pandas.crosstab

pandas.crosstab(rows, cols, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True)

Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed

Parameters :

rows : array-like, Series, or list of arrays/Series

Values to group by in the rows

cols : array-like, Series, or list of arrays/Series

Values to group by in the columns

values : array-like, optional

Array of values to aggregate according to the factors

aggfunc : function, optional

If no values array is passed, computes a frequency table

rownames : sequence, default None

If passed, must match number of row arrays passed

colnames : sequence, default None

If passed, must match number of column arrays passed

margins : boolean, default False

Add row/column margins (subtotals)

dropna : boolean, default True

Do not include columns whose entries are all NaN

Returns :

crosstab : DataFrame

Notes

Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified

Examples

>>> a
array([foo, foo, foo, foo, bar, bar,
       bar, bar, foo, foo, foo], dtype=object)
>>> b
array([one, one, one, two, one, one,
       one, two, two, two, one], dtype=object)
>>> c
array([dull, dull, shiny, dull, dull, shiny,
       shiny, dull, shiny, shiny, shiny], dtype=object)
>>> crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
b    one          two
c    dull  shiny  dull  shiny
a
bar  1     2      1     0
foo  2     2      1     2