pandas.Series.cat.categories#
- Series.cat.categories[source]#
The categories of this categorical.
Setting assigns new values to each category (effectively a rename of each individual category).
The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories.
- Raises:
- ValueError
If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories
See also
rename_categories
Rename categories.
reorder_categories
Reorder categories.
add_categories
Add new categories.
remove_categories
Remove the specified categories.
remove_unused_categories
Remove categories which are not used.
set_categories
Set the categories to the specified ones.
Examples
For
pandas.Series
:>>> ser = pd.Series(['a', 'b', 'c', 'a'], dtype='category') >>> ser.cat.categories Index(['a', 'b', 'c'], dtype='object')
>>> raw_cat = pd.Categorical(['a', 'b', 'c', 'a'], categories=['b', 'c', 'd']) >>> ser = pd.Series(raw_cat) >>> ser.cat.categories Index(['b', 'c', 'd'], dtype='object')
For
pandas.Categorical
:>>> cat = pd.Categorical(['a', 'b'], ordered=True) >>> cat.categories Index(['a', 'b'], dtype='object')
>>> ci = pd.CategoricalIndex(['a', 'c', 'b', 'a', 'c', 'b']) >>> ci.categories Index(['a', 'b', 'c'], dtype='object')
>>> ci = pd.CategoricalIndex(['a', 'c'], categories=['c', 'b', 'a']) >>> ci.categories Index(['c', 'b', 'a'], dtype='object')