pandas.Panel4D.rename¶
- 
Panel4D.rename(items=None, major_axis=None, minor_axis=None, **kwargs)[source]¶
- Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error. Alternatively, change - Series.namewith a scalar value (Series only).- Parameters: - items, major_axis, minor_axis : scalar, list-like, dict-like or function, optional - Scalar or list-like will alter the - Series.nameattribute, and raise on DataFrame or Panel. dict-like or functions are transformations to apply to that axis’ values- copy : boolean, default True - Also copy underlying data - inplace : boolean, default False - Whether to return a new Panel. If True then value of copy is ignored. - Returns: - renamed : Panel (new object) - See also - pandas.NDFrame.rename_axis- Examples - >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(2) ... TypeError: 'int' object is not callable >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6