained_assignment  [string]  Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

mode.sim_interactive  [boolean]  Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

mode.use_inf_as_null  [boolean]  True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

pandas.reset_option

pandas.reset_option (pat) = <pandas.core.config.CallableDynamicDoc object>

Reset one or more options to their default value.

Pass “all” as argument to reset all options.

Available options:

• display.chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr]
•display.latex.[escape, longtable, repr]
•display.[line_width, max_categories, max_columns, max_colwidth, max_info_columns, max_info_rows, max_rows, max_seq_items, memory_usage, mpl_style, multi_sparse, notebook_repr_html, pprint_nest_depth, precision, show_dimensions]
•display.unicode.[ambiguous_as_wide, east_asian_width]
•display.[width]
•html.[border]
•io.excel.xls.[writer]
•io.excel.xlsm.[writer]
•io.excel.xlsx.[writer]
•io.hdf.[default_format, dropna_table]
•mode.[chained_assignment, sim_interactive, use_inf_as_null]

Parameters pat : str/regex

If specified only options matching prefix* will be reset. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.

Returns None

Notes

The available options with its descriptions:

display.chop_threshold [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]
display.colheader_justify ['left'/right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]
display.column_space No description available. [default: 12] [currently: 12]
display.date_dayfirst [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]
display.date_yearfirst [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]
display.encoding [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]
display.expand_frame_repr [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]
display.float_format [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]
display.height [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use display.max_rows instead.)
display.large_repr ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escape [bool] This specifies if the to_latex method of a Dataframe uses escapes special characters. method. Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool This specifies if the to_latex method of a Dataframe uses the longtable format. method. Valid values: False,True [default: False] [currently: False]

display.latex.repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False]

display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of "...") to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,‘deep’ [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]
**display.pprint_nest_depth**  [int]  Controls the number of nested levels to process when pretty-printing  [default: 3]  [currently: 3]

**display.precision**  [int]  Floating point output precision (number of significant digits). This is only a suggestion  [default: 6]  [currently: 6]

**display.show_dimensions**  [boolean or ‘truncate’]  Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns)  [default: truncate]  [currently: truncate]

**display.unicode.ambiguous_as_wide**  [boolean]  Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance  [default: False]  [currently: False]

**display.unicode.east_asian_width**  [boolean]  Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance  [default: False]  [currently: False]

**display.width**  [int]  Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width.  [default: 80]  [currently: 80]

**html.border**  [int]  A `border=value` attribute is inserted in the `<table>` tag for the DataFrame HTML repr.  [default: 1]  [currently: 1]


**io.hdf.default_format**  [format]  default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’  [default: None]  [currently: None]

**io.hdf.dropna_table**  [boolean]  drop ALL nan rows when appending to a table  [default: False]  [currently: False]

**mode.chained_assignment**  [string]  Raise an exception, warn, or no action if trying to use chained assignment, The default is warn  [default: warn]  [currently: warn]

**mode.sim_interactive**  [boolean]  Whether to simulate interactive mode for purposes of testing  [default: False]  [currently: False]

**mode.use_inf_as_null**  [boolean]  True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way).  [default: False]  [currently: False]

---

**pandas.get_option**

```
pandas.get_option(pat) = <pandas.core.config.CallableDynamicDoc object>
```

Retrieves the value of the specified option.

Available options:

- display.chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr
- display.latex.escape, longtable, repr
Parameters `pat` : str

Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. `x.y.z.option_name`), your code may break in future versions if new options with similar names are introduced.

Returns `result` : the value of the option

Raises `OptionError` : if no such option exists

Notes

The available options with its descriptions:

- **display.chop_threshold** [float or None] if set to a float value, all float values smaller then the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]
- **display.colheader_justify** ['left'/'right'] Controls the justification of column headers. used by DataFrameFor- matter. [default: right] [currently: right]
- **display.column_space** No description available. [default: 12] [currently: 12]
- **display.date_dayfirst** [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]
- **display.date_yearfirst** [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]
- **display.encoding** [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]
- **display.expand_frame_repr** [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, `max_columns` is still respected, but the output will wrap-around across multiple “pages” if its width exceeds `display.width`. [default: True] [currently: True]
- **display.float_format** [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]
- **display.height** [int] Deprecated. [default: 60] [currently: 15] (Deprecated, use `display.max_rows` instead.)
display.large_repr ['truncate'/'info'] For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]

display.latex.escape [bool] This specifies if the to_latex method of a DataFrame uses escapes special characters. method. Valid values: False,True [default: True] [currently: True]

display.latex.longtable :bool This specifies if the to_latex method of a DataFrame uses the longtable format. method. Valid values: False,True [default: False] [currently: False]

display.latex.repr [boolean] Whether to produce a latex DataFrame representation for jupyter environments that support it. (default: False) [default: False] [currently: False]

display.line_width [int] Deprecated. [default: 80] [currently: 80] (Deprecated, use display.width instead.)

display.max_categories [int] This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”. [default: 8] [currently: 8]

display.max_columns [int] If max_cols is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 20] [currently: 20]

display.max_colwidth [int] The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. [default: 50] [currently: 50]

display.max_info_columns [int] max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]

display.max_info_rows [int or None] df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]

display.max_rows [int] If max_rows is exceeded, switch to truncate view. Depending on large_repr, objects are either centrally truncated or printed as a summary view. ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 15]

display.max_seq_items [int or None] when pretty-printing a long sequence, no more then max_seq_items will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string.

If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]

display.memory_usage [bool, string or None] This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,‘deep’ [default: True] [currently: True]

display.mpl_style [bool] Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default. Setting this to None/False restores the values to their initial value. [default: None] [currently: None]

display.multi_sparse [boolean] “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups) [default: True] [currently: True]

display.notebook_repr_html [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]
**display.pprint_nest_depth**  [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

**display.precision**  [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 6] [currently: 6]

**display.show_dimensions**  [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

**display.unicode.ambiguous_as_wide**  [boolean] Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance [default: False] [currently: False]

**display.unicode.east_asian_width**  [boolean] Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance [default: False] [currently: False]

**display.width**  [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

**html.border**  [int] A border=value attribute is inserted in the `<table>` tag for the DataFrame HTML repr. [default: 1] [currently: 1]


**io.hdf.default_format**  [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

**io.hdf.dropna_table**  [boolean] drop ALL nan rows when appending to a table [default: False] [currently: False]

**mode.chained_assignment**  [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

**mode.sim_interactive**  [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

**mode.use_inf_as_null**  [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

---

**pandas.set_option**

pandas.set_option(pat, value) = <pandas.core.config.CallableDynamicDoc object>

Sets the value of the specified option.

Available options:

•display.[chop_threshold, colheader_justify, column_space, date_dayfirst, date_yearfirst, encoding, expand_frame_repr, float_format, height, large_repr]

•display.latex.[escape, longtable, repr]

---

35.16. General utility functions  1775
Parameters  

- **pat**: str  
  Regexp which should match a single option. Note: partial matches are supported for convenience, but unless you use the full option name (e.g. x.y.z.option_name), your code may break in future versions if new options with similar names are introduced.  
  
- **value**:  
  new value of option.  

Returns  None  

Raises  **OptionError** if no such option exists  

Notes  

The available options with its descriptions:  

- **display.chop_threshold**: [float or None] if set to a float value, all float values smaller than the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]  

- **display.colheader_justify**: ['left'/'right'] Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]  

- **display.column_space**: No description available. [default: 12] [currently: 12]  

- **display.date_dayfirst**: [boolean] When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]  

- **display.date_yearfirst**: [boolean] When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]  

- **display.encoding**: [str/unicode] Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: UTF-8] [currently: UTF-8]  

- **display.expand_frame_repr**: [boolean] Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, max_columns is still respected, but the output will wrap-around across multiple “pages” if its width exceeds display.width. [default: True] [currently: True]  

- **display.float_format**: [callable] The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]  

- **display.unicode**: [ambiguous_as_wide, east_asian_width]  

- **display.width**  

- **html.border**  

- **io.excel.xls.writer**  

- **io.excel.xlsm.writer**  

- **io.excel.xlsx.writer**  

- **io.hdf**: [default_format, dropna_table]  

- **mode**: [chained_assignment, sim_interactive, use_inf_as_null]  

1776  

Chapter 35. API Reference
display.height  [int] Deprecated.  [default: 60]  [currently: 15]  (Deprecated, use display.max_rows instead.)

display.large_repr  ['truncate'/'info']  For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table (the default from 0.13), or switch to the view from df.info() (the behaviour in earlier versions of pandas).  [default: truncate]  [currently: truncate]

display.latex.escape  [bool]  This specifies if the to_latex method of a Dataframe uses escapes special characters.  method.  Valid values: False, True  [default: True]  [currently: True]

display.latex.longtable  [bool]  This specifies if the to_latex method of a Dataframe uses the longtable format.  method.  Valid values: False, True  [default: False]  [currently: False]

display.latex.repr  [boolean]  Whether to produce a latex DataFrame representation for jupyter environments that support it.  (default: False)  [default: False]  [currently: False]

display.line_width  [int]  Deprecated.  [default: 80]  [currently: 80]  (Deprecated, use display.width instead.)

display.max_categories  [int]  This sets the maximum number of categories pandas should output when printing out a Categorical or a Series of dtype “category”.  [default: 8]  [currently: 8]

display.max_columns  [int]  If max_cols is exceeded, switch to truncate view.  Depending on large_repr, objects are either centrally truncated or printed as a summary view.  ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width.  The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection.  [default: 20]  [currently: 20]

display.max_colwidth  [int]  The maximum width in characters of a column in the repr of a pandas data structure.  When the column overflows, a “...” placeholder is embedded in the output.  [default: 50]  [currently: 50]

display.max_info_columns  [int]  max_info_columns is used in DataFrame.info method to decide if per column information will be printed.  [default: 100]  [currently: 100]

display.max_info_rows  [int or None]  df.info() will usually show null-counts for each column.  For large frames this can be quite slow.  max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified.  [default: 1690785]  [currently: 1690785]

display.max_rows  [int]  If max_rows is exceeded, switch to truncate view.  Depending on large_repr, objects are either centrally truncated or printed as a summary view.  ‘None’ value means unlimited.

In case python/IPython is running in a terminal and large_repr equals ‘truncate’ this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height.  The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection.  [default: 60]  [currently: 15]

display.max_seq_items  [int or None]  when pretty-printing a long sequence, no more then max_seq_items will be printed.  If items are omitted, they will be denoted by the addition of ”...” to the resulting string.

If set to None, the number of items to be printed is unlimited.  [default: 100]  [currently: 100]

display.memory_usage  [bool, string or None]  This specifies if the memory usage of a DataFrame should be displayed when df.info() is called.  Valid values True,False,’deep’  [default: True]  [currently: True]

display.mpl_style  [bool]  Setting this to ‘default’ will modify the rcParams used by matplotlib to give plots a more pleasing visual style by default.  Setting this to None/False restores the values to their initial value.  [default: None]  [currently: None]

display.multi_sparse  [boolean]  “sparsify” MultiIndex display (don’t display repeated elements in outer levels within groups)  [default: True]  [currently: True]
**display.notebook_repr_html** [boolean] When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]

**display.pprint_nest_depth** [int] Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]

**display.precision** [int] Floating point output precision (number of significant digits). This is only a suggestion [default: 6] [currently: 6]

**display.show_dimensions** [boolean or ‘truncate’] Whether to print out dimensions at the end of DataFrame repr. If ‘truncate’ is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]

**display.unicode.ambiguous_as_wide** [boolean] Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

**display.unicode.east_asian_width** [boolean] Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]

**display.width** [int] Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]

**html.border** [int] A border=value attribute is inserted in the <table> tag for the DataFrame HTML repr. [default: 1] [currently: 1]


**io.hdf.default_format** [format] default format writing format, if None, then put will default to ‘fixed’ and append will default to ‘table’ [default: None] [currently: None]

**io.hdf.droptna_table** [boolean] drop ALL nan rows when appending to a table [default: False] [currently: False]

**mode.chained_assignment** [string] Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]

**mode.sim_interactive** [boolean] Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]

**mode.use_inf_as_null** [boolean] True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). [default: False] [currently: False]

---

**pandas.option_context**

class **pandas.option_context**(*args)

Context manager to temporarily set options in the with statement context.

You need to invoke as option_context(pat, val, [(pat, val), ...]).
Examples

```python
>>> with option_context('display.max_rows', 10, 'display.max_columns', 5):
 ...
```
This section will provide a look into some of pandas internals.

**Indexing**

In pandas there are a few objects implemented which can serve as valid containers for the axis labels:

- **Index**: the generic “ordered set” object, an ndarray of object dtype assuming nothing about its contents. The labels must be hashable (and likely immutable) and unique. Populates a dict of label to location in Cython to do $O(1)$ lookups.
- **Int64Index**: a version of Index highly optimized for 64-bit integer data, such as time stamps
- **Float64Index**: a version of Index highly optimized for 64-bit float data
- **MultiIndex**: the standard hierarchical index object
- **DatetimeIndex**: An Index object with Timestamp boxed elements (impl are the int64 values)
- **TimedeltaIndex**: An Index object with Timedelta boxed elements (impl are the int64 values)
- **PeriodIndex**: An Index object with Period elements

There are functions that make the creation of a regular index easy:

- **date_range**: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Python datetime objects
- **period_range**: fixed frequency date range generated from a time rule or DateOffset. An ndarray of Period objects, representing Timespans

The motivation for having an Index class in the first place was to enable different implementations of indexing. This means that it’s possible for you, the user, to implement a custom Index subclass that may be better suited to a particular application than the ones provided in pandas.

From an internal implementation point of view, the relevant methods that an Index must define are one or more of the following (depending on how incompatible the new object internals are with the Index functions):

- **get_loc**: returns an “indexer” (an integer, or in some cases a slice object) for a label
- **slice_locs**: returns the “range” to slice between two labels
- **get_indexer**: Computes the indexing vector for reindexing / data alignment purposes. See the source / docstrings for more on this
- **get_indexer_non_unique**: Computes the indexing vector for reindexing / data alignment purposes when the index is non-unique. See the source / docstrings for more on this
- **reindex**: Does any pre-conversion of the input index then calls get_indexer
• `union`, `intersection`: computes the union or intersection of two Index objects
• `insert`: Inserts a new label into an Index, yielding a new object
• `delete`: Delete a label, yielding a new object
• `drop`: Deletes a set of labels
• `take`: Analogous to `ndarray.take`

**MultiIndex**

Internally, the `MultiIndex` consists of a few things: the `levels`, the integer `labels`, and the level `names`:

```python
In [1]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
In [2]: index
Out[2]: MultiIndex(levels=[[0, 1, 2], ['one', 'two']], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]], names=['first', 'second'])
In [3]: index.levels
Out[3]: FrozenList([[0, 1, 2], ['one', 'two']])
In [4]: index.labels
Out[4]: FrozenList([[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])
In [5]: index.names
Out[5]: FrozenList(['first', 'second'])
```

You can probably guess that the labels determine which unique element is identified with that location at each layer of the index. It’s important to note that sortedness is determined **solely** from the integer labels and does not check (or care) whether the levels themselves are sorted. Fortunately, the constructors `from_tuples` and `from_arrays` ensure that this is true, but if you compute the levels and labels yourself, please be careful.

**Subclassing pandas Data Structures**

**Warning:** There are some easier alternatives before considering subclassing `pandas` data structures.

1. Extensible method chains with `pipe`
2. Use `composition`. See [here](#).

This section describes how to subclass `pandas` data structures to meet more specific needs. There are 2 points which need attention:

1. Override constructor properties.
2. Define original properties

**Note:** You can find a nice example in [geopandas](#) project.
Override Constructor Properties

Each data structure has constructor properties to specifying data constructors. By overriding these properties, you can retain defined-classes through pandas data manipulations.

There are 3 constructors to be defined:

- `_constructor`: Used when a manipulation result has the same dimensions as the original.
- `_constructor_sliced`: Used when a manipulation result has one lower dimension(s) as the original, such as DataFrame single columns slicing.
- `_constructor_expanddim`: Used when a manipulation result has one higher dimension as the original, such as Series.to_frame() and DataFrame.to_panel().

Following table shows how pandas data structures define constructor properties by default.

<table>
<thead>
<tr>
<th>Property Attributes</th>
<th>Series</th>
<th>DataFrame</th>
<th>Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>_constructor</td>
<td>Series</td>
<td>DataFrame</td>
<td>Panel</td>
</tr>
<tr>
<td>_constructor_sliced</td>
<td>NotImplemented</td>
<td>Series</td>
<td>Dataframe</td>
</tr>
<tr>
<td>_constructor_expanddim</td>
<td>DataFrame</td>
<td>Panel</td>
<td>NotImplemented</td>
</tr>
</tbody>
</table>

Below example shows how to define SubclassedSeries and SubclassedDataFrame overriding constructor properties.

```python
class SubclassedSeries(Series):
 @property
 def _constructor(self):
 return SubclassedSeries

 @property
 def _constructor_sliced(self):
 return SubclassedSeries

class SubclassedDataFrame(DataFrame):
 @property
 def _constructor(self):
 return SubclassedDataFrame

 @property
 def _constructor_sliced(self):
 return SubclassedSeries
```

```bash
>>> s = SubclassedSeries([1, 2, 3])
>>> type(s)
<class '__main__.SubclassedSeries'>

>>> to_framed = s.to_frame()
>>> type(to_framed)
<class '__main__.SubclassedDataFrame'>

>>> df = SubclassedDataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df
 A B C
0 1 4 7
1 2 5 8
2 3 6 9
```
Define Original Properties

To let original data structures have additional properties, you should let pandas know what properties are added. pandas maps unknown properties to data names overriding __getattr__. Defining original properties can be done in one of 2 ways:

1. Define _internal_names and _internal_names_set for temporary properties which WILL NOT be passed to manipulation results.
2. Define _metadata for normal properties which will be passed to manipulation results.

Below is an example to define 2 original properties, “internal_cache” as a temporary property and “added_property” as a normal property

```python
class SubclassedDataFrame2(DataFrame):
 # temporary properties
 _internal_names = pd.DataFrame._internal_names + ['internal_cache']
 _internal_names_set = set(_internal_names)

 # normal properties
 _metadata = ['added_property']

 @property
def _constructor(self):
 return SubclassedDataFrame2
```

```python
>>> df = SubclassedDataFrame2({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
>>> df
 A B C
0 1 4 7
1 2 5 8
2 3 6 9
>>> df.internal_cache = 'cached'
>>> df.added_property = 'property'
```
>>> df.internal_cache
cached
>>> df.added_property
property

# properties defined in _internal_names is reset after manipulation
>>> df[['A', 'B']].internal_cache
AttributeError: 'SubclassedDataFrame2' object has no attribute 'internal_cache'

# properties defined in _metadata are retained
>>> df[['A', 'B']].added_property
property
RELEASE NOTES

This is the list of changes to pandas between each release. For full details, see the commit logs at http://github.com/pandas-dev/pandas

What is it

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with “relational” or “labeled” data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language.

Where to get it

• Source code: http://github.com/pandas-dev/pandas
• Binary installers on PyPI: http://pypi.python.org/pypi/pandas
• Documentation: http://pandas.pydata.org

pandas 0.19.2

Release date: December 24, 2016

This is a minor bug-fix release in the 0.19.x series and includes some small regression fixes, bug fixes and performance improvements.

Highlights include:

• Compatibility with Python 3.6
• Added a Pandas Cheat Sheet. (GH13202).

See the v0.19.1 Whatsnew page for an overview of all bugs that have been fixed in 0.19.2.

Thanks

• Ajay Saxena
• Ben Kandel
• Chris
• Chris Ham
• Christopher C. Aycock
• Daniel Himmelstein
pandas: powerful Python data analysis toolkit, Release 0.19.2

- Dave Willmer
- Dr-Irv
- gfyounghesmabana
- Jeff Carey
- Jeff Reback
- Joe Jevnik
- Joris Van den Bossche
- Julian Santander
- Kerby Shedden
- Keshav Ramaswamy
- Kevin Sheppard
- Luca Scarabello
- Matti Picus
- Matt Roeschke
- Maximilian Roos
- Mykola Golubyev
- Nate Yoder
- Nicholas Ver Halen
- Pawel Kordek
- Pietro Battiston
- Rodolfo Fernandez
- sinhhrs
- Tara Adiseshan
- Tom Augspurger
- wandersoncferreria
- Yaroslav Halchenko

pandas 0.19.1

Release date: November 3, 2016

This is a minor bug-fix release from 0.19.0 and includes some small regression fixes, bug fixes and performance improvements.

See the v0.19.1 Whatsnew page for an overview of all bugs that have been fixed in 0.19.1.
Thanks

- Adam Chainz
- Anthonios Partheniou
- Arash Rouhani
- Ben Kandel
- Brandon M. Burroughs
- Chris
- chris-b1
- Chris Warth
- David Krych
- dubourg
- gyoung
- Iván Vallés Pérez
- Jeff Reback
- Joe Jevnik
- Jon M. Mease
- Joris Van den Bossche
- Josh Owen
- Keshav Ramaswamy
- Larry Ren
- mattrijk
- Michael Felt
- paul-mannino
- Piotr Chromiec
- Robert Bradshaw
- Sinhrks
- Thiago Serafim
- Tom Bird

pandas 0.19.0

Release date: October 2, 2016

This is a major release from 0.18.1 and includes number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- merge_asof() for asof-style time-series joining, see here
pandas: powerful Python data analysis toolkit, Release 0.19.2

• `rolling()` is now time-series aware, see [here](#)
• `read_csv()` now supports parsing Categorical data, see [here](#)
• A function `union_categorical()` has been added for combining categoricals, see [here](#)
• `PeriodIndex` now has its own `period` dtype, and changed to be more consistent with other `Index` classes. See [here](#)
• Sparse data structures gained enhanced support of `int` and `bool` dtypes, see [here](#)
• Comparison operations with `Series` no longer ignores the index, see [here](#) for an overview of the API changes.
• Introduction of a pandas development API for utility functions, see [here](#).
• Deprecation of `Panel4D` and `PanelND`. We recommend to represent these types of n-dimensional data with the `xarray` package.
• Removal of the previously deprecated modules `pandas.io.data`, `pandas.io.wb`, `pandas.tools.rplot`.

See the [v0.19.0 Whatsnew](#) overview for an extensive list of all enhancements and bugs that have been fixed in 0.19.0.

Thanks

• adneu
• Adrien Emery
• agraboso
• Alex Alekseyev
• Alex Vig
• Allen Riddell
• Amol
• Amol Agrawal
• Andy R. Terrel
• Anthonios Partheniou
• babakkeyvani
• Ben Kandel
• Bob Baxley
• Brett Rosen
• c123w
• Camilo Cota
• Chris
• chris-b1
• Chris Grinolds
• Christian Hudon
• Christopher C. Aycock
• Chris Warth
• cmazzullo
• conquistador1492
• cr3
• Daniel Siladji
• Douglas McNeil
• Drewrey Lupton
• dsm054
• Eduardo Blancas Reyes
• Elliot Marsden
• Evan Wright
• Felix Marczinowski
• Francis T. O’Donovan
• Gábor Lipták
• Geraint Duck
• gfyounT
• Giacomo Ferroni
• Grant Roch
• Haleemur Ali
• harshul1610
• Hassan Shamim
• iamsimha
• Iulius Curt
• Ivan Nazarov
• jackieleng
• Jeff Reback
• Jeffrey Gerard
• Jenn Olsen
• Jim Crist
• Joe Jevnik
• John Evans
• John Freeman
• John Liekezer
• Johnny Gill
• John W. O’Brien
• John Zwinck
• Jordan Erenrich
• Joris Van den Bossche
• Josh Howes
• Jozef Brandys
• Kamil Sindi
• Ka Wo Chen
• Kerby Shedden
• Kern
• Kevin Sheppard
• Matthieu Brucher
• Maximilian Roos
• Michael Scherer
• Mike Graham
• Mortada Mehyar
• mpuels
• Muhammad Haseeb Tariq
• Nate George
• Neil Parley
• Nicolas Bonnotte
• OXPHOS
• Pan Deng / Zora
• Paul
• Pauli Virtanen
• Paul Mestemaker
• Pawel Kordek
• Pietro Battistone
• pijucha
• Piotr Jucha
• priyankjain
• Ravi Kumar Nimmi
• Robert Gieseke
• Robert Kern
• Roger Thomas
• Roy Keyes
• Russell Smith
• Sahil Dua
• Sanjiv Lobo
pandas: powerful Python data analysis toolkit, Release 0.19.2

- Sašo Stanovnik
- Shawn Heide
- sinhrks
- Sinhrks
- Stephen Kappel
- Steve Choi
- Stewart Henderson
- Sudarshan Konge
- Thomas A Caswell
- Tom Augspurger
- Tom Bird
- Uwe Hoffmann
- wcwagner
- WillAyd
- Xiang Zhang
- Yadunandan
- Yaroslav Halchenko
- YG-Riku
- Yuichiro Kaneko
- yui-knk
- zhangjinjie
- znmean
- Yan Facai

**pandas 0.18.1**

**Release date:** (May 3, 2016)

This is a minor release from 0.18.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements.

Highlights include:

- `.groupby(...)` has been enhanced to provide convenient syntax when working with `.rolling(...)`, `.expanding(...)`, and `.resample(...)` per group, see [here](#).
- `.pd.to_datetime()` has gained the ability to assemble dates from a DataFrame, see [here](#).
- Method chaining improvements, see [here](#).
- Custom business hour offset, see [here](#).
- Many bug fixes in the handling of `sparse`, see [here](#).
- Expanded the *Tutorials section* with a feature on modern pandas, courtesy of [@TomAugsburger](#). (GH13045).
See the v0.18.1 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.18.1.

Thanks

- Andrew Fiore-Gartland
- Bastiaan
- Benoît Vinot
- Brandon Rhodes
- DaCoEx
- Drew Fustin
- Ernesto Freitas
- Filip Ter
- Gregory Livschitz
- Gábor Lipták
- Hassan Kibirige
- Iblis Lin
- Israel Saeta Pérez
- Jason Wolosonovich
- Jeff Reback
- Joe Jevnik
- Joris Van den Bossche
- Joshua Storck
- Ka Wo Chen
- Kerby Shedden
- Kieran O’Mahony
- Leif Walsh
- Mahmoud Lababidi
- Maoyuan Liu
- Mark Roth
- Matt Wittmann
- MaxU
- Maximilian Roos
- Michael Droettboom
- Nick Eubank
- Nicolas Bonnotte
- OXPHOS
- Pauli Virtanen
pandas 0.18.0

Release date: (March 13, 2016)

This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

• Moving and expanding window functions are now methods on Series and DataFrame, similar to .groupby, see here.
• Adding support for a `RangeIndex` as a specialized form of the `Int64Index` for memory savings, see here.
• API breaking change to the `.resample` method to make it more `.groupby` like, see here.
• Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise a `TypeError`, see here.
• The `.to_xarray()` function has been added for compatibility with the `xarray` package, see here.
• The `read_sas` function has been enhanced to read `sas7bdat` files, see here.
• Addition of the `.str.extractall()` method, and API changes to the `.str.extract()` method and `.str.cat()` method.
• `pd.test()` top-level nose test runner is available (GH4327).

See the `v0.18.0 Whatsnew` overview for an extensive list of all enhancements and bugs that have been fixed in 0.18.0.

Thanks

• ARF
• Alex Alekseyev
• Andrew McPherson
• Andrew Rosenfeld
• Anthonios Partheniou
• Anton I. Sipos
• Ben
• Ben North
• Bran Yang
• Chris
• Chris Carroux
• Christopher C. Aycock
• Christopher Scanlin
• Cody
• Da Wang
• Daniel Grady
• Dorozhko Anton
• Dr-Irv
• Erik M. Bray
• Evan Wright
• Francis T. O’Donovan
• Frank Cleary
• Gianluca Rossi
• Graham Jeffries
• Guillaume Horel
• Henry Hammond
• Isaac Schwabacher
• Jean-Mathieu Deschenes
• Jeff Reback
• Joe Jevnik
• John Freeman
• John Fremlin
• Jonas Hoersch
• Joris Van den Bossche
• Joris Vankerschaver
• Justin Lecher
• Justin Lin
• Ka Wo Chen
• Keming Zhang
• Kerby Shedden
• Kyle
• Marco Farrugia
• MasonGallo
• MattRijk
• Matthew Lurie
• Maximilian Roos
• Mayank Asthana
• Mortada Mehyar
• Moussa Taifi
• Navreet Gill
• Nicolas Bonnotte
• Paul Reiners
• Philip Gura
• Pietro Battiston
• RahulHP
• Randy Carnevale
• Rinoc Johnson
• Rishipuri
• Sangmin Park
• Scott E Lasley
• Sereger13
• Shannon Wang
• Skipper Seabold
• Thierry Moisan
• Thomas A Caswell
• Toby Dylan Hocking
• Tom Augspurger
• Travis
• Trent Hauck
• Tux1
• Varun
• Wes McKinney
• Will Thompson
• Yoav Ram
• Yoong Kang Lim
• Yoshiki Vázquez Baeza
• Young Joong Kim
• Younggun Kim
• Yuval Langer
• alex argunov
• behzad nouri
• boombard
• brian-pantano
• chromy
• daniel
• dgram0
• gfyoungh
• hack-c
• hcontrast
• jfoo
• kaustuv deolal
• llllllllll
• ranarag
• rockg
• scls19fr
• seales
• sinhrks
pandas 0.17.1

Release date: (November 21, 2015)

This is a minor release from 0.17.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements.

