pandas.Series¶
- class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)¶
- One-dimensional ndarray with axis labels (including time series). - Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN) - Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes. - Parameters: - data : array-like, dict, or scalar value - Contains data stored in Series - index : array-like or Index (1d) - Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to np.arange(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. - dtype : numpy.dtype or None - If None, dtype will be inferred - copy : boolean, default False - Copy input data - Attributes - T - return the transpose, which is by definition self - at - Fast label-based scalar accessor - axes - Return a list of the row axis labels - base - return the base object if the memory of the underlying data is shared - blocks - Internal property, property synonym for as_blocks() - data - return the data pointer of the underlying data - dtype - return the dtype object of the underlying data - dtypes - return the dtype object of the underlying data - empty - True if NDFrame is entirely empty [no items] - flags - ftype - return if the data is sparse|dense - ftypes - return if the data is sparse|dense - hasnans - iat - Fast integer location scalar accessor. - iloc - Purely integer-location based indexing for selection by position. - imag - is_copy - is_time_series - itemsize - return the size of the dtype of the item of the underlying data - ix - A primarily label-location based indexer, with integer position fallback. - loc - Purely label-location based indexer for selection by label. - nbytes - return the number of bytes in the underlying data - ndim - return the number of dimensions of the underlying data, by definition 1 - real - shape - return a tuple of the shape of the underlying data - size - return the number of elements in the underlying data - strides - return the strides of the underlying data - values - Return Series as ndarray or ndarray-like - Methods - abs() - Return an object with absolute value taken. - add(other[, level, fill_value, axis]) - Addition of series and other, element-wise (binary operator add). - add_prefix(prefix) - Concatenate prefix string with panel items names. - add_suffix(suffix) - Concatenate suffix string with panel items names - align(other[, join, axis, level, copy, ...]) - Align two object on their axes with the - all([axis, bool_only, skipna, level]) - Return whether all elements are True over requested axis - any([axis, bool_only, skipna, level]) - Return whether any element is True over requested axis - append(to_append[, verify_integrity]) - Concatenate two or more Series. - apply(func[, convert_dtype, args]) - Invoke function on values of Series. - argmax([axis, out, skipna]) - Index of first occurrence of maximum of values. - argmin([axis, out, skipna]) - Index of first occurrence of minimum of values. - argsort([axis, kind, order]) - Overrides ndarray.argsort. - as_blocks([copy]) - Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. - as_matrix([columns]) - Convert the frame to its Numpy-array representation. - asfreq(freq[, method, how, normalize]) - Convert all TimeSeries inside to specified frequency using DateOffset objects. - asof(where) - Return last good (non-NaN) value in Series if value is NaN for requested date. - astype(dtype[, copy, raise_on_error]) - Cast object to input numpy.dtype - at_time(time[, asof]) - Select values at particular time of day (e.g. - autocorr([lag]) - Lag-N autocorrelation - between(left, right[, inclusive]) - Return boolean Series equivalent to left <= series <= right. - between_time(start_time, end_time[, ...]) - Select values between particular times of the day (e.g., 9:00-9:30 AM) - bfill([axis, inplace, limit, downcast]) - Synonym for NDFrame.fillna(method=’bfill’) - bool() - Return the bool of a single element PandasObject - cat - alias of CategoricalAccessor - clip([lower, upper, out, axis]) - Trim values at input threshold(s) - clip_lower(threshold[, axis]) - Return copy of the input with values below given value(s) truncated - clip_upper(threshold[, axis]) - Return copy of input with values above given value(s) truncated - combine(other, func[, fill_value]) - Perform elementwise binary operation on two Series using given function - combine_first(other) - Combine Series values, choosing the calling Series’s values first. - compound([axis, skipna, level]) - Return the