.. _missing_data: {{ header }} ************************* Working with missing data ************************* Values considered "missing" ~~~~~~~~~~~~~~~~~~~~~~~~~~~ pandas uses different sentinel values to represent a missing (also referred to as NA) depending on the data type. ``numpy.nan`` for NumPy data types. The disadvantage of using NumPy data types is that the original data type will be coerced to ``np.float64`` or ``object``. .. ipython:: python pd.Series([1, 2], dtype=np.int64).reindex([0, 1, 2]) pd.Series([True, False], dtype=np.bool_).reindex([0, 1, 2]) :class:`NaT` for NumPy ``np.datetime64``, ``np.timedelta64``, and :class:`PeriodDtype`. For typing applications, use :class:`api.typing.NaTType`. .. ipython:: python pd.Series([1, 2], dtype=np.dtype("timedelta64[ns]")).reindex([0, 1, 2]) pd.Series([1, 2], dtype=np.dtype("datetime64[ns]")).reindex([0, 1, 2]) pd.Series(["2020", "2020"], dtype=pd.PeriodDtype("D")).reindex([0, 1, 2]) :class:`NA` for :class:`StringDtype`, :class:`Int64Dtype` (and other bit widths), :class:`Float64Dtype` (and other bit widths), :class:`BooleanDtype` and :class:`ArrowDtype`. These types will maintain the original data type of the data. For typing applications, use :class:`api.types.NAType`. .. ipython:: python pd.Series([1, 2], dtype="Int64").reindex([0, 1, 2]) pd.Series([True, False], dtype="boolean[pyarrow]").reindex([0, 1, 2]) To detect these missing value, use the :func:`isna` or :func:`notna` methods. .. ipython:: python ser = pd.Series([pd.Timestamp("2020-01-01"), pd.NaT]) ser pd.isna(ser) .. note:: :func:`isna` or :func:`notna` will also consider ``None`` a missing value. .. ipython:: python ser = pd.Series([1, None], dtype=object) ser pd.isna(ser) .. warning:: Equality compaisons between ``np.nan``, :class:`NaT`, and :class:`NA` do not act like ``None`` .. ipython:: python None == None # noqa: E711 np.nan == np.nan pd.NaT == pd.NaT pd.NA == pd.NA Therefore, an equality comparison between a :class:`DataFrame` or :class:`Series` with one of these missing values does not provide the same information as :func:`isna` or :func:`notna`. .. ipython:: python ser = pd.Series([True, None], dtype="boolean[pyarrow]") ser == pd.NA pd.isna(ser) .. _missing_data.NA: :class:`NA` semantics ~~~~~~~~~~~~~~~~~~~~~ .. warning:: Experimental: the behaviour of :class:`NA` can still change without warning. Starting from pandas 1.0, an experimental :class:`NA` value (singleton) is available to represent scalar missing values. The goal of :class:`NA` is provide a "missing" indicator that can be used consistently across data types (instead of ``np.nan``, ``None`` or ``pd.NaT`` depending on the data type). For example, when having missing values in a :class:`Series` with the nullable integer dtype, it will use :class:`NA`: .. ipython:: python s = pd.Series([1, 2, None], dtype="Int64") s s[2] s[2] is pd.NA Currently, pandas does not use those data types using :class:`NA` by default in a :class:`DataFrame` or :class:`Series`, so you need to specify the dtype explicitly. An easy way to convert to those dtypes is explained in the :ref:`conversion section `. Propagation in arithmetic and comparison operations --------------------------------------------------- In general, missing values *propagate* in operations involving :class:`NA`. When one of the operands is unknown, the outcome of the operation is also unknown. For example, :class:`NA` propagates in arithmetic operations, similarly to ``np.nan``: .. ipython:: python pd.NA + 1 "a" * pd.NA There are a few special cases when the result is known, even when one of the operands is ``NA``. .. ipython:: python pd.NA ** 0 1 ** pd.NA In equality and comparison operations, :class:`NA` also propagates. This deviates from the behaviour of ``np.nan``, where comparisons with ``np.nan`` always return ``False``. .. ipython:: python pd.NA == 1 pd.NA == pd.NA pd.NA < 2.5 To check if a value is equal to :class:`NA`, use :func:`isna` .. ipython:: python pd.isna(pd.NA) .. note:: An exception on this basic propagation rule are *reductions* (such as the mean or the minimum), where pandas defaults to skipping missing values. See the :ref:`calculation section ` for more. Logical operations ------------------ For logical operations, :class:`NA` follows the rules of the `three-valued logic `__ (or *Kleene logic*, similarly to R, SQL and Julia). This logic means to only propagate missing