pandas.DatetimeIndex.mean#
- DatetimeIndex.mean(*, skipna=True, axis=0)[source]#
Return the mean value of the Array.
- Parameters:
- skipnabool, default True
Whether to ignore any NaT elements.
- axisint, optional, default 0
- Returns:
- scalar
Timestamp or Timedelta.
See also
numpy.ndarray.mean
Returns the average of array elements along a given axis.
Series.mean
Return the mean value in a Series.
Notes
mean is only defined for Datetime and Timedelta dtypes, not for Period.
Examples
For
pandas.DatetimeIndex
:>>> idx = pd.date_range('2001-01-01 00:00', periods=3) >>> idx DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'], dtype='datetime64[ns]', freq='D') >>> idx.mean() Timestamp('2001-01-02 00:00:00')
>>> tdelta_idx = pd.to_timedelta([1, 2, 3], unit='D') >>> tdelta_idx TimedeltaIndex(['1 days', '2 days', '3 days'], dtype='timedelta64[ns]', freq=None) >>> tdelta_idx.mean() Timedelta('2 days 00:00:00')