compound percentage of the values for the requested axis - compress(condition[, axis, out]) - Return selected slices of an array along given axis as a Series - consolidate([inplace]) - Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). - convert_objects([convert_dates, ...]) - Attempt to infer better dtype for object columns - copy([deep]) - Make a copy of this object - corr(other[, method, min_periods]) - Compute correlation with other Series, excluding missing values - count([level]) - Return number of non-NA/null observations in the Series - cov(other[, min_periods]) - Compute covariance with Series, excluding missing values - cummax([axis, dtype, out, skipna]) - Return cumulative max over requested axis. - cummin([axis, dtype, out, skipna]) - Return cumulative min over requested axis. - cumprod([axis, dtype, out, skipna]) - Return cumulative prod over requested axis. - cumsum([axis, dtype, out, skipna]) - Return cumulative sum over requested axis. - describe([percentiles, include, exclude]) - Generate various summary statistics, excluding NaN values. - diff([periods]) - 1st discrete difference of object - div(other[, level, fill_value, axis]) - Floating division of series and other, element-wise (binary operator truediv). - divide(other[, level, fill_value, axis]) - Floating division of series and other, element-wise (binary operator truediv). - dot(other) - Matrix multiplication with DataFrame or inner-product with Series - drop(labels[, axis, level, inplace, errors]) - Return new object with labels in requested axis removed - drop_duplicates(*args, **kwargs) - Return Series with duplicate values removed - dropna([axis, inplace]) - Return Series without null values - dt - alias of CombinedDatetimelikeProperties - duplicated(*args, **kwargs) - Return boolean Series denoting duplicate values - eq(other[, axis]) - equals(other) - Determines if two NDFrame objects contain the same elements. - factorize([sort, na_sentinel]) - Encode the object as an enumerated type or categorical variable - ffill([axis, inplace, limit, downcast]) - Synonym for NDFrame.fillna(method=’ffill’) - fillna([value, method, axis, inplace, ...]) - Fill NA/NaN values using the specified method - filter([items, like, regex, axis]) - Restrict the info axis to set of items or wildcard - first(offset) - Convenience method for subsetting initial periods of time series data - first_valid_index() - Return label for first non-NA/null value - floordiv(other[, level, fill_value, axis]) - Integer division of series and other, element-wise (binary operator floordiv). - from_array(arr[, index, name, dtype, copy, ...]) - from_csv(path[, sep, parse_dates, header, ...]) - Read CSV file (DISCOURAGED, please use pandas.read_csv() instead). - ge(other[, axis]) - get(key[, default]) - Get item from object for given key (DataFrame column, Panel slice, etc.). - get_dtype_counts() - Return the counts of dtypes in this object - get_ftype_counts() - Return the counts of ftypes in this object - get_value(label[, takeable]) - Quickly retrieve single value at passed index label - get_values() - same as values (but handles sparseness conversions); is a view - groupby([by, axis, level, as_index, sort, ...]) - Group series using mapper (dict or key function, apply given function - gt(other[, axis]) - head([n]) - Returns first n rows - hist([by, ax, grid, xlabelsize, xrot, ...]) - Draw histogram of the input series using matplotlib - idxmax([axis, out, skipna]) - Index of first occurrence of maximum of values. - idxmin([axis, out, skipna]) - Index of first occurrence of minimum of values. - iget(i[, axis]) - DEPRECATED. - iget_value(i[, axis]) - DEPRECATED. - interpolate([method, axis, limit, inplace, ...]) - Interpolate values according to different methods. - irow(i[, axis]) - DEPRECATED. - isin(values) - Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values. - isnull() - Return a boolean same-sized object indicating if the values are null - item() - return the first element of the underlying data as a python scalar - iteritems() - Lazily iterate over (index, value) tuples - iterkv(*args, **kwargs) - iteritems alias used to get around 2to3. Deprecated - keys() - Alias for index - kurt([axis, skipna, level, numeric_only]) - Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). - kurtosis([axis, skipna, level, numeric_only]) - Return unbiased kurtosis over requested axis using Fishers definition of kurtosis (kurtosis of normal == 