Working with Text Data¶
Series and Index are equipped with a set of string processing methods
that make it easy to operate on each element of the array. Perhaps most
importantly, these methods exclude missing/NA values automatically. These are
accessed via the str
attribute and generally have names matching
the equivalent (scalar) built-in string methods:
In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [2]: s.str.lower()
Out[2]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
In [3]: s.str.upper()
Out[3]:
0 A
1 B
2 C
3 AABA
4 BACA
5 NaN
6 CABA
7 DOG
8 CAT
dtype: object
In [4]: s.str.len()
Out[4]:
0 1.0
1 1.0
2 1.0
3 4.0
4 4.0
5 NaN
6 4.0
7 3.0
8 3.0
dtype: float64
In [5]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])
In [6]: idx.str.strip()
Out[6]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')
In [7]: idx.str.lstrip()
Out[7]: Index(['jack', 'jill ', 'jesse ', 'frank'], dtype='object')
In [8]: idx.str.rstrip()
Out[8]: Index([' jack', 'jill', ' jesse', 'frank'], dtype='object')
The string methods on Index are especially useful for cleaning up or transforming DataFrame columns. For instance, you may have columns with leading or trailing whitespace:
In [9]: df = pd.DataFrame(randn(3, 2), columns=[' Column A ', ' Column B '],
...: index=range(3))
...:
In [10]: df
Out[10]:
Column A Column B
0 -1.425575 -1.336299
1 0.740933 1.032121
2 -1.585660 0.913812
Since df.columns
is an Index object, we can use the .str
accessor
In [11]: df.columns.str.strip()
Out[11]: Index(['Column A', 'Column B'], dtype='object')
In [12]: df.columns.str.lower()
Out[12]: Index([' column a ', ' column b '], dtype='object')
These string methods can then be used to clean up the columns as needed. Here we are removing leading and trailing whitespaces, lowercasing all names, and replacing any remaining whitespaces with underscores:
In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
In [14]: df
Out[14]:
column_a column_b
0 -1.425575 -1.336299
1 0.740933 1.032121
2 -1.585660 0.913812
Note
If you have a Series
where lots of elements are repeated
(i.e. the number of unique elements in the Series
is a lot smaller than the length of the
Series
), it can be faster to convert the original Series
to one of type
category
and then use .str.<method>
or .dt.<property>
on that.
The performance difference comes from the fact that, for Series
of type category
, the
string operations are done on the .categories
and not on each element of the
Series
.
Please note that a Series
of type category
with string .categories
has
some limitations in comparison of Series
of type string (e.g. you can’t add strings to
each other: s + " " + s
won’t work if s
is a Series
of type category
). Also,
.str
methods which operate on elements of type list
are not available on such a
Series
.
Splitting and Replacing Strings¶
Methods like split
return a Series of lists:
In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
In [16]: s2.str.split('_')
Out[16]:
0 [a, b, c]
1 [c, d, e]
2 NaN
3 [f, g, h]
dtype: object
Elements in the split lists can be accessed using get
or []
notation:
In [17]: s2.str.split('_').str.get(1)
Out[17]:
0 b
1 d
2 NaN
3 g
dtype: object
In [18]: s2.str.split('_').str[1]
Out[18]:
0 b
1 d
2 NaN
3 g
dtype: object
Easy to expand this to return a DataFrame using expand
.
