.. _10min_tut_04_plotting:
{{ header }}
How do I create plots in pandas?
----------------------------------
.. image:: ../../_static/schemas/04_plot_overview.svg
:align: center
.. ipython:: python
import pandas as pd
import matplotlib.pyplot as plt
.. raw:: html
-
.. include:: includes/air_quality_no2.rst
.. ipython:: python
air_quality = pd.read_csv("data/air_quality_no2.csv", index_col=0, parse_dates=True)
air_quality.head()
.. note::
The usage of the ``index_col`` and ``parse_dates`` parameters of the ``read_csv`` function to define the first (0th) column as
index of the resulting ``DataFrame`` and convert the dates in the column to :class:`Timestamp` objects, respectively.
.. raw:: html
.. raw:: html
-
I want a quick visual check of the data.
.. ipython:: python
:okwarning:
@savefig 04_airqual_quick.png
air_quality.plot()
plt.show()
With a ``DataFrame``, pandas creates by default one line plot for each of
the columns with numeric data.
.. raw:: html
.. raw:: html
-
I want to plot only the columns of the data table with the data from Paris.
.. ipython:: python
:suppress:
# We need to clear the figure here as, within doc generation, the plot
# accumulates data on each plot(). This is not needed when running
# in a notebook, so is suppressed from output.
plt.clf()
.. ipython:: python
:okwarning:
@savefig 04_airqual_paris.png
air_quality["station_paris"].plot()
plt.show()
To plot a specific column, use the selection method of the
:ref:`subset data tutorial <10min_tut_03_subset>` in combination with the :meth:`~DataFrame.plot`
method. Hence, the :meth:`~DataFrame.plot` method works on both ``Series`` and
``DataFrame``.
.. raw:: html
.. raw:: html
-
I want to visually compare the :math:`NO_2` values measured in London versus Paris.
.. ipython:: python
:okwarning:
@savefig 04_airqual_scatter.png
air_quality.plot.scatter(x="station_london", y="station_paris", alpha=0.5)
plt.show()
.. raw:: html
Apart from the default ``line`` plot when using the ``plot`` function, a
number of alternatives are available to plot data. Let’s use some
standard Python to get an overview of the available plot methods:
.. ipython:: python
[
method_name
for method_name in dir(air_quality.plot)
if not method_name.startswith("_")
]
.. note::
In many development environments as well as IPython and
Jupyter Notebook, use the TAB button to get an overview of the available
methods, for example ``air_quality.plot.`` + TAB.
One of the options is :meth:`DataFrame.plot.box`, which refers to a
`boxplot `__. The ``box``
method is applicable on the air quality example data:
.. ipython:: python
:okwarning:
@savefig 04_airqual_boxplot.png
air_quality.plot.box()
plt.show()
.. raw:: html
To user guide
For an introduction to plots other than the default line plot, see the user guide section about :ref:`supported plot styles `.
.. raw:: html
.. raw:: html
-
I want each of the columns in a separate subplot.
.. ipython:: python
:okwarning:
@savefig 04_airqual_area_subplot.png
axs = air_quality.plot.area(figsize=(12, 4), subplots=True)
plt.show()
Separate subplots for each of the data columns are supported by the ``subplots`` argument
of the ``plot`` functions. The builtin options available in each of the pandas plot
functions are worth reviewing.
.. raw:: html
.. raw:: html
To user guide
Some more formatting options are explained in the user guide section on :ref:`plot formatting `.
.. raw:: html
.. raw:: html
-
I want to further customize, extend or save the resulting plot.
.. ipython:: python
:okwarning:
fig, axs = plt.subplots(figsize=(12, 4))
air_quality.plot.area(ax=axs)
axs.set_ylabel("NO$_2$ concentration")
@savefig 04_airqual_customized.png
fig.savefig("no2_concentrations.png")
plt.show()
.. ipython:: python
:suppress:
:okwarning:
import os
os.remove("no2_concentrations.png")
.. raw:: html
Each of the plot objects created by pandas is a
`Matplotlib `__ object. As Matplotlib provides
plenty of options to customize plots, making the link between pandas and
Matplotlib explicit enables all the power of Matplotlib to the plot.
This strategy is applied in the previous example:
::
fig, axs = plt.subplots(figsize=(12, 4)) # Create an empty Matplotlib Figure and Axes
air_quality.plot.area(ax=axs) # Use pandas to put the area plot on the prepared Figure/Axes
axs.set_ylabel("NO$_2$ concentration") # Do any Matplotlib customization you like
fig.savefig("no2_concentrations.png") # Save the Figure/Axes using the existing Matplotlib method.
plt.show() # Display the plot
.. raw:: html
REMEMBER
- The ``.plot.*`` methods are applicable on both Series and DataFrames.
- By default, each of the columns is plotted as a different element
(line, boxplot,…).
- Any plot created by pandas is a Matplotlib object.
.. raw:: html
.. raw:: html
To user guide
A full overview of plotting in pandas is provided in the :ref:`visualization pages `.
.. raw:: html