pandas.Panel.where¶
- 
Panel.where(cond, other=nan, inplace=False, axis=None, level=None, try_cast=False, raise_on_error=True)[source]¶
- Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. - Parameters: - cond : boolean NDFrame, array or callable - If cond is callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it). - New in version 0.18.1. - A callable can be used as cond. - other : scalar, NDFrame, or callable - If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it). - New in version 0.18.1. - A callable can be used as other. - inplace : boolean, default False - Whether to perform the operation in place on the data - axis : alignment axis if needed, default None - level : alignment level if needed, default None - try_cast : boolean, default False - try to cast the result back to the input type (if possible), - raise_on_error : boolean, default True - Whether to raise on invalid data types (e.g. trying to where on strings) - Returns: - wh : same type as caller - See also - Notes - The where method is an application of the if-then idiom. For each element in the calling DataFrame, if - condis- Truethe element is used; otherwise the corresponding element from the DataFrame- otheris used.- The signature for - DataFrame.where()differs from- numpy.where(). Roughly- df1.where(m, df2)is equivalent to- np.where(m, df1, df2).- For further details and examples see the - wheredocumentation in indexing.- Examples - >>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 - >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True