pandas.Series.reindex¶
- Series.reindex(index=None, **kwargs)¶
- Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False - Parameters : - index : array-like, optional (can be specified in order, or as - keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data - method : {‘backfill’, ‘bfill’, ‘pad’, ‘ffill’, None}, default None - Method to use for filling holes in reindexed DataFrame pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap - copy : boolean, default True - Return a new object, even if the passed indexes are the same - level : int or name - Broadcast across a level, matching Index values on the passed MultiIndex level - fill_value : scalar, default np.NaN - Value to use for missing values. Defaults to NaN, but can be any “compatible” value - limit : int, default None - Maximum size gap to forward or backward fill - Returns : - reindexed : Series - Examples - >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])