Highlights include:

• Support for Conditional HTML Formatting, see here
• Releasing the GIL on the csv reader & other ops, see here
• Regression in DataFrame.drop_duplicates from 0.16.2, causing incorrect results on integer values (GH11376)

See the v0.17.1 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.17.1.

Thanks

• Aleksandr Drozd
• Alex Chase
• Anthonios Partheniou
• BrenBarn
• Brian J. McGuirk
• Chris
• Christian Berendt
• Christian Perez
• Cody Piersall
• Data & Code Expert Experimenting with Code on Data
• DrIrv
• Evan Wright
• Guillaume Gay
• Hamed Saljooghinejad
• Iblis Lin
• Jake VanderPlas
• Jan Schulz
• Jean-Mathieu Deschenes
• Jeff Reback
• Jimmy Callin
• Joris Van den Bossche
• K.-Michael Aye
• Ka Wo Chen
• Loïc Séguin-C
• Luo Yicheng
• Magnus Jöud
• Manuel Leonhardt
• Matthew Gilbert
• Maximilian Roos
• Michael
• Nicholas Stahl
• Nicolas Bonnotte
• Pastafarianist
• Petra Chong
• Phil Schaf
• Philipp A
• Rob deCarvalho
• Roman Khomenko
• Rémy Léone
• Sebastian Bank
• Thierry Moisan
• Tom Augspurger
• Tux1
• Varun
• Wieland Hoffmann
• Winterflower
• Yoav Ram
• Younggun Kim
• Zeke
• ajcr
• azuranski
• behzad nouri
• cel4
• emilydolson
• hironow
• lexical
pandas 0.17.0

**Release date:** (October 9, 2015)

This is a major release from 0.16.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

- Release the Global Interpreter Lock (GIL) on some cython operations, see here
- Plotting methods are now available as attributes of the `.plot` accessor, see here
- The sorting API has been revamped to remove some long-time inconsistencies, see here
- Support for a `datetime64[ns]` with timezones as a first-class dtype, see here
- The default for `to_datetime` will now be to raise when presented with unparsable formats, previously this would return the original input. Also, date parse functions now return consistent results. See here
- The default for `dropna` in HDFStore has changed to False, to store by default all rows even if they are all NaN, see here
- Datetime accessor (dt) now supports `Series.dt.strftime` to generate formatted strings for datetime-likes, and `Series.dt.total_seconds` to generate each duration of the timedelta in seconds. See here
- Period and PeriodIndex can handle multiplied freq like 3D, which corresponding to 3 days span. See here
- Development installed versions of pandas will now have PEP440 compliant version strings (GH9518)
- Development support for benchmarking with the Air Speed Velocity library (GH8316)
- Support for reading SAS xport files, see here
- Documentation comparing SAS to pandas, see here
- Removal of the automatic TimeSeries broadcasting, deprecated since 0.8.0, see here
- Display format with plain text can optionally align with Unicode East Asian Width, see here
- Compatibility with Python 3.5 (GH11097)
- Compatibility with matplotlib 1.5.0 (GH11111)

See the v0.17.0 Whatsnew overview for an extensive list of all enhancements and bugs that have been fixed in 0.17.0.

**Thanks**

- Alex Rothberg
- Andrea Bedini
- Andrew Rosenfeld
• Andy Li
• Anthonios Partheniou
• Artemy Kolchinsky
• Bernard Willers
• Charlie Clark
• Chris
• Chris Whelan
• Christoph Gohlke
• Christopher Whelan
• Clark Fitzgerald
• Clearfield Christopher
• Dan Ringwalt
• Daniel Ni
• Data & Code Expert Experimenting with Code on Data
• David Cottrell
• David John Gagne
• David Kelly
• ETF
• Eduardo Schettino
• Egor
• Egor Panfilov
• Evan Wright
• Frank Pinter
• Gabriel Araujo
• Garrett-R
• Gianluca Rossi
• Guillaume Gay
• Guillaume Poulin
• Harsh Nisar
• Ian Henriksen
• Ian Hoegen
• Jaidev Deshpande
• Jan Rudolph
• Jan Schulz
• Jason Swails
• Jeff Reback
• Jonas Buyl
• Joris Van den Bossche
• Joris Vankerschavber
• Josh Levy-Kramer
• Julien Danjou
• Ka Wo Chen
• Karrie Kehoe
• Kelsey Jordahl
• Kerby Shedden
• Kevin Sheppard
• Lars Buitinck
• Leif Johnson
• Luis Ortiz
• Mac
• Matt Gambogi
• Matt Savoie
• Matthew Gilbert
• Maximilian Roos
• Michelangelo D’Agostino
• Mortada Mehyar
• Nick Eubank
• Nipun Batra
• Ondřej Čertík
• Phillip Cloud
• Pratap Vardhan
• Rafal Skolasinski
• Richard Lewis
• Rinoc Johnson
• Rob Levy
• Robert Gieseke
• Safia Abdalla
• Samuel Denny
• Saumitra Shahapure
• Sebastian Pölsterl
• Sebastian Rubbert
• Sheppard, Kevin
• Sinhrks
• Siu Kwan Lam
• Skipper Seabold
• Spencer Carrucci
• Stephan Hoyer
• Stephen Hoover
• Stephen Pascoe
• Terry Santegoeds
• Thomas Grainger
• Tjerk Santegoeds
• Tom Augspurger
• Vincent Davis
• Winterflower
• Yaroslav Halchenko
• Yuan Tang (Terry)
• agijsberths
• ajcr
• behzad nouri
• cel4
• cyrusmaher
• davidovitch
• ganego
• jreback
• juricast
• larvian
• maximilianr
• msund
• rekcahpassyla
• robertzk
• scls19fr
• seth-p
• sinhrks
• springcoil
• terrytangyuan
• tzinckgraf
pandas 0.16.2

Release date: (June 12, 2015)

This is a minor release from 0.16.1 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements.

Highlights include:

- A new `pipe` method, see [here](#)
- Documentation on how to use `numba` with `pandas`, see [here](#)

See the [v0.16.2 Whatsnew overview](#) for an extensive list of all enhancements and bugs that have been fixed in 0.16.2.

Thanks

- Andrew Rosenfeld
- Artemy Kolchinsky
- Bernard Willers
- Christer van der Meeren
- Christian Hudon
- Constantine Glen Evans
- Daniel Julius Lasiman
- Evan Wright
- Francesco Brundu
- Gaëtan de Menten
- Jake VanderPlas
- James Hiebert
- Jeff Reback
- Joris Van den Bossche
- Justin Lecher
- Ka Wo Chen
- Kevin Sheppard
- Mortada Mehyar
- Morton Fox
- Robin Wilson
- Thomas Grainger
- Tom Ajamian
- Tom Augspurger
- Yoshiki Vázquez Baeza
- Younggun Kim
pandas: powerful Python data analysis toolkit, Release 0.19.2

- austinc
- behzad nouri
- jreback
- lexual
- rekcahpassyla
- scls19fr
- sinhrks

pandas 0.16.1

**Release date:** (May 11, 2015)

This is a minor release from 0.16.0 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs.

See the v0.16.1 *Whatsnew* overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.16.1.

**Thanks**

- Alfonso MHC
- Andy Hayden
- Artemy Kolchinsky
- Chris Gilmer
- Chris Grinolds
- Dan Birken
- David BROCHART
- David Hirschfeld
- David Stephens
- Dr. Leo
- Evan Wright
- Frans van Dunné
- Hatem Nassrat
- Henning Sperr
- Hugo Herter
- Jan Schulz
- Jeff Blackburne
- Jeff Reback
- Jim Crist
- Jonas Abernot
• Joris Van den Bossche
• Kerby Shedden
• Leo Razoumov
• Manuel Riel
• Mortada Mehyar
• Nick Burns
• Nick Eubank
• Olivier Grisel
• Phillip Cloud
• Pietro Battiston
• Roy Hyunjin Han
• Sam Zhang
• Scott Sanderson
• Stephan Hoyer
• Tiago Antao
• Tom Ajamian
• Tom Augspurger
• Tomaz Berisa
• Vikram Shirgur
• Vladimir Filimonov
• William Hogman
• Yasin A
• Younggun Kim
• behzad nouri
• dsm054
• floydsoft
• flying-sheep
• gfr
• jnmclarty
• jreback
• ksanghai
• lucas
• mschmohl
• ptype
• rockg
• scls19fr
pandas: powerful Python data analysis toolkit, Release 0.19.2

• sinhrks

pandas 0.16.0

Release date: (March 22, 2015)

This is a major release from 0.15.2 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

• DataFrame.assign method, see here
• Series.to_coo/from_coo methods to interact with scipy.sparse, see here
• Backwards incompatible change to Timedelta to conform the .seconds attribute with datetime.timedelta, see here
• Changes to the .loc slicing API to conform with the behavior of .ix see here
• Changes to the default for ordering in the Categorical constructor, see here
• The pandas.tools.rplot, pandas.sandbox.qtpandas and pandas.rpy modules are deprecated. We refer users to external packages like seaborn, pandas-qt and rpy2 for similar or equivalent functionality, see here

See the v0.16.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.16.0.

Thanks

• Aaron Toth
• Alan Du
• Alessandro Amici
• Artemy Kolchinsky
• Ashwini Chaudhary
• Ben Schiller
• Bill Letson
• Brandon Bradley
• Chau Hoang
• Chris Reynolds
• Chris Whelan
• Christer van der Meeren
• David Cottrell
• David Stephens
• Ehsan Azarnasab
• Garrett-R
• Guillaume Gay
• Jake Torcasso
• Jason Sexauer
• Jeff Reback
• John McNamara
• Joris Van den Bossche
• Joschka zur Jacobsmühlen
• Juarez Bochi
• Junya Hayashi
• K.-Michael Aye
• Kerby Shedden
• Kevin Sheppard
• Kieran O’Mahony
• Kodi Arfer
• Matti Airas
• Min RK
• Mortada Mehyar
• Robert
• Scott E Lasley
• Scott Lasley
• Sergio Pascual
• Skipper Seabold
• Stephan Hoyer
• Thomas Grainger
• Tom Augspurger
• TomAugspurger
• Vladimir Filimonov
• Vyomkesh Tripathi
• Will Holmgren
• Yulong Yang
• behzad nouri
• bertrandhaut
• bjonen
• cel4
• clham
• hsperr
• ischwabacher
pandas: powerful Python data analysis toolkit, Release 0.19.2

• jnnclarty
• josham
• jreback
• omtinez
• roch
• sinhrks
• unutbu

pandas 0.15.2

Release date: (December 12, 2014)

This is a minor release from 0.15.1 and includes a large number of bug fixes along with several new features, enhancements, and performance improvements. A small number of API changes were necessary to fix existing bugs.

See the v0.15.2 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.2.

Thanks

• Aaron Staple
• Angelos Evripiotis
• Artemy Kolchinsky
• Benoit Pointet
• Brian Jacobowski
• Charalampos Papaloizou
• Chris Warth
• David Stephens
• Fabio Zanini
• Francesc Via
• Henry Kleynhans
• Jake VanderPlas
• Jan Schulz
• Jeff Reback
• Jeff Tratner
• Joris Van den Bossche
• Kevin Sheppard
• Matt Suggit
• Matthew Brett
• Phillip Cloud
pandas 0.15.1

Release date: (November 9, 2014)

This is a minor release from 0.15.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

See the v0.15.1 Whatsnew overview for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.1.
Thanks

- Aaron Staple
- Andrew Rosenfeld
- Anton I. Sipos
- Artemy Kolchinsky
- Bill Letson
- Dave Hughes
- David Stephens
- Guillaume Horel
- Jeff Reback
- Joris Van den Bossche
- Kevin Sheppard
- Nick Stahl
- Sanghee Kim
- Stephan Hoyer
- TomAugspurger
- WANG Aiyong
- behzad nouri
- immerrr
- jnmclarty
- jreback
- pallav-fdsi
- unutbu

pandas 0.15.0

Release date: (October 18, 2014)

This is a major release from 0.14.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

- Drop support for numpy < 1.7.0 (GH7711)
- The Categorical type was integrated as a first-class pandas type, see here
- New scalar type Timedelta, and a new index type TimedeltaIndex, see here
- New DataFrame default display for df.info() to include memory usage, see Memory Usage
- New datetimelike properties accessor .dt for Series, see Datetimelike Properties
- Split indexing documentation into Indexing and Selecting Data and MultiIndex / Advanced Indexing
• Split out string methods documentation into Working with Text Data
• `read_csv` will now by default ignore blank lines when parsing, see here
• API change in using Indexes in set operations, see here
• Internal refactoring of the `Index` class to no longer sub-class `ndarray`, see Internal Refactoring
• dropping support for PyTables less than version 3.0.0, and numexpr less than version 2.1 (GH7990)

See the v0.15.0 Whatstnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.15.0.

Thanks

• Aaron Schumacher
• Adam Greenhall
• Andy Hayden
• Anthony O’Brien
• Artemy Kolchinsky
• behzad nouri
• Benedikt Sauer
• benjamin
• Benjamin Thyreau
• Ben Schiller
• bjonen
• BorisVerk
• Chris Reynolds
• Chris Stoafer
• Dav Clark
• dlovell
• DSM
• dsm054
• FragLegs
• German Gomez-Herrero
• Hsiaoming Yang
• Huan Li
• hunterowens
• Hyungtae Kim
• immerrr
• Isaac Slavitt
• ischwabacher
- Jacob Schaer
- Jacob Wasserman
- Jan Schulz
- Jeff Tratner
- Jesse Farnham
- jmorris0x0
- jnmelarty
- Joe Bradish
- Joerg Rittinger
- John W. O’Brien
- Joris Van den Bossche
- jreback
- Kevin Sheppard
- klonuo
- Kyle Meyer
- lexical
- Max Chang
- mcjcode
- Michael Mueller
- Michael W Schatzow
- Mike Kelly
- Mortada Mehyar
- mtrbean
- Nathan Sanders
- Nathan Typanski
- onesandzeroes
- Paul Masurel
- Phillip Cloud
- Pietro Battiston
- RenzoBertocchi
- rockg
- Ross Petchler
- seth-p
- Shahul Hameed
- Shashank Agarwal
- sinhhrs
pandas 0.14.1

Release date: (July 11, 2014)

This is a minor release from 0.14.0 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

• New methods `select_dtypes()` to select columns based on the dtype and `sem()` to calculate the standard error of the mean.
• Support for dateutil timezones (see docs).
• Support for ignoring full line comments in the `read_csv()` text parser.
• New documentation section on `Options and Settings`.
• Lots of bug fixes.

See the v0.14.1 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.1.

Thanks

• Andrew Rosenfeld
• Andy Hayden
• Benjamin Adams
• Benjamin M. Gross
• Brian Quistorff
• Brian Wignall
• bwignall
• clham
• Daniel Waeber
• David Bew
• David Stephens
• DSM
• dsm054
• helger
• immerr
• Jacob Schaer
• jaimefrio
• Jan Schulz
• John David Reaver
• John W. O’Brien
• Joris Van den Bossche
• jreback
• Julien Danjou
• Kevin Sheppard
• K.-Michael Aye
• Kyle Meyer
• lexual
• Matthew Brett
• Matt Wittmann
• Michael Mueller
• Mortada Mehyar
• onesandzeroes
• Phillip Cloud
• Rob Levy
• rockg
• sanguineturtle
• Schaer, Jacob C
• seth-p
• sinhrks
• Stephan Hoyer
pandas 0.14.0

Release date: (May 31, 2014)

This is a major release from 0.13.1 and includes a number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes.

Highlights include:

- Officially support Python 3.4
- SQL interfaces updated to use SQLAlchemy, see here.
- Display interface changes, see here.
- MultiIndexing using Slicers, see here.
- Ability to join a singly-indexed DataFrame with a multi-indexed DataFrame, see here.
- More consistency in groupby results and more flexible groupby specifications, see here.
- Holiday calendars are now supported in CustomBusinessDay, see here.
- Several improvements in plotting functions, including: hexbin, area and pie plots, see here.
- Performance doc section on I/O operations, see here.

See the v0.14.0 Whatsnew overview or the issue tracker on GitHub for an extensive list of all API changes, enhancements and bugs that have been fixed in 0.14.0.

Thanks

- Acanthostega
- Adam Marcus
- agijsberts
- akittredge
- Alex Gaudio
- Alex Rothberg
- AllenDowney
- Andrew Rosenfeld
- Andy Hayden
- ankostis
- anomrake
- Antoine Mazières
pandas: powerful Python data analysis toolkit, Release 0.19.2

• anton-d
• bashtage
• Benedikt Sauer
• benjamin
• Brad Buran
• bwignall
• cgohlke
• chebee7i
• Christopher Whelan
• Clark Fitzgerald
• clham
• Dale Jung
• Dan Allan
• Dan Birken
• danielballan
• Daniel Waeber
• David Jung
• David Stephens
• Douglas McNeil
• DSM
• Garrett Drapala
• Gouthaman Balaraman
• Guillaume Poulin
• hshimizu77
• hugo
• immerrr
• ischwabacher
• Jacob Howard
• Jacob Schaer
• jaimefrio
• Jason Sexauer
• Jeff Reback
• Jeffrey Starr
• Jeff Tratner
• John David Reaver
• John McNamara
• John W. O’Brien
• Jonathan Chambers
• Joris Van den Bossche
• jreback
• jsexauer
• Julia Evans
• Júlio
• Katie Atkinson
• kdiether
• Kelsey Jordahl
• Kevin Sheppard
• K.-Michael Aye
• Matthias Kuhn
• Matt Wittmann
• Max Grender-Jones
• Michael E. Gruen
• michaelws
• mikebailey
• Mike Kelly
• Nipun Batra
• Noah Spies
• ojdo
• onesandzeroes
• Patrick O’Keeffe
• phaebz
• Phillip Cloud
• Pietro Battiston
• PKEuS
• Randy Carnevale
• ribonuous
• Robert Gibboni
• rockg
• sinhrks
• Skipper Seabold
• SplashDance
• Stephan Hoyer
• Tim Cera
• Tobias Brandt
• Todd Jennings
• TomAugspurger
• Tom Augspurger
• unutbu
• westurner
• Yaroslav Halchenko
• y-p
• zach powers

pandas 0.13.1

Release date: (February 3, 2014)

New Features

• Added date_format and datetime_format attribute to ExcelWriter. (GH4133)

API Changes

• Series.sort will raise a ValueError (rather than a TypeError) on sorting an object that is a view of another (GH5856, GH5853)
• Raise/Warn SettingWithCopyError (according to the option chained_assignment in more cases, when detecting chained assignment, related (GH5938, GH6025)
• DataFrame.head(0) returns self instead of empty frame (GH5846)
• autocorrelation_plot now accepts **kwargs. (GH5623)
• convert_objects now accepts a convert_timedeltas='coerce' argument to allow forced dtype conversion of timedeltas (GH5458;issue:5689)
• Add -NaN and --nan to the default set of NA values (GH5952). See NA Values.
• NDFrame now has an equals method. (GH5283)
• DataFrame.apply will use the reduce argument to determine whether a Series or a DataFrame should be returned when the DataFrame is empty (GH6007).

Experimental Features

Improvements to existing features

• perf improvements in Series datetime/timedelta binary operations (GH5801)
• option_context context manager now available as top-level API (GH5752)
• df.info() view now display dtype info per column (GH5682)
• df.info() now honors option max_info_rows, disable null counts for large frames (GH5974)
• perf improvements in DataFrame count/dropna for axis=1
• Series.str.contains now has a regex=False keyword which can be faster for plain (non-regex) string patterns. (GH5879)
• support dtypes property on Series/Panel/Panel4D
• extend Panel.apply to allow arbitrary functions (rather than only ufuncs) (GH1148) allow multiple axes to be used to operate on slabs of a Panel
• The ArrayFormatter for datetime and timedelta64 now intelligently limit precision based on the values in the array (GH3401)
• pd.show_versions() is now available for convenience when reporting issues.
• perf improvements to Series.str.extract (GH5944)
• perf improvements in dtypes/ftypes methods (GH5968)
• perf improvements in indexing with object dtypes (GH5968)
• improved dtype inference for timedelta like passed to constructors (GH5458, GH5689)
• escape special characters when writing to latex (:issue: 5374)
• perf improvements in DataFrame.apply (GH6013)
• pd.read_csv and pd.to_datetime learned a new infer_datetime_format keyword which greatly improves parsing perf in many cases. Thanks to @lexual for suggesting and @danbirken for rapidly implementing. (GH5490,:issue: 6021)
• add ability to recognize ‘%p’ format code (am/pm) to date parsers when the specific format is supplied (GH5361)
• Fix performance regression in JSON IO (GH5765)
• performance regression in Index construction from Series (GH6150)

**Bug Fixes**

• Bug in io.wb.get_countries not including all countries (GH6008)
• Bug in Series replace with timestamp dict (GH5797)
• read_csv/read_table now respects the prefix kwarg (GH5732).
• Bug in selection with missing values via .ix from a duplicate indexed DataFrame failing (GH5835)
• Fix issue of boolean comparison on empty DataFrames (GH5808)
• Bug in isnull handling NaT in an object array (GH5443)
• Bug in to_datetime when passed a np.nan or integer datelike and a format string (GH5863)
• Bug in groupby dtype conversion with datetimelike (GH5869)
• Regression in handling of empty Series as indexers to Series (GH5877)
• Bug in internal caching, related to (GH5727)
• Testing bug in reading JSON/msgpack from a non-filepath on windows under py3 (GH5874)
• Bug when assigning to .ix[tuple(...)] (GH5896)
• Bug in fully reindexing a Panel (GH5905)
• Bug in idxmin/max with object dtypes (GH5914)
• Bug in BusinessDay when adding n days to a date not on offset when n>5 and n%5==0 (GH5890)
• Bug in assigning to chained series with a series via ix (GH5928)
• Bug in creating an empty DataFrame, copying, then assigning (GH5932)
• Bug in DataFrame.tail with empty frame (GH5846)
• Bug in propagating metadata on resample (GH5862)
• Fixed string-representation of NaT to be “NaT” (GH5708)
• Fixed string-representation for Timestamp to show nanoseconds if present (GH5912)
• pd.match not returning passed sentinel
• Panel.to_frame() no longer fails when major_axis is a MultiIndex (GH5402).
• Bug in pd.read_msgpack with inferring a DateTimeIndex frequency incorrectly (GH5947)
• Fixed to_datetime for array with both Tz-aware datetimes and NaT's (GH5961)
• Bug in rolling skew/kurtosis when passed a Series with bad data (GH5749)
• Bug in scipy interpolate methods with a datetime index (GH5975)
• Bug in NaT comparison if a mixed datetime/np.datetime64 with NaT were passed (GH5968)
• Fixed bug with pd.concat losing dtype information if all inputs are empty (GH5742)
• Recent changes in IPython cause warnings to be emitted when using previous versions of pandas in QTConsole, now fixed. If you’re using an older version and need to suppress the warnings, see (GH5922).
• Bug in merging timedelta dtypes (GH5695)
• Bug in plotting.scatter_matrix function. Wrong alignment among diagonal and off-diagonal plots, see (GH5497).
• Regression in Series with a multi-index via ix (GH6018)
• Bug in Series.xs with a multi-index (GH6018)
• Bug in Series construction of mixed type with datelike and an integer (which should result in object type and not automatic conversion) (GH6028)
• Possible segfault when chained indexing with an object array under numpy 1.7.1 (GH6026, GH6056)
• Bug in setting using fancy indexing a single element with a non-scalar (e.g. a list), (GH6043)
• to_sql did not respect if_exists (GH4110 GH4304)
• Regression in .get (None) indexing from 0.12 (GH5652)
• Subtle iloc indexing bug, surfaced in (GH6059)
• Bug with insert of strings into DatetimeIndex (GH5818)
• Fixed unicode bug in to_html/HTML repr (GH6098)
• Fixed missing arg validation in get_options_data (GH6105)
• Bug in assignment with duplicate columns in a frame where the locations are a slice (e.g. next to each other) (GH6120)
• Bug in propagating _ref_locs during construction of a DataFrame with dups index/columns (GH6121)
• Bug in DataFrame.apply when using mixed datelike reductions (GH6125)
• Bug in DataFrame.append when appending a row with different columns (GH6129)
• Bug in DataFrame construction with recarray and non-ns datetime dtype (GH6140)
• Bug in .loc setitem indexing with a dataframe on rhs, multiple item setting, and a datetimelike (GH6152)
• Fixed a bug in query/eval during lexicographic string comparisons (GH6155).
• Fixed a bug in query where the index of a single-element Series was being thrown away (GH6148).
• Bug in HDFStore on appending a dataframe with multi-indexed columns to an existing table (GH6167)
• Consistency with dtypes in setting an empty DataFrame (GH6171)
• Bug in selecting on a multi-index HDFStore even in the presence of under specified column spec (GH6169)
• Bug in nanops.var with ddof=1 and 1 elements would sometimes return inf rather than nan on some platforms (GH6136)
• Bug in Series and DataFrame bar plots ignoring the use_index keyword (GH6209)
• Bug in groupby with mixed str/int under python3 fixed; argsort was failing (GH6212)

pandas 0.13.0

Release date: January 3, 2014

New Features

• plot(kind='kde') now accepts the optional parameters bw_method and ind, passed to scipy.stats.gaussian_kde() (for scipy >= 0.11.0) to set the bandwidth, and to gkde.evaluate() to specify the indices at which it is evaluated, respectively. See scipy docs. (GH4298)
• Added isin method to DataFrame (GH4211)
• df.to_clipboard() learned a new excel keyword that let’s you paste df data directly into excel (enabled by default). (GH5070).
• Clipboard functionality now works with PySide (GH4282)
• New extract string method returns regex matches more conveniently (GH4685)
• Auto-detect field widths in read_fwf when unspecified (GH4488)
• to_csv() now outputs datetime objects according to a specified format string via the date_format keyword (GH4313)
• Added LastWeekOfMonth DateOffset (GH4637)
• Added cumcount groupby method (GH4646)
• Added FY5253, and FY5253Quarter DateOffsets (GH4511)
• Added mode() method to Series and DataFrame to get the statistical mode(s) of a column/series. (GH5367)

Experimental Features

• The new eval() function implements expression evaluation using numexpr behind the scenes. This results in large speedups for complicated expressions involving large DataFrames/Series.
pandas: powerful Python data analysis toolkit, Release 0.19.2

- **DataFrame** has a new `eval()` that evaluates an expression in the context of the DataFrame; allows inline expression assignment.
- A `query()` method has been added that allows you to select elements of a DataFrame using a natural query syntax nearly identical to Python syntax.
- `pd.eval` and friends now evaluate operations involving datetime64 objects in Python space because numexpr cannot handle NaT values (GH4897).
- Add msgpack support via `pd.read_msgpack()` and `pd.to_msgpack()` for serialization of arbitrary pandas (and python objects) in a lightweight portable binary format (GH686, GH5506).
- Added PySide support for the qtpandas DataFrameModel and DataFrameWidget.
- Added `pandas.io.gbq` for reading from (and writing to) Google BigQuery into a DataFrame. (GH4140)

**Improvements to existing features**

- `read_html` now raises a URLError instead of catching and raising a ValueError (GH4303, GH4305).
- `read_excel` now supports an integer in its `sheetname` argument giving the index of the sheet to read in (GH4301).
- `get_dummies` works with NaN (GH4446).
- Added a test for `read_clipboard()` and `to_clipboard()` (GH4282).
- Added bins argument to `value_counts` (GH3945), also sort and ascending, now available in Series method as well as top-level function.
- Text parser now treats anything that reads like inf (“inf”, “Inf”, “-Inf”, “iNf”, etc.) to infinity. (GH4220, GH4219), affecting `read_table, read_csv, etc.`.
- Added a more informative error message when plot arguments contain overlapping color and style arguments (GH4402).
- Significant table writing performance improvements in HDFStore.
- JSON date serialization now performed in low-level C code.
- JSON support for encoding datetime.time.
- Expanded JSON docs, more info about orient options and the use of the numpy param when decoding.
- Add drop_level argument to xs (GH4180).
- Can now resample a DataFrame with ohlc (GH2320).
- `Index.copy()` and `MultiIndex.copy()` now accept keyword arguments to change attributes (i.e., `names, levels, labels`) (GH4039).
- Add rename and set_names methods to Index as well as set_names, set_levels, set_labels to MultiIndex. (GH4039) with improved validation for all (GH4039, GH4794).
- A Series of dtype timedelta64[ns] can now be divided/multiplied by an integer series (GH4521).
- A Series of dtype timedelta64[ns] can now be divided by another timedelta64[ns] object to yield a float64 dtyped Series. This is frequency conversion; astyping is also supported.
- Timedelta64 support fillna/ffill/bfill with an integer interpreted as seconds, or a timedelta (GH3371).
- Box numeric ops on timedelta Series (GH4984).
- Datetime64 support ffill/bfill.
• Performance improvements with \_getitem\_ on DataFrames with when the key is a column

• Support for using a DatetimeIndex/PeriodsIndex directly in a datelike calculation e.g. s-s.index (GH4629)

• Better/cleaned up exceptions in core/common, io/excel and core/format (GH4721, GH3954), as well as cleaned up test cases in tests/test_frame, tests/test_multilevel (GH4732).

