pandas.DataFrame.reindex¶
- DataFrame.reindex(index=None, columns=None, **kwargs)¶
- Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False - Parameters: - index, columns : array-like, optional (can be specified in order, or as - keywords) New labels / index to conform to. Preferably an Index object to avoid duplicating data - method : {None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}, optional - Method to use for filling holes in reindexed DataFrame:
- default: don’t fill gaps
- pad / ffill: propagate last valid observation forward to next valid
- backfill / bfill: use next valid observation to fill gap
- nearest: use nearest valid observations to fill gap
 
 - copy : boolean, default True - Return a new object, even if the passed indexes are the same - level : int or name - Broadcast across a level, matching Index values on the passed MultiIndex level - fill_value : scalar, default np.NaN - Value to use for missing values. Defaults to NaN, but can be any “compatible” value - limit : int, default None - Maximum number of consecutive elements to forward or backward fill - tolerance : optional - Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance. - New in version 0.17.0. - Returns: - reindexed : DataFrame - Examples - >>> df.reindex(index=[date1, date2, date3], columns=['A', 'B', 'C'])