0.0). - last(offset) - Convenience method for subsetting final periods of time series data - last_valid_index() - Return label for last non-NA/null value - le(other[, axis]) - lt(other[, axis]) - mad([axis, skipna, level]) - Return the mean absolute deviation of the values for the requested axis - map(arg[, na_action]) - Map values of Series using input correspondence (which can be - mask(cond[, other, inplace, axis, level, ...]) - Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. - max([axis, skipna, level, numeric_only]) - This method returns the maximum of the values in the object. - mean([axis, skipna, level, numeric_only]) - Return the mean of the values for the requested axis - median([axis, skipna, level, numeric_only]) - Return the median of the values for the requested axis - min([axis, skipna, level, numeric_only]) - This method returns the minimum of the values in the object. - mod(other[, level, fill_value, axis]) - Modulo of series and other, element-wise (binary operator mod). - mode() - Returns the mode(s) of the dataset. - mul(other[, level, fill_value, axis]) - Multiplication of series and other, element-wise (binary operator mul). - multiply(other[, level, fill_value, axis]) - Multiplication of series and other, element-wise (binary operator mul). - ne(other[, axis]) - nlargest(*args, **kwargs) - Return the largest n elements. - nonzero() - Return the indices of the elements that are non-zero - notnull() - Return a boolean same-sized object indicating if the values are - nsmallest(*args, **kwargs) - Return the smallest n elements. - nunique([dropna]) - Return number of unique elements in the object. - order([na_last, ascending, kind, ...]) - DEPRECATED: use Series.sort_values() - pct_change([periods, fill_method, limit, freq]) - Percent change over given number of periods. - pipe(func, *args, **kwargs) - Apply func(self, *args, **kwargs) - plot - alias of SeriesPlotMethods - pop(item) - Return item and drop from frame. - pow(other[, level, fill_value, axis]) - Exponential power of series and other, element-wise (binary operator pow). - prod([axis, skipna, level, numeric_only]) - Return the product of the values for the requested axis - product([axis, skipna, level, numeric_only]) - Return the product of the values for the requested axis - ptp([axis, out]) - put(*args, **kwargs) - return a ndarray with the values put - quantile([q]) - Return value at the given quantile, a la numpy.percentile. - radd(other[, level, fill_value, axis]) - Addition of series and other, element-wise (binary operator radd). - rank([method, na_option, ascending, pct]) - Compute data ranks (1 through n). - ravel([order]) - Return the flattened underlying data as an ndarray - rdiv(other[, level, fill_value, axis]) - Floating division of series and other, element-wise (binary operator rtruediv). - reindex([index]) - Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. - reindex_axis(labels[, axis]) - for compatibility with higher dims - reindex_like(other[, method, copy, limit, ...]) - return an object with matching indicies to myself - rename([index]) - Alter axes input function or functions. - rename_axis(mapper[, axis, copy, inplace]) - Alter index and / or columns using input function or functions. - reorder_levels(order) - Rearrange index levels using input order. - repeat(reps) - return a new Series with the values repeated reps times - replace([to_replace, value, inplace, limit, ...]) - Replace values given in ‘to_replace’ with ‘value’. - resample(rule[, how, axis, fill_method, ...]) - Convenience method for frequency conversion and resampling of regular time-series data. - reset_index([level, drop, name, inplace]) - Analogous to the pandas.DataFrame.reset_index() function, see docstring there. - reshape(*args, **kwargs) - return an ndarray with the values shape - rfloordiv(other[, level, fill_value, axis]) - Integer division of series and other, element-wise (binary operator rfloordiv). - rmod(other[, level, fill_value, axis]) - Modulo of series and other, element-wise (binary operator rmod). - rmul(other[, level, fill_value, axis]) - Multiplication of series and other, element-wise (binary operator rmul). - round([decimals, out]) - Return a with each element rounded to the given number of decimals. - rpow(other[, level, fill_value, axis]) - Exponential power of series and other, element-wise (binary operator rpow). - rsub(other[, level, fill_value, axis]) - Subtraction of series and