pandas.api.types.infer_dtype¶
- 
pandas.api.types.infer_dtype()¶ Effeciently infer the type of a passed val, or list-like array of values. Return a string describing the type.
Parameters: value : scalar, list, ndarray, or pandas type
Returns: string describing the common type of the input data.
Results can include:
- string
 - unicode
 - bytes
 - floating
 - integer
 - mixed-integer
 - mixed-integer-float
 - complex
 - categorical
 - boolean
 - datetime64
 - datetime
 - date
 - timedelta64
 - timedelta
 - time
 - period
 - mixed
 
Raises: TypeError if ndarray-like but cannot infer the dtype
Notes
- ‘mixed’ is the catchall for anything that is not otherwise specialized
 - ‘mixed-integer-float’ are floats and integers
 - ‘mixed-integer’ are integers mixed with non-integers
 
Examples
>>> infer_dtype(['foo', 'bar']) 'string'
>>> infer_dtype([b'foo', b'bar']) 'bytes'
>>> infer_dtype([1, 2, 3]) 'integer'
>>> infer_dtype([1, 2, 3.5]) 'mixed-integer-float'
>>> infer_dtype([1.0, 2.0, 3.5]) 'floating'
>>> infer_dtype(['a', 1]) 'mixed-integer'
>>> infer_dtype([True, False]) 'boolean'
>>> infer_dtype([True, False, np.nan]) 'mixed'
>>> infer_dtype([pd.Timestamp('20130101')]) 'datetime'
>>> infer_dtype([datetime.date(2013, 1, 1)]) 'date'
>>> infer_dtype([np.datetime64('2013-01-01')]) 'datetime64'
>>> infer_dtype([datetime.timedelta(0, 1, 1)]) 'timedelta'
>>> infer_dtype(pd.Series(list('aabc')).astype('category')) 'categorical'