In [19]: s2.str.split('_', expand=True)
Out[19]:
0 1 2
0 a b c
1 c d e
2 NaN None None
3 f g h
It is also possible to limit the number of splits:
In [20]: s2.str.split('_', expand=True, n=1)
Out[20]:
0 1
0 a b_c
1 c d_e
2 NaN None
3 f g_h
rsplit
is similar to split
except it works in the reverse direction,
i.e., from the end of the string to the beginning of the string:
In [21]: s2.str.rsplit('_', expand=True, n=1)
Out[21]:
0 1
0 a_b c
1 c_d e
2 NaN None
3 f_g h
Methods like replace
and findall
take regular expressions, too:
In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca',
....: '', np.nan, 'CABA', 'dog', 'cat'])
....:
In [23]: s3
Out[23]:
0 A
1 B
2 C
3 Aaba
4 Baca
5
6 NaN
7 CABA
8 dog
9 cat
dtype: object
In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
Out[24]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 NaN
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: object
Some caution must be taken to keep regular expressions in mind! For example, the following code will cause trouble because of the regular expression meaning of $:
# Consider the following badly formatted financial data
In [25]: dollars = pd.Series(['12', '-$10', '$10,000'])
# This does what you'd naively expect:
In [26]: dollars.str.replace('$', '')
Out[26]:
0 12
1 -10
2 10,000
dtype: object
# But this doesn't:
In [27]: dollars.str.replace('-$', '-')
Out[27]:
0 12
1 -$10
2 $10,000
dtype: object
# We need to escape the special character (for >1 len patterns)
In [28]: dollars.str.replace(r'-\$', '-')
Out[28]:
0 12
1 -10
2 $10,000
dtype: object
The replace
method can also take a callable as replacement. It is called
on every pat
using re.sub()
. The callable should expect one
positional argument (a regex object) and return a string.
New in version 0.20.0.
# Reverse every lowercase alphabetic word
In [29]: pat = r'[a-z]+'
In [30]: repl = lambda m: m.group(0)[::-1]
In [31]: pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(pat, repl)
Out[31]:
0 oof 123
1 rab zab
2 NaN
dtype: object
# Using regex groups
In [32]: pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"
In [33]: repl = lambda m: m.group('two').swapcase()
In [34]: pd.Series(['Foo Bar Baz', np.nan]).str.replace(pat, repl)
Out[34]:
0 bAR
1 NaN
dtype: object
The replace
method also accepts a compiled regular expression object
from re.compile()
as a pattern. All flags should be included in the
compiled regular expression object.
New in version 0.20.0.
In [35]: import re
In [36]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE)
In [37]: s3.str.replace(regex_pat, 'XX-XX ')
Out[37]:
0 A
1 B
2 C
3 XX-XX ba
4 XX-XX ca
5
6 NaN
7 XX-XX BA
8 XX-XX
9 XX-XX t
dtype: object
Including a flags
argument when calling replace
with a compiled
regular expression object will raise a ValueError
.
In [38]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
---------------------------------------------------------------------------
ValueError: case and flags cannot be set when pat is a compiled regex
Indexing with .str
¶
You can use []
notation to directly index by position locations. If you index past the end
of the string, the result will be a NaN
.
In [39]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
....: 'CABA', 'dog', 'cat'])
....:
In [40]: s.str[0]
Out[40]:
0 A
1 B
2 C
3 A
4 B
5 NaN
6 C
7 d
8 c
dtype: object
In [41]: s.str[1]
Out[41]:
0 NaN
1 NaN
2 NaN
3 a
4 a
5 NaN
6 A
7 o
8 a
dtype: object
Extracting Substrings¶
Extract first match in each subject (extract)¶
New in version 0.13.0.
Warning
In version 0.18.0, extract
gained the expand
argument. When
expand=False
it returns a Series
, Index
, or
DataFrame
, depending on the subject and regular expression
pattern (same behavior as pre-0.18.0). When expand=True
it
always returns a DataFrame
, which is more consistent and less
confusing from the perspective of a user.
The extract
method accepts a regular expression with at least one
capture group.
Extracting a regular expression with more than one group returns a DataFrame with one column per group.
In [42]: pd.Series(['a1', 'b2', 'c3']).str.extract('([ab])(\d)', expand=False)
Out[42]:
0 1
0 a 1
1 b 2
2 NaN NaN
Elements that do not match return a row filled with NaN
. Thus, a
Series of messy strings can be “converted” into a like-indexed Series
or DataFrame of cleaned-up or more useful strings, without
necessitating get()
to access tuples or re.match
objects. The
dtype of the result is always object, even if no match is found and
the result only contains NaN
.