• Performance improvement of timeseries plotting with PeriodIndex and added test to vbench (GH4705 and GH4722)

• Add axis and level keywords to where, so that the other argument can now be an alignable pandas object.

• to\_datetime with a format of ‘%Y%m%d’ now parses much faster

• It’s now easier to hook new Excel writers into pandas (just subclass ExcelWriter and register your engine). You can specify an engine in to\_excel or in ExcelWriter. You can also specify which writers you want to use by default with config options io.excel.xlsx.writer and io.excel.xls.writer. (GH4745, GH4750)

• Panel.to\_excel() now accepts keyword arguments that will be passed to its DataFrame’s to\_excel() methods. (GH4750)

• Added XlsxWriter as an optional ExcelWriter engine. This is about 5x faster than the default openpyxl xlsx writer and is equivalent in speed to the xlwt xlsx writer module. (GH4542)

• allow DataFrame constructor to accept more list-like objects, e.g. list of collections.Sequence and array.Array objects (GH3783, GH4297, GH4851), thanks @lgautier

• DataFrame constructor now accepts a numpy masked record array (GH3478), thanks @jnothman

• \_getitem\_ with tuple key (e.g., [:,2]) on Series without MultiIndex raises ValueError (GH4759, GH4837)

• read\_json now raises a (more informative) ValueError when the dict contains a bad key and orient='split' (GH4730, GH4838)

• read\_stata now accepts Stata 13 format (GH4291)

• ExcelWriter and ExcelFile can be used as contextmanagers. (GH3441, GH4933)

• pandas is now tested with two different versions of statsmodels (0.4.3 and 0.5.0) (GH4981).

• Better string representations of MultiIndex (including ability to roundtrip via repr). (GH3347, GH4935)

• Both ExcelFile and read\_excel to accept an xlrd.Book for the io (formerly path\_or\_buf) argument; this requires engine to be set. (GH4961).

• concat now gives a more informative error message when passed objects that cannot be concatenated (GH4608).

• Add halflife option to exponentially weighted moving functions (PR GH4998)

• to\_dict now takes records as a possible outtype. Returns an array of column-keyed dictionaries. (GH4936)

• tz\_localize can infer a fall daylight savings transition based on the structure of unlocalized data (GH4230)

• DatetimeIndex is now in the API documentation

• Improve support for converting R datasets to pandas objects (more informative index for timeseries and numeric, support for factors, dist, and high-dimensional arrays).

• read\_html() now supports the parse\_dates, tupleize\_cols and thousands parameters (GH4770).
json_normalize() is a new method to allow you to create a flat table from semi-structured JSON data. See the docs (GH1067)

DataFrame.from_records() will now accept generators (GH4910)

DataFrame.interpolate() and Series.interpolate() have been expanded to include interpolation methods from scipy. (GH4434, GH1892)

Series now supports a to_frame method to convert it to a single-column DataFrame (GH5164)

DatetimeIndex (and date_range) can now be constructed in a left- or right-open fashion using the closed parameter (GH4579)

Python csv parser now supports usecols (GH4335)

Added support for Google Analytics v3 API segment IDs that also supports v2 IDs. (GH5271)

NDFrame.drop() now accepts names as well as integers for the axis argument. (GH5354)

Added short docstrings to a few methods that were missing them + fixed the docstrings for Panel flex methods. (GH536)

NDFrame.drop(), NDFrame.dropna(), and .drop_duplicates() all accept inplace as a keyword argument; however, this only means that the wrapper is updated inplace, a copy is still made internally. (GH1960, GH5247, GH5628, and related GH2325 [still not closed])

Fixed bug in tools.plotting.andrews_curves so that lines are drawn grouped by color as expected.

read_excel() now tries to convert integral floats (like 1.0) to int by default. (GH5394)

Excel writers now have a default option merge_cells in to_excel() to merge cells in MultiIndex and Hierarchical Rows. Note: using this option it is no longer possible to round trip Excel files with merged MultiIndex and Hierarchical Rows. Set the merge_cells to False to restore the previous behaviour. (GH5225)

The FRED DataReader now accepts multiple series (issue’3413’)

StataWriter adjusts variable names to Stata’s limitations (GH5709)

### API Changes

DataFrame.reindex() and forward/backward filling now raises ValueError if either index is not monotonic (GH4483, GH4484).

pandas now is Python 2/3 compatible without the need for 2to3 thanks to @jtratner. As a result, pandas now uses iterators more extensively. This also led to the introduction of substantive parts of the Benjamin Peterson’s six library into compat. (GH4384, GH4375, GH4372)

pandas.util.compat and pandas.util.py3compat have been merged into pandas.compat. pandas.compat now includes many functions allowing 2/3 compatibility. It contains both list and iterator versions of range, filter, map and zip, plus other necessary elements for Python 3 compatibility. lmap, lzip, lrange and lfilter all produce lists instead of iterators, for compatibility with numpy, subscripting and pandas constructors. (GH4384, GH4375, GH4372)

deprecated iterkv, which will be removed in a future release (was just an alias of iteritems used to get around 2to3's changes). (GH4384, GH4375, GH4372)

Series.get with negative indexers now returns the same as [] (GH4390)

allow ix/loc for Series/DataFrame/Panel to set on any axis even when the single-key is not currently contained in the index for that axis (GH2578, GH5226, GH5632, GH5720, GH5744, GH5756)

Default export for to_clipboard is now csv with a sep of t for compat (GH368)

at now will enlarge the object inplace (and return the same) (GH2578)
DataFrame.plot will scatter plot x versus y by passing kind='scatter' (GH2215)

HDFStore
- append_to_multiple automatically synchronizes writing rows to multiple tables and adds a dropna kwarg (GH4698)
- handle a passed Series in table format (GH4330)
- added an is_open property to indicate if the underlying file handle is_open; a closed store will now report ‘CLOSED’ when viewing the store (rather than raising an error) (GH4409)
- a close of a HDFStore now will close that instance of the HDFStore but will only close the actual file if the ref count (by PyTables) w.r.t. all of the open handles are 0. Essentially you have a local instance of HDFStore referenced by a variable. Once you close it, it will report closed. Other references (to the same file) will continue to operate until they themselves are closed. Performing an action on a closed file will raise ClosedFileError
- removed the _quiet attribute, replace by a DuplicateWarning if retrieving duplicate rows from a table (GH4367)
- removed the warn argument from open. Instead a PossibleDataLossError exception will be raised if you try to use mode='w' with an OPEN file handle (GH4367)
- allow a passed locations array or mask as a where condition (GH4467)
- add the keyword dropna=True to append to change whether ALL nan rows are not written to the store (default is True, ALL nan rows are NOT written), also settable via the option io.hdf.dropna_table (GH4625)
- the format keyword now replaces the table keyword; allowed values are fixed(f)|table(t) the Storer format has been renamed to Fixed
- a column multi-index will be recreated properly (GH4710); raise on trying to use a multi-index with data_columns on the same axis
- select_as_coordinates will now return an Int64Index of the resultant selection set
- support timedelta64[ns] as a serialization type (GH3577)
- store datetime.date objects as ordinals rather then timetuples to avoid timezone issues (GH2852), thanks @tavistmorph and @numpand
- numexpr 2.2.2 fixes incompatibility in PyTables 2.4 (GH4908)
- flush now accepts an fsync parameter, which defaults to False (GH5364)
- unicode indices not supported on table formats (GH5386)
- pass thru store creation arguments; can be used to support in-memory stores

JSON
- added date_unit parameter to specify resolution of timestamps. Options are seconds, milliseconds, microseconds and nanoseconds. (GH4362, GH4498).
- added default_handler parameter to allow a callable to be passed which will be responsible for handling otherwise unserializable objects. (GH5138)

Index and MultiIndex changes (GH4039):
- Setting levels and labels directly on MultiIndex is now deprecated. Instead, you can use the set_levels() and set_labels() methods.
- levels,labels and names properties no longer return lists, but instead return containers that do not allow setting of items (‘mostly immutable’)
- levels, labels and names are validated upon setting and are either copied or shallow-copied.
- inplace setting of levels or labels now correctly invalidates the cached properties. (GH5238)
- __deepcopy__ now returns a shallow copy (currently: a view) of the data - allowing metadata changes.
- MultiIndex.astype() now only allows np.object-like dtypes and now returns a MultiIndex rather than an Index. (GH4039)
- Added is_method to Index that allows fast equality comparison of views (similar to np.may_share_memory but no false positives, and changes on levels and labels setting on MultiIndex). (GH4859, GH4909)
- Aliased __iadd__ to __add__. (GH4996)
- Added is_method to Index that allows fast equality comparison of views (similar to np.may_share_memory but no false positives, and changes on levels and labels setting on MultiIndex). (GH4859, GH4909)
- Infer and downcast dtype if downcast='infer' is passed to fillna/ffill/bfill (GH4604)
- __nonzero__ for all NDFrame objects, will now raise a ValueError, this reverts back to (GH1073, GH4633) behavior. Add .bool() method to NDFrame objects to facilitate evaluating of single-element boolean Series
- DataFrame.update() no longer raises a DataConflictError, it now will raise a ValueError instead (if necessary) (GH4732)
- Series.isin() and DataFrame.isin() now raise a TypeError when passed a string (GH4763). Pass a list of one element (containing the string) instead.
- Remove undocumented/unused kind keyword argument from read_excel, and ExcelFile. (GH4713, GH4712)
- The method argument of NDFrame.replace() is valid again, so that a a list can be passed to to_replace (GH4743).
- provide automatic dtype conversions on _reduce operations (GH3371)
- exclude non-numerics if mixed types with datelike in _reduce operations (GH3371)
- default for tupleize_cols is now False for both to_csv and read_csv. Fair warning in 0.12 (GH3604)
- moved timedeltas support to pandas.tseries.timedeltas.py; add timedeltas string parsing, add top-level to_timedelta function
- NDFrame now is compatible with Python’s toplevel abs() function (GH4821).
- raise a TypeError on invalid comparison ops on Series/DataFrame (e.g. integer/datetime) (GH4968)
- Added a new index type, Float64Index. This will be automatically created when passing floating values in index creation. This enables a pure label-based slicing paradigm that makes [], ix, loc for scalar indexing and slicing work exactly the same. Indexing on other index types are preserved (and positional fallback for [], ix), with the exception, that floating point slicing on indexes on non Float64Index will raise a TypeError, e.g. Series(range(5))[3.5:4.5] (GH263, issue:5375)
- Make Categorical repr nicer (GH4368)
- Remove deprecated Factor (GH3650)
- Remove deprecated set_printoptions/reset_printoptions (issue:3046)
- Remove deprecated _verbose_info (GH3215)
- Begin removing methods that don’t make sense on GroupBy objects (GH4887).
• Remove deprecated read_clipboard/to_clipboard/ExcelFile/ExcelWriter from pandas.io.parsers (GH3717)
• All non-Index NDFrames (Series, DataFrame, Panel, Panel4D, SparsePanel, etc.), now support the entire set of arithmetic operators and arithmetic flex methods (add, sub, mul, etc.). SparsePanel does not support pow or mod with non-scalars. (GH3765)
• Arithmetic func factories are now passed real names (suitable for using with super) (GH5240)
• Provide numpy compatibility with 1.7 for a calling convention like np.prod(pandas_object) as numpy call with additional keyword args (GH4435)
• Provide __dir__ method (and local context) for tab completion / remove ipython completers code (GH4501)
• Support non-unique axes in a Panel via indexing operations (GH4960)
• .truncate will raise a ValueError if invalid before and afters dates are given (GH5242)
• Timestamp now supports now/today/utcnow class methods (GH5339)
• default for display.max_seq_len is now 100 rather then None. This activates truncated display ("...") of long sequences in various places. (GH5391)
• All division with NDFrame - likes is now truedivision, regardless of the future import. You can use // and floordiv to do integer division.

```python
In [3]: arr = np.array([1, 2, 3, 4])
In [4]: arr2 = np.array([5, 3, 2, 1])
In [5]: arr / arr2
Out[5]: array([0, 0, 1, 4])
In [6]: pd.Series(arr) / pd.Series(arr2) # no future import required
Out[6]:
0 0.200000
1 0.666667
2 1.500000
3 4.000000
dtype: float64
```

• raise/warn SettingWithCopyError/Warning exception/warning when setting of a copy thru chained assignment is detected, settable via option mode.chained_assignment
• test the list of NA values in the csv parser. add N/A, #NA as independent default na values (GH5521)
• The refactoring involving “Series” deriving from NDFrame breaks rpy2<2.3.8. an Issue has been opened against rpy2 and a workaround is detailed in GH5698. Thanks @JanSchulz.
• Series.argmin and Series.argmax are now aliased to Series.idxmin and Series.idxmax. These return the index of the min or max element respectively. Prior to 0.13.0 these would return the position of the min / max element (GH6214)

### Internal Refactoring

In 0.13.0 there is a major refactor primarily to subclass Series from NDFrame, which is the base class currently for DataFrame and Panel, to unify methods and behaviors. Series formerly subclassed directly from ndarray. (GH4080, GH3862, GH816) See Internal Refactoring
• Refactor of series.py/frame.py/panel.py to move common code to generic.py
• added _setup_axes to created generic NDFrame structures
• moved methods
  - from_axes, _wrap_array, axes, ix, loc, iloc, shape, empty, swapaxes, transpose, pop
  - __iter__, keys, __contains__, __len__, __neg__, __invert__
  - convert_objects, as_blocks, as_matrix, values
  - __getstate__, __setstate__ (compat remains in frame/panel)
  - __getattr__, __setattr__
  - _indexed_same, reindex_like, align, where, mask
  - fillna, replace (Series replace is now consistent with DataFrame)
  - filter (also added axis argument to selectively filter on a different axis)
  - reindex, reindex_axis, take
  - truncate (moved to become part of NDFrame)
  - isnull/notnull now available on NDFrame objects
• These are API changes which make Panel more consistent with DataFrame
• swapaxes on a Panel with the same axes specified now return a copy
• support attribute access for setting
• filter supports same API as original DataFrame filter
• fillna refactored to core/generic.py, while > 3ndim is NotImplemented
• Series now inherits from NDFrame rather than directly from ndarray. There are several minor changes that affect the API.
• numpy functions that do not support the array interface will now return ndarrays rather than series, e.g. np.diff, np.ones_like, np.where
• Series(0.5) would previously return the scalar 0.5, this is no longer supported
• TimeSeries is now an alias for Series. the property is_time_series can be used to distinguish (if desired)
• Refactor of Sparse objects to use BlockManager
• Created a new block type in internals, SparseBlock, which can hold multi-dtypes and is non-consolidatable. SparseSeries and SparseDataFrame now inherit more methods from there hierarchy (Series/DataFrame), and no longer inherit from SparseArray (which instead is the object of the SparseBlock)
• Sparse suite now supports integration with non-sparse data. Non-float sparse data is supportable (partially implemented)
• Operations on sparse structures within DataFrames should preserve sparseness, merging type operations will convert to dense (and back to sparse), so might be somewhat inefficient
• enable setitem on SparseSeries for boolean/integer/slices
• SparsePanels implementation is unchanged (e.g. not using BlockManager, needs work)
• added ftypes method to Series/DataFrame, similar to dtypes, but indicates if the underlying is sparse/dense (as well as the dtype)
• All **NDFrame** objects now have a _prop_attributes, which can be used to indicate various values to propagate to a new object from an existing (e.g. name in Series will follow more automatically now)

• Internal type checking is now done via a suite of generated classes, allowing `isinstance(value,klass)` without having to directly import the klass, courtesy of @jtratner

• Bug in Series update where the parent frame is not updating its cache based on changes (GH4080, GH5216) or types (GH3217), fillna (GH3386)

• Indexing with dtype conversions fixed (GH4463, GH4204)

• Refactor Series.reindex to core/generic.py (GH4604, GH4618), allow method= in reindexing on a Series to work

• Series.copy no longer accepts the order parameter and is now consistent with NDFrame copy

• Refactor rename methods to core/generic.py; fixes Series.rename for (GH4605), and adds rename with the same signature for Panel

• Series (for index) / Panel (for items) now as attribute access to its elements (GH1903)

• Refactor clip methods to core/generic.py (GH4798)

• Refactor of _get_numeric_data/_get_bool_data to core/generic.py, allowing Series/Panel functionality

• Refactor of Series arithmetic with time-like objects (datetime/timedelta/time etc.) into a separate, cleaned up wrapper class. (GH4613)

• Complex compat for Series with ndarray. (GH4819)

• Removed unnecessary rwproperty from codebase in favor of builtin property. (GH4843)

• Refactor object level numeric methods (mean/sum/min/max...) from object level modules to core/generic.py (GH4435).

• Refactor cum objects to core/generic.py (GH4435), note that these have a more numpy-like function signature.

• `read_html()` now uses TextParser to parse HTML data from bs4/lxml (GH4770).

• Removed the keep_internal keyword parameter in pandas/core/groupby.py because it wasn’t being used (GH5102).

• Base **DateOffsets** are no longer all instantiated on importing pandas, instead they are generated and cached on the fly. The internal representation and handling of DateOffsets has also been clarified. (GH5189, related GH5004)

• MultiIndex constructor now validates that passed levels and labels are compatible. (GH5213, GH5214)

• Unity dropna for Series/DataFrame signature (GH5250), tests from GH5234, courtesy of @rockg

• Rewrite assert_almost_equal() in cython for performance (GH4398)

• Added an internal _update_inplace method to facilitate updating NDFrame wrappers on inplace ops (only is for convenience of caller, doesn’t actually prevent copies). (GH5247)

### Bug Fixes

• HDFStore
  - raising an invalid TypeError rather than ValueError when appending with a different block ordering (GH4096)
  - read_hdf was not respecting as passed mode (GH4504)
- appending a 0-len table will work correctly (GH4273)
- `to_hdf` was raising when passing both arguments `append` and `table` (GH4584)
- reading from a store with duplicate columns across dtypes would raise (GH4767)
- Fixed a bug where `ValueError` wasn’t correctly raised when column names weren’t strings (GH4956)
- A zero length series written in Fixed format not deserializing properly. (GH4708)
- Fixed decoding perf issue on pyt3 (GH5441)
- Validate levels in a multi-index before storing (GH5527)
- Correctly handle `data_columns` with a Panel (GH5717)

- Fixed bug in `tslib.tz_convert(vals, tz1, tz2)`: it could raise `IndexError` exception while trying to access trans[pos + 1] (GH4496)
- The `by` argument now works correctly with the `layout` argument (GH4102, GH4014) in `*.hist` plotting methods
- Fixed bug in `PeriodIndex.map` where using `str` would return the `str` representation of the index (GH4136)
- Fixed test failure `test_time_series_plot_color_with_empty_kwargs` when using custom matplotlib default colors (GH4345)
- Fix running of stata IO tests. Now uses temporary files to write (GH4353)
- Fixed an issue where `DataFrame.sum` was slower than `DataFrame.mean` for integer valued frames (GH4365)
- `read_html` tests now work with Python 2.6 (GH4351)
- Fixed bug where network testing was throwing `NameError` because a local variable was undefined (GH4381)
- In `to_json`, raise if a passed `orient` would cause loss of data because of a duplicate index (GH4359)
- In `to_json`, fix date handling so milliseconds are the default timestamp as the docstring says (GH4362).
- `as_index` is no longer ignored when doing groupby apply (GH4648, GH3417)
- JSON NaT handling fixed, NaTs are now serialized to `null` (GH4498)
- Fixed JSON handling of escapable characters in JSON object keys (GH4593)
- Fixed passing `keep_default_na=False` when `na_values=None` (GH4318)
- Fixed bug with `values` raising an error on a DataFrame with duplicate columns and mixed dtypes, surfaced in (GH4377)
- Fixed bug with duplicate columns and type conversion in `read_json` when `orient='split'` (GH4377)
- Fixed JSON bug where locales with decimal separators other than ‘.’ threw exceptions when encoding / decoding certain values. (GH4918)
- Fix `.iat` indexing with a `PeriodIndex` (GH4390)
- Fixed an issue where `PeriodIndex` joining with self was returning a new instance rather than the same instance (GH4379); also adds a test for this for the other index types
- Fixed a bug with all the dtypes being converted to object when using the CSV cparser with the usecols parameter (GH3192)
- Fix an issue in merging blocks where the resulting DataFrame had partially set `_ref_locs` (GH4403)
• Fixed an issue where hist subplots were being overwritten when they were called using the top level matplotlib API (GH4408)
• Fixed a bug where calling Series.astype(str) would truncate the string (GH4405, GH4437)
• Fixed a py3 compat issue where bytes were being repr’d as tuples (GH4455)
• Fixed Panel attribute naming conflict if item is named ‘a’ (GH3440)
• Fixed an issue where duplicate indexes were raising when plotting (GH4486)
• Fixed an issue where cumsum and cumprod didn’t work with bool dtypes (GH4170, GH4440)
• Fixed Panel slicing issued in xs that was returning an incorrect dimmed object (GH4016)
• Fix resampling bug where custom reduce function not used if only one group (GH3849, GH4494)
• Fixed Panel assignment with a transposed frame (GH3830)
• Raise on set indexing with a Panel and a Panel as a value which needs alignment (GH3777)
• frozenset objects now raise in the Series constructor (GH4482, GH4480)
• Fixed issue with sorting a duplicate multi-index that has multiple dtypes (GH4516)
• Fixed bug in DataFrame.set_values which was causing name attributes to be lost when expanding the index. (GH3742, GH4039)
• Fixed issue where individual names, levels and labels could be set on MultiIndex without validation (GH3714, GH4039)
• Fixed (GH3334) in pivot_table. Margins did not compute if values is the index.
• Fix bug in having a rhs of np.timedelta64 or np.offsets.DateOffset when operating with datetimes (GH4532)
• Fix arithmetic with series/datetimeindex and np.timedelta64 not working the same (GH4134) and buggy timedelta in numpy 1.6 (GH4135)
• Fix bug in pd.read_clipboard on windows with PY3 (GH4561); not decoding properly
• tslib.get_period_field() and tslib.get_period_field_arr() now raise if code argument out of range (GH4519, GH4520)
• Fix boolean indexing on an empty series loses index names (GH4235), infer_dtype works with empty arrays.
• Fix reindexing with multiple axes; if an axes match was not replacing the current axes, leading to a possible lazy frequency inference issue (GH3317)
• Fixed issue where DataFrame.apply was reraising exceptions incorrectly (causing the original stack trace to be truncated).
• Fix selection with ix/loc and non_unique selectors (GH4619)
• Fix assignment with iloc/loc involving a dtype change in an existing column (GH4312, GH5702) have internal setitem_with_indexer in core/indexing to use Block.setitem
• Fixed bug where thousands operator was not handled correctly for floating point numbers in csv_import (GH4322)
• Fix an issue with CacheableOffset not properly being used by many DateOffset; this prevented the DateOffset from being cached (GH4609)
• Fix boolean comparison with a DataFrame on the lhs, and a list/tuple on the rhs (GH4576)
• Fix error/dtype conversion with setitem of None on Series/DataFrame (GH4667)
• Fix decoding based on a passed in non-default encoding in pd.read_stata (GH4626)
• Fix DataFrame.from_records with a plain-vanilla ndarray. (GH4727)
• Fix some inconsistencies with Index.rename and MultiIndex.rename, etc. (GH4718, GH4628)
• Bug in using iloc/loc with a cross-sectional and duplicate indices (GH4726)
• Bug with using QUOTE_NONE with to_csv causing Exception. (GH4328)
• Bug with Series indexing not raising an error when the right-hand-side has an incorrect length (GH2702)
• Bug in multi-indexing with a partial string selection as one part of a MultiIndex (GH4758)
• Bug with reindexing on the index with a non-unique index will now raise ValueError (GH4746)
• Bug in setting with loc/ix a single indexer with a multi-index axis and a numpy array, related to (GH3777)
• Bug in concatenation with duplicate columns across dtypes not merging with axis=0 (GH4771, GH4975)
• Bug in iloc with a slice index failing (GH4771)
• Incorrect error message with no colspecs or width in read_fwf. (GH4774)
• Fix bugs in indexing in a Series with a duplicate index (GH4548, GH4550)
• Fixed bug with reading compressed files with read_fwf in Python 3. (GH3963)
• Fixed an issue with a duplicate index and assignment with a dtype change (GH4686)
• Fixed bug with reading compressed files in as bytes rather than str in Python 3. Simplifies bytes-producing
file-handling in Python 3 (GH3963, GH4785).
• Fixed an issue related to ticklocs/ticklabels with log scale bar plots across different versions of matplotlib (GH4789)
• Suppressed DeprecationWarning associated with internal calls issued by repr() (GH4391)
• Fixed an issue with a duplicate index and duplicate selector with .loc (GH4825)
• Fixed an issue with DataFrame.sort_index where, when sorting by a single column and passing a list for ascending, the argument for ascending was being interpreted as True (GH4839, GH4846)
• Fixed Panel.tshift not working. Added freq support to Panel.shift (GH4853)
• Fix an issue in TextFileReader w/ Python engine (i.e. PythonParser) with thousands != ”,” (GH4596)
• Bug in getitem with a duplicate index when using where (GH4879)
• Fix Type inference code coerces float column into datetime (GH4601)
• Fixed _ensure_numeric does not check for complex numbers (GH4902)
• Fixed a bug in Series.hist where two figures were being created when the by argument was passed
(GH4112, GH4113).
• Fixed a bug in convert_objects for > 2 ndims (GH4937)
• Fixed a bug in DataFrame/Panel cache insertion and subsequent indexing (GH4939, GH5424)
• Fixed string methods for FrozenNDArray and FrozenList (GH4929)
• Fixed a bug with setting invalid or out-of-range values in indexing enlargement scenarios (GH4940)
• Tests for fillna on empty Series (GH4346), thanks @immerrr
• Fixed copy() to shallow copy axes/indices as well and thereby keep separate metadata. (GH4202, GH4830)
• Fixed skiprows option in Python parser for read_csv (GH4382)
• Fixed bug preventing cut from working with np.inf levels without explicitly passing labels (GH3415)
• Fixed wrong check for overlapping in `DatetimeIndex.union` (GH4564)
• Fixed conflict between thousands separator and date parser in `csv_parser` (GH4678)
• Fix appending when dtypes are not the same (error showing mixing float/np.datetime64) (GH4993)
• Fix repr for `DateOffset`. No longer show duplicate entries in kwds. Removed unused offset fields. (GH4638)
• `Timestamp` objects can now appear in the left hand side of a comparison operation with a `Series` or `DataFrame` object (GH4982).
• Fix a bug when indexing with `np.nan` via `iloc/loc` (GH5016)
• Fixed a bug where low memory `c` parser could create different types in different chunks of the same file. Now coerces to numerical type or raises warning. (GH3866)
• Fix a bug where reshaping a `Series` to its own shape raised `TypeError` (GH4554) and other reshaping issues.
• Bug in setting with `ix/loc` and a mixed int/string index (GH4544)
• Make sure series-series boolean comparisons are label based (GH4947)
• Bug in multi-level indexing with a `Timestamp` partial indexer (GH4294)
• Tests/fix for multi-index construction of an all-nan frame (GH4078)
• Fixed a bug where `read_html()` wasn’t correctly inferring values of tables with commas (GH5029)
• Fixed a bug where `read_html()` wasn’t providing a stable ordering of returned tables (GH4770, GH5029).
• Fixed a bug where `read_html()` was incorrectly parsing when passed `index_col=0` (GH5066).
• Fixed a bug where `read_html()` was incorrectly inferring the type of headers (GH5048).
• Fixed a bug where `DateTimeIndex` joins with `PeriodIndex` caused a stack overflow (GH3899).
• Fixed a bug where `groupby` objects didn’t allow plots (GH5102).
• Fixed a bug where `groupby` objects weren’t tab-completing column names (GH5102).
• Fixed a bug where `groupby.plot()` and friends were duplicating figures multiple times (GH5102).
• Provide automatic conversion of `object` dtypes on `fillna`, related (GH5103)
• Fixed a bug where default options were being overwritten in the option parser cleaning (GH5121).
• Treat a list/ndarray identically for `iloc` indexing with list-like (GH5006)
• Fix `MultiIndex.get_level_values()` with missing values (GH5074)
• Fix bound checking for `Timestamp()` with datetime64 input (GH4065)
• Fix a bug where `TestReadHtml` wasn’t calling the correct `read_html()` function (GH5150).
• Fix a bug with `NDFrame.replace()` which made replacement appear as though it was (incorrectly) using regular expressions (GH5143).
• Fix better error message for `to_datetime` (GH4928)
• Made sure different locales are tested on `travis-ci` (GH4918). Also adds a couple of utilities for getting locales and setting locales with a context manager.
• Fixed segfault on `isnull(MultiIndex)` (now raises an error instead) (GH5123, GH5125)
• Allow duplicate indices when performing operations that align (GH5185, GH5639)
• Compound dtypes in a constructor raise `NotImplementedError` (GH5191)
• Bug in comparing duplicate frames (GH4421) related
• Bug in describe on duplicate frames
• Bug in to_datetime with a format and coerce=True not raising (GH5195)
• Bug in loc setting with multiple indexers and a rhs of a Series that needs broadcasting (GH5206)
• Fixed bug where inplace setting of levels or labels on MultiIndex would not clear cached values property and therefore return wrong values. (GH5215)
• Fixed bug where filtering a grouped DataFrame or Series did not maintain the original ordering (GH4621).
• Fixed Period with a business date freq to always roll-forward if on a non-business date. (GH5203)
• Fixed bug in Excel writers where frames with duplicate column names weren’t written correctly. (GH5235)
• Fixed issue with drop and a non-unique index on Series (GH5248)
• Fixed seg fault in C parser caused by passing more names than columns in the file. (GH5156)
• Fix Series.isin with date/time-like dtypes (GH5021)
• C and Python Parser can now handle the more common multi-index column format which doesn’t have a row for index names (GH4702)
• Bug when trying to use an out-of-bounds date as an object dtype (GH5312)
• Bug when trying to display an embedded PandasObject (GH5324)
• Allows operating of Timestamps to return a datetime if the result is out-of-bounds related (GH5312)
• Fix return value/type signature of initObjToJSON() to be compatible with numpy’s import_array() (GH5334, GH5326)
• Bug when renaming then set_index on a DataFrame (GH5344)
• Test suite no longer leaves around temporary files when testing graphics. (GH5347) (thanks for catching this @yarikoptic!)
• Fixed html tests on win32. (GH4580)
• Make sure that head/tail are iloc based, (GH5370)
• Fixed bug for PeriodIndex string representation if there are 1 or 2 elements. (GH5372)
• The GroupBy methods transform and filter can be used on Series and DataFrames that have repeated (non-unique) indices. (GH4620)
• Fix empty series not printing name in repr (GH4651)
• Make tests create temp files in temp directory by default. (GH5419)
• pd.to_timedelta of a scalar returns a scalar (GH5410)
• pd.to_timedelta accepts NaN and NaT, returning NaT instead of raising (GH5437)
• performance improvements in isnull on larger size pandas objects
• Fixed various setitem with 1d ndarray that does not have a matching length to the indexer (GH5508)
• Bug in getitem with a multi-index and iloc (GH5528)
• Bug in delitem on a Series (GH5542)
• Bug fix in apply when using custom function and objects are not mutated (GH5545)
• Bug in selecting from a non-unique index with loc (GH5553)
• Bug in groupby returning non-consistent types when user function returns a None, (GH5592)
• Work around regression in numpy 1.7.0 which erroneously raises IndexError from `ndarray.item` (GH5666)
• Bug in repeated indexing of object with resultant non-unique index (GH5678)
• Bug in fillna with Series and a passed series/dict (GH5703)
• Bug in groupby transform with a datetime-like grouper (GH5712)
• Bug in multi-index selection in PY3 when using certain keys (GH5725)
• Row-wise concat of differing dtypes failing in certain cases (GH5754)