values when it is logically required. For example, for the logical "or" operation (``|``), if one of the operands is ``True``, we already know the result will be ``True``, regardless of the other value (so regardless the missing value would be ``True`` or ``False``). In this case, :class:`NA` does not propagate: .. ipython:: python True | False True | pd.NA pd.NA | True On the other hand, if one of the operands is ``False``, the result depends on the value of the other operand. Therefore, in this case :class:`NA` propagates: .. ipython:: python False | True False | False False | pd.NA The behaviour of the logical "and" operation (``&``) can be derived using similar logic (where now :class:`NA` will not propagate if one of the operands is already ``False``): .. ipython:: python False & True False & False False & pd.NA .. ipython:: python True & True True & False True & pd.NA ``NA`` in a boolean context --------------------------- Since the actual value of an NA is unknown, it is ambiguous to convert NA to a boolean value. .. ipython:: python :okexcept: bool(pd.NA) This also means that :class:`NA` cannot be used in a context where it is evaluated to a boolean, such as ``if condition: ...`` where ``condition`` can potentially be :class:`NA`. In such cases, :func:`isna` can be used to check for :class:`NA` or ``condition`` being :class:`NA` can be avoided, for example by filling missing values beforehand. A similar situation occurs when using :class:`Series` or :class:`DataFrame` objects in ``if`` statements, see :ref:`gotchas.truth`. NumPy ufuncs ------------ :attr:`pandas.NA` implements NumPy's ``__array_ufunc__`` protocol. Most ufuncs work with ``NA``, and generally return ``NA``: .. ipython:: python np.log(pd.NA) np.add(pd.NA, 1) .. warning:: Currently, ufuncs involving an ndarray and ``NA`` will return an object-dtype filled with NA values. .. ipython:: python a = np.array([1, 2, 3]) np.greater(a, pd.NA) The return type here may change to return a different array type in the future. See :ref:`dsintro.numpy_interop` for more on ufuncs. .. _missing_data.NA.conversion: Conversion ^^^^^^^^^^ If you have a :class:`DataFrame` or :class:`Series` using ``np.nan``, :meth:`DataFrame.convert_dtypes` and :meth:`Series.convert_dtypes`, respectively, will convert your data to use the nullable data types supporting :class:`NA`, such as :class:`Int64Dtype` or :class:`ArrowDtype`. This is especially helpful after reading in data sets from IO methods where data types were inferred. In this example, while the dtypes of all columns are changed, we show the results for the first 10 columns. .. ipython:: python import io data = io.StringIO("a,b\n,True\n2,") df = pd.read_csv(data) df.dtypes df_conv = df.convert_dtypes() df_conv df_conv.dtypes .. _missing.inserting: Inserting missing data ~~~~~~~~~~~~~~~~~~~~~~ You can insert missing values by simply assigning to a :class:`Series` or :class:`DataFrame`. The missing value sentinel used will be chosen based on the dtype. .. ipython:: python ser = pd.Series([1., 2., 3.]) ser.loc[0] = None ser ser = pd.Series([pd.Timestamp("2021"), pd.Timestamp("2021")]) ser.iloc[0] = np.nan ser ser = pd.Series([True, False], dtype="boolean[pyarrow]") ser.iloc[0] = None ser For ``object`` types, pandas will use the value given: .. ipython:: python s = pd.Series(["a", "b", "c"], dtype=object) s.loc[0] = None s.loc[1] = np.nan s .. _missing_data.calculations: Calculations with missing data ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Missing values propagate through arithmetic operations between pandas objects. .. ipython:: python ser1 = pd.Series([np.nan, np.nan, 2, 3]) ser2 = pd.Series([np.nan, 1, np.nan, 4]) ser1 ser2 ser1 + ser2 The descriptive statistics and computational methods discussed in the :ref:`data structure overview ` (and listed :ref:`here ` and :ref:`here `) are all account for missing data. When summing data, NA values or empty data will be treated as zero. .. ipython:: python pd.Series([np.nan]).sum() pd.Series([], dtype="float64").sum() When taking the product, NA values or empty data will be treated as 1. .. ipython:: python pd.Series([np.nan]).prod() pd.Series([], dtype="float64").prod() Cumulative methods like :meth:`~DataFrame.cumsum` and :meth:`~DataFrame.cumprod` ignore NA values by default preserve them in the result. This behavior can be changed with ``skipna`` * Cumulative methods