Versions

Release

0.18.0 - March 2016
download // docs // pdf

Development

0.18.1 - April 2016
github // docs

Previous Releases

0.17.1 - download // docs // pdf
0.17.0 - download // docs // pdf
0.16.2 - download // docs // pdf
0.16.1 - download // docs // pdf
0.16.0 - download // docs // pdf
0.15.2 - download // docs // pdf
0.15.1 - download // docs // pdf
0.15.0 - download // docs // pdf
0.14.1 - download // docs // pdf
0.14.0 - download // docs // pdf
0.13.1 - download // docs // pdf
0.13.0 - download // docs // pdf
0.12.0 - download // docs // pdf
0.11.0 - download // docs // pdf
0.10.1 - download // docs // pdf
0.10.0 - download // docs // pdf
0.9.1 - download // docs // pdf
0.9.0 - download // docs // pdf

Get the book

Python for Data Analysis

Python Data Analysis Library

pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

Note

We are proud to announce that pandas has become a sponsored project of the (NUMFocus organization). This will help ensure the success of development of pandas as a world-class open-source project.

0.18.0 Final (March 13, 2016)

This is a major release from 0.17.1 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number of bug fixes. We recommend that all users upgrade to this version.

Highlights include:

  • pandas >= 0.18.0 will no longer support compatibility with Python version 2.6 GH7718 or version 3.3 GH11273
  • Moving and expanding window functions are now methods on Series and DataFrame, similar to .groupby, see here
  • Adding support for a RangeIndex as a specialized form of the Int64Index for memory savings, see here.
  • API breaking .resample changes to make it more .groupby like, see here
  • Removal of support for positional indexing with floats, which was deprecated since 0.14.0. This will now raise a TypeError, see here
  • The .to_xarray() function has been added for compatibility with the xarray package see here.
  • The .read_sas() function has been enhanced to read sas7bdat files, see here
  • Addition of the .str.extractall() method, and API changes to the the .str.extract() method, and the .str.cat() method
  • pd.test() top-level nose test runner is available GH4327

See the Whatsnew for much more information. Please report any issues here

Best way to Install

Best way to get pandas is to install via conda Builds for osx-64,linux-64,linux-32,win-64,win-32 for Python 2.7, Python 3.4, and Python 3.5 are all available.

conda install pandas

What problem does pandas solve?

Python has long been great for data munging and preparation, but less so for data analysis and modeling. pandas helps fill this gap, enabling you to carry out your entire data analysis workflow in Python without having to switch to a more domain specific language like R.

Combined with the excellent IPython toolkit and other libraries, the environment for doing data analysis in Python excels in performance, productivity, and the ability to collaborate.

pandas does not implement significant modeling functionality outside of linear and panel regression; for this, look to statsmodels and scikit-learn. More work is still needed to make Python a first class statistical modeling environment, but we are well on our way toward that goal.

What do our users have to say?

AQR Capital Management Logo
Roni Israelov, PhD
Portfolio Manager

pandas allows us to focus more on research and less on programming. We have found pandas easy to learn, easy to use, and easy to maintain. The bottom line is that it has increased our productivity.”

AppNexus Logo
David Himrod
Director of Optimization & Analytics

pandas is the perfect tool for bridging the gap between rapid iterations of ad-hoc analysis and production quality code. If you want one tool to be used across a multi-disciplined organization of engineers, mathematicians and analysts, look no further.”

Datadog Logo
Olivier Pomel
CEO
“We use pandas to process time series data on our production servers. The simplicity and elegance of its API, and its high level of performance for high-volume datasets, made it a perfect choice for us.”

Library Highlights

  • A fast and efficient DataFrame object for data manipulation with integrated indexing;
  • Tools for reading and writing data between in-memory data structures and different formats: CSV and text files, Microsoft Excel, SQL databases, and the fast HDF5 format;
  • Intelligent data alignment and integrated handling of missing data: gain automatic label-based alignment in computations and easily manipulate messy data into an orderly form;
  • Flexible reshaping and pivoting of data sets;
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets;
  • Columns can be inserted and deleted from data structures for size mutability;
  • Aggregating or transforming data with a powerful group by engine allowing split-apply-combine operations on data sets;
  • High performance merging and joining of data sets;
  • Hierarchical axis indexing provides an intuitive way of working with high-dimensional data in a lower-dimensional data structure;
  • Time series-functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging. Even create domain-specific time offsets and join time series without losing data;
  • Highly optimized for performance, with critical code paths written in Cython or C.
  • Python with pandas is in use in a wide variety of academic and commercial domains, including Finance, Neuroscience, Economics, Statistics, Advertising, Web Analytics, and more.
Fork me on GitHub