pandas 0.12.0

Release date: 2013-07-24

New Features

• `pd.read_html()` can now parse HTML strings, files or urls and returns a list of DataFrame courtesy of @cpcloud. (GH3477, GH3605, GH3606)
• Support for reading Amazon S3 files. (GH3504)
• Added module for reading and writing JSON strings/files: pandas.io.json includes `to_json` DataFrame/Series method, and a `read_json` top-level reader various issues (GH1226, GH3804, GH3876, GH3867, GH1305)
• Added module for reading and writing Stata files: pandas.io.stata (GH1512) includes `to_stata` DataFrame method, and a `read_stata` top-level reader
• Added support for writing in `to_csv` and reading in `read_csv`, multi-index columns. The `header` option in `read_csv` now accepts a list of the rows from which to read the index. Added the option, `tupleize_cols` to provide compatibility for the pre 0.12 behavior of writing and reading multi-index columns via a list of tuples. The default in 0.12 is to write lists of tuples and *not* interpret list of tuples as a multi-index column. Note: The default value will change in 0.12 to make the default to write and read multi-index columns in the new format. (GH3571, GH1651, GH3141)
• Add iterator to `Series.str` (GH3638)
• `pd.set_option()` now allows N option, value pairs (GH3667).
• Added keyword parameters for different types of scatter_matrix subplots
• A `filter` method on grouped Series or DataFrames returns a subset of the original (GH3680, GH919)
• Access to historical Google Finance data in pandas.io.data (GH3814)
• DataFrame plotting methods can sample column colors from a Matplotlib colormap via the colormap keyword. (GH3860)

Improvements to existing features

• Fixed various issues with internal pprinting code, the `repr()` for various objects including TimeStamp and Index now produces valid python code strings and can be used to recreate the object, (GH3038, GH3379, GH3251, GH3460)
• `convert_objects` now accepts a `copy` parameter (defaults to True)
• `HDFStore` now accepts a `copy` parameter (defaults to True)
  – will retain index attributes (freq,tz,name) on recreation (GH3499, issue:4098)
– will warn with a `AttributeConflictWarning` if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing
– support datelike columns with a timezone as `data_columns` (GH2852)
– table writing performance improvements.
– support python3 (via PyTables 3.0.0) (GH3750)

• Add modulo operator to Series, DataFrame
• Add `date` method to DatetimeIndex
• Add `dropna` argument to `pivot_table` (:issue: 3820)
• Simplified the API and added a describe method to Categorical
  • `melt` now accepts the optional parameters `var_name` and `value_name` to specify custom column names of the returned DataFrame (GH3649), thanks @hoechenberger. If `var_name` is not specified and `dataframe.columns.name` is not None, then this will be used as the `var_name` (GH4144). Also support for MultiIndex columns.
• clipboard functions use pyperclip (no dependencies on Windows, alternative dependencies offered for Linux) (GH3837).
• Plotting functions now raise a `TypeError` before trying to plot anything if the associated objects have have a dtype of `object` (GH1818, GH3572, GH3911, GH3912), but they will try to convert object arrays to numeric arrays if possible so that you can still plot, for example, an object array with floats. This happens before any drawing takes place which eliminates any spurious plots from showing up.
• Added Faq section on repr display options, to help users customize their setup.
• where operations that result in block splitting are much faster (GH3733)
• Series and DataFrame hist methods now take a `figsize` argument (GH3834)
• DatetimeIndexes no longer try to convert mixed-integer indexes during join operations (GH3877)
• Add `unit` keyword to `Timestamp` and `to_datetime` to enable passing of integers or floats that are in an epoch unit of D, s, ms, us, ns, thanks @mtkini (GH3969) (e.g. unix timestamps or epoch s, with fractional seconds allowed) (GH3540)
• DataFrame corr method (spearman) is now cythonized.
• Improved network test decorator to catch IOError (and therefore URLError as well). Added `with_connectivity_check` decorator to allow explicitly checking a website as a proxy for seeing if there is network connectivity. Plus, new `optional_args` decorator factory for decorators. (GH3910, GH3914)
• `read_csv` will now throw a more informative error message when a file contains no columns, e.g., all newline characters
• Added `layout` keyword to `DataFrame.hist()` for more customizable layout (GH4050)
• `Timestamp.min` and `Timestamp.max` now represent valid Timestamp instances instead of the default date-time.min and date-time.max (respectively), thanks @SleepingPills
• `read_html` now raises when no tables are found and BeautifulSoup==4.2.0 is detected (GH4214)

**API Changes**

• `HDFStore`
  – When removing an object, `remove(key)` raises `KeyError` if the key is not a valid store object.
- raise a TypeError on passing where or columns to select with a Storer; these are invalid parameters at this time (GH4189)
- can now specify an encoding option to append/put to enable alternate encodings (GH3750)
- enable support for iterator/chunksize with read_hdf

• The repr() for (Multi)Index now obeys display.max_seq_items rather than numpy threshold print options. (GH3426, GH3466)
• Added mangle_dupe_cols option to read_table/csv, allowing users to control legacy behaviour re dupe cols (A, A.1, A.2 vs A, A) (GH3468) Note: The default value will change in 0.12 to the “no mangle” behaviour. If your code relies on this behaviour, explicitly specify mangle_dupe_cols=True in your calls.
• Do not allow astypes on datetime64[ns] except to object, and timedelta64[ns] to object/int (GH3425)
• The behavior of datetime64 dtypes has changed with respect to certain so-called reduction operations (GH3726). The following operations now raise a TypeError when performed on a Series and return an empty Series when performed on a DataFrame similar to performing these operations on, for example, a DataFrame of slice objects: - sum, prod, mean, std, var, skew, kurt, corr, and cov
• Do not allow datetimelike/timedeltalike creation except with valid types (e.g. cannot pass datetime64[ms]) (GH3423)
• Add squeeze keyword to groupby to allow reduction from DataFrame -> Series if groups are unique. Regression from 0.10.1, partial revert on (GH2893) with (GH3596)
• Raise on iloc when boolean indexing with a label based indexer mask e.g. a boolean Series, even with integer labels, will raise. Since iloc is purely positional based, the labels on the Series are not alignable (GH3631)
• The raise_on_error option to plotting methods is obviated by GH3572, so it is removed. Plots now always raise when data cannot be plotted or the object being plotted has a dtype of object.
• DataFrame.interpolate() is now deprecated. Please use DataFrame.fillna() and DataFrame.replace() instead (GH3582, GH3675, GH3676).
• the method and axis arguments of DataFrame.replace() are deprecated
• DataFrame.replace’s infer_types parameter is removed and now performs conversion by default. (GH3907)
• Deprecated display.height, display.width is now only a formatting option does not control triggering of summary, similar to < 0.11.0.
• Add the keyword allow_duplicates to DataFrame.insert to allow a duplicate column to be inserted if True, default is False (same as prior to 0.12) (GH3679)
• io API changes
  - added pandas.io.api for i/o imports
  - removed Excel support to pandas.io.excel
  - added top-level pd.read_sql and to_sql DataFrame methods
  - removed clipboard support to pandas.io.clipboard
  - replace top-level and instance methods save and load with top-level read_pickle and to_pickle instance method, save and load will give deprecation warning.
• the method and axis arguments of DataFrame.replace() are deprecated
• set FutureWarning to require data_source, and to replace year/month with expiry date in pandas.io options. This is in preparation to add options data from Google (GH3822)
pandas: powerful Python data analysis toolkit, Release 0.19.2

• the method and axis arguments of DataFrame.replace() are deprecated

• Implement __nonzero__ for NDFrame objects (GH3691, GH3696)

• as_matrix with mixed signed and unsigned dtypes will result in 2 x the lcd of the unsigned as an int, maxing with int64, to avoid precision issues (GH3733)

• na_values in a list provided to read_csv/read_excel will match string and numeric versions e.g. na_values=['99'] will match 99 whether the column ends up being int, float, or string (GH3611)

• read_html now defaults to None when reading, and falls back on bs4 + html5lib when lxml fails to parse. a list of parsers to try until success is also valid

• more consistency in the to_datetime return types (give string/array of string inputs) (GH3888)

• The internal pandas class hierarchy has changed (slightly). The previous PandasObject now is called PandasContainer and a new PandasObject has become the baseclass for PandasContainer as well as Index, Categorical, GroupBy, SparseList, and SparseArray (+ their base classes). Currently, PandasObject provides string methods (from StringMixin). (GH4090, GH4092)

• New StringMixin that, given a __unicode__ method, gets python 2 and python 3 compatible string methods (__str__, __bytes__, and __repr__). Plus string safety throughout. Now employed in many places throughout the pandas library. (GH4090, GH4092)

Experimental Features

• Added experimental CustomBusinessDay class to support DateOffsets with custom holiday calendars and custom weekmasks. (GH2301)

Bug Fixes

• Fixed an esoteric excel reading bug, xlrd>= 0.9.0 now required for excel support. Should provide python3 support (for reading) which has been lacking. (GH3164)

• Disallow Series constructor called with MultiIndex which caused segfault (GH4187)

• Allow unioning of date ranges sharing a timezone (GH3491)

• Fix to_csv issue when having a large number of rows and NaT in some columns (GH3437)

• .loc was not raising when passed an integer list (GH3449)

• Unordered time series selection was misbehaving when using label slicing (GH3448)

• Fix sorting in a frame with a list of columns which contains datetime64[ns] dtypes (GH3461)

• DataFrames fetched via FRED now handle ‘.’ as a NaN. (GH3469)

• Fix regression in a DataFrame apply with axis=1, objects were not being converted back to base dtypes correctly (GH3480)

• Fix issue when storing uint dtypes in an HDFStore. (GH3493)

• Non-unique index support clarified (GH3468)
  – Addressed handling of dupe columns in df.to_csv new and old (GH3454, GH3457)
  – Fix assigning a new index to a duplicate index in a DataFrame would fail (GH3468)
  – Fix construction of a DataFrame with a duplicate index
  – ref_locs support to allow duplicative indices across dtypes, allows iget support to always find the index (even across dtypes) (GH2194)
- applymap on a DataFrame with a non-unique index now works (removed warning) (GH2786), and fix (GH3230)
- Fix to_csv to handle non-unique columns (GH3495)
- Duplicate indexes with getitem will return items in the correct order (GH3455, GH3457) and handle missing elements like unique indices (GH3561)
- Duplicate indexes with and empty DataFrame.from_records will return a correct frame (GH3562)
- Concat to produce a non-unique columns when duplicates are across dtypes is fixed (GH3602)
- Non-unique indexing with a slice via loc and friends fixed (GH3659)
- Allow insert/delete to non-unique columns (GH3679)
- Extend reindex to correctly deal with non-unique indices (GH3679)
- DataFrame.itertuples() now works with frames with duplicate column names (GH3873)
- Bug in non-unique indexing via iloc (GH4017); added takeable argument to reindex for location-based taking
- Allow non-unique indexing in series via .ix/.loc and __getitem__ (GH4246)
- Fixed non-unique indexing memory allocation issue with .ix/.loc (GH4280)

- Fixed bug in groupby with empty series referencing a variable before assignment. (GH3510)
- Allow index name to be used in groupby for non MultiIndex (GH4014)
- Fixed bug in mixed-frame assignment with aligned series (GH3492)
- Fixed bug in selecting month/quarter/year from a series would not select the time element on the last day (GH3546)
- Fixed a couple of MultiIndex rendering bugs in df.to_html() (GH3547, GH3553)
- Properly convert np.datetime64 objects in a Series (GH3416)
- Raise a TypeError on invalid datetime/timedelta operations e.g. add datetimes, multiple timedelta x datetime
- Fix .diff on datelike and timedelta operations (GH3100)
- combine_first not returning the same dtpe in cases where it can (GH3552)
- Fixed bug with Panel.transpose argument aliases (GH3556)
- Fixed platform bug in PeriodIndex.take (GH3579)
- Fixed bug in incorrect conversion of datetime64[ns] in combine_first (GH3593)
- Fixed bug in reset_index with NaN in a multi-index (GH3586)
- fillna methods now raise a TypeError when the value parameter is a list or tuple.
- Fixed bug where a time-series was being selected in preference to an actual column name in a frame (GH3594)
- Make secondary_y work properly for bar plots (GH3598)
- Fix modulo and integer division on Series,DataFrames to act similary to float dtypes to return np.nan or np.inf as appropriate (GH3590)
- Fix incorrect dtype on groupby with as_index=False (GH3610)
- Fix read_csv/read_excel to correctly encode identical na_values, e.g. na_values=[-999.0,-999] was failing (GH3611)
- Disable HTML output in qtconsole again. (GH3657)
• Reworked the new repr display logic, which users found confusing. (GH3663)
• Fix indexing issue in ndim >= 3 with iloc (GH3617)
• Correctly parse date columns with embedded (nan/NaT) into datetime64[ns] dtype in read_csv when parse_dates is specified (GH3062)
• Fix not consolidating before to_csv (GH3624)
• Fix alignment issue when setitem in a DataFrame with a piece of a DataFrame (GH3626) or a mixed DataFrame and a Series (GH3668)
• Fix plotting of unordered DatetimeIndex (GH3601)
• sql.write_frame failing when writing a single column to sqlite (GH3628), thanks to @stonebig
• Fix pivoting with nan in the index (GH3558)
• Fix running of bs4 tests when it is not installed (GH3605)
• Fix parsing of html table (GH3606)
• read_html() now only allows a single backend: html5lib (GH3616)
• convert_objects with convert_dates='coerce' was parsing some single-letter strings into today’s date
• DataFrame.from_records did not accept empty recarrays (GH3682)
• DataFrame.to_csv will succeed with the deprecated option nanRep, @tdsmith
• DataFrame.to_html and DataFrame.to_latex now accept a path for their first argument (GH3702)
• Fix file tokenization error with r delimiter and quoted fields (GH3453)
• Groupby transform with item-by-item not upcasting correctly (GH3740)
• Incorrectly read a HDFStore multi-index Frame with a column specification (GH3748)
• read_html now correctly skips tests (GH3741)
• PandasObjects raise TypeError when trying to hash (GH3882)
• Fix incorrect arguments passed to concat that are not list-like (e.g. concat(df1,df2)) (GH3481)
• Correctly parse when passed the dtype=str (or other variable-len string dtypes) in read_csv (GH3795)
• Fix index name not propagating when using loc/ix (GH3880)
• Fix groupby when applying a custom function resulting in a returned DataFrame was not converting dtypes (GH3911)
• Fixed a bug where DataFrame.replace with a compiled regular expression in the to_replace argument wasn’t working (GH3907)
• Fixed __truediv__ in Python 2.7 with numexpr installed to actually do true division when dividing two integer arrays with at least 10000 cells total (GH3764)
• Indexing with a string with seconds resolution not selecting from a time index (GH3925)
• csv parsers would loop infinitely if iterator=True but no chunksize was specified (GH3967), python parser failing with chunksize=1
• Fix index name not propagating when using shift
• Fixed dropna=False being ignored with multi-index stack (GH3997)
• Fixed flattening of columns when renaming MultiIndex columns DataFrame (GH4004)
• Fix `Series.clip` for datetime series. NA/NaN threshold values will now throw ValueError (GH3996)
• Fixed insertion issue into DataFrame, after rename (GH4032)
• Fixed testing issue where too many sockets where open thus leading to a connection reset issue (GH3982, GH3985, GH4028, GH4054)
• Fixed failing tests in test_yahoo, test_google where symbols were not retrieved but were being accessed (GH3982, GH3985, GH4028, GH4054)
• `Series.hist` will now take the figure from the current environment if one is not passed
• Fixed bug where a 1xN DataFrame would barf on a 1xN mask (GH4071)
• Fixed running of `tox` under python3 where the pickle import was getting rewritten in an incompatible way (GH4062, GH4063)
• Fixed bug where `Series.where` where broadcasting a single element input vector to the length of the series resulted in multiplying the value inside the input (GH4192)
• Fixed bug in plotting that wasn’t raising on invalid colormap for matplotlib 1.1.1 (GH4215)
• Fixed the legend displaying in DataFrame.plot(kind='kde') (GH4216)
• Fixed bug where Index slices weren’t carrying the name attribute (GH4226)
• Fixed bug in initializing `DatetimeIndex` with an array of strings in a certain time zone (GH4229)
• Fixed bug where `html5lib` wasn’t being properly skipped (GH4265)
• Fixed bug where `get_data_famafrench` wasn’t using the correct file edges (GH4281)

pandas 0.11.0

Release date: 2013-04-22

New Features

• New documentation section, 10 Minutes to Pandas
• New documentation section, Cookbook
• Allow mixed dtypes (e.g float32/float64/int32/int16/int8) to coexist in DataFrames and propagate in operations
• Add function to pandas.io.data for retrieving stock index components from Yahoo! finance (GH2795)
• Support slicing with time objects (GH2681)
• Added `.iloc` attribute, to support strict integer based indexing, analogous to `.ix` (GH2922)
• Added `.loc` attribute, to support strict label based indexing, analogous to `.ix` (GH3053)
• Added `.iat` attribute, to support fast scalar access via integers (replaces `get_value/iset_value`)
• Added `.at` attribute, to support fast scalar access via labels (replaces `get_value/set_value`)
• Moved functionality from `irow,icol,iget_value/iset_value` to `.iloc` indexer (via `_ixs` methods in each object)
• Added support for expression evaluation using the `numexpr` library
• Added `convert=boolean` to take routines to translate negative indices to positive, defaults to True
• Added to `series()` method to indices, to facilitate the creation of indexers (GH3275)

### Improvements to existing features

• Improved performance of `df.to_csv()` by up to 10x in some cases. (GH3059)
• added `blocks` attribute to DataFrames, to return a dict of dtypes to homogeneously dtyped DataFrames
• added keyword `convert_numeric` to `convert_objects()` to try to convert object dtypes to numeric types (default is False)
• `convert_dates` in `convert_objects` can now be `coerce` which will return a datetime64[ns] dtype with non-convertibles set as `NaT`; will preserve an all-nan object (e.g. strings), default is True (to perform soft-conversion)
• Series print output now includes the dtype by default
• Optimize internal reindexing routines (GH2819, GH2867)
• `describe_option()` now reports the default and current value of options.
• Add `format` option to `pandas.to_datetime` with faster conversion of strings that can be parsed with `datetime.strptime`
• Add `axes` property to `Series` for compatibility
• Add `xs` function to `Series` for compatibility
• Allow setitem in a frame where only mixed numerics are present (e.g. int and float), (GH3037)
• HDFStore
  • Provide dotted attribute access to `get` from stores (e.g. `store.df == store['df']`)
  • New keywords `iterator=boolean`, and `chunksize=number_in_a_chunk` are provided to support iteration on `select` and `select_as_multiple` (GH3076)
  • support `read_hdf/to_hdf` API similar to `read_csv/to_csv` (GH3222)
• Add `squeeze` method to possibly remove length 1 dimensions from an object.

```
In [1]: p = pd.Panel(np.random.randn(3,4,4),items=['ItemA','ItemB','ItemC'],
...: major_axis=pd.date_range('20010102',periods=4),
...: minor_axis=['A','B','C','D'])
...:
```
In [2]: p
Out[2]:
<class 'pandas.core.panel.Panel'>
Dimensions: 3 (items) x 4 (major_axis) x 4 (minor_axis)
Items axis: ItemA to ItemC
Major_axis axis: 2001-01-02 00:00:00 to 2001-01-05 00:00:00
Minor_axis axis: A to D

In [3]: p.reindex(items=['ItemA']).squeeze()
Out[3]:
   A       B       C       D
2001-01-02  0.47  -0.28  -1.51  -1.14
2001-01-03  1.21  -0.17  0.12  -1.04
2001-01-04 -0.86  -2.10  -0.49  1.07
2001-01-05  0.72  -0.71  -1.04  0.27

In [4]: p.reindex(items=['ItemA'], minor=['B']).squeeze()
Out[4]:
Freq: D, Name: B, dtype: float64

- Improvement to Yahoo API access in pd.io.data.Options (GH2758)
- added option display.max_seq_items to control the number of elements printed per sequence pprinting it. (GH2979)
- added option display.chop_threshold to control display of small numerical values. (GH2739)
- added option display.max_info_rows to prevent verbose_info from being calculated for frames above 1M rows (configurable). (GH2807, GH2918)
- value_counts() now accepts a "normalize" argument, for normalized histograms. (GH2710).
- DataFrame.from_records now accepts not only dicts but any instance of the collections.Mapping ABC.
- Allow selection semantics via a string with a datelike index to work in both Series and DataFrames (GH3070)
• added option *display.mpl_style* providing a sleeker visual style for plots. Based on https://gist.github.com/huyng/816622 (GH3075).

• Improved performance across several core functions by taking memory ordering of arrays into account. Courtesy of @stephenwlin (GH3130)

• Improved performance of groupby transform method (GH2121)

• Handle “ragged” CSV files missing trailing delimiters in rows with missing fields when also providing explicit list of column names (so the parser knows how many columns to expect in the result) (GH2981)

• On a mixed DataFrame, allow setting with indexers with ndarray/DataFrame on rhs (GH3216)

• Treat boolean values as integers (values 1 and 0) for numeric operations. (GH2641)

• Add *time* method to DatetimeIndex (GH3180)

• Return NA when using Series.str[...] for values that are not long enough (GH3223)

• Display cursor coordinate information in time-series plots (GH1670)

• `to_html()` now accepts an optional “escape” argument to control reserved HTML character escaping (enabled by default) and escapes & in addition to < and >. (GH2919)

**API Changes**

• Do not automatically upcast numeric specified dtypes to `int64` or `float64` (GH622 and GH797)

• DataFrame construction of lists and scalars, with no dtype present, will result in casting to `int64` or `float64`, regardless of platform. This is not an apparent change in the API, but noting it.

• Guarantee that `convert_objects()` for Series/DataFrame always returns a copy

• groupby operations will respect dtypes for numeric float operations (float32/float64); other types will be operated on, and will try to cast back to the input dtype (e.g. if an int is passed, as long as the output doesn’t have nans, then an int will be returned)

• backfill/pad/take/diff/ohlc will now support float32/int16/int8 operations

• Block types will upcast as needed in where/masking operations (GH2793)

• Series now automatically will try to set the correct dtype based on passed datetimelike objects (datetime/Timestamp)
  
  – timedelta64 are returned in appropriate cases (e.g. Series - Series, when both are datetime64)

  – mixed datetimes and objects (GH2751) in a constructor will be cast correctly

  – astype on datetimes to object are now handled (as well as NaT conversions to np.nan)

  – all timedelta like objects will be correctly assigned to `timedelta64` with mixed NaN and/or NaT allowed

• arguments to DataFrame.clip were inconsistent to numpy and Series clipping (GH2747)

• `util.testing.assert_frame_equal` now checks the column and index names (GH2964)

• Constructors will now return a more informative ValueError on failures when invalid shapes are passed

• Don’t suppress TypeError in GroupBy.agg (GH3238)

• Methods return None when inplace=True (GH1893)

• `HDFStore`
  
  – added the method `select_column` to select a single column from a table as a Series.
- deprecated the `unique` method, can be replicated by `select_column(key, column).unique()`
- `min_itemsize` parameter will now automatically create `data_columns` for passed keys

- Downcast on pivot if possible (GH3283), adds argument `downcast` to `fillna`
- Introduced options `display.height/width` for explicitly specifying terminal height/width in characters. Deprecated `display.line_width`, now replaced by `display.width`. These defaults are in effect for scripts as well, so unless disabled, previously very wide output will now be output as “expand_repr” style wrapped output.
- Various defaults for options (including `display.max_rows`) have been revised, after a brief survey concluded they were wrong for everyone. Now at `w=80,h=60`.
- HTML repr output in IPython `qtconsole` is once again controlled by the option `display.notebook_repr_html`, and on by default.

