pandas.core.groupby.DataFrameGroupBy.sem#
- DataFrameGroupBy.sem(ddof=1, numeric_only=False)[source]#
Compute standard error of the mean of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
- Parameters:
- ddofint, default 1
Degrees of freedom.
- numeric_onlybool, default False
Include only float, int or boolean data.
Added in version 1.5.0.
Changed in version 2.0.0: numeric_only now defaults to
False
.
- Returns:
- Series or DataFrame
Standard error of the mean of values within each group.
Examples
For SeriesGroupBy:
>>> lst = ['a', 'a', 'b', 'b'] >>> ser = pd.Series([5, 10, 8, 14], index=lst) >>> ser a 5 a 10 b 8 b 14 dtype: int64 >>> ser.groupby(level=0).sem() a 2.5 b 3.0 dtype: float64
For DataFrameGroupBy:
>>> data = [[1, 12, 11], [1, 15, 2], [2, 5, 8], [2, 6, 12]] >>> df = pd.DataFrame(data, columns=["a", "b", "c"], ... index=["tuna", "salmon", "catfish", "goldfish"]) >>> df a b c tuna 1 12 11 salmon 1 15 2 catfish 2 5 8 goldfish 2 6 12 >>> df.groupby("a").sem() b c a 1 1.5 4.5 2 0.5 2.0
For Resampler:
>>> ser = pd.Series([1, 3, 2, 4, 3, 8], ... index=pd.DatetimeIndex(['2023-01-01', ... '2023-01-10', ... '2023-01-15', ... '2023-02-01', ... '2023-02-10', ... '2023-02-15'])) >>> ser.resample('MS').sem() 2023-01-01 0.577350 2023-02-01 1.527525 Freq: MS, dtype: float64