Table Of Contents
- What’s New
- Installation
- Contributing to pandas
- Package overview
- 10 Minutes to pandas
- Tutorials
- Cookbook
- Intro to Data Structures
- Essential Basic Functionality
- Working with Text Data
- Options and Settings
- Indexing and Selecting Data
- MultiIndex / Advanced Indexing
- Computational tools
- Working with missing data
- Group By: split-apply-combine
- Merge, join, and concatenate
- Reshaping and Pivot Tables
- Time Series / Date functionality
- Time Deltas
- Categorical Data
- Visualization
- Styling
- IO Tools (Text, CSV, HDF5, ...)
- Remote Data Access
- Enhancing Performance
- Sparse data structures
- Frequently Asked Questions (FAQ)
- rpy2 / R interface
- pandas Ecosystem
- Comparison with R / R libraries
- Comparison with SQL
- Comparison with SAS
- API Reference
- Input/Output
- General functions
- Series
- DataFrame
- Panel
- Index
- CategoricalIndex
- IntervalIndex
- MultiIndex
- DatetimeIndex
- pandas.DatetimeIndex
- pandas.DatetimeIndex.T
- pandas.DatetimeIndex.asi8
- pandas.DatetimeIndex.asobject
- pandas.DatetimeIndex.base
- pandas.DatetimeIndex.data
- pandas.DatetimeIndex.date
- pandas.DatetimeIndex.day
- pandas.DatetimeIndex.dayofweek
- pandas.DatetimeIndex.dayofyear
- pandas.DatetimeIndex.days_in_month
- pandas.DatetimeIndex.daysinmonth
- pandas.DatetimeIndex.dtype
- pandas.DatetimeIndex.dtype_str
- pandas.DatetimeIndex.empty
- pandas.DatetimeIndex.flags
- pandas.DatetimeIndex.freq
- pandas.DatetimeIndex.freqstr
- pandas.DatetimeIndex.has_duplicates
- pandas.DatetimeIndex.hasnans
- pandas.DatetimeIndex.hour
- pandas.DatetimeIndex.inferred_freq
- pandas.DatetimeIndex.inferred_type
- pandas.DatetimeIndex.is_all_dates
- pandas.DatetimeIndex.is_leap_year
- pandas.DatetimeIndex.is_monotonic
- pandas.DatetimeIndex.is_monotonic_decreasing
- pandas.DatetimeIndex.is_monotonic_increasing
- pandas.DatetimeIndex.is_month_end
- pandas.DatetimeIndex.is_month_start
- pandas.DatetimeIndex.is_normalized
- pandas.DatetimeIndex.is_quarter_end
- pandas.DatetimeIndex.is_quarter_start
- pandas.DatetimeIndex.is_unique
- pandas.DatetimeIndex.is_year_end
- pandas.DatetimeIndex.is_year_start
- pandas.DatetimeIndex.itemsize
- pandas.DatetimeIndex.microsecond
- pandas.DatetimeIndex.minute
- pandas.DatetimeIndex.month
- pandas.DatetimeIndex.name
- pandas.DatetimeIndex.names
- pandas.DatetimeIndex.nanosecond
- pandas.DatetimeIndex.nbytes
- pandas.DatetimeIndex.ndim
- pandas.DatetimeIndex.nlevels
- pandas.DatetimeIndex.offset
- pandas.DatetimeIndex.quarter
- pandas.DatetimeIndex.resolution
- pandas.DatetimeIndex.second
- pandas.DatetimeIndex.shape
- pandas.DatetimeIndex.size
- pandas.DatetimeIndex.strides
- pandas.DatetimeIndex.time
- pandas.DatetimeIndex.tz
- pandas.DatetimeIndex.tzinfo
- pandas.DatetimeIndex.values
- pandas.DatetimeIndex.week
- pandas.DatetimeIndex.weekday
- pandas.DatetimeIndex.weekday_name
- pandas.DatetimeIndex.weekofyear
- pandas.DatetimeIndex.year
- pandas.DatetimeIndex.all
- pandas.DatetimeIndex.any
- pandas.DatetimeIndex.append
- pandas.DatetimeIndex.argmax
- pandas.DatetimeIndex.argmin
- pandas.DatetimeIndex.argsort
- pandas.DatetimeIndex.asof
- pandas.DatetimeIndex.asof_locs
- pandas.DatetimeIndex.astype
- pandas.DatetimeIndex.ceil
- pandas.DatetimeIndex.contains
- pandas.DatetimeIndex.copy
- pandas.DatetimeIndex.delete
- pandas.DatetimeIndex.difference
- pandas.DatetimeIndex.drop
- pandas.DatetimeIndex.drop_duplicates
- pandas.DatetimeIndex.dropna
- pandas.DatetimeIndex.duplicated