**Bug Fixes**

- Fix seg fault on empty data frame when `fillna` with `pad` or `backfill` (GH2778)
- Single element ndarrays of datetimelike objects are handled (e.g. `np.array(datetime(2001,1,1,0,0)))`, w/o dtype being passed
- 0-dim ndarrays with a passed dtype are handled correctly (e.g. `np.array(0.,dtype='float32')`)
- Fix some boolean indexing inconsistencies in `Series.__getitem__/setitem__` (GH2776)
- Fix issues with DataFrame and Series constructor with integers that overflow `int64` and some mixed typed type lists (GH2845)
- `HDFStore`
  - Fix weird PyTables error when using too many selectors in a where also correctly filter on any number of values in a Term expression (so not using numexpr filtering, but isin filtering)
  - Internally, change all variables to be private-like (now have leading underscore)
  - Fixes for query parsing to correctly interpret boolean and `!=` (GH2849, GH2973)
  - Fixes for pathological case on SparseSeries with 0-len array and compression (GH2931)
  - Fixes bug with writing rows if part of a block was all-nan (GH3012)
  - Exceptions are now `ValueError` or `TypeError` as needed
  - A table will now raise if `min_itemsize` contains fields which are not queryables
- Bug showing up in applymap where some object type columns are converted (GH2909) had an incorrect default in `convert_objects`
- `TimeDeltas`
  - Series ops with a Timestamp on the rhs was throwing an exception (GH2898) added tests for Series ops with datetime, timedelta, Timestamps, and datelike Series on both lhs and rhs
  - Fixed subtle timedelta64 inference issue on py3 & numpy 1.7.0 (GH3094)
  - Fixed some formatting issues on timedelta when negative
  - Support null checking on timedelta64, representing (and formatting) with `NaT`
  - Support `setitem` with `np.nan` value, converts to `NaT`
  - Support min/max ops in a DataFrame (abs not working, nor do we error on non-supported ops)
  - Support `idxmin/idxmax/abs/max/min` in a Series (GH2989, GH2982)
- Bug on in-place putmasking on an integer series that needs to be converted to float (GH2746)
- Bug in argsort of datetime64[ns] Series with NaT (GH2967)
- Bug in value_counts of datetime64[ns] Series (GH3002)
- Fixed printing of NaT in an index
- Bug in idxmin/idxmax of datetime64[ns] Series with NaT (GH2982)
- Bug in icol, take with negative indicies was producing incorrect return values (see GH2922, GH2892), also check for out-of-bounds indices (GH3029)
- Bug in DataFrame column insertion when the column creation fails, existing frame is left in an irrecoverable state (GH3010)
- Bug in DataFrame update, combine_first where non-specified values could cause dtype changes (GH3016, GH3041)
- Bug in groupby with first/last where dtypes could change (GH3041, GH2763)
- Formatting of an index that has nan was inconsistent or wrong (would fill from other values), (GH2850)
- Unstack of a frame with no nans would always cause dtype upcasting (GH2929)
- Fix scalar datetime.datetime parsing bug in read_csv (GH3071)
- Fixed slow printing of large Dataframes, due to inefficient dtype reporting (GH2807)
- Fixed a segfault when using a function as grouper in groupby (GH3035)
- Fix pretty-printing of infinite data structures (closes GH2978)
- Fixed exception when plotting timeseries bearing a timezone (closes GH2877)
- str.contains ignored na argument (GH2806)
- Substitute warning for segfault when grouping with categorical grouper of mismatched length (GH3011)
- Fix exception in SparseSeries.density (GH2083)
- Fix upsampling bug with closed='left' and daily to daily data (GH3020)
- Fixed missing tick bars on scatter_matrix plot (GH3063)
- Fixed bug in Timestamp(d,tz=foo) when d is date() rather then datetime() (GH2993)
- series.plot(kind='bar') now respects pylab color schem (GH3115)
- Fixed bug in reshape if not passed correct input, now raises TypeError (GH2719)
- Fixed a bug where Series ctor did not respect ordering if OrderedDict passed in (GH3282)
- Fix NameError issue on RESO_US (GH2787)
- Allow selection in an unordered timeseries to work similary to an ordered timeseries (GH2437).
- Fix implemented .xs when called with axes=1 and a level parameter (GH2903)
- Timestamp now supports the class method fromordinal similar to datetimes (GH3042)
- Fix issue with indexing a series with a boolean key and specifying a 1-len list on the rhs (GH2745) or a list on the rhs (GH3235)
- Fixed bug in groupby apply when kernel generate list of arrays having unequal len (GH1738)
- fixed handling of rolling_corr with center=True which could produce corr>1 (GH3155)
- Fixed issues where indices can be passed as ‘index/column’ in addition to 0/1 for the axis parameter
- PeriodIndex.tolist now boxes to Period (GH3178)
- PeriodIndex.get_loc KeyErr error now reports Period instead of ordinal (GH3179)
- df.to_records bug when handling MultiIndex (GH3189)
- Fix Series.__getitem__ segfault when index less than -length (GH3168)
- Fix bug when using Timestamp as a date parser (GH2932)
- Fix bug creating date range from Timestamp with time zone and passing same time zone (GH2926)
- Add comparison operators to Period object (GH2781)
- Fix bug when concatenating two Series into a DataFrame when they have the same name (GH2797)
- Fix automatic color cycling when plotting consecutive timeseries without color arguments (GH2816)
- fixed bug in the pickling of PeriodIndex (GH2891)
- Upcast/split blocks when needed in a mixed DataFrame when setitem with an indexer (GH3216)
- Invoking df.applymap on a dataframe with dupe cols now raises a ValueError (GH2786)
- Apply with invalid returned indices raise correct Exception (GH2808)
- Fixed a bug in plotting log-scale bar plots (GH3247)
- df.plot() grid on/off now obeys the mpl default style, just like series.plot(). (GH3233)
- Fixed a bug in the legend of plotting.andrews_curves() (GH3248)
- Produce a series on apply if we only generate a singular series and have a simple index (GH2893)
- Fix Python ASCII file parsing when integer falls outside of floating point spacing (GH3258)
- fixed pretty printing of sets (GH3294)
- Panel() and Panel.from_dict() now respects ordering when given OrderedDict (GH3303)
- DataFrame where with a datetimelike incorrectly selecting (GH3311)
- Ensure index casts work even in Int64Index
- Fix set_index segfault when passing MultiIndex (GH3308)
- Ensure pickles created in py2 can be read in py3
- Insert ellipsis in MultiIndex summary repr (GH3348)
- Groupby will handle mutation among an input groups columns (and fallback to non-fast apply) (GH3380)
- Eliminated unicode errors on FreeBSD when using MPL GTK backend (GH3360)
- Period.strftime should return unicode strings always (GH3363)
- Respect passed read_* chunksize in get_chunk function (GH3406)

**pandas 0.10.1**

**Release date:** 2013-01-22

**New Features**

- Add data interface to World Bank WDI pandas.io.wb (GH2592)
API Changes

- Restored inplace=True behavior returning self (same object) with deprecation warning until 0.11 (GH1893)
- HDFStore
  - refactored HDFStore to deal with non-table stores as objects, will allow future enhancements
  - removed keyword compression from put (replaced by keyword complib to be consistent across library)
  - warn PerformanceWarning if you are attempting to store types that will be pickled by PyTables

Improvements to existing features

- HDFStore
  - enables storing of multi-index dataframes (closes GH1277)
  - support data column indexing and selection, via data_columns keyword in append
  - support write chunking to reduce memory footprint, via chunksize keyword to append
  - support automatic indexing via index keyword to append
  - support expectedrows keyword in append to inform PyTables about the expected tablesize
  - support start and stop keywords in select to limit the row selection space
  - added get_store context manager to automatically import with pandas
  - added column filtering via columns keyword in select
  - added methods append_to_multiple/select_as_multiple/select_as_coordinates to do multiple-table append/selection
  - added support for datetime64 in columns
  - added method unique to select the unique values in an indexable or data column
  - added method copy to copy an existing store (and possibly upgrade)
  - show the shape of the data on disk for non-table stores when printing the store
  - added ability to read PyTables flavor tables (allows compatibility to other HDF5 systems)
- Add logx option to DataFrame/Series.plot (GH2327, GH2565)
- Support reading gzipped data from file-like object
- pivot_table aggfunc can be anything used in GroupBy.aggregate (GH2643)
- Implement DataFrame merges in case where set cardinalities might overflow 64-bit integer (GH2690)
- Raise exception in C file parser if integer dtype specified and have NA values. (GH2631)
- Attempt to parse ISO8601 format dates when parse_dates=True in read_csv for major performance boost in such cases (GH2698)
- Add methods neg and inv to Series
- Implement kind option in ExcelFile to indicate whether it’s an XLS or XLSX file (GH2613)
- Documented a fast-path in pd.read_csv when parsing iso8601 datetime strings yielding as much as a 20x speedup. (GH5993)
Bug Fixes

- Fix read_csv/read_table multithreading issues (GH2608)
- HDFStore
  - correctly handle nan elements in string columns; serialize via the nan_rep keyword to append
  - raise correctly on non-implemented column types (unicode/date)
  - handle correctly Term passed types (e.g. index<1000, when index is Int64), (closes GH512)
  - handle Timestamp correctly in data_columns (closes GH2637)
  - contains correctly matches on non-natural names
  - correctly store float32 dtypes in tables (if not other float types in the same table)
- Fix DataFrame.info bug with UTF8-encoded columns. (GH2576)
- Fix DatetimeIndex handling of FixedOffset tz (GH2604)
- More robust detection of being in IPython session for wide DataFrame console formatting (GH2585)
- Fix platform issues with file:// in unit test (GH2564)
- Fix bug and possible segfault when grouping by hierarchical level that contains NA values (GH2616)
- Ensure that MultiIndex tuples can be constructed with NAs (GH2616)
- Fix int64 overflow issue when unstacking MultiIndex with many levels (GH2616)
- Exclude non-numeric data from DataFrame.quantile by default (GH2625)
- Fix a Cython C int64 boxing issue causing read_csv to return incorrect results (GH2599)
- Fix groupby summing performance issue on boolean data (GH2692)
- Don’t bork Series containing datetime64 values with to_datetime (GH2699)
- Fix DataFrame.from_records corner case when passed columns, index column, but empty record list (GH2633)
- Fix C parser-tokenizer bug with trailing fields. (GH2668)
- Don’t exclude non-numeric data from GroupBy.max/min (GH2700)
- Don’t lose time zone when calling DatetimeIndex.drop (GH2621)
- Fix setitem on a Series with a boolean key and a non-scalar as value (GH2686)
- Box datetime64 values in Series.apply/map (GH2627, GH2689)
- Upconvert datetime + datetime64 values when concatenating frames (GH2624)
- Raise a more helpful error message in merge operations when one DataFrame has duplicate columns (GH2649)
- Fix partial date parsing issue occuring only when code is run at EOM (GH2618)
- Prevent MemoryError when using counting sort in sortlevel with high-cardinality MultiIndex objects (GH2684)
- Fix Period resampling bug when all values fall into a single bin (GH2070)
- Fix buggy interaction with usecols argument in read_csv when there is an implicit first index column (GH2654)
- Fix bug in index.summary() where string format methods were being called incorrectly. (GH3869)
pandas: powerful Python data analysis toolkit, Release 0.19.2

pandas 0.10.0

Release date: 2012-12-17

New Features

• Brand new high-performance delimited file parsing engine written in C and Cython. 50% or better performance in many standard use cases with a fraction as much memory usage. (GH407, GH821)

• Many new file parser (read_csv, read_table) features:
  – Support for on-the-fly gzip or bz2 decompression (compression option)
  – Ability to get back numpy.recarray instead of DataFrame (as_recarray=True)
  – dtype option: explicit column dtypes
  – usecols option: specify list of columns to be read from a file. Good for reading very wide files with many irrelevant columns (GH1216 GH926, GH2465)
  – Enhanced unicode decoding support via encoding option
  – skipinitialspace dialect option
  – Can specify strings to be recognized as True (true_values) or False (false_values)
  – High-performance delim_whitespace option for whitespace-delimited files; a preferred alternative to the ‘s+’ regular expression delimiter
  – Option to skip “bad” lines (wrong number of fields) that would otherwise have caused an error in the past (error_bad_lines and warn_bad_lines options)
  – Substantially improved performance in the parsing of integers with thousands markers and lines with comments
  – Easy of European (and other) decimal formats (decimal option) (GH584, GH2466)
  – Custom line terminators (e.g. lineterminator=’~’) (GH2457)
  – Handling of no trailing commas in CSV files (GH2333)
  – Ability to handle fractional seconds in date_converters (GH2209)
  – read_csv allow scalar arg to na_values (GH1944)
  – Explicit column dtype specification in read_* functions (GH1858)
  – Easier CSV dialect specification (GH1743)
  – Improve parser performance when handling special characters (GH1204)

• Google Analytics API integration with easy oauth2 workflow (GH2283)

• Add error handling to Series.str.encode/decode (GH2276)

• Add where and mask to Series (GH2337)

• Grouped histogram via by keyword in Series/DataFrame.hist (GH2186)

• Support optional min_periods keyword in corr and cov for both Series and DataFrame (GH2002)

• Add duplicated and drop_duplicates functions to Series (GH1923)

• Add docs for HDFStore table format

• ‘density’ property in SparseSeries (GH2384)
• Add `ffill` and `bfill` convenience functions for forward- and backfilling time series data (GH2284)
• New option configuration system and functions `set_option`, `get_option`, `describe_option`, and `reset_option`. Deprecate `set_printoptions` and `reset_printoptions` (GH2393). You can also access options as attributes via `pandas.options.X`
• Wide DataFrames can be viewed more easily in the console with new `expand_frame_repr` and `line_width` configuration options. This is on by default now (GH2436)
• Scikits.timeseries-like moving window functions via `rolling_window` (GH1270)

Experimental Features

• Add support for Panel4D, a named 4 Dimensional structure
• Add support for ndpanel factory functions, to create custom, domain-specific N-Dimensional containers

API Changes

• The default binning/labeling behavior for `resample` has been changed to `closed='left', label='left'` for daily and lower frequencies. This had been a large source of confusion for users. See “what’s new” page for more on this. (GH2410)
• Methods with `inplace` option now return None instead of the calling (modified) object (GH1893)
• The special case DataFrame - TimeSeries doing column-by-column broadcasting has been deprecated. Users should explicitly do e.g. `df.sub(ts, axis=0)` instead. This is a legacy hack and can lead to subtle bugs.
• `inf/-inf` are no longer considered as NA by `isnull/notnull`. To be clear, this is legacy cruft from early pandas. This behavior can be globally re-enabled using the new option `mode.use_inf_as_null` (GH2050, GH1919)
• `pandas.merge` will now default to `sort=False`. For many use cases sorting the join keys is not necessary, and doing it by default is wasteful
• Specify `header=0` explicitly to replace existing column names in file in `read_*` functions.
• Default column names for header-less parsed files (yielded by `read_csv`, etc.) are now the integers 0, 1, .... A new argument `prefix` has been added; to get the v0.9.x behavior specify `prefix='X'` (GH2034). This API change was made to make the default column names more consistent with the DataFrame constructor’s default column names when none are specified.
• DataFrame selection using a boolean frame now preserves input shape
• If function passed to Series.apply yields a Series, result will be a DataFrame (GH2316)
• Values like YES/NO/yes/no will not be considered as boolean by default any longer in the file parsers. This can be customized using the new `true_values` and `false_values` options (GH2360)
• `obj.fillna()` is no longer valid; make `method='pad'` no longer the default option, to be more explicit about what kind of filling to perform. Add `ffill/bfill` convenience functions per above (GH2284)
• `HDFStore.keys()` now returns an absolute path-name for each key
• `to_string()` now always returns a unicode string. (GH2224)
• File parsers will not handle NA sentinel values arising from passed converter functions
Improvements to existing features

- Add `nrows` option to `DataFrame.from_records` for iterators (GH1794)
- Unstack/reshape algorithm rewrite to avoid high memory use in cases where the number of observed key-tuples is much smaller than the total possible number that could occur (GH2278). Also improves performance in most cases.
- Support duplicate columns in `DataFrame.from_records` (GH2179)
- Add `normalize` option to `Series/DataFrame.asfreq` (GH2137)
- `SparseSeries` and `SparseDataFrame` construction from empty and scalar values now no longer create dense ndarrays unnecessarily (GH2322)
- `HDFStore` now supports hierarchical keys (GH2397)
- Support multiple query selection formats for `HDFStore` tables (GH1996)
- Support `del store['df']` syntax to delete `HDFStores`
- Add multi-dtype support for `HDFStore` tables
- `min_itemsize` parameter can be specified in `HDFStore` table creation
- Indexing support in `HDFStore` tables (GH698)
- Add `line_terminator` option to `DataFrame.to_csv` (GH2383)
- added implementation of `str(x)/unicode(x)/bytes(x)` to major pandas data structures, which should do the right thing on both py2.x and py3.x. (GH2224)
- Reduce groupby.apply overhead substantially by low-level manipulation of internal NumPy arrays in DataFrames (GH535)
- Implement `value_vars` in `melt` and `add melt` to pandas namespace (GH2412)
- Added boolean comparison operators to Panel
- Enable `Series.str.strip/lstrip/rstrip` methods to take an argument (GH2411)
- The `DataFrame` ctor now respects column ordering when given an `OrderedDict` (GH2455)
- Assigning `DatetimeIndex` to `Series` changes the class to `TimeSeries` (GH2139)
- Improve performance of `.value_counts` method on non-integer data (GH2480)
- `get_level_values` method for `MultiIndex` return `Index` instead of `ndarray` (GH2449)
- `convert_to_r_dataframe` conversion for datetime values (GH2351)
- Allow `DataFrame.to_csv` to represent `inf` and `nan` differently (GH2026)
- Add `min_i` argument to `nancorr` to specify minimum required observations (GH2002)
- Add `inplace` option to `sortlevel/sort` functions on `DataFrame` (GH1873)
- Enable `DataFrame` to accept scalar constructor values like `Series` (GH1856)
- `DataFrame.from_records` now takes optional `size` parameter (GH1794)
- include iris dataset (GH1709)
- No datetime64 `DataFrame` column conversion of `datetime.datetime` with `tzinfo` (GH1581)
- Micro-optimizations in `DataFrame` for tracking state of internal consolidation (GH217)
- Format parameter in `DataFrame.to_csv` (GH1525)
• Partial string slicing for DatetimeIndex for daily and higher frequencies (GH2306)
• Implement col_space parameter in to_html and to_string in DataFrame (GH1000)
• Override Series.tolist and box datetime64 types (GH2447)
• Optimize unstack memory usage by compressing indices (GH2278)
• Fix HTML repr in IPython qtconsole if opening window is small (GH2275)
• Escape more special characters in console output (GH2492)
• df.select now invokes bool on the result of crit(x) (GH2487)

Bug Fixes

• Fix major performance regression in DataFrame.iteritems (GH2273)
• Fixes bug when negative period passed to Series/DataFrame.diff (GH2266)
• Escape tabs in console output to avoid alignment issues (GH2038)
• Properly box datetime64 values when retrieving cross-section from mixed-dtype DataFrame (GH2272)
• Fix concatenation bug leading to GH2057, GH2257
• Fix regression in Index console formatting (GH2319)
• Box Period data when assigning PeriodIndex to frame column (GH2243, GH2281)
• Raise exception on calling reset_index on Series with inplace=True (GH2277)
• Enable setting multiple columns in DataFrame with hierarchical columns (GH2295)
• Respect dtype=object in DataFrame constructor (GH2291)
• Fix DatetimeIndex.join bug with tz-aware indexes and how='outer' (GH2317)
• pop(...) and del works with DataFrame with duplicate columns (GH2349)
• Treat empty strings as NA in date parsing (rather than let dateutil do something weird) (GH2263)
• Prevent uint64 -> int64 overflows (GH2355)
• Enable joins between MultiIndex and regular Index (GH2024)
• Fix time zone metadata issue when unioning non-overlapping DatetimeIndex objects (GH2367)
• Raise/handle int64 overflows in parsers (GH2247)
• Deleting of consecutive rows in HDFStore tables' is much faster than before
• Appending on a HDFStore would fail if the table was not first created via put
• Use col_space argument as minimum column width in DataFrame.to_html (GH2328)
• Fix tz-aware DatetimeIndex.to_period (GH2232)
• Fix DataFrame row indexing case with MultiIndex (GH2314)
• Fix to_excel exporting issues with Timestamp objects in index (GH2294)
• Fixes assigning scalars and array to hierarchical column chunk (GH1803)
• Fixed a UnicodeDecodeError with series tidy_repr (GH2225)
• Fixed issued with duplicate keys in an index (GH2347, GH2380)
• Fixed issues re: Hash randomization, default on starting w/ py3.3 (GH2331)
• Fixed issue with missing attributes after loading a pickled dataframe (GH2431)
• Fix Timestamp formatting with tzoffset time zone in dateutil 2.1 (GH2443)
• Fix GroupBy.apply issue when using BinGrouper to do ts binning (GH2370)
• Fix issues resulting from datetime.datetime columns being converted to datetime64 when calling DataFrame.apply. (GH2374)
• Raise exception when calling to_panel on non uniquely-indexed frame (GH2441)
• Improved detection of console encoding on IPython zmq frontends (GH2458)
• Preserve time zone when .append-ing two time series (GH2260)
• Box timestamps when calling reset_index on time-zone-aware index rather than creating a tz-less datetime64 column (GH2262)
• Enable searching non-string columns in DataFrame.filter(like=...) (GH2467)
• Fixed issue with losing nanosecond precision upon conversion to DatetimeIndex(GH2252)
• Handle timezones in Datetime.normalize (GH2338)
• Fix test case where dtype specification with endianness causes failures on big endian machines (GH2318)
• Fix plotting bug where upsampling causes data to appear shifted in time (GH2448)
• Fix read_csv failure for UTF-16 with BOM and skiprows(GH2298)
• read_csv with names arg not implicitly setting header=None(GH2459)
• Unrecognized compression mode causes segfault in read_csv(GH2474)
• In read_csv, header=0 and passed names should discard first row(GH2269)
• Correctly route to stdout/stderr in read_table (GH2071)
• Fix exception when Timestamp.to_datetime is called on a Timestamp with tzoffset (GH2471)
• Fixed unintentional conversion of datetime64 to long in groupby.first() (GH2133)
• Union of empty DataFrames now return empty with concatenated index (GH2307)
• DataFrame.sort_index raises more helpful exception if sorting by column with duplicates (GH2488)
• DataFrame.to_string formatters can be list, too (GH2520)
• DataFrame.combine_first will always result in the union of the index and columns, even if one DataFrame is length-zero (GH2525)
• Fix several DataFrame.icol/irow with duplicate indices issues (GH2228, GH2259)
• Use Series names for column names when using concat with axis=1 (GH2489)
• Raise Exception if start, end, periods all passed to date_range (GH2538)
• Fix Panel resampling issue (GH2537)

pandas 0.9.1

Release date: 2012-11-14
New Features

• Can specify multiple sort orders in DataFrame/Series.sort/sort_index (GH928)
• New top and bottom options for handling NAs in rank (GH1508, GH2159)
• Add where and mask functions to DataFrame (GH2109, GH2151)
• Add at_time and between_time functions to DataFrame (GH2149)
• Add flexible pow and rpow methods to DataFrame (GH2190)

API Changes

• Upsampling period index “spans” intervals. Example: annual periods upsampled to monthly will span all months in each year
• Period.end_time will yield timestamp at last nanosecond in the interval (GH2124, GH2125, GH1764)
• File parsers no longer coerce to float or bool for columns that have custom converters specified (GH2184)

Improvements to existing features

• Time rule inference for week-of-month (e.g. WOM-2FRI) rules (GH2140)
• Improve performance of datetime + business day offset with large number of offset periods
• Improve HTML display of DataFrame objects with hierarchical columns
• Enable referencing of Excel columns by their column names (GH1936)
• DataFrame.dot can accept ndarrays (GH2042)
• Support negative periods in Panel.shift (GH2164)
• Make .drop(...) work with non-unique indexes (GH2101)
• Improve performance of Series/DataFrame.diff (re: GH2087)
• Support unary ~ (__invert__) in DataFrame (GH2110)
• Turn off pandas-style tick locators and formatters (GH2205)
• DataFrame[DataFrame] uses DataFrame.where to compute masked frame (GH2230)

Bug Fixes

• Fix some duplicate-column DataFrame constructor issues (GH2079)
• Fix bar plot color cycle issues (GH2082)
• Fix off-center grid for stacked bar plots (GH2157)
• Fix plotting bug if inferred frequency is offset with N > 1 (GH2126)
• Implement comparisons on date offsets with fixed delta (GH2078)
• Handle inf/-inf correctly in read_* parser functions (GH2041)
• Fix matplotlib unicode interaction bug
• Make WLS r-squared match statsmodels 0.5.0 fixed value
• Fix zero-trimming DataFrame formatting bug
• Correctly compute/box datetime64 min/max values from Series.min/max (GH2083)
• Fix unstacking edge case with unrepresented groups (GH2100)
• Fix Series.str failures when using pipe pattern ‘|’ (GH2119)
• Fix pretty-printing of dict entries in Series, DataFrame (GH2144)
• Cast other datetime64 values to nanoseconds in DataFrame ctor (GH2095)
• Alias Timestamp.astimezone to tz_convert, so will yield Timestamp (GH2060)
• Fix timedelta64 formatting from Series (GH2165, GH2146)
• Handle None values gracefully in dict passed to Panel constructor (GH2075)
• Box datetime64 values as Timestamp objects in Series/DataFrame.iget (GH2148)
• Fix Timestamp indexing bug in DatetimeIndex.insert (GH2155)
• Use index name(s) (if any) in DataFrame.to_records (GH2161)
• Don’t lose index names in Panel.to_frame/DataFrame.to_panel (GH2163)
• Work around length-0 boolean indexing NumPy bug (GH2096)
• Fix partial integer indexing bug in DataFrame.xs (GH2107)
• Fix variety of cut/qcut string-bin formatting bugs (GH1978, GH1979)
• Raise Exception when xs view not possible of MultiIndex’d DataFrame (GH2117)
• Fix groupby(...).first() issue with datetime64 (GH2133)
• Better floating point error robustness in some rolling_* functions (GH2114, GH2527)
• Fix ewma NA handling in the middle of Series (GH2128)
• Fix numerical precision issues in diff with integer data (GH2087)
• Fix bug in MultiIndex.__getitem__ with NA values (GH2008)
• Fix DataFrame.from_records dict-arg bug when passing columns (GH2179)
• Fix Series and DataFrame.diff for integer dtypes (GH2087, GH2174)
• Fix bug when taking intersection of DatetimeIndex with empty index (GH2129)
• Pass through timezone information when calling DataFrame.align (GH2127)
• Properly sort when joining on datetime64 values (GH2196)
• Fix indexing bug in which False/True were being coerced to 0/1 (GH2199)
• Many unicode formatting fixes (GH2201)
• Fix improper MultiIndex conversion issue when assigning e.g. DataFrame.index (GH2200)
• Fix conversion of mixed-type DataFrame to ndarray with dup columns (GH2236)
• Fix duplicate columns issue (GH2218, GH2219)
• Fix SparseSeries.__pow__ issue with NA input (GH2220)
• Fix icol with integer sequence failure (GH2228)
• Fixed resampling tz-aware time series issue (GH2245)
• SparseDataFrame.icol was not returning SparseSeries (GH2227, GH2229)
• Enable ExcelWriter to handle PeriodIndex (GH2240)
• Fix issue constructing DataFrame from empty Series with name (GH2234)
• Use console-width detection in interactive sessions only (GH1610)
• Fix parallel_coordinates legend bug with mpl 1.2.0 (GH2237)
• Make tz_localize work in corner case of empty Series (GH2248)

pandas 0.9.0

Release date: 10/7/2012

New Features

• Add str.encode and str.decode to Series (GH1706)
• Add to_latex method to DataFrame (GH1735)
• Add convenient expanding window equivalents of all rolling_* ops (GH1785)
• Add Options class to pandas.io.data for fetching options data from Yahoo! Finance (GH1748, GH1739)
• Recognize and convert more boolean values in file parsing (Yes, No, TRUE, FALSE, variants thereof) (GH1691, GH1295)
• Add Panel.update method, analogous to DataFrame.update (GH1999, GH1988)

Improvements to existing features

• Proper handling of NA values in merge operations (GH1990)
• Add flags option for re.compile in some Series.str methods (GH1659)
• Parsing of UTC date strings in read_* functions (GH1693)
• Handle generator input to Series (GH1679)
• Add na_action=’ignore’ to Series.map to quietly propagate NAs (GH1661)
• Add args/kwds options to Series.apply (GH1829)
• Add inplace option to Series/DataFrame.reset_index (GH1797)
• Add level parameter to Series.reset_index
• Add quoting option for DataFrame.to_csv (GH1902)
• Indicate long column value truncation in DataFrame output with ... (GH1854)
• DataFrame.dot will not do data alignment, and also work with Series (GH1915)
• Add na option for missing data handling in some vectorized string methods (GH1689)
• If index_label=False in DataFrame.to_csv, do not print fields/commas in the text output. Results in easier importing into R (GH1583)
• Can pass tuple/list of axes to DataFrame.dropna to simplify repeated calls (dropping both columns and rows) (GH924)
• Improve DataFrame.to_html output for hierarchically-indexed rows (do not repeat levels) (GH1929)
• TimeSeries.between_time can now select times across midnight (GH1871)
• Enable skip footer parameter in ExcelFile.parse (GH1843)

API Changes

• Change default header names in read_* functions to more Pythonic X0, X1, etc. instead of X.1, X.2. (GH2000)
• Deprecated day_of_year API removed from PeriodIndex, use dayofyear (GH1723)
• Don’t modify NumPy suppress printoption at import time
• The internal HDF5 data arrangement for DataFrames has been transposed. Legacy files will still be readable by HDFStore (GH1834, GH1824)
• Legacy cruft removed: pandas.stats.misc.quantileTS
• Use ISO8601 format for Period repr: monthly, daily, and on down (GH1776)
• Empty DataFrame columns are now created as object dtype. This will prevent a class of TypeErrors that was occurring in code where the dtype of a column would depend on the presence of data or not (e.g. a SQL query having results) (GH1783)
• Setting parts of DataFrame/Panel using ix now aligns input Series/DataFrame (GH1630)
• first and last methods in GroupBy no longer drop non-numeric columns (GH1809)
• Resolved inconsistencies in specifying custom NA values in text parser. na_values of type dict no longer over- ride default NAs unless keep_default_na is set to false explicitly (GH1657)
• Enable skipfooter parameter in text parsers as an alias for skip footer