other, element-wise (binary operator rsub). - rtruediv(other[, level, fill_value, axis]) - Floating division of series and other, element-wise (binary operator rtruediv). - sample([n, frac, replace, weights, ...]) - Returns a random sample of items from an axis of object. - searchsorted(v[, side, sorter]) - Find indices where elements should be inserted to maintain order. - select(crit[, axis]) - Return data corresponding to axis labels matching criteria - sem([axis, skipna, level, ddof, numeric_only]) - Return unbiased standard error of the mean over requested axis. - set_axis(axis, labels) - public verson of axis assignment - set_value(label, value[, takeable]) - Quickly set single value at passed label. - shift([periods, freq, axis]) - Shift index by desired number of periods with an optional time freq - skew([axis, skipna, level, numeric_only]) - Return unbiased skew over requested axis - slice_shift([periods, axis]) - Equivalent to shift without copying data. - sort([axis, ascending, kind, na_position, ...]) - DEPRECATED: use Series.sort_values(inplace=True)() for INPLACE sorting - sort_index([axis, level, ascending, ...]) - Sort object by labels (along an axis) - sort_values([axis, ascending, inplace, ...]) - Sort by the values along either axis - sortlevel([level, ascending, sort_remaining]) - Sort Series with MultiIndex by chosen level. - squeeze() - squeeze length 1 dimensions - std([axis, skipna, level, ddof, numeric_only]) - Return unbiased standard deviation over requested axis. - str - alias of StringMethods - sub(other[, level, fill_value, axis]) - Subtraction of series and other, element-wise (binary operator sub). - subtract(other[, level, fill_value, axis]) - Subtraction of series and other, element-wise (binary operator sub). - sum([axis, skipna, level, numeric_only]) - Return the sum of the values for the requested axis - swapaxes(axis1, axis2[, copy]) - Interchange axes and swap values axes appropriately - swaplevel(i, j[, copy]) - Swap levels i and j in a MultiIndex - tail([n]) - Returns last n rows - take(indices[, axis, convert, is_copy]) - return Series corresponding to requested indices - to_clipboard([excel, sep]) - Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. - to_csv(path[, index, sep, na_rep, ...]) - Write Series to a comma-separated values (csv) file - to_dense() - Return dense representation of NDFrame (as opposed to sparse) - to_dict() - Convert Series to {label -> value} dict - to_frame([name]) - Convert Series to DataFrame - to_hdf(path_or_buf, key, **kwargs) - activate the HDFStore - to_json([path_or_buf, orient, date_format, ...]) - Convert the object to a JSON string. - to_msgpack([path_or_buf]) - msgpack (serialize) object to input file path - to_period([freq, copy]) - Convert Series from DatetimeIndex to PeriodIndex with desired - to_pickle(path) - Pickle (serialize) object to input file path - to_sparse([kind, fill_value]) - Convert Series to SparseSeries - to_sql(name, con[, flavor, schema, ...]) - Write records stored in a DataFrame to a SQL database. - to_string([buf, na_rep, float_format, ...]) - Render a string representation of the Series - to_timestamp([freq, how, copy]) - Cast to datetimeindex of timestamps, at beginning of period - tolist() - Convert Series to a nested list - transpose() - return the transpose, which is by definition self - truediv(other[, level, fill_value, axis]) - Floating division of series and other, element-wise (binary operator truediv). - truncate([before, after, axis, copy]) - Truncates a sorted NDFrame before and/or after some particular dates. - tshift([periods, freq, axis]) - Shift the time index, using the index’s frequency if available - tz_convert(tz[, axis, level, copy]) - Convert tz-aware axis to target time zone. - tz_localize(*args, **kwargs) - Localize tz-naive TimeSeries to target time zone - unique() - Return array of unique values in the object. - unstack([level]) - Unstack, a.k.a. - update(other) - Modify Series in place using non-NA values from passed Series. - valid([inplace]) - value_counts([normalize, sort, ascending, ...]) - Returns object containing counts of unique values. - var([axis, skipna, level, ddof, numeric_only]) - Return unbiased variance over requested axis. - view([dtype]) - where(cond[, other, inplace, axis, level, ...]) - Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. - xs(key[, axis, level, copy, drop_level]) - Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.