Named groups like
In [43]: pd.Series(['a1', 'b2', 'c3']).str.extract('(?P<letter>[ab])(?P<digit>\d)', expand=False)
Out[43]:
letter digit
0 a 1
1 b 2
2 NaN NaN
and optional groups like
In [44]: pd.Series(['a1', 'b2', '3']).str.extract('([ab])?(\d)', expand=False)
Out[44]:
0 1
0 a 1
1 b 2
2 NaN 3
can also be used. Note that any capture group names in the regular expression will be used for column names; otherwise capture group numbers will be used.
Extracting a regular expression with one group returns a DataFrame
with one column if expand=True
.
In [45]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=True)
Out[45]:
0
0 1
1 2
2 NaN
It returns a Series if expand=False
.
In [46]: pd.Series(['a1', 'b2', 'c3']).str.extract('[ab](\d)', expand=False)
Out[46]:
0 1
1 2
2 NaN
dtype: object
Calling on an Index
with a regex with exactly one capture group
returns a DataFrame
with one column if expand=True
,
In [47]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
In [48]: s
Out[48]:
A11 a1
B22 b2
C33 c3
dtype: object
In [49]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
Out[49]:
letter
0 A
1 B
2 C
It returns an Index
if expand=False
.
In [50]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
Out[50]: Index(['A', 'B', 'C'], dtype='object', name='letter')
Calling on an Index
with a regex with more than one capture group
returns a DataFrame
if expand=True
.
In [51]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
Out[51]:
letter 1
0 A 11
1 B 22
2 C 33
It raises ValueError
if expand=False
.
>>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
ValueError: only one regex group is supported with Index
The table below summarizes the behavior of extract(expand=False)
(input subject in first column, number of groups in regex in
first row)
1 group | >1 group | |
Index | Index | ValueError |
Series | Series | DataFrame |
Extract all matches in each subject (extractall)¶
New in version 0.18.0.
Unlike extract
(which returns only the first match),
In [52]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
In [53]: s
Out[53]:
A a1a2
B b1
C c1
dtype: object
In [54]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
In [55]: s.str.extract(two_groups, expand=True)
Out[55]:
letter digit
A a 1
B b 1
C c 1
the extractall
method returns every match. The result of
extractall
is always a DataFrame
with a MultiIndex
on its
rows. The last level of the MultiIndex
is named match
and
indicates the order in the subject.
In [56]: s.str.extractall(two_groups)
Out[56]:
letter digit
match
A 0 a 1
1 a 2
B 0 b 1
C 0 c 1
When each subject string in the Series has exactly one match,
In [57]: s = pd.Series(['a3', 'b3', 'c2'])
In [58]: s
Out[58]:
0 a3
1 b3
2 c2
dtype: object
then extractall(pat).xs(0, level='match')
gives the same result as
extract(pat)
.
In [59]: extract_result = s.str.extract(two_groups, expand=True)
In [60]: extract_result
Out[60]:
letter digit
0 a 3
1 b 3
2 c 2
In [61]: extractall_result = s.str.extractall(two_groups)
In [62]: extractall_result
Out[62]:
letter digit
match
0 0 a 3
1 0 b 3
2 0 c 2
In [63]: extractall_result.xs(0, level="match")
Out[63]:
letter digit
0 a 3
1 b 3
2 c 2
Index
also supports .str.extractall
. It returns a DataFrame
which has the
same result as a Series.str.extractall
with a default index (starts from 0).
New in version 0.19.0.
In [64]: pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Out[64]:
letter digit
match
0 0 a 1
1 a 2
1 0 b 1
2 0 c 1
In [65]: pd.Series(["a1a2", "b1", "c1"]).str.extractall(two_groups)
Out[65]:
letter digit
match
0 0 a 1
1 a 2
1 0 b 1
2 0 c 1
Testing for Strings that Match or Contain a Pattern¶
You can check whether elements contain a pattern:
In [66]: pattern = r'[0-9][a-z]'
In [67]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
Out[67]:
0 False
1 False
2 True
3 True
4 True
dtype: bool
or match a pattern:
In [68]: pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern)
Out[68]:
0 False
1 False
2 True
3 True
4 False
dtype: bool
The distinction between match
and contains
is strictness: match
relies on strict re.match
, while contains
relies on re.search
.