Bug Fixes

• Perform arithmetic column-by-column in mixed-type DataFrame to avoid type upcasting issues. Caused downstream DataFrame.diff bug (GH1896)
• Fix matplotlib auto-color assignment when no custom spectrum passed. Also respect passed color keyword argument (GH1711)
• Fix resampling logical error with closed='left' (GH1726)
• Fix critical DatetimeIndex.union bugs (GH1730, GH1719, GH1745, GH1702, GH1753)
• Fix critical DatetimeIndex.intersection bug with unanchored offsets (GH1708)
• Fix MM-YYYY time series indexing case (GH1672)
• Fix case where Categorical group key was not being passed into index in GroupBy result (GH1701)
• Handle Ellipsis in Series.__getitem__/__setitem__ (GH1721)
• Fix some bugs with handling datetime64 scalars of other units in NumPy 1.6 and 1.7 (GH1717)
• Fix performance issue in MultiIndex.format (GH1746)
• Fixed GroupBy bugs interacting with DatetimeIndex asof / map methods (GH1677)
• Handle factors with NAs in pandas.rpy (GH1615)
• Fix statsmodels import in pandas.stats.var (GH1734)
• Fix DataFrame repr/info summary with non-unique columns (GH1700)
• Fix Series.iget_value for non-unique indexes (GH1694)
• Don’t lose tzinfo when passing DatetimeIndex as DataFrame column (GH1682)
• Fix tz conversion with time zones that haven’t had any DST transitions since first date in the array (GH1673)
• Fix field access with UTC->local conversion on unsorted arrays (GH1756)
• Fix isnull handling of array-like (list) inputs (GH1755)
• Fix regression in handling of Series in Series constructor (GH1671)
• Fix comparison of Int64Index with DatetimeIndex (GH1681)
• Fix min_periods handling in new rolling_max/min at array start (GH1695)
• Fix errors with how=’median’ and generic NumPy resampling in some cases caused by SeriesBinGrouper (GH1648, GH1688)
• When grouping by level, exclude unobserved levels (GH1697)
• Don’t lose tzinfo in DatetimeIndex when shifting by different offset (GH1683)
• Hack to support storing data with a zero-length axis in HDFStore (GH1707)
• Fix DatetimeIndex tz-aware range generation issue (GH1674)
• Fix method=’time’ interpolation with intraday data (GH1698)
• Don’t plot all-NA DataFrame columns as zeros (GH1696)
• Fix bug in scatter_plot with by option (GH1716)
• Fix performance problem in infer_fresh with lots of non-unique stamps (GH1686)
• Fix handling of PeriodIndex as argument to create MultiIndex (GH1705)
• Fix re: unicode MultiIndex level names in Series/DataFrame repr (GH1736)
• Handle PeriodIndex in to_datetime instance method (GH1703)
• Support StaticTzInfo in DatetimeIndex infrastructure (GH1692)
• Allow MultiIndex setops with length-0 other type indexes (GH1727)
• Fix handling of DatetimeIndex in DataFrame.to_records (GH1720)
• Fix handling of general objects in isnull on which bool(...) fails (GH1749)
• Fix .ix indexing with MultiIndex ambiguity (GH1678)
• Fix .ix setting logic error with non-unique MultiIndex (GH1750)
• Basic indexing now works on MultiIndex with > 1000000 elements, regression from earlier version of pandas (GH1757)
• Handle non-float64 dtypes in fast DataFrame.corr/cov code paths (GH1761)
• Fix DatetimeIndex.isin to function properly (GH1763)
• Fix conversion of array of tz-aware datetime.datetime to DatetimeIndex with right time zone (GH1777)
• Fix DST issues with generating anchored date ranges (GH1778)
• Fix issue calling sort on result of Series.unique (GH1807)
• Fix numerical issue leading to square root of negative number in rolling_std (GH1840)
• Let Series.str.split accept no arguments (like str.split) (GH1859)
• Allow user to have dateutil 2.1 installed on a Python 2 system (GH1851)
• Catch ImportError less aggressively in pandas/__init__.py (GH1845)
- Fix pip source installation bug when installing from GitHub (GH1805)
- Fix error when window size > array size in rolling_apply (GH1850)
- Fix pip source installation issues via SSH from GitHub
- Fix OLS.summary when column is a tuple (GH1837)
- Fix bug in __doc__ patching when -OO passed to interpreter (GH1792 GH1741 GH1774)
- Fix unicode console encoding issue in IPython notebook (GH1782, GH1768)
- Fix unicode formatting issue with Series.name (GH1782)
- Fix bug in DataFrame.duplicated with datetime64 columns (GH1833)
- Fix bug in Panel internals resulting in error when doing fillna after truncate not changing size of panel (GH1823)
- Prevent segfault due to MultiIndex not being supported in HDFStore table format (GH1848)
- Fix UnboundLocalError in Panel.__setitem__ and add better error (GH1826)
- Fix to_csv issues with list of string entries. Isnull works on list of strings now too (GH1791)
- Fix Timestamp comparisons with datetime values outside the nanosecond range (1677-2262)
- Revert to prior behavior of normalize_date with datetime.date objects (return datetime)
- Fix broken interaction between np.nansum and Series.any/all
- Fix bug with multiple column date parsers (GH1866)
- DatetimeIndex.union(Int64Index) was broken
- Make plot x vs y interface consistent with integer indexing (GH1842)
- set_index inplace modified data even if unique check fails (GH1831)
- Only use Q-OCT/NOV/DEC in quarterly frequency inference (GH1789)
- Upcast to dtype=object when unstacking boolean DataFrame (GH1820)
- Fix float64/float32 merging bug (GH1849)
- Fixes to Period.start_time for non-daily frequencies (GH1857)
- Fix failure when converter used on index_col in read_csv (GH1835)
- Implement PeriodIndex.append so that pandas.concat works correctly (GH1815)
- Avoid Cython out-of-bounds access causing segfault sometimes in pad_2d, backfill_2d
- Fix resampling error with intraday times and anchored target time (like AS-DEC) (GH1772)
- Fix .ix indexing bugs with mixed-integer indexes (GH1799)
- Respect passed color keyword argument in Series.plot (GH1890)
- Fix rolling_min/max when the window is larger than the size of the input array. Check other malformed inputs (GH1899, GH1897)
- Rolling variance / standard deviation with only a single observation in window (GH1884)
- Fix unicode sheet name failure in to_excel (GH1828)
- Override DatetimeIndex.min/max to return Timestamp objects (GH1895)
- Fix column name formatting issue in length-truncated column (GH1906)
- Fix broken handling of copying Index metadata to new instances created by view(...) calls inside the NumPy infrastructure
• Support datetime.date again in DateOffset.rollback/rollforward
• Raise Exception if set passed to Series constructor (GH1913)
• Add TypeError when appending HDFStore table w/ wrong index type (GH1881)
• Don’t raise exception on empty inputs in EW functions (e.g. ewma) (GH1900)
• Make asof work correctly with PeriodIndex (GH1883)
• Fix extlinks in doc build
• Fill boolean DataFrame with NaN when calling shift (GH1814)
• Fix setuptools bug causing pip not to Cythonize .pyx files sometimes
• Fix negative integer indexing regression in .ix from 0.7.x (GH1888)
• Fix error while retrieving timezone and utc offset from subclasses of datetime.tzinfo without .zone and ._utcoff-set attributes (GH1922)
• Fix DataFrame formatting of small, non-zero FP numbers (GH1911)
• Various fixes by upcasting of date -> datetime (GH1395)
• Raise better exception when passing multiple functions with the same name, such as lambdas, to GroupBy.aggregate
• Fix DataFrame.apply with axis=1 on a non-unique index (GH1878)
• Proper handling of Index subclasses in pandas.unique (GH1759)
• Set index names in DataFrame.from_records (GH1744)
• Fix time series indexing error with duplicates, under and over hash table size cutoff (GH1821)
• Handle list keys in addition to tuples in DataFrame.xs when partial-indexing a hierarchically-indexed DataFrame (GH1796)
• Support multiple column selection in DataFrame.__getitem__ with duplicate columns (GH1943)
• Fix time zone localization bug causing improper fields (e.g. hours) in time zones that have not had a UTC transition in a long time (GH1946)
• Fix errors when parsing and working with with fixed offset timezones (GH1922, GH1928)
• Fix text parser bug when handling UTC datetime objects generated by dateutil (GH1693)
• Fix plotting bug when ‘B’ is the inferred frequency but index actually contains weekends (GH1668, GH1669)
• Fix plot styling bugs (GH1666, GH1665, GH1658)
• Fix plotting bug with index/columns with unicode (GH1685)
• Fix DataFrame constructor bug when passed Series with datetime64 dtype in a dict (GH1680)
• Fixed regression in generating DatetimeIndex using timezone aware datetime.datetime (GH1676)
• Fix DataFrame bug when printing concatenated DataFrames with duplicated columns (GH1675)
• Fixed bug when plotting time series with multiple intraday frequencies (GH1732)
• Fix bug in DataFrame.duplicated to enable iterables other than list-types as input argument (GH1773)
• Fix resample bug when passed list of lambdas as how argument (GH1808)
• Repr fix for MultiIndex level with all NAs (GH1971)
• Fix PeriodIndex slicing bug when slice start/end are out-of-bounds (GH1977)
pandas: powerful Python data analysis toolkit, Release 0.19.2

- Fix read_table bug when parsing unicode (GH1975)
- Fix BlockManager.iget bug when dealing with non-unique MultiIndex as columns (GH1970)
- Fix reset_index bug if both drop and level are specified (GH1957)
- Work around unsafe NumPy object->int casting with Cython function (GH1987)
- Fix datetime64 formatting bug in DataFrame.to_csv (GH1993)
- Default start date in pandas.io.data to 1/1/2000 as the docs say (GH2011)

pandas 0.8.1

Release date: July 22, 2012

New Features

- Add vectorized, NA-friendly string methods to Series (GH1621, GH620)
- Can pass dict of per-column line styles to DataFrame.plot (GH1559)
- Selective plotting to secondary y-axis on same subplot (GH1640)
- Add new bootstrap_plot plot function
- Add new parallel_coordinates plot function (GH1488)
- Add radviz plot function (GH1566)
- Add multi_sparse option to set_printoptions to modify display of hierarchical indexes (GH1538)
- Add dropna method to Panel (GH171)

Improvements to existing features

- Use moving min/max algorithms from Bottleneck in rolling_min/rolling_max for > 100x speedup. (GH1504, GH50)
- Add Cython group median method for >15x speedup (GH1358)
- Drastically improve to_datetime performance on ISO8601 datetime strings (with no time zones) (GH1571)
- Improve single-key groupby performance on large data sets, accelerate use of groupby with a Categorical variable
- Add ability to append hierarchical index levels with set_index and to drop single levels with reset_index (GH1569, GH1577)
- Always apply passed functions in resample, even if upsampling (GH1596)
- Avoid unnecessary copies in DataFrame constructor with explicit dtype (GH1572)
- Cleaner DatetimeIndex string representation with 1 or 2 elements (GH1611)
- Improve performance of array-of-Period to PeriodIndex, convert such arrays to PeriodIndex inside Index (GH1215)
- More informative string representation for weekly Period objects (GH1503)
- Accelerate 3-axis multi data selection from homogeneous Panel (GH979)
- Add `adjust` option to `ewma` to disable adjustment factor (GH1584)
- Add new matplotlib converters for high frequency time series plotting (GH1599)
- Handling of tz-aware datetime.datetime objects in `to_datetime`; raise Exception unless `utc=True` given (GH1581)

**Bug Fixes**

- Fix NA handling in `DataFrame.to_panel` (GH1582)
- Handle TypeError issues inside `PyObject_RichCompareBool` calls in khash (GH1318)
- Fix resampling bug to lower case daily frequency (GH1588)
- Fix kendall/spearman `DataFrame.corr` bug with no overlap (GH1595)
- Fix bug in `DataFrame.set_index` (GH1592)
- Don’t ignore axes in boxplot if by specified (GH1565)
- Fix `Panel .ix` indexing with integers bug (GH1603)
- Fix Partial indexing bugs (years, months, ...) with `PeriodIndex` (GH1601)
- Fix `MultiIndex` console formatting issue (GH1606)
- Unordered index with duplicates doesn’t yield scalar location for single entry (GH1586)
- Fix resampling of tz-aware time series with “anchored” freq (GH1591)
- Fix `DataFrame.rank` error on integer data (GH1589)
- Selection of multiple `SparseDataFrame` columns by list in `__getitem__` (GH1585)
- Override `Index.tolist` for compatibility with `MultiIndex` (GH1576)
- Fix hierarchical summing bug with `MultiIndex` of length 1 (GH1568)
- Work around numpy.concatenate use/bug in `Series.set_value` (GH1561)
- Ensure `Series/DataFrame` are sorted before resampling (GH1580)
- Fix unhandled `IndexError` when indexing very large time series (GH1562)
- Fix `DatetimeIndex` intersection logic error with irregular indexes (GH1551)
- Fix unit test errors on Python 3 (GH1550)
- Fix `.ix` indexing bugs in duplicate `DataFrame` index (GH1201)
- Better handle errors with non-existing objects in `HDFStore` (GH1254)
- Don’t copy int64 array data in `DatetimeIndex` when `copy=False` (GH1624)
- Fix resampling of conforming periods quarterly to annual (GH1622)
- Don’t lose index name on resampling (GH1631)
- Support python-dateutil version 2.1 (GH1637)
- Fix broken scatter_matrix axis labeling, esp. with time series (GH1635)
- Fix cases where extra keywords weren’t being passed on to matplotlib from `Series.plot` (GH1636)
- Fix `BusinessMonthBegin` logic for dates before 1st bday of month (GH1645)
- Ensure string alias converted (valid in `DatetimeIndex.get_loc`) in `DataFrame.xs` / `__getitem__` (GH1644)
- Fix use of string alias timestamps with tz-aware time series (GH1647)
• Fix Series.max/min and Series.describe on len-0 series (GH1650)
• Handle None values in dict passed to concat (GH1649)
• Fix Series.interpolate with method='values' and DatetimeIndex (GH1646)
• Fix IndexError in left merges on a DataFrame with 0-length (GH1628)
• Fix DataFrame column width display with UTF-8 encoded characters (GH1620)
• Handle case in pandas.io.data.get_data_yahoo where Yahoo! returns duplicate dates for most recent business day
• Avoid downsampling when plotting mixed frequencies on the same subplot (GH1619)
• Fix read_csv bug when reading a single line (GH1553)
• Fix bug in C code causing monthly periods prior to December 1969 to be off (GH1570)

pandas 0.8.0

Release date: 6/29/2012

New Features

• New unified DatetimeIndex class for nanosecond-level timestamp data
• New Timestamp datetime.datetime subclass with easy time zone conversions, and support for nanoseconds
• New PeriodIndex class for timespans, calendar logic, and Period scalar object
• High performance resampling of timestamp and period data. New resample method of all pandas data structures
• New frequency names plus shortcut string aliases like ‘15h’, ‘1h30min’
• Time series string indexing shorthand (GH222)
• Add week, dayofyear array and other timestamp array-valued field accessor functions to DatetimeIndex
• Add GroupBy.prod optimized aggregation function and ‘prod’ fast time series conversion method (GH1018)
• Implement robust frequency inference function and inferred_freq attribute on DatetimeIndex (GH391)
• New tz_convert and tz_localize methods in Series / DataFrame
• Convert DatetimeIndexes to UTC if time zones are different in join/setops (GH864)
• Add limit argument for forward/backward filling to reindex, fillna, etc. (GH825 and others)
• Add support for indexes (dates or otherwise) with duplicates and common sense indexing/selection functionality
• Series/DataFrame.update methods, in-place variant of combine_first (GH961)
• Add match function to API (GH502)
• Add Cython-optimized first, last, min, max, prod functions to GroupBy (GH994, GH1043)
• Dates can be split across multiple columns (GH1227, GH1186)
• Add experimental support for converting pandas DataFrame to R data.frame via rpy2 (GH350, GH1212)
• Can pass list of (name, function) to GroupBy.aggregate to get aggregates in a particular order (GH610)
• Can pass dicts with lists of functions or dicts to GroupBy aggregate to do much more flexible multiple function aggregation (GH642, GH610)
• New ordered_merge functions for merging DataFrames with ordered data. Also supports group-wise merging for panel data (GH813)
• Add keys() method to DataFrame
• Add flexible replace method for replacing potentially values to Series and DataFrame (GH929, GH1241)
• Add ‘kde’ plot kind for Series/DataFrame.plot (GH1059)
• More flexible multiple function aggregation with GroupBy
• Add pct_change function to Series/DataFrame
• Add option to interpolate by Index values in Series.interpolate (GH1206)
• Add max_colwidth option for DataFrame, defaulting to 50
• Conversion of DataFrame through rpy2 to R data.frame (GH1282, )
• Add keys() method on DataFrame (GH1240)
• Add new match function to API (similar to R) (GH502)
• Add dayfirst option to parsers (GH854)
• Add method argument to align method for forward/backward fillin (GH216)
• Add Panel.transpose method for rearranging axes (GH695)
• Add new cut function (patterned after R) for discretizing data into equal range-length bins or arbitrary breaks of your choosing (GH415)
• Add new qcut for cutting with quantiles (GH1378)
• Add value_counts top level array method (GH1392)
• Added Andrews curves plot tupe (GH1325)
• Add lag plot (GH1440)
• Add autocorrelation_plot (GH1425)
• Add support for tox and Travis CI (GH1382)
• Add support for Categorical use in GroupBy (GH292)
• Add any and all methods to DataFrame (GH1416)
• Add secondary_y option to Series.plot
• Add experimental lreshape function for reshaping wide to long

Improvements to existing features

• Switch to klib/khash-based hash tables in Index classes for better performance in many cases and lower memory footprint
• Shipping some functions from scipy.stats to reduce dependency, e.g. Series.describe and DataFrame.describe (GH1092)
• Can create MultiIndex by passing list of lists or list of arrays to Series, DataFrame constructor, etc. (GH831)
• Can pass arrays in addition to column names to DataFrame.set_index (GH402)
• Improve the speed of “square” reindexing of homogeneous DataFrame objects by significant margin (GH836)
• Handle more dtypes when passed MaskedArrays in DataFrame constructor (GH406)
- Improved performance of join operations on integer keys (GH682)
- Can pass multiple columns to GroupBy object, e.g. `grouped[[col1, col2]]` to only aggregate a subset of the value columns (GH383)
- Add histogram / kde plot options for `scatter_matrix` diagonals (GH1237)
- Add inplace option to `Series/DataFrame.rename` and `sort_index`, `DataFrame.drop_duplicates` (GH805, GH207)
- More helpful error message when nothing passed to `Series.reindex` (GH1267)
- Can mix array and scalars as dict-value inputs to `DataFrame` constructor (GH1329)
- Use `DataFrame` columns’ name for legend title in plots
- Preserve frequency in `DatetimeIndex` when possible in boolean indexing operations
- Promote `datetime.date` values in data alignment operations (GH867)
- Add `order` method to Index classes (GH1028)
- Avoid hash table creation in large monotonic hash table indexes (GH1160)
- Store time zones in HDFStore (GH1232)
- Enable storage of sparse data structures in HDFStore (GH85)
- Enable `Series.asof` to work with arrays of timestamp inputs
- Cython implementation of `DataFrame.corr` speeds up by > 100x (GH1349, GH1354)
- Exclude “nuisance” columns automatically in `GroupBy.transform` (GH1364)
- Support `functions-as-strings` in `GroupBy.transform` (GH1362)
- Use index name as xlabel/ylabel in plots (GH1415)
- Add `convert_dtype` option to `Series.apply` to be able to leave data as `dtype=object` (GH1414)
- Can specify all index level names in `concat` (GH1419)
- Add `dialect` keyword to parsers for quoting conventions (GH1363)
- Enable `DataFrame[bool_DataFrame] += value` (GH1366)
- Add `retries` argument to `get_data_yahoo` to try to prevent Yahoo! API 404s (GH826)
- Improve performance of reshaping by using O(N) categorical sorting
- Series names will be used for index of `DataFrame` if no index passed (GH1494)
- Header argument in `DataFrame.to_csv` can accept a list of column names to use instead of the object's columns (GH921)
- Add `raise_conflict` argument to `DataFrame.update` (GH1526)
- Support file-like objects in `ExcelFile` (GH1529)

**API Changes**

- Rename `pandas._tseries` to `pandas.lib`
- Rename `Factor` to `Categorical` and add improvements. Numerous Categorical bug fixes
- Frequency name overhaul, `WEEKDAY/EOM` and rules with @ deprecated. `get_legacy_offset_name` backwards compatibility function added
- Raise `ValueError` in `DataFrame.__nonzero__`, so “if df” no longer works (GH1073)
• Change BDay (business day) to not normalize dates by default (GH506)
• Remove deprecated DataMatrix name
• Default merge suffixes for overlap now have underscores instead of periods to facilitate tab completion, etc. (GH1239)
• Deprecation of offset, time_rule timeRule parameters throughout codebase
• Series.append and DataFrame.append no longer check for duplicate indexes by default, add verify_integrity parameter (GH1394)
• Refactor Factor class, old constructor moved to Factor.from_array
• Modified internals of MultiIndex to use less memory (no longer represented as array of tuples) internally, speed up construction time and many methods which construct intermediate hierarchical indexes (GH1467)

**Bug Fixes**

• Fix OverflowError from storing pre-1970 dates in HDFStore by switching to datetime64 (GH179)
• Fix logical error with February leap year end in YearEnd offset
• Series([False, nan]) was getting casted to float64 (GH1074)
• Fix binary operations between boolean Series and object Series with booleans and NAs (GH1074, GH1079)
• Couldn’t assign whole array to column in mixed-type DataFrame via .ix (GH1142)
• Fix label slicing issues with float index values (GH1167)
• Fix segfault caused by empty groups passed to groupby (GH1048)
• Fix occasionally misbehaved reindexing in the presence of NaN labels (GH522)
• Fix imprecise logic causing weird Series results from .apply (GH1183)
• Unstack multiple levels in one shot, avoiding empty columns in some cases. Fix pivot table bug (GH1181)
• Fix formatting of MultiIndex on Series/DataFrame when index name coincides with label (GH1217)
• Handle Excel 2003 #N/A as NaN from xld (GH1213, GH1225)
• Fix timestamp locale-related deserialization issues with HDFStore by moving to datetime64 representation (GH1081, GH809)
• Fix DataFrame.duplicated/drop_duplicates NA value handling (GH557)
• Actually raise exceptions in fast reducer (GH1243)
• Fix various timezone-handling bugs from 0.7.3 (GH969)
• GroupBy on level=0 discarded index name (GH1313)
• Better error message with unmergeable DataFrames (GH1307)
• Series.__repr__ alignment fix with unicode index values (GH1279)
• Better error message if nothing passed to reindex (GH1267)
• More robust NA handling in DataFrame.drop_duplicates (GH557)
• Resolve locale-based and pre-epoch HDF5 timestamp deserialization issues (GH973, GH1081, GH179)
• Implement Series.repeat (GH1229)
• Fix indexing with namedtuple and other tuple subclasses (GH1026)
• Fix float64 slicing bug (GH1167)
• Parsing integers with commas (GH796)
• Fix groupby improper data type when group consists of one value (GH1065)
• Fix negative variance possibility in nanvar resulting from floating point error (GH1090)
• Consistently set name on groupby pieces (GH184)
• Treat dict return values as Series in GroupBy.apply (GH823)
• Respect column selection for DataFrame in in GroupBy.transform (GH1365)
• Fix MultiIndex partial indexing bug (GH1352)
• Enable assignment of rows in mixed-type DataFrame via .ix (GH1432)
• Reset index mapping when grouping Series in Cython (GH1423)
• Fix outer/inner DataFrame.join with non-unique indexes (GH1421)
• Fix MultiIndex groupby bugs with empty lower levels (GH1401)
• Calling fillna with a Series will have same behavior as with dict (GH1486)
• SparseSeries reduction bug (GH1375)
• Fix unicode serialization issue in HDFStore (GH1361)
• Pass keywords to pyplot.boxplot in DataFrame.boxplot (GH1493)
• Bug fixes in MonthBegin (GH1483)
• Preserve MultiIndex names in drop (GH1513)
• Fix Panel DataFrame slice-assignment bug (GH1533)
• Don’t use locals() in read_* functions (GH1547)

**pandas 0.7.3**

**Release date:** April 12, 2012

**New Features**

• Support for non-unique indexes: indexing and selection, many-to-one and many-to-many joins (GH1306)
• Added fixed-width file reader, read_fwf (GH952)
• Add group_keys argument to groupby to not add group names to MultiIndex in result of apply (GH938)
• DataFrame can now accept non-integer label slicing (GH946). Previously only DataFrame.ix was able to do so.
• DataFrame.apply now retains name attributes on Series objects (GH983)
• Numeric DataFrame comparisons with non-numeric values now raises proper TypeError (GH943). Previously raise “PandasError: DataFrame constructor not properly called!”
• Add **kurt** methods to Series and DataFrame (GH964)
• Can pass dict of column - list/set NA values for text parsers (GH754)
• Allows users specified NA values in text parsers (GH754)
• Parsers checks for openpyxl dependency and raises ImportError if not found (GH1007)
• New factory function to create HDFStore objects that can be used in a with statement so users do not have to explicitly call HDFStore.close (GH1005)
• pivot_table is now more flexible with same parameters as groupby (GH941)
• Added stacked bar plots (GH987)
• scatter_matrix method in pandas/tools/plotting.py (GH935)
• DataFrame.boxplot returns plot results for ex-post styling (GH985)
• Short version number accessible as pandas.version.short_version (GH930)
• Additional documentation in panel.to_frame (GH942)
• More informative Series.apply docstring regarding element-wise apply (GH977)
• Notes on rpy2 installation (GH1006)
• Add rotation and font size options to hist method (GH1012)
• Use exogenous / X variable index in result of OLS.y_predict. Add OLS.predict method (GH1027, GH1008)

API Changes

• Calling apply on grouped Series, e.g. describe(), will no longer yield DataFrame by default. Will have to call unstack() to get prior behavior
• NA handling in non-numeric comparisons has been tightened up (GH933, GH953)
• No longer assign dummy names key_0, key_1, etc. to groupby index (GH1291)

Bug Fixes

• Fix logic error when selecting part of a row in a DataFrame with a MultiIndex index (GH1013)
• Series comparison with Series of differing length causes crash (GH1016)
• Fix bug in indexing when selecting section of hierarchically-indexed row (GH1013)
• DataFrame.plot(logy=True) has no effect (GH1011).
• Broken arithmetic operations between SparsePanel-Panel (GH1015)
• Unicode repr issues in MultiIndex with non-ASCII characters (GH1010)
• DataFrame.lookup() returns inconsistent results if exact match not present (GH1001)
• DataFrame arithmetic operations not treating None as NA (GH992)
• DataFrameGroupBy.apply returns incorrect result (GH991)
• Series.reshape returns incorrect result for multiple dimensions (GH989)
• Series.std and Series.var ignores ddof parameter (GH934)
• DataFrame.append loses index names (GH980)
• DataFrame.plot(kind='bar') ignores color argument (GH958)
• Inconsistent Index comparison results (GH948)
• Improper int dtype DataFrame construction from data with NaN (GH846)
• Removes default ‘result’ name in groupby results (GH995)
• DataFrame.from_records no longer mutate input columns (GH975)
• Use Index name when grouping by it (GH1313)

pandas 0.7.2

Release date: March 16, 2012

New Features

• Add additional tie-breaking methods in DataFrame.rank (GH874)
• Add ascending parameter to rank in Series, DataFrame (GH875)
• Add sort_columns parameter to allow unsorted plots (GH918)
• IPython tab completion on GroupBy objects

API Changes

• Series.sum returns 0 instead of NA when called on an empty series. Analogously for a DataFrame whose rows or columns are length 0 (GH844)

Improvements to existing features

• Don’t use groups dict in Grouper.size (GH860)
• Use khash for Series.value_counts, add raw function to algorithms.py (GH861)
• Enable column access via attributes on GroupBy (GH882)
• Enable setting existing columns (only) via attributes on DataFrame, Panel (GH883)
• Intercept __builtin__.sum in groupby (GH885)
• Can pass dict to DataFrame.fillna to use different values per column (GH661)
• Can select multiple hierarchical groups by passing list of values in .ix (GH134)
• Add level keyword to drop for dropping values from a level (GH159)
• Add coerce_float option on DataFrame.from_records (GH893)
• Raise exception if passed date_parser fails in read_csv
• Add axis option to DataFrame.fillna (GH174)
• Fixes to Panel to make it easier to subclass (GH888)

