pandas.DataFrame.max#
- DataFrame.max(axis=_NoDefault.no_default, skipna=True, level=None, numeric_only=None, **kwargs)[source]#
Return the maximum of the values over the requested axis.
If you want the index of the maximum, use
idxmax. This is the equivalent of thenumpy.ndarraymethodargmax.- Parameters
- axis{index (0), columns (1)}
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Deprecated since version 1.5.0: Specifying
numeric_only=Noneis deprecated. The default value will beFalsein a future version of pandas.- **kwargs
Additional keyword arguments to be passed to the function.
- Returns
- Series or DataFrame (if level specified)
See also
Series.sumReturn the sum.
Series.minReturn the minimum.
Series.maxReturn the maximum.
Series.idxminReturn the index of the minimum.
Series.idxmaxReturn the index of the maximum.
DataFrame.sumReturn the sum over the requested axis.
DataFrame.minReturn the minimum over the requested axis.
DataFrame.maxReturn the maximum over the requested axis.
DataFrame.idxminReturn the index of the minimum over the requested axis.
DataFrame.idxmaxReturn the index of the maximum over the requested axis.
Examples
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.max() 8