Methods like match
, contains
, startswith
, and endswith
take
an extra na
argument so missing values can be considered True or False:
In [69]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
In [70]: s4.str.contains('A', na=False)
Out[70]:
0 True
1 False
2 False
3 True
4 False
5 False
6 True
7 False
8 False
dtype: bool
Creating Indicator Variables¶
You can extract dummy variables from string columns.
For example if they are separated by a '|'
:
In [71]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])
In [72]: s.str.get_dummies(sep='|')
Out[72]:
a b c
0 1 0 0
1 1 1 0
2 0 0 0
3 1 0 1
String Index
also supports get_dummies
which returns a MultiIndex
.
New in version 0.18.1.
In [73]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])
In [74]: idx.str.get_dummies(sep='|')
Out[74]:
MultiIndex(levels=[[0, 1], [0, 1], [0, 1]],
labels=[[1, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 1]],
names=['a', 'b', 'c'])
See also get_dummies()
.
Method Summary¶
Method | Description |
---|---|
cat() |
Concatenate strings |
split() |
Split strings on delimiter |
rsplit() |
Split strings on delimiter working from the end of the string |
get() |
Index into each element (retrieve i-th element) |
join() |
Join strings in each element of the Series with passed separator |
get_dummies() |
Split strings on the delimiter returning DataFrame of dummy variables |
contains() |
Return boolean array if each string contains pattern/regex |
replace() |
Replace occurrences of pattern/regex with some other string or the return value of a callable given the occurrence |
repeat() |
Duplicate values (s.str.repeat(3) equivalent to x * 3 ) |
pad() |
Add whitespace to left, right, or both sides of strings |
center() |
Equivalent to str.center |
ljust() |
Equivalent to str.ljust |
rjust() |
Equivalent to str.rjust |
zfill() |
Equivalent to str.zfill |
wrap() |
Split long strings into lines with length less than a given width |
slice() |
Slice each string in the Series |
slice_replace() |
Replace slice in each string with passed value |
count() |
Count occurrences of pattern |
startswith() |
Equivalent to str.startswith(pat) for each element |
endswith() |
Equivalent to str.endswith(pat) for each element |
findall() |
Compute list of all occurrences of pattern/regex for each string |
match() |
Call re.match on each element, returning matched groups as list |
extract() |
Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group |
extractall() |
Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group |
len() |
Compute string lengths |
strip() |
Equivalent to str.strip |
rstrip() |
Equivalent to str.rstrip |
lstrip() |
Equivalent to str.lstrip |
partition() |
Equivalent to str.partition |
rpartition() |
Equivalent to str.rpartition |
lower() |
Equivalent to str.lower |
upper() |
Equivalent to str.upper |
find() |
Equivalent to str.find |
rfind() |
Equivalent to str.rfind |
index() |
Equivalent to str.index |
rindex() |
Equivalent to str.rindex |
capitalize() |
Equivalent to str.capitalize |
swapcase() |
Equivalent to str.swapcase |
normalize() |
Return Unicode normal form. Equivalent to unicodedata.normalize |
translate() |
Equivalent to str.translate |
isalnum() |
Equivalent to str.isalnum |
isalpha() |
Equivalent to str.isalpha |
isdigit() |
Equivalent to str.isdigit |
isspace() |
Equivalent to str.isspace |
islower() |
Equivalent to str.islower |
isupper() |
Equivalent to str.isupper |
istitle() |
Equivalent to str.istitle |
isnumeric() |
Equivalent to str.isnumeric |
isdecimal() |
Equivalent to str.isdecimal |