- pandas.DatetimeIndex.equals
- pandas.DatetimeIndex.factorize
- pandas.DatetimeIndex.fillna
- pandas.DatetimeIndex.floor
- pandas.DatetimeIndex.format
- pandas.DatetimeIndex.get_duplicates
- pandas.DatetimeIndex.get_indexer
- pandas.DatetimeIndex.get_indexer_for
- pandas.DatetimeIndex.get_indexer_non_unique
- pandas.DatetimeIndex.get_level_values
- pandas.DatetimeIndex.get_loc
- pandas.DatetimeIndex.get_slice_bound
- pandas.DatetimeIndex.get_value
- pandas.DatetimeIndex.get_value_maybe_box
- pandas.DatetimeIndex.get_values
- pandas.DatetimeIndex.groupby
- pandas.DatetimeIndex.holds_integer
- pandas.DatetimeIndex.identical
- pandas.DatetimeIndex.indexer_at_time
- pandas.DatetimeIndex.indexer_between_time
- pandas.DatetimeIndex.insert
- pandas.DatetimeIndex.intersection
- pandas.DatetimeIndex.is
- pandas.DatetimeIndex.is_boolean
- pandas.DatetimeIndex.is_categorical
- pandas.DatetimeIndex.is_floating
- pandas.DatetimeIndex.is_integer
- pandas.DatetimeIndex.is_interval
- pandas.DatetimeIndex.is_lexsorted_for_tuple
- pandas.DatetimeIndex.is_mixed
- pandas.DatetimeIndex.is_numeric
- pandas.DatetimeIndex.is_object
- pandas.DatetimeIndex.is_type_compatible
- pandas.DatetimeIndex.isin
- pandas.DatetimeIndex.isnull
- pandas.DatetimeIndex.item
- pandas.DatetimeIndex.join
- pandas.DatetimeIndex.map
- pandas.DatetimeIndex.max
- pandas.DatetimeIndex.memory_usage
- pandas.DatetimeIndex.min
- pandas.DatetimeIndex.normalize
- pandas.DatetimeIndex.notnull
- pandas.DatetimeIndex.nunique
- pandas.DatetimeIndex.putmask
- pandas.DatetimeIndex.ravel
- pandas.DatetimeIndex.reindex
- pandas.DatetimeIndex.rename
- pandas.DatetimeIndex.repeat
- pandas.DatetimeIndex.reshape
- pandas.DatetimeIndex.round
- pandas.DatetimeIndex.searchsorted
- pandas.DatetimeIndex.set_names
- pandas.DatetimeIndex.set_value
- pandas.DatetimeIndex.shift
- pandas.DatetimeIndex.slice_indexer
- pandas.DatetimeIndex.slice_locs
- pandas.DatetimeIndex.snap
- pandas.DatetimeIndex.sort
- pandas.DatetimeIndex.sort_values
- pandas.DatetimeIndex.sortlevel
- pandas.DatetimeIndex.str
- pandas.DatetimeIndex.strftime
- pandas.DatetimeIndex.summary
- pandas.DatetimeIndex.sym_diff
- pandas.DatetimeIndex.symmetric_difference
- pandas.DatetimeIndex.take
- pandas.DatetimeIndex.to_datetime
- pandas.DatetimeIndex.to_julian_date
- pandas.DatetimeIndex.to_native_types
- pandas.DatetimeIndex.to_period
- pandas.DatetimeIndex.to_perioddelta
- pandas.DatetimeIndex.to_pydatetime
- pandas.DatetimeIndex.to_series
- pandas.DatetimeIndex.tolist
- pandas.DatetimeIndex.transpose
- pandas.DatetimeIndex.tz_convert
- pandas.DatetimeIndex.tz_localize
- pandas.DatetimeIndex.union
- pandas.DatetimeIndex.union_many
- pandas.DatetimeIndex.unique
- pandas.DatetimeIndex.value_counts
- pandas.DatetimeIndex.view
- pandas.DatetimeIndex.where
- Time/Date Components
- Selecting
- Time-specific operations
- Conversion
- pandas.DatetimeIndex
- TimedeltaIndex
- Window
- GroupBy
- Resampling
- Style
- General utility functions
- Internals
- Release Notes
Search
Enter search terms or a module, class or function name.
pandas.DatetimeIndex.get_indexer_non_unique¶
-
DatetimeIndex.
get_indexer_non_unique
(target)[source]¶ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index.
Parameters: target : Index
Returns: indexer : ndarray of int
Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.
missing : ndarray of int
An indexer into the target of the values not found. These correspond to the -1 in the indexer array