like :meth:`~DataFrame.cumsum` and :meth:`~DataFrame.cumprod` ignore NA values by default, but preserve them in the resulting arrays. To override this behaviour and include NA values, use ``skipna=False``. .. ipython:: python ser = pd.Series([1, np.nan, 3, np.nan]) ser ser.cumsum() ser.cumsum(skipna=False) .. _missing_data.dropna: Dropping missing data ~~~~~~~~~~~~~~~~~~~~~ :meth:`~DataFrame.dropna` dropa rows or columns with missing data. .. ipython:: python df = pd.DataFrame([[np.nan, 1, 2], [1, 2, np.nan], [1, 2, 3]]) df df.dropna() df.dropna(axis=1) ser = pd.Series([1, pd.NA], dtype="int64[pyarrow]") ser.dropna() Filling missing data ~~~~~~~~~~~~~~~~~~~~ .. _missing_data.fillna: Filling by value ---------------- :meth:`~DataFrame.fillna` replaces NA values with non-NA data. Replace NA with a scalar value .. ipython:: python data = {"np": [1.0, np.nan, np.nan, 2], "arrow": pd.array([1.0, pd.NA, pd.NA, 2], dtype="float64[pyarrow]")} df = pd.DataFrame(data) df df.fillna(0) When the data has object dtype, you can control what type of NA values are present. .. ipython:: python df = pd.DataFrame({"a": [pd.NA, np.nan, None]}, dtype=object) df df.fillna(None) df.fillna(np.nan) df.fillna(pd.NA) However when the dtype is not object, these will all be replaced with the proper NA value for the dtype. .. ipython:: python data = {"np": [1.0, np.nan, np.nan, 2], "arrow": pd.array([1.0, pd.NA, pd.NA, 2], dtype="float64[pyarrow]")} df = pd.DataFrame(data) df df.fillna(None) df.fillna(np.nan) df.fillna(pd.NA) Fill gaps forward or backward .. ipython:: python df.ffill() df.bfill() .. _missing_data.fillna.limit: Limit the number of NA values filled .. ipython:: python df.ffill(limit=1) NA values can be replaced with corresponding value from a :class:`Series` or :class:`DataFrame` where the index and column aligns between the original object and the filled object. .. ipython:: python dff = pd.DataFrame(np.arange(30, dtype=np.float64).reshape(10, 3), columns=list("ABC")) dff.iloc[3:5, 0] = np.nan dff.iloc[4:6, 1] = np.nan dff.iloc[5:8, 2] = np.nan dff dff.fillna(dff.mean()) .. note:: :meth:`DataFrame.where` can also be used to fill NA values.Same result as above. .. ipython:: python dff.where(pd.notna(dff), dff.mean(), axis="columns") .. _missing_data.interpolate: Interpolation ------------- :meth:`DataFrame.interpolate` and :meth:`Series.interpolate` fills NA values using various interpolation methods. .. ipython:: python df = pd.DataFrame( { "A": [1, 2.1, np.nan, 4.7, 5.6, 6.8], "B": [0.25, np.nan, np.nan, 4, 12.2, 14.4], } ) df df.interpolate() idx = pd.date_range("2020-01-01", periods=10, freq="D") data = np.random.default_rng(2).integers(0, 10, 10).astype(np.float64) ts = pd.Series(data, index=idx) ts.iloc[[1, 2, 5, 6, 9]] = np.nan ts @savefig series_before_interpolate.png ts.plot() .. ipython:: python ts.interpolate() @savefig series_interpolate.png ts.interpolate().plot() Interpolation relative to a :class:`Timestamp` in the :class:`DatetimeIndex` is available by setting ``method="time"`` .. ipython:: python ts2 = ts.iloc[[0, 1, 3, 7, 9]] ts2 ts2.interpolate() ts2.interpolate(method="time") For a floating-point index, use ``method='values'``: .. ipython:: python idx = [0.0, 1.0, 10.0] ser = pd.Series([0.0, np.nan, 10.0], idx) ser ser.interpolate() ser.interpolate(method="values") If you have scipy_ installed, you can pass the name of a 1-d interpolation routine to ``method``. as specified in the scipy interpolation documentation_ and reference guide_. The appropriate interpolation method will depend on the data type. .. tip:: If you are dealing with a time series that is growing at an increasing rate, use ``method='barycentric'``. If you have values approximating a cumulative distribution function, use ``method='pchip'``. To fill missing values with goal of smooth plotting use ``method='akima'``. .. ipython:: python df = pd.DataFrame( { "A": [1, 2.1, np.nan, 4.7, 5.6, 6.8], "B": [0.25, np.nan, np.nan, 4, 12.2, 14.4], } ) df df.interpolate(method="barycentric") df.interpolate(method="pchip") df.interpolate(method="akima") When interpolating via a polynomial or spline approximation, you must also specify the degree or order of the approximation: .. ipython:: python df.interpolate(method="spline", order=2) df.interpolate(method="polynomial", order=2) Comparing several methods. .. ipython:: python np.random.seed(2) ser = pd.Series(np.arange(1, 10.1, 0.25) ** 2 + np.random.randn(37)) missing = np.array([4, 13, 14, 15, 16, 17, 18, 20, 29]) ser.iloc[missing] = np.nan methods = ["linear", "quadratic", "cubic"] df = pd.DataFrame({m: ser.interpolate(method=m) for m in methods}) @savefig compare_interpolations.png df.plot() Interpolating new observations from expanding data with :meth:`Series.reindex`. .. ipython:: python ser = pd.Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union(pd.Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])) interp_s = ser.reindex(new_index).interpolate(method="pchip") interp_s.loc[49:51] .. _scipy: https://scipy.org/ .. _documentation: https://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation .. _guide: https://docs.scipy.org/doc/scipy/tutorial/interpolate.html .. _missing_data.interp_limits: Interpolation limits ^^^^^^^^^^^^^^^^^^^^ :meth:`~DataFrame.interpolate` accepts a ``limit`` keyword argument to limit the number of consecutive ``NaN`` values filled since the last valid observation .. ipython:: python ser = pd.Series([np.nan, np.nan, 5, np.nan, np.nan, np.nan, 13, np.nan, np.nan]) ser ser.interpolate() ser.interpolate(limit=1) By default, ``NaN`` values are filled in a ``forward`` direction. Use ``limit_direction`` parameter to fill ``backward`` or from ``both`` directions. .. ipython:: python ser.interpolate(limit=1, limit_direction="backward") ser.interpolate(limit=1, limit_direction="both") ser.interpolate(limit_direction="both") By default, ``NaN`` values are filled whether they are surrounded by existing valid values or outside existing valid values. The ``limit_area`` parameter restricts filling to either inside or outside values. .. ipython:: python # fill one consecutive inside value in both directions ser.interpolate(limit_direction="both", limit_area="inside", limit=1) # fill all consecutive outside values backward ser.interpolate(limit_direction="backward", limit_area="outside") # fill all consecutive outside values in both directions ser.interpolate(limit_direction="both", limit_area="outside") .. _missing_data.replace: Replacing values ---------------- :meth:`Series.replace` and :meth:`DataFrame.replace` can be used similar to :meth:`Series.fillna` and :meth:`DataFrame.fillna` to replace or insert missing values. .. ipython:: python df = pd.DataFrame(np.eye(3)) df df_missing = df.replace(0, np.nan) df_missing df_filled = df_missing.replace(np.nan, 2) df_filled Replacing more than one value is possible by passing a list. .. ipython:: python df_filled.replace([1, 44], [2, 28]) Replacing using a mapping dict. .. ipython:: python df_filled.replace({1: 44, 2: 28}) .. _missing_data.replace_expression: Regular expression replacement ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. note:: Python strings prefixed with the ``r`` character such as ``r'hello world'`` are `"raw" strings `_. They have different semantics regarding backslashes than strings without this prefix. Backslashes in raw strings will be interpreted as an escaped backslash, e.g., ``r'\' == '\\'``. Replace the '.' with ``NaN`` .. ipython:: python d = {"a": list(range(4)), "b": list("ab.."), "c": ["a", "b", np.nan, "d"]} df = pd.DataFrame(d) df.replace(".", np.nan) Replace the '.' with ``NaN`` with regular expression that removes surrounding whitespace .. ipython:: python df.replace(r"\s*\.\s*", np.nan, regex=True) Replace with a list of regexes. .. ipython:: python df.replace([r"\.", r"(a)"], ["dot", r"\1stuff"], regex=True) Replace with a regex in a mapping dict. .. ipython:: python df.replace({"b": r"\s*\.\s*"}, {"b": np.nan}, regex=True) Pass nested dictionaries of regular expressions that use the ``regex`` keyword. .. ipython:: python df.replace({"b": {"b": r""}}, regex=True) df.replace(regex={"b": {r"\s*\.\s*": np.nan}}) df.replace({"b": r"\s*(\.)\s*"}, {"b": r"\1ty"}, regex=True) Pass a list of regular expressions that will replace matches with a scalar. .. ipython:: python df.replace([r"\s*\.\s*", r"a|b"], "placeholder", regex=True) All of the regular expression examples can also be passed with the ``to_replace`` argument as the ``regex`` argument. In this case the ``value`` argument must be passed explicitly by name or ``regex`` must be a nested dictionary. .. ipython:: python df.replace(regex=[r"\s*\.\s*", r"a|b"], value="placeholder") .. note:: A regular expression object from ``re.compile`` is a valid input as well.