Bug Fixes

• Fix overflow-related bugs in groupby (GH850, GH851)
• Fix unhelpful error message in parsers (GH856)
• Better err msg for failed boolean slicing of dataframe (GH859)
• Series.count cannot accept a string (level name) in the level argument (GH869)
• Group index platform int check (GH870)
• concat on axis=1 and ignore_index=True raises TypeError (GH871)
• Further unicode handling issues resolved (GH795)
• Fix failure in multiindex-based access in Panel (GH880)
• Fix DataFrame boolean slice assignment failure (GH881)
• Fix combineAdd NotImplementedError for SparseDataFrame (GH887)
• Fix DataFrame.to_html encoding and columns (GH890, GH891, GH909)
• Fix na-filling handling in mixed-type DataFrame (GH910)
• Fix to DataFrame.set_value with non-existant row/col (GH911)
• Fix malformed block in groupby when excluding nuisance columns (GH916)
• Fix inconsistent NA handling in dtype=object arrays (GH925)
• Fix missing center-of-mass computation in ewmcov (GH862)
• Don’t raise exception when opening read-only HDF5 file (GH847)
• Fix possible out-of-bounds memory access in 0-length Series (GH917)

pandas 0.7.1

Release date: February 29, 2012

New Features

• Add to_clipboard function to pandas namespace for writing objects to the system clipboard (GH774)
• Add itertuples method to DataFrame for iterating through the rows of a dataframe as tuples (GH818)
• Add ability to pass fill_value and method to DataFrame and Series align method (GH806, GH807)
• Add fill_value option to reindex, align methods (GH784)
• Enable concat to produce DataFrame from Series (GH787)
• Add between method to Series (GH802)
• Add HTML representation hook to DataFrame for the IPython HTML notebook (GH773)
• Support for reading Excel 2007 XML documents using openpyxl

Improvements to existing features

• Improve performance and memory usage of fillna on DataFrame
• Can concatenate a list of Series along axis=1 to obtain a DataFrame (GH787)
Bug Fixes

- Fix memory leak when inserting large number of columns into a single DataFrame (GH790)
- Appending length-0 DataFrame with new columns would not result in those new columns being part of the resulting concatenated DataFrame (GH782)
- Fixed groupby corner case when passing dictionary grouper and as_index is False (GH819)
- Fixed bug whereby bool array sometimes had object dtype (GH820)
- Fix exception thrown on np.diff (GH816)
- Fix to_records where columns are non-strings (GH822)
- Fix Index.intersection where indices have incomparable types (GH811)
- Fix ExcelFile throwing an exception for two-line file (GH837)
- Add clearer error message in csv parser (GH835)
- Fix loss of fractional seconds in HDFStore (GH513)
- Fix DataFrame join where columns have datetimes (GH787)
- Work around numpy performance issue in take (GH817)
- Improve comparison operations for NA-friendliness (GH801)
- Fix indexing operation for floating point values (GH780, GH798)
- Fix groupby case resulting in malformed dataframe (GH814)
- Fix behavior of reindex of Series dropping name (GH812)
- Improve on redundant groupby computation (GH775)
- Catch possible NA assignment to int/bool series with exception (GH839)

pandas 0.7.0

Release date: 2/9/2012

New Features

- New merge function for efficiently performing full gamut of database / relational-algebra operations. Refactored existing join methods to use the new infrastructure, resulting in substantial performance gains (GH220, GH249, GH267)
- New concat function for concatenating DataFrame or Panel objects along an axis. Can form union or intersection of the other axes. Improves performance of DataFrame.append (GH468, GH479, GH273)
- Handle differently-indexed output values in DataFrame.apply (GH498)
- Can pass list of dicts (e.g., a list of shallow JSON objects) to DataFrame constructor (GH526)
- Add reorder_levels method to Series and DataFrame (GH534)
- Add dict-like get function to DataFrame and Panel (GH521)
- DataFrame.iterrows method for efficiently iterating through the rows of a DataFrame
- Added DataFrame.to_panel with code adapted from LongPanel.to_long
• `reindex_axis` method added to DataFrame
• Add `level` option to binary arithmetic functions on DataFrame and Series
• Add `level` option to the `reindex` and `align` methods on Series and DataFrame for broadcasting values across a level (GH542, GH552, others)
• Add attribute-based item access to Panel and add IPython completion (PR GH554)
• Add `logy` option to `Series.plot` for log-scaling on the Y axis
• Add `index`, `header`, and `justify` options to `DataFrame.to_string`. Add option to (GH570, GH571)
• Can pass multiple DataFrames to `DataFrame.join` to join on index (GH115)
• Can pass multiple Panels to `Panel.join` (GH115)
• Can pass multiple DataFrames to `DataFrame.append` to concatenate (stack) and multiple Series to `Series.append` too
• Added `justify` argument to `DataFrame.to_string` to allow different alignment of column headers
• Add `sort` option to GroupBy to allow disabling sorting of the group keys for potential speedups (GH595)
• Can pass MaskedArray to Series constructor (GH563)
• Add Panel item access via attributes and IPython completion (GH554)
• Implement `DataFrame.lookup`, fancy-indexing analogue for retrieving values given a sequence of row and column labels (GH338)
• Add `verbose` option to `read_csv` and `read_table` to show number of NA values inserted in non-numeric columns (GH614)
• Can pass a list of dicts or Series to `DataFrame.append` to concatenate multiple rows (GH464)
• Add `level` argument to `DataFrame.xs` for selecting data from other MultiIndex levels. Can take one or more levels with potentially a tuple of keys for flexible retrieval of data (GH371, GH629)
• New `crosstab` function for easily computing frequency tables (GH170)
• Can pass a list of functions to aggregate with groupby on a DataFrame, yielding an aggregated result with hierarchical columns (GH166)
• Add integer-indexing functions `irow` in Series and `irow/iget` in DataFrame (GH628)
• Add new `Series.unique` function, significantly faster than `numpy.unique` (GH658)
• Add new `cummin` and `cummax` instance methods to Series and DataFrame (GH647)
• Add new `value_range` function to return min/max of a dataframe (GH288)
• Add `drop` parameter to `reset_index` method of DataFrame and added method to Series as well (GH699)
• Add `isin` method to Index objects, works just like Series.isin (GH GH657)
• Implement array interface on Panel so that ufuncs work (re: GH740)
• Add `sort` option to `DataFrame.join` (GH731)
• Improved handling of NAs (propagation) in binary operations with dtype=object arrays (GH737)
• Add `abs` method to Pandas objects
• Added `algorithms` module to start collecting central algos
API Changes

- Label-indexing with integer indexes now raises KeyError if a label is not found instead of falling back on location-based indexing (GH700)
- Label-based slicing via `ix` or `[ ]` on Series will now only work if exact matches for the labels are found or if the index is monotonic (for range selections)
- Label-based slicing and sequences of labels can be passed to `[ ]` on a Series for both getting and setting (GH86)
- `[]` operator (`__getitem__` and `__setitem__`) will raise KeyError with integer indexes when an index is not contained in the index. The prior behavior would fall back on position-based indexing if a key was not found in the index which would lead to subtle bugs. This is now consistent with the behavior of `.ix` on DataFrame and friends (GH328)
- Rename `DataFrame.delevel` to `DataFrame.reset_index` and add deprecation warning
- `Series.sort` (an in-place operation) called on a Series which is a view on a larger array (e.g. a column in a DataFrame) will generate an Exception to prevent accidentally modifying the data source (GH316)
- Refactor to remove deprecated `LongPanel` class (GH552)
- Deprecated `Panel.to_long`, renamed to `to_frame`
- Deprecated `colSpace` argument in `DataFrame.to_string`, renamed to `col_space`
- Rename `precision` to `accuracy` in engineering float formatter (GH395)
- The default delimiter for `read_csv` is comma rather than letting csv.Sniffer infer it
- Rename `col_or_columns` argument in `DataFrame.drop_duplicates` (GH734)

Improvements to existing features

- Better error message in DataFrame constructor when passed column labels don’t match data (GH497)
- Substantially improve performance of multi-GroupBy aggregation when a Python function is passed, reuse ndarray object in Cython (GH496)
- Can store objects indexed by tuples and floats in HDFStore (GH492)
- Don’t print length by default in Series.to_string, add `length` option (GH489)
- Improve Cython code for multi-groupby to aggregate without having to sort the data (GH93)
- Improve MultiIndex reindexing speed by storing tuples in the MultiIndex, test for backwards unpickling compatibility
- Improve column reindexing performance by using specialized Cython take function
- Further performance tweaking of Series._getitem_ for standard use cases
- Avoid Index dict creation in some cases (i.e. when getting slices, etc.), regression from prior versions
- Friendlier error message in setup.py if NumPy not installed
- Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536)
- Default name assignment when calling `reset_index` on DataFrame with a regular (non-hierarchical) index (GH476)
- Use Cythonized groupers when possible in Series/DataFrame stat ops with `level` parameter passed (GH545)
- Ported skiplist data structure to C to speed up `rolling_median` by about 5-10x in most typical use cases (GH374)
Some performance enhancements in constructing a Panel from a dict of DataFrame objects

Made Index._get_duplicates a public method by removing the underscore

Prettier printing of floats, and column spacing fix (GH395, GH571)

Add bold_rows option to DataFrame.to_html (GH586)

Improve the performance of DataFrame.sort_index by up to 5x or more when sorting by multiple columns

Substantially improve performance of DataFrame and Series constructors when passed a nested dict or dict, respectively (GH540, GH621)

Modified setup.py so that pip / setuptools will install dependencies (GH GH507, various pull requests)

Unstack called on DataFrame with non-MultiIndex will return Series (GH GH477)

Improve DataFrame.to_string and console formatting to be more consistent in the number of displayed digits (GH395)

Use bottleneck if available for performing NaN-friendly statistical operations that it implemented (GH91)

Monkey-patch context to traceback in DataFrame.apply to indicate which row/column the function application failed on (GH614)

Improved ability of read_table and read_clipboard to parse console-formatted DataFrames (can read the row of index names, etc.)

Can pass list of group labels (without having to convert to an ndarray yourself) to groupby in some cases (GH659)

Use kind argument to Series.order for selecting different sort kinds (GH668)

Add option to Series.to_csv to omit the index (GH684)

Add delimiter as an alternative to sep in read_csv and other parsing functions

Substantially improved performance of groupby on DataFrames with many columns by aggregating blocks of columns all at once (GH745)

Can pass a file handle or StringIO to Series/DataFrame.to_csv (GH765)

Can pass sequence of integers to DataFrame.irow(ic) and Series.iget, (GH GH654)

Prototypes for some vectorized string functions

Add float64 hash table to solve the Series.unique problem with NAs (GH714)

Memoize objects when reading from file to reduce memory footprint

Can get and set a column of a DataFrame with hierarchical columns containing “empty” (‘’) lower levels without passing the empty levels (PR GH768)

**Bug Fixes**

Raise exception in out-of-bounds indexing of Series instead of seg-faulting, regression from earlier releases (GH495)

Fix error when joining DataFrames of different dtypes within the same typeclass (e.g. float32 and float64) (GH486)

Fix bug in Series.min/Series.max on objects like datetime.datetime (GH GH487)

Preserve index names in Index.union (GH501)
• Fix bug in Index joining causing subclass information (like DateRange type) to be lost in some cases (GH500)
• Accept empty list as input to DataFrame constructor, regression from 0.6.0 (GH491)
• Can output DataFrame and Series with ndarray objects in a dtype=object array (GH490)
• Return empty string from Series.to_string when called on empty Series (GH488)
• Fix exception passing empty list to DataFrame.from_records
• Fix Index.format bug (excluding name field) with datetimes with time info
• Fix scalar value access in Series to always return NumPy scalars, regression from prior versions (GH510)
• Handle rows skipped at beginning of file in read_* functions (GH505)
• Handle improper dtype casting in set_value methods
• Unary '-' / __neg__ operator on DataFrame was returning integer values
• Unbox 0-dim ndarrays from certain operators like all, any in Series
• Fix handling of missing columns (was combine_first-specific) in DataFrame.combine for general case (GH529)
• Fix type inference logic with boolean lists and arrays in DataFrame indexing
• Use centered sum of squares in R-square computation if entity_effects=True in panel regression
• Handle all NA case in Series.{corr, cov}, was raising exception (GH548)
• Aggregating by multiple levels with level argument to DataFrame, Series stat method, was broken (GH545)
• Fix Cython buf when converter passed to read_csv produced a numeric array (buffer dtype mismatch when passed to Cython type inference function) (GH546)
• Fix exception when setting scalar value using .ix on a DataFrame with a MultiIndex (GH551)
• Fix outer join between two DateRanges with different offsets that returned an invalid DateRange
• Cleanup DataFrame.from_records failure where index argument is an integer
• Fix Data.from_records failure when passed a dictionary
• Fix NA handling in {Series, DataFrame}.rank with non-floating point dtypes
• Fix bug related to integer type-checking in .ix-based indexing
• Handle non-string index name passed to DataFrame.from_records
• DataFrame.insert caused the columns name(s) field to be discarded (GH527)
• Fix erroneous in monotonic many-to-one left joins
• Fix DataFrame.to_string to remove extra column white space (GH571)
• Format floats to default to same number of digits (GH395)
• Added decorator to copy docstring from one function to another (GH449)
• Fix error in monotonic many-to-one left joins
• Fix __eq__ comparison between DateOffsets with different relativedelta keywords passed
• Fix exception caused by parser converter returning strings (GH583)
• Fix MultiIndex formatting bug with integer names (GH601)
• Fix bug in handling of non-numeric aggregates in Series.groupby (GH612)
• Fix TypeError with tuple subclasses (e.g. namedtuple) in DataFrame.from_records (GH611)
• Catch misreported console size when running IPython within Emacs
• Fix minor bug in pivot table margins, loss of index names and length-1 ‘All’ tuple in row labels
• Add support for legacy WidePanel objects to be read from HDFStore
• Fix out-of-bounds segfault in pad_object and backfill_object methods when either source or target array are empty
• Could not create a new column in a DataFrame from a list of tuples
• Fix bugs preventing SparseDataFrame and SparseSeries working with groupby (GH666)
• Use sort kind in Series.sort / argsort (GH668)
• Fix DataFrame operations on non-scalar, non-pandas objects (GH672)
• Don’t convert DataFrame column to integer type when passing integer to __setitem__ (GH669)
• Fix downstream bug in pivot_table caused by integer level names in MultiIndex (GH678)
• Fix SparseSeries.combine_first when passed a dense Series (GH687)
• Fix performance regression in HDFStore loading when DataFrame or Panel stored in table format with datetimes
• Raise Exception in DateRange when offset with n=0 is passed (GH683)
• Fix get/set inconsistency with .ix property and integer location but non-integer index (GH707)
• Use right dropna function for SparseSeries. Return dense Series for NA fill value (GH730)
• Fix Index.format bug causing incorrectly string-formatted Series with datetime indexes (GH726, GH758)
• Fix errors caused by object dtype arrays passed to ols (GH759)
• Fix error where column names lost when passing list of labels to DataFrame.__getitem__. (GH662)
• Fix error whereby top-level week iterator overwrote week instance
• Fix circular reference causing memory leak in sparse array / series / frame, (GH663)
• Fix integer-slicing from integers-as-floats (GH670)
• Fix zero division errors in nanops from object dtype arrays in all NA case (GH676)
• Fix csv encoding when using unicode (GH705, GH717, GH738)
• Fix assumption that each object contains every unique block type in concat, (GH708)
• Fix sortedness check of multiindex in to_panel (GH719, 720)
• Fix that None was not treated as NA in PyObjectHashtable
• Fix hashing dtype because of endianness confusion (GH747, GH748)
• Fix SparseSeries.dropna to return dense Series in case of NA fill value (GH GH730)
• Use map_infer instead of np.vectorize. handle NA sentinels if converter yields numeric array, (GH753)
• Fixes and improvements to DataFrame.rank (GH742)
• Fix catching AttributeError instead of NameError for bottleneck
• Try to cast non-MultiIndex to better dtype when calling reset_index (GH726 GH440)
• Fix #1.QNAN0' float bug on 2.6/win64
• Allow subclasses of dicts in DataFrame constructor, with tests
• Fix problem whereby set_index destroys column multiindex (GH764)
• Hack around bug in generating DateRange from naive DateOffset (GH770)
• Fix bug in DateRange.intersection causing incorrect results with some overlapping ranges (GH771)

Thanks

• Craig Austin
• Chris Billington
• Marius Cobzarenco
• Mario Gamboa-Cavazos
• Hans-Martin Gaudecker
• Arthur Gerigk
• Yaroslav Halchenko
• Jeff Hammerbacher
• Matt Harrison
• Andreas Hilboll
• Luc Kesters
• Adam Klein
• Gregg Lind
• Solomon Negusse
• Wouter Overmeire
• Christian Prinoth
• Jeff Reback
• Sam Reckoner
• Craig Reeson
• Jan Schulz
• Skipper Seabold
• Ted Square
• Graham Taylor
• Aman Thakral
• Chris Uga
• Dieter Vandenbussche
• Texas P.
• Pinxing Ye
• ... and everyone I forgot
pandas 0.6.1

Release date: 12/13/2011

API Changes

- Rename names argument in DataFrame.from_records to columns. Add deprecation warning
- Boolean get/set operations on Series with boolean Series will reindex instead of requiring that the indexes be exactly equal (GH429)

New Features

- Can pass Series to DataFrame.append with ignore_index=True for appending a single row (GH430)
- Add Spearman and Kendall correlation options to Series.corr and DataFrame.corr (GH428)
- Add new get_value and set_value methods to Series, DataFrame, and Panel to very low-overhead access to scalar elements. df.get_value(row, column) is about 3x faster than df[column][row] by handling fewer cases (GH437, GH438). Add similar methods to sparse data structures for compatibility
- Add Qt table widget to sandbox (GH435)
- DataFrame.align can accept Series arguments, add axis keyword (GH461)
- Implement new SparseList and SparseArray data structures. SparseSeries now derives from SparseArray (GH463)
- max_columns / max_rows options in set_printoptions (GH453)
- Implement Series.rank and DataFrame.rank, fast versions of scipy.stats.rankdata (GH428)
- Implement DataFrame.from_items alternate constructor (GH444)
- DataFrame.convert_objects method for inferring better dtypes for object columns (GH302)
- Add rolling_corr_pairwise function for computing Panel of correlation matrices (GH189)
- Add margins option to pivot_table for computing subgroup aggregates (GH114)
- Add Series.from_csv function (GH482)

Improvements to existing features

- Improve memory usage of DataFrame.describe (do not copy data unnecessarily) (GH425)
- Use same formatting function for outputting floating point Series to console as in DataFrame (GH420)
- DataFrame.delevel will try to infer better dtype for new columns (GH440)
- Exclude non-numeric types in DataFrame.{corr, cov}
- Override Index.astype to enable dtype casting (GH412)
- Use same float formatting function for Series.__repr__ (GH420)
- Use available console width to output DataFrame columns (GH453)
- Accept ndarrays when setting items in Panel (GH452)
- Infer console width when printing __repr__ of DataFrame to console (PR GH453)
• Optimize scalar value lookups in the general case by 25% or more in Series and DataFrame
• Can pass DataFrame/DataFrame and DataFrame/Series to rolling_corr/rolling_cov (GH462)
• Fix performance regression in cross-sectional count in DataFrame, affecting DataFrame.dropna speed
• Column deletion in DataFrame copies no data (computes views on blocks) (GH158)
• MultiIndex.get_level_values can take the level name
• More helpful error message when DataFrame.plot fails on one of the columns (GH478)
• Improve performance of DataFrame.{index, columns} attribute lookup

Bug Fixes

• Fix O(\(K^2\)) memory leak caused by inserting many columns without consolidating, had been present since 0.4.0 (GH467)
• DataFrame.count should return Series with zero instead of NA with length-0 axis (GH423)
• Fix Yahoo! Finance API usage in pandas.io.data (GH419, GH427)
• Fix upstream bug causing failure in Series.align with empty Series (GH434)
• Function passed to DataFrame.apply can return a list, as long as it’s the right length. Regression from 0.4 (GH432)
• Don’t “accidentally” upcast scalar values when indexing using .ix (GH431)
• Fix groupby exception raised with as_index=False and single column selected (GH421)
• Implement DateOffset.__ne__ causing downstream bug (GH456)
• Fix __doc__-related issue when converting py -> pyo with py2exe
• Bug fix in left join Cython code with duplicate monotonic labels
• Fix bug when unstacking multiple levels described in GH451
• Exclude NA values in dtype=object arrays, regression from 0.5.0 (GH469)
• Use Cython map_infer function in DataFrame.applymap to properly infer output type, handle tuple return values and other things that were breaking (GH465)
• Handle floating point index values in HDFStore (GH454)
• Fixed stale column reference bug (cached Series object) caused by type change / item deletion in DataFrame (GH473)
• Index.get_loc should always raise Exception when there are duplicates
• Handle differently-indexed Series input to DataFrame constructor (GH475)
• Omit nuisance columns in multi-groupby with Python function
• Buglet in handling of single grouping in general apply
• Handle type inference properly when passing list of lists or tuples to DataFrame constructor (GH484)
• Preserve Index / MultiIndex names in GroupBy.apply concatenation step (GH481)
Thanks

• Ralph Bean
• Luca Beltrame
• Marius Cobzarenco
• Andreas Hilboll
• Jev Kuznetsov
• Adam Lichtenstein
• Wouter Overmeire
• Fernando Perez
• Nathan Pinger
• Christian Prinoth
• Alex Reyfman
• Joon Ro
• Chang She
• Ted Square
• Chris Uga
• Dieter Vandenbussche

pandas 0.6.0

Release date: 11/25/2011

API Changes

• Arithmetic methods like sum will attempt to sum dtype=object values by default instead of excluding them (GH382)

New Features

• Add melt function to pandas.core.reshape
• Add level parameter to group by level in Series and DataFrame descriptive statistics (GH313)
• Add head and tail methods to Series, analogous to to DataFrame (PR GH296)
• Add Series.isin function which checks if each value is contained in a passed sequence (GH289)
• Add float_format option to Series.to_string
• Add skip_footer (GH291) and converters (GH343) options to read_csv and read_table
• Add proper, tested weighted least squares to standard and panel OLS (GH GH303)
• Add drop_duplicates and duplicated functions for removing duplicate DataFrame rows and checking for duplicate rows, respectively (GH319)
• Implement logical (boolean) operators &, |, ^ on DataFrame (GH347)
• Add Series.mad, mean absolute deviation, matching DataFrame
• Add QuarterEnd DateOffset (GH321)
• Add matrix multiplication function dot to DataFrame (GH65)
• Add orient option to Panel.from_dict to ease creation of mixed-type Panels (GH359, GH301)
• Add DataFrame.from_dict with similar orient option
• Can now pass list of tuples or list of lists to DataFrame.from_records for fast conversion to DataFrame (GH357)
• Can pass multiple levels to groupby, e.g. df.groupby(level=[0, 1]) (GH GH103)
• Can sort by multiple columns in DataFrame.sort_index (GH92, GH362)
• Add fast get_value and put_value methods to DataFrame and micro-performance tweaks (GH360)
• Add cov instance methods to Series and DataFrame (GH194, GH362)
• Add bar plot option to DataFrame.plot (GH348)
• Add idxmin and idxmax functions to Series and DataFrame for computing index labels achieving maximum and minimum values (GH286)
• Add read_clipboard function for parsing DataFrame from OS clipboard, should work across platforms (GH300)
• Add nunique function to Series for counting unique elements (GH297)
• DataFrame constructor will use Series name if no columns passed (GH373)
• Support regular expressions and longer delimiters in read_table/read_csv, but does not handle quoted strings yet (GH364)
• Add DataFrame.to_html for formatting DataFrame to HTML (GH387)
• MaskedArray can be passed to DataFrame constructor and masked values will be converted to NaN (GH396)
• Add DataFrame.boxplot function (GH368, others)
• Can pass extra args, kwds to DataFrame.apply (GH376)

Improvements to existing features

• Raise more helpful exception if date parsing fails in DateRange (GH298)
• Vastly improved performance of GroupBy on axes with a MultiIndex (GH299)
• Print level names in hierarchical index in Series repr (GH305)
• Return DataFrame when performing GroupBy on selected column and as_index=False (GH308)
• Can pass vector to on argument in DataFrame.join (GH312)
• Don’t show Series name if it’s None in the repr, also omit length for short Series (GH317)
• Show legend by default in DataFrame.plot, add legend boolean flag (GH GH324)
• Significantly improved performance of Series.order, which also makes np.unique called on a Series faster (GH327)
• Faster cythonized count by level in Series and DataFrame (GH341)
• Raise exception if dateutil 2.0 installed on Python 2.x runtime (GH346)
• Significant GroupBy performance enhancement with multiple keys with many “empty” combinations
• New Cython vectorized function `map_infer` speeds up `Series.apply` and `Series.map` significantly when passed elementwise Python function, motivated by GH355

• Cythonized `cache_readonly`, resulting in substantial micro-performance enhancements throughout the codebase (GH361)

• Special Cython matrix iterator for applying arbitrary reduction operations with 3-5x better performance than `np.apply_along_axis` (GH309)

• Add `raw` option to `DataFrame.apply` for getting better performance when the passed function only requires an ndarray (GH309)

• Improve performance of `MultiIndex.from_tuples`

• Can pass multiple levels to `stack` and `unstack` (GH370)

• Can pass multiple values columns to `pivot_table` (GH381)

• Can call `DataFrame.delevel` with standard Index with name set (GH393)

• Use Series name in GroupBy for result index (GH363)

• Refactor Series/DataFrame stat methods to use common set of NaN-friendly function

• Handle NumPy scalar integers at C level in Cython conversion routines

**Bug Fixes**

• Fix bug in `DataFrame.to_csv` when writing a DataFrame with an index name (GH290)

• DataFrame should clear its Series caches on consolidation, was causing “stale” Series to be returned in some corner cases (GH304)

• DataFrame constructor failed if a column had a list of tuples (GH293)

• Ensure that `Series.apply` always returns a Series and implement `Series.round` (GH314)

• Support boolean columns in Cythonized groupby functions (GH315)

• `DataFrame.describe` should not fail if there are no numeric columns, instead return categorical describe (GH323)

• Fixed bug which could cause columns to be printed in wrong order in `DataFrame.to_string` if specific list of columns passed (GH325)

• Fix legend plotting failure if DataFrame columns are integers (GH326)

• Shift start date back by one month for Yahoo! Finance API in pandas.io.data (GH329)

• Fix `DataFrame.join` failure on unconsolidated inputs (GH331)

• `DataFrame.min`/`max` will no longer fail on mixed-type DataFrame (GH337)

• Fix `read_csv`/`read_table` failure when passing list to `index_col` that is not in ascending order (GH349)

• Fix failure passing Int64Index to Index.union when both are monotonic

• Fix error when passing SparseSeries to (dense) DataFrame constructor

• Added missing bang at top of setup.py (GH352)

• Change `is_monotonic` on MultiIndex so it properly compares the tuples

• Fix MultiIndex outer join logic (GH351)

• Set index name attribute with single-key groupby (GH358)
- Bug fix in reflexive binary addition in Series and DataFrame for non-commutative operations (like string concatenation) (GH353)
- setupegg.py will invoke Cython (GH192)
- Fix block consolidation bug after inserting column into MultiIndex (GH366)
- Fix bug in join operations between Index and Int64Index (GH367)
- Handle min_periods=0 case in moving window functions (GH365)
- Fixed corner cases in DataFrame.apply/pivot with empty DataFrame (GH378)
- Fixed repr exception when Series name is a tuple
- Always return DateRange from asfreq (GH390)
- Pass level names to swaplevel (GH379)
- Don’t lose index names in MultiIndex.droplevel (GH394)
- Infer more proper return type in DataFrame.apply when no columns or rows depending on whether the passed function is a reduction (GH389)
- Always return NA/NaN from Series.min/max and DataFrame.min/max when all of a row/column/values are NA (GH384)
- Enable partial setting with .ix / advanced indexing (GH397)
- Handle mixed-type DataFrames correctly in unstack, do not lose type information (GH403)
- Fix integer name formatting bug in Index.format and in Series.__repr__
- Handle label types other than string passed to groupby (GH405)
- Fix bug in .ix-based indexing with partial retrieval when a label is not contained in a level
- Index name was not being pickled (GH408)
- Level name should be passed to result index in GroupBy.apply (GH416)

Thanks

- Craig Austin
- Marius Cobzarenco
- Joel Cross
- Jeff Hammerbacher
- Adam Klein
- Thomas Kluyver
- Jev Kuznetsov
- Kieran O’Mahony
- Wouter Overmeire
- Nathan Pinger
- Christian Prinoth
- Skipper Seabold
- Chang She
• Ted Square
• Aman Thakral
• Chris Uga
• Dieter Vandenbussche
• carljv
• rsamson

pandas 0.5.0

Release date: 10/24/2011

This release of pandas includes a number of API changes (see below) and cleanup of deprecated APIs from pre-0.4.0 releases. There are also bug fixes, new features, numerous significant performance enhancements, and includes a new ipython completer hook to enable tab completion of DataFrame columns accesses and attributes (a new feature).

