pandas.Categorical¶
- class pandas.Categorical(values, categories=None, ordered=False, name=None, fastpath=False, levels=None)¶
- Represents a categorical variable in classic R / S-plus fashion - Categoricals can only take on only a limited, and usually fixed, number of possible values (categories). In contrast to statistical categorical variables, a Categorical might have an order, but numerical operations (additions, divisions, ...) are not possible. - All values of the Categorical are either in categories or np.nan. Assigning values outside of categories will raise a ValueError. Order is defined by the order of the categories, not lexical order of the values. - Parameters: - values : list-like - The values of the categorical. If categories are given, values not in categories will be replaced with NaN. - categories : Index-like (unique), optional - The unique categories for this categorical. If not given, the categories are assumed to be the unique values of values. - ordered : boolean, (default False) - Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will not be ordered. - Raises: - ValueError - If the categories do not validate. - TypeError - If an explicit ordered=True is given but no categories and the values are not sortable. - Examples - >>> from pandas import Categorical >>> Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1 < 2 < 3] - >>> Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a < b < c] - >>> a = Categorical(['a','b','c','a','b','c'], ['c', 'b', 'a'], ordered=True) >>> a.min() 'c'