In addition to the changes listed here from 0.4.3 to 0.5.0, the minor releases 4.1, 0.4.2, and 0.4.3 brought some significant new functionality and performance improvements that are worth taking a look at.

Thanks to all for bug reports, contributed patches and generally providing feedback on the library.

API Changes

• `read_table`, `read_csv`, and `ExcelFile.parse` default arguments for `index_col` is now None. To use one or more of the columns as the resulting DataFrame’s index, these must be explicitly specified now
• Parsing functions like `read_csv` no longer parse dates by default (GH GH225)
• Removed `weights` option in panel regression which was not doing anything principled (GH155)
• Changed `buffer` argument name in `Series.to_string` to `buf`
• `Series.to_string` and `DataFrame.to_string` now return strings by default instead of printing to `sys.stdout`
• Deprecated `nanRep` argument in various `to_string` and `to_csv` functions in favor of `na_rep`. Will be removed in 0.6 (GH275)
• Renamed `delimiter` to `sep` in `DataFrame.from_csv` for consistency
• Changed order of `Series.clip` arguments to match those of `numpy.clip` and added (unimplemented) `out` argument so `numpy.clip` can be called on a Series (GH272)
• Series functions renamed (and thus deprecated) in 0.4 series have been removed:
  – `asOf`, use `asof`
  – `toDict`, use `to_dict`
  – `toString`, use `to_string`
  – `toCSV`, use `to_csv`
  – `merge`, use `map`
  – `applymap`, use `apply`
  – `combineFirst`, use `combine_first`
  – `_firstTimeWithVal use `first_valid_index`
- `_lastTimeWithValuel use last_valid_index`

- DataFrame functions renamed / deprecated in 0.4 series have been removed:
  - `asMatrix` method, use `as_matrix` or `values` attribute
  - `combineFirst`, use `combine_first`
  - `getXS`, use `xs`
  - `merge`, use `join`
  - `fromRecords`, use `from_records`
  - `fromcsv`, use `from_csv`
  - `toRecords`, use `to_records`
  - `toDict`, use `to_dict`
  - `toString`, use `to_string`
  - `toCSV`, use `to_csv`
  - `_firstTimeWithValuel use first_valid_index`
  - `_lastTimeWithValuel use last_valid_index`
  - `toDataMatrix` is no longer needed
  - `rows()` method, use `index` attribute
  - `cols()` method, use `columns` attribute
  - `dropEmptyRows()`, use `dropna(how='all')`
  - `dropIncompleteRows()`, use `dropna()`
  - `tapply(f)`, use `apply(f, axis=1)`
  - `tgroupby(keyfunc, aggfunc)`, use `groupby with axis=1`

### Deprecations Removed

- `indexField` argument in `DataFrame.from_records`
- `missingAtEnd` argument in `Series.order`. Use `na_last` instead
- `Series.fromValue` classmethod, use regular `Series` constructor instead
- Functions `parseCSV`, `parseText`, and `parseExcel` methods in `pandas.io.parsers` have been removed
- `Index.asOfDate` function
- `Panel.getMinorXS` (use `minor_xs`) and `Panel.getMajorXS` (use `major_xs`)
- `Panel.toWide`, use `Panel.to_wide` instead

### New Features

- Added `DataFrame.align` method with standard join options
- Added `parse_dates` option to `read_csv` and `read_table` methods to optionally try to parse dates in the index columns
• Add `nrows`, `chunksize`, and `iterator` arguments to `read_csv` and `read_table`. The last two return a new `TextParser` class capable of lazily iterating through chunks of a flat file (GH242)
• Added ability to join on multiple columns in `DataFrame.join` (GH214)
• Added private `_get_duplicates` function to `Index` for identifying duplicate values more easily
• Added column attribute access to DataFrame, e.g. `df.A` equivalent to `df['A']` if 'A' is a column in the DataFrame (GH213)
• Added IPython tab completion hook for DataFrame columns. (GH233, GH230)
• Implement `Series.describe` for Series containing objects (GH241)
• Add inner join option to `DataFrame.join` when joining on key(s) (GH248)
• Can select set of DataFrame columns by passing a list to `__getitem__` (GH253)
• Can use `&` and `|` to intersection / union Index objects, respectively (GH261)
• Added `pivot_table` convenience function to pandas namespace (GH234)
• Implemented `Panel.rename_axis` function (GH243)
• DataFrame will show index level names in console output
• Implemented `Panel.take`
• Add `set_eng_float_format` function for setting alternate DataFrame floating point string formatting
• Add convenience `set_index` function for creating a DataFrame index from its existing columns

**Improvements to existing features**

• Major performance improvements in file parsing functions `read_csv` and `read_table`
• Added Cython function for converting tuples to ndarray very fast. Speeds up many MultiIndex-related operations
• File parsing functions like `read_csv` and `read_table` will explicitly check if a parsed index has duplicates and raise a more helpful exception rather than deferring the check until later
• Refactored merging / joining code into a tidy class and disabled unnecessary computations in the float/object case, thus getting about 10% better performance (GH211)
• Improved speed of `DataFrame.xs` on mixed-type DataFrame objects by about 5x, regression from 0.3.0 (GH215)
• With new `DataFrame.align` method, speeding up binary operations between differently-indexed DataFrame objects by 10-25%.
• Significantly sped up conversion of nested dict into DataFrame (GH212)
• Can pass hierarchical index level name to `groupby` instead of the level number if desired (GH223)
• Add support for different delimiters in `DataFrame.to_csv` (GH244)
• Add more helpful error message when importing pandas post-installation from the source directory (GH250)
• Significantly speed up DataFrame `__repr__` and `count` on large mixed-type DataFrame objects
• Better handling of pyx file dependencies in Cython module build (GH271)
Bug Fixes

- **read_csv / read_table fixes**
  - Be less aggressive about converting float->int in cases of floating point representations of integers like 1.0, 2.0, etc.
  - “True”/”False” will not get correctly converted to boolean
  - Index name attribute will get set when specifying an index column
  - Passing column names should force header=None (GH257)
  - Don’t modify passed column names when index_col is not None (GH258)
  - Can sniff CSV separator in zip file (since seek is not supported, was failing before)

- **Worked around matplotlib “bug” in which series[: , np.newaxis] fails. Should be reported upstream to matplotlib (GH224)**

- **DataFrame.iteritems was not returning Series with the name attribute set. Also neither was DataFrame._series**

- **Can store datetime.date objects in HDFStore (GH231)**

- **Index and Series names are now stored in HDFStore**

- **Fixed problem in which data would get upcasted to object dtype in GroupBy.apply operations (GH237)**

- **Fixed outer join bug with empty DataFrame (GH238)**

- **Can create empty Panel (GH239)**

- **Fix join on single key when passing list with 1 entry (GH246)**

- **Don’t raise Exception on plotting DataFrame with an all-NA column (GH251, GH254)**

- **Bug min/max errors when called on integer DataFrames (GH241)**

- **DataFrame.iteritems and DataFrame._series not assigning name attribute**

- **Panel._repr__ raised exception on length-0 major/minor axes**

- **DataFrame.join on key with empty DataFrame produced incorrect columns**

- **Implemented MultiIndex.diff (GH260)**

- **Int64Index.take and MultiIndex.take lost name field, fix downstream issue GH262**

- **Can pass list of tuples to Series (GH270)**

- **Can pass level name to DataFrame.stack**

- **Support set operations between MultiIndex and Index**

- **Fix many corner cases in MultiIndex set operations - Fix MultiIndex-handling bug with GroupBy.apply when returned groups are not indexed the same**

- **Fix corner case bugs in DataFrame.apply**

- **Setting DataFrame index did not cause Series cache to get cleared**

- **Various int32 - int64 platform-specific issues**

- **Don’t be too aggressive converting to integer when parsing file with MultiIndex (GH285)**

- **Fix bug when slicing Series with negative indices before beginning**
Thanks

• Thomas Kluyver
• Daniel Fortunov
• Aman Thakral
• Luca Beltrame
• Wouter Overmeire

pandas 0.4.3

Release date: 10/9/2011

is is largely a bugfix release from 0.4.2 but also includes a handful of new d enhanced features. Also, pandas can now be installed and used on Python 3 hanks Thomas Kluyver!)

New Features

• Python 3 support using 2to3 (GH200, Thomas Kluyver)
• Add name attribute to Series and added relevant logic and tests. Name now prints as part of Series.__repr__
• Add name attribute to standard Index so that stacking / unstacking does not discard names and so that indexed DataFrame objects can be reliably round-tripped to flat files, pickle, HDF5, etc.
• Add isnull and notnull as instance methods on Series (GH209, GH203)

Improvements to existing features

• Skip xlrd-related unit tests if not installed
• Index.append and MultiIndex.append can accept a list of Index objects to concatenate together
• Altered binary operations on differently-indexed SparseSeries objects to use the integer-based (dense) alignment logic which is faster with a larger number of blocks (GH205)
• Refactored Series.__repr__ to be a bit more clean and consistent

API Changes

• Series.describe and DataFrame.describe now bring the 25% and 75% quartiles instead of the 10% and 90% deciles. The other outputs have not changed
• Series.toString will print deprecation warning, has been de-camelCased to to_string

Bug Fixes

• Fix broken interaction between Index and Int64Index when calling intersection. Implement Int64Index.intersection
• MultiIndex.sortlevel discarded the level names (GH202)
• Fix bugs in groupby, join, and append due to improper concatenation of MultiIndex objects (GH201)
Fix regression from 0.4.1, `isnull` and `notnull` ceased to work on other kinds of Python scalar objects like `datetime.datetime`

- Raise more helpful exception when attempting to write empty DataFrame or LongPanel to `HDFStore` (GH204)
- Use stdlib csv module to properly escape strings with commas in `DataFrame.to_csv` (GH206, Thomas Kluyver)
- Fix Python ndarray access in Cython code for sparse blocked index integrity check
- Fix bug writing Series to CSV in Python 3 (GH209)
- Miscellaneous Python 3 bugfixes

Thanks

- Thomas Kluyver
- rsamson

pandas 0.4.2

Release date: 10/3/2011

is a performance optimization release with several bug fixes. The new `td4Index` and new merging / joining Cython code and related Python infrastructure are the main new additions

New Features

- Added fast `Int64Index` type with specialized join, union, intersection. Will result in significant performance enhancements for int64-based time series (e.g. using NumPy’s `datetime64 one day`) and also faster operations on DataFrame objects storing record array-like data.
- Refactored `Index` classes to have a `join` method and associated data alignment routines throughout the codebase to be able to leverage optimized joining / merging routines.
- Added `Series.align` method for aligning two series with choice of join method
- Wrote faster Cython data alignment / merging routines resulting in substantial speed increases
- Added `is_monotonic` property to `Index` classes with associated Cython code to evaluate the monotonicity of the `Index` values
- Add method `get_level_values` to `MultiIndex`
- Implemented shallow copy of `BlockManager` object in `DataFrame` internals

Improvements to existing features

- Improved performance of `isnull` and `notnull`, a regression from v0.3.0 (GH187)
- Wrote templating / code generation script to auto-generate Cython code for various functions which need to be available for the 4 major data types used in pandas (float64, bool, object, int64)
- Refactored code related to `DataFrame.join` so that intermediate aligned copies of the data in each `DataFrame` argument do not need to be created. Substantial performance increases result (GH176)
- Substantially improved performance of generic `Index.intersection` and `Index.union`
- Improved performance of `DateRange.union` with overlapping ranges and non-cacheable offsets (like Minute). Implemented analogous fast `DateRange.intersection` for overlapping ranges.
- Implemented `BlockManager.take` resulting in significantly faster `take` performance on mixed-type `DataFrame` objects (GH104)
- Improved performance of `Series.sort_index`
- Significant groupby performance enhancement: removed unnecessary integrity checks in `DataFrame` internals that were slowing down slicing operations to retrieve groups
- Added informative Exception when passing dict to `DataFrame` groupby aggregation with axis !\(= 0\)

API Changes

Bug Fixes

- Fixed minor unhandled exception in Cython code implementing fast groupby aggregation operations
- Fixed bug in unstacking code manifesting with more than 3 hierarchical levels
- Throw exception when step specified in label-based slice (GH185)
- Fix `isnull` to correctly work with np.float32. Fix upstream bug described in GH182
- Finish implementation of `as_index=False` in groupby for `DataFrame` aggregation (GH181)
- Raise SkipTest for pre-epoch HDFStore failure. Real fix will be sorted out via datetime64 dtype

Thanks

- Uri Laserson
- Scott Sinclair

pandas 0.4.1

Release date: 9/25/2011

is is primarily a bug fix release but includes some new features and improvements

New Features

- Added new `DataFrame` methods `get_dtype_counts` and property `dtypes`
- Setting of values using `.ix` indexing attribute in mixed-type `DataFrame` objects has been implemented (fixes GH135)
- `read_csv` can read multiple columns into a `MultiIndex`. `DataFrame`'s `to_csv` method will properly write out a `MultiIndex` which can be read back (GH151, thanks to Skipper Seabold)
- Wrote fast time series merging / joining methods in Cython. Will be integrated later into `DataFrame.join` and related functions
- Added `ignore_index` option to `DataFrame.append` for combining unindexed records stored in a `DataFrame`
Improvements to existing features

- Some speed enhancements with internal Index type-checking function
- `DataFrame.rename` has a new `copy` parameter which can rename a DataFrame in place
- Enable unstacking by level name (GH142)
- Enable sortlevel to work by level name (GH141)
- `read_csv` can automatically “sniff” other kinds of delimiters using `csv.Sniffer` (GH146)
- Improved speed of unit test suite by about 40%
- Exception will not be raised calling `HDFStore.remove` on non-existent node with where clause
- Optimized `_ensure_index` function resulting in performance savings in type-checking Index objects

API Changes

Bug Fixes

- Fixed DataFrame constructor bug causing downstream problems (e.g. `.copy()` failing) when passing a Series as the values along with a column name and index
- Fixed single-key groupby on DataFrame with `as_index=False` (GH160)
- `Series.shift` was failing on integer Series (GH154)
- `unstack` methods were producing incorrect output in the case of duplicate hierarchical labels. An exception will now be raised (GH147)
- Calling `count` with level argument caused reduceat failure or segfault in earlier NumPy (GH169)
- Fixed `DataFrame.corrwith` to automatically exclude non-numeric data (GH GH144)
- Unicode handling bug fixes in `DataFrame.to_string` (GH138)
- Excluding OLS degenerate unit test case that was causing platform specific failure (GH149)
- Skip blosc-dependent unit tests for PyTables < 2.2 (GH137)
- Calling `copy` on `DateRange` did not copy over attributes to the new object (GH168)
- Fix bug in `HDFStore` in which Panel data could be appended to a Table with different item order, thus resulting in an incorrect result read back

Thanks

- Yaroslav Halchenko
- Jeff Reback
- Skipper Seabold
- Dan Lovell
- Nick Pentreath
pandas 0.4.0

Release date: 9/12/2011

New Features

- `pandas.core.sparse` module: “Sparse” (mostly-NA, or some other fill value) versions of `Series`, `DataFrame`, and `Panel`. For low-density data, this will result in significant performance boosts, and smaller memory footprint. Added `to_sparse` methods to `Series`, `DataFrame`, and `Panel`. See online documentation for more on these.

- Fancy indexing operator on `Series` / `DataFrame`, e.g. via `.ix` operator. Both getting and setting of values is supported; however, setting values will only currently work on homogeneously-typed `DataFrame` objects. Things like:
  - `series.ix[[d1, d2, d3]]`
  - `frame.ix[5:10, ['C', 'B', 'A']], frame.ix[5:10, 'A':'C']`
  - `frame.ix[date1:date2]`

- Significantly enhanced `groupby` functionality
  - Can groupby multiple keys, e.g. `df.groupby(["key1", "key2"]).`. Iteration with multiple groupings produces a flattened tuple
  - “Nuisance” columns (non-aggregatable) will automatically be excluded from `DataFrame` aggregation operations
  - Added automatic “dispatching to `Series` / `DataFrame` methods to more easily invoke methods on groups. e.g. `s.groupby(crit).std()` will work even though `std` is not implemented on the `GroupBy` class

- Hierarchical / multi-level indexing
  - New the `MultiIndex` class. Integrated `MultiIndex` into `Series` and `DataFrame` fancy indexing, slicing, `__getitem__` and `__setitem__`, reindexing, etc. Added `level` keyword argument to `groupby` to enable grouping by a level of a `MultiIndex`

- New data reshaping functions: `stack` and `unstack` on `DataFrame` and `Series`
  - Integrate with `MultiIndex` to enable sophisticated reshaping of data

- `Index` objects (labels for axes) are now capable of holding tuples

- `Series.describe`, `DataFrame.describe`: produces an R-like table of summary statistics about each data column

- `DataFrame.quantile`, `Series.quantile` for computing sample quantiles of data across requested axis

- Added general `DataFrame.dropna` method to replace `dropIncompleteRows` and `dropEmptyRows`, deprecated those.

- `Series` arithmetic methods with optional `fill_value` for missing data, e.g. `a.add(b, fill_value=0)`. If a location is missing for both it will still be missing in the result though.

- `fill_value` option has been added to `DataFrame.{add, mul, sub, div}` methods similar to `Series`

- Boolean indexing with `DataFrame` objects: `data[data > 0.1] = 0.1` or `data[data > other] = 1`.

- `pytz/tzinfo` support in `DataRange`
  - `tz_localize`, `tz_normalize`, and `tz_validate` methods added

- Added `ExcelFile` class to `pandas.io.parsers` for parsing multiple sheets out of a single Excel 2003 document
• GroupBy aggregations can now optionally broadcast, e.g. produce an object of the same size with the aggregated value propagated
• Added select function in all data structures: reindex axis based on arbitrary criterion (function returning boolean value), e.g. frame.select(lambda x: ‘foo’ in x, axis=1)
• DataFrame.consolidate method, API function relating to redesigned internals
• DataFrame.insert method for inserting column at a specified location rather than the default __setitem__ behavior (which puts it at the end)
• HDFStore class in pandas.io.pytables has been largely rewritten using patches from Jeff Reback from others. It now supports mixed-type DataFrame and Series data and can store Panel objects. It also has the option to query DataFrame and Panel data. Loading data from legacy HDFStore files is supported explicitly in the code
• Added set_printoptions method to modify appearance of DataFrame tabular output
• rolling_quantile functions; a moving version of Series.quantile / DataFrame.quantile
• Generic rolling_apply moving window function
• New drop method added to Series, DataFrame, etc. which can drop a set of labels from an axis, producing a new object
• reindex methods now sport a copy option so that data is not forced to be copied then the resulting object is indexed the same
• Added sort_index methods to Series and Panel. Renamed DataFrame.sort to sort_index. Leaving DataFrame.sort for now.
• Added skipna option to statistical instance methods on all the data structures
• pandas.io.data module providing a consistent interface for reading time series data from several different sources

Improvements to existing features

• The 2-dimensional DataFrame and DataMatrix classes have been extensively redesigned internally into a single class DataFrame, preserving where possible their optimal performance characteristics. This should reduce confusion from users about which class to use.
  – Note that under the hood there is a new essentially “lazy evaluation” scheme within respect to adding columns to DataFrame. During some operations, like-typed blocks will be “consolidated” but not before.
• DataFrame accessing columns repeatedly is now significantly faster than DataMatrix used to be in 0.3.0 due to an internal Series caching mechanism (which are all views on the underlying data)
• Column ordering for mixed type data is now completely consistent in DataFrame. In prior releases, there was inconsistent column ordering in DataMatrix
• Improved console / string formatting of DataMatrix with negative numbers
• Improved tabular data parsing functions, read_table and read_csv:
  – Added skiprows and na_values arguments to pandas.io.parsers functions for more flexible IO
  – parseCSV / read_csv functions and others in pandas.io.parsers now can take a list of custom NA values, and also a list of rows to skip
• Can slice DataFrame and get a view of the data (when homogeneously typed), e.g. frame.xs(idx, copy=False) or frame.ix[idx]
• Many speed optimizations throughout Series and DataFrame
• Eager evaluation of groups when calling `groupby` functions, so if there is an exception with the grouping function it will raised immediately versus sometime later on when the groups are needed

• `datetools.WeekOfMonth` offset can be parameterized with $n$ different than 1 or -1.

• Statistical methods on DataFrame like `mean`, `std`, `var`, `skew` will now ignore non-numerical data. Before a not very useful error message was generated. A flag `numeric_only` has been added to `DataFrame.sum` and `DataFrame.count` to enable this behavior in those methods if so desired (disabled by default)

• `DataFrame.pivot` generalized to enable pivoting multiple columns into a `DataFrame` with hierarchical columns

• `DataFrame` constructor can accept structured / record arrays

• `Panel` constructor can accept a dict of DataFrame-like objects. Do not need to use `from_dict` anymore (`from_dict` is there to stay, though).

### API Changes

• The `DataMatrix` variable now refers to `DataFrame`, will be removed within two releases

• `WidePanel` is now known as `Panel`. The `WidePanel` variable in the pandas namespace now refers to the renamed `Panel` class

• `LongPanel` and `Panel/WidePanel` now no longer have a common subclass. `LongPanel` is now a subclass of `DataFrame` having a number of additional methods and a hierarchical index instead of the old `LongPanelIndex` object, which has been removed. Legacy `LongPanel` pickles may not load properly

• Cython is now required to build `pandas` from a development branch. This was done to avoid continuing to check in cythonized C files into source control. Builds from released source distributions will not require Cython

• Cython code has been moved up to a top level `pandas/src` directory. Cython extension modules have been renamed and promoted from the `lib` subpackage to the top level, i.e.
  
  ```
 - pandas.lib.tseries -> pandas._tseries
 - pandas.lib.sparse -> pandas._sparse
  ```

• `DataFrame` pickling format has changed. Backwards compatibility for legacy pickles is provided, but it’s recommended to consider PyTables-based `HDFStore` for storing data with a longer expected shelf life

• A `copy` argument has been added to the `DataFrame` constructor to avoid unnecessary copying of data. Data is no longer copied by default when passed into the constructor

• Handling of boolean dtype in `DataFrame` has been improved to support storage of boolean data with NA / NaN values. Before it was being converted to float64 so this should not (in theory) cause API breakage

• To optimize performance, Index objects now only check that their labels are unique when uniqueness matters (i.e. when someone goes to perform a lookup). This is a potentially dangerous tradeoff, but will lead to much better performance in many places (like groupby).

• Boolean indexing using Series must now have the same indices (labels)

• Backwards compatibility support for `begin/end/nPeriods` keyword arguments in `DateRange` class has been removed

• More intuitive / shorter filling aliases `ffill` (for `pad`) and `bfill` (for `backfill`) have been added to the functions that use them: reindex, asfreq, fillna.

• `pandas.core.mixins` code moved to `pandas.core.generic`

• `buffer` keyword arguments (e.g. `DataFrame.toString`) renamed to `buf` to avoid using Python built-in name

• `DataFrame.rows()` removed (use `DataFrame.index`)
• Added deprecation warning to `DataFrame.cols()`, to be removed in next release

• `DataFrame` deprecations and de-camelCasing: `merge, asMatrix, toDataMatrix, _firstTimeWithValue, _lastTimeWithValue, toRecords, fromRecords, tgroupby, toString`

• `pandas.io.parsers` method deprecations
  – `parseCSV` is now `read_csv` and keyword arguments have been de-camelCased
  – `parseText` is now `read_table`
  – `parseExcel` is replaced by the `ExcelFile` class and its `parse` method

• `fillMethod` arguments (deprecated in prior release) removed, should be replaced with `method`

• `Series.fill, DataFrame.fill, and Panel.fill` removed, use `fillna` instead

• `groupby` functions now exclude NA / NaN values from the list of groups. This matches R behavior with NAs in factors e.g. with the `tapply` function

• Removed `parseText, parseCSV` and `parseExcel` from pandas namespace

• `Series.combineFunc` renamed to `Series.combine` and made a bit more general with a `fill_value` keyword argument defaulting to NaN

• Removed `pandas.core.pytools` module. Code has been moved to `pandas.core.common`

• Tacked on `groupName` attribute for groups in `GroupBy` renamed to `name`

• Panel/LongPanel `dms` attribute renamed to `shape` to be more conformant

• Slicing a `Series` returns a view now

• More `Series` deprecations / renaming: `toCSV` to `to_csv`, `asOf` to `asof`, `merge` to `map, applymap` to `apply, toDict to to_dict, combineFirst to combine_first`. Will print `FutureWarning`

• `DataFrame.to_csv` does not write an “index” column label by default anymore since the output file can be read back without it. However, there is a new `index_label` argument. So you can do `index_label='index'` to emulate the old behavior

• `datetools.Week` argument renamed from `dayOfWeek` to `weekday`

• `timeRule` argument in `shift` has been deprecated in favor of using the `offset` argument for everything. So you can still pass a time rule string to `offset`

• Added optional `encoding` argument to `read_csv, read_table, to_csv, from_csv` to handle unicode in python 2.x

**Bug Fixes**

• Column ordering in `pandas.io.parsers.parseCSV` will match CSV in the presence of mixed-type data

• Fixed handling of Excel 2003 dates in `pandas.io.parsers`

• `DateRange` caching was happening with high resolution `DateOffset` objects, e.g. `DateOffset(seconds=1)`. This has been fixed

• Fixed `__truediv__` issue in `DataFrame`

• Fixed `DataFrame.toCSV` bug preventing IO round trips in some cases

• Fixed bug in `Series.plot` causing matplotlib to barf in exceptional cases

• Disabled `Index` objects from being hashable, like ndarrays

• Added `__ne__` implementation to `Index` so that operations like `ts[ts != idx]` will work

• Added `__ne__` implementation to `DataFrame`
- Bug / unintuitive result when calling `fillna` on unordered labels
- Bug calling `sum` on boolean DataFrame
- Bug fix when creating a DataFrame from a dict with scalar values
- `Series.{sum, mean, std, ...}` now return NA/Nan when the whole Series is NA
- NumPy 1.4 through 1.6 compatibility fixes
- Fixed bug in bias correction in `rolling_cov`, was affecting `rolling_corr` too
- R-square value was incorrect in the presence of fixed and time effects in the `PanelOLS` classes
- `HDFStore` can handle duplicates in table format, will take

**Thanks**

- Joon Ro
- Michael Pennington
- Chris Uga
- Chris Withers
- Jeff Reback
- Ted Square
- Craig Austin
- William Ferreira
- Daniel Fortunov
- Tony Roberts
- Martin Felder
- John Marino
- Tim McNamara
- Justin Berka
- Dieter Vandenbussche
- Shane Conway
- Skipper Seabold
- Chris Jordan-Squire

**pandas 0.3.0**

**Release date:** February 20, 2011
New features

- `corrwith` function to compute column- or row-wise correlations between two DataFrame objects
- Can boolean-index DataFrame objects, e.g. `df[df > 2] = 2, px[px > last_px] = 0`
- Added comparison magic methods (`__lt__, __gt__, etc.)
- Flexible explicit arithmetic methods (add, mul, sub, div, etc.)
- Added `reindex_like` method
- Added `reindex_like` method to WidePanel
- Convenience functions for accessing SQL-like databases in `pandas.io.sql` module
- Added (still experimental) HDFStore class for storing pandas data structures using HDF5 / PyTables in `pandas.io.pytables` module
- Added WeekOfMonth date offset
- `pandas.rpy` (experimental) module created, provide some interfacing / conversion between rpy2 and pandas

Improvements to existing features

- Unit test coverage: 100% line coverage of core data structures
- Speed enhancement to rolling_{median, max, min}
- Column ordering between DataFrame and DataMatrix is now consistent: before DataFrame would not respect column order
- Improved `{Series, DataFrame}.plot` methods to be more flexible (can pass matplotlib Axis arguments, plot DataFrame columns in multiple subplots, etc.)

API Changes

- Exponentially-weighted moment functions in `pandas.stats.moments` have a more consistent API and accept a `min_periods` argument like their regular moving counterparts.
- `fillMethod` argument in Series, DataFrame changed to `method`, `FutureWarning` added.
- `fill` method in Series, DataFrame/DataMatrix, WidePanel renamed to `fillna`, `FutureWarning` added to `fill`
- Renamed `DataFrame.getXS` to `xs`, `FutureWarning` added
- Removed `cap` and `floor` functions from DataFrame, renamed to `clip_upper` and `clip_lower` for consistency with NumPy

Bug Fixes

- Fixed bug in IndexableSkiplist Cython code that was breaking rolling_max function
- Numerous numpy.int64-related indexing fixes
- Several NumPy 1.4.0 NaN-handling fixes
- Bug fixes to pandas.io.parsers.parseCSV
- Fixed `DateRange` caching issue with unusual date offsets
- Fixed bug in `DateRange.union`
• Fixed corner case in `IndexableSkipList` implementation
pandas, 1